SemaDeclCXX.cpp revision 3a45c0e61dfc19f27b8ebcb15dd70159a36f1f9a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier. [Note: An explicit specialization can
522  // differ from the template declaration with respect to the constexpr
523  // specifier. -- end note]
524  //
525  // FIXME: Don't reject changes in constexpr in explicit specializations.
526  if (New->isConstexpr() != Old->isConstexpr()) {
527    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
528      << New << New->isConstexpr();
529    Diag(Old->getLocation(), diag::note_previous_declaration);
530    Invalid = true;
531  }
532
533  if (CheckEquivalentExceptionSpec(Old, New))
534    Invalid = true;
535
536  return Invalid;
537}
538
539/// \brief Merge the exception specifications of two variable declarations.
540///
541/// This is called when there's a redeclaration of a VarDecl. The function
542/// checks if the redeclaration might have an exception specification and
543/// validates compatibility and merges the specs if necessary.
544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
545  // Shortcut if exceptions are disabled.
546  if (!getLangOptions().CXXExceptions)
547    return;
548
549  assert(Context.hasSameType(New->getType(), Old->getType()) &&
550         "Should only be called if types are otherwise the same.");
551
552  QualType NewType = New->getType();
553  QualType OldType = Old->getType();
554
555  // We're only interested in pointers and references to functions, as well
556  // as pointers to member functions.
557  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
558    NewType = R->getPointeeType();
559    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
560  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
561    NewType = P->getPointeeType();
562    OldType = OldType->getAs<PointerType>()->getPointeeType();
563  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
564    NewType = M->getPointeeType();
565    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
566  }
567
568  if (!NewType->isFunctionProtoType())
569    return;
570
571  // There's lots of special cases for functions. For function pointers, system
572  // libraries are hopefully not as broken so that we don't need these
573  // workarounds.
574  if (CheckEquivalentExceptionSpec(
575        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
576        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
577    New->setInvalidDecl();
578  }
579}
580
581/// CheckCXXDefaultArguments - Verify that the default arguments for a
582/// function declaration are well-formed according to C++
583/// [dcl.fct.default].
584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
585  unsigned NumParams = FD->getNumParams();
586  unsigned p;
587
588  // Find first parameter with a default argument
589  for (p = 0; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (Param->hasDefaultArg())
592      break;
593  }
594
595  // C++ [dcl.fct.default]p4:
596  //   In a given function declaration, all parameters
597  //   subsequent to a parameter with a default argument shall
598  //   have default arguments supplied in this or previous
599  //   declarations. A default argument shall not be redefined
600  //   by a later declaration (not even to the same value).
601  unsigned LastMissingDefaultArg = 0;
602  for (; p < NumParams; ++p) {
603    ParmVarDecl *Param = FD->getParamDecl(p);
604    if (!Param->hasDefaultArg()) {
605      if (Param->isInvalidDecl())
606        /* We already complained about this parameter. */;
607      else if (Param->getIdentifier())
608        Diag(Param->getLocation(),
609             diag::err_param_default_argument_missing_name)
610          << Param->getIdentifier();
611      else
612        Diag(Param->getLocation(),
613             diag::err_param_default_argument_missing);
614
615      LastMissingDefaultArg = p;
616    }
617  }
618
619  if (LastMissingDefaultArg > 0) {
620    // Some default arguments were missing. Clear out all of the
621    // default arguments up to (and including) the last missing
622    // default argument, so that we leave the function parameters
623    // in a semantically valid state.
624    for (p = 0; p <= LastMissingDefaultArg; ++p) {
625      ParmVarDecl *Param = FD->getParamDecl(p);
626      if (Param->hasDefaultArg()) {
627        Param->setDefaultArg(0);
628      }
629    }
630  }
631}
632
633// CheckConstexprParameterTypes - Check whether a function's parameter types
634// are all literal types. If so, return true. If not, produce a suitable
635// diagnostic depending on @p CCK and return false.
636static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
637                                         Sema::CheckConstexprKind CCK) {
638  unsigned ArgIndex = 0;
639  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
640  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
641       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
642    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
643    SourceLocation ParamLoc = PD->getLocation();
644    if (!(*i)->isDependentType() &&
645        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
646                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
647                                     << ArgIndex+1 << PD->getSourceRange()
648                                     << isa<CXXConstructorDecl>(FD) :
649                                   SemaRef.PDiag(),
650                                   /*AllowIncompleteType*/ true)) {
651      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
652        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
653          << ArgIndex+1 << PD->getSourceRange()
654          << isa<CXXConstructorDecl>(FD) << *i;
655      return false;
656    }
657  }
658  return true;
659}
660
661// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
662// the requirements of a constexpr function declaration or a constexpr
663// constructor declaration. Return true if it does, false if not.
664//
665// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
666//
667// \param CCK Specifies whether to produce diagnostics if the function does not
668// satisfy the requirements.
669bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
670                                      CheckConstexprKind CCK) {
671  assert((CCK != CCK_NoteNonConstexprInstantiation ||
672          (NewFD->getTemplateInstantiationPattern() &&
673           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
674         "only constexpr templates can be instantiated non-constexpr");
675
676  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
677  if (MD && MD->isInstance()) {
678    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
679    //  In addition, either its function-body shall be = delete or = default or
680    //  it shall satisfy the following constraints:
681    //  - the class shall not have any virtual base classes;
682    //
683    // We apply this to constexpr member functions too: the class cannot be a
684    // literal type, so the members are not permitted to be constexpr.
685    const CXXRecordDecl *RD = MD->getParent();
686    if (RD->getNumVBases()) {
687      // Note, this is still illegal if the body is = default, since the
688      // implicit body does not satisfy the requirements of a constexpr
689      // constructor. We also reject cases where the body is = delete, as
690      // required by N3308.
691      if (CCK != CCK_Instantiation) {
692        Diag(NewFD->getLocation(),
693             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
694                                    : diag::note_constexpr_tmpl_virtual_base)
695          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696          << RD->getNumVBases();
697        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698               E = RD->vbases_end(); I != E; ++I)
699          Diag(I->getSourceRange().getBegin(),
700               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      }
702      return false;
703    }
704  }
705
706  if (!isa<CXXConstructorDecl>(NewFD)) {
707    // C++11 [dcl.constexpr]p3:
708    //  The definition of a constexpr function shall satisfy the following
709    //  constraints:
710    // - it shall not be virtual;
711    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
712    if (Method && Method->isVirtual()) {
713      if (CCK != CCK_Instantiation) {
714        Diag(NewFD->getLocation(),
715             CCK == CCK_Declaration ? diag::err_constexpr_virtual
716                                    : diag::note_constexpr_tmpl_virtual);
717
718        // If it's not obvious why this function is virtual, find an overridden
719        // function which uses the 'virtual' keyword.
720        const CXXMethodDecl *WrittenVirtual = Method;
721        while (!WrittenVirtual->isVirtualAsWritten())
722          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
723        if (WrittenVirtual != Method)
724          Diag(WrittenVirtual->getLocation(),
725               diag::note_overridden_virtual_function);
726      }
727      return false;
728    }
729
730    // - its return type shall be a literal type;
731    QualType RT = NewFD->getResultType();
732    if (!RT->isDependentType() &&
733        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
734                           PDiag(diag::err_constexpr_non_literal_return) :
735                           PDiag(),
736                           /*AllowIncompleteType*/ true)) {
737      if (CCK == CCK_NoteNonConstexprInstantiation)
738        Diag(NewFD->getLocation(),
739             diag::note_constexpr_tmpl_non_literal_return) << RT;
740      return false;
741    }
742  }
743
744  // - each of its parameter types shall be a literal type;
745  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
746    return false;
747
748  return true;
749}
750
751/// Check the given declaration statement is legal within a constexpr function
752/// body. C++0x [dcl.constexpr]p3,p4.
753///
754/// \return true if the body is OK, false if we have diagnosed a problem.
755static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
756                                   DeclStmt *DS) {
757  // C++0x [dcl.constexpr]p3 and p4:
758  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
759  //  contain only
760  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
761         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
762    switch ((*DclIt)->getKind()) {
763    case Decl::StaticAssert:
764    case Decl::Using:
765    case Decl::UsingShadow:
766    case Decl::UsingDirective:
767    case Decl::UnresolvedUsingTypename:
768      //   - static_assert-declarations
769      //   - using-declarations,
770      //   - using-directives,
771      continue;
772
773    case Decl::Typedef:
774    case Decl::TypeAlias: {
775      //   - typedef declarations and alias-declarations that do not define
776      //     classes or enumerations,
777      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
778      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
779        // Don't allow variably-modified types in constexpr functions.
780        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
781        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
782          << TL.getSourceRange() << TL.getType()
783          << isa<CXXConstructorDecl>(Dcl);
784        return false;
785      }
786      continue;
787    }
788
789    case Decl::Enum:
790    case Decl::CXXRecord:
791      // As an extension, we allow the declaration (but not the definition) of
792      // classes and enumerations in all declarations, not just in typedef and
793      // alias declarations.
794      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
795        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
796          << isa<CXXConstructorDecl>(Dcl);
797        return false;
798      }
799      continue;
800
801    case Decl::Var:
802      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
803        << isa<CXXConstructorDecl>(Dcl);
804      return false;
805
806    default:
807      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
808        << isa<CXXConstructorDecl>(Dcl);
809      return false;
810    }
811  }
812
813  return true;
814}
815
816/// Check that the given field is initialized within a constexpr constructor.
817///
818/// \param Dcl The constexpr constructor being checked.
819/// \param Field The field being checked. This may be a member of an anonymous
820///        struct or union nested within the class being checked.
821/// \param Inits All declarations, including anonymous struct/union members and
822///        indirect members, for which any initialization was provided.
823/// \param Diagnosed Set to true if an error is produced.
824static void CheckConstexprCtorInitializer(Sema &SemaRef,
825                                          const FunctionDecl *Dcl,
826                                          FieldDecl *Field,
827                                          llvm::SmallSet<Decl*, 16> &Inits,
828                                          bool &Diagnosed) {
829  if (Field->isUnnamedBitfield())
830    return;
831
832  if (Field->isAnonymousStructOrUnion() &&
833      Field->getType()->getAsCXXRecordDecl()->isEmpty())
834    return;
835
836  if (!Inits.count(Field)) {
837    if (!Diagnosed) {
838      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
839      Diagnosed = true;
840    }
841    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
842  } else if (Field->isAnonymousStructOrUnion()) {
843    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
844    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
845         I != E; ++I)
846      // If an anonymous union contains an anonymous struct of which any member
847      // is initialized, all members must be initialized.
848      if (!RD->isUnion() || Inits.count(*I))
849        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
850  }
851}
852
853/// Check the body for the given constexpr function declaration only contains
854/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
855///
856/// \return true if the body is OK, false if we have diagnosed a problem.
857bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body,
858                                      bool IsInstantiation) {
859  if (isa<CXXTryStmt>(Body)) {
860    // C++11 [dcl.constexpr]p3:
861    //  The definition of a constexpr function shall satisfy the following
862    //  constraints: [...]
863    // - its function-body shall be = delete, = default, or a
864    //   compound-statement
865    //
866    // C++11 [dcl.constexpr]p4:
867    //  In the definition of a constexpr constructor, [...]
868    // - its function-body shall not be a function-try-block;
869    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
870      << isa<CXXConstructorDecl>(Dcl);
871    return false;
872  }
873
874  // - its function-body shall be [...] a compound-statement that contains only
875  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
876
877  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
878  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
879         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
880    switch ((*BodyIt)->getStmtClass()) {
881    case Stmt::NullStmtClass:
882      //   - null statements,
883      continue;
884
885    case Stmt::DeclStmtClass:
886      //   - static_assert-declarations
887      //   - using-declarations,
888      //   - using-directives,
889      //   - typedef declarations and alias-declarations that do not define
890      //     classes or enumerations,
891      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
892        return false;
893      continue;
894
895    case Stmt::ReturnStmtClass:
896      //   - and exactly one return statement;
897      if (isa<CXXConstructorDecl>(Dcl))
898        break;
899
900      ReturnStmts.push_back((*BodyIt)->getLocStart());
901      // FIXME
902      // - every constructor call and implicit conversion used in initializing
903      //   the return value shall be one of those allowed in a constant
904      //   expression.
905      // Deal with this as part of a general check that the function can produce
906      // a constant expression (for [dcl.constexpr]p5).
907      continue;
908
909    default:
910      break;
911    }
912
913    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
914      << isa<CXXConstructorDecl>(Dcl);
915    return false;
916  }
917
918  if (const CXXConstructorDecl *Constructor
919        = dyn_cast<CXXConstructorDecl>(Dcl)) {
920    const CXXRecordDecl *RD = Constructor->getParent();
921    // DR1359:
922    // - every non-variant non-static data member and base class sub-object
923    //   shall be initialized;
924    // - if the class is a non-empty union, or for each non-empty anonymous
925    //   union member of a non-union class, exactly one non-static data member
926    //   shall be initialized;
927    if (RD->isUnion()) {
928      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
929        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
930        return false;
931      }
932    } else if (!Constructor->isDependentContext() &&
933               !Constructor->isDelegatingConstructor()) {
934      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
935
936      // Skip detailed checking if we have enough initializers, and we would
937      // allow at most one initializer per member.
938      bool AnyAnonStructUnionMembers = false;
939      unsigned Fields = 0;
940      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
941           E = RD->field_end(); I != E; ++I, ++Fields) {
942        if ((*I)->isAnonymousStructOrUnion()) {
943          AnyAnonStructUnionMembers = true;
944          break;
945        }
946      }
947      if (AnyAnonStructUnionMembers ||
948          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
949        // Check initialization of non-static data members. Base classes are
950        // always initialized so do not need to be checked. Dependent bases
951        // might not have initializers in the member initializer list.
952        llvm::SmallSet<Decl*, 16> Inits;
953        for (CXXConstructorDecl::init_const_iterator
954               I = Constructor->init_begin(), E = Constructor->init_end();
955             I != E; ++I) {
956          if (FieldDecl *FD = (*I)->getMember())
957            Inits.insert(FD);
958          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
959            Inits.insert(ID->chain_begin(), ID->chain_end());
960        }
961
962        bool Diagnosed = false;
963        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
964             E = RD->field_end(); I != E; ++I)
965          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
966        if (Diagnosed)
967          return false;
968      }
969    }
970
971    // FIXME
972    // - every constructor involved in initializing non-static data members
973    //   and base class sub-objects shall be a constexpr constructor;
974    // - every assignment-expression that is an initializer-clause appearing
975    //   directly or indirectly within a brace-or-equal-initializer for
976    //   a non-static data member that is not named by a mem-initializer-id
977    //   shall be a constant expression; and
978    // - every implicit conversion used in converting a constructor argument
979    //   to the corresponding parameter type and converting
980    //   a full-expression to the corresponding member type shall be one of
981    //   those allowed in a constant expression.
982    // Deal with these as part of a general check that the function can produce
983    // a constant expression (for [dcl.constexpr]p5).
984  } else {
985    if (ReturnStmts.empty()) {
986      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
987      return false;
988    }
989    if (ReturnStmts.size() > 1) {
990      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
991      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
992        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
993      return false;
994    }
995  }
996
997  // C++11 [dcl.constexpr]p5:
998  //   if no function argument values exist such that the function invocation
999  //   substitution would produce a constant expression, the program is
1000  //   ill-formed; no diagnostic required.
1001  // C++11 [dcl.constexpr]p3:
1002  //   - every constructor call and implicit conversion used in initializing the
1003  //     return value shall be one of those allowed in a constant expression.
1004  // C++11 [dcl.constexpr]p4:
1005  //   - every constructor involved in initializing non-static data members and
1006  //     base class sub-objects shall be a constexpr constructor.
1007  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
1008  if (!IsInstantiation && !Expr::isPotentialConstantExpr(Dcl, Diags)) {
1009    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
1010      << isa<CXXConstructorDecl>(Dcl);
1011    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1012      Diag(Diags[I].first, Diags[I].second);
1013    return false;
1014  }
1015
1016  return true;
1017}
1018
1019/// isCurrentClassName - Determine whether the identifier II is the
1020/// name of the class type currently being defined. In the case of
1021/// nested classes, this will only return true if II is the name of
1022/// the innermost class.
1023bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1024                              const CXXScopeSpec *SS) {
1025  assert(getLangOptions().CPlusPlus && "No class names in C!");
1026
1027  CXXRecordDecl *CurDecl;
1028  if (SS && SS->isSet() && !SS->isInvalid()) {
1029    DeclContext *DC = computeDeclContext(*SS, true);
1030    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1031  } else
1032    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1033
1034  if (CurDecl && CurDecl->getIdentifier())
1035    return &II == CurDecl->getIdentifier();
1036  else
1037    return false;
1038}
1039
1040/// \brief Check the validity of a C++ base class specifier.
1041///
1042/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1043/// and returns NULL otherwise.
1044CXXBaseSpecifier *
1045Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1046                         SourceRange SpecifierRange,
1047                         bool Virtual, AccessSpecifier Access,
1048                         TypeSourceInfo *TInfo,
1049                         SourceLocation EllipsisLoc) {
1050  QualType BaseType = TInfo->getType();
1051
1052  // C++ [class.union]p1:
1053  //   A union shall not have base classes.
1054  if (Class->isUnion()) {
1055    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1056      << SpecifierRange;
1057    return 0;
1058  }
1059
1060  if (EllipsisLoc.isValid() &&
1061      !TInfo->getType()->containsUnexpandedParameterPack()) {
1062    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1063      << TInfo->getTypeLoc().getSourceRange();
1064    EllipsisLoc = SourceLocation();
1065  }
1066
1067  if (BaseType->isDependentType())
1068    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1069                                          Class->getTagKind() == TTK_Class,
1070                                          Access, TInfo, EllipsisLoc);
1071
1072  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1073
1074  // Base specifiers must be record types.
1075  if (!BaseType->isRecordType()) {
1076    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1077    return 0;
1078  }
1079
1080  // C++ [class.union]p1:
1081  //   A union shall not be used as a base class.
1082  if (BaseType->isUnionType()) {
1083    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1084    return 0;
1085  }
1086
1087  // C++ [class.derived]p2:
1088  //   The class-name in a base-specifier shall not be an incompletely
1089  //   defined class.
1090  if (RequireCompleteType(BaseLoc, BaseType,
1091                          PDiag(diag::err_incomplete_base_class)
1092                            << SpecifierRange)) {
1093    Class->setInvalidDecl();
1094    return 0;
1095  }
1096
1097  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1098  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1099  assert(BaseDecl && "Record type has no declaration");
1100  BaseDecl = BaseDecl->getDefinition();
1101  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1102  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1103  assert(CXXBaseDecl && "Base type is not a C++ type");
1104
1105  // C++ [class]p3:
1106  //   If a class is marked final and it appears as a base-type-specifier in
1107  //   base-clause, the program is ill-formed.
1108  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1109    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1110      << CXXBaseDecl->getDeclName();
1111    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1112      << CXXBaseDecl->getDeclName();
1113    return 0;
1114  }
1115
1116  if (BaseDecl->isInvalidDecl())
1117    Class->setInvalidDecl();
1118
1119  // Create the base specifier.
1120  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1121                                        Class->getTagKind() == TTK_Class,
1122                                        Access, TInfo, EllipsisLoc);
1123}
1124
1125/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1126/// one entry in the base class list of a class specifier, for
1127/// example:
1128///    class foo : public bar, virtual private baz {
1129/// 'public bar' and 'virtual private baz' are each base-specifiers.
1130BaseResult
1131Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1132                         bool Virtual, AccessSpecifier Access,
1133                         ParsedType basetype, SourceLocation BaseLoc,
1134                         SourceLocation EllipsisLoc) {
1135  if (!classdecl)
1136    return true;
1137
1138  AdjustDeclIfTemplate(classdecl);
1139  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1140  if (!Class)
1141    return true;
1142
1143  TypeSourceInfo *TInfo = 0;
1144  GetTypeFromParser(basetype, &TInfo);
1145
1146  if (EllipsisLoc.isInvalid() &&
1147      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1148                                      UPPC_BaseType))
1149    return true;
1150
1151  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1152                                                      Virtual, Access, TInfo,
1153                                                      EllipsisLoc))
1154    return BaseSpec;
1155
1156  return true;
1157}
1158
1159/// \brief Performs the actual work of attaching the given base class
1160/// specifiers to a C++ class.
1161bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1162                                unsigned NumBases) {
1163 if (NumBases == 0)
1164    return false;
1165
1166  // Used to keep track of which base types we have already seen, so
1167  // that we can properly diagnose redundant direct base types. Note
1168  // that the key is always the unqualified canonical type of the base
1169  // class.
1170  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1171
1172  // Copy non-redundant base specifiers into permanent storage.
1173  unsigned NumGoodBases = 0;
1174  bool Invalid = false;
1175  for (unsigned idx = 0; idx < NumBases; ++idx) {
1176    QualType NewBaseType
1177      = Context.getCanonicalType(Bases[idx]->getType());
1178    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1179    if (KnownBaseTypes[NewBaseType]) {
1180      // C++ [class.mi]p3:
1181      //   A class shall not be specified as a direct base class of a
1182      //   derived class more than once.
1183      Diag(Bases[idx]->getSourceRange().getBegin(),
1184           diag::err_duplicate_base_class)
1185        << KnownBaseTypes[NewBaseType]->getType()
1186        << Bases[idx]->getSourceRange();
1187
1188      // Delete the duplicate base class specifier; we're going to
1189      // overwrite its pointer later.
1190      Context.Deallocate(Bases[idx]);
1191
1192      Invalid = true;
1193    } else {
1194      // Okay, add this new base class.
1195      KnownBaseTypes[NewBaseType] = Bases[idx];
1196      Bases[NumGoodBases++] = Bases[idx];
1197      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1198        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1199          if (RD->hasAttr<WeakAttr>())
1200            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1201    }
1202  }
1203
1204  // Attach the remaining base class specifiers to the derived class.
1205  Class->setBases(Bases, NumGoodBases);
1206
1207  // Delete the remaining (good) base class specifiers, since their
1208  // data has been copied into the CXXRecordDecl.
1209  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1210    Context.Deallocate(Bases[idx]);
1211
1212  return Invalid;
1213}
1214
1215/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1216/// class, after checking whether there are any duplicate base
1217/// classes.
1218void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1219                               unsigned NumBases) {
1220  if (!ClassDecl || !Bases || !NumBases)
1221    return;
1222
1223  AdjustDeclIfTemplate(ClassDecl);
1224  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1225                       (CXXBaseSpecifier**)(Bases), NumBases);
1226}
1227
1228static CXXRecordDecl *GetClassForType(QualType T) {
1229  if (const RecordType *RT = T->getAs<RecordType>())
1230    return cast<CXXRecordDecl>(RT->getDecl());
1231  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1232    return ICT->getDecl();
1233  else
1234    return 0;
1235}
1236
1237/// \brief Determine whether the type \p Derived is a C++ class that is
1238/// derived from the type \p Base.
1239bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1240  if (!getLangOptions().CPlusPlus)
1241    return false;
1242
1243  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1244  if (!DerivedRD)
1245    return false;
1246
1247  CXXRecordDecl *BaseRD = GetClassForType(Base);
1248  if (!BaseRD)
1249    return false;
1250
1251  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1252  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1253}
1254
1255/// \brief Determine whether the type \p Derived is a C++ class that is
1256/// derived from the type \p Base.
1257bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1258  if (!getLangOptions().CPlusPlus)
1259    return false;
1260
1261  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1262  if (!DerivedRD)
1263    return false;
1264
1265  CXXRecordDecl *BaseRD = GetClassForType(Base);
1266  if (!BaseRD)
1267    return false;
1268
1269  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1270}
1271
1272void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1273                              CXXCastPath &BasePathArray) {
1274  assert(BasePathArray.empty() && "Base path array must be empty!");
1275  assert(Paths.isRecordingPaths() && "Must record paths!");
1276
1277  const CXXBasePath &Path = Paths.front();
1278
1279  // We first go backward and check if we have a virtual base.
1280  // FIXME: It would be better if CXXBasePath had the base specifier for
1281  // the nearest virtual base.
1282  unsigned Start = 0;
1283  for (unsigned I = Path.size(); I != 0; --I) {
1284    if (Path[I - 1].Base->isVirtual()) {
1285      Start = I - 1;
1286      break;
1287    }
1288  }
1289
1290  // Now add all bases.
1291  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1292    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1293}
1294
1295/// \brief Determine whether the given base path includes a virtual
1296/// base class.
1297bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1298  for (CXXCastPath::const_iterator B = BasePath.begin(),
1299                                BEnd = BasePath.end();
1300       B != BEnd; ++B)
1301    if ((*B)->isVirtual())
1302      return true;
1303
1304  return false;
1305}
1306
1307/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1308/// conversion (where Derived and Base are class types) is
1309/// well-formed, meaning that the conversion is unambiguous (and
1310/// that all of the base classes are accessible). Returns true
1311/// and emits a diagnostic if the code is ill-formed, returns false
1312/// otherwise. Loc is the location where this routine should point to
1313/// if there is an error, and Range is the source range to highlight
1314/// if there is an error.
1315bool
1316Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1317                                   unsigned InaccessibleBaseID,
1318                                   unsigned AmbigiousBaseConvID,
1319                                   SourceLocation Loc, SourceRange Range,
1320                                   DeclarationName Name,
1321                                   CXXCastPath *BasePath) {
1322  // First, determine whether the path from Derived to Base is
1323  // ambiguous. This is slightly more expensive than checking whether
1324  // the Derived to Base conversion exists, because here we need to
1325  // explore multiple paths to determine if there is an ambiguity.
1326  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1327                     /*DetectVirtual=*/false);
1328  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1329  assert(DerivationOkay &&
1330         "Can only be used with a derived-to-base conversion");
1331  (void)DerivationOkay;
1332
1333  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1334    if (InaccessibleBaseID) {
1335      // Check that the base class can be accessed.
1336      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1337                                   InaccessibleBaseID)) {
1338        case AR_inaccessible:
1339          return true;
1340        case AR_accessible:
1341        case AR_dependent:
1342        case AR_delayed:
1343          break;
1344      }
1345    }
1346
1347    // Build a base path if necessary.
1348    if (BasePath)
1349      BuildBasePathArray(Paths, *BasePath);
1350    return false;
1351  }
1352
1353  // We know that the derived-to-base conversion is ambiguous, and
1354  // we're going to produce a diagnostic. Perform the derived-to-base
1355  // search just one more time to compute all of the possible paths so
1356  // that we can print them out. This is more expensive than any of
1357  // the previous derived-to-base checks we've done, but at this point
1358  // performance isn't as much of an issue.
1359  Paths.clear();
1360  Paths.setRecordingPaths(true);
1361  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1362  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1363  (void)StillOkay;
1364
1365  // Build up a textual representation of the ambiguous paths, e.g.,
1366  // D -> B -> A, that will be used to illustrate the ambiguous
1367  // conversions in the diagnostic. We only print one of the paths
1368  // to each base class subobject.
1369  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1370
1371  Diag(Loc, AmbigiousBaseConvID)
1372  << Derived << Base << PathDisplayStr << Range << Name;
1373  return true;
1374}
1375
1376bool
1377Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1378                                   SourceLocation Loc, SourceRange Range,
1379                                   CXXCastPath *BasePath,
1380                                   bool IgnoreAccess) {
1381  return CheckDerivedToBaseConversion(Derived, Base,
1382                                      IgnoreAccess ? 0
1383                                       : diag::err_upcast_to_inaccessible_base,
1384                                      diag::err_ambiguous_derived_to_base_conv,
1385                                      Loc, Range, DeclarationName(),
1386                                      BasePath);
1387}
1388
1389
1390/// @brief Builds a string representing ambiguous paths from a
1391/// specific derived class to different subobjects of the same base
1392/// class.
1393///
1394/// This function builds a string that can be used in error messages
1395/// to show the different paths that one can take through the
1396/// inheritance hierarchy to go from the derived class to different
1397/// subobjects of a base class. The result looks something like this:
1398/// @code
1399/// struct D -> struct B -> struct A
1400/// struct D -> struct C -> struct A
1401/// @endcode
1402std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1403  std::string PathDisplayStr;
1404  std::set<unsigned> DisplayedPaths;
1405  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1406       Path != Paths.end(); ++Path) {
1407    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1408      // We haven't displayed a path to this particular base
1409      // class subobject yet.
1410      PathDisplayStr += "\n    ";
1411      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1412      for (CXXBasePath::const_iterator Element = Path->begin();
1413           Element != Path->end(); ++Element)
1414        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1415    }
1416  }
1417
1418  return PathDisplayStr;
1419}
1420
1421//===----------------------------------------------------------------------===//
1422// C++ class member Handling
1423//===----------------------------------------------------------------------===//
1424
1425/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1426bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1427                                SourceLocation ASLoc,
1428                                SourceLocation ColonLoc,
1429                                AttributeList *Attrs) {
1430  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1431  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1432                                                  ASLoc, ColonLoc);
1433  CurContext->addHiddenDecl(ASDecl);
1434  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1435}
1436
1437/// CheckOverrideControl - Check C++0x override control semantics.
1438void Sema::CheckOverrideControl(const Decl *D) {
1439  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1440  if (!MD || !MD->isVirtual())
1441    return;
1442
1443  if (MD->isDependentContext())
1444    return;
1445
1446  // C++0x [class.virtual]p3:
1447  //   If a virtual function is marked with the virt-specifier override and does
1448  //   not override a member function of a base class,
1449  //   the program is ill-formed.
1450  bool HasOverriddenMethods =
1451    MD->begin_overridden_methods() != MD->end_overridden_methods();
1452  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1453    Diag(MD->getLocation(),
1454                 diag::err_function_marked_override_not_overriding)
1455      << MD->getDeclName();
1456    return;
1457  }
1458}
1459
1460/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1461/// function overrides a virtual member function marked 'final', according to
1462/// C++0x [class.virtual]p3.
1463bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1464                                                  const CXXMethodDecl *Old) {
1465  if (!Old->hasAttr<FinalAttr>())
1466    return false;
1467
1468  Diag(New->getLocation(), diag::err_final_function_overridden)
1469    << New->getDeclName();
1470  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1471  return true;
1472}
1473
1474/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1475/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1476/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1477/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1478/// present but parsing it has been deferred.
1479Decl *
1480Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1481                               MultiTemplateParamsArg TemplateParameterLists,
1482                               Expr *BW, const VirtSpecifiers &VS,
1483                               bool HasDeferredInit) {
1484  const DeclSpec &DS = D.getDeclSpec();
1485  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1486  DeclarationName Name = NameInfo.getName();
1487  SourceLocation Loc = NameInfo.getLoc();
1488
1489  // For anonymous bitfields, the location should point to the type.
1490  if (Loc.isInvalid())
1491    Loc = D.getSourceRange().getBegin();
1492
1493  Expr *BitWidth = static_cast<Expr*>(BW);
1494
1495  assert(isa<CXXRecordDecl>(CurContext));
1496  assert(!DS.isFriendSpecified());
1497
1498  bool isFunc = D.isDeclarationOfFunction();
1499
1500  // C++ 9.2p6: A member shall not be declared to have automatic storage
1501  // duration (auto, register) or with the extern storage-class-specifier.
1502  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1503  // data members and cannot be applied to names declared const or static,
1504  // and cannot be applied to reference members.
1505  switch (DS.getStorageClassSpec()) {
1506    case DeclSpec::SCS_unspecified:
1507    case DeclSpec::SCS_typedef:
1508    case DeclSpec::SCS_static:
1509      // FALL THROUGH.
1510      break;
1511    case DeclSpec::SCS_mutable:
1512      if (isFunc) {
1513        if (DS.getStorageClassSpecLoc().isValid())
1514          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1515        else
1516          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1517
1518        // FIXME: It would be nicer if the keyword was ignored only for this
1519        // declarator. Otherwise we could get follow-up errors.
1520        D.getMutableDeclSpec().ClearStorageClassSpecs();
1521      }
1522      break;
1523    default:
1524      if (DS.getStorageClassSpecLoc().isValid())
1525        Diag(DS.getStorageClassSpecLoc(),
1526             diag::err_storageclass_invalid_for_member);
1527      else
1528        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1529      D.getMutableDeclSpec().ClearStorageClassSpecs();
1530  }
1531
1532  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1533                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1534                      !isFunc);
1535
1536  Decl *Member;
1537  if (isInstField) {
1538    CXXScopeSpec &SS = D.getCXXScopeSpec();
1539
1540    // Data members must have identifiers for names.
1541    if (Name.getNameKind() != DeclarationName::Identifier) {
1542      Diag(Loc, diag::err_bad_variable_name)
1543        << Name;
1544      return 0;
1545    }
1546
1547    IdentifierInfo *II = Name.getAsIdentifierInfo();
1548
1549    // Member field could not be with "template" keyword.
1550    // So TemplateParameterLists should be empty in this case.
1551    if (TemplateParameterLists.size()) {
1552      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1553      if (TemplateParams->size()) {
1554        // There is no such thing as a member field template.
1555        Diag(D.getIdentifierLoc(), diag::err_template_member)
1556            << II
1557            << SourceRange(TemplateParams->getTemplateLoc(),
1558                TemplateParams->getRAngleLoc());
1559      } else {
1560        // There is an extraneous 'template<>' for this member.
1561        Diag(TemplateParams->getTemplateLoc(),
1562            diag::err_template_member_noparams)
1563            << II
1564            << SourceRange(TemplateParams->getTemplateLoc(),
1565                TemplateParams->getRAngleLoc());
1566      }
1567      return 0;
1568    }
1569
1570    if (SS.isSet() && !SS.isInvalid()) {
1571      // The user provided a superfluous scope specifier inside a class
1572      // definition:
1573      //
1574      // class X {
1575      //   int X::member;
1576      // };
1577      DeclContext *DC = 0;
1578      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1579        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1580          << Name << FixItHint::CreateRemoval(SS.getRange());
1581      else
1582        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1583          << Name << SS.getRange();
1584
1585      SS.clear();
1586    }
1587
1588    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1589                         HasDeferredInit, AS);
1590    assert(Member && "HandleField never returns null");
1591  } else {
1592    assert(!HasDeferredInit);
1593
1594    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1595    if (!Member) {
1596      return 0;
1597    }
1598
1599    // Non-instance-fields can't have a bitfield.
1600    if (BitWidth) {
1601      if (Member->isInvalidDecl()) {
1602        // don't emit another diagnostic.
1603      } else if (isa<VarDecl>(Member)) {
1604        // C++ 9.6p3: A bit-field shall not be a static member.
1605        // "static member 'A' cannot be a bit-field"
1606        Diag(Loc, diag::err_static_not_bitfield)
1607          << Name << BitWidth->getSourceRange();
1608      } else if (isa<TypedefDecl>(Member)) {
1609        // "typedef member 'x' cannot be a bit-field"
1610        Diag(Loc, diag::err_typedef_not_bitfield)
1611          << Name << BitWidth->getSourceRange();
1612      } else {
1613        // A function typedef ("typedef int f(); f a;").
1614        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1615        Diag(Loc, diag::err_not_integral_type_bitfield)
1616          << Name << cast<ValueDecl>(Member)->getType()
1617          << BitWidth->getSourceRange();
1618      }
1619
1620      BitWidth = 0;
1621      Member->setInvalidDecl();
1622    }
1623
1624    Member->setAccess(AS);
1625
1626    // If we have declared a member function template, set the access of the
1627    // templated declaration as well.
1628    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1629      FunTmpl->getTemplatedDecl()->setAccess(AS);
1630  }
1631
1632  if (VS.isOverrideSpecified()) {
1633    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1634    if (!MD || !MD->isVirtual()) {
1635      Diag(Member->getLocStart(),
1636           diag::override_keyword_only_allowed_on_virtual_member_functions)
1637        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1638    } else
1639      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1640  }
1641  if (VS.isFinalSpecified()) {
1642    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1643    if (!MD || !MD->isVirtual()) {
1644      Diag(Member->getLocStart(),
1645           diag::override_keyword_only_allowed_on_virtual_member_functions)
1646      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1647    } else
1648      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1649  }
1650
1651  if (VS.getLastLocation().isValid()) {
1652    // Update the end location of a method that has a virt-specifiers.
1653    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1654      MD->setRangeEnd(VS.getLastLocation());
1655  }
1656
1657  CheckOverrideControl(Member);
1658
1659  assert((Name || isInstField) && "No identifier for non-field ?");
1660
1661  if (isInstField)
1662    FieldCollector->Add(cast<FieldDecl>(Member));
1663  return Member;
1664}
1665
1666/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1667/// in-class initializer for a non-static C++ class member, and after
1668/// instantiating an in-class initializer in a class template. Such actions
1669/// are deferred until the class is complete.
1670void
1671Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1672                                       Expr *InitExpr) {
1673  FieldDecl *FD = cast<FieldDecl>(D);
1674
1675  if (!InitExpr) {
1676    FD->setInvalidDecl();
1677    FD->removeInClassInitializer();
1678    return;
1679  }
1680
1681  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1682    FD->setInvalidDecl();
1683    FD->removeInClassInitializer();
1684    return;
1685  }
1686
1687  ExprResult Init = InitExpr;
1688  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1689    // FIXME: if there is no EqualLoc, this is list-initialization.
1690    Init = PerformCopyInitialization(
1691      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1692    if (Init.isInvalid()) {
1693      FD->setInvalidDecl();
1694      return;
1695    }
1696
1697    CheckImplicitConversions(Init.get(), EqualLoc);
1698  }
1699
1700  // C++0x [class.base.init]p7:
1701  //   The initialization of each base and member constitutes a
1702  //   full-expression.
1703  Init = MaybeCreateExprWithCleanups(Init);
1704  if (Init.isInvalid()) {
1705    FD->setInvalidDecl();
1706    return;
1707  }
1708
1709  InitExpr = Init.release();
1710
1711  FD->setInClassInitializer(InitExpr);
1712}
1713
1714/// \brief Find the direct and/or virtual base specifiers that
1715/// correspond to the given base type, for use in base initialization
1716/// within a constructor.
1717static bool FindBaseInitializer(Sema &SemaRef,
1718                                CXXRecordDecl *ClassDecl,
1719                                QualType BaseType,
1720                                const CXXBaseSpecifier *&DirectBaseSpec,
1721                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1722  // First, check for a direct base class.
1723  DirectBaseSpec = 0;
1724  for (CXXRecordDecl::base_class_const_iterator Base
1725         = ClassDecl->bases_begin();
1726       Base != ClassDecl->bases_end(); ++Base) {
1727    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1728      // We found a direct base of this type. That's what we're
1729      // initializing.
1730      DirectBaseSpec = &*Base;
1731      break;
1732    }
1733  }
1734
1735  // Check for a virtual base class.
1736  // FIXME: We might be able to short-circuit this if we know in advance that
1737  // there are no virtual bases.
1738  VirtualBaseSpec = 0;
1739  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1740    // We haven't found a base yet; search the class hierarchy for a
1741    // virtual base class.
1742    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1743                       /*DetectVirtual=*/false);
1744    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1745                              BaseType, Paths)) {
1746      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1747           Path != Paths.end(); ++Path) {
1748        if (Path->back().Base->isVirtual()) {
1749          VirtualBaseSpec = Path->back().Base;
1750          break;
1751        }
1752      }
1753    }
1754  }
1755
1756  return DirectBaseSpec || VirtualBaseSpec;
1757}
1758
1759/// \brief Handle a C++ member initializer using braced-init-list syntax.
1760MemInitResult
1761Sema::ActOnMemInitializer(Decl *ConstructorD,
1762                          Scope *S,
1763                          CXXScopeSpec &SS,
1764                          IdentifierInfo *MemberOrBase,
1765                          ParsedType TemplateTypeTy,
1766                          const DeclSpec &DS,
1767                          SourceLocation IdLoc,
1768                          Expr *InitList,
1769                          SourceLocation EllipsisLoc) {
1770  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1771                             DS, IdLoc, InitList,
1772                             EllipsisLoc);
1773}
1774
1775/// \brief Handle a C++ member initializer using parentheses syntax.
1776MemInitResult
1777Sema::ActOnMemInitializer(Decl *ConstructorD,
1778                          Scope *S,
1779                          CXXScopeSpec &SS,
1780                          IdentifierInfo *MemberOrBase,
1781                          ParsedType TemplateTypeTy,
1782                          const DeclSpec &DS,
1783                          SourceLocation IdLoc,
1784                          SourceLocation LParenLoc,
1785                          Expr **Args, unsigned NumArgs,
1786                          SourceLocation RParenLoc,
1787                          SourceLocation EllipsisLoc) {
1788  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1789                                           RParenLoc);
1790  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1791                             DS, IdLoc, List, EllipsisLoc);
1792}
1793
1794namespace {
1795
1796// Callback to only accept typo corrections that can be a valid C++ member
1797// intializer: either a non-static field member or a base class.
1798class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1799 public:
1800  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1801      : ClassDecl(ClassDecl) {}
1802
1803  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1804    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1805      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1806        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1807      else
1808        return isa<TypeDecl>(ND);
1809    }
1810    return false;
1811  }
1812
1813 private:
1814  CXXRecordDecl *ClassDecl;
1815};
1816
1817}
1818
1819/// \brief Handle a C++ member initializer.
1820MemInitResult
1821Sema::BuildMemInitializer(Decl *ConstructorD,
1822                          Scope *S,
1823                          CXXScopeSpec &SS,
1824                          IdentifierInfo *MemberOrBase,
1825                          ParsedType TemplateTypeTy,
1826                          const DeclSpec &DS,
1827                          SourceLocation IdLoc,
1828                          Expr *Init,
1829                          SourceLocation EllipsisLoc) {
1830  if (!ConstructorD)
1831    return true;
1832
1833  AdjustDeclIfTemplate(ConstructorD);
1834
1835  CXXConstructorDecl *Constructor
1836    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1837  if (!Constructor) {
1838    // The user wrote a constructor initializer on a function that is
1839    // not a C++ constructor. Ignore the error for now, because we may
1840    // have more member initializers coming; we'll diagnose it just
1841    // once in ActOnMemInitializers.
1842    return true;
1843  }
1844
1845  CXXRecordDecl *ClassDecl = Constructor->getParent();
1846
1847  // C++ [class.base.init]p2:
1848  //   Names in a mem-initializer-id are looked up in the scope of the
1849  //   constructor's class and, if not found in that scope, are looked
1850  //   up in the scope containing the constructor's definition.
1851  //   [Note: if the constructor's class contains a member with the
1852  //   same name as a direct or virtual base class of the class, a
1853  //   mem-initializer-id naming the member or base class and composed
1854  //   of a single identifier refers to the class member. A
1855  //   mem-initializer-id for the hidden base class may be specified
1856  //   using a qualified name. ]
1857  if (!SS.getScopeRep() && !TemplateTypeTy) {
1858    // Look for a member, first.
1859    DeclContext::lookup_result Result
1860      = ClassDecl->lookup(MemberOrBase);
1861    if (Result.first != Result.second) {
1862      ValueDecl *Member;
1863      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1864          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1865        if (EllipsisLoc.isValid())
1866          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1867            << MemberOrBase
1868            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1869
1870        return BuildMemberInitializer(Member, Init, IdLoc);
1871      }
1872    }
1873  }
1874  // It didn't name a member, so see if it names a class.
1875  QualType BaseType;
1876  TypeSourceInfo *TInfo = 0;
1877
1878  if (TemplateTypeTy) {
1879    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1880  } else if (DS.getTypeSpecType() == TST_decltype) {
1881    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1882  } else {
1883    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1884    LookupParsedName(R, S, &SS);
1885
1886    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1887    if (!TyD) {
1888      if (R.isAmbiguous()) return true;
1889
1890      // We don't want access-control diagnostics here.
1891      R.suppressDiagnostics();
1892
1893      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1894        bool NotUnknownSpecialization = false;
1895        DeclContext *DC = computeDeclContext(SS, false);
1896        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1897          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1898
1899        if (!NotUnknownSpecialization) {
1900          // When the scope specifier can refer to a member of an unknown
1901          // specialization, we take it as a type name.
1902          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1903                                       SS.getWithLocInContext(Context),
1904                                       *MemberOrBase, IdLoc);
1905          if (BaseType.isNull())
1906            return true;
1907
1908          R.clear();
1909          R.setLookupName(MemberOrBase);
1910        }
1911      }
1912
1913      // If no results were found, try to correct typos.
1914      TypoCorrection Corr;
1915      MemInitializerValidatorCCC Validator(ClassDecl);
1916      if (R.empty() && BaseType.isNull() &&
1917          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1918                              Validator, ClassDecl))) {
1919        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1920        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1921        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1922          // We have found a non-static data member with a similar
1923          // name to what was typed; complain and initialize that
1924          // member.
1925          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1926            << MemberOrBase << true << CorrectedQuotedStr
1927            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1928          Diag(Member->getLocation(), diag::note_previous_decl)
1929            << CorrectedQuotedStr;
1930
1931          return BuildMemberInitializer(Member, Init, IdLoc);
1932        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1933          const CXXBaseSpecifier *DirectBaseSpec;
1934          const CXXBaseSpecifier *VirtualBaseSpec;
1935          if (FindBaseInitializer(*this, ClassDecl,
1936                                  Context.getTypeDeclType(Type),
1937                                  DirectBaseSpec, VirtualBaseSpec)) {
1938            // We have found a direct or virtual base class with a
1939            // similar name to what was typed; complain and initialize
1940            // that base class.
1941            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1942              << MemberOrBase << false << CorrectedQuotedStr
1943              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1944
1945            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1946                                                             : VirtualBaseSpec;
1947            Diag(BaseSpec->getSourceRange().getBegin(),
1948                 diag::note_base_class_specified_here)
1949              << BaseSpec->getType()
1950              << BaseSpec->getSourceRange();
1951
1952            TyD = Type;
1953          }
1954        }
1955      }
1956
1957      if (!TyD && BaseType.isNull()) {
1958        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1959          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1960        return true;
1961      }
1962    }
1963
1964    if (BaseType.isNull()) {
1965      BaseType = Context.getTypeDeclType(TyD);
1966      if (SS.isSet()) {
1967        NestedNameSpecifier *Qualifier =
1968          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1969
1970        // FIXME: preserve source range information
1971        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1972      }
1973    }
1974  }
1975
1976  if (!TInfo)
1977    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1978
1979  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1980}
1981
1982/// Checks a member initializer expression for cases where reference (or
1983/// pointer) members are bound to by-value parameters (or their addresses).
1984static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1985                                               Expr *Init,
1986                                               SourceLocation IdLoc) {
1987  QualType MemberTy = Member->getType();
1988
1989  // We only handle pointers and references currently.
1990  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1991  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1992    return;
1993
1994  const bool IsPointer = MemberTy->isPointerType();
1995  if (IsPointer) {
1996    if (const UnaryOperator *Op
1997          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1998      // The only case we're worried about with pointers requires taking the
1999      // address.
2000      if (Op->getOpcode() != UO_AddrOf)
2001        return;
2002
2003      Init = Op->getSubExpr();
2004    } else {
2005      // We only handle address-of expression initializers for pointers.
2006      return;
2007    }
2008  }
2009
2010  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2011    // Taking the address of a temporary will be diagnosed as a hard error.
2012    if (IsPointer)
2013      return;
2014
2015    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2016      << Member << Init->getSourceRange();
2017  } else if (const DeclRefExpr *DRE
2018               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2019    // We only warn when referring to a non-reference parameter declaration.
2020    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2021    if (!Parameter || Parameter->getType()->isReferenceType())
2022      return;
2023
2024    S.Diag(Init->getExprLoc(),
2025           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2026                     : diag::warn_bind_ref_member_to_parameter)
2027      << Member << Parameter << Init->getSourceRange();
2028  } else {
2029    // Other initializers are fine.
2030    return;
2031  }
2032
2033  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2034    << (unsigned)IsPointer;
2035}
2036
2037/// Checks an initializer expression for use of uninitialized fields, such as
2038/// containing the field that is being initialized. Returns true if there is an
2039/// uninitialized field was used an updates the SourceLocation parameter; false
2040/// otherwise.
2041static bool InitExprContainsUninitializedFields(const Stmt *S,
2042                                                const ValueDecl *LhsField,
2043                                                SourceLocation *L) {
2044  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2045
2046  if (isa<CallExpr>(S)) {
2047    // Do not descend into function calls or constructors, as the use
2048    // of an uninitialized field may be valid. One would have to inspect
2049    // the contents of the function/ctor to determine if it is safe or not.
2050    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2051    // may be safe, depending on what the function/ctor does.
2052    return false;
2053  }
2054  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2055    const NamedDecl *RhsField = ME->getMemberDecl();
2056
2057    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2058      // The member expression points to a static data member.
2059      assert(VD->isStaticDataMember() &&
2060             "Member points to non-static data member!");
2061      (void)VD;
2062      return false;
2063    }
2064
2065    if (isa<EnumConstantDecl>(RhsField)) {
2066      // The member expression points to an enum.
2067      return false;
2068    }
2069
2070    if (RhsField == LhsField) {
2071      // Initializing a field with itself. Throw a warning.
2072      // But wait; there are exceptions!
2073      // Exception #1:  The field may not belong to this record.
2074      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2075      const Expr *base = ME->getBase();
2076      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2077        // Even though the field matches, it does not belong to this record.
2078        return false;
2079      }
2080      // None of the exceptions triggered; return true to indicate an
2081      // uninitialized field was used.
2082      *L = ME->getMemberLoc();
2083      return true;
2084    }
2085  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2086    // sizeof/alignof doesn't reference contents, do not warn.
2087    return false;
2088  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2089    // address-of doesn't reference contents (the pointer may be dereferenced
2090    // in the same expression but it would be rare; and weird).
2091    if (UOE->getOpcode() == UO_AddrOf)
2092      return false;
2093  }
2094  for (Stmt::const_child_range it = S->children(); it; ++it) {
2095    if (!*it) {
2096      // An expression such as 'member(arg ?: "")' may trigger this.
2097      continue;
2098    }
2099    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2100      return true;
2101  }
2102  return false;
2103}
2104
2105MemInitResult
2106Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2107                             SourceLocation IdLoc) {
2108  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2109  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2110  assert((DirectMember || IndirectMember) &&
2111         "Member must be a FieldDecl or IndirectFieldDecl");
2112
2113  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2114    return true;
2115
2116  if (Member->isInvalidDecl())
2117    return true;
2118
2119  // Diagnose value-uses of fields to initialize themselves, e.g.
2120  //   foo(foo)
2121  // where foo is not also a parameter to the constructor.
2122  // TODO: implement -Wuninitialized and fold this into that framework.
2123  Expr **Args;
2124  unsigned NumArgs;
2125  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2126    Args = ParenList->getExprs();
2127    NumArgs = ParenList->getNumExprs();
2128  } else {
2129    InitListExpr *InitList = cast<InitListExpr>(Init);
2130    Args = InitList->getInits();
2131    NumArgs = InitList->getNumInits();
2132  }
2133  for (unsigned i = 0; i < NumArgs; ++i) {
2134    SourceLocation L;
2135    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2136      // FIXME: Return true in the case when other fields are used before being
2137      // uninitialized. For example, let this field be the i'th field. When
2138      // initializing the i'th field, throw a warning if any of the >= i'th
2139      // fields are used, as they are not yet initialized.
2140      // Right now we are only handling the case where the i'th field uses
2141      // itself in its initializer.
2142      Diag(L, diag::warn_field_is_uninit);
2143    }
2144  }
2145
2146  SourceRange InitRange = Init->getSourceRange();
2147
2148  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2149    // Can't check initialization for a member of dependent type or when
2150    // any of the arguments are type-dependent expressions.
2151    DiscardCleanupsInEvaluationContext();
2152  } else {
2153    bool InitList = false;
2154    if (isa<InitListExpr>(Init)) {
2155      InitList = true;
2156      Args = &Init;
2157      NumArgs = 1;
2158    }
2159
2160    // Initialize the member.
2161    InitializedEntity MemberEntity =
2162      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2163                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2164    InitializationKind Kind =
2165      InitList ? InitializationKind::CreateDirectList(IdLoc)
2166               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2167                                                  InitRange.getEnd());
2168
2169    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2170    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2171                                            MultiExprArg(*this, Args, NumArgs),
2172                                            0);
2173    if (MemberInit.isInvalid())
2174      return true;
2175
2176    CheckImplicitConversions(MemberInit.get(),
2177                             InitRange.getBegin());
2178
2179    // C++0x [class.base.init]p7:
2180    //   The initialization of each base and member constitutes a
2181    //   full-expression.
2182    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2183    if (MemberInit.isInvalid())
2184      return true;
2185
2186    // If we are in a dependent context, template instantiation will
2187    // perform this type-checking again. Just save the arguments that we
2188    // received.
2189    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2190    // of the information that we have about the member
2191    // initializer. However, deconstructing the ASTs is a dicey process,
2192    // and this approach is far more likely to get the corner cases right.
2193    if (CurContext->isDependentContext()) {
2194      // The existing Init will do fine.
2195    } else {
2196      Init = MemberInit.get();
2197      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2198    }
2199  }
2200
2201  if (DirectMember) {
2202    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2203                                            InitRange.getBegin(), Init,
2204                                            InitRange.getEnd());
2205  } else {
2206    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2207                                            InitRange.getBegin(), Init,
2208                                            InitRange.getEnd());
2209  }
2210}
2211
2212MemInitResult
2213Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2214                                 CXXRecordDecl *ClassDecl) {
2215  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2216  if (!LangOpts.CPlusPlus0x)
2217    return Diag(NameLoc, diag::err_delegating_ctor)
2218      << TInfo->getTypeLoc().getLocalSourceRange();
2219  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2220
2221  bool InitList = true;
2222  Expr **Args = &Init;
2223  unsigned NumArgs = 1;
2224  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2225    InitList = false;
2226    Args = ParenList->getExprs();
2227    NumArgs = ParenList->getNumExprs();
2228  }
2229
2230  SourceRange InitRange = Init->getSourceRange();
2231  // Initialize the object.
2232  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2233                                     QualType(ClassDecl->getTypeForDecl(), 0));
2234  InitializationKind Kind =
2235    InitList ? InitializationKind::CreateDirectList(NameLoc)
2236             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2237                                                InitRange.getEnd());
2238  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2239  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2240                                              MultiExprArg(*this, Args,NumArgs),
2241                                              0);
2242  if (DelegationInit.isInvalid())
2243    return true;
2244
2245  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2246         "Delegating constructor with no target?");
2247
2248  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2249
2250  // C++0x [class.base.init]p7:
2251  //   The initialization of each base and member constitutes a
2252  //   full-expression.
2253  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2254  if (DelegationInit.isInvalid())
2255    return true;
2256
2257  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2258                                          DelegationInit.takeAs<Expr>(),
2259                                          InitRange.getEnd());
2260}
2261
2262MemInitResult
2263Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2264                           Expr *Init, CXXRecordDecl *ClassDecl,
2265                           SourceLocation EllipsisLoc) {
2266  SourceLocation BaseLoc
2267    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2268
2269  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2270    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2271             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2272
2273  // C++ [class.base.init]p2:
2274  //   [...] Unless the mem-initializer-id names a nonstatic data
2275  //   member of the constructor's class or a direct or virtual base
2276  //   of that class, the mem-initializer is ill-formed. A
2277  //   mem-initializer-list can initialize a base class using any
2278  //   name that denotes that base class type.
2279  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2280
2281  SourceRange InitRange = Init->getSourceRange();
2282  if (EllipsisLoc.isValid()) {
2283    // This is a pack expansion.
2284    if (!BaseType->containsUnexpandedParameterPack())  {
2285      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2286        << SourceRange(BaseLoc, InitRange.getEnd());
2287
2288      EllipsisLoc = SourceLocation();
2289    }
2290  } else {
2291    // Check for any unexpanded parameter packs.
2292    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2293      return true;
2294
2295    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2296      return true;
2297  }
2298
2299  // Check for direct and virtual base classes.
2300  const CXXBaseSpecifier *DirectBaseSpec = 0;
2301  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2302  if (!Dependent) {
2303    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2304                                       BaseType))
2305      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2306
2307    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2308                        VirtualBaseSpec);
2309
2310    // C++ [base.class.init]p2:
2311    // Unless the mem-initializer-id names a nonstatic data member of the
2312    // constructor's class or a direct or virtual base of that class, the
2313    // mem-initializer is ill-formed.
2314    if (!DirectBaseSpec && !VirtualBaseSpec) {
2315      // If the class has any dependent bases, then it's possible that
2316      // one of those types will resolve to the same type as
2317      // BaseType. Therefore, just treat this as a dependent base
2318      // class initialization.  FIXME: Should we try to check the
2319      // initialization anyway? It seems odd.
2320      if (ClassDecl->hasAnyDependentBases())
2321        Dependent = true;
2322      else
2323        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2324          << BaseType << Context.getTypeDeclType(ClassDecl)
2325          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2326    }
2327  }
2328
2329  if (Dependent) {
2330    DiscardCleanupsInEvaluationContext();
2331
2332    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2333                                            /*IsVirtual=*/false,
2334                                            InitRange.getBegin(), Init,
2335                                            InitRange.getEnd(), EllipsisLoc);
2336  }
2337
2338  // C++ [base.class.init]p2:
2339  //   If a mem-initializer-id is ambiguous because it designates both
2340  //   a direct non-virtual base class and an inherited virtual base
2341  //   class, the mem-initializer is ill-formed.
2342  if (DirectBaseSpec && VirtualBaseSpec)
2343    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2344      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2345
2346  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2347  if (!BaseSpec)
2348    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2349
2350  // Initialize the base.
2351  bool InitList = true;
2352  Expr **Args = &Init;
2353  unsigned NumArgs = 1;
2354  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2355    InitList = false;
2356    Args = ParenList->getExprs();
2357    NumArgs = ParenList->getNumExprs();
2358  }
2359
2360  InitializedEntity BaseEntity =
2361    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2362  InitializationKind Kind =
2363    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2364             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2365                                                InitRange.getEnd());
2366  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2367  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2368                                          MultiExprArg(*this, Args, NumArgs),
2369                                          0);
2370  if (BaseInit.isInvalid())
2371    return true;
2372
2373  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2374
2375  // C++0x [class.base.init]p7:
2376  //   The initialization of each base and member constitutes a
2377  //   full-expression.
2378  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2379  if (BaseInit.isInvalid())
2380    return true;
2381
2382  // If we are in a dependent context, template instantiation will
2383  // perform this type-checking again. Just save the arguments that we
2384  // received in a ParenListExpr.
2385  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2386  // of the information that we have about the base
2387  // initializer. However, deconstructing the ASTs is a dicey process,
2388  // and this approach is far more likely to get the corner cases right.
2389  if (CurContext->isDependentContext())
2390    BaseInit = Owned(Init);
2391
2392  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2393                                          BaseSpec->isVirtual(),
2394                                          InitRange.getBegin(),
2395                                          BaseInit.takeAs<Expr>(),
2396                                          InitRange.getEnd(), EllipsisLoc);
2397}
2398
2399// Create a static_cast\<T&&>(expr).
2400static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2401  QualType ExprType = E->getType();
2402  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2403  SourceLocation ExprLoc = E->getLocStart();
2404  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2405      TargetType, ExprLoc);
2406
2407  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2408                                   SourceRange(ExprLoc, ExprLoc),
2409                                   E->getSourceRange()).take();
2410}
2411
2412/// ImplicitInitializerKind - How an implicit base or member initializer should
2413/// initialize its base or member.
2414enum ImplicitInitializerKind {
2415  IIK_Default,
2416  IIK_Copy,
2417  IIK_Move
2418};
2419
2420static bool
2421BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2422                             ImplicitInitializerKind ImplicitInitKind,
2423                             CXXBaseSpecifier *BaseSpec,
2424                             bool IsInheritedVirtualBase,
2425                             CXXCtorInitializer *&CXXBaseInit) {
2426  InitializedEntity InitEntity
2427    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2428                                        IsInheritedVirtualBase);
2429
2430  ExprResult BaseInit;
2431
2432  switch (ImplicitInitKind) {
2433  case IIK_Default: {
2434    InitializationKind InitKind
2435      = InitializationKind::CreateDefault(Constructor->getLocation());
2436    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2437    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2438                               MultiExprArg(SemaRef, 0, 0));
2439    break;
2440  }
2441
2442  case IIK_Move:
2443  case IIK_Copy: {
2444    bool Moving = ImplicitInitKind == IIK_Move;
2445    ParmVarDecl *Param = Constructor->getParamDecl(0);
2446    QualType ParamType = Param->getType().getNonReferenceType();
2447
2448    Expr *CopyCtorArg =
2449      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2450                          SourceLocation(), Param,
2451                          Constructor->getLocation(), ParamType,
2452                          VK_LValue, 0);
2453
2454    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2455
2456    // Cast to the base class to avoid ambiguities.
2457    QualType ArgTy =
2458      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2459                                       ParamType.getQualifiers());
2460
2461    if (Moving) {
2462      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2463    }
2464
2465    CXXCastPath BasePath;
2466    BasePath.push_back(BaseSpec);
2467    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2468                                            CK_UncheckedDerivedToBase,
2469                                            Moving ? VK_XValue : VK_LValue,
2470                                            &BasePath).take();
2471
2472    InitializationKind InitKind
2473      = InitializationKind::CreateDirect(Constructor->getLocation(),
2474                                         SourceLocation(), SourceLocation());
2475    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2476                                   &CopyCtorArg, 1);
2477    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2478                               MultiExprArg(&CopyCtorArg, 1));
2479    break;
2480  }
2481  }
2482
2483  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2484  if (BaseInit.isInvalid())
2485    return true;
2486
2487  CXXBaseInit =
2488    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2489               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2490                                                        SourceLocation()),
2491                                             BaseSpec->isVirtual(),
2492                                             SourceLocation(),
2493                                             BaseInit.takeAs<Expr>(),
2494                                             SourceLocation(),
2495                                             SourceLocation());
2496
2497  return false;
2498}
2499
2500static bool RefersToRValueRef(Expr *MemRef) {
2501  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2502  return Referenced->getType()->isRValueReferenceType();
2503}
2504
2505static bool
2506BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2507                               ImplicitInitializerKind ImplicitInitKind,
2508                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2509                               CXXCtorInitializer *&CXXMemberInit) {
2510  if (Field->isInvalidDecl())
2511    return true;
2512
2513  SourceLocation Loc = Constructor->getLocation();
2514
2515  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2516    bool Moving = ImplicitInitKind == IIK_Move;
2517    ParmVarDecl *Param = Constructor->getParamDecl(0);
2518    QualType ParamType = Param->getType().getNonReferenceType();
2519
2520    // Suppress copying zero-width bitfields.
2521    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2522      return false;
2523
2524    Expr *MemberExprBase =
2525      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2526                          SourceLocation(), Param,
2527                          Loc, ParamType, VK_LValue, 0);
2528
2529    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2530
2531    if (Moving) {
2532      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2533    }
2534
2535    // Build a reference to this field within the parameter.
2536    CXXScopeSpec SS;
2537    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2538                              Sema::LookupMemberName);
2539    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2540                                  : cast<ValueDecl>(Field), AS_public);
2541    MemberLookup.resolveKind();
2542    ExprResult CtorArg
2543      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2544                                         ParamType, Loc,
2545                                         /*IsArrow=*/false,
2546                                         SS,
2547                                         /*TemplateKWLoc=*/SourceLocation(),
2548                                         /*FirstQualifierInScope=*/0,
2549                                         MemberLookup,
2550                                         /*TemplateArgs=*/0);
2551    if (CtorArg.isInvalid())
2552      return true;
2553
2554    // C++11 [class.copy]p15:
2555    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2556    //     with static_cast<T&&>(x.m);
2557    if (RefersToRValueRef(CtorArg.get())) {
2558      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2559    }
2560
2561    // When the field we are copying is an array, create index variables for
2562    // each dimension of the array. We use these index variables to subscript
2563    // the source array, and other clients (e.g., CodeGen) will perform the
2564    // necessary iteration with these index variables.
2565    SmallVector<VarDecl *, 4> IndexVariables;
2566    QualType BaseType = Field->getType();
2567    QualType SizeType = SemaRef.Context.getSizeType();
2568    bool InitializingArray = false;
2569    while (const ConstantArrayType *Array
2570                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2571      InitializingArray = true;
2572      // Create the iteration variable for this array index.
2573      IdentifierInfo *IterationVarName = 0;
2574      {
2575        SmallString<8> Str;
2576        llvm::raw_svector_ostream OS(Str);
2577        OS << "__i" << IndexVariables.size();
2578        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2579      }
2580      VarDecl *IterationVar
2581        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2582                          IterationVarName, SizeType,
2583                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2584                          SC_None, SC_None);
2585      IndexVariables.push_back(IterationVar);
2586
2587      // Create a reference to the iteration variable.
2588      ExprResult IterationVarRef
2589        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2590      assert(!IterationVarRef.isInvalid() &&
2591             "Reference to invented variable cannot fail!");
2592      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2593      assert(!IterationVarRef.isInvalid() &&
2594             "Conversion of invented variable cannot fail!");
2595
2596      // Subscript the array with this iteration variable.
2597      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2598                                                        IterationVarRef.take(),
2599                                                        Loc);
2600      if (CtorArg.isInvalid())
2601        return true;
2602
2603      BaseType = Array->getElementType();
2604    }
2605
2606    // The array subscript expression is an lvalue, which is wrong for moving.
2607    if (Moving && InitializingArray)
2608      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2609
2610    // Construct the entity that we will be initializing. For an array, this
2611    // will be first element in the array, which may require several levels
2612    // of array-subscript entities.
2613    SmallVector<InitializedEntity, 4> Entities;
2614    Entities.reserve(1 + IndexVariables.size());
2615    if (Indirect)
2616      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2617    else
2618      Entities.push_back(InitializedEntity::InitializeMember(Field));
2619    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2620      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2621                                                              0,
2622                                                              Entities.back()));
2623
2624    // Direct-initialize to use the copy constructor.
2625    InitializationKind InitKind =
2626      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2627
2628    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2629    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2630                                   &CtorArgE, 1);
2631
2632    ExprResult MemberInit
2633      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2634                        MultiExprArg(&CtorArgE, 1));
2635    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2636    if (MemberInit.isInvalid())
2637      return true;
2638
2639    if (Indirect) {
2640      assert(IndexVariables.size() == 0 &&
2641             "Indirect field improperly initialized");
2642      CXXMemberInit
2643        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2644                                                   Loc, Loc,
2645                                                   MemberInit.takeAs<Expr>(),
2646                                                   Loc);
2647    } else
2648      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2649                                                 Loc, MemberInit.takeAs<Expr>(),
2650                                                 Loc,
2651                                                 IndexVariables.data(),
2652                                                 IndexVariables.size());
2653    return false;
2654  }
2655
2656  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2657
2658  QualType FieldBaseElementType =
2659    SemaRef.Context.getBaseElementType(Field->getType());
2660
2661  if (FieldBaseElementType->isRecordType()) {
2662    InitializedEntity InitEntity
2663      = Indirect? InitializedEntity::InitializeMember(Indirect)
2664                : InitializedEntity::InitializeMember(Field);
2665    InitializationKind InitKind =
2666      InitializationKind::CreateDefault(Loc);
2667
2668    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2669    ExprResult MemberInit =
2670      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2671
2672    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2673    if (MemberInit.isInvalid())
2674      return true;
2675
2676    if (Indirect)
2677      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2678                                                               Indirect, Loc,
2679                                                               Loc,
2680                                                               MemberInit.get(),
2681                                                               Loc);
2682    else
2683      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2684                                                               Field, Loc, Loc,
2685                                                               MemberInit.get(),
2686                                                               Loc);
2687    return false;
2688  }
2689
2690  if (!Field->getParent()->isUnion()) {
2691    if (FieldBaseElementType->isReferenceType()) {
2692      SemaRef.Diag(Constructor->getLocation(),
2693                   diag::err_uninitialized_member_in_ctor)
2694      << (int)Constructor->isImplicit()
2695      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2696      << 0 << Field->getDeclName();
2697      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2698      return true;
2699    }
2700
2701    if (FieldBaseElementType.isConstQualified()) {
2702      SemaRef.Diag(Constructor->getLocation(),
2703                   diag::err_uninitialized_member_in_ctor)
2704      << (int)Constructor->isImplicit()
2705      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2706      << 1 << Field->getDeclName();
2707      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2708      return true;
2709    }
2710  }
2711
2712  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2713      FieldBaseElementType->isObjCRetainableType() &&
2714      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2715      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2716    // Instant objects:
2717    //   Default-initialize Objective-C pointers to NULL.
2718    CXXMemberInit
2719      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2720                                                 Loc, Loc,
2721                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2722                                                 Loc);
2723    return false;
2724  }
2725
2726  // Nothing to initialize.
2727  CXXMemberInit = 0;
2728  return false;
2729}
2730
2731namespace {
2732struct BaseAndFieldInfo {
2733  Sema &S;
2734  CXXConstructorDecl *Ctor;
2735  bool AnyErrorsInInits;
2736  ImplicitInitializerKind IIK;
2737  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2738  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2739
2740  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2741    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2742    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2743    if (Generated && Ctor->isCopyConstructor())
2744      IIK = IIK_Copy;
2745    else if (Generated && Ctor->isMoveConstructor())
2746      IIK = IIK_Move;
2747    else
2748      IIK = IIK_Default;
2749  }
2750
2751  bool isImplicitCopyOrMove() const {
2752    switch (IIK) {
2753    case IIK_Copy:
2754    case IIK_Move:
2755      return true;
2756
2757    case IIK_Default:
2758      return false;
2759    }
2760
2761    llvm_unreachable("Invalid ImplicitInitializerKind!");
2762  }
2763};
2764}
2765
2766/// \brief Determine whether the given indirect field declaration is somewhere
2767/// within an anonymous union.
2768static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2769  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2770                                      CEnd = F->chain_end();
2771       C != CEnd; ++C)
2772    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2773      if (Record->isUnion())
2774        return true;
2775
2776  return false;
2777}
2778
2779/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2780/// array type.
2781static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2782  if (T->isIncompleteArrayType())
2783    return true;
2784
2785  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2786    if (!ArrayT->getSize())
2787      return true;
2788
2789    T = ArrayT->getElementType();
2790  }
2791
2792  return false;
2793}
2794
2795static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2796                                    FieldDecl *Field,
2797                                    IndirectFieldDecl *Indirect = 0) {
2798
2799  // Overwhelmingly common case: we have a direct initializer for this field.
2800  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2801    Info.AllToInit.push_back(Init);
2802    return false;
2803  }
2804
2805  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2806  // has a brace-or-equal-initializer, the entity is initialized as specified
2807  // in [dcl.init].
2808  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2809    CXXCtorInitializer *Init;
2810    if (Indirect)
2811      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2812                                                      SourceLocation(),
2813                                                      SourceLocation(), 0,
2814                                                      SourceLocation());
2815    else
2816      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2817                                                      SourceLocation(),
2818                                                      SourceLocation(), 0,
2819                                                      SourceLocation());
2820    Info.AllToInit.push_back(Init);
2821    return false;
2822  }
2823
2824  // Don't build an implicit initializer for union members if none was
2825  // explicitly specified.
2826  if (Field->getParent()->isUnion() ||
2827      (Indirect && isWithinAnonymousUnion(Indirect)))
2828    return false;
2829
2830  // Don't initialize incomplete or zero-length arrays.
2831  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2832    return false;
2833
2834  // Don't try to build an implicit initializer if there were semantic
2835  // errors in any of the initializers (and therefore we might be
2836  // missing some that the user actually wrote).
2837  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2838    return false;
2839
2840  CXXCtorInitializer *Init = 0;
2841  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2842                                     Indirect, Init))
2843    return true;
2844
2845  if (Init)
2846    Info.AllToInit.push_back(Init);
2847
2848  return false;
2849}
2850
2851bool
2852Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2853                               CXXCtorInitializer *Initializer) {
2854  assert(Initializer->isDelegatingInitializer());
2855  Constructor->setNumCtorInitializers(1);
2856  CXXCtorInitializer **initializer =
2857    new (Context) CXXCtorInitializer*[1];
2858  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2859  Constructor->setCtorInitializers(initializer);
2860
2861  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2862    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2863    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2864  }
2865
2866  DelegatingCtorDecls.push_back(Constructor);
2867
2868  return false;
2869}
2870
2871bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2872                               CXXCtorInitializer **Initializers,
2873                               unsigned NumInitializers,
2874                               bool AnyErrors) {
2875  if (Constructor->isDependentContext()) {
2876    // Just store the initializers as written, they will be checked during
2877    // instantiation.
2878    if (NumInitializers > 0) {
2879      Constructor->setNumCtorInitializers(NumInitializers);
2880      CXXCtorInitializer **baseOrMemberInitializers =
2881        new (Context) CXXCtorInitializer*[NumInitializers];
2882      memcpy(baseOrMemberInitializers, Initializers,
2883             NumInitializers * sizeof(CXXCtorInitializer*));
2884      Constructor->setCtorInitializers(baseOrMemberInitializers);
2885    }
2886
2887    return false;
2888  }
2889
2890  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2891
2892  // We need to build the initializer AST according to order of construction
2893  // and not what user specified in the Initializers list.
2894  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2895  if (!ClassDecl)
2896    return true;
2897
2898  bool HadError = false;
2899
2900  for (unsigned i = 0; i < NumInitializers; i++) {
2901    CXXCtorInitializer *Member = Initializers[i];
2902
2903    if (Member->isBaseInitializer())
2904      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2905    else
2906      Info.AllBaseFields[Member->getAnyMember()] = Member;
2907  }
2908
2909  // Keep track of the direct virtual bases.
2910  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2911  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2912       E = ClassDecl->bases_end(); I != E; ++I) {
2913    if (I->isVirtual())
2914      DirectVBases.insert(I);
2915  }
2916
2917  // Push virtual bases before others.
2918  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2919       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2920
2921    if (CXXCtorInitializer *Value
2922        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2923      Info.AllToInit.push_back(Value);
2924    } else if (!AnyErrors) {
2925      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2926      CXXCtorInitializer *CXXBaseInit;
2927      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2928                                       VBase, IsInheritedVirtualBase,
2929                                       CXXBaseInit)) {
2930        HadError = true;
2931        continue;
2932      }
2933
2934      Info.AllToInit.push_back(CXXBaseInit);
2935    }
2936  }
2937
2938  // Non-virtual bases.
2939  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2940       E = ClassDecl->bases_end(); Base != E; ++Base) {
2941    // Virtuals are in the virtual base list and already constructed.
2942    if (Base->isVirtual())
2943      continue;
2944
2945    if (CXXCtorInitializer *Value
2946          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2947      Info.AllToInit.push_back(Value);
2948    } else if (!AnyErrors) {
2949      CXXCtorInitializer *CXXBaseInit;
2950      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2951                                       Base, /*IsInheritedVirtualBase=*/false,
2952                                       CXXBaseInit)) {
2953        HadError = true;
2954        continue;
2955      }
2956
2957      Info.AllToInit.push_back(CXXBaseInit);
2958    }
2959  }
2960
2961  // Fields.
2962  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2963                               MemEnd = ClassDecl->decls_end();
2964       Mem != MemEnd; ++Mem) {
2965    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2966      // C++ [class.bit]p2:
2967      //   A declaration for a bit-field that omits the identifier declares an
2968      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2969      //   initialized.
2970      if (F->isUnnamedBitfield())
2971        continue;
2972
2973      // If we're not generating the implicit copy/move constructor, then we'll
2974      // handle anonymous struct/union fields based on their individual
2975      // indirect fields.
2976      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2977        continue;
2978
2979      if (CollectFieldInitializer(*this, Info, F))
2980        HadError = true;
2981      continue;
2982    }
2983
2984    // Beyond this point, we only consider default initialization.
2985    if (Info.IIK != IIK_Default)
2986      continue;
2987
2988    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2989      if (F->getType()->isIncompleteArrayType()) {
2990        assert(ClassDecl->hasFlexibleArrayMember() &&
2991               "Incomplete array type is not valid");
2992        continue;
2993      }
2994
2995      // Initialize each field of an anonymous struct individually.
2996      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2997        HadError = true;
2998
2999      continue;
3000    }
3001  }
3002
3003  NumInitializers = Info.AllToInit.size();
3004  if (NumInitializers > 0) {
3005    Constructor->setNumCtorInitializers(NumInitializers);
3006    CXXCtorInitializer **baseOrMemberInitializers =
3007      new (Context) CXXCtorInitializer*[NumInitializers];
3008    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3009           NumInitializers * sizeof(CXXCtorInitializer*));
3010    Constructor->setCtorInitializers(baseOrMemberInitializers);
3011
3012    // Constructors implicitly reference the base and member
3013    // destructors.
3014    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3015                                           Constructor->getParent());
3016  }
3017
3018  return HadError;
3019}
3020
3021static void *GetKeyForTopLevelField(FieldDecl *Field) {
3022  // For anonymous unions, use the class declaration as the key.
3023  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3024    if (RT->getDecl()->isAnonymousStructOrUnion())
3025      return static_cast<void *>(RT->getDecl());
3026  }
3027  return static_cast<void *>(Field);
3028}
3029
3030static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3031  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3032}
3033
3034static void *GetKeyForMember(ASTContext &Context,
3035                             CXXCtorInitializer *Member) {
3036  if (!Member->isAnyMemberInitializer())
3037    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3038
3039  // For fields injected into the class via declaration of an anonymous union,
3040  // use its anonymous union class declaration as the unique key.
3041  FieldDecl *Field = Member->getAnyMember();
3042
3043  // If the field is a member of an anonymous struct or union, our key
3044  // is the anonymous record decl that's a direct child of the class.
3045  RecordDecl *RD = Field->getParent();
3046  if (RD->isAnonymousStructOrUnion()) {
3047    while (true) {
3048      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3049      if (Parent->isAnonymousStructOrUnion())
3050        RD = Parent;
3051      else
3052        break;
3053    }
3054
3055    return static_cast<void *>(RD);
3056  }
3057
3058  return static_cast<void *>(Field);
3059}
3060
3061static void
3062DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3063                                  const CXXConstructorDecl *Constructor,
3064                                  CXXCtorInitializer **Inits,
3065                                  unsigned NumInits) {
3066  if (Constructor->getDeclContext()->isDependentContext())
3067    return;
3068
3069  // Don't check initializers order unless the warning is enabled at the
3070  // location of at least one initializer.
3071  bool ShouldCheckOrder = false;
3072  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3073    CXXCtorInitializer *Init = Inits[InitIndex];
3074    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3075                                         Init->getSourceLocation())
3076          != DiagnosticsEngine::Ignored) {
3077      ShouldCheckOrder = true;
3078      break;
3079    }
3080  }
3081  if (!ShouldCheckOrder)
3082    return;
3083
3084  // Build the list of bases and members in the order that they'll
3085  // actually be initialized.  The explicit initializers should be in
3086  // this same order but may be missing things.
3087  SmallVector<const void*, 32> IdealInitKeys;
3088
3089  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3090
3091  // 1. Virtual bases.
3092  for (CXXRecordDecl::base_class_const_iterator VBase =
3093       ClassDecl->vbases_begin(),
3094       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3095    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3096
3097  // 2. Non-virtual bases.
3098  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3099       E = ClassDecl->bases_end(); Base != E; ++Base) {
3100    if (Base->isVirtual())
3101      continue;
3102    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3103  }
3104
3105  // 3. Direct fields.
3106  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3107       E = ClassDecl->field_end(); Field != E; ++Field) {
3108    if (Field->isUnnamedBitfield())
3109      continue;
3110
3111    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3112  }
3113
3114  unsigned NumIdealInits = IdealInitKeys.size();
3115  unsigned IdealIndex = 0;
3116
3117  CXXCtorInitializer *PrevInit = 0;
3118  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3119    CXXCtorInitializer *Init = Inits[InitIndex];
3120    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3121
3122    // Scan forward to try to find this initializer in the idealized
3123    // initializers list.
3124    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3125      if (InitKey == IdealInitKeys[IdealIndex])
3126        break;
3127
3128    // If we didn't find this initializer, it must be because we
3129    // scanned past it on a previous iteration.  That can only
3130    // happen if we're out of order;  emit a warning.
3131    if (IdealIndex == NumIdealInits && PrevInit) {
3132      Sema::SemaDiagnosticBuilder D =
3133        SemaRef.Diag(PrevInit->getSourceLocation(),
3134                     diag::warn_initializer_out_of_order);
3135
3136      if (PrevInit->isAnyMemberInitializer())
3137        D << 0 << PrevInit->getAnyMember()->getDeclName();
3138      else
3139        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3140
3141      if (Init->isAnyMemberInitializer())
3142        D << 0 << Init->getAnyMember()->getDeclName();
3143      else
3144        D << 1 << Init->getTypeSourceInfo()->getType();
3145
3146      // Move back to the initializer's location in the ideal list.
3147      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3148        if (InitKey == IdealInitKeys[IdealIndex])
3149          break;
3150
3151      assert(IdealIndex != NumIdealInits &&
3152             "initializer not found in initializer list");
3153    }
3154
3155    PrevInit = Init;
3156  }
3157}
3158
3159namespace {
3160bool CheckRedundantInit(Sema &S,
3161                        CXXCtorInitializer *Init,
3162                        CXXCtorInitializer *&PrevInit) {
3163  if (!PrevInit) {
3164    PrevInit = Init;
3165    return false;
3166  }
3167
3168  if (FieldDecl *Field = Init->getMember())
3169    S.Diag(Init->getSourceLocation(),
3170           diag::err_multiple_mem_initialization)
3171      << Field->getDeclName()
3172      << Init->getSourceRange();
3173  else {
3174    const Type *BaseClass = Init->getBaseClass();
3175    assert(BaseClass && "neither field nor base");
3176    S.Diag(Init->getSourceLocation(),
3177           diag::err_multiple_base_initialization)
3178      << QualType(BaseClass, 0)
3179      << Init->getSourceRange();
3180  }
3181  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3182    << 0 << PrevInit->getSourceRange();
3183
3184  return true;
3185}
3186
3187typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3188typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3189
3190bool CheckRedundantUnionInit(Sema &S,
3191                             CXXCtorInitializer *Init,
3192                             RedundantUnionMap &Unions) {
3193  FieldDecl *Field = Init->getAnyMember();
3194  RecordDecl *Parent = Field->getParent();
3195  NamedDecl *Child = Field;
3196
3197  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3198    if (Parent->isUnion()) {
3199      UnionEntry &En = Unions[Parent];
3200      if (En.first && En.first != Child) {
3201        S.Diag(Init->getSourceLocation(),
3202               diag::err_multiple_mem_union_initialization)
3203          << Field->getDeclName()
3204          << Init->getSourceRange();
3205        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3206          << 0 << En.second->getSourceRange();
3207        return true;
3208      }
3209      if (!En.first) {
3210        En.first = Child;
3211        En.second = Init;
3212      }
3213      if (!Parent->isAnonymousStructOrUnion())
3214        return false;
3215    }
3216
3217    Child = Parent;
3218    Parent = cast<RecordDecl>(Parent->getDeclContext());
3219  }
3220
3221  return false;
3222}
3223}
3224
3225/// ActOnMemInitializers - Handle the member initializers for a constructor.
3226void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3227                                SourceLocation ColonLoc,
3228                                CXXCtorInitializer **meminits,
3229                                unsigned NumMemInits,
3230                                bool AnyErrors) {
3231  if (!ConstructorDecl)
3232    return;
3233
3234  AdjustDeclIfTemplate(ConstructorDecl);
3235
3236  CXXConstructorDecl *Constructor
3237    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3238
3239  if (!Constructor) {
3240    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3241    return;
3242  }
3243
3244  CXXCtorInitializer **MemInits =
3245    reinterpret_cast<CXXCtorInitializer **>(meminits);
3246
3247  // Mapping for the duplicate initializers check.
3248  // For member initializers, this is keyed with a FieldDecl*.
3249  // For base initializers, this is keyed with a Type*.
3250  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3251
3252  // Mapping for the inconsistent anonymous-union initializers check.
3253  RedundantUnionMap MemberUnions;
3254
3255  bool HadError = false;
3256  for (unsigned i = 0; i < NumMemInits; i++) {
3257    CXXCtorInitializer *Init = MemInits[i];
3258
3259    // Set the source order index.
3260    Init->setSourceOrder(i);
3261
3262    if (Init->isAnyMemberInitializer()) {
3263      FieldDecl *Field = Init->getAnyMember();
3264      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3265          CheckRedundantUnionInit(*this, Init, MemberUnions))
3266        HadError = true;
3267    } else if (Init->isBaseInitializer()) {
3268      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3269      if (CheckRedundantInit(*this, Init, Members[Key]))
3270        HadError = true;
3271    } else {
3272      assert(Init->isDelegatingInitializer());
3273      // This must be the only initializer
3274      if (i != 0 || NumMemInits > 1) {
3275        Diag(MemInits[0]->getSourceLocation(),
3276             diag::err_delegating_initializer_alone)
3277          << MemInits[0]->getSourceRange();
3278        HadError = true;
3279        // We will treat this as being the only initializer.
3280      }
3281      SetDelegatingInitializer(Constructor, MemInits[i]);
3282      // Return immediately as the initializer is set.
3283      return;
3284    }
3285  }
3286
3287  if (HadError)
3288    return;
3289
3290  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3291
3292  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3293}
3294
3295void
3296Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3297                                             CXXRecordDecl *ClassDecl) {
3298  // Ignore dependent contexts. Also ignore unions, since their members never
3299  // have destructors implicitly called.
3300  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3301    return;
3302
3303  // FIXME: all the access-control diagnostics are positioned on the
3304  // field/base declaration.  That's probably good; that said, the
3305  // user might reasonably want to know why the destructor is being
3306  // emitted, and we currently don't say.
3307
3308  // Non-static data members.
3309  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3310       E = ClassDecl->field_end(); I != E; ++I) {
3311    FieldDecl *Field = *I;
3312    if (Field->isInvalidDecl())
3313      continue;
3314
3315    // Don't destroy incomplete or zero-length arrays.
3316    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3317      continue;
3318
3319    QualType FieldType = Context.getBaseElementType(Field->getType());
3320
3321    const RecordType* RT = FieldType->getAs<RecordType>();
3322    if (!RT)
3323      continue;
3324
3325    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3326    if (FieldClassDecl->isInvalidDecl())
3327      continue;
3328    if (FieldClassDecl->hasTrivialDestructor())
3329      continue;
3330
3331    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3332    assert(Dtor && "No dtor found for FieldClassDecl!");
3333    CheckDestructorAccess(Field->getLocation(), Dtor,
3334                          PDiag(diag::err_access_dtor_field)
3335                            << Field->getDeclName()
3336                            << FieldType);
3337
3338    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3339  }
3340
3341  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3342
3343  // Bases.
3344  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3345       E = ClassDecl->bases_end(); Base != E; ++Base) {
3346    // Bases are always records in a well-formed non-dependent class.
3347    const RecordType *RT = Base->getType()->getAs<RecordType>();
3348
3349    // Remember direct virtual bases.
3350    if (Base->isVirtual())
3351      DirectVirtualBases.insert(RT);
3352
3353    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3354    // If our base class is invalid, we probably can't get its dtor anyway.
3355    if (BaseClassDecl->isInvalidDecl())
3356      continue;
3357    // Ignore trivial destructors.
3358    if (BaseClassDecl->hasTrivialDestructor())
3359      continue;
3360
3361    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3362    assert(Dtor && "No dtor found for BaseClassDecl!");
3363
3364    // FIXME: caret should be on the start of the class name
3365    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3366                          PDiag(diag::err_access_dtor_base)
3367                            << Base->getType()
3368                            << Base->getSourceRange());
3369
3370    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3371  }
3372
3373  // Virtual bases.
3374  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3375       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3376
3377    // Bases are always records in a well-formed non-dependent class.
3378    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3379
3380    // Ignore direct virtual bases.
3381    if (DirectVirtualBases.count(RT))
3382      continue;
3383
3384    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3385    // If our base class is invalid, we probably can't get its dtor anyway.
3386    if (BaseClassDecl->isInvalidDecl())
3387      continue;
3388    // Ignore trivial destructors.
3389    if (BaseClassDecl->hasTrivialDestructor())
3390      continue;
3391
3392    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3393    assert(Dtor && "No dtor found for BaseClassDecl!");
3394    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3395                          PDiag(diag::err_access_dtor_vbase)
3396                            << VBase->getType());
3397
3398    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3399  }
3400}
3401
3402void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3403  if (!CDtorDecl)
3404    return;
3405
3406  if (CXXConstructorDecl *Constructor
3407      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3408    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3409}
3410
3411bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3412                                  unsigned DiagID, AbstractDiagSelID SelID) {
3413  if (SelID == -1)
3414    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3415  else
3416    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3417}
3418
3419bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3420                                  const PartialDiagnostic &PD) {
3421  if (!getLangOptions().CPlusPlus)
3422    return false;
3423
3424  if (const ArrayType *AT = Context.getAsArrayType(T))
3425    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3426
3427  if (const PointerType *PT = T->getAs<PointerType>()) {
3428    // Find the innermost pointer type.
3429    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3430      PT = T;
3431
3432    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3433      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3434  }
3435
3436  const RecordType *RT = T->getAs<RecordType>();
3437  if (!RT)
3438    return false;
3439
3440  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3441
3442  // We can't answer whether something is abstract until it has a
3443  // definition.  If it's currently being defined, we'll walk back
3444  // over all the declarations when we have a full definition.
3445  const CXXRecordDecl *Def = RD->getDefinition();
3446  if (!Def || Def->isBeingDefined())
3447    return false;
3448
3449  if (!RD->isAbstract())
3450    return false;
3451
3452  Diag(Loc, PD) << RD->getDeclName();
3453  DiagnoseAbstractType(RD);
3454
3455  return true;
3456}
3457
3458void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3459  // Check if we've already emitted the list of pure virtual functions
3460  // for this class.
3461  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3462    return;
3463
3464  CXXFinalOverriderMap FinalOverriders;
3465  RD->getFinalOverriders(FinalOverriders);
3466
3467  // Keep a set of seen pure methods so we won't diagnose the same method
3468  // more than once.
3469  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3470
3471  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3472                                   MEnd = FinalOverriders.end();
3473       M != MEnd;
3474       ++M) {
3475    for (OverridingMethods::iterator SO = M->second.begin(),
3476                                  SOEnd = M->second.end();
3477         SO != SOEnd; ++SO) {
3478      // C++ [class.abstract]p4:
3479      //   A class is abstract if it contains or inherits at least one
3480      //   pure virtual function for which the final overrider is pure
3481      //   virtual.
3482
3483      //
3484      if (SO->second.size() != 1)
3485        continue;
3486
3487      if (!SO->second.front().Method->isPure())
3488        continue;
3489
3490      if (!SeenPureMethods.insert(SO->second.front().Method))
3491        continue;
3492
3493      Diag(SO->second.front().Method->getLocation(),
3494           diag::note_pure_virtual_function)
3495        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3496    }
3497  }
3498
3499  if (!PureVirtualClassDiagSet)
3500    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3501  PureVirtualClassDiagSet->insert(RD);
3502}
3503
3504namespace {
3505struct AbstractUsageInfo {
3506  Sema &S;
3507  CXXRecordDecl *Record;
3508  CanQualType AbstractType;
3509  bool Invalid;
3510
3511  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3512    : S(S), Record(Record),
3513      AbstractType(S.Context.getCanonicalType(
3514                   S.Context.getTypeDeclType(Record))),
3515      Invalid(false) {}
3516
3517  void DiagnoseAbstractType() {
3518    if (Invalid) return;
3519    S.DiagnoseAbstractType(Record);
3520    Invalid = true;
3521  }
3522
3523  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3524};
3525
3526struct CheckAbstractUsage {
3527  AbstractUsageInfo &Info;
3528  const NamedDecl *Ctx;
3529
3530  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3531    : Info(Info), Ctx(Ctx) {}
3532
3533  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3534    switch (TL.getTypeLocClass()) {
3535#define ABSTRACT_TYPELOC(CLASS, PARENT)
3536#define TYPELOC(CLASS, PARENT) \
3537    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3538#include "clang/AST/TypeLocNodes.def"
3539    }
3540  }
3541
3542  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3543    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3544    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3545      if (!TL.getArg(I))
3546        continue;
3547
3548      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3549      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3550    }
3551  }
3552
3553  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3554    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3555  }
3556
3557  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3558    // Visit the type parameters from a permissive context.
3559    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3560      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3561      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3562        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3563          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3564      // TODO: other template argument types?
3565    }
3566  }
3567
3568  // Visit pointee types from a permissive context.
3569#define CheckPolymorphic(Type) \
3570  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3571    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3572  }
3573  CheckPolymorphic(PointerTypeLoc)
3574  CheckPolymorphic(ReferenceTypeLoc)
3575  CheckPolymorphic(MemberPointerTypeLoc)
3576  CheckPolymorphic(BlockPointerTypeLoc)
3577  CheckPolymorphic(AtomicTypeLoc)
3578
3579  /// Handle all the types we haven't given a more specific
3580  /// implementation for above.
3581  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3582    // Every other kind of type that we haven't called out already
3583    // that has an inner type is either (1) sugar or (2) contains that
3584    // inner type in some way as a subobject.
3585    if (TypeLoc Next = TL.getNextTypeLoc())
3586      return Visit(Next, Sel);
3587
3588    // If there's no inner type and we're in a permissive context,
3589    // don't diagnose.
3590    if (Sel == Sema::AbstractNone) return;
3591
3592    // Check whether the type matches the abstract type.
3593    QualType T = TL.getType();
3594    if (T->isArrayType()) {
3595      Sel = Sema::AbstractArrayType;
3596      T = Info.S.Context.getBaseElementType(T);
3597    }
3598    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3599    if (CT != Info.AbstractType) return;
3600
3601    // It matched; do some magic.
3602    if (Sel == Sema::AbstractArrayType) {
3603      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3604        << T << TL.getSourceRange();
3605    } else {
3606      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3607        << Sel << T << TL.getSourceRange();
3608    }
3609    Info.DiagnoseAbstractType();
3610  }
3611};
3612
3613void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3614                                  Sema::AbstractDiagSelID Sel) {
3615  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3616}
3617
3618}
3619
3620/// Check for invalid uses of an abstract type in a method declaration.
3621static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3622                                    CXXMethodDecl *MD) {
3623  // No need to do the check on definitions, which require that
3624  // the return/param types be complete.
3625  if (MD->doesThisDeclarationHaveABody())
3626    return;
3627
3628  // For safety's sake, just ignore it if we don't have type source
3629  // information.  This should never happen for non-implicit methods,
3630  // but...
3631  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3632    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3633}
3634
3635/// Check for invalid uses of an abstract type within a class definition.
3636static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3637                                    CXXRecordDecl *RD) {
3638  for (CXXRecordDecl::decl_iterator
3639         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3640    Decl *D = *I;
3641    if (D->isImplicit()) continue;
3642
3643    // Methods and method templates.
3644    if (isa<CXXMethodDecl>(D)) {
3645      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3646    } else if (isa<FunctionTemplateDecl>(D)) {
3647      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3648      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3649
3650    // Fields and static variables.
3651    } else if (isa<FieldDecl>(D)) {
3652      FieldDecl *FD = cast<FieldDecl>(D);
3653      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3654        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3655    } else if (isa<VarDecl>(D)) {
3656      VarDecl *VD = cast<VarDecl>(D);
3657      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3658        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3659
3660    // Nested classes and class templates.
3661    } else if (isa<CXXRecordDecl>(D)) {
3662      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3663    } else if (isa<ClassTemplateDecl>(D)) {
3664      CheckAbstractClassUsage(Info,
3665                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3666    }
3667  }
3668}
3669
3670/// \brief Perform semantic checks on a class definition that has been
3671/// completing, introducing implicitly-declared members, checking for
3672/// abstract types, etc.
3673void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3674  if (!Record)
3675    return;
3676
3677  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3678    AbstractUsageInfo Info(*this, Record);
3679    CheckAbstractClassUsage(Info, Record);
3680  }
3681
3682  // If this is not an aggregate type and has no user-declared constructor,
3683  // complain about any non-static data members of reference or const scalar
3684  // type, since they will never get initializers.
3685  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3686      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3687      !Record->isLambda()) {
3688    bool Complained = false;
3689    for (RecordDecl::field_iterator F = Record->field_begin(),
3690                                 FEnd = Record->field_end();
3691         F != FEnd; ++F) {
3692      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3693        continue;
3694
3695      if (F->getType()->isReferenceType() ||
3696          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3697        if (!Complained) {
3698          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3699            << Record->getTagKind() << Record;
3700          Complained = true;
3701        }
3702
3703        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3704          << F->getType()->isReferenceType()
3705          << F->getDeclName();
3706      }
3707    }
3708  }
3709
3710  if (Record->isDynamicClass() && !Record->isDependentType())
3711    DynamicClasses.push_back(Record);
3712
3713  if (Record->getIdentifier()) {
3714    // C++ [class.mem]p13:
3715    //   If T is the name of a class, then each of the following shall have a
3716    //   name different from T:
3717    //     - every member of every anonymous union that is a member of class T.
3718    //
3719    // C++ [class.mem]p14:
3720    //   In addition, if class T has a user-declared constructor (12.1), every
3721    //   non-static data member of class T shall have a name different from T.
3722    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3723         R.first != R.second; ++R.first) {
3724      NamedDecl *D = *R.first;
3725      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3726          isa<IndirectFieldDecl>(D)) {
3727        Diag(D->getLocation(), diag::err_member_name_of_class)
3728          << D->getDeclName();
3729        break;
3730      }
3731    }
3732  }
3733
3734  // Warn if the class has virtual methods but non-virtual public destructor.
3735  if (Record->isPolymorphic() && !Record->isDependentType()) {
3736    CXXDestructorDecl *dtor = Record->getDestructor();
3737    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3738      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3739           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3740  }
3741
3742  // See if a method overloads virtual methods in a base
3743  /// class without overriding any.
3744  if (!Record->isDependentType()) {
3745    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3746                                     MEnd = Record->method_end();
3747         M != MEnd; ++M) {
3748      if (!(*M)->isStatic())
3749        DiagnoseHiddenVirtualMethods(Record, *M);
3750    }
3751  }
3752
3753  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3754  // function that is not a constructor declares that member function to be
3755  // const. [...] The class of which that function is a member shall be
3756  // a literal type.
3757  //
3758  // It's fine to diagnose constructors here too: such constructors cannot
3759  // produce a constant expression, so are ill-formed (no diagnostic required).
3760  //
3761  // If the class has virtual bases, any constexpr members will already have
3762  // been diagnosed by the checks performed on the member declaration, so
3763  // suppress this (less useful) diagnostic.
3764  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3765      !Record->isLiteral() && !Record->getNumVBases()) {
3766    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3767                                     MEnd = Record->method_end();
3768         M != MEnd; ++M) {
3769      if (M->isConstexpr() && M->isInstance()) {
3770        switch (Record->getTemplateSpecializationKind()) {
3771        case TSK_ImplicitInstantiation:
3772        case TSK_ExplicitInstantiationDeclaration:
3773        case TSK_ExplicitInstantiationDefinition:
3774          // If a template instantiates to a non-literal type, but its members
3775          // instantiate to constexpr functions, the template is technically
3776          // ill-formed, but we allow it for sanity. Such members are treated as
3777          // non-constexpr.
3778          (*M)->setConstexpr(false);
3779          continue;
3780
3781        case TSK_Undeclared:
3782        case TSK_ExplicitSpecialization:
3783          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3784                             PDiag(diag::err_constexpr_method_non_literal));
3785          break;
3786        }
3787
3788        // Only produce one error per class.
3789        break;
3790      }
3791    }
3792  }
3793
3794  // Declare inherited constructors. We do this eagerly here because:
3795  // - The standard requires an eager diagnostic for conflicting inherited
3796  //   constructors from different classes.
3797  // - The lazy declaration of the other implicit constructors is so as to not
3798  //   waste space and performance on classes that are not meant to be
3799  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3800  //   have inherited constructors.
3801  DeclareInheritedConstructors(Record);
3802
3803  if (!Record->isDependentType())
3804    CheckExplicitlyDefaultedMethods(Record);
3805}
3806
3807void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3808  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3809                                      ME = Record->method_end();
3810       MI != ME; ++MI) {
3811    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3812      switch (getSpecialMember(*MI)) {
3813      case CXXDefaultConstructor:
3814        CheckExplicitlyDefaultedDefaultConstructor(
3815                                                  cast<CXXConstructorDecl>(*MI));
3816        break;
3817
3818      case CXXDestructor:
3819        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3820        break;
3821
3822      case CXXCopyConstructor:
3823        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3824        break;
3825
3826      case CXXCopyAssignment:
3827        CheckExplicitlyDefaultedCopyAssignment(*MI);
3828        break;
3829
3830      case CXXMoveConstructor:
3831        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3832        break;
3833
3834      case CXXMoveAssignment:
3835        CheckExplicitlyDefaultedMoveAssignment(*MI);
3836        break;
3837
3838      case CXXInvalid:
3839        llvm_unreachable("non-special member explicitly defaulted!");
3840      }
3841    }
3842  }
3843
3844}
3845
3846void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3847  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3848
3849  // Whether this was the first-declared instance of the constructor.
3850  // This affects whether we implicitly add an exception spec (and, eventually,
3851  // constexpr). It is also ill-formed to explicitly default a constructor such
3852  // that it would be deleted. (C++0x [decl.fct.def.default])
3853  bool First = CD == CD->getCanonicalDecl();
3854
3855  bool HadError = false;
3856  if (CD->getNumParams() != 0) {
3857    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3858      << CD->getSourceRange();
3859    HadError = true;
3860  }
3861
3862  ImplicitExceptionSpecification Spec
3863    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3864  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3865  if (EPI.ExceptionSpecType == EST_Delayed) {
3866    // Exception specification depends on some deferred part of the class. We'll
3867    // try again when the class's definition has been fully processed.
3868    return;
3869  }
3870  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3871                          *ExceptionType = Context.getFunctionType(
3872                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3873
3874  // C++11 [dcl.fct.def.default]p2:
3875  //   An explicitly-defaulted function may be declared constexpr only if it
3876  //   would have been implicitly declared as constexpr,
3877  if (CD->isConstexpr()) {
3878    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3879      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3880        << CXXDefaultConstructor;
3881      HadError = true;
3882    }
3883  }
3884  //   and may have an explicit exception-specification only if it is compatible
3885  //   with the exception-specification on the implicit declaration.
3886  if (CtorType->hasExceptionSpec()) {
3887    if (CheckEquivalentExceptionSpec(
3888          PDiag(diag::err_incorrect_defaulted_exception_spec)
3889            << CXXDefaultConstructor,
3890          PDiag(),
3891          ExceptionType, SourceLocation(),
3892          CtorType, CD->getLocation())) {
3893      HadError = true;
3894    }
3895  }
3896
3897  //   If a function is explicitly defaulted on its first declaration,
3898  if (First) {
3899    //  -- it is implicitly considered to be constexpr if the implicit
3900    //     definition would be,
3901    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3902
3903    //  -- it is implicitly considered to have the same
3904    //     exception-specification as if it had been implicitly declared
3905    //
3906    // FIXME: a compatible, but different, explicit exception specification
3907    // will be silently overridden. We should issue a warning if this happens.
3908    EPI.ExtInfo = CtorType->getExtInfo();
3909  }
3910
3911  if (HadError) {
3912    CD->setInvalidDecl();
3913    return;
3914  }
3915
3916  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3917    if (First) {
3918      CD->setDeletedAsWritten();
3919    } else {
3920      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3921        << CXXDefaultConstructor;
3922      CD->setInvalidDecl();
3923    }
3924  }
3925}
3926
3927void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3928  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3929
3930  // Whether this was the first-declared instance of the constructor.
3931  bool First = CD == CD->getCanonicalDecl();
3932
3933  bool HadError = false;
3934  if (CD->getNumParams() != 1) {
3935    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3936      << CD->getSourceRange();
3937    HadError = true;
3938  }
3939
3940  ImplicitExceptionSpecification Spec(Context);
3941  bool Const;
3942  llvm::tie(Spec, Const) =
3943    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3944
3945  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3946  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3947                          *ExceptionType = Context.getFunctionType(
3948                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3949
3950  // Check for parameter type matching.
3951  // This is a copy ctor so we know it's a cv-qualified reference to T.
3952  QualType ArgType = CtorType->getArgType(0);
3953  if (ArgType->getPointeeType().isVolatileQualified()) {
3954    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3955    HadError = true;
3956  }
3957  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3958    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3959    HadError = true;
3960  }
3961
3962  // C++11 [dcl.fct.def.default]p2:
3963  //   An explicitly-defaulted function may be declared constexpr only if it
3964  //   would have been implicitly declared as constexpr,
3965  if (CD->isConstexpr()) {
3966    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3967      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3968        << CXXCopyConstructor;
3969      HadError = true;
3970    }
3971  }
3972  //   and may have an explicit exception-specification only if it is compatible
3973  //   with the exception-specification on the implicit declaration.
3974  if (CtorType->hasExceptionSpec()) {
3975    if (CheckEquivalentExceptionSpec(
3976          PDiag(diag::err_incorrect_defaulted_exception_spec)
3977            << CXXCopyConstructor,
3978          PDiag(),
3979          ExceptionType, SourceLocation(),
3980          CtorType, CD->getLocation())) {
3981      HadError = true;
3982    }
3983  }
3984
3985  //   If a function is explicitly defaulted on its first declaration,
3986  if (First) {
3987    //  -- it is implicitly considered to be constexpr if the implicit
3988    //     definition would be,
3989    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3990
3991    //  -- it is implicitly considered to have the same
3992    //     exception-specification as if it had been implicitly declared, and
3993    //
3994    // FIXME: a compatible, but different, explicit exception specification
3995    // will be silently overridden. We should issue a warning if this happens.
3996    EPI.ExtInfo = CtorType->getExtInfo();
3997
3998    //  -- [...] it shall have the same parameter type as if it had been
3999    //     implicitly declared.
4000    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4001  }
4002
4003  if (HadError) {
4004    CD->setInvalidDecl();
4005    return;
4006  }
4007
4008  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4009    if (First) {
4010      CD->setDeletedAsWritten();
4011    } else {
4012      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4013        << CXXCopyConstructor;
4014      CD->setInvalidDecl();
4015    }
4016  }
4017}
4018
4019void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4020  assert(MD->isExplicitlyDefaulted());
4021
4022  // Whether this was the first-declared instance of the operator
4023  bool First = MD == MD->getCanonicalDecl();
4024
4025  bool HadError = false;
4026  if (MD->getNumParams() != 1) {
4027    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4028      << MD->getSourceRange();
4029    HadError = true;
4030  }
4031
4032  QualType ReturnType =
4033    MD->getType()->getAs<FunctionType>()->getResultType();
4034  if (!ReturnType->isLValueReferenceType() ||
4035      !Context.hasSameType(
4036        Context.getCanonicalType(ReturnType->getPointeeType()),
4037        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4038    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4039    HadError = true;
4040  }
4041
4042  ImplicitExceptionSpecification Spec(Context);
4043  bool Const;
4044  llvm::tie(Spec, Const) =
4045    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4046
4047  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4048  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4049                          *ExceptionType = Context.getFunctionType(
4050                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4051
4052  QualType ArgType = OperType->getArgType(0);
4053  if (!ArgType->isLValueReferenceType()) {
4054    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4055    HadError = true;
4056  } else {
4057    if (ArgType->getPointeeType().isVolatileQualified()) {
4058      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4059      HadError = true;
4060    }
4061    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4062      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4063      HadError = true;
4064    }
4065  }
4066
4067  if (OperType->getTypeQuals()) {
4068    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4069    HadError = true;
4070  }
4071
4072  if (OperType->hasExceptionSpec()) {
4073    if (CheckEquivalentExceptionSpec(
4074          PDiag(diag::err_incorrect_defaulted_exception_spec)
4075            << CXXCopyAssignment,
4076          PDiag(),
4077          ExceptionType, SourceLocation(),
4078          OperType, MD->getLocation())) {
4079      HadError = true;
4080    }
4081  }
4082  if (First) {
4083    // We set the declaration to have the computed exception spec here.
4084    // We duplicate the one parameter type.
4085    EPI.RefQualifier = OperType->getRefQualifier();
4086    EPI.ExtInfo = OperType->getExtInfo();
4087    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4088  }
4089
4090  if (HadError) {
4091    MD->setInvalidDecl();
4092    return;
4093  }
4094
4095  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4096    if (First) {
4097      MD->setDeletedAsWritten();
4098    } else {
4099      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4100        << CXXCopyAssignment;
4101      MD->setInvalidDecl();
4102    }
4103  }
4104}
4105
4106void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4107  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4108
4109  // Whether this was the first-declared instance of the constructor.
4110  bool First = CD == CD->getCanonicalDecl();
4111
4112  bool HadError = false;
4113  if (CD->getNumParams() != 1) {
4114    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4115      << CD->getSourceRange();
4116    HadError = true;
4117  }
4118
4119  ImplicitExceptionSpecification Spec(
4120      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4121
4122  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4123  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4124                          *ExceptionType = Context.getFunctionType(
4125                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4126
4127  // Check for parameter type matching.
4128  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4129  QualType ArgType = CtorType->getArgType(0);
4130  if (ArgType->getPointeeType().isVolatileQualified()) {
4131    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4132    HadError = true;
4133  }
4134  if (ArgType->getPointeeType().isConstQualified()) {
4135    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4136    HadError = true;
4137  }
4138
4139  // C++11 [dcl.fct.def.default]p2:
4140  //   An explicitly-defaulted function may be declared constexpr only if it
4141  //   would have been implicitly declared as constexpr,
4142  if (CD->isConstexpr()) {
4143    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4144      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4145        << CXXMoveConstructor;
4146      HadError = true;
4147    }
4148  }
4149  //   and may have an explicit exception-specification only if it is compatible
4150  //   with the exception-specification on the implicit declaration.
4151  if (CtorType->hasExceptionSpec()) {
4152    if (CheckEquivalentExceptionSpec(
4153          PDiag(diag::err_incorrect_defaulted_exception_spec)
4154            << CXXMoveConstructor,
4155          PDiag(),
4156          ExceptionType, SourceLocation(),
4157          CtorType, CD->getLocation())) {
4158      HadError = true;
4159    }
4160  }
4161
4162  //   If a function is explicitly defaulted on its first declaration,
4163  if (First) {
4164    //  -- it is implicitly considered to be constexpr if the implicit
4165    //     definition would be,
4166    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4167
4168    //  -- it is implicitly considered to have the same
4169    //     exception-specification as if it had been implicitly declared, and
4170    //
4171    // FIXME: a compatible, but different, explicit exception specification
4172    // will be silently overridden. We should issue a warning if this happens.
4173    EPI.ExtInfo = CtorType->getExtInfo();
4174
4175    //  -- [...] it shall have the same parameter type as if it had been
4176    //     implicitly declared.
4177    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4178  }
4179
4180  if (HadError) {
4181    CD->setInvalidDecl();
4182    return;
4183  }
4184
4185  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4186    if (First) {
4187      CD->setDeletedAsWritten();
4188    } else {
4189      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4190        << CXXMoveConstructor;
4191      CD->setInvalidDecl();
4192    }
4193  }
4194}
4195
4196void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4197  assert(MD->isExplicitlyDefaulted());
4198
4199  // Whether this was the first-declared instance of the operator
4200  bool First = MD == MD->getCanonicalDecl();
4201
4202  bool HadError = false;
4203  if (MD->getNumParams() != 1) {
4204    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4205      << MD->getSourceRange();
4206    HadError = true;
4207  }
4208
4209  QualType ReturnType =
4210    MD->getType()->getAs<FunctionType>()->getResultType();
4211  if (!ReturnType->isLValueReferenceType() ||
4212      !Context.hasSameType(
4213        Context.getCanonicalType(ReturnType->getPointeeType()),
4214        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4215    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4216    HadError = true;
4217  }
4218
4219  ImplicitExceptionSpecification Spec(
4220      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4221
4222  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4223  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4224                          *ExceptionType = Context.getFunctionType(
4225                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4226
4227  QualType ArgType = OperType->getArgType(0);
4228  if (!ArgType->isRValueReferenceType()) {
4229    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4230    HadError = true;
4231  } else {
4232    if (ArgType->getPointeeType().isVolatileQualified()) {
4233      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4234      HadError = true;
4235    }
4236    if (ArgType->getPointeeType().isConstQualified()) {
4237      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4238      HadError = true;
4239    }
4240  }
4241
4242  if (OperType->getTypeQuals()) {
4243    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4244    HadError = true;
4245  }
4246
4247  if (OperType->hasExceptionSpec()) {
4248    if (CheckEquivalentExceptionSpec(
4249          PDiag(diag::err_incorrect_defaulted_exception_spec)
4250            << CXXMoveAssignment,
4251          PDiag(),
4252          ExceptionType, SourceLocation(),
4253          OperType, MD->getLocation())) {
4254      HadError = true;
4255    }
4256  }
4257  if (First) {
4258    // We set the declaration to have the computed exception spec here.
4259    // We duplicate the one parameter type.
4260    EPI.RefQualifier = OperType->getRefQualifier();
4261    EPI.ExtInfo = OperType->getExtInfo();
4262    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4263  }
4264
4265  if (HadError) {
4266    MD->setInvalidDecl();
4267    return;
4268  }
4269
4270  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4271    if (First) {
4272      MD->setDeletedAsWritten();
4273    } else {
4274      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4275        << CXXMoveAssignment;
4276      MD->setInvalidDecl();
4277    }
4278  }
4279}
4280
4281void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4282  assert(DD->isExplicitlyDefaulted());
4283
4284  // Whether this was the first-declared instance of the destructor.
4285  bool First = DD == DD->getCanonicalDecl();
4286
4287  ImplicitExceptionSpecification Spec
4288    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4289  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4290  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4291                          *ExceptionType = Context.getFunctionType(
4292                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4293
4294  if (DtorType->hasExceptionSpec()) {
4295    if (CheckEquivalentExceptionSpec(
4296          PDiag(diag::err_incorrect_defaulted_exception_spec)
4297            << CXXDestructor,
4298          PDiag(),
4299          ExceptionType, SourceLocation(),
4300          DtorType, DD->getLocation())) {
4301      DD->setInvalidDecl();
4302      return;
4303    }
4304  }
4305  if (First) {
4306    // We set the declaration to have the computed exception spec here.
4307    // There are no parameters.
4308    EPI.ExtInfo = DtorType->getExtInfo();
4309    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4310  }
4311
4312  if (ShouldDeleteDestructor(DD)) {
4313    if (First) {
4314      DD->setDeletedAsWritten();
4315    } else {
4316      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4317        << CXXDestructor;
4318      DD->setInvalidDecl();
4319    }
4320  }
4321}
4322
4323/// This function implements the following C++0x paragraphs:
4324///  - [class.ctor]/5
4325///  - [class.copy]/11
4326bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4327  assert(!MD->isInvalidDecl());
4328  CXXRecordDecl *RD = MD->getParent();
4329  assert(!RD->isDependentType() && "do deletion after instantiation");
4330  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4331    return false;
4332
4333  bool IsUnion = RD->isUnion();
4334  bool IsConstructor = false;
4335  bool IsAssignment = false;
4336  bool IsMove = false;
4337
4338  bool ConstArg = false;
4339
4340  switch (CSM) {
4341  case CXXDefaultConstructor:
4342    IsConstructor = true;
4343    break;
4344  case CXXCopyConstructor:
4345    IsConstructor = true;
4346    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4347    break;
4348  case CXXMoveConstructor:
4349    IsConstructor = true;
4350    IsMove = true;
4351    break;
4352  default:
4353    llvm_unreachable("function only currently implemented for default ctors");
4354  }
4355
4356  SourceLocation Loc = MD->getLocation();
4357
4358  // Do access control from the special member function
4359  ContextRAII MethodContext(*this, MD);
4360
4361  bool AllConst = true;
4362
4363  // We do this because we should never actually use an anonymous
4364  // union's constructor.
4365  if (IsUnion && RD->isAnonymousStructOrUnion())
4366    return false;
4367
4368  // FIXME: We should put some diagnostic logic right into this function.
4369
4370  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4371                                          BE = RD->bases_end();
4372       BI != BE; ++BI) {
4373    // We'll handle this one later
4374    if (BI->isVirtual())
4375      continue;
4376
4377    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4378    assert(BaseDecl && "base isn't a CXXRecordDecl");
4379
4380    // Unless we have an assignment operator, the base's destructor must
4381    // be accessible and not deleted.
4382    if (!IsAssignment) {
4383      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4384      if (BaseDtor->isDeleted())
4385        return true;
4386      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4387          AR_accessible)
4388        return true;
4389    }
4390
4391    // Finding the corresponding member in the base should lead to a
4392    // unique, accessible, non-deleted function. If we are doing
4393    // a destructor, we have already checked this case.
4394    if (CSM != CXXDestructor) {
4395      SpecialMemberOverloadResult *SMOR =
4396        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4397                            false);
4398      if (!SMOR->hasSuccess())
4399        return true;
4400      CXXMethodDecl *BaseMember = SMOR->getMethod();
4401      if (IsConstructor) {
4402        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4403        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4404                                   PDiag()) != AR_accessible)
4405          return true;
4406
4407        // For a move operation, the corresponding operation must actually
4408        // be a move operation (and not a copy selected by overload
4409        // resolution) unless we are working on a trivially copyable class.
4410        if (IsMove && !BaseCtor->isMoveConstructor() &&
4411            !BaseDecl->isTriviallyCopyable())
4412          return true;
4413      }
4414    }
4415  }
4416
4417  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4418                                          BE = RD->vbases_end();
4419       BI != BE; ++BI) {
4420    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4421    assert(BaseDecl && "base isn't a CXXRecordDecl");
4422
4423    // Unless we have an assignment operator, the base's destructor must
4424    // be accessible and not deleted.
4425    if (!IsAssignment) {
4426      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4427      if (BaseDtor->isDeleted())
4428        return true;
4429      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4430          AR_accessible)
4431        return true;
4432    }
4433
4434    // Finding the corresponding member in the base should lead to a
4435    // unique, accessible, non-deleted function.
4436    if (CSM != CXXDestructor) {
4437      SpecialMemberOverloadResult *SMOR =
4438        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4439                            false);
4440      if (!SMOR->hasSuccess())
4441        return true;
4442      CXXMethodDecl *BaseMember = SMOR->getMethod();
4443      if (IsConstructor) {
4444        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4445        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4446                                   PDiag()) != AR_accessible)
4447          return true;
4448
4449        // For a move operation, the corresponding operation must actually
4450        // be a move operation (and not a copy selected by overload
4451        // resolution) unless we are working on a trivially copyable class.
4452        if (IsMove && !BaseCtor->isMoveConstructor() &&
4453            !BaseDecl->isTriviallyCopyable())
4454          return true;
4455      }
4456    }
4457  }
4458
4459  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4460                                     FE = RD->field_end();
4461       FI != FE; ++FI) {
4462    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4463      continue;
4464
4465    QualType FieldType = Context.getBaseElementType(FI->getType());
4466    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4467
4468    // For a default constructor, all references must be initialized in-class
4469    // and, if a union, it must have a non-const member.
4470    if (CSM == CXXDefaultConstructor) {
4471      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4472        return true;
4473
4474      if (IsUnion && !FieldType.isConstQualified())
4475        AllConst = false;
4476    // For a copy constructor, data members must not be of rvalue reference
4477    // type.
4478    } else if (CSM == CXXCopyConstructor) {
4479      if (FieldType->isRValueReferenceType())
4480        return true;
4481    }
4482
4483    if (FieldRecord) {
4484      // For a default constructor, a const member must have a user-provided
4485      // default constructor or else be explicitly initialized.
4486      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4487          !FI->hasInClassInitializer() &&
4488          !FieldRecord->hasUserProvidedDefaultConstructor())
4489        return true;
4490
4491      // Some additional restrictions exist on the variant members.
4492      if (!IsUnion && FieldRecord->isUnion() &&
4493          FieldRecord->isAnonymousStructOrUnion()) {
4494        // We're okay to reuse AllConst here since we only care about the
4495        // value otherwise if we're in a union.
4496        AllConst = true;
4497
4498        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4499                                           UE = FieldRecord->field_end();
4500             UI != UE; ++UI) {
4501          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4502          CXXRecordDecl *UnionFieldRecord =
4503            UnionFieldType->getAsCXXRecordDecl();
4504
4505          if (!UnionFieldType.isConstQualified())
4506            AllConst = false;
4507
4508          if (UnionFieldRecord) {
4509            // FIXME: Checking for accessibility and validity of this
4510            //        destructor is technically going beyond the
4511            //        standard, but this is believed to be a defect.
4512            if (!IsAssignment) {
4513              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4514              if (FieldDtor->isDeleted())
4515                return true;
4516              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4517                  AR_accessible)
4518                return true;
4519              if (!FieldDtor->isTrivial())
4520                return true;
4521            }
4522
4523            if (CSM != CXXDestructor) {
4524              SpecialMemberOverloadResult *SMOR =
4525                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4526                                    false, false, false);
4527              // FIXME: Checking for accessibility and validity of this
4528              //        corresponding member is technically going beyond the
4529              //        standard, but this is believed to be a defect.
4530              if (!SMOR->hasSuccess())
4531                return true;
4532
4533              CXXMethodDecl *FieldMember = SMOR->getMethod();
4534              // A member of a union must have a trivial corresponding
4535              // constructor.
4536              if (!FieldMember->isTrivial())
4537                return true;
4538
4539              if (IsConstructor) {
4540                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4541                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4542                                           PDiag()) != AR_accessible)
4543                return true;
4544              }
4545            }
4546          }
4547        }
4548
4549        // At least one member in each anonymous union must be non-const
4550        if (CSM == CXXDefaultConstructor && AllConst)
4551          return true;
4552
4553        // Don't try to initialize the anonymous union
4554        // This is technically non-conformant, but sanity demands it.
4555        continue;
4556      }
4557
4558      // Unless we're doing assignment, the field's destructor must be
4559      // accessible and not deleted.
4560      if (!IsAssignment) {
4561        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4562        if (FieldDtor->isDeleted())
4563          return true;
4564        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4565            AR_accessible)
4566          return true;
4567      }
4568
4569      // Check that the corresponding member of the field is accessible,
4570      // unique, and non-deleted. We don't do this if it has an explicit
4571      // initialization when default-constructing.
4572      if (CSM != CXXDestructor &&
4573          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4574        SpecialMemberOverloadResult *SMOR =
4575          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4576                              false);
4577        if (!SMOR->hasSuccess())
4578          return true;
4579
4580        CXXMethodDecl *FieldMember = SMOR->getMethod();
4581        if (IsConstructor) {
4582          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4583          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4584                                     PDiag()) != AR_accessible)
4585          return true;
4586
4587          // For a move operation, the corresponding operation must actually
4588          // be a move operation (and not a copy selected by overload
4589          // resolution) unless we are working on a trivially copyable class.
4590          if (IsMove && !FieldCtor->isMoveConstructor() &&
4591              !FieldRecord->isTriviallyCopyable())
4592            return true;
4593        }
4594
4595        // We need the corresponding member of a union to be trivial so that
4596        // we can safely copy them all simultaneously.
4597        // FIXME: Note that performing the check here (where we rely on the lack
4598        // of an in-class initializer) is technically ill-formed. However, this
4599        // seems most obviously to be a bug in the standard.
4600        if (IsUnion && !FieldMember->isTrivial())
4601          return true;
4602      }
4603    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4604               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4605      // We can't initialize a const member of non-class type to any value.
4606      return true;
4607    }
4608  }
4609
4610  // We can't have all const members in a union when default-constructing,
4611  // or else they're all nonsensical garbage values that can't be changed.
4612  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4613    return true;
4614
4615  return false;
4616}
4617
4618bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4619  CXXRecordDecl *RD = MD->getParent();
4620  assert(!RD->isDependentType() && "do deletion after instantiation");
4621  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4622    return false;
4623
4624  SourceLocation Loc = MD->getLocation();
4625
4626  // Do access control from the constructor
4627  ContextRAII MethodContext(*this, MD);
4628
4629  bool Union = RD->isUnion();
4630
4631  unsigned ArgQuals =
4632    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4633      Qualifiers::Const : 0;
4634
4635  // We do this because we should never actually use an anonymous
4636  // union's constructor.
4637  if (Union && RD->isAnonymousStructOrUnion())
4638    return false;
4639
4640  // FIXME: We should put some diagnostic logic right into this function.
4641
4642  // C++0x [class.copy]/20
4643  //    A defaulted [copy] assignment operator for class X is defined as deleted
4644  //    if X has:
4645
4646  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4647                                          BE = RD->bases_end();
4648       BI != BE; ++BI) {
4649    // We'll handle this one later
4650    if (BI->isVirtual())
4651      continue;
4652
4653    QualType BaseType = BI->getType();
4654    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4655    assert(BaseDecl && "base isn't a CXXRecordDecl");
4656
4657    // -- a [direct base class] B that cannot be [copied] because overload
4658    //    resolution, as applied to B's [copy] assignment operator, results in
4659    //    an ambiguity or a function that is deleted or inaccessible from the
4660    //    assignment operator
4661    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4662                                                      0);
4663    if (!CopyOper || CopyOper->isDeleted())
4664      return true;
4665    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4666      return true;
4667  }
4668
4669  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4670                                          BE = RD->vbases_end();
4671       BI != BE; ++BI) {
4672    QualType BaseType = BI->getType();
4673    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4674    assert(BaseDecl && "base isn't a CXXRecordDecl");
4675
4676    // -- a [virtual base class] B that cannot be [copied] because overload
4677    //    resolution, as applied to B's [copy] assignment operator, results in
4678    //    an ambiguity or a function that is deleted or inaccessible from the
4679    //    assignment operator
4680    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4681                                                      0);
4682    if (!CopyOper || CopyOper->isDeleted())
4683      return true;
4684    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4685      return true;
4686  }
4687
4688  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4689                                     FE = RD->field_end();
4690       FI != FE; ++FI) {
4691    if (FI->isUnnamedBitfield())
4692      continue;
4693
4694    QualType FieldType = Context.getBaseElementType(FI->getType());
4695
4696    // -- a non-static data member of reference type
4697    if (FieldType->isReferenceType())
4698      return true;
4699
4700    // -- a non-static data member of const non-class type (or array thereof)
4701    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4702      return true;
4703
4704    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4705
4706    if (FieldRecord) {
4707      // This is an anonymous union
4708      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4709        // Anonymous unions inside unions do not variant members create
4710        if (!Union) {
4711          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4712                                             UE = FieldRecord->field_end();
4713               UI != UE; ++UI) {
4714            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4715            CXXRecordDecl *UnionFieldRecord =
4716              UnionFieldType->getAsCXXRecordDecl();
4717
4718            // -- a variant member with a non-trivial [copy] assignment operator
4719            //    and X is a union-like class
4720            if (UnionFieldRecord &&
4721                !UnionFieldRecord->hasTrivialCopyAssignment())
4722              return true;
4723          }
4724        }
4725
4726        // Don't try to initalize an anonymous union
4727        continue;
4728      // -- a variant member with a non-trivial [copy] assignment operator
4729      //    and X is a union-like class
4730      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4731          return true;
4732      }
4733
4734      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4735                                                        false, 0);
4736      if (!CopyOper || CopyOper->isDeleted())
4737        return true;
4738      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4739        return true;
4740    }
4741  }
4742
4743  return false;
4744}
4745
4746bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4747  CXXRecordDecl *RD = MD->getParent();
4748  assert(!RD->isDependentType() && "do deletion after instantiation");
4749  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4750    return false;
4751
4752  SourceLocation Loc = MD->getLocation();
4753
4754  // Do access control from the constructor
4755  ContextRAII MethodContext(*this, MD);
4756
4757  bool Union = RD->isUnion();
4758
4759  // We do this because we should never actually use an anonymous
4760  // union's constructor.
4761  if (Union && RD->isAnonymousStructOrUnion())
4762    return false;
4763
4764  // C++0x [class.copy]/20
4765  //    A defaulted [move] assignment operator for class X is defined as deleted
4766  //    if X has:
4767
4768  //    -- for the move constructor, [...] any direct or indirect virtual base
4769  //       class.
4770  if (RD->getNumVBases() != 0)
4771    return true;
4772
4773  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4774                                          BE = RD->bases_end();
4775       BI != BE; ++BI) {
4776
4777    QualType BaseType = BI->getType();
4778    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4779    assert(BaseDecl && "base isn't a CXXRecordDecl");
4780
4781    // -- a [direct base class] B that cannot be [moved] because overload
4782    //    resolution, as applied to B's [move] assignment operator, results in
4783    //    an ambiguity or a function that is deleted or inaccessible from the
4784    //    assignment operator
4785    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4786    if (!MoveOper || MoveOper->isDeleted())
4787      return true;
4788    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4789      return true;
4790
4791    // -- for the move assignment operator, a [direct base class] with a type
4792    //    that does not have a move assignment operator and is not trivially
4793    //    copyable.
4794    if (!MoveOper->isMoveAssignmentOperator() &&
4795        !BaseDecl->isTriviallyCopyable())
4796      return true;
4797  }
4798
4799  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4800                                     FE = RD->field_end();
4801       FI != FE; ++FI) {
4802    if (FI->isUnnamedBitfield())
4803      continue;
4804
4805    QualType FieldType = Context.getBaseElementType(FI->getType());
4806
4807    // -- a non-static data member of reference type
4808    if (FieldType->isReferenceType())
4809      return true;
4810
4811    // -- a non-static data member of const non-class type (or array thereof)
4812    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4813      return true;
4814
4815    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4816
4817    if (FieldRecord) {
4818      // This is an anonymous union
4819      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4820        // Anonymous unions inside unions do not variant members create
4821        if (!Union) {
4822          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4823                                             UE = FieldRecord->field_end();
4824               UI != UE; ++UI) {
4825            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4826            CXXRecordDecl *UnionFieldRecord =
4827              UnionFieldType->getAsCXXRecordDecl();
4828
4829            // -- a variant member with a non-trivial [move] assignment operator
4830            //    and X is a union-like class
4831            if (UnionFieldRecord &&
4832                !UnionFieldRecord->hasTrivialMoveAssignment())
4833              return true;
4834          }
4835        }
4836
4837        // Don't try to initalize an anonymous union
4838        continue;
4839      // -- a variant member with a non-trivial [move] assignment operator
4840      //    and X is a union-like class
4841      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4842          return true;
4843      }
4844
4845      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4846      if (!MoveOper || MoveOper->isDeleted())
4847        return true;
4848      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4849        return true;
4850
4851      // -- for the move assignment operator, a [non-static data member] with a
4852      //    type that does not have a move assignment operator and is not
4853      //    trivially copyable.
4854      if (!MoveOper->isMoveAssignmentOperator() &&
4855          !FieldRecord->isTriviallyCopyable())
4856        return true;
4857    }
4858  }
4859
4860  return false;
4861}
4862
4863bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4864  CXXRecordDecl *RD = DD->getParent();
4865  assert(!RD->isDependentType() && "do deletion after instantiation");
4866  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4867    return false;
4868
4869  SourceLocation Loc = DD->getLocation();
4870
4871  // Do access control from the destructor
4872  ContextRAII CtorContext(*this, DD);
4873
4874  bool Union = RD->isUnion();
4875
4876  // We do this because we should never actually use an anonymous
4877  // union's destructor.
4878  if (Union && RD->isAnonymousStructOrUnion())
4879    return false;
4880
4881  // C++0x [class.dtor]p5
4882  //    A defaulted destructor for a class X is defined as deleted if:
4883  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4884                                          BE = RD->bases_end();
4885       BI != BE; ++BI) {
4886    // We'll handle this one later
4887    if (BI->isVirtual())
4888      continue;
4889
4890    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4891    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4892    assert(BaseDtor && "base has no destructor");
4893
4894    // -- any direct or virtual base class has a deleted destructor or
4895    //    a destructor that is inaccessible from the defaulted destructor
4896    if (BaseDtor->isDeleted())
4897      return true;
4898    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4899        AR_accessible)
4900      return true;
4901  }
4902
4903  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4904                                          BE = RD->vbases_end();
4905       BI != BE; ++BI) {
4906    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4907    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4908    assert(BaseDtor && "base has no destructor");
4909
4910    // -- any direct or virtual base class has a deleted destructor or
4911    //    a destructor that is inaccessible from the defaulted destructor
4912    if (BaseDtor->isDeleted())
4913      return true;
4914    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4915        AR_accessible)
4916      return true;
4917  }
4918
4919  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4920                                     FE = RD->field_end();
4921       FI != FE; ++FI) {
4922    QualType FieldType = Context.getBaseElementType(FI->getType());
4923    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4924    if (FieldRecord) {
4925      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4926         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4927                                            UE = FieldRecord->field_end();
4928              UI != UE; ++UI) {
4929           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4930           CXXRecordDecl *UnionFieldRecord =
4931             UnionFieldType->getAsCXXRecordDecl();
4932
4933           // -- X is a union-like class that has a variant member with a non-
4934           //    trivial destructor.
4935           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4936             return true;
4937         }
4938      // Technically we are supposed to do this next check unconditionally.
4939      // But that makes absolutely no sense.
4940      } else {
4941        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4942
4943        // -- any of the non-static data members has class type M (or array
4944        //    thereof) and M has a deleted destructor or a destructor that is
4945        //    inaccessible from the defaulted destructor
4946        if (FieldDtor->isDeleted())
4947          return true;
4948        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4949          AR_accessible)
4950        return true;
4951
4952        // -- X is a union-like class that has a variant member with a non-
4953        //    trivial destructor.
4954        if (Union && !FieldDtor->isTrivial())
4955          return true;
4956      }
4957    }
4958  }
4959
4960  if (DD->isVirtual()) {
4961    FunctionDecl *OperatorDelete = 0;
4962    DeclarationName Name =
4963      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4964    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4965          false))
4966      return true;
4967  }
4968
4969
4970  return false;
4971}
4972
4973/// \brief Data used with FindHiddenVirtualMethod
4974namespace {
4975  struct FindHiddenVirtualMethodData {
4976    Sema *S;
4977    CXXMethodDecl *Method;
4978    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4979    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4980  };
4981}
4982
4983/// \brief Member lookup function that determines whether a given C++
4984/// method overloads virtual methods in a base class without overriding any,
4985/// to be used with CXXRecordDecl::lookupInBases().
4986static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4987                                    CXXBasePath &Path,
4988                                    void *UserData) {
4989  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4990
4991  FindHiddenVirtualMethodData &Data
4992    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4993
4994  DeclarationName Name = Data.Method->getDeclName();
4995  assert(Name.getNameKind() == DeclarationName::Identifier);
4996
4997  bool foundSameNameMethod = false;
4998  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4999  for (Path.Decls = BaseRecord->lookup(Name);
5000       Path.Decls.first != Path.Decls.second;
5001       ++Path.Decls.first) {
5002    NamedDecl *D = *Path.Decls.first;
5003    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5004      MD = MD->getCanonicalDecl();
5005      foundSameNameMethod = true;
5006      // Interested only in hidden virtual methods.
5007      if (!MD->isVirtual())
5008        continue;
5009      // If the method we are checking overrides a method from its base
5010      // don't warn about the other overloaded methods.
5011      if (!Data.S->IsOverload(Data.Method, MD, false))
5012        return true;
5013      // Collect the overload only if its hidden.
5014      if (!Data.OverridenAndUsingBaseMethods.count(MD))
5015        overloadedMethods.push_back(MD);
5016    }
5017  }
5018
5019  if (foundSameNameMethod)
5020    Data.OverloadedMethods.append(overloadedMethods.begin(),
5021                                   overloadedMethods.end());
5022  return foundSameNameMethod;
5023}
5024
5025/// \brief See if a method overloads virtual methods in a base class without
5026/// overriding any.
5027void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5028  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5029                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5030    return;
5031  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5032    return;
5033
5034  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5035                     /*bool RecordPaths=*/false,
5036                     /*bool DetectVirtual=*/false);
5037  FindHiddenVirtualMethodData Data;
5038  Data.Method = MD;
5039  Data.S = this;
5040
5041  // Keep the base methods that were overriden or introduced in the subclass
5042  // by 'using' in a set. A base method not in this set is hidden.
5043  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5044       res.first != res.second; ++res.first) {
5045    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5046      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5047                                          E = MD->end_overridden_methods();
5048           I != E; ++I)
5049        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5050    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5051      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5052        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5053  }
5054
5055  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5056      !Data.OverloadedMethods.empty()) {
5057    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5058      << MD << (Data.OverloadedMethods.size() > 1);
5059
5060    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5061      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5062      Diag(overloadedMD->getLocation(),
5063           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5064    }
5065  }
5066}
5067
5068void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5069                                             Decl *TagDecl,
5070                                             SourceLocation LBrac,
5071                                             SourceLocation RBrac,
5072                                             AttributeList *AttrList) {
5073  if (!TagDecl)
5074    return;
5075
5076  AdjustDeclIfTemplate(TagDecl);
5077
5078  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5079              // strict aliasing violation!
5080              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5081              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5082
5083  CheckCompletedCXXClass(
5084                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5085}
5086
5087/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5088/// special functions, such as the default constructor, copy
5089/// constructor, or destructor, to the given C++ class (C++
5090/// [special]p1).  This routine can only be executed just before the
5091/// definition of the class is complete.
5092void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5093  if (!ClassDecl->hasUserDeclaredConstructor())
5094    ++ASTContext::NumImplicitDefaultConstructors;
5095
5096  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5097    ++ASTContext::NumImplicitCopyConstructors;
5098
5099  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5100    ++ASTContext::NumImplicitMoveConstructors;
5101
5102  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5103    ++ASTContext::NumImplicitCopyAssignmentOperators;
5104
5105    // If we have a dynamic class, then the copy assignment operator may be
5106    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5107    // it shows up in the right place in the vtable and that we diagnose
5108    // problems with the implicit exception specification.
5109    if (ClassDecl->isDynamicClass())
5110      DeclareImplicitCopyAssignment(ClassDecl);
5111  }
5112
5113  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5114    ++ASTContext::NumImplicitMoveAssignmentOperators;
5115
5116    // Likewise for the move assignment operator.
5117    if (ClassDecl->isDynamicClass())
5118      DeclareImplicitMoveAssignment(ClassDecl);
5119  }
5120
5121  if (!ClassDecl->hasUserDeclaredDestructor()) {
5122    ++ASTContext::NumImplicitDestructors;
5123
5124    // If we have a dynamic class, then the destructor may be virtual, so we
5125    // have to declare the destructor immediately. This ensures that, e.g., it
5126    // shows up in the right place in the vtable and that we diagnose problems
5127    // with the implicit exception specification.
5128    if (ClassDecl->isDynamicClass())
5129      DeclareImplicitDestructor(ClassDecl);
5130  }
5131}
5132
5133void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5134  if (!D)
5135    return;
5136
5137  int NumParamList = D->getNumTemplateParameterLists();
5138  for (int i = 0; i < NumParamList; i++) {
5139    TemplateParameterList* Params = D->getTemplateParameterList(i);
5140    for (TemplateParameterList::iterator Param = Params->begin(),
5141                                      ParamEnd = Params->end();
5142          Param != ParamEnd; ++Param) {
5143      NamedDecl *Named = cast<NamedDecl>(*Param);
5144      if (Named->getDeclName()) {
5145        S->AddDecl(Named);
5146        IdResolver.AddDecl(Named);
5147      }
5148    }
5149  }
5150}
5151
5152void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5153  if (!D)
5154    return;
5155
5156  TemplateParameterList *Params = 0;
5157  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5158    Params = Template->getTemplateParameters();
5159  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5160           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5161    Params = PartialSpec->getTemplateParameters();
5162  else
5163    return;
5164
5165  for (TemplateParameterList::iterator Param = Params->begin(),
5166                                    ParamEnd = Params->end();
5167       Param != ParamEnd; ++Param) {
5168    NamedDecl *Named = cast<NamedDecl>(*Param);
5169    if (Named->getDeclName()) {
5170      S->AddDecl(Named);
5171      IdResolver.AddDecl(Named);
5172    }
5173  }
5174}
5175
5176void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5177  if (!RecordD) return;
5178  AdjustDeclIfTemplate(RecordD);
5179  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5180  PushDeclContext(S, Record);
5181}
5182
5183void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5184  if (!RecordD) return;
5185  PopDeclContext();
5186}
5187
5188/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5189/// parsing a top-level (non-nested) C++ class, and we are now
5190/// parsing those parts of the given Method declaration that could
5191/// not be parsed earlier (C++ [class.mem]p2), such as default
5192/// arguments. This action should enter the scope of the given
5193/// Method declaration as if we had just parsed the qualified method
5194/// name. However, it should not bring the parameters into scope;
5195/// that will be performed by ActOnDelayedCXXMethodParameter.
5196void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5197}
5198
5199/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5200/// C++ method declaration. We're (re-)introducing the given
5201/// function parameter into scope for use in parsing later parts of
5202/// the method declaration. For example, we could see an
5203/// ActOnParamDefaultArgument event for this parameter.
5204void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5205  if (!ParamD)
5206    return;
5207
5208  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5209
5210  // If this parameter has an unparsed default argument, clear it out
5211  // to make way for the parsed default argument.
5212  if (Param->hasUnparsedDefaultArg())
5213    Param->setDefaultArg(0);
5214
5215  S->AddDecl(Param);
5216  if (Param->getDeclName())
5217    IdResolver.AddDecl(Param);
5218}
5219
5220/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5221/// processing the delayed method declaration for Method. The method
5222/// declaration is now considered finished. There may be a separate
5223/// ActOnStartOfFunctionDef action later (not necessarily
5224/// immediately!) for this method, if it was also defined inside the
5225/// class body.
5226void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5227  if (!MethodD)
5228    return;
5229
5230  AdjustDeclIfTemplate(MethodD);
5231
5232  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5233
5234  // Now that we have our default arguments, check the constructor
5235  // again. It could produce additional diagnostics or affect whether
5236  // the class has implicitly-declared destructors, among other
5237  // things.
5238  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5239    CheckConstructor(Constructor);
5240
5241  // Check the default arguments, which we may have added.
5242  if (!Method->isInvalidDecl())
5243    CheckCXXDefaultArguments(Method);
5244}
5245
5246/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5247/// the well-formedness of the constructor declarator @p D with type @p
5248/// R. If there are any errors in the declarator, this routine will
5249/// emit diagnostics and set the invalid bit to true.  In any case, the type
5250/// will be updated to reflect a well-formed type for the constructor and
5251/// returned.
5252QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5253                                          StorageClass &SC) {
5254  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5255
5256  // C++ [class.ctor]p3:
5257  //   A constructor shall not be virtual (10.3) or static (9.4). A
5258  //   constructor can be invoked for a const, volatile or const
5259  //   volatile object. A constructor shall not be declared const,
5260  //   volatile, or const volatile (9.3.2).
5261  if (isVirtual) {
5262    if (!D.isInvalidType())
5263      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5264        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5265        << SourceRange(D.getIdentifierLoc());
5266    D.setInvalidType();
5267  }
5268  if (SC == SC_Static) {
5269    if (!D.isInvalidType())
5270      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5271        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5272        << SourceRange(D.getIdentifierLoc());
5273    D.setInvalidType();
5274    SC = SC_None;
5275  }
5276
5277  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5278  if (FTI.TypeQuals != 0) {
5279    if (FTI.TypeQuals & Qualifiers::Const)
5280      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5281        << "const" << SourceRange(D.getIdentifierLoc());
5282    if (FTI.TypeQuals & Qualifiers::Volatile)
5283      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5284        << "volatile" << SourceRange(D.getIdentifierLoc());
5285    if (FTI.TypeQuals & Qualifiers::Restrict)
5286      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5287        << "restrict" << SourceRange(D.getIdentifierLoc());
5288    D.setInvalidType();
5289  }
5290
5291  // C++0x [class.ctor]p4:
5292  //   A constructor shall not be declared with a ref-qualifier.
5293  if (FTI.hasRefQualifier()) {
5294    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5295      << FTI.RefQualifierIsLValueRef
5296      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5297    D.setInvalidType();
5298  }
5299
5300  // Rebuild the function type "R" without any type qualifiers (in
5301  // case any of the errors above fired) and with "void" as the
5302  // return type, since constructors don't have return types.
5303  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5304  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5305    return R;
5306
5307  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5308  EPI.TypeQuals = 0;
5309  EPI.RefQualifier = RQ_None;
5310
5311  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5312                                 Proto->getNumArgs(), EPI);
5313}
5314
5315/// CheckConstructor - Checks a fully-formed constructor for
5316/// well-formedness, issuing any diagnostics required. Returns true if
5317/// the constructor declarator is invalid.
5318void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5319  CXXRecordDecl *ClassDecl
5320    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5321  if (!ClassDecl)
5322    return Constructor->setInvalidDecl();
5323
5324  // C++ [class.copy]p3:
5325  //   A declaration of a constructor for a class X is ill-formed if
5326  //   its first parameter is of type (optionally cv-qualified) X and
5327  //   either there are no other parameters or else all other
5328  //   parameters have default arguments.
5329  if (!Constructor->isInvalidDecl() &&
5330      ((Constructor->getNumParams() == 1) ||
5331       (Constructor->getNumParams() > 1 &&
5332        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5333      Constructor->getTemplateSpecializationKind()
5334                                              != TSK_ImplicitInstantiation) {
5335    QualType ParamType = Constructor->getParamDecl(0)->getType();
5336    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5337    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5338      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5339      const char *ConstRef
5340        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5341                                                        : " const &";
5342      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5343        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5344
5345      // FIXME: Rather that making the constructor invalid, we should endeavor
5346      // to fix the type.
5347      Constructor->setInvalidDecl();
5348    }
5349  }
5350}
5351
5352/// CheckDestructor - Checks a fully-formed destructor definition for
5353/// well-formedness, issuing any diagnostics required.  Returns true
5354/// on error.
5355bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5356  CXXRecordDecl *RD = Destructor->getParent();
5357
5358  if (Destructor->isVirtual()) {
5359    SourceLocation Loc;
5360
5361    if (!Destructor->isImplicit())
5362      Loc = Destructor->getLocation();
5363    else
5364      Loc = RD->getLocation();
5365
5366    // If we have a virtual destructor, look up the deallocation function
5367    FunctionDecl *OperatorDelete = 0;
5368    DeclarationName Name =
5369    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5370    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5371      return true;
5372
5373    MarkFunctionReferenced(Loc, OperatorDelete);
5374
5375    Destructor->setOperatorDelete(OperatorDelete);
5376  }
5377
5378  return false;
5379}
5380
5381static inline bool
5382FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5383  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5384          FTI.ArgInfo[0].Param &&
5385          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5386}
5387
5388/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5389/// the well-formednes of the destructor declarator @p D with type @p
5390/// R. If there are any errors in the declarator, this routine will
5391/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5392/// will be updated to reflect a well-formed type for the destructor and
5393/// returned.
5394QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5395                                         StorageClass& SC) {
5396  // C++ [class.dtor]p1:
5397  //   [...] A typedef-name that names a class is a class-name
5398  //   (7.1.3); however, a typedef-name that names a class shall not
5399  //   be used as the identifier in the declarator for a destructor
5400  //   declaration.
5401  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5402  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5403    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5404      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5405  else if (const TemplateSpecializationType *TST =
5406             DeclaratorType->getAs<TemplateSpecializationType>())
5407    if (TST->isTypeAlias())
5408      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5409        << DeclaratorType << 1;
5410
5411  // C++ [class.dtor]p2:
5412  //   A destructor is used to destroy objects of its class type. A
5413  //   destructor takes no parameters, and no return type can be
5414  //   specified for it (not even void). The address of a destructor
5415  //   shall not be taken. A destructor shall not be static. A
5416  //   destructor can be invoked for a const, volatile or const
5417  //   volatile object. A destructor shall not be declared const,
5418  //   volatile or const volatile (9.3.2).
5419  if (SC == SC_Static) {
5420    if (!D.isInvalidType())
5421      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5422        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5423        << SourceRange(D.getIdentifierLoc())
5424        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5425
5426    SC = SC_None;
5427  }
5428  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5429    // Destructors don't have return types, but the parser will
5430    // happily parse something like:
5431    //
5432    //   class X {
5433    //     float ~X();
5434    //   };
5435    //
5436    // The return type will be eliminated later.
5437    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5438      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5439      << SourceRange(D.getIdentifierLoc());
5440  }
5441
5442  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5443  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5444    if (FTI.TypeQuals & Qualifiers::Const)
5445      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5446        << "const" << SourceRange(D.getIdentifierLoc());
5447    if (FTI.TypeQuals & Qualifiers::Volatile)
5448      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5449        << "volatile" << SourceRange(D.getIdentifierLoc());
5450    if (FTI.TypeQuals & Qualifiers::Restrict)
5451      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5452        << "restrict" << SourceRange(D.getIdentifierLoc());
5453    D.setInvalidType();
5454  }
5455
5456  // C++0x [class.dtor]p2:
5457  //   A destructor shall not be declared with a ref-qualifier.
5458  if (FTI.hasRefQualifier()) {
5459    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5460      << FTI.RefQualifierIsLValueRef
5461      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5462    D.setInvalidType();
5463  }
5464
5465  // Make sure we don't have any parameters.
5466  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5467    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5468
5469    // Delete the parameters.
5470    FTI.freeArgs();
5471    D.setInvalidType();
5472  }
5473
5474  // Make sure the destructor isn't variadic.
5475  if (FTI.isVariadic) {
5476    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5477    D.setInvalidType();
5478  }
5479
5480  // Rebuild the function type "R" without any type qualifiers or
5481  // parameters (in case any of the errors above fired) and with
5482  // "void" as the return type, since destructors don't have return
5483  // types.
5484  if (!D.isInvalidType())
5485    return R;
5486
5487  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5488  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5489  EPI.Variadic = false;
5490  EPI.TypeQuals = 0;
5491  EPI.RefQualifier = RQ_None;
5492  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5493}
5494
5495/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5496/// well-formednes of the conversion function declarator @p D with
5497/// type @p R. If there are any errors in the declarator, this routine
5498/// will emit diagnostics and return true. Otherwise, it will return
5499/// false. Either way, the type @p R will be updated to reflect a
5500/// well-formed type for the conversion operator.
5501void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5502                                     StorageClass& SC) {
5503  // C++ [class.conv.fct]p1:
5504  //   Neither parameter types nor return type can be specified. The
5505  //   type of a conversion function (8.3.5) is "function taking no
5506  //   parameter returning conversion-type-id."
5507  if (SC == SC_Static) {
5508    if (!D.isInvalidType())
5509      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5510        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5511        << SourceRange(D.getIdentifierLoc());
5512    D.setInvalidType();
5513    SC = SC_None;
5514  }
5515
5516  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5517
5518  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5519    // Conversion functions don't have return types, but the parser will
5520    // happily parse something like:
5521    //
5522    //   class X {
5523    //     float operator bool();
5524    //   };
5525    //
5526    // The return type will be changed later anyway.
5527    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5528      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5529      << SourceRange(D.getIdentifierLoc());
5530    D.setInvalidType();
5531  }
5532
5533  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5534
5535  // Make sure we don't have any parameters.
5536  if (Proto->getNumArgs() > 0) {
5537    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5538
5539    // Delete the parameters.
5540    D.getFunctionTypeInfo().freeArgs();
5541    D.setInvalidType();
5542  } else if (Proto->isVariadic()) {
5543    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5544    D.setInvalidType();
5545  }
5546
5547  // Diagnose "&operator bool()" and other such nonsense.  This
5548  // is actually a gcc extension which we don't support.
5549  if (Proto->getResultType() != ConvType) {
5550    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5551      << Proto->getResultType();
5552    D.setInvalidType();
5553    ConvType = Proto->getResultType();
5554  }
5555
5556  // C++ [class.conv.fct]p4:
5557  //   The conversion-type-id shall not represent a function type nor
5558  //   an array type.
5559  if (ConvType->isArrayType()) {
5560    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5561    ConvType = Context.getPointerType(ConvType);
5562    D.setInvalidType();
5563  } else if (ConvType->isFunctionType()) {
5564    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5565    ConvType = Context.getPointerType(ConvType);
5566    D.setInvalidType();
5567  }
5568
5569  // Rebuild the function type "R" without any parameters (in case any
5570  // of the errors above fired) and with the conversion type as the
5571  // return type.
5572  if (D.isInvalidType())
5573    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5574
5575  // C++0x explicit conversion operators.
5576  if (D.getDeclSpec().isExplicitSpecified())
5577    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5578         getLangOptions().CPlusPlus0x ?
5579           diag::warn_cxx98_compat_explicit_conversion_functions :
5580           diag::ext_explicit_conversion_functions)
5581      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5582}
5583
5584/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5585/// the declaration of the given C++ conversion function. This routine
5586/// is responsible for recording the conversion function in the C++
5587/// class, if possible.
5588Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5589  assert(Conversion && "Expected to receive a conversion function declaration");
5590
5591  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5592
5593  // Make sure we aren't redeclaring the conversion function.
5594  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5595
5596  // C++ [class.conv.fct]p1:
5597  //   [...] A conversion function is never used to convert a
5598  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5599  //   same object type (or a reference to it), to a (possibly
5600  //   cv-qualified) base class of that type (or a reference to it),
5601  //   or to (possibly cv-qualified) void.
5602  // FIXME: Suppress this warning if the conversion function ends up being a
5603  // virtual function that overrides a virtual function in a base class.
5604  QualType ClassType
5605    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5606  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5607    ConvType = ConvTypeRef->getPointeeType();
5608  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5609      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5610    /* Suppress diagnostics for instantiations. */;
5611  else if (ConvType->isRecordType()) {
5612    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5613    if (ConvType == ClassType)
5614      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5615        << ClassType;
5616    else if (IsDerivedFrom(ClassType, ConvType))
5617      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5618        <<  ClassType << ConvType;
5619  } else if (ConvType->isVoidType()) {
5620    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5621      << ClassType << ConvType;
5622  }
5623
5624  if (FunctionTemplateDecl *ConversionTemplate
5625                                = Conversion->getDescribedFunctionTemplate())
5626    return ConversionTemplate;
5627
5628  return Conversion;
5629}
5630
5631//===----------------------------------------------------------------------===//
5632// Namespace Handling
5633//===----------------------------------------------------------------------===//
5634
5635
5636
5637/// ActOnStartNamespaceDef - This is called at the start of a namespace
5638/// definition.
5639Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5640                                   SourceLocation InlineLoc,
5641                                   SourceLocation NamespaceLoc,
5642                                   SourceLocation IdentLoc,
5643                                   IdentifierInfo *II,
5644                                   SourceLocation LBrace,
5645                                   AttributeList *AttrList) {
5646  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5647  // For anonymous namespace, take the location of the left brace.
5648  SourceLocation Loc = II ? IdentLoc : LBrace;
5649  bool IsInline = InlineLoc.isValid();
5650  bool IsInvalid = false;
5651  bool IsStd = false;
5652  bool AddToKnown = false;
5653  Scope *DeclRegionScope = NamespcScope->getParent();
5654
5655  NamespaceDecl *PrevNS = 0;
5656  if (II) {
5657    // C++ [namespace.def]p2:
5658    //   The identifier in an original-namespace-definition shall not
5659    //   have been previously defined in the declarative region in
5660    //   which the original-namespace-definition appears. The
5661    //   identifier in an original-namespace-definition is the name of
5662    //   the namespace. Subsequently in that declarative region, it is
5663    //   treated as an original-namespace-name.
5664    //
5665    // Since namespace names are unique in their scope, and we don't
5666    // look through using directives, just look for any ordinary names.
5667
5668    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5669    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5670    Decl::IDNS_Namespace;
5671    NamedDecl *PrevDecl = 0;
5672    for (DeclContext::lookup_result R
5673         = CurContext->getRedeclContext()->lookup(II);
5674         R.first != R.second; ++R.first) {
5675      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5676        PrevDecl = *R.first;
5677        break;
5678      }
5679    }
5680
5681    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5682
5683    if (PrevNS) {
5684      // This is an extended namespace definition.
5685      if (IsInline != PrevNS->isInline()) {
5686        // inline-ness must match
5687        if (PrevNS->isInline()) {
5688          // The user probably just forgot the 'inline', so suggest that it
5689          // be added back.
5690          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5691            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5692        } else {
5693          Diag(Loc, diag::err_inline_namespace_mismatch)
5694            << IsInline;
5695        }
5696        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5697
5698        IsInline = PrevNS->isInline();
5699      }
5700    } else if (PrevDecl) {
5701      // This is an invalid name redefinition.
5702      Diag(Loc, diag::err_redefinition_different_kind)
5703        << II;
5704      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5705      IsInvalid = true;
5706      // Continue on to push Namespc as current DeclContext and return it.
5707    } else if (II->isStr("std") &&
5708               CurContext->getRedeclContext()->isTranslationUnit()) {
5709      // This is the first "real" definition of the namespace "std", so update
5710      // our cache of the "std" namespace to point at this definition.
5711      PrevNS = getStdNamespace();
5712      IsStd = true;
5713      AddToKnown = !IsInline;
5714    } else {
5715      // We've seen this namespace for the first time.
5716      AddToKnown = !IsInline;
5717    }
5718  } else {
5719    // Anonymous namespaces.
5720
5721    // Determine whether the parent already has an anonymous namespace.
5722    DeclContext *Parent = CurContext->getRedeclContext();
5723    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5724      PrevNS = TU->getAnonymousNamespace();
5725    } else {
5726      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5727      PrevNS = ND->getAnonymousNamespace();
5728    }
5729
5730    if (PrevNS && IsInline != PrevNS->isInline()) {
5731      // inline-ness must match
5732      Diag(Loc, diag::err_inline_namespace_mismatch)
5733        << IsInline;
5734      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5735
5736      // Recover by ignoring the new namespace's inline status.
5737      IsInline = PrevNS->isInline();
5738    }
5739  }
5740
5741  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5742                                                 StartLoc, Loc, II, PrevNS);
5743  if (IsInvalid)
5744    Namespc->setInvalidDecl();
5745
5746  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5747
5748  // FIXME: Should we be merging attributes?
5749  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5750    PushNamespaceVisibilityAttr(Attr, Loc);
5751
5752  if (IsStd)
5753    StdNamespace = Namespc;
5754  if (AddToKnown)
5755    KnownNamespaces[Namespc] = false;
5756
5757  if (II) {
5758    PushOnScopeChains(Namespc, DeclRegionScope);
5759  } else {
5760    // Link the anonymous namespace into its parent.
5761    DeclContext *Parent = CurContext->getRedeclContext();
5762    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5763      TU->setAnonymousNamespace(Namespc);
5764    } else {
5765      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5766    }
5767
5768    CurContext->addDecl(Namespc);
5769
5770    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5771    //   behaves as if it were replaced by
5772    //     namespace unique { /* empty body */ }
5773    //     using namespace unique;
5774    //     namespace unique { namespace-body }
5775    //   where all occurrences of 'unique' in a translation unit are
5776    //   replaced by the same identifier and this identifier differs
5777    //   from all other identifiers in the entire program.
5778
5779    // We just create the namespace with an empty name and then add an
5780    // implicit using declaration, just like the standard suggests.
5781    //
5782    // CodeGen enforces the "universally unique" aspect by giving all
5783    // declarations semantically contained within an anonymous
5784    // namespace internal linkage.
5785
5786    if (!PrevNS) {
5787      UsingDirectiveDecl* UD
5788        = UsingDirectiveDecl::Create(Context, CurContext,
5789                                     /* 'using' */ LBrace,
5790                                     /* 'namespace' */ SourceLocation(),
5791                                     /* qualifier */ NestedNameSpecifierLoc(),
5792                                     /* identifier */ SourceLocation(),
5793                                     Namespc,
5794                                     /* Ancestor */ CurContext);
5795      UD->setImplicit();
5796      CurContext->addDecl(UD);
5797    }
5798  }
5799
5800  // Although we could have an invalid decl (i.e. the namespace name is a
5801  // redefinition), push it as current DeclContext and try to continue parsing.
5802  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5803  // for the namespace has the declarations that showed up in that particular
5804  // namespace definition.
5805  PushDeclContext(NamespcScope, Namespc);
5806  return Namespc;
5807}
5808
5809/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5810/// is a namespace alias, returns the namespace it points to.
5811static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5812  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5813    return AD->getNamespace();
5814  return dyn_cast_or_null<NamespaceDecl>(D);
5815}
5816
5817/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5818/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5819void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5820  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5821  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5822  Namespc->setRBraceLoc(RBrace);
5823  PopDeclContext();
5824  if (Namespc->hasAttr<VisibilityAttr>())
5825    PopPragmaVisibility(true, RBrace);
5826}
5827
5828CXXRecordDecl *Sema::getStdBadAlloc() const {
5829  return cast_or_null<CXXRecordDecl>(
5830                                  StdBadAlloc.get(Context.getExternalSource()));
5831}
5832
5833NamespaceDecl *Sema::getStdNamespace() const {
5834  return cast_or_null<NamespaceDecl>(
5835                                 StdNamespace.get(Context.getExternalSource()));
5836}
5837
5838/// \brief Retrieve the special "std" namespace, which may require us to
5839/// implicitly define the namespace.
5840NamespaceDecl *Sema::getOrCreateStdNamespace() {
5841  if (!StdNamespace) {
5842    // The "std" namespace has not yet been defined, so build one implicitly.
5843    StdNamespace = NamespaceDecl::Create(Context,
5844                                         Context.getTranslationUnitDecl(),
5845                                         /*Inline=*/false,
5846                                         SourceLocation(), SourceLocation(),
5847                                         &PP.getIdentifierTable().get("std"),
5848                                         /*PrevDecl=*/0);
5849    getStdNamespace()->setImplicit(true);
5850  }
5851
5852  return getStdNamespace();
5853}
5854
5855bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5856  assert(getLangOptions().CPlusPlus &&
5857         "Looking for std::initializer_list outside of C++.");
5858
5859  // We're looking for implicit instantiations of
5860  // template <typename E> class std::initializer_list.
5861
5862  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5863    return false;
5864
5865  ClassTemplateDecl *Template = 0;
5866  const TemplateArgument *Arguments = 0;
5867
5868  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5869
5870    ClassTemplateSpecializationDecl *Specialization =
5871        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5872    if (!Specialization)
5873      return false;
5874
5875    Template = Specialization->getSpecializedTemplate();
5876    Arguments = Specialization->getTemplateArgs().data();
5877  } else if (const TemplateSpecializationType *TST =
5878                 Ty->getAs<TemplateSpecializationType>()) {
5879    Template = dyn_cast_or_null<ClassTemplateDecl>(
5880        TST->getTemplateName().getAsTemplateDecl());
5881    Arguments = TST->getArgs();
5882  }
5883  if (!Template)
5884    return false;
5885
5886  if (!StdInitializerList) {
5887    // Haven't recognized std::initializer_list yet, maybe this is it.
5888    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5889    if (TemplateClass->getIdentifier() !=
5890            &PP.getIdentifierTable().get("initializer_list") ||
5891        !getStdNamespace()->InEnclosingNamespaceSetOf(
5892            TemplateClass->getDeclContext()))
5893      return false;
5894    // This is a template called std::initializer_list, but is it the right
5895    // template?
5896    TemplateParameterList *Params = Template->getTemplateParameters();
5897    if (Params->getMinRequiredArguments() != 1)
5898      return false;
5899    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5900      return false;
5901
5902    // It's the right template.
5903    StdInitializerList = Template;
5904  }
5905
5906  if (Template != StdInitializerList)
5907    return false;
5908
5909  // This is an instance of std::initializer_list. Find the argument type.
5910  if (Element)
5911    *Element = Arguments[0].getAsType();
5912  return true;
5913}
5914
5915static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5916  NamespaceDecl *Std = S.getStdNamespace();
5917  if (!Std) {
5918    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5919    return 0;
5920  }
5921
5922  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5923                      Loc, Sema::LookupOrdinaryName);
5924  if (!S.LookupQualifiedName(Result, Std)) {
5925    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5926    return 0;
5927  }
5928  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5929  if (!Template) {
5930    Result.suppressDiagnostics();
5931    // We found something weird. Complain about the first thing we found.
5932    NamedDecl *Found = *Result.begin();
5933    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5934    return 0;
5935  }
5936
5937  // We found some template called std::initializer_list. Now verify that it's
5938  // correct.
5939  TemplateParameterList *Params = Template->getTemplateParameters();
5940  if (Params->getMinRequiredArguments() != 1 ||
5941      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5942    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5943    return 0;
5944  }
5945
5946  return Template;
5947}
5948
5949QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5950  if (!StdInitializerList) {
5951    StdInitializerList = LookupStdInitializerList(*this, Loc);
5952    if (!StdInitializerList)
5953      return QualType();
5954  }
5955
5956  TemplateArgumentListInfo Args(Loc, Loc);
5957  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5958                                       Context.getTrivialTypeSourceInfo(Element,
5959                                                                        Loc)));
5960  return Context.getCanonicalType(
5961      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5962}
5963
5964bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5965  // C++ [dcl.init.list]p2:
5966  //   A constructor is an initializer-list constructor if its first parameter
5967  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5968  //   std::initializer_list<E> for some type E, and either there are no other
5969  //   parameters or else all other parameters have default arguments.
5970  if (Ctor->getNumParams() < 1 ||
5971      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5972    return false;
5973
5974  QualType ArgType = Ctor->getParamDecl(0)->getType();
5975  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5976    ArgType = RT->getPointeeType().getUnqualifiedType();
5977
5978  return isStdInitializerList(ArgType, 0);
5979}
5980
5981/// \brief Determine whether a using statement is in a context where it will be
5982/// apply in all contexts.
5983static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5984  switch (CurContext->getDeclKind()) {
5985    case Decl::TranslationUnit:
5986      return true;
5987    case Decl::LinkageSpec:
5988      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5989    default:
5990      return false;
5991  }
5992}
5993
5994namespace {
5995
5996// Callback to only accept typo corrections that are namespaces.
5997class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5998 public:
5999  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6000    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6001      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6002    }
6003    return false;
6004  }
6005};
6006
6007}
6008
6009static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6010                                       CXXScopeSpec &SS,
6011                                       SourceLocation IdentLoc,
6012                                       IdentifierInfo *Ident) {
6013  NamespaceValidatorCCC Validator;
6014  R.clear();
6015  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6016                                               R.getLookupKind(), Sc, &SS,
6017                                               Validator)) {
6018    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
6019    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
6020    if (DeclContext *DC = S.computeDeclContext(SS, false))
6021      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6022        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6023        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6024    else
6025      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6026        << Ident << CorrectedQuotedStr
6027        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6028
6029    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6030         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6031
6032    Ident = Corrected.getCorrectionAsIdentifierInfo();
6033    R.addDecl(Corrected.getCorrectionDecl());
6034    return true;
6035  }
6036  return false;
6037}
6038
6039Decl *Sema::ActOnUsingDirective(Scope *S,
6040                                          SourceLocation UsingLoc,
6041                                          SourceLocation NamespcLoc,
6042                                          CXXScopeSpec &SS,
6043                                          SourceLocation IdentLoc,
6044                                          IdentifierInfo *NamespcName,
6045                                          AttributeList *AttrList) {
6046  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6047  assert(NamespcName && "Invalid NamespcName.");
6048  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6049
6050  // This can only happen along a recovery path.
6051  while (S->getFlags() & Scope::TemplateParamScope)
6052    S = S->getParent();
6053  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6054
6055  UsingDirectiveDecl *UDir = 0;
6056  NestedNameSpecifier *Qualifier = 0;
6057  if (SS.isSet())
6058    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6059
6060  // Lookup namespace name.
6061  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6062  LookupParsedName(R, S, &SS);
6063  if (R.isAmbiguous())
6064    return 0;
6065
6066  if (R.empty()) {
6067    R.clear();
6068    // Allow "using namespace std;" or "using namespace ::std;" even if
6069    // "std" hasn't been defined yet, for GCC compatibility.
6070    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6071        NamespcName->isStr("std")) {
6072      Diag(IdentLoc, diag::ext_using_undefined_std);
6073      R.addDecl(getOrCreateStdNamespace());
6074      R.resolveKind();
6075    }
6076    // Otherwise, attempt typo correction.
6077    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6078  }
6079
6080  if (!R.empty()) {
6081    NamedDecl *Named = R.getFoundDecl();
6082    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6083        && "expected namespace decl");
6084    // C++ [namespace.udir]p1:
6085    //   A using-directive specifies that the names in the nominated
6086    //   namespace can be used in the scope in which the
6087    //   using-directive appears after the using-directive. During
6088    //   unqualified name lookup (3.4.1), the names appear as if they
6089    //   were declared in the nearest enclosing namespace which
6090    //   contains both the using-directive and the nominated
6091    //   namespace. [Note: in this context, "contains" means "contains
6092    //   directly or indirectly". ]
6093
6094    // Find enclosing context containing both using-directive and
6095    // nominated namespace.
6096    NamespaceDecl *NS = getNamespaceDecl(Named);
6097    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6098    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6099      CommonAncestor = CommonAncestor->getParent();
6100
6101    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6102                                      SS.getWithLocInContext(Context),
6103                                      IdentLoc, Named, CommonAncestor);
6104
6105    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6106        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6107      Diag(IdentLoc, diag::warn_using_directive_in_header);
6108    }
6109
6110    PushUsingDirective(S, UDir);
6111  } else {
6112    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6113  }
6114
6115  // FIXME: We ignore attributes for now.
6116  return UDir;
6117}
6118
6119void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6120  // If scope has associated entity, then using directive is at namespace
6121  // or translation unit scope. We add UsingDirectiveDecls, into
6122  // it's lookup structure.
6123  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6124    Ctx->addDecl(UDir);
6125  else
6126    // Otherwise it is block-sope. using-directives will affect lookup
6127    // only to the end of scope.
6128    S->PushUsingDirective(UDir);
6129}
6130
6131
6132Decl *Sema::ActOnUsingDeclaration(Scope *S,
6133                                  AccessSpecifier AS,
6134                                  bool HasUsingKeyword,
6135                                  SourceLocation UsingLoc,
6136                                  CXXScopeSpec &SS,
6137                                  UnqualifiedId &Name,
6138                                  AttributeList *AttrList,
6139                                  bool IsTypeName,
6140                                  SourceLocation TypenameLoc) {
6141  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6142
6143  switch (Name.getKind()) {
6144  case UnqualifiedId::IK_ImplicitSelfParam:
6145  case UnqualifiedId::IK_Identifier:
6146  case UnqualifiedId::IK_OperatorFunctionId:
6147  case UnqualifiedId::IK_LiteralOperatorId:
6148  case UnqualifiedId::IK_ConversionFunctionId:
6149    break;
6150
6151  case UnqualifiedId::IK_ConstructorName:
6152  case UnqualifiedId::IK_ConstructorTemplateId:
6153    // C++0x inherited constructors.
6154    Diag(Name.getSourceRange().getBegin(),
6155         getLangOptions().CPlusPlus0x ?
6156           diag::warn_cxx98_compat_using_decl_constructor :
6157           diag::err_using_decl_constructor)
6158      << SS.getRange();
6159
6160    if (getLangOptions().CPlusPlus0x) break;
6161
6162    return 0;
6163
6164  case UnqualifiedId::IK_DestructorName:
6165    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6166      << SS.getRange();
6167    return 0;
6168
6169  case UnqualifiedId::IK_TemplateId:
6170    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6171      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6172    return 0;
6173  }
6174
6175  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6176  DeclarationName TargetName = TargetNameInfo.getName();
6177  if (!TargetName)
6178    return 0;
6179
6180  // Warn about using declarations.
6181  // TODO: store that the declaration was written without 'using' and
6182  // talk about access decls instead of using decls in the
6183  // diagnostics.
6184  if (!HasUsingKeyword) {
6185    UsingLoc = Name.getSourceRange().getBegin();
6186
6187    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6188      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6189  }
6190
6191  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6192      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6193    return 0;
6194
6195  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6196                                        TargetNameInfo, AttrList,
6197                                        /* IsInstantiation */ false,
6198                                        IsTypeName, TypenameLoc);
6199  if (UD)
6200    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6201
6202  return UD;
6203}
6204
6205/// \brief Determine whether a using declaration considers the given
6206/// declarations as "equivalent", e.g., if they are redeclarations of
6207/// the same entity or are both typedefs of the same type.
6208static bool
6209IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6210                         bool &SuppressRedeclaration) {
6211  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6212    SuppressRedeclaration = false;
6213    return true;
6214  }
6215
6216  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6217    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6218      SuppressRedeclaration = true;
6219      return Context.hasSameType(TD1->getUnderlyingType(),
6220                                 TD2->getUnderlyingType());
6221    }
6222
6223  return false;
6224}
6225
6226
6227/// Determines whether to create a using shadow decl for a particular
6228/// decl, given the set of decls existing prior to this using lookup.
6229bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6230                                const LookupResult &Previous) {
6231  // Diagnose finding a decl which is not from a base class of the
6232  // current class.  We do this now because there are cases where this
6233  // function will silently decide not to build a shadow decl, which
6234  // will pre-empt further diagnostics.
6235  //
6236  // We don't need to do this in C++0x because we do the check once on
6237  // the qualifier.
6238  //
6239  // FIXME: diagnose the following if we care enough:
6240  //   struct A { int foo; };
6241  //   struct B : A { using A::foo; };
6242  //   template <class T> struct C : A {};
6243  //   template <class T> struct D : C<T> { using B::foo; } // <---
6244  // This is invalid (during instantiation) in C++03 because B::foo
6245  // resolves to the using decl in B, which is not a base class of D<T>.
6246  // We can't diagnose it immediately because C<T> is an unknown
6247  // specialization.  The UsingShadowDecl in D<T> then points directly
6248  // to A::foo, which will look well-formed when we instantiate.
6249  // The right solution is to not collapse the shadow-decl chain.
6250  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6251    DeclContext *OrigDC = Orig->getDeclContext();
6252
6253    // Handle enums and anonymous structs.
6254    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6255    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6256    while (OrigRec->isAnonymousStructOrUnion())
6257      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6258
6259    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6260      if (OrigDC == CurContext) {
6261        Diag(Using->getLocation(),
6262             diag::err_using_decl_nested_name_specifier_is_current_class)
6263          << Using->getQualifierLoc().getSourceRange();
6264        Diag(Orig->getLocation(), diag::note_using_decl_target);
6265        return true;
6266      }
6267
6268      Diag(Using->getQualifierLoc().getBeginLoc(),
6269           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6270        << Using->getQualifier()
6271        << cast<CXXRecordDecl>(CurContext)
6272        << Using->getQualifierLoc().getSourceRange();
6273      Diag(Orig->getLocation(), diag::note_using_decl_target);
6274      return true;
6275    }
6276  }
6277
6278  if (Previous.empty()) return false;
6279
6280  NamedDecl *Target = Orig;
6281  if (isa<UsingShadowDecl>(Target))
6282    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6283
6284  // If the target happens to be one of the previous declarations, we
6285  // don't have a conflict.
6286  //
6287  // FIXME: but we might be increasing its access, in which case we
6288  // should redeclare it.
6289  NamedDecl *NonTag = 0, *Tag = 0;
6290  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6291         I != E; ++I) {
6292    NamedDecl *D = (*I)->getUnderlyingDecl();
6293    bool Result;
6294    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6295      return Result;
6296
6297    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6298  }
6299
6300  if (Target->isFunctionOrFunctionTemplate()) {
6301    FunctionDecl *FD;
6302    if (isa<FunctionTemplateDecl>(Target))
6303      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6304    else
6305      FD = cast<FunctionDecl>(Target);
6306
6307    NamedDecl *OldDecl = 0;
6308    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6309    case Ovl_Overload:
6310      return false;
6311
6312    case Ovl_NonFunction:
6313      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6314      break;
6315
6316    // We found a decl with the exact signature.
6317    case Ovl_Match:
6318      // If we're in a record, we want to hide the target, so we
6319      // return true (without a diagnostic) to tell the caller not to
6320      // build a shadow decl.
6321      if (CurContext->isRecord())
6322        return true;
6323
6324      // If we're not in a record, this is an error.
6325      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6326      break;
6327    }
6328
6329    Diag(Target->getLocation(), diag::note_using_decl_target);
6330    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6331    return true;
6332  }
6333
6334  // Target is not a function.
6335
6336  if (isa<TagDecl>(Target)) {
6337    // No conflict between a tag and a non-tag.
6338    if (!Tag) return false;
6339
6340    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6341    Diag(Target->getLocation(), diag::note_using_decl_target);
6342    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6343    return true;
6344  }
6345
6346  // No conflict between a tag and a non-tag.
6347  if (!NonTag) return false;
6348
6349  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6350  Diag(Target->getLocation(), diag::note_using_decl_target);
6351  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6352  return true;
6353}
6354
6355/// Builds a shadow declaration corresponding to a 'using' declaration.
6356UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6357                                            UsingDecl *UD,
6358                                            NamedDecl *Orig) {
6359
6360  // If we resolved to another shadow declaration, just coalesce them.
6361  NamedDecl *Target = Orig;
6362  if (isa<UsingShadowDecl>(Target)) {
6363    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6364    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6365  }
6366
6367  UsingShadowDecl *Shadow
6368    = UsingShadowDecl::Create(Context, CurContext,
6369                              UD->getLocation(), UD, Target);
6370  UD->addShadowDecl(Shadow);
6371
6372  Shadow->setAccess(UD->getAccess());
6373  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6374    Shadow->setInvalidDecl();
6375
6376  if (S)
6377    PushOnScopeChains(Shadow, S);
6378  else
6379    CurContext->addDecl(Shadow);
6380
6381
6382  return Shadow;
6383}
6384
6385/// Hides a using shadow declaration.  This is required by the current
6386/// using-decl implementation when a resolvable using declaration in a
6387/// class is followed by a declaration which would hide or override
6388/// one or more of the using decl's targets; for example:
6389///
6390///   struct Base { void foo(int); };
6391///   struct Derived : Base {
6392///     using Base::foo;
6393///     void foo(int);
6394///   };
6395///
6396/// The governing language is C++03 [namespace.udecl]p12:
6397///
6398///   When a using-declaration brings names from a base class into a
6399///   derived class scope, member functions in the derived class
6400///   override and/or hide member functions with the same name and
6401///   parameter types in a base class (rather than conflicting).
6402///
6403/// There are two ways to implement this:
6404///   (1) optimistically create shadow decls when they're not hidden
6405///       by existing declarations, or
6406///   (2) don't create any shadow decls (or at least don't make them
6407///       visible) until we've fully parsed/instantiated the class.
6408/// The problem with (1) is that we might have to retroactively remove
6409/// a shadow decl, which requires several O(n) operations because the
6410/// decl structures are (very reasonably) not designed for removal.
6411/// (2) avoids this but is very fiddly and phase-dependent.
6412void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6413  if (Shadow->getDeclName().getNameKind() ==
6414        DeclarationName::CXXConversionFunctionName)
6415    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6416
6417  // Remove it from the DeclContext...
6418  Shadow->getDeclContext()->removeDecl(Shadow);
6419
6420  // ...and the scope, if applicable...
6421  if (S) {
6422    S->RemoveDecl(Shadow);
6423    IdResolver.RemoveDecl(Shadow);
6424  }
6425
6426  // ...and the using decl.
6427  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6428
6429  // TODO: complain somehow if Shadow was used.  It shouldn't
6430  // be possible for this to happen, because...?
6431}
6432
6433/// Builds a using declaration.
6434///
6435/// \param IsInstantiation - Whether this call arises from an
6436///   instantiation of an unresolved using declaration.  We treat
6437///   the lookup differently for these declarations.
6438NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6439                                       SourceLocation UsingLoc,
6440                                       CXXScopeSpec &SS,
6441                                       const DeclarationNameInfo &NameInfo,
6442                                       AttributeList *AttrList,
6443                                       bool IsInstantiation,
6444                                       bool IsTypeName,
6445                                       SourceLocation TypenameLoc) {
6446  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6447  SourceLocation IdentLoc = NameInfo.getLoc();
6448  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6449
6450  // FIXME: We ignore attributes for now.
6451
6452  if (SS.isEmpty()) {
6453    Diag(IdentLoc, diag::err_using_requires_qualname);
6454    return 0;
6455  }
6456
6457  // Do the redeclaration lookup in the current scope.
6458  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6459                        ForRedeclaration);
6460  Previous.setHideTags(false);
6461  if (S) {
6462    LookupName(Previous, S);
6463
6464    // It is really dumb that we have to do this.
6465    LookupResult::Filter F = Previous.makeFilter();
6466    while (F.hasNext()) {
6467      NamedDecl *D = F.next();
6468      if (!isDeclInScope(D, CurContext, S))
6469        F.erase();
6470    }
6471    F.done();
6472  } else {
6473    assert(IsInstantiation && "no scope in non-instantiation");
6474    assert(CurContext->isRecord() && "scope not record in instantiation");
6475    LookupQualifiedName(Previous, CurContext);
6476  }
6477
6478  // Check for invalid redeclarations.
6479  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6480    return 0;
6481
6482  // Check for bad qualifiers.
6483  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6484    return 0;
6485
6486  DeclContext *LookupContext = computeDeclContext(SS);
6487  NamedDecl *D;
6488  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6489  if (!LookupContext) {
6490    if (IsTypeName) {
6491      // FIXME: not all declaration name kinds are legal here
6492      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6493                                              UsingLoc, TypenameLoc,
6494                                              QualifierLoc,
6495                                              IdentLoc, NameInfo.getName());
6496    } else {
6497      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6498                                           QualifierLoc, NameInfo);
6499    }
6500  } else {
6501    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6502                          NameInfo, IsTypeName);
6503  }
6504  D->setAccess(AS);
6505  CurContext->addDecl(D);
6506
6507  if (!LookupContext) return D;
6508  UsingDecl *UD = cast<UsingDecl>(D);
6509
6510  if (RequireCompleteDeclContext(SS, LookupContext)) {
6511    UD->setInvalidDecl();
6512    return UD;
6513  }
6514
6515  // Constructor inheriting using decls get special treatment.
6516  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6517    if (CheckInheritedConstructorUsingDecl(UD))
6518      UD->setInvalidDecl();
6519    return UD;
6520  }
6521
6522  // Otherwise, look up the target name.
6523
6524  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6525
6526  // Unlike most lookups, we don't always want to hide tag
6527  // declarations: tag names are visible through the using declaration
6528  // even if hidden by ordinary names, *except* in a dependent context
6529  // where it's important for the sanity of two-phase lookup.
6530  if (!IsInstantiation)
6531    R.setHideTags(false);
6532
6533  LookupQualifiedName(R, LookupContext);
6534
6535  if (R.empty()) {
6536    Diag(IdentLoc, diag::err_no_member)
6537      << NameInfo.getName() << LookupContext << SS.getRange();
6538    UD->setInvalidDecl();
6539    return UD;
6540  }
6541
6542  if (R.isAmbiguous()) {
6543    UD->setInvalidDecl();
6544    return UD;
6545  }
6546
6547  if (IsTypeName) {
6548    // If we asked for a typename and got a non-type decl, error out.
6549    if (!R.getAsSingle<TypeDecl>()) {
6550      Diag(IdentLoc, diag::err_using_typename_non_type);
6551      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6552        Diag((*I)->getUnderlyingDecl()->getLocation(),
6553             diag::note_using_decl_target);
6554      UD->setInvalidDecl();
6555      return UD;
6556    }
6557  } else {
6558    // If we asked for a non-typename and we got a type, error out,
6559    // but only if this is an instantiation of an unresolved using
6560    // decl.  Otherwise just silently find the type name.
6561    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6562      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6563      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6564      UD->setInvalidDecl();
6565      return UD;
6566    }
6567  }
6568
6569  // C++0x N2914 [namespace.udecl]p6:
6570  // A using-declaration shall not name a namespace.
6571  if (R.getAsSingle<NamespaceDecl>()) {
6572    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6573      << SS.getRange();
6574    UD->setInvalidDecl();
6575    return UD;
6576  }
6577
6578  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6579    if (!CheckUsingShadowDecl(UD, *I, Previous))
6580      BuildUsingShadowDecl(S, UD, *I);
6581  }
6582
6583  return UD;
6584}
6585
6586/// Additional checks for a using declaration referring to a constructor name.
6587bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6588  if (UD->isTypeName()) {
6589    // FIXME: Cannot specify typename when specifying constructor
6590    return true;
6591  }
6592
6593  const Type *SourceType = UD->getQualifier()->getAsType();
6594  assert(SourceType &&
6595         "Using decl naming constructor doesn't have type in scope spec.");
6596  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6597
6598  // Check whether the named type is a direct base class.
6599  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6600  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6601  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6602       BaseIt != BaseE; ++BaseIt) {
6603    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6604    if (CanonicalSourceType == BaseType)
6605      break;
6606  }
6607
6608  if (BaseIt == BaseE) {
6609    // Did not find SourceType in the bases.
6610    Diag(UD->getUsingLocation(),
6611         diag::err_using_decl_constructor_not_in_direct_base)
6612      << UD->getNameInfo().getSourceRange()
6613      << QualType(SourceType, 0) << TargetClass;
6614    return true;
6615  }
6616
6617  BaseIt->setInheritConstructors();
6618
6619  return false;
6620}
6621
6622/// Checks that the given using declaration is not an invalid
6623/// redeclaration.  Note that this is checking only for the using decl
6624/// itself, not for any ill-formedness among the UsingShadowDecls.
6625bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6626                                       bool isTypeName,
6627                                       const CXXScopeSpec &SS,
6628                                       SourceLocation NameLoc,
6629                                       const LookupResult &Prev) {
6630  // C++03 [namespace.udecl]p8:
6631  // C++0x [namespace.udecl]p10:
6632  //   A using-declaration is a declaration and can therefore be used
6633  //   repeatedly where (and only where) multiple declarations are
6634  //   allowed.
6635  //
6636  // That's in non-member contexts.
6637  if (!CurContext->getRedeclContext()->isRecord())
6638    return false;
6639
6640  NestedNameSpecifier *Qual
6641    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6642
6643  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6644    NamedDecl *D = *I;
6645
6646    bool DTypename;
6647    NestedNameSpecifier *DQual;
6648    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6649      DTypename = UD->isTypeName();
6650      DQual = UD->getQualifier();
6651    } else if (UnresolvedUsingValueDecl *UD
6652                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6653      DTypename = false;
6654      DQual = UD->getQualifier();
6655    } else if (UnresolvedUsingTypenameDecl *UD
6656                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6657      DTypename = true;
6658      DQual = UD->getQualifier();
6659    } else continue;
6660
6661    // using decls differ if one says 'typename' and the other doesn't.
6662    // FIXME: non-dependent using decls?
6663    if (isTypeName != DTypename) continue;
6664
6665    // using decls differ if they name different scopes (but note that
6666    // template instantiation can cause this check to trigger when it
6667    // didn't before instantiation).
6668    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6669        Context.getCanonicalNestedNameSpecifier(DQual))
6670      continue;
6671
6672    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6673    Diag(D->getLocation(), diag::note_using_decl) << 1;
6674    return true;
6675  }
6676
6677  return false;
6678}
6679
6680
6681/// Checks that the given nested-name qualifier used in a using decl
6682/// in the current context is appropriately related to the current
6683/// scope.  If an error is found, diagnoses it and returns true.
6684bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6685                                   const CXXScopeSpec &SS,
6686                                   SourceLocation NameLoc) {
6687  DeclContext *NamedContext = computeDeclContext(SS);
6688
6689  if (!CurContext->isRecord()) {
6690    // C++03 [namespace.udecl]p3:
6691    // C++0x [namespace.udecl]p8:
6692    //   A using-declaration for a class member shall be a member-declaration.
6693
6694    // If we weren't able to compute a valid scope, it must be a
6695    // dependent class scope.
6696    if (!NamedContext || NamedContext->isRecord()) {
6697      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6698        << SS.getRange();
6699      return true;
6700    }
6701
6702    // Otherwise, everything is known to be fine.
6703    return false;
6704  }
6705
6706  // The current scope is a record.
6707
6708  // If the named context is dependent, we can't decide much.
6709  if (!NamedContext) {
6710    // FIXME: in C++0x, we can diagnose if we can prove that the
6711    // nested-name-specifier does not refer to a base class, which is
6712    // still possible in some cases.
6713
6714    // Otherwise we have to conservatively report that things might be
6715    // okay.
6716    return false;
6717  }
6718
6719  if (!NamedContext->isRecord()) {
6720    // Ideally this would point at the last name in the specifier,
6721    // but we don't have that level of source info.
6722    Diag(SS.getRange().getBegin(),
6723         diag::err_using_decl_nested_name_specifier_is_not_class)
6724      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6725    return true;
6726  }
6727
6728  if (!NamedContext->isDependentContext() &&
6729      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6730    return true;
6731
6732  if (getLangOptions().CPlusPlus0x) {
6733    // C++0x [namespace.udecl]p3:
6734    //   In a using-declaration used as a member-declaration, the
6735    //   nested-name-specifier shall name a base class of the class
6736    //   being defined.
6737
6738    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6739                                 cast<CXXRecordDecl>(NamedContext))) {
6740      if (CurContext == NamedContext) {
6741        Diag(NameLoc,
6742             diag::err_using_decl_nested_name_specifier_is_current_class)
6743          << SS.getRange();
6744        return true;
6745      }
6746
6747      Diag(SS.getRange().getBegin(),
6748           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6749        << (NestedNameSpecifier*) SS.getScopeRep()
6750        << cast<CXXRecordDecl>(CurContext)
6751        << SS.getRange();
6752      return true;
6753    }
6754
6755    return false;
6756  }
6757
6758  // C++03 [namespace.udecl]p4:
6759  //   A using-declaration used as a member-declaration shall refer
6760  //   to a member of a base class of the class being defined [etc.].
6761
6762  // Salient point: SS doesn't have to name a base class as long as
6763  // lookup only finds members from base classes.  Therefore we can
6764  // diagnose here only if we can prove that that can't happen,
6765  // i.e. if the class hierarchies provably don't intersect.
6766
6767  // TODO: it would be nice if "definitely valid" results were cached
6768  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6769  // need to be repeated.
6770
6771  struct UserData {
6772    llvm::DenseSet<const CXXRecordDecl*> Bases;
6773
6774    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6775      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6776      Data->Bases.insert(Base);
6777      return true;
6778    }
6779
6780    bool hasDependentBases(const CXXRecordDecl *Class) {
6781      return !Class->forallBases(collect, this);
6782    }
6783
6784    /// Returns true if the base is dependent or is one of the
6785    /// accumulated base classes.
6786    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6787      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6788      return !Data->Bases.count(Base);
6789    }
6790
6791    bool mightShareBases(const CXXRecordDecl *Class) {
6792      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6793    }
6794  };
6795
6796  UserData Data;
6797
6798  // Returns false if we find a dependent base.
6799  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6800    return false;
6801
6802  // Returns false if the class has a dependent base or if it or one
6803  // of its bases is present in the base set of the current context.
6804  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6805    return false;
6806
6807  Diag(SS.getRange().getBegin(),
6808       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6809    << (NestedNameSpecifier*) SS.getScopeRep()
6810    << cast<CXXRecordDecl>(CurContext)
6811    << SS.getRange();
6812
6813  return true;
6814}
6815
6816Decl *Sema::ActOnAliasDeclaration(Scope *S,
6817                                  AccessSpecifier AS,
6818                                  MultiTemplateParamsArg TemplateParamLists,
6819                                  SourceLocation UsingLoc,
6820                                  UnqualifiedId &Name,
6821                                  TypeResult Type) {
6822  // Skip up to the relevant declaration scope.
6823  while (S->getFlags() & Scope::TemplateParamScope)
6824    S = S->getParent();
6825  assert((S->getFlags() & Scope::DeclScope) &&
6826         "got alias-declaration outside of declaration scope");
6827
6828  if (Type.isInvalid())
6829    return 0;
6830
6831  bool Invalid = false;
6832  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6833  TypeSourceInfo *TInfo = 0;
6834  GetTypeFromParser(Type.get(), &TInfo);
6835
6836  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6837    return 0;
6838
6839  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6840                                      UPPC_DeclarationType)) {
6841    Invalid = true;
6842    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6843                                             TInfo->getTypeLoc().getBeginLoc());
6844  }
6845
6846  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6847  LookupName(Previous, S);
6848
6849  // Warn about shadowing the name of a template parameter.
6850  if (Previous.isSingleResult() &&
6851      Previous.getFoundDecl()->isTemplateParameter()) {
6852    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6853    Previous.clear();
6854  }
6855
6856  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6857         "name in alias declaration must be an identifier");
6858  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6859                                               Name.StartLocation,
6860                                               Name.Identifier, TInfo);
6861
6862  NewTD->setAccess(AS);
6863
6864  if (Invalid)
6865    NewTD->setInvalidDecl();
6866
6867  CheckTypedefForVariablyModifiedType(S, NewTD);
6868  Invalid |= NewTD->isInvalidDecl();
6869
6870  bool Redeclaration = false;
6871
6872  NamedDecl *NewND;
6873  if (TemplateParamLists.size()) {
6874    TypeAliasTemplateDecl *OldDecl = 0;
6875    TemplateParameterList *OldTemplateParams = 0;
6876
6877    if (TemplateParamLists.size() != 1) {
6878      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6879        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6880         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6881    }
6882    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6883
6884    // Only consider previous declarations in the same scope.
6885    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6886                         /*ExplicitInstantiationOrSpecialization*/false);
6887    if (!Previous.empty()) {
6888      Redeclaration = true;
6889
6890      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6891      if (!OldDecl && !Invalid) {
6892        Diag(UsingLoc, diag::err_redefinition_different_kind)
6893          << Name.Identifier;
6894
6895        NamedDecl *OldD = Previous.getRepresentativeDecl();
6896        if (OldD->getLocation().isValid())
6897          Diag(OldD->getLocation(), diag::note_previous_definition);
6898
6899        Invalid = true;
6900      }
6901
6902      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6903        if (TemplateParameterListsAreEqual(TemplateParams,
6904                                           OldDecl->getTemplateParameters(),
6905                                           /*Complain=*/true,
6906                                           TPL_TemplateMatch))
6907          OldTemplateParams = OldDecl->getTemplateParameters();
6908        else
6909          Invalid = true;
6910
6911        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6912        if (!Invalid &&
6913            !Context.hasSameType(OldTD->getUnderlyingType(),
6914                                 NewTD->getUnderlyingType())) {
6915          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6916          // but we can't reasonably accept it.
6917          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6918            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6919          if (OldTD->getLocation().isValid())
6920            Diag(OldTD->getLocation(), diag::note_previous_definition);
6921          Invalid = true;
6922        }
6923      }
6924    }
6925
6926    // Merge any previous default template arguments into our parameters,
6927    // and check the parameter list.
6928    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6929                                   TPC_TypeAliasTemplate))
6930      return 0;
6931
6932    TypeAliasTemplateDecl *NewDecl =
6933      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6934                                    Name.Identifier, TemplateParams,
6935                                    NewTD);
6936
6937    NewDecl->setAccess(AS);
6938
6939    if (Invalid)
6940      NewDecl->setInvalidDecl();
6941    else if (OldDecl)
6942      NewDecl->setPreviousDeclaration(OldDecl);
6943
6944    NewND = NewDecl;
6945  } else {
6946    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6947    NewND = NewTD;
6948  }
6949
6950  if (!Redeclaration)
6951    PushOnScopeChains(NewND, S);
6952
6953  return NewND;
6954}
6955
6956Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6957                                             SourceLocation NamespaceLoc,
6958                                             SourceLocation AliasLoc,
6959                                             IdentifierInfo *Alias,
6960                                             CXXScopeSpec &SS,
6961                                             SourceLocation IdentLoc,
6962                                             IdentifierInfo *Ident) {
6963
6964  // Lookup the namespace name.
6965  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6966  LookupParsedName(R, S, &SS);
6967
6968  // Check if we have a previous declaration with the same name.
6969  NamedDecl *PrevDecl
6970    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6971                       ForRedeclaration);
6972  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6973    PrevDecl = 0;
6974
6975  if (PrevDecl) {
6976    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6977      // We already have an alias with the same name that points to the same
6978      // namespace, so don't create a new one.
6979      // FIXME: At some point, we'll want to create the (redundant)
6980      // declaration to maintain better source information.
6981      if (!R.isAmbiguous() && !R.empty() &&
6982          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6983        return 0;
6984    }
6985
6986    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6987      diag::err_redefinition_different_kind;
6988    Diag(AliasLoc, DiagID) << Alias;
6989    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6990    return 0;
6991  }
6992
6993  if (R.isAmbiguous())
6994    return 0;
6995
6996  if (R.empty()) {
6997    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6998      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6999      return 0;
7000    }
7001  }
7002
7003  NamespaceAliasDecl *AliasDecl =
7004    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7005                               Alias, SS.getWithLocInContext(Context),
7006                               IdentLoc, R.getFoundDecl());
7007
7008  PushOnScopeChains(AliasDecl, S);
7009  return AliasDecl;
7010}
7011
7012namespace {
7013  /// \brief Scoped object used to handle the state changes required in Sema
7014  /// to implicitly define the body of a C++ member function;
7015  class ImplicitlyDefinedFunctionScope {
7016    Sema &S;
7017    Sema::ContextRAII SavedContext;
7018
7019  public:
7020    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
7021      : S(S), SavedContext(S, Method)
7022    {
7023      S.PushFunctionScope();
7024      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
7025    }
7026
7027    ~ImplicitlyDefinedFunctionScope() {
7028      S.PopExpressionEvaluationContext();
7029      S.PopFunctionScopeInfo();
7030    }
7031  };
7032}
7033
7034Sema::ImplicitExceptionSpecification
7035Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7036  // C++ [except.spec]p14:
7037  //   An implicitly declared special member function (Clause 12) shall have an
7038  //   exception-specification. [...]
7039  ImplicitExceptionSpecification ExceptSpec(Context);
7040  if (ClassDecl->isInvalidDecl())
7041    return ExceptSpec;
7042
7043  // Direct base-class constructors.
7044  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7045                                       BEnd = ClassDecl->bases_end();
7046       B != BEnd; ++B) {
7047    if (B->isVirtual()) // Handled below.
7048      continue;
7049
7050    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7051      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7052      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7053      // If this is a deleted function, add it anyway. This might be conformant
7054      // with the standard. This might not. I'm not sure. It might not matter.
7055      if (Constructor)
7056        ExceptSpec.CalledDecl(Constructor);
7057    }
7058  }
7059
7060  // Virtual base-class constructors.
7061  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7062                                       BEnd = ClassDecl->vbases_end();
7063       B != BEnd; ++B) {
7064    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7065      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7066      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7067      // If this is a deleted function, add it anyway. This might be conformant
7068      // with the standard. This might not. I'm not sure. It might not matter.
7069      if (Constructor)
7070        ExceptSpec.CalledDecl(Constructor);
7071    }
7072  }
7073
7074  // Field constructors.
7075  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7076                               FEnd = ClassDecl->field_end();
7077       F != FEnd; ++F) {
7078    if (F->hasInClassInitializer()) {
7079      if (Expr *E = F->getInClassInitializer())
7080        ExceptSpec.CalledExpr(E);
7081      else if (!F->isInvalidDecl())
7082        ExceptSpec.SetDelayed();
7083    } else if (const RecordType *RecordTy
7084              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7085      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7086      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7087      // If this is a deleted function, add it anyway. This might be conformant
7088      // with the standard. This might not. I'm not sure. It might not matter.
7089      // In particular, the problem is that this function never gets called. It
7090      // might just be ill-formed because this function attempts to refer to
7091      // a deleted function here.
7092      if (Constructor)
7093        ExceptSpec.CalledDecl(Constructor);
7094    }
7095  }
7096
7097  return ExceptSpec;
7098}
7099
7100CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7101                                                     CXXRecordDecl *ClassDecl) {
7102  // C++ [class.ctor]p5:
7103  //   A default constructor for a class X is a constructor of class X
7104  //   that can be called without an argument. If there is no
7105  //   user-declared constructor for class X, a default constructor is
7106  //   implicitly declared. An implicitly-declared default constructor
7107  //   is an inline public member of its class.
7108  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7109         "Should not build implicit default constructor!");
7110
7111  ImplicitExceptionSpecification Spec =
7112    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7113  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7114
7115  // Create the actual constructor declaration.
7116  CanQualType ClassType
7117    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7118  SourceLocation ClassLoc = ClassDecl->getLocation();
7119  DeclarationName Name
7120    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7121  DeclarationNameInfo NameInfo(Name, ClassLoc);
7122  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7123      Context, ClassDecl, ClassLoc, NameInfo,
7124      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7125      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7126      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7127        getLangOptions().CPlusPlus0x);
7128  DefaultCon->setAccess(AS_public);
7129  DefaultCon->setDefaulted();
7130  DefaultCon->setImplicit();
7131  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7132
7133  // Note that we have declared this constructor.
7134  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7135
7136  if (Scope *S = getScopeForContext(ClassDecl))
7137    PushOnScopeChains(DefaultCon, S, false);
7138  ClassDecl->addDecl(DefaultCon);
7139
7140  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7141    DefaultCon->setDeletedAsWritten();
7142
7143  return DefaultCon;
7144}
7145
7146void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7147                                            CXXConstructorDecl *Constructor) {
7148  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7149          !Constructor->doesThisDeclarationHaveABody() &&
7150          !Constructor->isDeleted()) &&
7151    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7152
7153  CXXRecordDecl *ClassDecl = Constructor->getParent();
7154  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7155
7156  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7157  DiagnosticErrorTrap Trap(Diags);
7158  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7159      Trap.hasErrorOccurred()) {
7160    Diag(CurrentLocation, diag::note_member_synthesized_at)
7161      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7162    Constructor->setInvalidDecl();
7163    return;
7164  }
7165
7166  SourceLocation Loc = Constructor->getLocation();
7167  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7168
7169  Constructor->setUsed();
7170  MarkVTableUsed(CurrentLocation, ClassDecl);
7171
7172  if (ASTMutationListener *L = getASTMutationListener()) {
7173    L->CompletedImplicitDefinition(Constructor);
7174  }
7175}
7176
7177/// Get any existing defaulted default constructor for the given class. Do not
7178/// implicitly define one if it does not exist.
7179static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7180                                                             CXXRecordDecl *D) {
7181  ASTContext &Context = Self.Context;
7182  QualType ClassType = Context.getTypeDeclType(D);
7183  DeclarationName ConstructorName
7184    = Context.DeclarationNames.getCXXConstructorName(
7185                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7186
7187  DeclContext::lookup_const_iterator Con, ConEnd;
7188  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7189       Con != ConEnd; ++Con) {
7190    // A function template cannot be defaulted.
7191    if (isa<FunctionTemplateDecl>(*Con))
7192      continue;
7193
7194    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7195    if (Constructor->isDefaultConstructor())
7196      return Constructor->isDefaulted() ? Constructor : 0;
7197  }
7198  return 0;
7199}
7200
7201void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7202  if (!D) return;
7203  AdjustDeclIfTemplate(D);
7204
7205  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7206  CXXConstructorDecl *CtorDecl
7207    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7208
7209  if (!CtorDecl) return;
7210
7211  // Compute the exception specification for the default constructor.
7212  const FunctionProtoType *CtorTy =
7213    CtorDecl->getType()->castAs<FunctionProtoType>();
7214  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7215    ImplicitExceptionSpecification Spec =
7216      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7217    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7218    assert(EPI.ExceptionSpecType != EST_Delayed);
7219
7220    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7221  }
7222
7223  // If the default constructor is explicitly defaulted, checking the exception
7224  // specification is deferred until now.
7225  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7226      !ClassDecl->isDependentType())
7227    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7228}
7229
7230void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7231  // We start with an initial pass over the base classes to collect those that
7232  // inherit constructors from. If there are none, we can forgo all further
7233  // processing.
7234  typedef SmallVector<const RecordType *, 4> BasesVector;
7235  BasesVector BasesToInheritFrom;
7236  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7237                                          BaseE = ClassDecl->bases_end();
7238         BaseIt != BaseE; ++BaseIt) {
7239    if (BaseIt->getInheritConstructors()) {
7240      QualType Base = BaseIt->getType();
7241      if (Base->isDependentType()) {
7242        // If we inherit constructors from anything that is dependent, just
7243        // abort processing altogether. We'll get another chance for the
7244        // instantiations.
7245        return;
7246      }
7247      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7248    }
7249  }
7250  if (BasesToInheritFrom.empty())
7251    return;
7252
7253  // Now collect the constructors that we already have in the current class.
7254  // Those take precedence over inherited constructors.
7255  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7256  //   unless there is a user-declared constructor with the same signature in
7257  //   the class where the using-declaration appears.
7258  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7259  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7260                                    CtorE = ClassDecl->ctor_end();
7261       CtorIt != CtorE; ++CtorIt) {
7262    ExistingConstructors.insert(
7263        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7264  }
7265
7266  Scope *S = getScopeForContext(ClassDecl);
7267  DeclarationName CreatedCtorName =
7268      Context.DeclarationNames.getCXXConstructorName(
7269          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7270
7271  // Now comes the true work.
7272  // First, we keep a map from constructor types to the base that introduced
7273  // them. Needed for finding conflicting constructors. We also keep the
7274  // actually inserted declarations in there, for pretty diagnostics.
7275  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7276  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7277  ConstructorToSourceMap InheritedConstructors;
7278  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7279                             BaseE = BasesToInheritFrom.end();
7280       BaseIt != BaseE; ++BaseIt) {
7281    const RecordType *Base = *BaseIt;
7282    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7283    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7284    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7285                                      CtorE = BaseDecl->ctor_end();
7286         CtorIt != CtorE; ++CtorIt) {
7287      // Find the using declaration for inheriting this base's constructors.
7288      DeclarationName Name =
7289          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7290      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7291          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7292      SourceLocation UsingLoc = UD ? UD->getLocation() :
7293                                     ClassDecl->getLocation();
7294
7295      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7296      //   from the class X named in the using-declaration consists of actual
7297      //   constructors and notional constructors that result from the
7298      //   transformation of defaulted parameters as follows:
7299      //   - all non-template default constructors of X, and
7300      //   - for each non-template constructor of X that has at least one
7301      //     parameter with a default argument, the set of constructors that
7302      //     results from omitting any ellipsis parameter specification and
7303      //     successively omitting parameters with a default argument from the
7304      //     end of the parameter-type-list.
7305      CXXConstructorDecl *BaseCtor = *CtorIt;
7306      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7307      const FunctionProtoType *BaseCtorType =
7308          BaseCtor->getType()->getAs<FunctionProtoType>();
7309
7310      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7311                    maxParams = BaseCtor->getNumParams();
7312           params <= maxParams; ++params) {
7313        // Skip default constructors. They're never inherited.
7314        if (params == 0)
7315          continue;
7316        // Skip copy and move constructors for the same reason.
7317        if (CanBeCopyOrMove && params == 1)
7318          continue;
7319
7320        // Build up a function type for this particular constructor.
7321        // FIXME: The working paper does not consider that the exception spec
7322        // for the inheriting constructor might be larger than that of the
7323        // source. This code doesn't yet, either. When it does, this code will
7324        // need to be delayed until after exception specifications and in-class
7325        // member initializers are attached.
7326        const Type *NewCtorType;
7327        if (params == maxParams)
7328          NewCtorType = BaseCtorType;
7329        else {
7330          SmallVector<QualType, 16> Args;
7331          for (unsigned i = 0; i < params; ++i) {
7332            Args.push_back(BaseCtorType->getArgType(i));
7333          }
7334          FunctionProtoType::ExtProtoInfo ExtInfo =
7335              BaseCtorType->getExtProtoInfo();
7336          ExtInfo.Variadic = false;
7337          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7338                                                Args.data(), params, ExtInfo)
7339                       .getTypePtr();
7340        }
7341        const Type *CanonicalNewCtorType =
7342            Context.getCanonicalType(NewCtorType);
7343
7344        // Now that we have the type, first check if the class already has a
7345        // constructor with this signature.
7346        if (ExistingConstructors.count(CanonicalNewCtorType))
7347          continue;
7348
7349        // Then we check if we have already declared an inherited constructor
7350        // with this signature.
7351        std::pair<ConstructorToSourceMap::iterator, bool> result =
7352            InheritedConstructors.insert(std::make_pair(
7353                CanonicalNewCtorType,
7354                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7355        if (!result.second) {
7356          // Already in the map. If it came from a different class, that's an
7357          // error. Not if it's from the same.
7358          CanQualType PreviousBase = result.first->second.first;
7359          if (CanonicalBase != PreviousBase) {
7360            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7361            const CXXConstructorDecl *PrevBaseCtor =
7362                PrevCtor->getInheritedConstructor();
7363            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7364
7365            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7366            Diag(BaseCtor->getLocation(),
7367                 diag::note_using_decl_constructor_conflict_current_ctor);
7368            Diag(PrevBaseCtor->getLocation(),
7369                 diag::note_using_decl_constructor_conflict_previous_ctor);
7370            Diag(PrevCtor->getLocation(),
7371                 diag::note_using_decl_constructor_conflict_previous_using);
7372          }
7373          continue;
7374        }
7375
7376        // OK, we're there, now add the constructor.
7377        // C++0x [class.inhctor]p8: [...] that would be performed by a
7378        //   user-written inline constructor [...]
7379        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7380        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7381            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7382            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7383            /*ImplicitlyDeclared=*/true,
7384            // FIXME: Due to a defect in the standard, we treat inherited
7385            // constructors as constexpr even if that makes them ill-formed.
7386            /*Constexpr=*/BaseCtor->isConstexpr());
7387        NewCtor->setAccess(BaseCtor->getAccess());
7388
7389        // Build up the parameter decls and add them.
7390        SmallVector<ParmVarDecl *, 16> ParamDecls;
7391        for (unsigned i = 0; i < params; ++i) {
7392          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7393                                                   UsingLoc, UsingLoc,
7394                                                   /*IdentifierInfo=*/0,
7395                                                   BaseCtorType->getArgType(i),
7396                                                   /*TInfo=*/0, SC_None,
7397                                                   SC_None, /*DefaultArg=*/0));
7398        }
7399        NewCtor->setParams(ParamDecls);
7400        NewCtor->setInheritedConstructor(BaseCtor);
7401
7402        PushOnScopeChains(NewCtor, S, false);
7403        ClassDecl->addDecl(NewCtor);
7404        result.first->second.second = NewCtor;
7405      }
7406    }
7407  }
7408}
7409
7410Sema::ImplicitExceptionSpecification
7411Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7412  // C++ [except.spec]p14:
7413  //   An implicitly declared special member function (Clause 12) shall have
7414  //   an exception-specification.
7415  ImplicitExceptionSpecification ExceptSpec(Context);
7416  if (ClassDecl->isInvalidDecl())
7417    return ExceptSpec;
7418
7419  // Direct base-class destructors.
7420  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7421                                       BEnd = ClassDecl->bases_end();
7422       B != BEnd; ++B) {
7423    if (B->isVirtual()) // Handled below.
7424      continue;
7425
7426    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7427      ExceptSpec.CalledDecl(
7428                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7429  }
7430
7431  // Virtual base-class destructors.
7432  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7433                                       BEnd = ClassDecl->vbases_end();
7434       B != BEnd; ++B) {
7435    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7436      ExceptSpec.CalledDecl(
7437                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7438  }
7439
7440  // Field destructors.
7441  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7442                               FEnd = ClassDecl->field_end();
7443       F != FEnd; ++F) {
7444    if (const RecordType *RecordTy
7445        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7446      ExceptSpec.CalledDecl(
7447                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7448  }
7449
7450  return ExceptSpec;
7451}
7452
7453CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7454  // C++ [class.dtor]p2:
7455  //   If a class has no user-declared destructor, a destructor is
7456  //   declared implicitly. An implicitly-declared destructor is an
7457  //   inline public member of its class.
7458
7459  ImplicitExceptionSpecification Spec =
7460      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7461  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7462
7463  // Create the actual destructor declaration.
7464  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7465
7466  CanQualType ClassType
7467    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7468  SourceLocation ClassLoc = ClassDecl->getLocation();
7469  DeclarationName Name
7470    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7471  DeclarationNameInfo NameInfo(Name, ClassLoc);
7472  CXXDestructorDecl *Destructor
7473      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7474                                  /*isInline=*/true,
7475                                  /*isImplicitlyDeclared=*/true);
7476  Destructor->setAccess(AS_public);
7477  Destructor->setDefaulted();
7478  Destructor->setImplicit();
7479  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7480
7481  // Note that we have declared this destructor.
7482  ++ASTContext::NumImplicitDestructorsDeclared;
7483
7484  // Introduce this destructor into its scope.
7485  if (Scope *S = getScopeForContext(ClassDecl))
7486    PushOnScopeChains(Destructor, S, false);
7487  ClassDecl->addDecl(Destructor);
7488
7489  // This could be uniqued if it ever proves significant.
7490  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7491
7492  if (ShouldDeleteDestructor(Destructor))
7493    Destructor->setDeletedAsWritten();
7494
7495  AddOverriddenMethods(ClassDecl, Destructor);
7496
7497  return Destructor;
7498}
7499
7500void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7501                                    CXXDestructorDecl *Destructor) {
7502  assert((Destructor->isDefaulted() &&
7503          !Destructor->doesThisDeclarationHaveABody()) &&
7504         "DefineImplicitDestructor - call it for implicit default dtor");
7505  CXXRecordDecl *ClassDecl = Destructor->getParent();
7506  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7507
7508  if (Destructor->isInvalidDecl())
7509    return;
7510
7511  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7512
7513  DiagnosticErrorTrap Trap(Diags);
7514  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7515                                         Destructor->getParent());
7516
7517  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7518    Diag(CurrentLocation, diag::note_member_synthesized_at)
7519      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7520
7521    Destructor->setInvalidDecl();
7522    return;
7523  }
7524
7525  SourceLocation Loc = Destructor->getLocation();
7526  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7527  Destructor->setImplicitlyDefined(true);
7528  Destructor->setUsed();
7529  MarkVTableUsed(CurrentLocation, ClassDecl);
7530
7531  if (ASTMutationListener *L = getASTMutationListener()) {
7532    L->CompletedImplicitDefinition(Destructor);
7533  }
7534}
7535
7536void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7537                                         CXXDestructorDecl *destructor) {
7538  // C++11 [class.dtor]p3:
7539  //   A declaration of a destructor that does not have an exception-
7540  //   specification is implicitly considered to have the same exception-
7541  //   specification as an implicit declaration.
7542  const FunctionProtoType *dtorType = destructor->getType()->
7543                                        getAs<FunctionProtoType>();
7544  if (dtorType->hasExceptionSpec())
7545    return;
7546
7547  ImplicitExceptionSpecification exceptSpec =
7548      ComputeDefaultedDtorExceptionSpec(classDecl);
7549
7550  // Replace the destructor's type, building off the existing one. Fortunately,
7551  // the only thing of interest in the destructor type is its extended info.
7552  // The return and arguments are fixed.
7553  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7554  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7555  epi.NumExceptions = exceptSpec.size();
7556  epi.Exceptions = exceptSpec.data();
7557  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7558
7559  destructor->setType(ty);
7560
7561  // FIXME: If the destructor has a body that could throw, and the newly created
7562  // spec doesn't allow exceptions, we should emit a warning, because this
7563  // change in behavior can break conforming C++03 programs at runtime.
7564  // However, we don't have a body yet, so it needs to be done somewhere else.
7565}
7566
7567/// \brief Builds a statement that copies/moves the given entity from \p From to
7568/// \c To.
7569///
7570/// This routine is used to copy/move the members of a class with an
7571/// implicitly-declared copy/move assignment operator. When the entities being
7572/// copied are arrays, this routine builds for loops to copy them.
7573///
7574/// \param S The Sema object used for type-checking.
7575///
7576/// \param Loc The location where the implicit copy/move is being generated.
7577///
7578/// \param T The type of the expressions being copied/moved. Both expressions
7579/// must have this type.
7580///
7581/// \param To The expression we are copying/moving to.
7582///
7583/// \param From The expression we are copying/moving from.
7584///
7585/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7586/// Otherwise, it's a non-static member subobject.
7587///
7588/// \param Copying Whether we're copying or moving.
7589///
7590/// \param Depth Internal parameter recording the depth of the recursion.
7591///
7592/// \returns A statement or a loop that copies the expressions.
7593static StmtResult
7594BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7595                      Expr *To, Expr *From,
7596                      bool CopyingBaseSubobject, bool Copying,
7597                      unsigned Depth = 0) {
7598  // C++0x [class.copy]p28:
7599  //   Each subobject is assigned in the manner appropriate to its type:
7600  //
7601  //     - if the subobject is of class type, as if by a call to operator= with
7602  //       the subobject as the object expression and the corresponding
7603  //       subobject of x as a single function argument (as if by explicit
7604  //       qualification; that is, ignoring any possible virtual overriding
7605  //       functions in more derived classes);
7606  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7607    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7608
7609    // Look for operator=.
7610    DeclarationName Name
7611      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7612    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7613    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7614
7615    // Filter out any result that isn't a copy/move-assignment operator.
7616    LookupResult::Filter F = OpLookup.makeFilter();
7617    while (F.hasNext()) {
7618      NamedDecl *D = F.next();
7619      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7620        if (Copying ? Method->isCopyAssignmentOperator() :
7621                      Method->isMoveAssignmentOperator())
7622          continue;
7623
7624      F.erase();
7625    }
7626    F.done();
7627
7628    // Suppress the protected check (C++ [class.protected]) for each of the
7629    // assignment operators we found. This strange dance is required when
7630    // we're assigning via a base classes's copy-assignment operator. To
7631    // ensure that we're getting the right base class subobject (without
7632    // ambiguities), we need to cast "this" to that subobject type; to
7633    // ensure that we don't go through the virtual call mechanism, we need
7634    // to qualify the operator= name with the base class (see below). However,
7635    // this means that if the base class has a protected copy assignment
7636    // operator, the protected member access check will fail. So, we
7637    // rewrite "protected" access to "public" access in this case, since we
7638    // know by construction that we're calling from a derived class.
7639    if (CopyingBaseSubobject) {
7640      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7641           L != LEnd; ++L) {
7642        if (L.getAccess() == AS_protected)
7643          L.setAccess(AS_public);
7644      }
7645    }
7646
7647    // Create the nested-name-specifier that will be used to qualify the
7648    // reference to operator=; this is required to suppress the virtual
7649    // call mechanism.
7650    CXXScopeSpec SS;
7651    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7652    SS.MakeTrivial(S.Context,
7653                   NestedNameSpecifier::Create(S.Context, 0, false,
7654                                               CanonicalT),
7655                   Loc);
7656
7657    // Create the reference to operator=.
7658    ExprResult OpEqualRef
7659      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7660                                   /*TemplateKWLoc=*/SourceLocation(),
7661                                   /*FirstQualifierInScope=*/0,
7662                                   OpLookup,
7663                                   /*TemplateArgs=*/0,
7664                                   /*SuppressQualifierCheck=*/true);
7665    if (OpEqualRef.isInvalid())
7666      return StmtError();
7667
7668    // Build the call to the assignment operator.
7669
7670    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7671                                                  OpEqualRef.takeAs<Expr>(),
7672                                                  Loc, &From, 1, Loc);
7673    if (Call.isInvalid())
7674      return StmtError();
7675
7676    return S.Owned(Call.takeAs<Stmt>());
7677  }
7678
7679  //     - if the subobject is of scalar type, the built-in assignment
7680  //       operator is used.
7681  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7682  if (!ArrayTy) {
7683    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7684    if (Assignment.isInvalid())
7685      return StmtError();
7686
7687    return S.Owned(Assignment.takeAs<Stmt>());
7688  }
7689
7690  //     - if the subobject is an array, each element is assigned, in the
7691  //       manner appropriate to the element type;
7692
7693  // Construct a loop over the array bounds, e.g.,
7694  //
7695  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7696  //
7697  // that will copy each of the array elements.
7698  QualType SizeType = S.Context.getSizeType();
7699
7700  // Create the iteration variable.
7701  IdentifierInfo *IterationVarName = 0;
7702  {
7703    SmallString<8> Str;
7704    llvm::raw_svector_ostream OS(Str);
7705    OS << "__i" << Depth;
7706    IterationVarName = &S.Context.Idents.get(OS.str());
7707  }
7708  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7709                                          IterationVarName, SizeType,
7710                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7711                                          SC_None, SC_None);
7712
7713  // Initialize the iteration variable to zero.
7714  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7715  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7716
7717  // Create a reference to the iteration variable; we'll use this several
7718  // times throughout.
7719  Expr *IterationVarRef
7720    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7721  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7722  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7723  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7724
7725  // Create the DeclStmt that holds the iteration variable.
7726  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7727
7728  // Create the comparison against the array bound.
7729  llvm::APInt Upper
7730    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7731  Expr *Comparison
7732    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7733                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7734                                     BO_NE, S.Context.BoolTy,
7735                                     VK_RValue, OK_Ordinary, Loc);
7736
7737  // Create the pre-increment of the iteration variable.
7738  Expr *Increment
7739    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7740                                    VK_LValue, OK_Ordinary, Loc);
7741
7742  // Subscript the "from" and "to" expressions with the iteration variable.
7743  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7744                                                         IterationVarRefRVal,
7745                                                         Loc));
7746  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7747                                                       IterationVarRefRVal,
7748                                                       Loc));
7749  if (!Copying) // Cast to rvalue
7750    From = CastForMoving(S, From);
7751
7752  // Build the copy/move for an individual element of the array.
7753  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7754                                          To, From, CopyingBaseSubobject,
7755                                          Copying, Depth + 1);
7756  if (Copy.isInvalid())
7757    return StmtError();
7758
7759  // Construct the loop that copies all elements of this array.
7760  return S.ActOnForStmt(Loc, Loc, InitStmt,
7761                        S.MakeFullExpr(Comparison),
7762                        0, S.MakeFullExpr(Increment),
7763                        Loc, Copy.take());
7764}
7765
7766std::pair<Sema::ImplicitExceptionSpecification, bool>
7767Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7768                                                   CXXRecordDecl *ClassDecl) {
7769  if (ClassDecl->isInvalidDecl())
7770    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7771
7772  // C++ [class.copy]p10:
7773  //   If the class definition does not explicitly declare a copy
7774  //   assignment operator, one is declared implicitly.
7775  //   The implicitly-defined copy assignment operator for a class X
7776  //   will have the form
7777  //
7778  //       X& X::operator=(const X&)
7779  //
7780  //   if
7781  bool HasConstCopyAssignment = true;
7782
7783  //       -- each direct base class B of X has a copy assignment operator
7784  //          whose parameter is of type const B&, const volatile B& or B,
7785  //          and
7786  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7787                                       BaseEnd = ClassDecl->bases_end();
7788       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7789    // We'll handle this below
7790    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7791      continue;
7792
7793    assert(!Base->getType()->isDependentType() &&
7794           "Cannot generate implicit members for class with dependent bases.");
7795    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7796    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7797                            &HasConstCopyAssignment);
7798  }
7799
7800  // In C++11, the above citation has "or virtual" added
7801  if (LangOpts.CPlusPlus0x) {
7802    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7803                                         BaseEnd = ClassDecl->vbases_end();
7804         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7805      assert(!Base->getType()->isDependentType() &&
7806             "Cannot generate implicit members for class with dependent bases.");
7807      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7808      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7809                              &HasConstCopyAssignment);
7810    }
7811  }
7812
7813  //       -- for all the nonstatic data members of X that are of a class
7814  //          type M (or array thereof), each such class type has a copy
7815  //          assignment operator whose parameter is of type const M&,
7816  //          const volatile M& or M.
7817  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7818                                  FieldEnd = ClassDecl->field_end();
7819       HasConstCopyAssignment && Field != FieldEnd;
7820       ++Field) {
7821    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7822    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7823      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7824                              &HasConstCopyAssignment);
7825    }
7826  }
7827
7828  //   Otherwise, the implicitly declared copy assignment operator will
7829  //   have the form
7830  //
7831  //       X& X::operator=(X&)
7832
7833  // C++ [except.spec]p14:
7834  //   An implicitly declared special member function (Clause 12) shall have an
7835  //   exception-specification. [...]
7836
7837  // It is unspecified whether or not an implicit copy assignment operator
7838  // attempts to deduplicate calls to assignment operators of virtual bases are
7839  // made. As such, this exception specification is effectively unspecified.
7840  // Based on a similar decision made for constness in C++0x, we're erring on
7841  // the side of assuming such calls to be made regardless of whether they
7842  // actually happen.
7843  ImplicitExceptionSpecification ExceptSpec(Context);
7844  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7845  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7846                                       BaseEnd = ClassDecl->bases_end();
7847       Base != BaseEnd; ++Base) {
7848    if (Base->isVirtual())
7849      continue;
7850
7851    CXXRecordDecl *BaseClassDecl
7852      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7853    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7854                                                            ArgQuals, false, 0))
7855      ExceptSpec.CalledDecl(CopyAssign);
7856  }
7857
7858  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7859                                       BaseEnd = ClassDecl->vbases_end();
7860       Base != BaseEnd; ++Base) {
7861    CXXRecordDecl *BaseClassDecl
7862      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7863    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7864                                                            ArgQuals, false, 0))
7865      ExceptSpec.CalledDecl(CopyAssign);
7866  }
7867
7868  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7869                                  FieldEnd = ClassDecl->field_end();
7870       Field != FieldEnd;
7871       ++Field) {
7872    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7873    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7874      if (CXXMethodDecl *CopyAssign =
7875          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7876        ExceptSpec.CalledDecl(CopyAssign);
7877    }
7878  }
7879
7880  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7881}
7882
7883CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7884  // Note: The following rules are largely analoguous to the copy
7885  // constructor rules. Note that virtual bases are not taken into account
7886  // for determining the argument type of the operator. Note also that
7887  // operators taking an object instead of a reference are allowed.
7888
7889  ImplicitExceptionSpecification Spec(Context);
7890  bool Const;
7891  llvm::tie(Spec, Const) =
7892    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7893
7894  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7895  QualType RetType = Context.getLValueReferenceType(ArgType);
7896  if (Const)
7897    ArgType = ArgType.withConst();
7898  ArgType = Context.getLValueReferenceType(ArgType);
7899
7900  //   An implicitly-declared copy assignment operator is an inline public
7901  //   member of its class.
7902  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7903  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7904  SourceLocation ClassLoc = ClassDecl->getLocation();
7905  DeclarationNameInfo NameInfo(Name, ClassLoc);
7906  CXXMethodDecl *CopyAssignment
7907    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7908                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7909                            /*TInfo=*/0, /*isStatic=*/false,
7910                            /*StorageClassAsWritten=*/SC_None,
7911                            /*isInline=*/true, /*isConstexpr=*/false,
7912                            SourceLocation());
7913  CopyAssignment->setAccess(AS_public);
7914  CopyAssignment->setDefaulted();
7915  CopyAssignment->setImplicit();
7916  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7917
7918  // Add the parameter to the operator.
7919  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7920                                               ClassLoc, ClassLoc, /*Id=*/0,
7921                                               ArgType, /*TInfo=*/0,
7922                                               SC_None,
7923                                               SC_None, 0);
7924  CopyAssignment->setParams(FromParam);
7925
7926  // Note that we have added this copy-assignment operator.
7927  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7928
7929  if (Scope *S = getScopeForContext(ClassDecl))
7930    PushOnScopeChains(CopyAssignment, S, false);
7931  ClassDecl->addDecl(CopyAssignment);
7932
7933  // C++0x [class.copy]p19:
7934  //   ....  If the class definition does not explicitly declare a copy
7935  //   assignment operator, there is no user-declared move constructor, and
7936  //   there is no user-declared move assignment operator, a copy assignment
7937  //   operator is implicitly declared as defaulted.
7938  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7939          !getLangOptions().MicrosoftMode) ||
7940      ClassDecl->hasUserDeclaredMoveAssignment() ||
7941      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7942    CopyAssignment->setDeletedAsWritten();
7943
7944  AddOverriddenMethods(ClassDecl, CopyAssignment);
7945  return CopyAssignment;
7946}
7947
7948void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7949                                        CXXMethodDecl *CopyAssignOperator) {
7950  assert((CopyAssignOperator->isDefaulted() &&
7951          CopyAssignOperator->isOverloadedOperator() &&
7952          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7953          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7954         "DefineImplicitCopyAssignment called for wrong function");
7955
7956  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7957
7958  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7959    CopyAssignOperator->setInvalidDecl();
7960    return;
7961  }
7962
7963  CopyAssignOperator->setUsed();
7964
7965  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7966  DiagnosticErrorTrap Trap(Diags);
7967
7968  // C++0x [class.copy]p30:
7969  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7970  //   for a non-union class X performs memberwise copy assignment of its
7971  //   subobjects. The direct base classes of X are assigned first, in the
7972  //   order of their declaration in the base-specifier-list, and then the
7973  //   immediate non-static data members of X are assigned, in the order in
7974  //   which they were declared in the class definition.
7975
7976  // The statements that form the synthesized function body.
7977  ASTOwningVector<Stmt*> Statements(*this);
7978
7979  // The parameter for the "other" object, which we are copying from.
7980  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7981  Qualifiers OtherQuals = Other->getType().getQualifiers();
7982  QualType OtherRefType = Other->getType();
7983  if (const LValueReferenceType *OtherRef
7984                                = OtherRefType->getAs<LValueReferenceType>()) {
7985    OtherRefType = OtherRef->getPointeeType();
7986    OtherQuals = OtherRefType.getQualifiers();
7987  }
7988
7989  // Our location for everything implicitly-generated.
7990  SourceLocation Loc = CopyAssignOperator->getLocation();
7991
7992  // Construct a reference to the "other" object. We'll be using this
7993  // throughout the generated ASTs.
7994  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7995  assert(OtherRef && "Reference to parameter cannot fail!");
7996
7997  // Construct the "this" pointer. We'll be using this throughout the generated
7998  // ASTs.
7999  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8000  assert(This && "Reference to this cannot fail!");
8001
8002  // Assign base classes.
8003  bool Invalid = false;
8004  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8005       E = ClassDecl->bases_end(); Base != E; ++Base) {
8006    // Form the assignment:
8007    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8008    QualType BaseType = Base->getType().getUnqualifiedType();
8009    if (!BaseType->isRecordType()) {
8010      Invalid = true;
8011      continue;
8012    }
8013
8014    CXXCastPath BasePath;
8015    BasePath.push_back(Base);
8016
8017    // Construct the "from" expression, which is an implicit cast to the
8018    // appropriately-qualified base type.
8019    Expr *From = OtherRef;
8020    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8021                             CK_UncheckedDerivedToBase,
8022                             VK_LValue, &BasePath).take();
8023
8024    // Dereference "this".
8025    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8026
8027    // Implicitly cast "this" to the appropriately-qualified base type.
8028    To = ImpCastExprToType(To.take(),
8029                           Context.getCVRQualifiedType(BaseType,
8030                                     CopyAssignOperator->getTypeQualifiers()),
8031                           CK_UncheckedDerivedToBase,
8032                           VK_LValue, &BasePath);
8033
8034    // Build the copy.
8035    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
8036                                            To.get(), From,
8037                                            /*CopyingBaseSubobject=*/true,
8038                                            /*Copying=*/true);
8039    if (Copy.isInvalid()) {
8040      Diag(CurrentLocation, diag::note_member_synthesized_at)
8041        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8042      CopyAssignOperator->setInvalidDecl();
8043      return;
8044    }
8045
8046    // Success! Record the copy.
8047    Statements.push_back(Copy.takeAs<Expr>());
8048  }
8049
8050  // \brief Reference to the __builtin_memcpy function.
8051  Expr *BuiltinMemCpyRef = 0;
8052  // \brief Reference to the __builtin_objc_memmove_collectable function.
8053  Expr *CollectableMemCpyRef = 0;
8054
8055  // Assign non-static members.
8056  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8057                                  FieldEnd = ClassDecl->field_end();
8058       Field != FieldEnd; ++Field) {
8059    if (Field->isUnnamedBitfield())
8060      continue;
8061
8062    // Check for members of reference type; we can't copy those.
8063    if (Field->getType()->isReferenceType()) {
8064      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8065        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8066      Diag(Field->getLocation(), diag::note_declared_at);
8067      Diag(CurrentLocation, diag::note_member_synthesized_at)
8068        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8069      Invalid = true;
8070      continue;
8071    }
8072
8073    // Check for members of const-qualified, non-class type.
8074    QualType BaseType = Context.getBaseElementType(Field->getType());
8075    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8076      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8077        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8078      Diag(Field->getLocation(), diag::note_declared_at);
8079      Diag(CurrentLocation, diag::note_member_synthesized_at)
8080        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8081      Invalid = true;
8082      continue;
8083    }
8084
8085    // Suppress assigning zero-width bitfields.
8086    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8087      continue;
8088
8089    QualType FieldType = Field->getType().getNonReferenceType();
8090    if (FieldType->isIncompleteArrayType()) {
8091      assert(ClassDecl->hasFlexibleArrayMember() &&
8092             "Incomplete array type is not valid");
8093      continue;
8094    }
8095
8096    // Build references to the field in the object we're copying from and to.
8097    CXXScopeSpec SS; // Intentionally empty
8098    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8099                              LookupMemberName);
8100    MemberLookup.addDecl(*Field);
8101    MemberLookup.resolveKind();
8102    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8103                                               Loc, /*IsArrow=*/false,
8104                                               SS, SourceLocation(), 0,
8105                                               MemberLookup, 0);
8106    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8107                                             Loc, /*IsArrow=*/true,
8108                                             SS, SourceLocation(), 0,
8109                                             MemberLookup, 0);
8110    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8111    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8112
8113    // If the field should be copied with __builtin_memcpy rather than via
8114    // explicit assignments, do so. This optimization only applies for arrays
8115    // of scalars and arrays of class type with trivial copy-assignment
8116    // operators.
8117    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8118        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8119      // Compute the size of the memory buffer to be copied.
8120      QualType SizeType = Context.getSizeType();
8121      llvm::APInt Size(Context.getTypeSize(SizeType),
8122                       Context.getTypeSizeInChars(BaseType).getQuantity());
8123      for (const ConstantArrayType *Array
8124              = Context.getAsConstantArrayType(FieldType);
8125           Array;
8126           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8127        llvm::APInt ArraySize
8128          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8129        Size *= ArraySize;
8130      }
8131
8132      // Take the address of the field references for "from" and "to".
8133      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8134      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8135
8136      bool NeedsCollectableMemCpy =
8137          (BaseType->isRecordType() &&
8138           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8139
8140      if (NeedsCollectableMemCpy) {
8141        if (!CollectableMemCpyRef) {
8142          // Create a reference to the __builtin_objc_memmove_collectable function.
8143          LookupResult R(*this,
8144                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8145                         Loc, LookupOrdinaryName);
8146          LookupName(R, TUScope, true);
8147
8148          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8149          if (!CollectableMemCpy) {
8150            // Something went horribly wrong earlier, and we will have
8151            // complained about it.
8152            Invalid = true;
8153            continue;
8154          }
8155
8156          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8157                                                  CollectableMemCpy->getType(),
8158                                                  VK_LValue, Loc, 0).take();
8159          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8160        }
8161      }
8162      // Create a reference to the __builtin_memcpy builtin function.
8163      else if (!BuiltinMemCpyRef) {
8164        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8165                       LookupOrdinaryName);
8166        LookupName(R, TUScope, true);
8167
8168        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8169        if (!BuiltinMemCpy) {
8170          // Something went horribly wrong earlier, and we will have complained
8171          // about it.
8172          Invalid = true;
8173          continue;
8174        }
8175
8176        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8177                                            BuiltinMemCpy->getType(),
8178                                            VK_LValue, Loc, 0).take();
8179        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8180      }
8181
8182      ASTOwningVector<Expr*> CallArgs(*this);
8183      CallArgs.push_back(To.takeAs<Expr>());
8184      CallArgs.push_back(From.takeAs<Expr>());
8185      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8186      ExprResult Call = ExprError();
8187      if (NeedsCollectableMemCpy)
8188        Call = ActOnCallExpr(/*Scope=*/0,
8189                             CollectableMemCpyRef,
8190                             Loc, move_arg(CallArgs),
8191                             Loc);
8192      else
8193        Call = ActOnCallExpr(/*Scope=*/0,
8194                             BuiltinMemCpyRef,
8195                             Loc, move_arg(CallArgs),
8196                             Loc);
8197
8198      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8199      Statements.push_back(Call.takeAs<Expr>());
8200      continue;
8201    }
8202
8203    // Build the copy of this field.
8204    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8205                                            To.get(), From.get(),
8206                                            /*CopyingBaseSubobject=*/false,
8207                                            /*Copying=*/true);
8208    if (Copy.isInvalid()) {
8209      Diag(CurrentLocation, diag::note_member_synthesized_at)
8210        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8211      CopyAssignOperator->setInvalidDecl();
8212      return;
8213    }
8214
8215    // Success! Record the copy.
8216    Statements.push_back(Copy.takeAs<Stmt>());
8217  }
8218
8219  if (!Invalid) {
8220    // Add a "return *this;"
8221    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8222
8223    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8224    if (Return.isInvalid())
8225      Invalid = true;
8226    else {
8227      Statements.push_back(Return.takeAs<Stmt>());
8228
8229      if (Trap.hasErrorOccurred()) {
8230        Diag(CurrentLocation, diag::note_member_synthesized_at)
8231          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8232        Invalid = true;
8233      }
8234    }
8235  }
8236
8237  if (Invalid) {
8238    CopyAssignOperator->setInvalidDecl();
8239    return;
8240  }
8241
8242  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8243                                            /*isStmtExpr=*/false);
8244  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8245  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8246
8247  if (ASTMutationListener *L = getASTMutationListener()) {
8248    L->CompletedImplicitDefinition(CopyAssignOperator);
8249  }
8250}
8251
8252Sema::ImplicitExceptionSpecification
8253Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8254  ImplicitExceptionSpecification ExceptSpec(Context);
8255
8256  if (ClassDecl->isInvalidDecl())
8257    return ExceptSpec;
8258
8259  // C++0x [except.spec]p14:
8260  //   An implicitly declared special member function (Clause 12) shall have an
8261  //   exception-specification. [...]
8262
8263  // It is unspecified whether or not an implicit move assignment operator
8264  // attempts to deduplicate calls to assignment operators of virtual bases are
8265  // made. As such, this exception specification is effectively unspecified.
8266  // Based on a similar decision made for constness in C++0x, we're erring on
8267  // the side of assuming such calls to be made regardless of whether they
8268  // actually happen.
8269  // Note that a move constructor is not implicitly declared when there are
8270  // virtual bases, but it can still be user-declared and explicitly defaulted.
8271  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8272                                       BaseEnd = ClassDecl->bases_end();
8273       Base != BaseEnd; ++Base) {
8274    if (Base->isVirtual())
8275      continue;
8276
8277    CXXRecordDecl *BaseClassDecl
8278      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8279    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8280                                                           false, 0))
8281      ExceptSpec.CalledDecl(MoveAssign);
8282  }
8283
8284  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8285                                       BaseEnd = ClassDecl->vbases_end();
8286       Base != BaseEnd; ++Base) {
8287    CXXRecordDecl *BaseClassDecl
8288      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8289    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8290                                                           false, 0))
8291      ExceptSpec.CalledDecl(MoveAssign);
8292  }
8293
8294  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8295                                  FieldEnd = ClassDecl->field_end();
8296       Field != FieldEnd;
8297       ++Field) {
8298    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8299    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8300      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8301                                                             false, 0))
8302        ExceptSpec.CalledDecl(MoveAssign);
8303    }
8304  }
8305
8306  return ExceptSpec;
8307}
8308
8309CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8310  // Note: The following rules are largely analoguous to the move
8311  // constructor rules.
8312
8313  ImplicitExceptionSpecification Spec(
8314      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8315
8316  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8317  QualType RetType = Context.getLValueReferenceType(ArgType);
8318  ArgType = Context.getRValueReferenceType(ArgType);
8319
8320  //   An implicitly-declared move assignment operator is an inline public
8321  //   member of its class.
8322  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8323  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8324  SourceLocation ClassLoc = ClassDecl->getLocation();
8325  DeclarationNameInfo NameInfo(Name, ClassLoc);
8326  CXXMethodDecl *MoveAssignment
8327    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8328                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8329                            /*TInfo=*/0, /*isStatic=*/false,
8330                            /*StorageClassAsWritten=*/SC_None,
8331                            /*isInline=*/true,
8332                            /*isConstexpr=*/false,
8333                            SourceLocation());
8334  MoveAssignment->setAccess(AS_public);
8335  MoveAssignment->setDefaulted();
8336  MoveAssignment->setImplicit();
8337  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8338
8339  // Add the parameter to the operator.
8340  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8341                                               ClassLoc, ClassLoc, /*Id=*/0,
8342                                               ArgType, /*TInfo=*/0,
8343                                               SC_None,
8344                                               SC_None, 0);
8345  MoveAssignment->setParams(FromParam);
8346
8347  // Note that we have added this copy-assignment operator.
8348  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8349
8350  // C++0x [class.copy]p9:
8351  //   If the definition of a class X does not explicitly declare a move
8352  //   assignment operator, one will be implicitly declared as defaulted if and
8353  //   only if:
8354  //   [...]
8355  //   - the move assignment operator would not be implicitly defined as
8356  //     deleted.
8357  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8358    // Cache this result so that we don't try to generate this over and over
8359    // on every lookup, leaking memory and wasting time.
8360    ClassDecl->setFailedImplicitMoveAssignment();
8361    return 0;
8362  }
8363
8364  if (Scope *S = getScopeForContext(ClassDecl))
8365    PushOnScopeChains(MoveAssignment, S, false);
8366  ClassDecl->addDecl(MoveAssignment);
8367
8368  AddOverriddenMethods(ClassDecl, MoveAssignment);
8369  return MoveAssignment;
8370}
8371
8372void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8373                                        CXXMethodDecl *MoveAssignOperator) {
8374  assert((MoveAssignOperator->isDefaulted() &&
8375          MoveAssignOperator->isOverloadedOperator() &&
8376          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8377          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8378         "DefineImplicitMoveAssignment called for wrong function");
8379
8380  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8381
8382  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8383    MoveAssignOperator->setInvalidDecl();
8384    return;
8385  }
8386
8387  MoveAssignOperator->setUsed();
8388
8389  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8390  DiagnosticErrorTrap Trap(Diags);
8391
8392  // C++0x [class.copy]p28:
8393  //   The implicitly-defined or move assignment operator for a non-union class
8394  //   X performs memberwise move assignment of its subobjects. The direct base
8395  //   classes of X are assigned first, in the order of their declaration in the
8396  //   base-specifier-list, and then the immediate non-static data members of X
8397  //   are assigned, in the order in which they were declared in the class
8398  //   definition.
8399
8400  // The statements that form the synthesized function body.
8401  ASTOwningVector<Stmt*> Statements(*this);
8402
8403  // The parameter for the "other" object, which we are move from.
8404  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8405  QualType OtherRefType = Other->getType()->
8406      getAs<RValueReferenceType>()->getPointeeType();
8407  assert(OtherRefType.getQualifiers() == 0 &&
8408         "Bad argument type of defaulted move assignment");
8409
8410  // Our location for everything implicitly-generated.
8411  SourceLocation Loc = MoveAssignOperator->getLocation();
8412
8413  // Construct a reference to the "other" object. We'll be using this
8414  // throughout the generated ASTs.
8415  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8416  assert(OtherRef && "Reference to parameter cannot fail!");
8417  // Cast to rvalue.
8418  OtherRef = CastForMoving(*this, OtherRef);
8419
8420  // Construct the "this" pointer. We'll be using this throughout the generated
8421  // ASTs.
8422  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8423  assert(This && "Reference to this cannot fail!");
8424
8425  // Assign base classes.
8426  bool Invalid = false;
8427  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8428       E = ClassDecl->bases_end(); Base != E; ++Base) {
8429    // Form the assignment:
8430    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8431    QualType BaseType = Base->getType().getUnqualifiedType();
8432    if (!BaseType->isRecordType()) {
8433      Invalid = true;
8434      continue;
8435    }
8436
8437    CXXCastPath BasePath;
8438    BasePath.push_back(Base);
8439
8440    // Construct the "from" expression, which is an implicit cast to the
8441    // appropriately-qualified base type.
8442    Expr *From = OtherRef;
8443    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8444                             VK_XValue, &BasePath).take();
8445
8446    // Dereference "this".
8447    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8448
8449    // Implicitly cast "this" to the appropriately-qualified base type.
8450    To = ImpCastExprToType(To.take(),
8451                           Context.getCVRQualifiedType(BaseType,
8452                                     MoveAssignOperator->getTypeQualifiers()),
8453                           CK_UncheckedDerivedToBase,
8454                           VK_LValue, &BasePath);
8455
8456    // Build the move.
8457    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8458                                            To.get(), From,
8459                                            /*CopyingBaseSubobject=*/true,
8460                                            /*Copying=*/false);
8461    if (Move.isInvalid()) {
8462      Diag(CurrentLocation, diag::note_member_synthesized_at)
8463        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8464      MoveAssignOperator->setInvalidDecl();
8465      return;
8466    }
8467
8468    // Success! Record the move.
8469    Statements.push_back(Move.takeAs<Expr>());
8470  }
8471
8472  // \brief Reference to the __builtin_memcpy function.
8473  Expr *BuiltinMemCpyRef = 0;
8474  // \brief Reference to the __builtin_objc_memmove_collectable function.
8475  Expr *CollectableMemCpyRef = 0;
8476
8477  // Assign non-static members.
8478  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8479                                  FieldEnd = ClassDecl->field_end();
8480       Field != FieldEnd; ++Field) {
8481    if (Field->isUnnamedBitfield())
8482      continue;
8483
8484    // Check for members of reference type; we can't move those.
8485    if (Field->getType()->isReferenceType()) {
8486      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8487        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8488      Diag(Field->getLocation(), diag::note_declared_at);
8489      Diag(CurrentLocation, diag::note_member_synthesized_at)
8490        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8491      Invalid = true;
8492      continue;
8493    }
8494
8495    // Check for members of const-qualified, non-class type.
8496    QualType BaseType = Context.getBaseElementType(Field->getType());
8497    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8498      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8499        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8500      Diag(Field->getLocation(), diag::note_declared_at);
8501      Diag(CurrentLocation, diag::note_member_synthesized_at)
8502        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8503      Invalid = true;
8504      continue;
8505    }
8506
8507    // Suppress assigning zero-width bitfields.
8508    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8509      continue;
8510
8511    QualType FieldType = Field->getType().getNonReferenceType();
8512    if (FieldType->isIncompleteArrayType()) {
8513      assert(ClassDecl->hasFlexibleArrayMember() &&
8514             "Incomplete array type is not valid");
8515      continue;
8516    }
8517
8518    // Build references to the field in the object we're copying from and to.
8519    CXXScopeSpec SS; // Intentionally empty
8520    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8521                              LookupMemberName);
8522    MemberLookup.addDecl(*Field);
8523    MemberLookup.resolveKind();
8524    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8525                                               Loc, /*IsArrow=*/false,
8526                                               SS, SourceLocation(), 0,
8527                                               MemberLookup, 0);
8528    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8529                                             Loc, /*IsArrow=*/true,
8530                                             SS, SourceLocation(), 0,
8531                                             MemberLookup, 0);
8532    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8533    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8534
8535    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8536        "Member reference with rvalue base must be rvalue except for reference "
8537        "members, which aren't allowed for move assignment.");
8538
8539    // If the field should be copied with __builtin_memcpy rather than via
8540    // explicit assignments, do so. This optimization only applies for arrays
8541    // of scalars and arrays of class type with trivial move-assignment
8542    // operators.
8543    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8544        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8545      // Compute the size of the memory buffer to be copied.
8546      QualType SizeType = Context.getSizeType();
8547      llvm::APInt Size(Context.getTypeSize(SizeType),
8548                       Context.getTypeSizeInChars(BaseType).getQuantity());
8549      for (const ConstantArrayType *Array
8550              = Context.getAsConstantArrayType(FieldType);
8551           Array;
8552           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8553        llvm::APInt ArraySize
8554          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8555        Size *= ArraySize;
8556      }
8557
8558      // Take the address of the field references for "from" and "to". We
8559      // directly construct UnaryOperators here because semantic analysis
8560      // does not permit us to take the address of an xvalue.
8561      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8562                             Context.getPointerType(From.get()->getType()),
8563                             VK_RValue, OK_Ordinary, Loc);
8564      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8565                           Context.getPointerType(To.get()->getType()),
8566                           VK_RValue, OK_Ordinary, Loc);
8567
8568      bool NeedsCollectableMemCpy =
8569          (BaseType->isRecordType() &&
8570           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8571
8572      if (NeedsCollectableMemCpy) {
8573        if (!CollectableMemCpyRef) {
8574          // Create a reference to the __builtin_objc_memmove_collectable function.
8575          LookupResult R(*this,
8576                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8577                         Loc, LookupOrdinaryName);
8578          LookupName(R, TUScope, true);
8579
8580          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8581          if (!CollectableMemCpy) {
8582            // Something went horribly wrong earlier, and we will have
8583            // complained about it.
8584            Invalid = true;
8585            continue;
8586          }
8587
8588          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8589                                                  CollectableMemCpy->getType(),
8590                                                  VK_LValue, Loc, 0).take();
8591          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8592        }
8593      }
8594      // Create a reference to the __builtin_memcpy builtin function.
8595      else if (!BuiltinMemCpyRef) {
8596        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8597                       LookupOrdinaryName);
8598        LookupName(R, TUScope, true);
8599
8600        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8601        if (!BuiltinMemCpy) {
8602          // Something went horribly wrong earlier, and we will have complained
8603          // about it.
8604          Invalid = true;
8605          continue;
8606        }
8607
8608        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8609                                            BuiltinMemCpy->getType(),
8610                                            VK_LValue, Loc, 0).take();
8611        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8612      }
8613
8614      ASTOwningVector<Expr*> CallArgs(*this);
8615      CallArgs.push_back(To.takeAs<Expr>());
8616      CallArgs.push_back(From.takeAs<Expr>());
8617      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8618      ExprResult Call = ExprError();
8619      if (NeedsCollectableMemCpy)
8620        Call = ActOnCallExpr(/*Scope=*/0,
8621                             CollectableMemCpyRef,
8622                             Loc, move_arg(CallArgs),
8623                             Loc);
8624      else
8625        Call = ActOnCallExpr(/*Scope=*/0,
8626                             BuiltinMemCpyRef,
8627                             Loc, move_arg(CallArgs),
8628                             Loc);
8629
8630      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8631      Statements.push_back(Call.takeAs<Expr>());
8632      continue;
8633    }
8634
8635    // Build the move of this field.
8636    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8637                                            To.get(), From.get(),
8638                                            /*CopyingBaseSubobject=*/false,
8639                                            /*Copying=*/false);
8640    if (Move.isInvalid()) {
8641      Diag(CurrentLocation, diag::note_member_synthesized_at)
8642        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8643      MoveAssignOperator->setInvalidDecl();
8644      return;
8645    }
8646
8647    // Success! Record the copy.
8648    Statements.push_back(Move.takeAs<Stmt>());
8649  }
8650
8651  if (!Invalid) {
8652    // Add a "return *this;"
8653    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8654
8655    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8656    if (Return.isInvalid())
8657      Invalid = true;
8658    else {
8659      Statements.push_back(Return.takeAs<Stmt>());
8660
8661      if (Trap.hasErrorOccurred()) {
8662        Diag(CurrentLocation, diag::note_member_synthesized_at)
8663          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8664        Invalid = true;
8665      }
8666    }
8667  }
8668
8669  if (Invalid) {
8670    MoveAssignOperator->setInvalidDecl();
8671    return;
8672  }
8673
8674  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8675                                            /*isStmtExpr=*/false);
8676  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8677  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8678
8679  if (ASTMutationListener *L = getASTMutationListener()) {
8680    L->CompletedImplicitDefinition(MoveAssignOperator);
8681  }
8682}
8683
8684std::pair<Sema::ImplicitExceptionSpecification, bool>
8685Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8686  if (ClassDecl->isInvalidDecl())
8687    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8688
8689  // C++ [class.copy]p5:
8690  //   The implicitly-declared copy constructor for a class X will
8691  //   have the form
8692  //
8693  //       X::X(const X&)
8694  //
8695  //   if
8696  // FIXME: It ought to be possible to store this on the record.
8697  bool HasConstCopyConstructor = true;
8698
8699  //     -- each direct or virtual base class B of X has a copy
8700  //        constructor whose first parameter is of type const B& or
8701  //        const volatile B&, and
8702  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8703                                       BaseEnd = ClassDecl->bases_end();
8704       HasConstCopyConstructor && Base != BaseEnd;
8705       ++Base) {
8706    // Virtual bases are handled below.
8707    if (Base->isVirtual())
8708      continue;
8709
8710    CXXRecordDecl *BaseClassDecl
8711      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8712    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8713                             &HasConstCopyConstructor);
8714  }
8715
8716  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8717                                       BaseEnd = ClassDecl->vbases_end();
8718       HasConstCopyConstructor && Base != BaseEnd;
8719       ++Base) {
8720    CXXRecordDecl *BaseClassDecl
8721      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8722    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8723                             &HasConstCopyConstructor);
8724  }
8725
8726  //     -- for all the nonstatic data members of X that are of a
8727  //        class type M (or array thereof), each such class type
8728  //        has a copy constructor whose first parameter is of type
8729  //        const M& or const volatile M&.
8730  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8731                                  FieldEnd = ClassDecl->field_end();
8732       HasConstCopyConstructor && Field != FieldEnd;
8733       ++Field) {
8734    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8735    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8736      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8737                               &HasConstCopyConstructor);
8738    }
8739  }
8740  //   Otherwise, the implicitly declared copy constructor will have
8741  //   the form
8742  //
8743  //       X::X(X&)
8744
8745  // C++ [except.spec]p14:
8746  //   An implicitly declared special member function (Clause 12) shall have an
8747  //   exception-specification. [...]
8748  ImplicitExceptionSpecification ExceptSpec(Context);
8749  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8750  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8751                                       BaseEnd = ClassDecl->bases_end();
8752       Base != BaseEnd;
8753       ++Base) {
8754    // Virtual bases are handled below.
8755    if (Base->isVirtual())
8756      continue;
8757
8758    CXXRecordDecl *BaseClassDecl
8759      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8760    if (CXXConstructorDecl *CopyConstructor =
8761          LookupCopyingConstructor(BaseClassDecl, Quals))
8762      ExceptSpec.CalledDecl(CopyConstructor);
8763  }
8764  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8765                                       BaseEnd = ClassDecl->vbases_end();
8766       Base != BaseEnd;
8767       ++Base) {
8768    CXXRecordDecl *BaseClassDecl
8769      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8770    if (CXXConstructorDecl *CopyConstructor =
8771          LookupCopyingConstructor(BaseClassDecl, Quals))
8772      ExceptSpec.CalledDecl(CopyConstructor);
8773  }
8774  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8775                                  FieldEnd = ClassDecl->field_end();
8776       Field != FieldEnd;
8777       ++Field) {
8778    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8779    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8780      if (CXXConstructorDecl *CopyConstructor =
8781        LookupCopyingConstructor(FieldClassDecl, Quals))
8782      ExceptSpec.CalledDecl(CopyConstructor);
8783    }
8784  }
8785
8786  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8787}
8788
8789CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8790                                                    CXXRecordDecl *ClassDecl) {
8791  // C++ [class.copy]p4:
8792  //   If the class definition does not explicitly declare a copy
8793  //   constructor, one is declared implicitly.
8794
8795  ImplicitExceptionSpecification Spec(Context);
8796  bool Const;
8797  llvm::tie(Spec, Const) =
8798    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8799
8800  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8801  QualType ArgType = ClassType;
8802  if (Const)
8803    ArgType = ArgType.withConst();
8804  ArgType = Context.getLValueReferenceType(ArgType);
8805
8806  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8807
8808  DeclarationName Name
8809    = Context.DeclarationNames.getCXXConstructorName(
8810                                           Context.getCanonicalType(ClassType));
8811  SourceLocation ClassLoc = ClassDecl->getLocation();
8812  DeclarationNameInfo NameInfo(Name, ClassLoc);
8813
8814  //   An implicitly-declared copy constructor is an inline public
8815  //   member of its class.
8816  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8817      Context, ClassDecl, ClassLoc, NameInfo,
8818      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8819      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8820      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8821        getLangOptions().CPlusPlus0x);
8822  CopyConstructor->setAccess(AS_public);
8823  CopyConstructor->setDefaulted();
8824  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8825
8826  // Note that we have declared this constructor.
8827  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8828
8829  // Add the parameter to the constructor.
8830  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8831                                               ClassLoc, ClassLoc,
8832                                               /*IdentifierInfo=*/0,
8833                                               ArgType, /*TInfo=*/0,
8834                                               SC_None,
8835                                               SC_None, 0);
8836  CopyConstructor->setParams(FromParam);
8837
8838  if (Scope *S = getScopeForContext(ClassDecl))
8839    PushOnScopeChains(CopyConstructor, S, false);
8840  ClassDecl->addDecl(CopyConstructor);
8841
8842  // C++11 [class.copy]p8:
8843  //   ... If the class definition does not explicitly declare a copy
8844  //   constructor, there is no user-declared move constructor, and there is no
8845  //   user-declared move assignment operator, a copy constructor is implicitly
8846  //   declared as defaulted.
8847  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8848      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8849          !getLangOptions().MicrosoftMode) ||
8850      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8851    CopyConstructor->setDeletedAsWritten();
8852
8853  return CopyConstructor;
8854}
8855
8856void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8857                                   CXXConstructorDecl *CopyConstructor) {
8858  assert((CopyConstructor->isDefaulted() &&
8859          CopyConstructor->isCopyConstructor() &&
8860          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8861         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8862
8863  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8864  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8865
8866  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8867  DiagnosticErrorTrap Trap(Diags);
8868
8869  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8870      Trap.hasErrorOccurred()) {
8871    Diag(CurrentLocation, diag::note_member_synthesized_at)
8872      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8873    CopyConstructor->setInvalidDecl();
8874  }  else {
8875    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8876                                               CopyConstructor->getLocation(),
8877                                               MultiStmtArg(*this, 0, 0),
8878                                               /*isStmtExpr=*/false)
8879                                                              .takeAs<Stmt>());
8880    CopyConstructor->setImplicitlyDefined(true);
8881  }
8882
8883  CopyConstructor->setUsed();
8884  if (ASTMutationListener *L = getASTMutationListener()) {
8885    L->CompletedImplicitDefinition(CopyConstructor);
8886  }
8887}
8888
8889Sema::ImplicitExceptionSpecification
8890Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8891  // C++ [except.spec]p14:
8892  //   An implicitly declared special member function (Clause 12) shall have an
8893  //   exception-specification. [...]
8894  ImplicitExceptionSpecification ExceptSpec(Context);
8895  if (ClassDecl->isInvalidDecl())
8896    return ExceptSpec;
8897
8898  // Direct base-class constructors.
8899  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8900                                       BEnd = ClassDecl->bases_end();
8901       B != BEnd; ++B) {
8902    if (B->isVirtual()) // Handled below.
8903      continue;
8904
8905    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8906      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8907      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8908      // If this is a deleted function, add it anyway. This might be conformant
8909      // with the standard. This might not. I'm not sure. It might not matter.
8910      if (Constructor)
8911        ExceptSpec.CalledDecl(Constructor);
8912    }
8913  }
8914
8915  // Virtual base-class constructors.
8916  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8917                                       BEnd = ClassDecl->vbases_end();
8918       B != BEnd; ++B) {
8919    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8920      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8921      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8922      // If this is a deleted function, add it anyway. This might be conformant
8923      // with the standard. This might not. I'm not sure. It might not matter.
8924      if (Constructor)
8925        ExceptSpec.CalledDecl(Constructor);
8926    }
8927  }
8928
8929  // Field constructors.
8930  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8931                               FEnd = ClassDecl->field_end();
8932       F != FEnd; ++F) {
8933    if (const RecordType *RecordTy
8934              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8935      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8936      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8937      // If this is a deleted function, add it anyway. This might be conformant
8938      // with the standard. This might not. I'm not sure. It might not matter.
8939      // In particular, the problem is that this function never gets called. It
8940      // might just be ill-formed because this function attempts to refer to
8941      // a deleted function here.
8942      if (Constructor)
8943        ExceptSpec.CalledDecl(Constructor);
8944    }
8945  }
8946
8947  return ExceptSpec;
8948}
8949
8950CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8951                                                    CXXRecordDecl *ClassDecl) {
8952  ImplicitExceptionSpecification Spec(
8953      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8954
8955  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8956  QualType ArgType = Context.getRValueReferenceType(ClassType);
8957
8958  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8959
8960  DeclarationName Name
8961    = Context.DeclarationNames.getCXXConstructorName(
8962                                           Context.getCanonicalType(ClassType));
8963  SourceLocation ClassLoc = ClassDecl->getLocation();
8964  DeclarationNameInfo NameInfo(Name, ClassLoc);
8965
8966  // C++0x [class.copy]p11:
8967  //   An implicitly-declared copy/move constructor is an inline public
8968  //   member of its class.
8969  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8970      Context, ClassDecl, ClassLoc, NameInfo,
8971      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8972      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8973      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8974        getLangOptions().CPlusPlus0x);
8975  MoveConstructor->setAccess(AS_public);
8976  MoveConstructor->setDefaulted();
8977  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8978
8979  // Add the parameter to the constructor.
8980  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8981                                               ClassLoc, ClassLoc,
8982                                               /*IdentifierInfo=*/0,
8983                                               ArgType, /*TInfo=*/0,
8984                                               SC_None,
8985                                               SC_None, 0);
8986  MoveConstructor->setParams(FromParam);
8987
8988  // C++0x [class.copy]p9:
8989  //   If the definition of a class X does not explicitly declare a move
8990  //   constructor, one will be implicitly declared as defaulted if and only if:
8991  //   [...]
8992  //   - the move constructor would not be implicitly defined as deleted.
8993  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8994    // Cache this result so that we don't try to generate this over and over
8995    // on every lookup, leaking memory and wasting time.
8996    ClassDecl->setFailedImplicitMoveConstructor();
8997    return 0;
8998  }
8999
9000  // Note that we have declared this constructor.
9001  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9002
9003  if (Scope *S = getScopeForContext(ClassDecl))
9004    PushOnScopeChains(MoveConstructor, S, false);
9005  ClassDecl->addDecl(MoveConstructor);
9006
9007  return MoveConstructor;
9008}
9009
9010void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9011                                   CXXConstructorDecl *MoveConstructor) {
9012  assert((MoveConstructor->isDefaulted() &&
9013          MoveConstructor->isMoveConstructor() &&
9014          !MoveConstructor->doesThisDeclarationHaveABody()) &&
9015         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9016
9017  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9018  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9019
9020  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
9021  DiagnosticErrorTrap Trap(Diags);
9022
9023  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9024      Trap.hasErrorOccurred()) {
9025    Diag(CurrentLocation, diag::note_member_synthesized_at)
9026      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9027    MoveConstructor->setInvalidDecl();
9028  }  else {
9029    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9030                                               MoveConstructor->getLocation(),
9031                                               MultiStmtArg(*this, 0, 0),
9032                                               /*isStmtExpr=*/false)
9033                                                              .takeAs<Stmt>());
9034    MoveConstructor->setImplicitlyDefined(true);
9035  }
9036
9037  MoveConstructor->setUsed();
9038
9039  if (ASTMutationListener *L = getASTMutationListener()) {
9040    L->CompletedImplicitDefinition(MoveConstructor);
9041  }
9042}
9043
9044ExprResult
9045Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9046                            CXXConstructorDecl *Constructor,
9047                            MultiExprArg ExprArgs,
9048                            bool HadMultipleCandidates,
9049                            bool RequiresZeroInit,
9050                            unsigned ConstructKind,
9051                            SourceRange ParenRange) {
9052  bool Elidable = false;
9053
9054  // C++0x [class.copy]p34:
9055  //   When certain criteria are met, an implementation is allowed to
9056  //   omit the copy/move construction of a class object, even if the
9057  //   copy/move constructor and/or destructor for the object have
9058  //   side effects. [...]
9059  //     - when a temporary class object that has not been bound to a
9060  //       reference (12.2) would be copied/moved to a class object
9061  //       with the same cv-unqualified type, the copy/move operation
9062  //       can be omitted by constructing the temporary object
9063  //       directly into the target of the omitted copy/move
9064  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9065      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9066    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9067    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9068  }
9069
9070  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9071                               Elidable, move(ExprArgs), HadMultipleCandidates,
9072                               RequiresZeroInit, ConstructKind, ParenRange);
9073}
9074
9075/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9076/// including handling of its default argument expressions.
9077ExprResult
9078Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9079                            CXXConstructorDecl *Constructor, bool Elidable,
9080                            MultiExprArg ExprArgs,
9081                            bool HadMultipleCandidates,
9082                            bool RequiresZeroInit,
9083                            unsigned ConstructKind,
9084                            SourceRange ParenRange) {
9085  unsigned NumExprs = ExprArgs.size();
9086  Expr **Exprs = (Expr **)ExprArgs.release();
9087
9088  for (specific_attr_iterator<NonNullAttr>
9089           i = Constructor->specific_attr_begin<NonNullAttr>(),
9090           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9091    const NonNullAttr *NonNull = *i;
9092    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9093  }
9094
9095  MarkFunctionReferenced(ConstructLoc, Constructor);
9096  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9097                                        Constructor, Elidable, Exprs, NumExprs,
9098                                        HadMultipleCandidates, /*FIXME*/false,
9099                                        RequiresZeroInit,
9100              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9101                                        ParenRange));
9102}
9103
9104bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9105                                        CXXConstructorDecl *Constructor,
9106                                        MultiExprArg Exprs,
9107                                        bool HadMultipleCandidates) {
9108  // FIXME: Provide the correct paren SourceRange when available.
9109  ExprResult TempResult =
9110    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9111                          move(Exprs), HadMultipleCandidates, false,
9112                          CXXConstructExpr::CK_Complete, SourceRange());
9113  if (TempResult.isInvalid())
9114    return true;
9115
9116  Expr *Temp = TempResult.takeAs<Expr>();
9117  CheckImplicitConversions(Temp, VD->getLocation());
9118  MarkFunctionReferenced(VD->getLocation(), Constructor);
9119  Temp = MaybeCreateExprWithCleanups(Temp);
9120  VD->setInit(Temp);
9121
9122  return false;
9123}
9124
9125void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9126  if (VD->isInvalidDecl()) return;
9127
9128  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9129  if (ClassDecl->isInvalidDecl()) return;
9130  if (ClassDecl->hasTrivialDestructor()) return;
9131  if (ClassDecl->isDependentContext()) return;
9132
9133  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9134  MarkFunctionReferenced(VD->getLocation(), Destructor);
9135  CheckDestructorAccess(VD->getLocation(), Destructor,
9136                        PDiag(diag::err_access_dtor_var)
9137                        << VD->getDeclName()
9138                        << VD->getType());
9139
9140  if (!VD->hasGlobalStorage()) return;
9141
9142  // Emit warning for non-trivial dtor in global scope (a real global,
9143  // class-static, function-static).
9144  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9145
9146  // TODO: this should be re-enabled for static locals by !CXAAtExit
9147  if (!VD->isStaticLocal())
9148    Diag(VD->getLocation(), diag::warn_global_destructor);
9149}
9150
9151/// \brief Given a constructor and the set of arguments provided for the
9152/// constructor, convert the arguments and add any required default arguments
9153/// to form a proper call to this constructor.
9154///
9155/// \returns true if an error occurred, false otherwise.
9156bool
9157Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9158                              MultiExprArg ArgsPtr,
9159                              SourceLocation Loc,
9160                              ASTOwningVector<Expr*> &ConvertedArgs) {
9161  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9162  unsigned NumArgs = ArgsPtr.size();
9163  Expr **Args = (Expr **)ArgsPtr.get();
9164
9165  const FunctionProtoType *Proto
9166    = Constructor->getType()->getAs<FunctionProtoType>();
9167  assert(Proto && "Constructor without a prototype?");
9168  unsigned NumArgsInProto = Proto->getNumArgs();
9169
9170  // If too few arguments are available, we'll fill in the rest with defaults.
9171  if (NumArgs < NumArgsInProto)
9172    ConvertedArgs.reserve(NumArgsInProto);
9173  else
9174    ConvertedArgs.reserve(NumArgs);
9175
9176  VariadicCallType CallType =
9177    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9178  SmallVector<Expr *, 8> AllArgs;
9179  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9180                                        Proto, 0, Args, NumArgs, AllArgs,
9181                                        CallType);
9182  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9183    ConvertedArgs.push_back(AllArgs[i]);
9184  return Invalid;
9185}
9186
9187static inline bool
9188CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9189                                       const FunctionDecl *FnDecl) {
9190  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9191  if (isa<NamespaceDecl>(DC)) {
9192    return SemaRef.Diag(FnDecl->getLocation(),
9193                        diag::err_operator_new_delete_declared_in_namespace)
9194      << FnDecl->getDeclName();
9195  }
9196
9197  if (isa<TranslationUnitDecl>(DC) &&
9198      FnDecl->getStorageClass() == SC_Static) {
9199    return SemaRef.Diag(FnDecl->getLocation(),
9200                        diag::err_operator_new_delete_declared_static)
9201      << FnDecl->getDeclName();
9202  }
9203
9204  return false;
9205}
9206
9207static inline bool
9208CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9209                            CanQualType ExpectedResultType,
9210                            CanQualType ExpectedFirstParamType,
9211                            unsigned DependentParamTypeDiag,
9212                            unsigned InvalidParamTypeDiag) {
9213  QualType ResultType =
9214    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9215
9216  // Check that the result type is not dependent.
9217  if (ResultType->isDependentType())
9218    return SemaRef.Diag(FnDecl->getLocation(),
9219                        diag::err_operator_new_delete_dependent_result_type)
9220    << FnDecl->getDeclName() << ExpectedResultType;
9221
9222  // Check that the result type is what we expect.
9223  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9224    return SemaRef.Diag(FnDecl->getLocation(),
9225                        diag::err_operator_new_delete_invalid_result_type)
9226    << FnDecl->getDeclName() << ExpectedResultType;
9227
9228  // A function template must have at least 2 parameters.
9229  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9230    return SemaRef.Diag(FnDecl->getLocation(),
9231                      diag::err_operator_new_delete_template_too_few_parameters)
9232        << FnDecl->getDeclName();
9233
9234  // The function decl must have at least 1 parameter.
9235  if (FnDecl->getNumParams() == 0)
9236    return SemaRef.Diag(FnDecl->getLocation(),
9237                        diag::err_operator_new_delete_too_few_parameters)
9238      << FnDecl->getDeclName();
9239
9240  // Check the the first parameter type is not dependent.
9241  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9242  if (FirstParamType->isDependentType())
9243    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9244      << FnDecl->getDeclName() << ExpectedFirstParamType;
9245
9246  // Check that the first parameter type is what we expect.
9247  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9248      ExpectedFirstParamType)
9249    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9250    << FnDecl->getDeclName() << ExpectedFirstParamType;
9251
9252  return false;
9253}
9254
9255static bool
9256CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9257  // C++ [basic.stc.dynamic.allocation]p1:
9258  //   A program is ill-formed if an allocation function is declared in a
9259  //   namespace scope other than global scope or declared static in global
9260  //   scope.
9261  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9262    return true;
9263
9264  CanQualType SizeTy =
9265    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9266
9267  // C++ [basic.stc.dynamic.allocation]p1:
9268  //  The return type shall be void*. The first parameter shall have type
9269  //  std::size_t.
9270  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9271                                  SizeTy,
9272                                  diag::err_operator_new_dependent_param_type,
9273                                  diag::err_operator_new_param_type))
9274    return true;
9275
9276  // C++ [basic.stc.dynamic.allocation]p1:
9277  //  The first parameter shall not have an associated default argument.
9278  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9279    return SemaRef.Diag(FnDecl->getLocation(),
9280                        diag::err_operator_new_default_arg)
9281      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9282
9283  return false;
9284}
9285
9286static bool
9287CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9288  // C++ [basic.stc.dynamic.deallocation]p1:
9289  //   A program is ill-formed if deallocation functions are declared in a
9290  //   namespace scope other than global scope or declared static in global
9291  //   scope.
9292  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9293    return true;
9294
9295  // C++ [basic.stc.dynamic.deallocation]p2:
9296  //   Each deallocation function shall return void and its first parameter
9297  //   shall be void*.
9298  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9299                                  SemaRef.Context.VoidPtrTy,
9300                                 diag::err_operator_delete_dependent_param_type,
9301                                 diag::err_operator_delete_param_type))
9302    return true;
9303
9304  return false;
9305}
9306
9307/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9308/// of this overloaded operator is well-formed. If so, returns false;
9309/// otherwise, emits appropriate diagnostics and returns true.
9310bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9311  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9312         "Expected an overloaded operator declaration");
9313
9314  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9315
9316  // C++ [over.oper]p5:
9317  //   The allocation and deallocation functions, operator new,
9318  //   operator new[], operator delete and operator delete[], are
9319  //   described completely in 3.7.3. The attributes and restrictions
9320  //   found in the rest of this subclause do not apply to them unless
9321  //   explicitly stated in 3.7.3.
9322  if (Op == OO_Delete || Op == OO_Array_Delete)
9323    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9324
9325  if (Op == OO_New || Op == OO_Array_New)
9326    return CheckOperatorNewDeclaration(*this, FnDecl);
9327
9328  // C++ [over.oper]p6:
9329  //   An operator function shall either be a non-static member
9330  //   function or be a non-member function and have at least one
9331  //   parameter whose type is a class, a reference to a class, an
9332  //   enumeration, or a reference to an enumeration.
9333  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9334    if (MethodDecl->isStatic())
9335      return Diag(FnDecl->getLocation(),
9336                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9337  } else {
9338    bool ClassOrEnumParam = false;
9339    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9340                                   ParamEnd = FnDecl->param_end();
9341         Param != ParamEnd; ++Param) {
9342      QualType ParamType = (*Param)->getType().getNonReferenceType();
9343      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9344          ParamType->isEnumeralType()) {
9345        ClassOrEnumParam = true;
9346        break;
9347      }
9348    }
9349
9350    if (!ClassOrEnumParam)
9351      return Diag(FnDecl->getLocation(),
9352                  diag::err_operator_overload_needs_class_or_enum)
9353        << FnDecl->getDeclName();
9354  }
9355
9356  // C++ [over.oper]p8:
9357  //   An operator function cannot have default arguments (8.3.6),
9358  //   except where explicitly stated below.
9359  //
9360  // Only the function-call operator allows default arguments
9361  // (C++ [over.call]p1).
9362  if (Op != OO_Call) {
9363    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9364         Param != FnDecl->param_end(); ++Param) {
9365      if ((*Param)->hasDefaultArg())
9366        return Diag((*Param)->getLocation(),
9367                    diag::err_operator_overload_default_arg)
9368          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9369    }
9370  }
9371
9372  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9373    { false, false, false }
9374#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9375    , { Unary, Binary, MemberOnly }
9376#include "clang/Basic/OperatorKinds.def"
9377  };
9378
9379  bool CanBeUnaryOperator = OperatorUses[Op][0];
9380  bool CanBeBinaryOperator = OperatorUses[Op][1];
9381  bool MustBeMemberOperator = OperatorUses[Op][2];
9382
9383  // C++ [over.oper]p8:
9384  //   [...] Operator functions cannot have more or fewer parameters
9385  //   than the number required for the corresponding operator, as
9386  //   described in the rest of this subclause.
9387  unsigned NumParams = FnDecl->getNumParams()
9388                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9389  if (Op != OO_Call &&
9390      ((NumParams == 1 && !CanBeUnaryOperator) ||
9391       (NumParams == 2 && !CanBeBinaryOperator) ||
9392       (NumParams < 1) || (NumParams > 2))) {
9393    // We have the wrong number of parameters.
9394    unsigned ErrorKind;
9395    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9396      ErrorKind = 2;  // 2 -> unary or binary.
9397    } else if (CanBeUnaryOperator) {
9398      ErrorKind = 0;  // 0 -> unary
9399    } else {
9400      assert(CanBeBinaryOperator &&
9401             "All non-call overloaded operators are unary or binary!");
9402      ErrorKind = 1;  // 1 -> binary
9403    }
9404
9405    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9406      << FnDecl->getDeclName() << NumParams << ErrorKind;
9407  }
9408
9409  // Overloaded operators other than operator() cannot be variadic.
9410  if (Op != OO_Call &&
9411      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9412    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9413      << FnDecl->getDeclName();
9414  }
9415
9416  // Some operators must be non-static member functions.
9417  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9418    return Diag(FnDecl->getLocation(),
9419                diag::err_operator_overload_must_be_member)
9420      << FnDecl->getDeclName();
9421  }
9422
9423  // C++ [over.inc]p1:
9424  //   The user-defined function called operator++ implements the
9425  //   prefix and postfix ++ operator. If this function is a member
9426  //   function with no parameters, or a non-member function with one
9427  //   parameter of class or enumeration type, it defines the prefix
9428  //   increment operator ++ for objects of that type. If the function
9429  //   is a member function with one parameter (which shall be of type
9430  //   int) or a non-member function with two parameters (the second
9431  //   of which shall be of type int), it defines the postfix
9432  //   increment operator ++ for objects of that type.
9433  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9434    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9435    bool ParamIsInt = false;
9436    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9437      ParamIsInt = BT->getKind() == BuiltinType::Int;
9438
9439    if (!ParamIsInt)
9440      return Diag(LastParam->getLocation(),
9441                  diag::err_operator_overload_post_incdec_must_be_int)
9442        << LastParam->getType() << (Op == OO_MinusMinus);
9443  }
9444
9445  return false;
9446}
9447
9448/// CheckLiteralOperatorDeclaration - Check whether the declaration
9449/// of this literal operator function is well-formed. If so, returns
9450/// false; otherwise, emits appropriate diagnostics and returns true.
9451bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9452  DeclContext *DC = FnDecl->getDeclContext();
9453  Decl::Kind Kind = DC->getDeclKind();
9454  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9455      Kind != Decl::LinkageSpec) {
9456    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9457      << FnDecl->getDeclName();
9458    return true;
9459  }
9460
9461  bool Valid = false;
9462
9463  // template <char...> type operator "" name() is the only valid template
9464  // signature, and the only valid signature with no parameters.
9465  if (FnDecl->param_size() == 0) {
9466    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9467      // Must have only one template parameter
9468      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9469      if (Params->size() == 1) {
9470        NonTypeTemplateParmDecl *PmDecl =
9471          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9472
9473        // The template parameter must be a char parameter pack.
9474        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9475            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9476          Valid = true;
9477      }
9478    }
9479  } else {
9480    // Check the first parameter
9481    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9482
9483    QualType T = (*Param)->getType();
9484
9485    // unsigned long long int, long double, and any character type are allowed
9486    // as the only parameters.
9487    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9488        Context.hasSameType(T, Context.LongDoubleTy) ||
9489        Context.hasSameType(T, Context.CharTy) ||
9490        Context.hasSameType(T, Context.WCharTy) ||
9491        Context.hasSameType(T, Context.Char16Ty) ||
9492        Context.hasSameType(T, Context.Char32Ty)) {
9493      if (++Param == FnDecl->param_end())
9494        Valid = true;
9495      goto FinishedParams;
9496    }
9497
9498    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9499    const PointerType *PT = T->getAs<PointerType>();
9500    if (!PT)
9501      goto FinishedParams;
9502    T = PT->getPointeeType();
9503    if (!T.isConstQualified())
9504      goto FinishedParams;
9505    T = T.getUnqualifiedType();
9506
9507    // Move on to the second parameter;
9508    ++Param;
9509
9510    // If there is no second parameter, the first must be a const char *
9511    if (Param == FnDecl->param_end()) {
9512      if (Context.hasSameType(T, Context.CharTy))
9513        Valid = true;
9514      goto FinishedParams;
9515    }
9516
9517    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9518    // are allowed as the first parameter to a two-parameter function
9519    if (!(Context.hasSameType(T, Context.CharTy) ||
9520          Context.hasSameType(T, Context.WCharTy) ||
9521          Context.hasSameType(T, Context.Char16Ty) ||
9522          Context.hasSameType(T, Context.Char32Ty)))
9523      goto FinishedParams;
9524
9525    // The second and final parameter must be an std::size_t
9526    T = (*Param)->getType().getUnqualifiedType();
9527    if (Context.hasSameType(T, Context.getSizeType()) &&
9528        ++Param == FnDecl->param_end())
9529      Valid = true;
9530  }
9531
9532  // FIXME: This diagnostic is absolutely terrible.
9533FinishedParams:
9534  if (!Valid) {
9535    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9536      << FnDecl->getDeclName();
9537    return true;
9538  }
9539
9540  StringRef LiteralName
9541    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9542  if (LiteralName[0] != '_') {
9543    // C++0x [usrlit.suffix]p1:
9544    //   Literal suffix identifiers that do not start with an underscore are
9545    //   reserved for future standardization.
9546    bool IsHexFloat = true;
9547    if (LiteralName.size() > 1 &&
9548        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9549      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9550        if (!isdigit(LiteralName[I])) {
9551          IsHexFloat = false;
9552          break;
9553        }
9554      }
9555    }
9556
9557    if (IsHexFloat)
9558      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9559        << LiteralName;
9560    else
9561      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9562  }
9563
9564  return false;
9565}
9566
9567/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9568/// linkage specification, including the language and (if present)
9569/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9570/// the location of the language string literal, which is provided
9571/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9572/// the '{' brace. Otherwise, this linkage specification does not
9573/// have any braces.
9574Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9575                                           SourceLocation LangLoc,
9576                                           StringRef Lang,
9577                                           SourceLocation LBraceLoc) {
9578  LinkageSpecDecl::LanguageIDs Language;
9579  if (Lang == "\"C\"")
9580    Language = LinkageSpecDecl::lang_c;
9581  else if (Lang == "\"C++\"")
9582    Language = LinkageSpecDecl::lang_cxx;
9583  else {
9584    Diag(LangLoc, diag::err_bad_language);
9585    return 0;
9586  }
9587
9588  // FIXME: Add all the various semantics of linkage specifications
9589
9590  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9591                                               ExternLoc, LangLoc, Language);
9592  CurContext->addDecl(D);
9593  PushDeclContext(S, D);
9594  return D;
9595}
9596
9597/// ActOnFinishLinkageSpecification - Complete the definition of
9598/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9599/// valid, it's the position of the closing '}' brace in a linkage
9600/// specification that uses braces.
9601Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9602                                            Decl *LinkageSpec,
9603                                            SourceLocation RBraceLoc) {
9604  if (LinkageSpec) {
9605    if (RBraceLoc.isValid()) {
9606      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9607      LSDecl->setRBraceLoc(RBraceLoc);
9608    }
9609    PopDeclContext();
9610  }
9611  return LinkageSpec;
9612}
9613
9614/// \brief Perform semantic analysis for the variable declaration that
9615/// occurs within a C++ catch clause, returning the newly-created
9616/// variable.
9617VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9618                                         TypeSourceInfo *TInfo,
9619                                         SourceLocation StartLoc,
9620                                         SourceLocation Loc,
9621                                         IdentifierInfo *Name) {
9622  bool Invalid = false;
9623  QualType ExDeclType = TInfo->getType();
9624
9625  // Arrays and functions decay.
9626  if (ExDeclType->isArrayType())
9627    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9628  else if (ExDeclType->isFunctionType())
9629    ExDeclType = Context.getPointerType(ExDeclType);
9630
9631  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9632  // The exception-declaration shall not denote a pointer or reference to an
9633  // incomplete type, other than [cv] void*.
9634  // N2844 forbids rvalue references.
9635  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9636    Diag(Loc, diag::err_catch_rvalue_ref);
9637    Invalid = true;
9638  }
9639
9640  QualType BaseType = ExDeclType;
9641  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9642  unsigned DK = diag::err_catch_incomplete;
9643  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9644    BaseType = Ptr->getPointeeType();
9645    Mode = 1;
9646    DK = diag::err_catch_incomplete_ptr;
9647  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9648    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9649    BaseType = Ref->getPointeeType();
9650    Mode = 2;
9651    DK = diag::err_catch_incomplete_ref;
9652  }
9653  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9654      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9655    Invalid = true;
9656
9657  if (!Invalid && !ExDeclType->isDependentType() &&
9658      RequireNonAbstractType(Loc, ExDeclType,
9659                             diag::err_abstract_type_in_decl,
9660                             AbstractVariableType))
9661    Invalid = true;
9662
9663  // Only the non-fragile NeXT runtime currently supports C++ catches
9664  // of ObjC types, and no runtime supports catching ObjC types by value.
9665  if (!Invalid && getLangOptions().ObjC1) {
9666    QualType T = ExDeclType;
9667    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9668      T = RT->getPointeeType();
9669
9670    if (T->isObjCObjectType()) {
9671      Diag(Loc, diag::err_objc_object_catch);
9672      Invalid = true;
9673    } else if (T->isObjCObjectPointerType()) {
9674      if (!getLangOptions().ObjCNonFragileABI)
9675        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9676    }
9677  }
9678
9679  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9680                                    ExDeclType, TInfo, SC_None, SC_None);
9681  ExDecl->setExceptionVariable(true);
9682
9683  // In ARC, infer 'retaining' for variables of retainable type.
9684  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9685    Invalid = true;
9686
9687  if (!Invalid && !ExDeclType->isDependentType()) {
9688    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9689      // C++ [except.handle]p16:
9690      //   The object declared in an exception-declaration or, if the
9691      //   exception-declaration does not specify a name, a temporary (12.2) is
9692      //   copy-initialized (8.5) from the exception object. [...]
9693      //   The object is destroyed when the handler exits, after the destruction
9694      //   of any automatic objects initialized within the handler.
9695      //
9696      // We just pretend to initialize the object with itself, then make sure
9697      // it can be destroyed later.
9698      QualType initType = ExDeclType;
9699
9700      InitializedEntity entity =
9701        InitializedEntity::InitializeVariable(ExDecl);
9702      InitializationKind initKind =
9703        InitializationKind::CreateCopy(Loc, SourceLocation());
9704
9705      Expr *opaqueValue =
9706        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9707      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9708      ExprResult result = sequence.Perform(*this, entity, initKind,
9709                                           MultiExprArg(&opaqueValue, 1));
9710      if (result.isInvalid())
9711        Invalid = true;
9712      else {
9713        // If the constructor used was non-trivial, set this as the
9714        // "initializer".
9715        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9716        if (!construct->getConstructor()->isTrivial()) {
9717          Expr *init = MaybeCreateExprWithCleanups(construct);
9718          ExDecl->setInit(init);
9719        }
9720
9721        // And make sure it's destructable.
9722        FinalizeVarWithDestructor(ExDecl, recordType);
9723      }
9724    }
9725  }
9726
9727  if (Invalid)
9728    ExDecl->setInvalidDecl();
9729
9730  return ExDecl;
9731}
9732
9733/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9734/// handler.
9735Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9736  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9737  bool Invalid = D.isInvalidType();
9738
9739  // Check for unexpanded parameter packs.
9740  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9741                                               UPPC_ExceptionType)) {
9742    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9743                                             D.getIdentifierLoc());
9744    Invalid = true;
9745  }
9746
9747  IdentifierInfo *II = D.getIdentifier();
9748  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9749                                             LookupOrdinaryName,
9750                                             ForRedeclaration)) {
9751    // The scope should be freshly made just for us. There is just no way
9752    // it contains any previous declaration.
9753    assert(!S->isDeclScope(PrevDecl));
9754    if (PrevDecl->isTemplateParameter()) {
9755      // Maybe we will complain about the shadowed template parameter.
9756      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9757      PrevDecl = 0;
9758    }
9759  }
9760
9761  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9762    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9763      << D.getCXXScopeSpec().getRange();
9764    Invalid = true;
9765  }
9766
9767  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9768                                              D.getSourceRange().getBegin(),
9769                                              D.getIdentifierLoc(),
9770                                              D.getIdentifier());
9771  if (Invalid)
9772    ExDecl->setInvalidDecl();
9773
9774  // Add the exception declaration into this scope.
9775  if (II)
9776    PushOnScopeChains(ExDecl, S);
9777  else
9778    CurContext->addDecl(ExDecl);
9779
9780  ProcessDeclAttributes(S, ExDecl, D);
9781  return ExDecl;
9782}
9783
9784Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9785                                         Expr *AssertExpr,
9786                                         Expr *AssertMessageExpr_,
9787                                         SourceLocation RParenLoc) {
9788  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9789
9790  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9791    // In a static_assert-declaration, the constant-expression shall be a
9792    // constant expression that can be contextually converted to bool.
9793    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9794    if (Converted.isInvalid())
9795      return 0;
9796
9797    llvm::APSInt Cond;
9798    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9799          PDiag(diag::err_static_assert_expression_is_not_constant),
9800          /*AllowFold=*/false).isInvalid())
9801      return 0;
9802
9803    if (!Cond)
9804      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9805        << AssertMessage->getString() << AssertExpr->getSourceRange();
9806  }
9807
9808  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9809    return 0;
9810
9811  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9812                                        AssertExpr, AssertMessage, RParenLoc);
9813
9814  CurContext->addDecl(Decl);
9815  return Decl;
9816}
9817
9818/// \brief Perform semantic analysis of the given friend type declaration.
9819///
9820/// \returns A friend declaration that.
9821FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9822                                      SourceLocation FriendLoc,
9823                                      TypeSourceInfo *TSInfo) {
9824  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9825
9826  QualType T = TSInfo->getType();
9827  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9828
9829  // C++03 [class.friend]p2:
9830  //   An elaborated-type-specifier shall be used in a friend declaration
9831  //   for a class.*
9832  //
9833  //   * The class-key of the elaborated-type-specifier is required.
9834  if (!ActiveTemplateInstantiations.empty()) {
9835    // Do not complain about the form of friend template types during
9836    // template instantiation; we will already have complained when the
9837    // template was declared.
9838  } else if (!T->isElaboratedTypeSpecifier()) {
9839    // If we evaluated the type to a record type, suggest putting
9840    // a tag in front.
9841    if (const RecordType *RT = T->getAs<RecordType>()) {
9842      RecordDecl *RD = RT->getDecl();
9843
9844      std::string InsertionText = std::string(" ") + RD->getKindName();
9845
9846      Diag(TypeRange.getBegin(),
9847           getLangOptions().CPlusPlus0x ?
9848             diag::warn_cxx98_compat_unelaborated_friend_type :
9849             diag::ext_unelaborated_friend_type)
9850        << (unsigned) RD->getTagKind()
9851        << T
9852        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9853                                      InsertionText);
9854    } else {
9855      Diag(FriendLoc,
9856           getLangOptions().CPlusPlus0x ?
9857             diag::warn_cxx98_compat_nonclass_type_friend :
9858             diag::ext_nonclass_type_friend)
9859        << T
9860        << SourceRange(FriendLoc, TypeRange.getEnd());
9861    }
9862  } else if (T->getAs<EnumType>()) {
9863    Diag(FriendLoc,
9864         getLangOptions().CPlusPlus0x ?
9865           diag::warn_cxx98_compat_enum_friend :
9866           diag::ext_enum_friend)
9867      << T
9868      << SourceRange(FriendLoc, TypeRange.getEnd());
9869  }
9870
9871  // C++0x [class.friend]p3:
9872  //   If the type specifier in a friend declaration designates a (possibly
9873  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9874  //   the friend declaration is ignored.
9875
9876  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9877  // in [class.friend]p3 that we do not implement.
9878
9879  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9880}
9881
9882/// Handle a friend tag declaration where the scope specifier was
9883/// templated.
9884Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9885                                    unsigned TagSpec, SourceLocation TagLoc,
9886                                    CXXScopeSpec &SS,
9887                                    IdentifierInfo *Name, SourceLocation NameLoc,
9888                                    AttributeList *Attr,
9889                                    MultiTemplateParamsArg TempParamLists) {
9890  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9891
9892  bool isExplicitSpecialization = false;
9893  bool Invalid = false;
9894
9895  if (TemplateParameterList *TemplateParams
9896        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9897                                                  TempParamLists.get(),
9898                                                  TempParamLists.size(),
9899                                                  /*friend*/ true,
9900                                                  isExplicitSpecialization,
9901                                                  Invalid)) {
9902    if (TemplateParams->size() > 0) {
9903      // This is a declaration of a class template.
9904      if (Invalid)
9905        return 0;
9906
9907      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9908                                SS, Name, NameLoc, Attr,
9909                                TemplateParams, AS_public,
9910                                /*ModulePrivateLoc=*/SourceLocation(),
9911                                TempParamLists.size() - 1,
9912                   (TemplateParameterList**) TempParamLists.release()).take();
9913    } else {
9914      // The "template<>" header is extraneous.
9915      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9916        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9917      isExplicitSpecialization = true;
9918    }
9919  }
9920
9921  if (Invalid) return 0;
9922
9923  bool isAllExplicitSpecializations = true;
9924  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9925    if (TempParamLists.get()[I]->size()) {
9926      isAllExplicitSpecializations = false;
9927      break;
9928    }
9929  }
9930
9931  // FIXME: don't ignore attributes.
9932
9933  // If it's explicit specializations all the way down, just forget
9934  // about the template header and build an appropriate non-templated
9935  // friend.  TODO: for source fidelity, remember the headers.
9936  if (isAllExplicitSpecializations) {
9937    if (SS.isEmpty()) {
9938      bool Owned = false;
9939      bool IsDependent = false;
9940      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9941                      Attr, AS_public,
9942                      /*ModulePrivateLoc=*/SourceLocation(),
9943                      MultiTemplateParamsArg(), Owned, IsDependent,
9944                      /*ScopedEnumKWLoc=*/SourceLocation(),
9945                      /*ScopedEnumUsesClassTag=*/false,
9946                      /*UnderlyingType=*/TypeResult());
9947    }
9948
9949    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9950    ElaboratedTypeKeyword Keyword
9951      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9952    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9953                                   *Name, NameLoc);
9954    if (T.isNull())
9955      return 0;
9956
9957    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9958    if (isa<DependentNameType>(T)) {
9959      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9960      TL.setElaboratedKeywordLoc(TagLoc);
9961      TL.setQualifierLoc(QualifierLoc);
9962      TL.setNameLoc(NameLoc);
9963    } else {
9964      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9965      TL.setElaboratedKeywordLoc(TagLoc);
9966      TL.setQualifierLoc(QualifierLoc);
9967      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9968    }
9969
9970    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9971                                            TSI, FriendLoc);
9972    Friend->setAccess(AS_public);
9973    CurContext->addDecl(Friend);
9974    return Friend;
9975  }
9976
9977  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9978
9979
9980
9981  // Handle the case of a templated-scope friend class.  e.g.
9982  //   template <class T> class A<T>::B;
9983  // FIXME: we don't support these right now.
9984  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9985  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9986  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9987  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9988  TL.setElaboratedKeywordLoc(TagLoc);
9989  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9990  TL.setNameLoc(NameLoc);
9991
9992  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9993                                          TSI, FriendLoc);
9994  Friend->setAccess(AS_public);
9995  Friend->setUnsupportedFriend(true);
9996  CurContext->addDecl(Friend);
9997  return Friend;
9998}
9999
10000
10001/// Handle a friend type declaration.  This works in tandem with
10002/// ActOnTag.
10003///
10004/// Notes on friend class templates:
10005///
10006/// We generally treat friend class declarations as if they were
10007/// declaring a class.  So, for example, the elaborated type specifier
10008/// in a friend declaration is required to obey the restrictions of a
10009/// class-head (i.e. no typedefs in the scope chain), template
10010/// parameters are required to match up with simple template-ids, &c.
10011/// However, unlike when declaring a template specialization, it's
10012/// okay to refer to a template specialization without an empty
10013/// template parameter declaration, e.g.
10014///   friend class A<T>::B<unsigned>;
10015/// We permit this as a special case; if there are any template
10016/// parameters present at all, require proper matching, i.e.
10017///   template <> template <class T> friend class A<int>::B;
10018Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10019                                MultiTemplateParamsArg TempParams) {
10020  SourceLocation Loc = DS.getSourceRange().getBegin();
10021
10022  assert(DS.isFriendSpecified());
10023  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10024
10025  // Try to convert the decl specifier to a type.  This works for
10026  // friend templates because ActOnTag never produces a ClassTemplateDecl
10027  // for a TUK_Friend.
10028  Declarator TheDeclarator(DS, Declarator::MemberContext);
10029  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10030  QualType T = TSI->getType();
10031  if (TheDeclarator.isInvalidType())
10032    return 0;
10033
10034  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10035    return 0;
10036
10037  // This is definitely an error in C++98.  It's probably meant to
10038  // be forbidden in C++0x, too, but the specification is just
10039  // poorly written.
10040  //
10041  // The problem is with declarations like the following:
10042  //   template <T> friend A<T>::foo;
10043  // where deciding whether a class C is a friend or not now hinges
10044  // on whether there exists an instantiation of A that causes
10045  // 'foo' to equal C.  There are restrictions on class-heads
10046  // (which we declare (by fiat) elaborated friend declarations to
10047  // be) that makes this tractable.
10048  //
10049  // FIXME: handle "template <> friend class A<T>;", which
10050  // is possibly well-formed?  Who even knows?
10051  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10052    Diag(Loc, diag::err_tagless_friend_type_template)
10053      << DS.getSourceRange();
10054    return 0;
10055  }
10056
10057  // C++98 [class.friend]p1: A friend of a class is a function
10058  //   or class that is not a member of the class . . .
10059  // This is fixed in DR77, which just barely didn't make the C++03
10060  // deadline.  It's also a very silly restriction that seriously
10061  // affects inner classes and which nobody else seems to implement;
10062  // thus we never diagnose it, not even in -pedantic.
10063  //
10064  // But note that we could warn about it: it's always useless to
10065  // friend one of your own members (it's not, however, worthless to
10066  // friend a member of an arbitrary specialization of your template).
10067
10068  Decl *D;
10069  if (unsigned NumTempParamLists = TempParams.size())
10070    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10071                                   NumTempParamLists,
10072                                   TempParams.release(),
10073                                   TSI,
10074                                   DS.getFriendSpecLoc());
10075  else
10076    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10077
10078  if (!D)
10079    return 0;
10080
10081  D->setAccess(AS_public);
10082  CurContext->addDecl(D);
10083
10084  return D;
10085}
10086
10087Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10088                                    MultiTemplateParamsArg TemplateParams) {
10089  const DeclSpec &DS = D.getDeclSpec();
10090
10091  assert(DS.isFriendSpecified());
10092  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10093
10094  SourceLocation Loc = D.getIdentifierLoc();
10095  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10096
10097  // C++ [class.friend]p1
10098  //   A friend of a class is a function or class....
10099  // Note that this sees through typedefs, which is intended.
10100  // It *doesn't* see through dependent types, which is correct
10101  // according to [temp.arg.type]p3:
10102  //   If a declaration acquires a function type through a
10103  //   type dependent on a template-parameter and this causes
10104  //   a declaration that does not use the syntactic form of a
10105  //   function declarator to have a function type, the program
10106  //   is ill-formed.
10107  if (!TInfo->getType()->isFunctionType()) {
10108    Diag(Loc, diag::err_unexpected_friend);
10109
10110    // It might be worthwhile to try to recover by creating an
10111    // appropriate declaration.
10112    return 0;
10113  }
10114
10115  // C++ [namespace.memdef]p3
10116  //  - If a friend declaration in a non-local class first declares a
10117  //    class or function, the friend class or function is a member
10118  //    of the innermost enclosing namespace.
10119  //  - The name of the friend is not found by simple name lookup
10120  //    until a matching declaration is provided in that namespace
10121  //    scope (either before or after the class declaration granting
10122  //    friendship).
10123  //  - If a friend function is called, its name may be found by the
10124  //    name lookup that considers functions from namespaces and
10125  //    classes associated with the types of the function arguments.
10126  //  - When looking for a prior declaration of a class or a function
10127  //    declared as a friend, scopes outside the innermost enclosing
10128  //    namespace scope are not considered.
10129
10130  CXXScopeSpec &SS = D.getCXXScopeSpec();
10131  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10132  DeclarationName Name = NameInfo.getName();
10133  assert(Name);
10134
10135  // Check for unexpanded parameter packs.
10136  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10137      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10138      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10139    return 0;
10140
10141  // The context we found the declaration in, or in which we should
10142  // create the declaration.
10143  DeclContext *DC;
10144  Scope *DCScope = S;
10145  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10146                        ForRedeclaration);
10147
10148  // FIXME: there are different rules in local classes
10149
10150  // There are four cases here.
10151  //   - There's no scope specifier, in which case we just go to the
10152  //     appropriate scope and look for a function or function template
10153  //     there as appropriate.
10154  // Recover from invalid scope qualifiers as if they just weren't there.
10155  if (SS.isInvalid() || !SS.isSet()) {
10156    // C++0x [namespace.memdef]p3:
10157    //   If the name in a friend declaration is neither qualified nor
10158    //   a template-id and the declaration is a function or an
10159    //   elaborated-type-specifier, the lookup to determine whether
10160    //   the entity has been previously declared shall not consider
10161    //   any scopes outside the innermost enclosing namespace.
10162    // C++0x [class.friend]p11:
10163    //   If a friend declaration appears in a local class and the name
10164    //   specified is an unqualified name, a prior declaration is
10165    //   looked up without considering scopes that are outside the
10166    //   innermost enclosing non-class scope. For a friend function
10167    //   declaration, if there is no prior declaration, the program is
10168    //   ill-formed.
10169    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10170    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10171
10172    // Find the appropriate context according to the above.
10173    DC = CurContext;
10174    while (true) {
10175      // Skip class contexts.  If someone can cite chapter and verse
10176      // for this behavior, that would be nice --- it's what GCC and
10177      // EDG do, and it seems like a reasonable intent, but the spec
10178      // really only says that checks for unqualified existing
10179      // declarations should stop at the nearest enclosing namespace,
10180      // not that they should only consider the nearest enclosing
10181      // namespace.
10182      while (DC->isRecord())
10183        DC = DC->getParent();
10184
10185      LookupQualifiedName(Previous, DC);
10186
10187      // TODO: decide what we think about using declarations.
10188      if (isLocal || !Previous.empty())
10189        break;
10190
10191      if (isTemplateId) {
10192        if (isa<TranslationUnitDecl>(DC)) break;
10193      } else {
10194        if (DC->isFileContext()) break;
10195      }
10196      DC = DC->getParent();
10197    }
10198
10199    // C++ [class.friend]p1: A friend of a class is a function or
10200    //   class that is not a member of the class . . .
10201    // C++11 changes this for both friend types and functions.
10202    // Most C++ 98 compilers do seem to give an error here, so
10203    // we do, too.
10204    if (!Previous.empty() && DC->Equals(CurContext))
10205      Diag(DS.getFriendSpecLoc(),
10206           getLangOptions().CPlusPlus0x ?
10207             diag::warn_cxx98_compat_friend_is_member :
10208             diag::err_friend_is_member);
10209
10210    DCScope = getScopeForDeclContext(S, DC);
10211
10212    // C++ [class.friend]p6:
10213    //   A function can be defined in a friend declaration of a class if and
10214    //   only if the class is a non-local class (9.8), the function name is
10215    //   unqualified, and the function has namespace scope.
10216    if (isLocal && D.isFunctionDefinition()) {
10217      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10218    }
10219
10220  //   - There's a non-dependent scope specifier, in which case we
10221  //     compute it and do a previous lookup there for a function
10222  //     or function template.
10223  } else if (!SS.getScopeRep()->isDependent()) {
10224    DC = computeDeclContext(SS);
10225    if (!DC) return 0;
10226
10227    if (RequireCompleteDeclContext(SS, DC)) return 0;
10228
10229    LookupQualifiedName(Previous, DC);
10230
10231    // Ignore things found implicitly in the wrong scope.
10232    // TODO: better diagnostics for this case.  Suggesting the right
10233    // qualified scope would be nice...
10234    LookupResult::Filter F = Previous.makeFilter();
10235    while (F.hasNext()) {
10236      NamedDecl *D = F.next();
10237      if (!DC->InEnclosingNamespaceSetOf(
10238              D->getDeclContext()->getRedeclContext()))
10239        F.erase();
10240    }
10241    F.done();
10242
10243    if (Previous.empty()) {
10244      D.setInvalidType();
10245      Diag(Loc, diag::err_qualified_friend_not_found)
10246          << Name << TInfo->getType();
10247      return 0;
10248    }
10249
10250    // C++ [class.friend]p1: A friend of a class is a function or
10251    //   class that is not a member of the class . . .
10252    if (DC->Equals(CurContext))
10253      Diag(DS.getFriendSpecLoc(),
10254           getLangOptions().CPlusPlus0x ?
10255             diag::warn_cxx98_compat_friend_is_member :
10256             diag::err_friend_is_member);
10257
10258    if (D.isFunctionDefinition()) {
10259      // C++ [class.friend]p6:
10260      //   A function can be defined in a friend declaration of a class if and
10261      //   only if the class is a non-local class (9.8), the function name is
10262      //   unqualified, and the function has namespace scope.
10263      SemaDiagnosticBuilder DB
10264        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10265
10266      DB << SS.getScopeRep();
10267      if (DC->isFileContext())
10268        DB << FixItHint::CreateRemoval(SS.getRange());
10269      SS.clear();
10270    }
10271
10272  //   - There's a scope specifier that does not match any template
10273  //     parameter lists, in which case we use some arbitrary context,
10274  //     create a method or method template, and wait for instantiation.
10275  //   - There's a scope specifier that does match some template
10276  //     parameter lists, which we don't handle right now.
10277  } else {
10278    if (D.isFunctionDefinition()) {
10279      // C++ [class.friend]p6:
10280      //   A function can be defined in a friend declaration of a class if and
10281      //   only if the class is a non-local class (9.8), the function name is
10282      //   unqualified, and the function has namespace scope.
10283      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10284        << SS.getScopeRep();
10285    }
10286
10287    DC = CurContext;
10288    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10289  }
10290
10291  if (!DC->isRecord()) {
10292    // This implies that it has to be an operator or function.
10293    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10294        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10295        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10296      Diag(Loc, diag::err_introducing_special_friend) <<
10297        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10298         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10299      return 0;
10300    }
10301  }
10302
10303  // FIXME: This is an egregious hack to cope with cases where the scope stack
10304  // does not contain the declaration context, i.e., in an out-of-line
10305  // definition of a class.
10306  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10307  if (!DCScope) {
10308    FakeDCScope.setEntity(DC);
10309    DCScope = &FakeDCScope;
10310  }
10311
10312  bool AddToScope = true;
10313  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10314                                          move(TemplateParams), AddToScope);
10315  if (!ND) return 0;
10316
10317  assert(ND->getDeclContext() == DC);
10318  assert(ND->getLexicalDeclContext() == CurContext);
10319
10320  // Add the function declaration to the appropriate lookup tables,
10321  // adjusting the redeclarations list as necessary.  We don't
10322  // want to do this yet if the friending class is dependent.
10323  //
10324  // Also update the scope-based lookup if the target context's
10325  // lookup context is in lexical scope.
10326  if (!CurContext->isDependentContext()) {
10327    DC = DC->getRedeclContext();
10328    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10329    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10330      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10331  }
10332
10333  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10334                                       D.getIdentifierLoc(), ND,
10335                                       DS.getFriendSpecLoc());
10336  FrD->setAccess(AS_public);
10337  CurContext->addDecl(FrD);
10338
10339  if (ND->isInvalidDecl())
10340    FrD->setInvalidDecl();
10341  else {
10342    FunctionDecl *FD;
10343    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10344      FD = FTD->getTemplatedDecl();
10345    else
10346      FD = cast<FunctionDecl>(ND);
10347
10348    // Mark templated-scope function declarations as unsupported.
10349    if (FD->getNumTemplateParameterLists())
10350      FrD->setUnsupportedFriend(true);
10351  }
10352
10353  return ND;
10354}
10355
10356void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10357  AdjustDeclIfTemplate(Dcl);
10358
10359  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10360  if (!Fn) {
10361    Diag(DelLoc, diag::err_deleted_non_function);
10362    return;
10363  }
10364  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10365    Diag(DelLoc, diag::err_deleted_decl_not_first);
10366    Diag(Prev->getLocation(), diag::note_previous_declaration);
10367    // If the declaration wasn't the first, we delete the function anyway for
10368    // recovery.
10369  }
10370  Fn->setDeletedAsWritten();
10371}
10372
10373void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10374  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10375
10376  if (MD) {
10377    if (MD->getParent()->isDependentType()) {
10378      MD->setDefaulted();
10379      MD->setExplicitlyDefaulted();
10380      return;
10381    }
10382
10383    CXXSpecialMember Member = getSpecialMember(MD);
10384    if (Member == CXXInvalid) {
10385      Diag(DefaultLoc, diag::err_default_special_members);
10386      return;
10387    }
10388
10389    MD->setDefaulted();
10390    MD->setExplicitlyDefaulted();
10391
10392    // If this definition appears within the record, do the checking when
10393    // the record is complete.
10394    const FunctionDecl *Primary = MD;
10395    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10396      // Find the uninstantiated declaration that actually had the '= default'
10397      // on it.
10398      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10399
10400    if (Primary == Primary->getCanonicalDecl())
10401      return;
10402
10403    switch (Member) {
10404    case CXXDefaultConstructor: {
10405      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10406      CheckExplicitlyDefaultedDefaultConstructor(CD);
10407      if (!CD->isInvalidDecl())
10408        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10409      break;
10410    }
10411
10412    case CXXCopyConstructor: {
10413      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10414      CheckExplicitlyDefaultedCopyConstructor(CD);
10415      if (!CD->isInvalidDecl())
10416        DefineImplicitCopyConstructor(DefaultLoc, CD);
10417      break;
10418    }
10419
10420    case CXXCopyAssignment: {
10421      CheckExplicitlyDefaultedCopyAssignment(MD);
10422      if (!MD->isInvalidDecl())
10423        DefineImplicitCopyAssignment(DefaultLoc, MD);
10424      break;
10425    }
10426
10427    case CXXDestructor: {
10428      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10429      CheckExplicitlyDefaultedDestructor(DD);
10430      if (!DD->isInvalidDecl())
10431        DefineImplicitDestructor(DefaultLoc, DD);
10432      break;
10433    }
10434
10435    case CXXMoveConstructor: {
10436      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10437      CheckExplicitlyDefaultedMoveConstructor(CD);
10438      if (!CD->isInvalidDecl())
10439        DefineImplicitMoveConstructor(DefaultLoc, CD);
10440      break;
10441    }
10442
10443    case CXXMoveAssignment: {
10444      CheckExplicitlyDefaultedMoveAssignment(MD);
10445      if (!MD->isInvalidDecl())
10446        DefineImplicitMoveAssignment(DefaultLoc, MD);
10447      break;
10448    }
10449
10450    case CXXInvalid:
10451      llvm_unreachable("Invalid special member.");
10452    }
10453  } else {
10454    Diag(DefaultLoc, diag::err_default_special_members);
10455  }
10456}
10457
10458static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10459  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10460    Stmt *SubStmt = *CI;
10461    if (!SubStmt)
10462      continue;
10463    if (isa<ReturnStmt>(SubStmt))
10464      Self.Diag(SubStmt->getSourceRange().getBegin(),
10465           diag::err_return_in_constructor_handler);
10466    if (!isa<Expr>(SubStmt))
10467      SearchForReturnInStmt(Self, SubStmt);
10468  }
10469}
10470
10471void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10472  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10473    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10474    SearchForReturnInStmt(*this, Handler);
10475  }
10476}
10477
10478bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10479                                             const CXXMethodDecl *Old) {
10480  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10481  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10482
10483  if (Context.hasSameType(NewTy, OldTy) ||
10484      NewTy->isDependentType() || OldTy->isDependentType())
10485    return false;
10486
10487  // Check if the return types are covariant
10488  QualType NewClassTy, OldClassTy;
10489
10490  /// Both types must be pointers or references to classes.
10491  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10492    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10493      NewClassTy = NewPT->getPointeeType();
10494      OldClassTy = OldPT->getPointeeType();
10495    }
10496  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10497    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10498      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10499        NewClassTy = NewRT->getPointeeType();
10500        OldClassTy = OldRT->getPointeeType();
10501      }
10502    }
10503  }
10504
10505  // The return types aren't either both pointers or references to a class type.
10506  if (NewClassTy.isNull()) {
10507    Diag(New->getLocation(),
10508         diag::err_different_return_type_for_overriding_virtual_function)
10509      << New->getDeclName() << NewTy << OldTy;
10510    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10511
10512    return true;
10513  }
10514
10515  // C++ [class.virtual]p6:
10516  //   If the return type of D::f differs from the return type of B::f, the
10517  //   class type in the return type of D::f shall be complete at the point of
10518  //   declaration of D::f or shall be the class type D.
10519  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10520    if (!RT->isBeingDefined() &&
10521        RequireCompleteType(New->getLocation(), NewClassTy,
10522                            PDiag(diag::err_covariant_return_incomplete)
10523                              << New->getDeclName()))
10524    return true;
10525  }
10526
10527  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10528    // Check if the new class derives from the old class.
10529    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10530      Diag(New->getLocation(),
10531           diag::err_covariant_return_not_derived)
10532      << New->getDeclName() << NewTy << OldTy;
10533      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10534      return true;
10535    }
10536
10537    // Check if we the conversion from derived to base is valid.
10538    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10539                    diag::err_covariant_return_inaccessible_base,
10540                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10541                    // FIXME: Should this point to the return type?
10542                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10543      // FIXME: this note won't trigger for delayed access control
10544      // diagnostics, and it's impossible to get an undelayed error
10545      // here from access control during the original parse because
10546      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10547      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10548      return true;
10549    }
10550  }
10551
10552  // The qualifiers of the return types must be the same.
10553  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10554    Diag(New->getLocation(),
10555         diag::err_covariant_return_type_different_qualifications)
10556    << New->getDeclName() << NewTy << OldTy;
10557    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10558    return true;
10559  };
10560
10561
10562  // The new class type must have the same or less qualifiers as the old type.
10563  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10564    Diag(New->getLocation(),
10565         diag::err_covariant_return_type_class_type_more_qualified)
10566    << New->getDeclName() << NewTy << OldTy;
10567    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10568    return true;
10569  };
10570
10571  return false;
10572}
10573
10574/// \brief Mark the given method pure.
10575///
10576/// \param Method the method to be marked pure.
10577///
10578/// \param InitRange the source range that covers the "0" initializer.
10579bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10580  SourceLocation EndLoc = InitRange.getEnd();
10581  if (EndLoc.isValid())
10582    Method->setRangeEnd(EndLoc);
10583
10584  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10585    Method->setPure();
10586    return false;
10587  }
10588
10589  if (!Method->isInvalidDecl())
10590    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10591      << Method->getDeclName() << InitRange;
10592  return true;
10593}
10594
10595/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10596/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10597/// is a fresh scope pushed for just this purpose.
10598///
10599/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10600/// static data member of class X, names should be looked up in the scope of
10601/// class X.
10602void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10603  // If there is no declaration, there was an error parsing it.
10604  if (D == 0 || D->isInvalidDecl()) return;
10605
10606  // We should only get called for declarations with scope specifiers, like:
10607  //   int foo::bar;
10608  assert(D->isOutOfLine());
10609  EnterDeclaratorContext(S, D->getDeclContext());
10610}
10611
10612/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10613/// initializer for the out-of-line declaration 'D'.
10614void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10615  // If there is no declaration, there was an error parsing it.
10616  if (D == 0 || D->isInvalidDecl()) return;
10617
10618  assert(D->isOutOfLine());
10619  ExitDeclaratorContext(S);
10620}
10621
10622/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10623/// C++ if/switch/while/for statement.
10624/// e.g: "if (int x = f()) {...}"
10625DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10626  // C++ 6.4p2:
10627  // The declarator shall not specify a function or an array.
10628  // The type-specifier-seq shall not contain typedef and shall not declare a
10629  // new class or enumeration.
10630  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10631         "Parser allowed 'typedef' as storage class of condition decl.");
10632
10633  Decl *Dcl = ActOnDeclarator(S, D);
10634  if (!Dcl)
10635    return true;
10636
10637  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10638    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10639      << D.getSourceRange();
10640    return true;
10641  }
10642
10643  return Dcl;
10644}
10645
10646void Sema::LoadExternalVTableUses() {
10647  if (!ExternalSource)
10648    return;
10649
10650  SmallVector<ExternalVTableUse, 4> VTables;
10651  ExternalSource->ReadUsedVTables(VTables);
10652  SmallVector<VTableUse, 4> NewUses;
10653  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10654    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10655      = VTablesUsed.find(VTables[I].Record);
10656    // Even if a definition wasn't required before, it may be required now.
10657    if (Pos != VTablesUsed.end()) {
10658      if (!Pos->second && VTables[I].DefinitionRequired)
10659        Pos->second = true;
10660      continue;
10661    }
10662
10663    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10664    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10665  }
10666
10667  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10668}
10669
10670void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10671                          bool DefinitionRequired) {
10672  // Ignore any vtable uses in unevaluated operands or for classes that do
10673  // not have a vtable.
10674  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10675      CurContext->isDependentContext() ||
10676      ExprEvalContexts.back().Context == Unevaluated)
10677    return;
10678
10679  // Try to insert this class into the map.
10680  LoadExternalVTableUses();
10681  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10682  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10683    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10684  if (!Pos.second) {
10685    // If we already had an entry, check to see if we are promoting this vtable
10686    // to required a definition. If so, we need to reappend to the VTableUses
10687    // list, since we may have already processed the first entry.
10688    if (DefinitionRequired && !Pos.first->second) {
10689      Pos.first->second = true;
10690    } else {
10691      // Otherwise, we can early exit.
10692      return;
10693    }
10694  }
10695
10696  // Local classes need to have their virtual members marked
10697  // immediately. For all other classes, we mark their virtual members
10698  // at the end of the translation unit.
10699  if (Class->isLocalClass())
10700    MarkVirtualMembersReferenced(Loc, Class);
10701  else
10702    VTableUses.push_back(std::make_pair(Class, Loc));
10703}
10704
10705bool Sema::DefineUsedVTables() {
10706  LoadExternalVTableUses();
10707  if (VTableUses.empty())
10708    return false;
10709
10710  // Note: The VTableUses vector could grow as a result of marking
10711  // the members of a class as "used", so we check the size each
10712  // time through the loop and prefer indices (with are stable) to
10713  // iterators (which are not).
10714  bool DefinedAnything = false;
10715  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10716    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10717    if (!Class)
10718      continue;
10719
10720    SourceLocation Loc = VTableUses[I].second;
10721
10722    // If this class has a key function, but that key function is
10723    // defined in another translation unit, we don't need to emit the
10724    // vtable even though we're using it.
10725    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10726    if (KeyFunction && !KeyFunction->hasBody()) {
10727      switch (KeyFunction->getTemplateSpecializationKind()) {
10728      case TSK_Undeclared:
10729      case TSK_ExplicitSpecialization:
10730      case TSK_ExplicitInstantiationDeclaration:
10731        // The key function is in another translation unit.
10732        continue;
10733
10734      case TSK_ExplicitInstantiationDefinition:
10735      case TSK_ImplicitInstantiation:
10736        // We will be instantiating the key function.
10737        break;
10738      }
10739    } else if (!KeyFunction) {
10740      // If we have a class with no key function that is the subject
10741      // of an explicit instantiation declaration, suppress the
10742      // vtable; it will live with the explicit instantiation
10743      // definition.
10744      bool IsExplicitInstantiationDeclaration
10745        = Class->getTemplateSpecializationKind()
10746                                      == TSK_ExplicitInstantiationDeclaration;
10747      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10748                                 REnd = Class->redecls_end();
10749           R != REnd; ++R) {
10750        TemplateSpecializationKind TSK
10751          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10752        if (TSK == TSK_ExplicitInstantiationDeclaration)
10753          IsExplicitInstantiationDeclaration = true;
10754        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10755          IsExplicitInstantiationDeclaration = false;
10756          break;
10757        }
10758      }
10759
10760      if (IsExplicitInstantiationDeclaration)
10761        continue;
10762    }
10763
10764    // Mark all of the virtual members of this class as referenced, so
10765    // that we can build a vtable. Then, tell the AST consumer that a
10766    // vtable for this class is required.
10767    DefinedAnything = true;
10768    MarkVirtualMembersReferenced(Loc, Class);
10769    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10770    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10771
10772    // Optionally warn if we're emitting a weak vtable.
10773    if (Class->getLinkage() == ExternalLinkage &&
10774        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10775      const FunctionDecl *KeyFunctionDef = 0;
10776      if (!KeyFunction ||
10777          (KeyFunction->hasBody(KeyFunctionDef) &&
10778           KeyFunctionDef->isInlined()))
10779        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10780             TSK_ExplicitInstantiationDefinition
10781             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10782          << Class;
10783    }
10784  }
10785  VTableUses.clear();
10786
10787  return DefinedAnything;
10788}
10789
10790void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10791                                        const CXXRecordDecl *RD) {
10792  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10793       e = RD->method_end(); i != e; ++i) {
10794    CXXMethodDecl *MD = *i;
10795
10796    // C++ [basic.def.odr]p2:
10797    //   [...] A virtual member function is used if it is not pure. [...]
10798    if (MD->isVirtual() && !MD->isPure())
10799      MarkFunctionReferenced(Loc, MD);
10800  }
10801
10802  // Only classes that have virtual bases need a VTT.
10803  if (RD->getNumVBases() == 0)
10804    return;
10805
10806  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10807           e = RD->bases_end(); i != e; ++i) {
10808    const CXXRecordDecl *Base =
10809        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10810    if (Base->getNumVBases() == 0)
10811      continue;
10812    MarkVirtualMembersReferenced(Loc, Base);
10813  }
10814}
10815
10816/// SetIvarInitializers - This routine builds initialization ASTs for the
10817/// Objective-C implementation whose ivars need be initialized.
10818void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10819  if (!getLangOptions().CPlusPlus)
10820    return;
10821  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10822    SmallVector<ObjCIvarDecl*, 8> ivars;
10823    CollectIvarsToConstructOrDestruct(OID, ivars);
10824    if (ivars.empty())
10825      return;
10826    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10827    for (unsigned i = 0; i < ivars.size(); i++) {
10828      FieldDecl *Field = ivars[i];
10829      if (Field->isInvalidDecl())
10830        continue;
10831
10832      CXXCtorInitializer *Member;
10833      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10834      InitializationKind InitKind =
10835        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10836
10837      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10838      ExprResult MemberInit =
10839        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10840      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10841      // Note, MemberInit could actually come back empty if no initialization
10842      // is required (e.g., because it would call a trivial default constructor)
10843      if (!MemberInit.get() || MemberInit.isInvalid())
10844        continue;
10845
10846      Member =
10847        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10848                                         SourceLocation(),
10849                                         MemberInit.takeAs<Expr>(),
10850                                         SourceLocation());
10851      AllToInit.push_back(Member);
10852
10853      // Be sure that the destructor is accessible and is marked as referenced.
10854      if (const RecordType *RecordTy
10855                  = Context.getBaseElementType(Field->getType())
10856                                                        ->getAs<RecordType>()) {
10857                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10858        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10859          MarkFunctionReferenced(Field->getLocation(), Destructor);
10860          CheckDestructorAccess(Field->getLocation(), Destructor,
10861                            PDiag(diag::err_access_dtor_ivar)
10862                              << Context.getBaseElementType(Field->getType()));
10863        }
10864      }
10865    }
10866    ObjCImplementation->setIvarInitializers(Context,
10867                                            AllToInit.data(), AllToInit.size());
10868  }
10869}
10870
10871static
10872void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10873                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10874                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10875                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10876                           Sema &S) {
10877  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10878                                                   CE = Current.end();
10879  if (Ctor->isInvalidDecl())
10880    return;
10881
10882  const FunctionDecl *FNTarget = 0;
10883  CXXConstructorDecl *Target;
10884
10885  // We ignore the result here since if we don't have a body, Target will be
10886  // null below.
10887  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10888  Target
10889= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10890
10891  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10892                     // Avoid dereferencing a null pointer here.
10893                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10894
10895  if (!Current.insert(Canonical))
10896    return;
10897
10898  // We know that beyond here, we aren't chaining into a cycle.
10899  if (!Target || !Target->isDelegatingConstructor() ||
10900      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10901    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10902      Valid.insert(*CI);
10903    Current.clear();
10904  // We've hit a cycle.
10905  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10906             Current.count(TCanonical)) {
10907    // If we haven't diagnosed this cycle yet, do so now.
10908    if (!Invalid.count(TCanonical)) {
10909      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10910             diag::warn_delegating_ctor_cycle)
10911        << Ctor;
10912
10913      // Don't add a note for a function delegating directo to itself.
10914      if (TCanonical != Canonical)
10915        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10916
10917      CXXConstructorDecl *C = Target;
10918      while (C->getCanonicalDecl() != Canonical) {
10919        (void)C->getTargetConstructor()->hasBody(FNTarget);
10920        assert(FNTarget && "Ctor cycle through bodiless function");
10921
10922        C
10923       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10924        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10925      }
10926    }
10927
10928    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10929      Invalid.insert(*CI);
10930    Current.clear();
10931  } else {
10932    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10933  }
10934}
10935
10936
10937void Sema::CheckDelegatingCtorCycles() {
10938  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10939
10940  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10941                                                   CE = Current.end();
10942
10943  for (DelegatingCtorDeclsType::iterator
10944         I = DelegatingCtorDecls.begin(ExternalSource),
10945         E = DelegatingCtorDecls.end();
10946       I != E; ++I) {
10947   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10948  }
10949
10950  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10951    (*CI)->setInvalidDecl();
10952}
10953
10954/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10955Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10956  // Implicitly declared functions (e.g. copy constructors) are
10957  // __host__ __device__
10958  if (D->isImplicit())
10959    return CFT_HostDevice;
10960
10961  if (D->hasAttr<CUDAGlobalAttr>())
10962    return CFT_Global;
10963
10964  if (D->hasAttr<CUDADeviceAttr>()) {
10965    if (D->hasAttr<CUDAHostAttr>())
10966      return CFT_HostDevice;
10967    else
10968      return CFT_Device;
10969  }
10970
10971  return CFT_Host;
10972}
10973
10974bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10975                           CUDAFunctionTarget CalleeTarget) {
10976  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10977  // Callable from the device only."
10978  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10979    return true;
10980
10981  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10982  // Callable from the host only."
10983  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10984  // Callable from the host only."
10985  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10986      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10987    return true;
10988
10989  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10990    return true;
10991
10992  return false;
10993}
10994