SemaDeclCXX.cpp revision 3c3ccdbe73cb43bdf39a9102f5f7eb842fb71952
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      // We don't want access-control diagnostics here.
1080      R.suppressDiagnostics();
1081
1082      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1083        bool NotUnknownSpecialization = false;
1084        DeclContext *DC = computeDeclContext(SS, false);
1085        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1086          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1087
1088        if (!NotUnknownSpecialization) {
1089          // When the scope specifier can refer to a member of an unknown
1090          // specialization, we take it as a type name.
1091          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1092                                       *MemberOrBase, SS.getRange());
1093          if (BaseType.isNull())
1094            return true;
1095
1096          R.clear();
1097        }
1098      }
1099
1100      // If no results were found, try to correct typos.
1101      if (R.empty() && BaseType.isNull() &&
1102          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1103        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1104          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1105            // We have found a non-static data member with a similar
1106            // name to what was typed; complain and initialize that
1107            // member.
1108            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1109              << MemberOrBase << true << R.getLookupName()
1110              << FixItHint::CreateReplacement(R.getNameLoc(),
1111                                              R.getLookupName().getAsString());
1112            Diag(Member->getLocation(), diag::note_previous_decl)
1113              << Member->getDeclName();
1114
1115            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1116                                          LParenLoc, RParenLoc);
1117          }
1118        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1119          const CXXBaseSpecifier *DirectBaseSpec;
1120          const CXXBaseSpecifier *VirtualBaseSpec;
1121          if (FindBaseInitializer(*this, ClassDecl,
1122                                  Context.getTypeDeclType(Type),
1123                                  DirectBaseSpec, VirtualBaseSpec)) {
1124            // We have found a direct or virtual base class with a
1125            // similar name to what was typed; complain and initialize
1126            // that base class.
1127            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1128              << MemberOrBase << false << R.getLookupName()
1129              << FixItHint::CreateReplacement(R.getNameLoc(),
1130                                              R.getLookupName().getAsString());
1131
1132            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1133                                                             : VirtualBaseSpec;
1134            Diag(BaseSpec->getSourceRange().getBegin(),
1135                 diag::note_base_class_specified_here)
1136              << BaseSpec->getType()
1137              << BaseSpec->getSourceRange();
1138
1139            TyD = Type;
1140          }
1141        }
1142      }
1143
1144      if (!TyD && BaseType.isNull()) {
1145        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1146          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1147        return true;
1148      }
1149    }
1150
1151    if (BaseType.isNull()) {
1152      BaseType = Context.getTypeDeclType(TyD);
1153      if (SS.isSet()) {
1154        NestedNameSpecifier *Qualifier =
1155          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1156
1157        // FIXME: preserve source range information
1158        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1159      }
1160    }
1161  }
1162
1163  if (!TInfo)
1164    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1165
1166  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1167                              LParenLoc, RParenLoc, ClassDecl);
1168}
1169
1170/// Checks an initializer expression for use of uninitialized fields, such as
1171/// containing the field that is being initialized. Returns true if there is an
1172/// uninitialized field was used an updates the SourceLocation parameter; false
1173/// otherwise.
1174static bool InitExprContainsUninitializedFields(const Stmt* S,
1175                                                const FieldDecl* LhsField,
1176                                                SourceLocation* L) {
1177  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1178  if (ME) {
1179    const NamedDecl* RhsField = ME->getMemberDecl();
1180    if (RhsField == LhsField) {
1181      // Initializing a field with itself. Throw a warning.
1182      // But wait; there are exceptions!
1183      // Exception #1:  The field may not belong to this record.
1184      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1185      const Expr* base = ME->getBase();
1186      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1187        // Even though the field matches, it does not belong to this record.
1188        return false;
1189      }
1190      // None of the exceptions triggered; return true to indicate an
1191      // uninitialized field was used.
1192      *L = ME->getMemberLoc();
1193      return true;
1194    }
1195  }
1196  bool found = false;
1197  for (Stmt::const_child_iterator it = S->child_begin();
1198       it != S->child_end() && found == false;
1199       ++it) {
1200    if (isa<CallExpr>(S)) {
1201      // Do not descend into function calls or constructors, as the use
1202      // of an uninitialized field may be valid. One would have to inspect
1203      // the contents of the function/ctor to determine if it is safe or not.
1204      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1205      // may be safe, depending on what the function/ctor does.
1206      continue;
1207    }
1208    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1209  }
1210  return found;
1211}
1212
1213Sema::MemInitResult
1214Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1215                             unsigned NumArgs, SourceLocation IdLoc,
1216                             SourceLocation LParenLoc,
1217                             SourceLocation RParenLoc) {
1218  // Diagnose value-uses of fields to initialize themselves, e.g.
1219  //   foo(foo)
1220  // where foo is not also a parameter to the constructor.
1221  // TODO: implement -Wuninitialized and fold this into that framework.
1222  for (unsigned i = 0; i < NumArgs; ++i) {
1223    SourceLocation L;
1224    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1225      // FIXME: Return true in the case when other fields are used before being
1226      // uninitialized. For example, let this field be the i'th field. When
1227      // initializing the i'th field, throw a warning if any of the >= i'th
1228      // fields are used, as they are not yet initialized.
1229      // Right now we are only handling the case where the i'th field uses
1230      // itself in its initializer.
1231      Diag(L, diag::warn_field_is_uninit);
1232    }
1233  }
1234
1235  bool HasDependentArg = false;
1236  for (unsigned i = 0; i < NumArgs; i++)
1237    HasDependentArg |= Args[i]->isTypeDependent();
1238
1239  QualType FieldType = Member->getType();
1240  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1241    FieldType = Array->getElementType();
1242  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1243  if (FieldType->isDependentType() || HasDependentArg) {
1244    // Can't check initialization for a member of dependent type or when
1245    // any of the arguments are type-dependent expressions.
1246    OwningExprResult Init
1247      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1248                                          RParenLoc));
1249
1250    // Erase any temporaries within this evaluation context; we're not
1251    // going to track them in the AST, since we'll be rebuilding the
1252    // ASTs during template instantiation.
1253    ExprTemporaries.erase(
1254              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1255                          ExprTemporaries.end());
1256
1257    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1258                                                    LParenLoc,
1259                                                    Init.takeAs<Expr>(),
1260                                                    RParenLoc);
1261
1262  }
1263
1264  if (Member->isInvalidDecl())
1265    return true;
1266
1267  // Initialize the member.
1268  InitializedEntity MemberEntity =
1269    InitializedEntity::InitializeMember(Member, 0);
1270  InitializationKind Kind =
1271    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1272
1273  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1274
1275  OwningExprResult MemberInit =
1276    InitSeq.Perform(*this, MemberEntity, Kind,
1277                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1278  if (MemberInit.isInvalid())
1279    return true;
1280
1281  // C++0x [class.base.init]p7:
1282  //   The initialization of each base and member constitutes a
1283  //   full-expression.
1284  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1285  if (MemberInit.isInvalid())
1286    return true;
1287
1288  // If we are in a dependent context, template instantiation will
1289  // perform this type-checking again. Just save the arguments that we
1290  // received in a ParenListExpr.
1291  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1292  // of the information that we have about the member
1293  // initializer. However, deconstructing the ASTs is a dicey process,
1294  // and this approach is far more likely to get the corner cases right.
1295  if (CurContext->isDependentContext()) {
1296    // Bump the reference count of all of the arguments.
1297    for (unsigned I = 0; I != NumArgs; ++I)
1298      Args[I]->Retain();
1299
1300    OwningExprResult Init
1301      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1302                                          RParenLoc));
1303    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1304                                                    LParenLoc,
1305                                                    Init.takeAs<Expr>(),
1306                                                    RParenLoc);
1307  }
1308
1309  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1310                                                  LParenLoc,
1311                                                  MemberInit.takeAs<Expr>(),
1312                                                  RParenLoc);
1313}
1314
1315Sema::MemInitResult
1316Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1317                           Expr **Args, unsigned NumArgs,
1318                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1319                           CXXRecordDecl *ClassDecl) {
1320  bool HasDependentArg = false;
1321  for (unsigned i = 0; i < NumArgs; i++)
1322    HasDependentArg |= Args[i]->isTypeDependent();
1323
1324  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1325  if (BaseType->isDependentType() || HasDependentArg) {
1326    // Can't check initialization for a base of dependent type or when
1327    // any of the arguments are type-dependent expressions.
1328    OwningExprResult BaseInit
1329      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1330                                          RParenLoc));
1331
1332    // Erase any temporaries within this evaluation context; we're not
1333    // going to track them in the AST, since we'll be rebuilding the
1334    // ASTs during template instantiation.
1335    ExprTemporaries.erase(
1336              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1337                          ExprTemporaries.end());
1338
1339    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1340                                                    LParenLoc,
1341                                                    BaseInit.takeAs<Expr>(),
1342                                                    RParenLoc);
1343  }
1344
1345  if (!BaseType->isRecordType())
1346    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1347             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1348
1349  // C++ [class.base.init]p2:
1350  //   [...] Unless the mem-initializer-id names a nonstatic data
1351  //   member of the constructor’s class or a direct or virtual base
1352  //   of that class, the mem-initializer is ill-formed. A
1353  //   mem-initializer-list can initialize a base class using any
1354  //   name that denotes that base class type.
1355
1356  // Check for direct and virtual base classes.
1357  const CXXBaseSpecifier *DirectBaseSpec = 0;
1358  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1359  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1360                      VirtualBaseSpec);
1361
1362  // C++ [base.class.init]p2:
1363  //   If a mem-initializer-id is ambiguous because it designates both
1364  //   a direct non-virtual base class and an inherited virtual base
1365  //   class, the mem-initializer is ill-formed.
1366  if (DirectBaseSpec && VirtualBaseSpec)
1367    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1368      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1369  // C++ [base.class.init]p2:
1370  // Unless the mem-initializer-id names a nonstatic data membeer of the
1371  // constructor's class ot a direst or virtual base of that class, the
1372  // mem-initializer is ill-formed.
1373  if (!DirectBaseSpec && !VirtualBaseSpec)
1374    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1375      << BaseType << ClassDecl->getNameAsCString()
1376      << BaseTInfo->getTypeLoc().getSourceRange();
1377
1378  CXXBaseSpecifier *BaseSpec
1379    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1380  if (!BaseSpec)
1381    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1382
1383  // Initialize the base.
1384  InitializedEntity BaseEntity =
1385    InitializedEntity::InitializeBase(Context, BaseSpec);
1386  InitializationKind Kind =
1387    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1388
1389  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1390
1391  OwningExprResult BaseInit =
1392    InitSeq.Perform(*this, BaseEntity, Kind,
1393                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1394  if (BaseInit.isInvalid())
1395    return true;
1396
1397  // C++0x [class.base.init]p7:
1398  //   The initialization of each base and member constitutes a
1399  //   full-expression.
1400  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1401  if (BaseInit.isInvalid())
1402    return true;
1403
1404  // If we are in a dependent context, template instantiation will
1405  // perform this type-checking again. Just save the arguments that we
1406  // received in a ParenListExpr.
1407  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1408  // of the information that we have about the base
1409  // initializer. However, deconstructing the ASTs is a dicey process,
1410  // and this approach is far more likely to get the corner cases right.
1411  if (CurContext->isDependentContext()) {
1412    // Bump the reference count of all of the arguments.
1413    for (unsigned I = 0; I != NumArgs; ++I)
1414      Args[I]->Retain();
1415
1416    OwningExprResult Init
1417      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                          RParenLoc));
1419    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1420                                                    LParenLoc,
1421                                                    Init.takeAs<Expr>(),
1422                                                    RParenLoc);
1423  }
1424
1425  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1426                                                  LParenLoc,
1427                                                  BaseInit.takeAs<Expr>(),
1428                                                  RParenLoc);
1429}
1430
1431bool
1432Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1433                                  CXXBaseOrMemberInitializer **Initializers,
1434                                  unsigned NumInitializers,
1435                                  bool AnyErrors) {
1436  if (Constructor->getDeclContext()->isDependentContext()) {
1437    // Just store the initializers as written, they will be checked during
1438    // instantiation.
1439    if (NumInitializers > 0) {
1440      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1441      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1442        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1443      memcpy(baseOrMemberInitializers, Initializers,
1444             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1445      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1446    }
1447
1448    return false;
1449  }
1450
1451  // We need to build the initializer AST according to order of construction
1452  // and not what user specified in the Initializers list.
1453  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1454  if (!ClassDecl)
1455    return true;
1456
1457  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1458  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1459  bool HadError = false;
1460
1461  for (unsigned i = 0; i < NumInitializers; i++) {
1462    CXXBaseOrMemberInitializer *Member = Initializers[i];
1463
1464    if (Member->isBaseInitializer())
1465      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1466    else
1467      AllBaseFields[Member->getMember()] = Member;
1468  }
1469
1470  llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1471
1472  // Push virtual bases before others.
1473  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1474       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1475
1476    if (CXXBaseOrMemberInitializer *Value
1477        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1478      AllToInit.push_back(Value);
1479    } else if (!AnyErrors) {
1480      InitializedEntity InitEntity
1481        = InitializedEntity::InitializeBase(Context, VBase);
1482      InitializationKind InitKind
1483        = InitializationKind::CreateDefault(Constructor->getLocation());
1484      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1485      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1486                                                  MultiExprArg(*this, 0, 0));
1487      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1488      if (BaseInit.isInvalid()) {
1489        HadError = true;
1490        continue;
1491      }
1492
1493      CXXBaseOrMemberInitializer *CXXBaseInit =
1494        new (Context) CXXBaseOrMemberInitializer(Context,
1495                           Context.getTrivialTypeSourceInfo(VBase->getType(),
1496                                                            SourceLocation()),
1497                                                 SourceLocation(),
1498                                                 BaseInit.takeAs<Expr>(),
1499                                                 SourceLocation());
1500      AllToInit.push_back(CXXBaseInit);
1501    }
1502  }
1503
1504  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1505       E = ClassDecl->bases_end(); Base != E; ++Base) {
1506    // Virtuals are in the virtual base list and already constructed.
1507    if (Base->isVirtual())
1508      continue;
1509
1510    if (CXXBaseOrMemberInitializer *Value
1511          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1512      AllToInit.push_back(Value);
1513    } else if (!AnyErrors) {
1514      InitializedEntity InitEntity
1515        = InitializedEntity::InitializeBase(Context, Base);
1516      InitializationKind InitKind
1517        = InitializationKind::CreateDefault(Constructor->getLocation());
1518      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1519      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1520                                                  MultiExprArg(*this, 0, 0));
1521      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1522      if (BaseInit.isInvalid()) {
1523        HadError = true;
1524        continue;
1525      }
1526
1527      CXXBaseOrMemberInitializer *CXXBaseInit =
1528        new (Context) CXXBaseOrMemberInitializer(Context,
1529                           Context.getTrivialTypeSourceInfo(Base->getType(),
1530                                                            SourceLocation()),
1531                                                 SourceLocation(),
1532                                                 BaseInit.takeAs<Expr>(),
1533                                                 SourceLocation());
1534      AllToInit.push_back(CXXBaseInit);
1535    }
1536  }
1537
1538  // non-static data members.
1539  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1540       E = ClassDecl->field_end(); Field != E; ++Field) {
1541    if ((*Field)->isAnonymousStructOrUnion()) {
1542      if (const RecordType *FieldClassType =
1543          Field->getType()->getAs<RecordType>()) {
1544        CXXRecordDecl *FieldClassDecl
1545          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1546        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1547            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1548          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1549            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1550            // set to the anonymous union data member used in the initializer
1551            // list.
1552            Value->setMember(*Field);
1553            Value->setAnonUnionMember(*FA);
1554            AllToInit.push_back(Value);
1555            break;
1556          }
1557        }
1558      }
1559      continue;
1560    }
1561    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1562      AllToInit.push_back(Value);
1563      continue;
1564    }
1565
1566    if ((*Field)->getType()->isDependentType() || AnyErrors)
1567      continue;
1568
1569    QualType FT = Context.getBaseElementType((*Field)->getType());
1570    if (FT->getAs<RecordType>()) {
1571      InitializedEntity InitEntity
1572        = InitializedEntity::InitializeMember(*Field);
1573      InitializationKind InitKind
1574        = InitializationKind::CreateDefault(Constructor->getLocation());
1575
1576      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1577      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1578                                                    MultiExprArg(*this, 0, 0));
1579      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1580      if (MemberInit.isInvalid()) {
1581        HadError = true;
1582        continue;
1583      }
1584
1585      // Don't attach synthesized member initializers in a dependent
1586      // context; they'll be regenerated a template instantiation
1587      // time.
1588      if (CurContext->isDependentContext())
1589        continue;
1590
1591      CXXBaseOrMemberInitializer *Member =
1592        new (Context) CXXBaseOrMemberInitializer(Context,
1593                                                 *Field, SourceLocation(),
1594                                                 SourceLocation(),
1595                                                 MemberInit.takeAs<Expr>(),
1596                                                 SourceLocation());
1597
1598      AllToInit.push_back(Member);
1599    }
1600    else if (FT->isReferenceType()) {
1601      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1602        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1603        << 0 << (*Field)->getDeclName();
1604      Diag((*Field)->getLocation(), diag::note_declared_at);
1605      HadError = true;
1606    }
1607    else if (FT.isConstQualified()) {
1608      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1609        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1610        << 1 << (*Field)->getDeclName();
1611      Diag((*Field)->getLocation(), diag::note_declared_at);
1612      HadError = true;
1613    }
1614  }
1615
1616  NumInitializers = AllToInit.size();
1617  if (NumInitializers > 0) {
1618    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1619    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1620      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1621    memcpy(baseOrMemberInitializers, AllToInit.data(),
1622           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1623    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1624
1625    // Constructors implicitly reference the base and member
1626    // destructors.
1627    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1628                                           Constructor->getParent());
1629  }
1630
1631  return HadError;
1632}
1633
1634static void *GetKeyForTopLevelField(FieldDecl *Field) {
1635  // For anonymous unions, use the class declaration as the key.
1636  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1637    if (RT->getDecl()->isAnonymousStructOrUnion())
1638      return static_cast<void *>(RT->getDecl());
1639  }
1640  return static_cast<void *>(Field);
1641}
1642
1643static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1644  return Context.getCanonicalType(BaseType).getTypePtr();
1645}
1646
1647static void *GetKeyForMember(ASTContext &Context,
1648                             CXXBaseOrMemberInitializer *Member,
1649                             bool MemberMaybeAnon = false) {
1650  if (!Member->isMemberInitializer())
1651    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1652
1653  // For fields injected into the class via declaration of an anonymous union,
1654  // use its anonymous union class declaration as the unique key.
1655  FieldDecl *Field = Member->getMember();
1656
1657  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1658  // data member of the class. Data member used in the initializer list is
1659  // in AnonUnionMember field.
1660  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1661    Field = Member->getAnonUnionMember();
1662
1663  // If the field is a member of an anonymous struct or union, our key
1664  // is the anonymous record decl that's a direct child of the class.
1665  RecordDecl *RD = Field->getParent();
1666  if (RD->isAnonymousStructOrUnion()) {
1667    while (true) {
1668      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1669      if (Parent->isAnonymousStructOrUnion())
1670        RD = Parent;
1671      else
1672        break;
1673    }
1674
1675    return static_cast<void *>(RD);
1676  }
1677
1678  return static_cast<void *>(Field);
1679}
1680
1681static void
1682DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1683                                  const CXXConstructorDecl *Constructor,
1684                                  CXXBaseOrMemberInitializer **Inits,
1685                                  unsigned NumInits) {
1686  if (Constructor->getDeclContext()->isDependentContext())
1687    return;
1688
1689  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1690        == Diagnostic::Ignored)
1691    return;
1692
1693  // Build the list of bases and members in the order that they'll
1694  // actually be initialized.  The explicit initializers should be in
1695  // this same order but may be missing things.
1696  llvm::SmallVector<const void*, 32> IdealInitKeys;
1697
1698  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1699
1700  // 1. Virtual bases.
1701  for (CXXRecordDecl::base_class_const_iterator VBase =
1702       ClassDecl->vbases_begin(),
1703       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1704    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1705
1706  // 2. Non-virtual bases.
1707  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1708       E = ClassDecl->bases_end(); Base != E; ++Base) {
1709    if (Base->isVirtual())
1710      continue;
1711    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1712  }
1713
1714  // 3. Direct fields.
1715  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1716       E = ClassDecl->field_end(); Field != E; ++Field)
1717    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1718
1719  unsigned NumIdealInits = IdealInitKeys.size();
1720  unsigned IdealIndex = 0;
1721
1722  CXXBaseOrMemberInitializer *PrevInit = 0;
1723  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1724    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1725    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1726
1727    // Scan forward to try to find this initializer in the idealized
1728    // initializers list.
1729    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1730      if (InitKey == IdealInitKeys[IdealIndex])
1731        break;
1732
1733    // If we didn't find this initializer, it must be because we
1734    // scanned past it on a previous iteration.  That can only
1735    // happen if we're out of order;  emit a warning.
1736    if (IdealIndex == NumIdealInits) {
1737      assert(PrevInit && "initializer not found in initializer list");
1738
1739      Sema::SemaDiagnosticBuilder D =
1740        SemaRef.Diag(PrevInit->getSourceLocation(),
1741                     diag::warn_initializer_out_of_order);
1742
1743      if (PrevInit->isMemberInitializer())
1744        D << 0 << PrevInit->getMember()->getDeclName();
1745      else
1746        D << 1 << PrevInit->getBaseClassInfo()->getType();
1747
1748      if (Init->isMemberInitializer())
1749        D << 0 << Init->getMember()->getDeclName();
1750      else
1751        D << 1 << Init->getBaseClassInfo()->getType();
1752
1753      // Move back to the initializer's location in the ideal list.
1754      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1755        if (InitKey == IdealInitKeys[IdealIndex])
1756          break;
1757
1758      assert(IdealIndex != NumIdealInits &&
1759             "initializer not found in initializer list");
1760    }
1761
1762    PrevInit = Init;
1763  }
1764}
1765
1766namespace {
1767bool CheckRedundantInit(Sema &S,
1768                        CXXBaseOrMemberInitializer *Init,
1769                        CXXBaseOrMemberInitializer *&PrevInit) {
1770  if (!PrevInit) {
1771    PrevInit = Init;
1772    return false;
1773  }
1774
1775  if (FieldDecl *Field = Init->getMember())
1776    S.Diag(Init->getSourceLocation(),
1777           diag::err_multiple_mem_initialization)
1778      << Field->getDeclName()
1779      << Init->getSourceRange();
1780  else {
1781    Type *BaseClass = Init->getBaseClass();
1782    assert(BaseClass && "neither field nor base");
1783    S.Diag(Init->getSourceLocation(),
1784           diag::err_multiple_base_initialization)
1785      << QualType(BaseClass, 0)
1786      << Init->getSourceRange();
1787  }
1788  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1789    << 0 << PrevInit->getSourceRange();
1790
1791  return true;
1792}
1793
1794typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1795typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1796
1797bool CheckRedundantUnionInit(Sema &S,
1798                             CXXBaseOrMemberInitializer *Init,
1799                             RedundantUnionMap &Unions) {
1800  FieldDecl *Field = Init->getMember();
1801  RecordDecl *Parent = Field->getParent();
1802  if (!Parent->isAnonymousStructOrUnion())
1803    return false;
1804
1805  NamedDecl *Child = Field;
1806  do {
1807    if (Parent->isUnion()) {
1808      UnionEntry &En = Unions[Parent];
1809      if (En.first && En.first != Child) {
1810        S.Diag(Init->getSourceLocation(),
1811               diag::err_multiple_mem_union_initialization)
1812          << Field->getDeclName()
1813          << Init->getSourceRange();
1814        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1815          << 0 << En.second->getSourceRange();
1816        return true;
1817      } else if (!En.first) {
1818        En.first = Child;
1819        En.second = Init;
1820      }
1821    }
1822
1823    Child = Parent;
1824    Parent = cast<RecordDecl>(Parent->getDeclContext());
1825  } while (Parent->isAnonymousStructOrUnion());
1826
1827  return false;
1828}
1829}
1830
1831/// ActOnMemInitializers - Handle the member initializers for a constructor.
1832void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1833                                SourceLocation ColonLoc,
1834                                MemInitTy **meminits, unsigned NumMemInits,
1835                                bool AnyErrors) {
1836  if (!ConstructorDecl)
1837    return;
1838
1839  AdjustDeclIfTemplate(ConstructorDecl);
1840
1841  CXXConstructorDecl *Constructor
1842    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1843
1844  if (!Constructor) {
1845    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1846    return;
1847  }
1848
1849  CXXBaseOrMemberInitializer **MemInits =
1850    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1851
1852  // Mapping for the duplicate initializers check.
1853  // For member initializers, this is keyed with a FieldDecl*.
1854  // For base initializers, this is keyed with a Type*.
1855  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1856
1857  // Mapping for the inconsistent anonymous-union initializers check.
1858  RedundantUnionMap MemberUnions;
1859
1860  bool HadError = false;
1861  for (unsigned i = 0; i < NumMemInits; i++) {
1862    CXXBaseOrMemberInitializer *Init = MemInits[i];
1863
1864    if (Init->isMemberInitializer()) {
1865      FieldDecl *Field = Init->getMember();
1866      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1867          CheckRedundantUnionInit(*this, Init, MemberUnions))
1868        HadError = true;
1869    } else {
1870      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1871      if (CheckRedundantInit(*this, Init, Members[Key]))
1872        HadError = true;
1873    }
1874  }
1875
1876  if (HadError)
1877    return;
1878
1879  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1880
1881  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1882}
1883
1884void
1885Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1886                                             CXXRecordDecl *ClassDecl) {
1887  // Ignore dependent contexts.
1888  if (ClassDecl->isDependentContext())
1889    return;
1890
1891  // FIXME: all the access-control diagnostics are positioned on the
1892  // field/base declaration.  That's probably good; that said, the
1893  // user might reasonably want to know why the destructor is being
1894  // emitted, and we currently don't say.
1895
1896  // Non-static data members.
1897  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1898       E = ClassDecl->field_end(); I != E; ++I) {
1899    FieldDecl *Field = *I;
1900
1901    QualType FieldType = Context.getBaseElementType(Field->getType());
1902
1903    const RecordType* RT = FieldType->getAs<RecordType>();
1904    if (!RT)
1905      continue;
1906
1907    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1908    if (FieldClassDecl->hasTrivialDestructor())
1909      continue;
1910
1911    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1912    CheckDestructorAccess(Field->getLocation(), Dtor,
1913                          PDiag(diag::err_access_dtor_field)
1914                            << Field->getDeclName()
1915                            << FieldType);
1916
1917    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1918  }
1919
1920  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1921
1922  // Bases.
1923  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1924       E = ClassDecl->bases_end(); Base != E; ++Base) {
1925    // Bases are always records in a well-formed non-dependent class.
1926    const RecordType *RT = Base->getType()->getAs<RecordType>();
1927
1928    // Remember direct virtual bases.
1929    if (Base->isVirtual())
1930      DirectVirtualBases.insert(RT);
1931
1932    // Ignore trivial destructors.
1933    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1934    if (BaseClassDecl->hasTrivialDestructor())
1935      continue;
1936
1937    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1938
1939    // FIXME: caret should be on the start of the class name
1940    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1941                          PDiag(diag::err_access_dtor_base)
1942                            << Base->getType()
1943                            << Base->getSourceRange());
1944
1945    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1946  }
1947
1948  // Virtual bases.
1949  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1950       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1951
1952    // Bases are always records in a well-formed non-dependent class.
1953    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1954
1955    // Ignore direct virtual bases.
1956    if (DirectVirtualBases.count(RT))
1957      continue;
1958
1959    // Ignore trivial destructors.
1960    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1961    if (BaseClassDecl->hasTrivialDestructor())
1962      continue;
1963
1964    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1965    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1966                          PDiag(diag::err_access_dtor_vbase)
1967                            << VBase->getType());
1968
1969    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1970  }
1971}
1972
1973void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1974  if (!CDtorDecl)
1975    return;
1976
1977  if (CXXConstructorDecl *Constructor
1978      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1979    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1980}
1981
1982bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1983                                  unsigned DiagID, AbstractDiagSelID SelID,
1984                                  const CXXRecordDecl *CurrentRD) {
1985  if (SelID == -1)
1986    return RequireNonAbstractType(Loc, T,
1987                                  PDiag(DiagID), CurrentRD);
1988  else
1989    return RequireNonAbstractType(Loc, T,
1990                                  PDiag(DiagID) << SelID, CurrentRD);
1991}
1992
1993bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1994                                  const PartialDiagnostic &PD,
1995                                  const CXXRecordDecl *CurrentRD) {
1996  if (!getLangOptions().CPlusPlus)
1997    return false;
1998
1999  if (const ArrayType *AT = Context.getAsArrayType(T))
2000    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2001                                  CurrentRD);
2002
2003  if (const PointerType *PT = T->getAs<PointerType>()) {
2004    // Find the innermost pointer type.
2005    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2006      PT = T;
2007
2008    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2009      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2010  }
2011
2012  const RecordType *RT = T->getAs<RecordType>();
2013  if (!RT)
2014    return false;
2015
2016  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2017
2018  if (CurrentRD && CurrentRD != RD)
2019    return false;
2020
2021  // FIXME: is this reasonable?  It matches current behavior, but....
2022  if (!RD->getDefinition())
2023    return false;
2024
2025  if (!RD->isAbstract())
2026    return false;
2027
2028  Diag(Loc, PD) << RD->getDeclName();
2029
2030  // Check if we've already emitted the list of pure virtual functions for this
2031  // class.
2032  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2033    return true;
2034
2035  CXXFinalOverriderMap FinalOverriders;
2036  RD->getFinalOverriders(FinalOverriders);
2037
2038  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2039                                   MEnd = FinalOverriders.end();
2040       M != MEnd;
2041       ++M) {
2042    for (OverridingMethods::iterator SO = M->second.begin(),
2043                                  SOEnd = M->second.end();
2044         SO != SOEnd; ++SO) {
2045      // C++ [class.abstract]p4:
2046      //   A class is abstract if it contains or inherits at least one
2047      //   pure virtual function for which the final overrider is pure
2048      //   virtual.
2049
2050      //
2051      if (SO->second.size() != 1)
2052        continue;
2053
2054      if (!SO->second.front().Method->isPure())
2055        continue;
2056
2057      Diag(SO->second.front().Method->getLocation(),
2058           diag::note_pure_virtual_function)
2059        << SO->second.front().Method->getDeclName();
2060    }
2061  }
2062
2063  if (!PureVirtualClassDiagSet)
2064    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2065  PureVirtualClassDiagSet->insert(RD);
2066
2067  return true;
2068}
2069
2070namespace {
2071  class AbstractClassUsageDiagnoser
2072    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2073    Sema &SemaRef;
2074    CXXRecordDecl *AbstractClass;
2075
2076    bool VisitDeclContext(const DeclContext *DC) {
2077      bool Invalid = false;
2078
2079      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2080           E = DC->decls_end(); I != E; ++I)
2081        Invalid |= Visit(*I);
2082
2083      return Invalid;
2084    }
2085
2086  public:
2087    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2088      : SemaRef(SemaRef), AbstractClass(ac) {
2089        Visit(SemaRef.Context.getTranslationUnitDecl());
2090    }
2091
2092    bool VisitFunctionDecl(const FunctionDecl *FD) {
2093      if (FD->isThisDeclarationADefinition()) {
2094        // No need to do the check if we're in a definition, because it requires
2095        // that the return/param types are complete.
2096        // because that requires
2097        return VisitDeclContext(FD);
2098      }
2099
2100      // Check the return type.
2101      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2102      bool Invalid =
2103        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2104                                       diag::err_abstract_type_in_decl,
2105                                       Sema::AbstractReturnType,
2106                                       AbstractClass);
2107
2108      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2109           E = FD->param_end(); I != E; ++I) {
2110        const ParmVarDecl *VD = *I;
2111        Invalid |=
2112          SemaRef.RequireNonAbstractType(VD->getLocation(),
2113                                         VD->getOriginalType(),
2114                                         diag::err_abstract_type_in_decl,
2115                                         Sema::AbstractParamType,
2116                                         AbstractClass);
2117      }
2118
2119      return Invalid;
2120    }
2121
2122    bool VisitDecl(const Decl* D) {
2123      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2124        return VisitDeclContext(DC);
2125
2126      return false;
2127    }
2128  };
2129}
2130
2131/// \brief Perform semantic checks on a class definition that has been
2132/// completing, introducing implicitly-declared members, checking for
2133/// abstract types, etc.
2134void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2135  if (!Record || Record->isInvalidDecl())
2136    return;
2137
2138  if (!Record->isDependentType())
2139    AddImplicitlyDeclaredMembersToClass(Record);
2140
2141  if (Record->isInvalidDecl())
2142    return;
2143
2144  // Set access bits correctly on the directly-declared conversions.
2145  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2146  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2147    Convs->setAccess(I, (*I)->getAccess());
2148
2149  // Determine whether we need to check for final overriders. We do
2150  // this either when there are virtual base classes (in which case we
2151  // may end up finding multiple final overriders for a given virtual
2152  // function) or any of the base classes is abstract (in which case
2153  // we might detect that this class is abstract).
2154  bool CheckFinalOverriders = false;
2155  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2156      !Record->isDependentType()) {
2157    if (Record->getNumVBases())
2158      CheckFinalOverriders = true;
2159    else if (!Record->isAbstract()) {
2160      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2161                                                 BEnd = Record->bases_end();
2162           B != BEnd; ++B) {
2163        CXXRecordDecl *BaseDecl
2164          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2165        if (BaseDecl->isAbstract()) {
2166          CheckFinalOverriders = true;
2167          break;
2168        }
2169      }
2170    }
2171  }
2172
2173  if (CheckFinalOverriders) {
2174    CXXFinalOverriderMap FinalOverriders;
2175    Record->getFinalOverriders(FinalOverriders);
2176
2177    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2178                                     MEnd = FinalOverriders.end();
2179         M != MEnd; ++M) {
2180      for (OverridingMethods::iterator SO = M->second.begin(),
2181                                    SOEnd = M->second.end();
2182           SO != SOEnd; ++SO) {
2183        assert(SO->second.size() > 0 &&
2184               "All virtual functions have overridding virtual functions");
2185        if (SO->second.size() == 1) {
2186          // C++ [class.abstract]p4:
2187          //   A class is abstract if it contains or inherits at least one
2188          //   pure virtual function for which the final overrider is pure
2189          //   virtual.
2190          if (SO->second.front().Method->isPure())
2191            Record->setAbstract(true);
2192          continue;
2193        }
2194
2195        // C++ [class.virtual]p2:
2196        //   In a derived class, if a virtual member function of a base
2197        //   class subobject has more than one final overrider the
2198        //   program is ill-formed.
2199        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2200          << (NamedDecl *)M->first << Record;
2201        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2202        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2203                                                 OMEnd = SO->second.end();
2204             OM != OMEnd; ++OM)
2205          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2206            << (NamedDecl *)M->first << OM->Method->getParent();
2207
2208        Record->setInvalidDecl();
2209      }
2210    }
2211  }
2212
2213  if (Record->isAbstract() && !Record->isInvalidDecl())
2214    (void)AbstractClassUsageDiagnoser(*this, Record);
2215}
2216
2217void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2218                                             DeclPtrTy TagDecl,
2219                                             SourceLocation LBrac,
2220                                             SourceLocation RBrac,
2221                                             AttributeList *AttrList) {
2222  if (!TagDecl)
2223    return;
2224
2225  AdjustDeclIfTemplate(TagDecl);
2226
2227  ActOnFields(S, RLoc, TagDecl,
2228              (DeclPtrTy*)FieldCollector->getCurFields(),
2229              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2230
2231  CheckCompletedCXXClass(
2232                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2233}
2234
2235/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2236/// special functions, such as the default constructor, copy
2237/// constructor, or destructor, to the given C++ class (C++
2238/// [special]p1).  This routine can only be executed just before the
2239/// definition of the class is complete.
2240void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2241  CanQualType ClassType
2242    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2243
2244  // FIXME: Implicit declarations have exception specifications, which are
2245  // the union of the specifications of the implicitly called functions.
2246
2247  if (!ClassDecl->hasUserDeclaredConstructor()) {
2248    // C++ [class.ctor]p5:
2249    //   A default constructor for a class X is a constructor of class X
2250    //   that can be called without an argument. If there is no
2251    //   user-declared constructor for class X, a default constructor is
2252    //   implicitly declared. An implicitly-declared default constructor
2253    //   is an inline public member of its class.
2254    DeclarationName Name
2255      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2256    CXXConstructorDecl *DefaultCon =
2257      CXXConstructorDecl::Create(Context, ClassDecl,
2258                                 ClassDecl->getLocation(), Name,
2259                                 Context.getFunctionType(Context.VoidTy,
2260                                                         0, 0, false, 0,
2261                                                         /*FIXME*/false, false,
2262                                                         0, 0,
2263                                                       FunctionType::ExtInfo()),
2264                                 /*TInfo=*/0,
2265                                 /*isExplicit=*/false,
2266                                 /*isInline=*/true,
2267                                 /*isImplicitlyDeclared=*/true);
2268    DefaultCon->setAccess(AS_public);
2269    DefaultCon->setImplicit();
2270    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2271    ClassDecl->addDecl(DefaultCon);
2272  }
2273
2274  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2275    // C++ [class.copy]p4:
2276    //   If the class definition does not explicitly declare a copy
2277    //   constructor, one is declared implicitly.
2278
2279    // C++ [class.copy]p5:
2280    //   The implicitly-declared copy constructor for a class X will
2281    //   have the form
2282    //
2283    //       X::X(const X&)
2284    //
2285    //   if
2286    bool HasConstCopyConstructor = true;
2287
2288    //     -- each direct or virtual base class B of X has a copy
2289    //        constructor whose first parameter is of type const B& or
2290    //        const volatile B&, and
2291    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2292         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2293      const CXXRecordDecl *BaseClassDecl
2294        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2295      HasConstCopyConstructor
2296        = BaseClassDecl->hasConstCopyConstructor(Context);
2297    }
2298
2299    //     -- for all the nonstatic data members of X that are of a
2300    //        class type M (or array thereof), each such class type
2301    //        has a copy constructor whose first parameter is of type
2302    //        const M& or const volatile M&.
2303    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2304         HasConstCopyConstructor && Field != ClassDecl->field_end();
2305         ++Field) {
2306      QualType FieldType = (*Field)->getType();
2307      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2308        FieldType = Array->getElementType();
2309      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2310        const CXXRecordDecl *FieldClassDecl
2311          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2312        HasConstCopyConstructor
2313          = FieldClassDecl->hasConstCopyConstructor(Context);
2314      }
2315    }
2316
2317    //   Otherwise, the implicitly declared copy constructor will have
2318    //   the form
2319    //
2320    //       X::X(X&)
2321    QualType ArgType = ClassType;
2322    if (HasConstCopyConstructor)
2323      ArgType = ArgType.withConst();
2324    ArgType = Context.getLValueReferenceType(ArgType);
2325
2326    //   An implicitly-declared copy constructor is an inline public
2327    //   member of its class.
2328    DeclarationName Name
2329      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2330    CXXConstructorDecl *CopyConstructor
2331      = CXXConstructorDecl::Create(Context, ClassDecl,
2332                                   ClassDecl->getLocation(), Name,
2333                                   Context.getFunctionType(Context.VoidTy,
2334                                                           &ArgType, 1,
2335                                                           false, 0,
2336                                                           /*FIXME:*/false,
2337                                                           false, 0, 0,
2338                                                       FunctionType::ExtInfo()),
2339                                   /*TInfo=*/0,
2340                                   /*isExplicit=*/false,
2341                                   /*isInline=*/true,
2342                                   /*isImplicitlyDeclared=*/true);
2343    CopyConstructor->setAccess(AS_public);
2344    CopyConstructor->setImplicit();
2345    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2346
2347    // Add the parameter to the constructor.
2348    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2349                                                 ClassDecl->getLocation(),
2350                                                 /*IdentifierInfo=*/0,
2351                                                 ArgType, /*TInfo=*/0,
2352                                                 VarDecl::None, 0);
2353    CopyConstructor->setParams(&FromParam, 1);
2354    ClassDecl->addDecl(CopyConstructor);
2355  }
2356
2357  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2358    // Note: The following rules are largely analoguous to the copy
2359    // constructor rules. Note that virtual bases are not taken into account
2360    // for determining the argument type of the operator. Note also that
2361    // operators taking an object instead of a reference are allowed.
2362    //
2363    // C++ [class.copy]p10:
2364    //   If the class definition does not explicitly declare a copy
2365    //   assignment operator, one is declared implicitly.
2366    //   The implicitly-defined copy assignment operator for a class X
2367    //   will have the form
2368    //
2369    //       X& X::operator=(const X&)
2370    //
2371    //   if
2372    bool HasConstCopyAssignment = true;
2373
2374    //       -- each direct base class B of X has a copy assignment operator
2375    //          whose parameter is of type const B&, const volatile B& or B,
2376    //          and
2377    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2378         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2379      assert(!Base->getType()->isDependentType() &&
2380            "Cannot generate implicit members for class with dependent bases.");
2381      const CXXRecordDecl *BaseClassDecl
2382        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2383      const CXXMethodDecl *MD = 0;
2384      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2385                                                                     MD);
2386    }
2387
2388    //       -- for all the nonstatic data members of X that are of a class
2389    //          type M (or array thereof), each such class type has a copy
2390    //          assignment operator whose parameter is of type const M&,
2391    //          const volatile M& or M.
2392    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2393         HasConstCopyAssignment && Field != ClassDecl->field_end();
2394         ++Field) {
2395      QualType FieldType = (*Field)->getType();
2396      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2397        FieldType = Array->getElementType();
2398      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2399        const CXXRecordDecl *FieldClassDecl
2400          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2401        const CXXMethodDecl *MD = 0;
2402        HasConstCopyAssignment
2403          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2404      }
2405    }
2406
2407    //   Otherwise, the implicitly declared copy assignment operator will
2408    //   have the form
2409    //
2410    //       X& X::operator=(X&)
2411    QualType ArgType = ClassType;
2412    QualType RetType = Context.getLValueReferenceType(ArgType);
2413    if (HasConstCopyAssignment)
2414      ArgType = ArgType.withConst();
2415    ArgType = Context.getLValueReferenceType(ArgType);
2416
2417    //   An implicitly-declared copy assignment operator is an inline public
2418    //   member of its class.
2419    DeclarationName Name =
2420      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2421    CXXMethodDecl *CopyAssignment =
2422      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2423                            Context.getFunctionType(RetType, &ArgType, 1,
2424                                                    false, 0,
2425                                                    /*FIXME:*/false,
2426                                                    false, 0, 0,
2427                                                    FunctionType::ExtInfo()),
2428                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2429    CopyAssignment->setAccess(AS_public);
2430    CopyAssignment->setImplicit();
2431    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2432    CopyAssignment->setCopyAssignment(true);
2433
2434    // Add the parameter to the operator.
2435    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2436                                                 ClassDecl->getLocation(),
2437                                                 /*IdentifierInfo=*/0,
2438                                                 ArgType, /*TInfo=*/0,
2439                                                 VarDecl::None, 0);
2440    CopyAssignment->setParams(&FromParam, 1);
2441
2442    // Don't call addedAssignmentOperator. There is no way to distinguish an
2443    // implicit from an explicit assignment operator.
2444    ClassDecl->addDecl(CopyAssignment);
2445    AddOverriddenMethods(ClassDecl, CopyAssignment);
2446  }
2447
2448  if (!ClassDecl->hasUserDeclaredDestructor()) {
2449    // C++ [class.dtor]p2:
2450    //   If a class has no user-declared destructor, a destructor is
2451    //   declared implicitly. An implicitly-declared destructor is an
2452    //   inline public member of its class.
2453    QualType Ty = Context.getFunctionType(Context.VoidTy,
2454                                          0, 0, false, 0,
2455                                          /*FIXME:*/false,
2456                                          false, 0, 0, FunctionType::ExtInfo());
2457
2458    DeclarationName Name
2459      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2460    CXXDestructorDecl *Destructor
2461      = CXXDestructorDecl::Create(Context, ClassDecl,
2462                                  ClassDecl->getLocation(), Name, Ty,
2463                                  /*isInline=*/true,
2464                                  /*isImplicitlyDeclared=*/true);
2465    Destructor->setAccess(AS_public);
2466    Destructor->setImplicit();
2467    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2468    ClassDecl->addDecl(Destructor);
2469
2470    // This could be uniqued if it ever proves significant.
2471    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2472
2473    AddOverriddenMethods(ClassDecl, Destructor);
2474  }
2475}
2476
2477void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2478  Decl *D = TemplateD.getAs<Decl>();
2479  if (!D)
2480    return;
2481
2482  TemplateParameterList *Params = 0;
2483  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2484    Params = Template->getTemplateParameters();
2485  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2486           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2487    Params = PartialSpec->getTemplateParameters();
2488  else
2489    return;
2490
2491  for (TemplateParameterList::iterator Param = Params->begin(),
2492                                    ParamEnd = Params->end();
2493       Param != ParamEnd; ++Param) {
2494    NamedDecl *Named = cast<NamedDecl>(*Param);
2495    if (Named->getDeclName()) {
2496      S->AddDecl(DeclPtrTy::make(Named));
2497      IdResolver.AddDecl(Named);
2498    }
2499  }
2500}
2501
2502void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2503  if (!RecordD) return;
2504  AdjustDeclIfTemplate(RecordD);
2505  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2506  PushDeclContext(S, Record);
2507}
2508
2509void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2510  if (!RecordD) return;
2511  PopDeclContext();
2512}
2513
2514/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2515/// parsing a top-level (non-nested) C++ class, and we are now
2516/// parsing those parts of the given Method declaration that could
2517/// not be parsed earlier (C++ [class.mem]p2), such as default
2518/// arguments. This action should enter the scope of the given
2519/// Method declaration as if we had just parsed the qualified method
2520/// name. However, it should not bring the parameters into scope;
2521/// that will be performed by ActOnDelayedCXXMethodParameter.
2522void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2523}
2524
2525/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2526/// C++ method declaration. We're (re-)introducing the given
2527/// function parameter into scope for use in parsing later parts of
2528/// the method declaration. For example, we could see an
2529/// ActOnParamDefaultArgument event for this parameter.
2530void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2531  if (!ParamD)
2532    return;
2533
2534  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2535
2536  // If this parameter has an unparsed default argument, clear it out
2537  // to make way for the parsed default argument.
2538  if (Param->hasUnparsedDefaultArg())
2539    Param->setDefaultArg(0);
2540
2541  S->AddDecl(DeclPtrTy::make(Param));
2542  if (Param->getDeclName())
2543    IdResolver.AddDecl(Param);
2544}
2545
2546/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2547/// processing the delayed method declaration for Method. The method
2548/// declaration is now considered finished. There may be a separate
2549/// ActOnStartOfFunctionDef action later (not necessarily
2550/// immediately!) for this method, if it was also defined inside the
2551/// class body.
2552void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2553  if (!MethodD)
2554    return;
2555
2556  AdjustDeclIfTemplate(MethodD);
2557
2558  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2559
2560  // Now that we have our default arguments, check the constructor
2561  // again. It could produce additional diagnostics or affect whether
2562  // the class has implicitly-declared destructors, among other
2563  // things.
2564  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2565    CheckConstructor(Constructor);
2566
2567  // Check the default arguments, which we may have added.
2568  if (!Method->isInvalidDecl())
2569    CheckCXXDefaultArguments(Method);
2570}
2571
2572/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2573/// the well-formedness of the constructor declarator @p D with type @p
2574/// R. If there are any errors in the declarator, this routine will
2575/// emit diagnostics and set the invalid bit to true.  In any case, the type
2576/// will be updated to reflect a well-formed type for the constructor and
2577/// returned.
2578QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2579                                          FunctionDecl::StorageClass &SC) {
2580  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2581
2582  // C++ [class.ctor]p3:
2583  //   A constructor shall not be virtual (10.3) or static (9.4). A
2584  //   constructor can be invoked for a const, volatile or const
2585  //   volatile object. A constructor shall not be declared const,
2586  //   volatile, or const volatile (9.3.2).
2587  if (isVirtual) {
2588    if (!D.isInvalidType())
2589      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2590        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2591        << SourceRange(D.getIdentifierLoc());
2592    D.setInvalidType();
2593  }
2594  if (SC == FunctionDecl::Static) {
2595    if (!D.isInvalidType())
2596      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2597        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2598        << SourceRange(D.getIdentifierLoc());
2599    D.setInvalidType();
2600    SC = FunctionDecl::None;
2601  }
2602
2603  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2604  if (FTI.TypeQuals != 0) {
2605    if (FTI.TypeQuals & Qualifiers::Const)
2606      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2607        << "const" << SourceRange(D.getIdentifierLoc());
2608    if (FTI.TypeQuals & Qualifiers::Volatile)
2609      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2610        << "volatile" << SourceRange(D.getIdentifierLoc());
2611    if (FTI.TypeQuals & Qualifiers::Restrict)
2612      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2613        << "restrict" << SourceRange(D.getIdentifierLoc());
2614  }
2615
2616  // Rebuild the function type "R" without any type qualifiers (in
2617  // case any of the errors above fired) and with "void" as the
2618  // return type, since constructors don't have return types. We
2619  // *always* have to do this, because GetTypeForDeclarator will
2620  // put in a result type of "int" when none was specified.
2621  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2622  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2623                                 Proto->getNumArgs(),
2624                                 Proto->isVariadic(), 0,
2625                                 Proto->hasExceptionSpec(),
2626                                 Proto->hasAnyExceptionSpec(),
2627                                 Proto->getNumExceptions(),
2628                                 Proto->exception_begin(),
2629                                 Proto->getExtInfo());
2630}
2631
2632/// CheckConstructor - Checks a fully-formed constructor for
2633/// well-formedness, issuing any diagnostics required. Returns true if
2634/// the constructor declarator is invalid.
2635void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2636  CXXRecordDecl *ClassDecl
2637    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2638  if (!ClassDecl)
2639    return Constructor->setInvalidDecl();
2640
2641  // C++ [class.copy]p3:
2642  //   A declaration of a constructor for a class X is ill-formed if
2643  //   its first parameter is of type (optionally cv-qualified) X and
2644  //   either there are no other parameters or else all other
2645  //   parameters have default arguments.
2646  if (!Constructor->isInvalidDecl() &&
2647      ((Constructor->getNumParams() == 1) ||
2648       (Constructor->getNumParams() > 1 &&
2649        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2650      Constructor->getTemplateSpecializationKind()
2651                                              != TSK_ImplicitInstantiation) {
2652    QualType ParamType = Constructor->getParamDecl(0)->getType();
2653    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2654    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2655      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2656      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2657        << FixItHint::CreateInsertion(ParamLoc, " const &");
2658
2659      // FIXME: Rather that making the constructor invalid, we should endeavor
2660      // to fix the type.
2661      Constructor->setInvalidDecl();
2662    }
2663  }
2664
2665  // Notify the class that we've added a constructor.
2666  ClassDecl->addedConstructor(Context, Constructor);
2667}
2668
2669/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2670/// issuing any diagnostics required. Returns true on error.
2671bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2672  CXXRecordDecl *RD = Destructor->getParent();
2673
2674  if (Destructor->isVirtual()) {
2675    SourceLocation Loc;
2676
2677    if (!Destructor->isImplicit())
2678      Loc = Destructor->getLocation();
2679    else
2680      Loc = RD->getLocation();
2681
2682    // If we have a virtual destructor, look up the deallocation function
2683    FunctionDecl *OperatorDelete = 0;
2684    DeclarationName Name =
2685    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2686    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2687      return true;
2688
2689    Destructor->setOperatorDelete(OperatorDelete);
2690  }
2691
2692  return false;
2693}
2694
2695static inline bool
2696FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2697  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2698          FTI.ArgInfo[0].Param &&
2699          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2700}
2701
2702/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2703/// the well-formednes of the destructor declarator @p D with type @p
2704/// R. If there are any errors in the declarator, this routine will
2705/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2706/// will be updated to reflect a well-formed type for the destructor and
2707/// returned.
2708QualType Sema::CheckDestructorDeclarator(Declarator &D,
2709                                         FunctionDecl::StorageClass& SC) {
2710  // C++ [class.dtor]p1:
2711  //   [...] A typedef-name that names a class is a class-name
2712  //   (7.1.3); however, a typedef-name that names a class shall not
2713  //   be used as the identifier in the declarator for a destructor
2714  //   declaration.
2715  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2716  if (isa<TypedefType>(DeclaratorType)) {
2717    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2718      << DeclaratorType;
2719    D.setInvalidType();
2720  }
2721
2722  // C++ [class.dtor]p2:
2723  //   A destructor is used to destroy objects of its class type. A
2724  //   destructor takes no parameters, and no return type can be
2725  //   specified for it (not even void). The address of a destructor
2726  //   shall not be taken. A destructor shall not be static. A
2727  //   destructor can be invoked for a const, volatile or const
2728  //   volatile object. A destructor shall not be declared const,
2729  //   volatile or const volatile (9.3.2).
2730  if (SC == FunctionDecl::Static) {
2731    if (!D.isInvalidType())
2732      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2733        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2734        << SourceRange(D.getIdentifierLoc());
2735    SC = FunctionDecl::None;
2736    D.setInvalidType();
2737  }
2738  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2739    // Destructors don't have return types, but the parser will
2740    // happily parse something like:
2741    //
2742    //   class X {
2743    //     float ~X();
2744    //   };
2745    //
2746    // The return type will be eliminated later.
2747    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2748      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2749      << SourceRange(D.getIdentifierLoc());
2750  }
2751
2752  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2753  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2754    if (FTI.TypeQuals & Qualifiers::Const)
2755      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2756        << "const" << SourceRange(D.getIdentifierLoc());
2757    if (FTI.TypeQuals & Qualifiers::Volatile)
2758      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2759        << "volatile" << SourceRange(D.getIdentifierLoc());
2760    if (FTI.TypeQuals & Qualifiers::Restrict)
2761      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2762        << "restrict" << SourceRange(D.getIdentifierLoc());
2763    D.setInvalidType();
2764  }
2765
2766  // Make sure we don't have any parameters.
2767  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2768    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2769
2770    // Delete the parameters.
2771    FTI.freeArgs();
2772    D.setInvalidType();
2773  }
2774
2775  // Make sure the destructor isn't variadic.
2776  if (FTI.isVariadic) {
2777    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2778    D.setInvalidType();
2779  }
2780
2781  // Rebuild the function type "R" without any type qualifiers or
2782  // parameters (in case any of the errors above fired) and with
2783  // "void" as the return type, since destructors don't have return
2784  // types. We *always* have to do this, because GetTypeForDeclarator
2785  // will put in a result type of "int" when none was specified.
2786  // FIXME: Exceptions!
2787  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2788                                 false, false, 0, 0, FunctionType::ExtInfo());
2789}
2790
2791/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2792/// well-formednes of the conversion function declarator @p D with
2793/// type @p R. If there are any errors in the declarator, this routine
2794/// will emit diagnostics and return true. Otherwise, it will return
2795/// false. Either way, the type @p R will be updated to reflect a
2796/// well-formed type for the conversion operator.
2797void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2798                                     FunctionDecl::StorageClass& SC) {
2799  // C++ [class.conv.fct]p1:
2800  //   Neither parameter types nor return type can be specified. The
2801  //   type of a conversion function (8.3.5) is "function taking no
2802  //   parameter returning conversion-type-id."
2803  if (SC == FunctionDecl::Static) {
2804    if (!D.isInvalidType())
2805      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2806        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2807        << SourceRange(D.getIdentifierLoc());
2808    D.setInvalidType();
2809    SC = FunctionDecl::None;
2810  }
2811  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2812    // Conversion functions don't have return types, but the parser will
2813    // happily parse something like:
2814    //
2815    //   class X {
2816    //     float operator bool();
2817    //   };
2818    //
2819    // The return type will be changed later anyway.
2820    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2821      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2822      << SourceRange(D.getIdentifierLoc());
2823  }
2824
2825  // Make sure we don't have any parameters.
2826  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2827    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2828
2829    // Delete the parameters.
2830    D.getTypeObject(0).Fun.freeArgs();
2831    D.setInvalidType();
2832  }
2833
2834  // Make sure the conversion function isn't variadic.
2835  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2836    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2837    D.setInvalidType();
2838  }
2839
2840  // C++ [class.conv.fct]p4:
2841  //   The conversion-type-id shall not represent a function type nor
2842  //   an array type.
2843  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2844  if (ConvType->isArrayType()) {
2845    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2846    ConvType = Context.getPointerType(ConvType);
2847    D.setInvalidType();
2848  } else if (ConvType->isFunctionType()) {
2849    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2850    ConvType = Context.getPointerType(ConvType);
2851    D.setInvalidType();
2852  }
2853
2854  // Rebuild the function type "R" without any parameters (in case any
2855  // of the errors above fired) and with the conversion type as the
2856  // return type.
2857  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2858  R = Context.getFunctionType(ConvType, 0, 0, false,
2859                              Proto->getTypeQuals(),
2860                              Proto->hasExceptionSpec(),
2861                              Proto->hasAnyExceptionSpec(),
2862                              Proto->getNumExceptions(),
2863                              Proto->exception_begin(),
2864                              Proto->getExtInfo());
2865
2866  // C++0x explicit conversion operators.
2867  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2868    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2869         diag::warn_explicit_conversion_functions)
2870      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2871}
2872
2873/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2874/// the declaration of the given C++ conversion function. This routine
2875/// is responsible for recording the conversion function in the C++
2876/// class, if possible.
2877Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2878  assert(Conversion && "Expected to receive a conversion function declaration");
2879
2880  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2881
2882  // Make sure we aren't redeclaring the conversion function.
2883  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2884
2885  // C++ [class.conv.fct]p1:
2886  //   [...] A conversion function is never used to convert a
2887  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2888  //   same object type (or a reference to it), to a (possibly
2889  //   cv-qualified) base class of that type (or a reference to it),
2890  //   or to (possibly cv-qualified) void.
2891  // FIXME: Suppress this warning if the conversion function ends up being a
2892  // virtual function that overrides a virtual function in a base class.
2893  QualType ClassType
2894    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2895  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2896    ConvType = ConvTypeRef->getPointeeType();
2897  if (ConvType->isRecordType()) {
2898    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2899    if (ConvType == ClassType)
2900      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2901        << ClassType;
2902    else if (IsDerivedFrom(ClassType, ConvType))
2903      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2904        <<  ClassType << ConvType;
2905  } else if (ConvType->isVoidType()) {
2906    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2907      << ClassType << ConvType;
2908  }
2909
2910  if (Conversion->getPrimaryTemplate()) {
2911    // ignore specializations
2912  } else if (Conversion->getPreviousDeclaration()) {
2913    if (FunctionTemplateDecl *ConversionTemplate
2914                                  = Conversion->getDescribedFunctionTemplate()) {
2915      if (ClassDecl->replaceConversion(
2916                                   ConversionTemplate->getPreviousDeclaration(),
2917                                       ConversionTemplate))
2918        return DeclPtrTy::make(ConversionTemplate);
2919    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2920                                            Conversion))
2921      return DeclPtrTy::make(Conversion);
2922    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2923  } else if (FunctionTemplateDecl *ConversionTemplate
2924               = Conversion->getDescribedFunctionTemplate())
2925    ClassDecl->addConversionFunction(ConversionTemplate);
2926  else
2927    ClassDecl->addConversionFunction(Conversion);
2928
2929  return DeclPtrTy::make(Conversion);
2930}
2931
2932//===----------------------------------------------------------------------===//
2933// Namespace Handling
2934//===----------------------------------------------------------------------===//
2935
2936/// ActOnStartNamespaceDef - This is called at the start of a namespace
2937/// definition.
2938Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2939                                             SourceLocation IdentLoc,
2940                                             IdentifierInfo *II,
2941                                             SourceLocation LBrace,
2942                                             AttributeList *AttrList) {
2943  NamespaceDecl *Namespc =
2944      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2945  Namespc->setLBracLoc(LBrace);
2946
2947  Scope *DeclRegionScope = NamespcScope->getParent();
2948
2949  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2950
2951  if (II) {
2952    // C++ [namespace.def]p2:
2953    // The identifier in an original-namespace-definition shall not have been
2954    // previously defined in the declarative region in which the
2955    // original-namespace-definition appears. The identifier in an
2956    // original-namespace-definition is the name of the namespace. Subsequently
2957    // in that declarative region, it is treated as an original-namespace-name.
2958
2959    NamedDecl *PrevDecl
2960      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2961                         ForRedeclaration);
2962
2963    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2964      // This is an extended namespace definition.
2965      // Attach this namespace decl to the chain of extended namespace
2966      // definitions.
2967      OrigNS->setNextNamespace(Namespc);
2968      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2969
2970      // Remove the previous declaration from the scope.
2971      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2972        IdResolver.RemoveDecl(OrigNS);
2973        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2974      }
2975    } else if (PrevDecl) {
2976      // This is an invalid name redefinition.
2977      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2978       << Namespc->getDeclName();
2979      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2980      Namespc->setInvalidDecl();
2981      // Continue on to push Namespc as current DeclContext and return it.
2982    } else if (II->isStr("std") &&
2983               CurContext->getLookupContext()->isTranslationUnit()) {
2984      // This is the first "real" definition of the namespace "std", so update
2985      // our cache of the "std" namespace to point at this definition.
2986      if (StdNamespace) {
2987        // We had already defined a dummy namespace "std". Link this new
2988        // namespace definition to the dummy namespace "std".
2989        StdNamespace->setNextNamespace(Namespc);
2990        StdNamespace->setLocation(IdentLoc);
2991        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2992      }
2993
2994      // Make our StdNamespace cache point at the first real definition of the
2995      // "std" namespace.
2996      StdNamespace = Namespc;
2997    }
2998
2999    PushOnScopeChains(Namespc, DeclRegionScope);
3000  } else {
3001    // Anonymous namespaces.
3002    assert(Namespc->isAnonymousNamespace());
3003
3004    // Link the anonymous namespace into its parent.
3005    NamespaceDecl *PrevDecl;
3006    DeclContext *Parent = CurContext->getLookupContext();
3007    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3008      PrevDecl = TU->getAnonymousNamespace();
3009      TU->setAnonymousNamespace(Namespc);
3010    } else {
3011      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3012      PrevDecl = ND->getAnonymousNamespace();
3013      ND->setAnonymousNamespace(Namespc);
3014    }
3015
3016    // Link the anonymous namespace with its previous declaration.
3017    if (PrevDecl) {
3018      assert(PrevDecl->isAnonymousNamespace());
3019      assert(!PrevDecl->getNextNamespace());
3020      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3021      PrevDecl->setNextNamespace(Namespc);
3022    }
3023
3024    CurContext->addDecl(Namespc);
3025
3026    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3027    //   behaves as if it were replaced by
3028    //     namespace unique { /* empty body */ }
3029    //     using namespace unique;
3030    //     namespace unique { namespace-body }
3031    //   where all occurrences of 'unique' in a translation unit are
3032    //   replaced by the same identifier and this identifier differs
3033    //   from all other identifiers in the entire program.
3034
3035    // We just create the namespace with an empty name and then add an
3036    // implicit using declaration, just like the standard suggests.
3037    //
3038    // CodeGen enforces the "universally unique" aspect by giving all
3039    // declarations semantically contained within an anonymous
3040    // namespace internal linkage.
3041
3042    if (!PrevDecl) {
3043      UsingDirectiveDecl* UD
3044        = UsingDirectiveDecl::Create(Context, CurContext,
3045                                     /* 'using' */ LBrace,
3046                                     /* 'namespace' */ SourceLocation(),
3047                                     /* qualifier */ SourceRange(),
3048                                     /* NNS */ NULL,
3049                                     /* identifier */ SourceLocation(),
3050                                     Namespc,
3051                                     /* Ancestor */ CurContext);
3052      UD->setImplicit();
3053      CurContext->addDecl(UD);
3054    }
3055  }
3056
3057  // Although we could have an invalid decl (i.e. the namespace name is a
3058  // redefinition), push it as current DeclContext and try to continue parsing.
3059  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3060  // for the namespace has the declarations that showed up in that particular
3061  // namespace definition.
3062  PushDeclContext(NamespcScope, Namespc);
3063  return DeclPtrTy::make(Namespc);
3064}
3065
3066/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3067/// is a namespace alias, returns the namespace it points to.
3068static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3069  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3070    return AD->getNamespace();
3071  return dyn_cast_or_null<NamespaceDecl>(D);
3072}
3073
3074/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3075/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3076void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3077  Decl *Dcl = D.getAs<Decl>();
3078  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3079  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3080  Namespc->setRBracLoc(RBrace);
3081  PopDeclContext();
3082}
3083
3084Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3085                                          SourceLocation UsingLoc,
3086                                          SourceLocation NamespcLoc,
3087                                          CXXScopeSpec &SS,
3088                                          SourceLocation IdentLoc,
3089                                          IdentifierInfo *NamespcName,
3090                                          AttributeList *AttrList) {
3091  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3092  assert(NamespcName && "Invalid NamespcName.");
3093  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3094  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3095
3096  UsingDirectiveDecl *UDir = 0;
3097
3098  // Lookup namespace name.
3099  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3100  LookupParsedName(R, S, &SS);
3101  if (R.isAmbiguous())
3102    return DeclPtrTy();
3103
3104  if (!R.empty()) {
3105    NamedDecl *Named = R.getFoundDecl();
3106    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3107        && "expected namespace decl");
3108    // C++ [namespace.udir]p1:
3109    //   A using-directive specifies that the names in the nominated
3110    //   namespace can be used in the scope in which the
3111    //   using-directive appears after the using-directive. During
3112    //   unqualified name lookup (3.4.1), the names appear as if they
3113    //   were declared in the nearest enclosing namespace which
3114    //   contains both the using-directive and the nominated
3115    //   namespace. [Note: in this context, "contains" means "contains
3116    //   directly or indirectly". ]
3117
3118    // Find enclosing context containing both using-directive and
3119    // nominated namespace.
3120    NamespaceDecl *NS = getNamespaceDecl(Named);
3121    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3122    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3123      CommonAncestor = CommonAncestor->getParent();
3124
3125    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3126                                      SS.getRange(),
3127                                      (NestedNameSpecifier *)SS.getScopeRep(),
3128                                      IdentLoc, Named, CommonAncestor);
3129    PushUsingDirective(S, UDir);
3130  } else {
3131    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3132  }
3133
3134  // FIXME: We ignore attributes for now.
3135  delete AttrList;
3136  return DeclPtrTy::make(UDir);
3137}
3138
3139void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3140  // If scope has associated entity, then using directive is at namespace
3141  // or translation unit scope. We add UsingDirectiveDecls, into
3142  // it's lookup structure.
3143  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3144    Ctx->addDecl(UDir);
3145  else
3146    // Otherwise it is block-sope. using-directives will affect lookup
3147    // only to the end of scope.
3148    S->PushUsingDirective(DeclPtrTy::make(UDir));
3149}
3150
3151
3152Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3153                                            AccessSpecifier AS,
3154                                            bool HasUsingKeyword,
3155                                            SourceLocation UsingLoc,
3156                                            CXXScopeSpec &SS,
3157                                            UnqualifiedId &Name,
3158                                            AttributeList *AttrList,
3159                                            bool IsTypeName,
3160                                            SourceLocation TypenameLoc) {
3161  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3162
3163  switch (Name.getKind()) {
3164  case UnqualifiedId::IK_Identifier:
3165  case UnqualifiedId::IK_OperatorFunctionId:
3166  case UnqualifiedId::IK_LiteralOperatorId:
3167  case UnqualifiedId::IK_ConversionFunctionId:
3168    break;
3169
3170  case UnqualifiedId::IK_ConstructorName:
3171  case UnqualifiedId::IK_ConstructorTemplateId:
3172    // C++0x inherited constructors.
3173    if (getLangOptions().CPlusPlus0x) break;
3174
3175    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3176      << SS.getRange();
3177    return DeclPtrTy();
3178
3179  case UnqualifiedId::IK_DestructorName:
3180    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3181      << SS.getRange();
3182    return DeclPtrTy();
3183
3184  case UnqualifiedId::IK_TemplateId:
3185    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3186      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3187    return DeclPtrTy();
3188  }
3189
3190  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3191  if (!TargetName)
3192    return DeclPtrTy();
3193
3194  // Warn about using declarations.
3195  // TODO: store that the declaration was written without 'using' and
3196  // talk about access decls instead of using decls in the
3197  // diagnostics.
3198  if (!HasUsingKeyword) {
3199    UsingLoc = Name.getSourceRange().getBegin();
3200
3201    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3202      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3203  }
3204
3205  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3206                                        Name.getSourceRange().getBegin(),
3207                                        TargetName, AttrList,
3208                                        /* IsInstantiation */ false,
3209                                        IsTypeName, TypenameLoc);
3210  if (UD)
3211    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3212
3213  return DeclPtrTy::make(UD);
3214}
3215
3216/// Determines whether to create a using shadow decl for a particular
3217/// decl, given the set of decls existing prior to this using lookup.
3218bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3219                                const LookupResult &Previous) {
3220  // Diagnose finding a decl which is not from a base class of the
3221  // current class.  We do this now because there are cases where this
3222  // function will silently decide not to build a shadow decl, which
3223  // will pre-empt further diagnostics.
3224  //
3225  // We don't need to do this in C++0x because we do the check once on
3226  // the qualifier.
3227  //
3228  // FIXME: diagnose the following if we care enough:
3229  //   struct A { int foo; };
3230  //   struct B : A { using A::foo; };
3231  //   template <class T> struct C : A {};
3232  //   template <class T> struct D : C<T> { using B::foo; } // <---
3233  // This is invalid (during instantiation) in C++03 because B::foo
3234  // resolves to the using decl in B, which is not a base class of D<T>.
3235  // We can't diagnose it immediately because C<T> is an unknown
3236  // specialization.  The UsingShadowDecl in D<T> then points directly
3237  // to A::foo, which will look well-formed when we instantiate.
3238  // The right solution is to not collapse the shadow-decl chain.
3239  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3240    DeclContext *OrigDC = Orig->getDeclContext();
3241
3242    // Handle enums and anonymous structs.
3243    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3244    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3245    while (OrigRec->isAnonymousStructOrUnion())
3246      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3247
3248    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3249      if (OrigDC == CurContext) {
3250        Diag(Using->getLocation(),
3251             diag::err_using_decl_nested_name_specifier_is_current_class)
3252          << Using->getNestedNameRange();
3253        Diag(Orig->getLocation(), diag::note_using_decl_target);
3254        return true;
3255      }
3256
3257      Diag(Using->getNestedNameRange().getBegin(),
3258           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3259        << Using->getTargetNestedNameDecl()
3260        << cast<CXXRecordDecl>(CurContext)
3261        << Using->getNestedNameRange();
3262      Diag(Orig->getLocation(), diag::note_using_decl_target);
3263      return true;
3264    }
3265  }
3266
3267  if (Previous.empty()) return false;
3268
3269  NamedDecl *Target = Orig;
3270  if (isa<UsingShadowDecl>(Target))
3271    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3272
3273  // If the target happens to be one of the previous declarations, we
3274  // don't have a conflict.
3275  //
3276  // FIXME: but we might be increasing its access, in which case we
3277  // should redeclare it.
3278  NamedDecl *NonTag = 0, *Tag = 0;
3279  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3280         I != E; ++I) {
3281    NamedDecl *D = (*I)->getUnderlyingDecl();
3282    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3283      return false;
3284
3285    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3286  }
3287
3288  if (Target->isFunctionOrFunctionTemplate()) {
3289    FunctionDecl *FD;
3290    if (isa<FunctionTemplateDecl>(Target))
3291      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3292    else
3293      FD = cast<FunctionDecl>(Target);
3294
3295    NamedDecl *OldDecl = 0;
3296    switch (CheckOverload(FD, Previous, OldDecl)) {
3297    case Ovl_Overload:
3298      return false;
3299
3300    case Ovl_NonFunction:
3301      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3302      break;
3303
3304    // We found a decl with the exact signature.
3305    case Ovl_Match:
3306      if (isa<UsingShadowDecl>(OldDecl)) {
3307        // Silently ignore the possible conflict.
3308        return false;
3309      }
3310
3311      // If we're in a record, we want to hide the target, so we
3312      // return true (without a diagnostic) to tell the caller not to
3313      // build a shadow decl.
3314      if (CurContext->isRecord())
3315        return true;
3316
3317      // If we're not in a record, this is an error.
3318      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3319      break;
3320    }
3321
3322    Diag(Target->getLocation(), diag::note_using_decl_target);
3323    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3324    return true;
3325  }
3326
3327  // Target is not a function.
3328
3329  if (isa<TagDecl>(Target)) {
3330    // No conflict between a tag and a non-tag.
3331    if (!Tag) return false;
3332
3333    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3334    Diag(Target->getLocation(), diag::note_using_decl_target);
3335    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3336    return true;
3337  }
3338
3339  // No conflict between a tag and a non-tag.
3340  if (!NonTag) return false;
3341
3342  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3343  Diag(Target->getLocation(), diag::note_using_decl_target);
3344  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3345  return true;
3346}
3347
3348/// Builds a shadow declaration corresponding to a 'using' declaration.
3349UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3350                                            UsingDecl *UD,
3351                                            NamedDecl *Orig) {
3352
3353  // If we resolved to another shadow declaration, just coalesce them.
3354  NamedDecl *Target = Orig;
3355  if (isa<UsingShadowDecl>(Target)) {
3356    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3357    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3358  }
3359
3360  UsingShadowDecl *Shadow
3361    = UsingShadowDecl::Create(Context, CurContext,
3362                              UD->getLocation(), UD, Target);
3363  UD->addShadowDecl(Shadow);
3364
3365  if (S)
3366    PushOnScopeChains(Shadow, S);
3367  else
3368    CurContext->addDecl(Shadow);
3369  Shadow->setAccess(UD->getAccess());
3370
3371  // Register it as a conversion if appropriate.
3372  if (Shadow->getDeclName().getNameKind()
3373        == DeclarationName::CXXConversionFunctionName)
3374    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3375
3376  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3377    Shadow->setInvalidDecl();
3378
3379  return Shadow;
3380}
3381
3382/// Hides a using shadow declaration.  This is required by the current
3383/// using-decl implementation when a resolvable using declaration in a
3384/// class is followed by a declaration which would hide or override
3385/// one or more of the using decl's targets; for example:
3386///
3387///   struct Base { void foo(int); };
3388///   struct Derived : Base {
3389///     using Base::foo;
3390///     void foo(int);
3391///   };
3392///
3393/// The governing language is C++03 [namespace.udecl]p12:
3394///
3395///   When a using-declaration brings names from a base class into a
3396///   derived class scope, member functions in the derived class
3397///   override and/or hide member functions with the same name and
3398///   parameter types in a base class (rather than conflicting).
3399///
3400/// There are two ways to implement this:
3401///   (1) optimistically create shadow decls when they're not hidden
3402///       by existing declarations, or
3403///   (2) don't create any shadow decls (or at least don't make them
3404///       visible) until we've fully parsed/instantiated the class.
3405/// The problem with (1) is that we might have to retroactively remove
3406/// a shadow decl, which requires several O(n) operations because the
3407/// decl structures are (very reasonably) not designed for removal.
3408/// (2) avoids this but is very fiddly and phase-dependent.
3409void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3410  if (Shadow->getDeclName().getNameKind() ==
3411        DeclarationName::CXXConversionFunctionName)
3412    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3413
3414  // Remove it from the DeclContext...
3415  Shadow->getDeclContext()->removeDecl(Shadow);
3416
3417  // ...and the scope, if applicable...
3418  if (S) {
3419    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3420    IdResolver.RemoveDecl(Shadow);
3421  }
3422
3423  // ...and the using decl.
3424  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3425
3426  // TODO: complain somehow if Shadow was used.  It shouldn't
3427  // be possible for this to happen, because...?
3428}
3429
3430/// Builds a using declaration.
3431///
3432/// \param IsInstantiation - Whether this call arises from an
3433///   instantiation of an unresolved using declaration.  We treat
3434///   the lookup differently for these declarations.
3435NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3436                                       SourceLocation UsingLoc,
3437                                       CXXScopeSpec &SS,
3438                                       SourceLocation IdentLoc,
3439                                       DeclarationName Name,
3440                                       AttributeList *AttrList,
3441                                       bool IsInstantiation,
3442                                       bool IsTypeName,
3443                                       SourceLocation TypenameLoc) {
3444  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3445  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3446
3447  // FIXME: We ignore attributes for now.
3448  delete AttrList;
3449
3450  if (SS.isEmpty()) {
3451    Diag(IdentLoc, diag::err_using_requires_qualname);
3452    return 0;
3453  }
3454
3455  // Do the redeclaration lookup in the current scope.
3456  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3457                        ForRedeclaration);
3458  Previous.setHideTags(false);
3459  if (S) {
3460    LookupName(Previous, S);
3461
3462    // It is really dumb that we have to do this.
3463    LookupResult::Filter F = Previous.makeFilter();
3464    while (F.hasNext()) {
3465      NamedDecl *D = F.next();
3466      if (!isDeclInScope(D, CurContext, S))
3467        F.erase();
3468    }
3469    F.done();
3470  } else {
3471    assert(IsInstantiation && "no scope in non-instantiation");
3472    assert(CurContext->isRecord() && "scope not record in instantiation");
3473    LookupQualifiedName(Previous, CurContext);
3474  }
3475
3476  NestedNameSpecifier *NNS =
3477    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3478
3479  // Check for invalid redeclarations.
3480  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3481    return 0;
3482
3483  // Check for bad qualifiers.
3484  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3485    return 0;
3486
3487  DeclContext *LookupContext = computeDeclContext(SS);
3488  NamedDecl *D;
3489  if (!LookupContext) {
3490    if (IsTypeName) {
3491      // FIXME: not all declaration name kinds are legal here
3492      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3493                                              UsingLoc, TypenameLoc,
3494                                              SS.getRange(), NNS,
3495                                              IdentLoc, Name);
3496    } else {
3497      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3498                                           UsingLoc, SS.getRange(), NNS,
3499                                           IdentLoc, Name);
3500    }
3501  } else {
3502    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3503                          SS.getRange(), UsingLoc, NNS, Name,
3504                          IsTypeName);
3505  }
3506  D->setAccess(AS);
3507  CurContext->addDecl(D);
3508
3509  if (!LookupContext) return D;
3510  UsingDecl *UD = cast<UsingDecl>(D);
3511
3512  if (RequireCompleteDeclContext(SS)) {
3513    UD->setInvalidDecl();
3514    return UD;
3515  }
3516
3517  // Look up the target name.
3518
3519  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3520
3521  // Unlike most lookups, we don't always want to hide tag
3522  // declarations: tag names are visible through the using declaration
3523  // even if hidden by ordinary names, *except* in a dependent context
3524  // where it's important for the sanity of two-phase lookup.
3525  if (!IsInstantiation)
3526    R.setHideTags(false);
3527
3528  LookupQualifiedName(R, LookupContext);
3529
3530  if (R.empty()) {
3531    Diag(IdentLoc, diag::err_no_member)
3532      << Name << LookupContext << SS.getRange();
3533    UD->setInvalidDecl();
3534    return UD;
3535  }
3536
3537  if (R.isAmbiguous()) {
3538    UD->setInvalidDecl();
3539    return UD;
3540  }
3541
3542  if (IsTypeName) {
3543    // If we asked for a typename and got a non-type decl, error out.
3544    if (!R.getAsSingle<TypeDecl>()) {
3545      Diag(IdentLoc, diag::err_using_typename_non_type);
3546      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3547        Diag((*I)->getUnderlyingDecl()->getLocation(),
3548             diag::note_using_decl_target);
3549      UD->setInvalidDecl();
3550      return UD;
3551    }
3552  } else {
3553    // If we asked for a non-typename and we got a type, error out,
3554    // but only if this is an instantiation of an unresolved using
3555    // decl.  Otherwise just silently find the type name.
3556    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3557      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3558      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3559      UD->setInvalidDecl();
3560      return UD;
3561    }
3562  }
3563
3564  // C++0x N2914 [namespace.udecl]p6:
3565  // A using-declaration shall not name a namespace.
3566  if (R.getAsSingle<NamespaceDecl>()) {
3567    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3568      << SS.getRange();
3569    UD->setInvalidDecl();
3570    return UD;
3571  }
3572
3573  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3574    if (!CheckUsingShadowDecl(UD, *I, Previous))
3575      BuildUsingShadowDecl(S, UD, *I);
3576  }
3577
3578  return UD;
3579}
3580
3581/// Checks that the given using declaration is not an invalid
3582/// redeclaration.  Note that this is checking only for the using decl
3583/// itself, not for any ill-formedness among the UsingShadowDecls.
3584bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3585                                       bool isTypeName,
3586                                       const CXXScopeSpec &SS,
3587                                       SourceLocation NameLoc,
3588                                       const LookupResult &Prev) {
3589  // C++03 [namespace.udecl]p8:
3590  // C++0x [namespace.udecl]p10:
3591  //   A using-declaration is a declaration and can therefore be used
3592  //   repeatedly where (and only where) multiple declarations are
3593  //   allowed.
3594  // That's only in file contexts.
3595  if (CurContext->getLookupContext()->isFileContext())
3596    return false;
3597
3598  NestedNameSpecifier *Qual
3599    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3600
3601  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3602    NamedDecl *D = *I;
3603
3604    bool DTypename;
3605    NestedNameSpecifier *DQual;
3606    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3607      DTypename = UD->isTypeName();
3608      DQual = UD->getTargetNestedNameDecl();
3609    } else if (UnresolvedUsingValueDecl *UD
3610                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3611      DTypename = false;
3612      DQual = UD->getTargetNestedNameSpecifier();
3613    } else if (UnresolvedUsingTypenameDecl *UD
3614                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3615      DTypename = true;
3616      DQual = UD->getTargetNestedNameSpecifier();
3617    } else continue;
3618
3619    // using decls differ if one says 'typename' and the other doesn't.
3620    // FIXME: non-dependent using decls?
3621    if (isTypeName != DTypename) continue;
3622
3623    // using decls differ if they name different scopes (but note that
3624    // template instantiation can cause this check to trigger when it
3625    // didn't before instantiation).
3626    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3627        Context.getCanonicalNestedNameSpecifier(DQual))
3628      continue;
3629
3630    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3631    Diag(D->getLocation(), diag::note_using_decl) << 1;
3632    return true;
3633  }
3634
3635  return false;
3636}
3637
3638
3639/// Checks that the given nested-name qualifier used in a using decl
3640/// in the current context is appropriately related to the current
3641/// scope.  If an error is found, diagnoses it and returns true.
3642bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3643                                   const CXXScopeSpec &SS,
3644                                   SourceLocation NameLoc) {
3645  DeclContext *NamedContext = computeDeclContext(SS);
3646
3647  if (!CurContext->isRecord()) {
3648    // C++03 [namespace.udecl]p3:
3649    // C++0x [namespace.udecl]p8:
3650    //   A using-declaration for a class member shall be a member-declaration.
3651
3652    // If we weren't able to compute a valid scope, it must be a
3653    // dependent class scope.
3654    if (!NamedContext || NamedContext->isRecord()) {
3655      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3656        << SS.getRange();
3657      return true;
3658    }
3659
3660    // Otherwise, everything is known to be fine.
3661    return false;
3662  }
3663
3664  // The current scope is a record.
3665
3666  // If the named context is dependent, we can't decide much.
3667  if (!NamedContext) {
3668    // FIXME: in C++0x, we can diagnose if we can prove that the
3669    // nested-name-specifier does not refer to a base class, which is
3670    // still possible in some cases.
3671
3672    // Otherwise we have to conservatively report that things might be
3673    // okay.
3674    return false;
3675  }
3676
3677  if (!NamedContext->isRecord()) {
3678    // Ideally this would point at the last name in the specifier,
3679    // but we don't have that level of source info.
3680    Diag(SS.getRange().getBegin(),
3681         diag::err_using_decl_nested_name_specifier_is_not_class)
3682      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3683    return true;
3684  }
3685
3686  if (getLangOptions().CPlusPlus0x) {
3687    // C++0x [namespace.udecl]p3:
3688    //   In a using-declaration used as a member-declaration, the
3689    //   nested-name-specifier shall name a base class of the class
3690    //   being defined.
3691
3692    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3693                                 cast<CXXRecordDecl>(NamedContext))) {
3694      if (CurContext == NamedContext) {
3695        Diag(NameLoc,
3696             diag::err_using_decl_nested_name_specifier_is_current_class)
3697          << SS.getRange();
3698        return true;
3699      }
3700
3701      Diag(SS.getRange().getBegin(),
3702           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3703        << (NestedNameSpecifier*) SS.getScopeRep()
3704        << cast<CXXRecordDecl>(CurContext)
3705        << SS.getRange();
3706      return true;
3707    }
3708
3709    return false;
3710  }
3711
3712  // C++03 [namespace.udecl]p4:
3713  //   A using-declaration used as a member-declaration shall refer
3714  //   to a member of a base class of the class being defined [etc.].
3715
3716  // Salient point: SS doesn't have to name a base class as long as
3717  // lookup only finds members from base classes.  Therefore we can
3718  // diagnose here only if we can prove that that can't happen,
3719  // i.e. if the class hierarchies provably don't intersect.
3720
3721  // TODO: it would be nice if "definitely valid" results were cached
3722  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3723  // need to be repeated.
3724
3725  struct UserData {
3726    llvm::DenseSet<const CXXRecordDecl*> Bases;
3727
3728    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3729      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3730      Data->Bases.insert(Base);
3731      return true;
3732    }
3733
3734    bool hasDependentBases(const CXXRecordDecl *Class) {
3735      return !Class->forallBases(collect, this);
3736    }
3737
3738    /// Returns true if the base is dependent or is one of the
3739    /// accumulated base classes.
3740    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3741      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3742      return !Data->Bases.count(Base);
3743    }
3744
3745    bool mightShareBases(const CXXRecordDecl *Class) {
3746      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3747    }
3748  };
3749
3750  UserData Data;
3751
3752  // Returns false if we find a dependent base.
3753  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3754    return false;
3755
3756  // Returns false if the class has a dependent base or if it or one
3757  // of its bases is present in the base set of the current context.
3758  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3759    return false;
3760
3761  Diag(SS.getRange().getBegin(),
3762       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3763    << (NestedNameSpecifier*) SS.getScopeRep()
3764    << cast<CXXRecordDecl>(CurContext)
3765    << SS.getRange();
3766
3767  return true;
3768}
3769
3770Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3771                                             SourceLocation NamespaceLoc,
3772                                             SourceLocation AliasLoc,
3773                                             IdentifierInfo *Alias,
3774                                             CXXScopeSpec &SS,
3775                                             SourceLocation IdentLoc,
3776                                             IdentifierInfo *Ident) {
3777
3778  // Lookup the namespace name.
3779  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3780  LookupParsedName(R, S, &SS);
3781
3782  // Check if we have a previous declaration with the same name.
3783  if (NamedDecl *PrevDecl
3784        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3785    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3786      // We already have an alias with the same name that points to the same
3787      // namespace, so don't create a new one.
3788      // FIXME: At some point, we'll want to create the (redundant)
3789      // declaration to maintain better source information.
3790      if (!R.isAmbiguous() && !R.empty() &&
3791          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3792        return DeclPtrTy();
3793    }
3794
3795    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3796      diag::err_redefinition_different_kind;
3797    Diag(AliasLoc, DiagID) << Alias;
3798    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3799    return DeclPtrTy();
3800  }
3801
3802  if (R.isAmbiguous())
3803    return DeclPtrTy();
3804
3805  if (R.empty()) {
3806    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3807    return DeclPtrTy();
3808  }
3809
3810  NamespaceAliasDecl *AliasDecl =
3811    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3812                               Alias, SS.getRange(),
3813                               (NestedNameSpecifier *)SS.getScopeRep(),
3814                               IdentLoc, R.getFoundDecl());
3815
3816  PushOnScopeChains(AliasDecl, S);
3817  return DeclPtrTy::make(AliasDecl);
3818}
3819
3820void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3821                                            CXXConstructorDecl *Constructor) {
3822  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3823          !Constructor->isUsed()) &&
3824    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3825
3826  CXXRecordDecl *ClassDecl
3827    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3828  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3829
3830  DeclContext *PreviousContext = CurContext;
3831  CurContext = Constructor;
3832  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3833    Diag(CurrentLocation, diag::note_member_synthesized_at)
3834      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3835    Constructor->setInvalidDecl();
3836  } else {
3837    Constructor->setUsed();
3838  }
3839  CurContext = PreviousContext;
3840}
3841
3842void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3843                                    CXXDestructorDecl *Destructor) {
3844  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3845         "DefineImplicitDestructor - call it for implicit default dtor");
3846  CXXRecordDecl *ClassDecl = Destructor->getParent();
3847  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3848
3849  DeclContext *PreviousContext = CurContext;
3850  CurContext = Destructor;
3851
3852  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3853                                         Destructor->getParent());
3854
3855  // FIXME: If CheckDestructor fails, we should emit a note about where the
3856  // implicit destructor was needed.
3857  if (CheckDestructor(Destructor)) {
3858    Diag(CurrentLocation, diag::note_member_synthesized_at)
3859      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3860
3861    Destructor->setInvalidDecl();
3862    CurContext = PreviousContext;
3863
3864    return;
3865  }
3866  CurContext = PreviousContext;
3867
3868  Destructor->setUsed();
3869}
3870
3871void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3872                                          CXXMethodDecl *MethodDecl) {
3873  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3874          MethodDecl->getOverloadedOperator() == OO_Equal &&
3875          !MethodDecl->isUsed()) &&
3876         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3877
3878  CXXRecordDecl *ClassDecl
3879    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3880
3881  DeclContext *PreviousContext = CurContext;
3882  CurContext = MethodDecl;
3883
3884  // C++[class.copy] p12
3885  // Before the implicitly-declared copy assignment operator for a class is
3886  // implicitly defined, all implicitly-declared copy assignment operators
3887  // for its direct base classes and its nonstatic data members shall have
3888  // been implicitly defined.
3889  bool err = false;
3890  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3891       E = ClassDecl->bases_end(); Base != E; ++Base) {
3892    CXXRecordDecl *BaseClassDecl
3893      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3894    if (CXXMethodDecl *BaseAssignOpMethod =
3895          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3896                                  BaseClassDecl)) {
3897      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3898                              BaseAssignOpMethod,
3899                              PDiag(diag::err_access_assign_base)
3900                                << Base->getType());
3901
3902      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3903    }
3904  }
3905  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3906       E = ClassDecl->field_end(); Field != E; ++Field) {
3907    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3908    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3909      FieldType = Array->getElementType();
3910    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3911      CXXRecordDecl *FieldClassDecl
3912        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3913      if (CXXMethodDecl *FieldAssignOpMethod =
3914          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3915                                  FieldClassDecl)) {
3916        CheckDirectMemberAccess(Field->getLocation(),
3917                                FieldAssignOpMethod,
3918                                PDiag(diag::err_access_assign_field)
3919                                  << Field->getDeclName() << Field->getType());
3920
3921        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3922      }
3923    } else if (FieldType->isReferenceType()) {
3924      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3925      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3926      Diag(Field->getLocation(), diag::note_declared_at);
3927      Diag(CurrentLocation, diag::note_first_required_here);
3928      err = true;
3929    } else if (FieldType.isConstQualified()) {
3930      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3931      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3932      Diag(Field->getLocation(), diag::note_declared_at);
3933      Diag(CurrentLocation, diag::note_first_required_here);
3934      err = true;
3935    }
3936  }
3937  if (!err)
3938    MethodDecl->setUsed();
3939
3940  CurContext = PreviousContext;
3941}
3942
3943CXXMethodDecl *
3944Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3945                              ParmVarDecl *ParmDecl,
3946                              CXXRecordDecl *ClassDecl) {
3947  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3948  QualType RHSType(LHSType);
3949  // If class's assignment operator argument is const/volatile qualified,
3950  // look for operator = (const/volatile B&). Otherwise, look for
3951  // operator = (B&).
3952  RHSType = Context.getCVRQualifiedType(RHSType,
3953                                     ParmDecl->getType().getCVRQualifiers());
3954  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3955                                                           LHSType,
3956                                                           SourceLocation()));
3957  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3958                                                           RHSType,
3959                                                           CurrentLocation));
3960  Expr *Args[2] = { &*LHS, &*RHS };
3961  OverloadCandidateSet CandidateSet(CurrentLocation);
3962  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3963                              CandidateSet);
3964  OverloadCandidateSet::iterator Best;
3965  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3966    return cast<CXXMethodDecl>(Best->Function);
3967  assert(false &&
3968         "getAssignOperatorMethod - copy assignment operator method not found");
3969  return 0;
3970}
3971
3972void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3973                                   CXXConstructorDecl *CopyConstructor,
3974                                   unsigned TypeQuals) {
3975  assert((CopyConstructor->isImplicit() &&
3976          CopyConstructor->isCopyConstructor(TypeQuals) &&
3977          !CopyConstructor->isUsed()) &&
3978         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3979
3980  CXXRecordDecl *ClassDecl
3981    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3982  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3983
3984  DeclContext *PreviousContext = CurContext;
3985  CurContext = CopyConstructor;
3986
3987  // C++ [class.copy] p209
3988  // Before the implicitly-declared copy constructor for a class is
3989  // implicitly defined, all the implicitly-declared copy constructors
3990  // for its base class and its non-static data members shall have been
3991  // implicitly defined.
3992  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3993       Base != ClassDecl->bases_end(); ++Base) {
3994    CXXRecordDecl *BaseClassDecl
3995      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3996    if (CXXConstructorDecl *BaseCopyCtor =
3997        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3998      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3999                              BaseCopyCtor,
4000                              PDiag(diag::err_access_copy_base)
4001                                << Base->getType());
4002
4003      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4004    }
4005  }
4006  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4007                                  FieldEnd = ClassDecl->field_end();
4008       Field != FieldEnd; ++Field) {
4009    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4010    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4011      FieldType = Array->getElementType();
4012    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4013      CXXRecordDecl *FieldClassDecl
4014        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4015      if (CXXConstructorDecl *FieldCopyCtor =
4016          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4017        CheckDirectMemberAccess(Field->getLocation(),
4018                                FieldCopyCtor,
4019                                PDiag(diag::err_access_copy_field)
4020                                  << Field->getDeclName() << Field->getType());
4021
4022        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4023      }
4024    }
4025  }
4026  CopyConstructor->setUsed();
4027
4028  CurContext = PreviousContext;
4029}
4030
4031Sema::OwningExprResult
4032Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4033                            CXXConstructorDecl *Constructor,
4034                            MultiExprArg ExprArgs,
4035                            bool RequiresZeroInit,
4036                            bool BaseInitialization) {
4037  bool Elidable = false;
4038
4039  // C++0x [class.copy]p34:
4040  //   When certain criteria are met, an implementation is allowed to
4041  //   omit the copy/move construction of a class object, even if the
4042  //   copy/move constructor and/or destructor for the object have
4043  //   side effects. [...]
4044  //     - when a temporary class object that has not been bound to a
4045  //       reference (12.2) would be copied/moved to a class object
4046  //       with the same cv-unqualified type, the copy/move operation
4047  //       can be omitted by constructing the temporary object
4048  //       directly into the target of the omitted copy/move
4049  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4050    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4051    Elidable = SubExpr->isTemporaryObject() &&
4052      Context.hasSameUnqualifiedType(SubExpr->getType(),
4053                           Context.getTypeDeclType(Constructor->getParent()));
4054  }
4055
4056  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4057                               Elidable, move(ExprArgs), RequiresZeroInit,
4058                               BaseInitialization);
4059}
4060
4061/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4062/// including handling of its default argument expressions.
4063Sema::OwningExprResult
4064Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4065                            CXXConstructorDecl *Constructor, bool Elidable,
4066                            MultiExprArg ExprArgs,
4067                            bool RequiresZeroInit,
4068                            bool BaseInitialization) {
4069  unsigned NumExprs = ExprArgs.size();
4070  Expr **Exprs = (Expr **)ExprArgs.release();
4071
4072  MarkDeclarationReferenced(ConstructLoc, Constructor);
4073  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4074                                        Constructor, Elidable, Exprs, NumExprs,
4075                                        RequiresZeroInit, BaseInitialization));
4076}
4077
4078bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4079                                        CXXConstructorDecl *Constructor,
4080                                        MultiExprArg Exprs) {
4081  OwningExprResult TempResult =
4082    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4083                          move(Exprs));
4084  if (TempResult.isInvalid())
4085    return true;
4086
4087  Expr *Temp = TempResult.takeAs<Expr>();
4088  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4089  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4090  VD->setInit(Temp);
4091
4092  return false;
4093}
4094
4095void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4096  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4097  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4098      !ClassDecl->hasTrivialDestructor()) {
4099    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4100    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4101    CheckDestructorAccess(VD->getLocation(), Destructor,
4102                          PDiag(diag::err_access_dtor_var)
4103                            << VD->getDeclName()
4104                            << VD->getType());
4105  }
4106}
4107
4108/// AddCXXDirectInitializerToDecl - This action is called immediately after
4109/// ActOnDeclarator, when a C++ direct initializer is present.
4110/// e.g: "int x(1);"
4111void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4112                                         SourceLocation LParenLoc,
4113                                         MultiExprArg Exprs,
4114                                         SourceLocation *CommaLocs,
4115                                         SourceLocation RParenLoc) {
4116  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4117  Decl *RealDecl = Dcl.getAs<Decl>();
4118
4119  // If there is no declaration, there was an error parsing it.  Just ignore
4120  // the initializer.
4121  if (RealDecl == 0)
4122    return;
4123
4124  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4125  if (!VDecl) {
4126    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4127    RealDecl->setInvalidDecl();
4128    return;
4129  }
4130
4131  // We will represent direct-initialization similarly to copy-initialization:
4132  //    int x(1);  -as-> int x = 1;
4133  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4134  //
4135  // Clients that want to distinguish between the two forms, can check for
4136  // direct initializer using VarDecl::hasCXXDirectInitializer().
4137  // A major benefit is that clients that don't particularly care about which
4138  // exactly form was it (like the CodeGen) can handle both cases without
4139  // special case code.
4140
4141  // C++ 8.5p11:
4142  // The form of initialization (using parentheses or '=') is generally
4143  // insignificant, but does matter when the entity being initialized has a
4144  // class type.
4145  QualType DeclInitType = VDecl->getType();
4146  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4147    DeclInitType = Context.getBaseElementType(Array);
4148
4149  if (!VDecl->getType()->isDependentType() &&
4150      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4151                          diag::err_typecheck_decl_incomplete_type)) {
4152    VDecl->setInvalidDecl();
4153    return;
4154  }
4155
4156  // The variable can not have an abstract class type.
4157  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4158                             diag::err_abstract_type_in_decl,
4159                             AbstractVariableType))
4160    VDecl->setInvalidDecl();
4161
4162  const VarDecl *Def;
4163  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4164    Diag(VDecl->getLocation(), diag::err_redefinition)
4165    << VDecl->getDeclName();
4166    Diag(Def->getLocation(), diag::note_previous_definition);
4167    VDecl->setInvalidDecl();
4168    return;
4169  }
4170
4171  // If either the declaration has a dependent type or if any of the
4172  // expressions is type-dependent, we represent the initialization
4173  // via a ParenListExpr for later use during template instantiation.
4174  if (VDecl->getType()->isDependentType() ||
4175      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4176    // Let clients know that initialization was done with a direct initializer.
4177    VDecl->setCXXDirectInitializer(true);
4178
4179    // Store the initialization expressions as a ParenListExpr.
4180    unsigned NumExprs = Exprs.size();
4181    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4182                                               (Expr **)Exprs.release(),
4183                                               NumExprs, RParenLoc));
4184    return;
4185  }
4186
4187  // Capture the variable that is being initialized and the style of
4188  // initialization.
4189  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4190
4191  // FIXME: Poor source location information.
4192  InitializationKind Kind
4193    = InitializationKind::CreateDirect(VDecl->getLocation(),
4194                                       LParenLoc, RParenLoc);
4195
4196  InitializationSequence InitSeq(*this, Entity, Kind,
4197                                 (Expr**)Exprs.get(), Exprs.size());
4198  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4199  if (Result.isInvalid()) {
4200    VDecl->setInvalidDecl();
4201    return;
4202  }
4203
4204  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4205  VDecl->setInit(Result.takeAs<Expr>());
4206  VDecl->setCXXDirectInitializer(true);
4207
4208  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4209    FinalizeVarWithDestructor(VDecl, Record);
4210}
4211
4212/// \brief Add the applicable constructor candidates for an initialization
4213/// by constructor.
4214static void AddConstructorInitializationCandidates(Sema &SemaRef,
4215                                                   QualType ClassType,
4216                                                   Expr **Args,
4217                                                   unsigned NumArgs,
4218                                                   InitializationKind Kind,
4219                                           OverloadCandidateSet &CandidateSet) {
4220  // C++ [dcl.init]p14:
4221  //   If the initialization is direct-initialization, or if it is
4222  //   copy-initialization where the cv-unqualified version of the
4223  //   source type is the same class as, or a derived class of, the
4224  //   class of the destination, constructors are considered. The
4225  //   applicable constructors are enumerated (13.3.1.3), and the
4226  //   best one is chosen through overload resolution (13.3). The
4227  //   constructor so selected is called to initialize the object,
4228  //   with the initializer expression(s) as its argument(s). If no
4229  //   constructor applies, or the overload resolution is ambiguous,
4230  //   the initialization is ill-formed.
4231  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4232  assert(ClassRec && "Can only initialize a class type here");
4233
4234  // FIXME: When we decide not to synthesize the implicitly-declared
4235  // constructors, we'll need to make them appear here.
4236
4237  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4238  DeclarationName ConstructorName
4239    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4240              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4241  DeclContext::lookup_const_iterator Con, ConEnd;
4242  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4243       Con != ConEnd; ++Con) {
4244    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4245
4246    // Find the constructor (which may be a template).
4247    CXXConstructorDecl *Constructor = 0;
4248    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4249    if (ConstructorTmpl)
4250      Constructor
4251      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4252    else
4253      Constructor = cast<CXXConstructorDecl>(*Con);
4254
4255    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4256        (Kind.getKind() == InitializationKind::IK_Value) ||
4257        (Kind.getKind() == InitializationKind::IK_Copy &&
4258         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4259        ((Kind.getKind() == InitializationKind::IK_Default) &&
4260         Constructor->isDefaultConstructor())) {
4261      if (ConstructorTmpl)
4262        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4263                                             /*ExplicitArgs*/ 0,
4264                                             Args, NumArgs, CandidateSet);
4265      else
4266        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4267                                     Args, NumArgs, CandidateSet);
4268    }
4269  }
4270}
4271
4272/// \brief Attempt to perform initialization by constructor
4273/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4274/// copy-initialization.
4275///
4276/// This routine determines whether initialization by constructor is possible,
4277/// but it does not emit any diagnostics in the case where the initialization
4278/// is ill-formed.
4279///
4280/// \param ClassType the type of the object being initialized, which must have
4281/// class type.
4282///
4283/// \param Args the arguments provided to initialize the object
4284///
4285/// \param NumArgs the number of arguments provided to initialize the object
4286///
4287/// \param Kind the type of initialization being performed
4288///
4289/// \returns the constructor used to initialize the object, if successful.
4290/// Otherwise, emits a diagnostic and returns NULL.
4291CXXConstructorDecl *
4292Sema::TryInitializationByConstructor(QualType ClassType,
4293                                     Expr **Args, unsigned NumArgs,
4294                                     SourceLocation Loc,
4295                                     InitializationKind Kind) {
4296  // Build the overload candidate set
4297  OverloadCandidateSet CandidateSet(Loc);
4298  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4299                                         CandidateSet);
4300
4301  // Determine whether we found a constructor we can use.
4302  OverloadCandidateSet::iterator Best;
4303  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4304    case OR_Success:
4305    case OR_Deleted:
4306      // We found a constructor. Return it.
4307      return cast<CXXConstructorDecl>(Best->Function);
4308
4309    case OR_No_Viable_Function:
4310    case OR_Ambiguous:
4311      // Overload resolution failed. Return nothing.
4312      return 0;
4313  }
4314
4315  // Silence GCC warning
4316  return 0;
4317}
4318
4319/// \brief Given a constructor and the set of arguments provided for the
4320/// constructor, convert the arguments and add any required default arguments
4321/// to form a proper call to this constructor.
4322///
4323/// \returns true if an error occurred, false otherwise.
4324bool
4325Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4326                              MultiExprArg ArgsPtr,
4327                              SourceLocation Loc,
4328                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4329  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4330  unsigned NumArgs = ArgsPtr.size();
4331  Expr **Args = (Expr **)ArgsPtr.get();
4332
4333  const FunctionProtoType *Proto
4334    = Constructor->getType()->getAs<FunctionProtoType>();
4335  assert(Proto && "Constructor without a prototype?");
4336  unsigned NumArgsInProto = Proto->getNumArgs();
4337
4338  // If too few arguments are available, we'll fill in the rest with defaults.
4339  if (NumArgs < NumArgsInProto)
4340    ConvertedArgs.reserve(NumArgsInProto);
4341  else
4342    ConvertedArgs.reserve(NumArgs);
4343
4344  VariadicCallType CallType =
4345    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4346  llvm::SmallVector<Expr *, 8> AllArgs;
4347  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4348                                        Proto, 0, Args, NumArgs, AllArgs,
4349                                        CallType);
4350  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4351    ConvertedArgs.push_back(AllArgs[i]);
4352  return Invalid;
4353}
4354
4355/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4356/// determine whether they are reference-related,
4357/// reference-compatible, reference-compatible with added
4358/// qualification, or incompatible, for use in C++ initialization by
4359/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4360/// type, and the first type (T1) is the pointee type of the reference
4361/// type being initialized.
4362Sema::ReferenceCompareResult
4363Sema::CompareReferenceRelationship(SourceLocation Loc,
4364                                   QualType OrigT1, QualType OrigT2,
4365                                   bool& DerivedToBase) {
4366  assert(!OrigT1->isReferenceType() &&
4367    "T1 must be the pointee type of the reference type");
4368  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4369
4370  QualType T1 = Context.getCanonicalType(OrigT1);
4371  QualType T2 = Context.getCanonicalType(OrigT2);
4372  Qualifiers T1Quals, T2Quals;
4373  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4374  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4375
4376  // C++ [dcl.init.ref]p4:
4377  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4378  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4379  //   T1 is a base class of T2.
4380  if (UnqualT1 == UnqualT2)
4381    DerivedToBase = false;
4382  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4383           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4384           IsDerivedFrom(UnqualT2, UnqualT1))
4385    DerivedToBase = true;
4386  else
4387    return Ref_Incompatible;
4388
4389  // At this point, we know that T1 and T2 are reference-related (at
4390  // least).
4391
4392  // If the type is an array type, promote the element qualifiers to the type
4393  // for comparison.
4394  if (isa<ArrayType>(T1) && T1Quals)
4395    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4396  if (isa<ArrayType>(T2) && T2Quals)
4397    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4398
4399  // C++ [dcl.init.ref]p4:
4400  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4401  //   reference-related to T2 and cv1 is the same cv-qualification
4402  //   as, or greater cv-qualification than, cv2. For purposes of
4403  //   overload resolution, cases for which cv1 is greater
4404  //   cv-qualification than cv2 are identified as
4405  //   reference-compatible with added qualification (see 13.3.3.2).
4406  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4407    return Ref_Compatible;
4408  else if (T1.isMoreQualifiedThan(T2))
4409    return Ref_Compatible_With_Added_Qualification;
4410  else
4411    return Ref_Related;
4412}
4413
4414/// CheckReferenceInit - Check the initialization of a reference
4415/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4416/// the initializer (either a simple initializer or an initializer
4417/// list), and DeclType is the type of the declaration. When ICS is
4418/// non-null, this routine will compute the implicit conversion
4419/// sequence according to C++ [over.ics.ref] and will not produce any
4420/// diagnostics; when ICS is null, it will emit diagnostics when any
4421/// errors are found. Either way, a return value of true indicates
4422/// that there was a failure, a return value of false indicates that
4423/// the reference initialization succeeded.
4424///
4425/// When @p SuppressUserConversions, user-defined conversions are
4426/// suppressed.
4427/// When @p AllowExplicit, we also permit explicit user-defined
4428/// conversion functions.
4429/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4430/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4431/// This is used when this is called from a C-style cast.
4432bool
4433Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4434                         SourceLocation DeclLoc,
4435                         bool SuppressUserConversions,
4436                         bool AllowExplicit, bool ForceRValue,
4437                         ImplicitConversionSequence *ICS,
4438                         bool IgnoreBaseAccess) {
4439  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4440
4441  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4442  QualType T2 = Init->getType();
4443
4444  // If the initializer is the address of an overloaded function, try
4445  // to resolve the overloaded function. If all goes well, T2 is the
4446  // type of the resulting function.
4447  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4448    DeclAccessPair Found;
4449    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4450                                                          ICS != 0, Found);
4451    if (Fn) {
4452      // Since we're performing this reference-initialization for
4453      // real, update the initializer with the resulting function.
4454      if (!ICS) {
4455        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4456          return true;
4457
4458        CheckAddressOfMemberAccess(Init, Found);
4459        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4460      }
4461
4462      T2 = Fn->getType();
4463    }
4464  }
4465
4466  // Compute some basic properties of the types and the initializer.
4467  bool isRValRef = DeclType->isRValueReferenceType();
4468  bool DerivedToBase = false;
4469  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4470                                                  Init->isLvalue(Context);
4471  ReferenceCompareResult RefRelationship
4472    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4473
4474  // Most paths end in a failed conversion.
4475  if (ICS) {
4476    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4477  }
4478
4479  // C++ [dcl.init.ref]p5:
4480  //   A reference to type "cv1 T1" is initialized by an expression
4481  //   of type "cv2 T2" as follows:
4482
4483  //     -- If the initializer expression
4484
4485  // Rvalue references cannot bind to lvalues (N2812).
4486  // There is absolutely no situation where they can. In particular, note that
4487  // this is ill-formed, even if B has a user-defined conversion to A&&:
4488  //   B b;
4489  //   A&& r = b;
4490  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4491    if (!ICS)
4492      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4493        << Init->getSourceRange();
4494    return true;
4495  }
4496
4497  bool BindsDirectly = false;
4498  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4499  //          reference-compatible with "cv2 T2," or
4500  //
4501  // Note that the bit-field check is skipped if we are just computing
4502  // the implicit conversion sequence (C++ [over.best.ics]p2).
4503  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4504      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4505    BindsDirectly = true;
4506
4507    if (ICS) {
4508      // C++ [over.ics.ref]p1:
4509      //   When a parameter of reference type binds directly (8.5.3)
4510      //   to an argument expression, the implicit conversion sequence
4511      //   is the identity conversion, unless the argument expression
4512      //   has a type that is a derived class of the parameter type,
4513      //   in which case the implicit conversion sequence is a
4514      //   derived-to-base Conversion (13.3.3.1).
4515      ICS->setStandard();
4516      ICS->Standard.First = ICK_Identity;
4517      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4518      ICS->Standard.Third = ICK_Identity;
4519      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4520      ICS->Standard.setToType(0, T2);
4521      ICS->Standard.setToType(1, T1);
4522      ICS->Standard.setToType(2, T1);
4523      ICS->Standard.ReferenceBinding = true;
4524      ICS->Standard.DirectBinding = true;
4525      ICS->Standard.RRefBinding = false;
4526      ICS->Standard.CopyConstructor = 0;
4527
4528      // Nothing more to do: the inaccessibility/ambiguity check for
4529      // derived-to-base conversions is suppressed when we're
4530      // computing the implicit conversion sequence (C++
4531      // [over.best.ics]p2).
4532      return false;
4533    } else {
4534      // Perform the conversion.
4535      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4536      if (DerivedToBase)
4537        CK = CastExpr::CK_DerivedToBase;
4538      else if(CheckExceptionSpecCompatibility(Init, T1))
4539        return true;
4540      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4541    }
4542  }
4543
4544  //       -- has a class type (i.e., T2 is a class type) and can be
4545  //          implicitly converted to an lvalue of type "cv3 T3,"
4546  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4547  //          92) (this conversion is selected by enumerating the
4548  //          applicable conversion functions (13.3.1.6) and choosing
4549  //          the best one through overload resolution (13.3)),
4550  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4551      !RequireCompleteType(DeclLoc, T2, 0)) {
4552    CXXRecordDecl *T2RecordDecl
4553      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4554
4555    OverloadCandidateSet CandidateSet(DeclLoc);
4556    const UnresolvedSetImpl *Conversions
4557      = T2RecordDecl->getVisibleConversionFunctions();
4558    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4559           E = Conversions->end(); I != E; ++I) {
4560      NamedDecl *D = *I;
4561      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4562      if (isa<UsingShadowDecl>(D))
4563        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4564
4565      FunctionTemplateDecl *ConvTemplate
4566        = dyn_cast<FunctionTemplateDecl>(D);
4567      CXXConversionDecl *Conv;
4568      if (ConvTemplate)
4569        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4570      else
4571        Conv = cast<CXXConversionDecl>(D);
4572
4573      // If the conversion function doesn't return a reference type,
4574      // it can't be considered for this conversion.
4575      if (Conv->getConversionType()->isLValueReferenceType() &&
4576          (AllowExplicit || !Conv->isExplicit())) {
4577        if (ConvTemplate)
4578          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4579                                         Init, DeclType, CandidateSet);
4580        else
4581          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4582                                 DeclType, CandidateSet);
4583      }
4584    }
4585
4586    OverloadCandidateSet::iterator Best;
4587    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4588    case OR_Success:
4589      // C++ [over.ics.ref]p1:
4590      //
4591      //   [...] If the parameter binds directly to the result of
4592      //   applying a conversion function to the argument
4593      //   expression, the implicit conversion sequence is a
4594      //   user-defined conversion sequence (13.3.3.1.2), with the
4595      //   second standard conversion sequence either an identity
4596      //   conversion or, if the conversion function returns an
4597      //   entity of a type that is a derived class of the parameter
4598      //   type, a derived-to-base Conversion.
4599      if (!Best->FinalConversion.DirectBinding)
4600        break;
4601
4602      // This is a direct binding.
4603      BindsDirectly = true;
4604
4605      if (ICS) {
4606        ICS->setUserDefined();
4607        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4608        ICS->UserDefined.After = Best->FinalConversion;
4609        ICS->UserDefined.ConversionFunction = Best->Function;
4610        ICS->UserDefined.EllipsisConversion = false;
4611        assert(ICS->UserDefined.After.ReferenceBinding &&
4612               ICS->UserDefined.After.DirectBinding &&
4613               "Expected a direct reference binding!");
4614        return false;
4615      } else {
4616        OwningExprResult InitConversion =
4617          BuildCXXCastArgument(DeclLoc, QualType(),
4618                               CastExpr::CK_UserDefinedConversion,
4619                               cast<CXXMethodDecl>(Best->Function),
4620                               Owned(Init));
4621        Init = InitConversion.takeAs<Expr>();
4622
4623        if (CheckExceptionSpecCompatibility(Init, T1))
4624          return true;
4625        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4626                          /*isLvalue=*/true);
4627      }
4628      break;
4629
4630    case OR_Ambiguous:
4631      if (ICS) {
4632        ICS->setAmbiguous();
4633        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4634             Cand != CandidateSet.end(); ++Cand)
4635          if (Cand->Viable)
4636            ICS->Ambiguous.addConversion(Cand->Function);
4637        break;
4638      }
4639      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4640            << Init->getSourceRange();
4641      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4642      return true;
4643
4644    case OR_No_Viable_Function:
4645    case OR_Deleted:
4646      // There was no suitable conversion, or we found a deleted
4647      // conversion; continue with other checks.
4648      break;
4649    }
4650  }
4651
4652  if (BindsDirectly) {
4653    // C++ [dcl.init.ref]p4:
4654    //   [...] In all cases where the reference-related or
4655    //   reference-compatible relationship of two types is used to
4656    //   establish the validity of a reference binding, and T1 is a
4657    //   base class of T2, a program that necessitates such a binding
4658    //   is ill-formed if T1 is an inaccessible (clause 11) or
4659    //   ambiguous (10.2) base class of T2.
4660    //
4661    // Note that we only check this condition when we're allowed to
4662    // complain about errors, because we should not be checking for
4663    // ambiguity (or inaccessibility) unless the reference binding
4664    // actually happens.
4665    if (DerivedToBase)
4666      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4667                                          Init->getSourceRange(),
4668                                          IgnoreBaseAccess);
4669    else
4670      return false;
4671  }
4672
4673  //     -- Otherwise, the reference shall be to a non-volatile const
4674  //        type (i.e., cv1 shall be const), or the reference shall be an
4675  //        rvalue reference and the initializer expression shall be an rvalue.
4676  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4677    if (!ICS)
4678      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4679        << T1.isVolatileQualified()
4680        << T1 << int(InitLvalue != Expr::LV_Valid)
4681        << T2 << Init->getSourceRange();
4682    return true;
4683  }
4684
4685  //       -- If the initializer expression is an rvalue, with T2 a
4686  //          class type, and "cv1 T1" is reference-compatible with
4687  //          "cv2 T2," the reference is bound in one of the
4688  //          following ways (the choice is implementation-defined):
4689  //
4690  //          -- The reference is bound to the object represented by
4691  //             the rvalue (see 3.10) or to a sub-object within that
4692  //             object.
4693  //
4694  //          -- A temporary of type "cv1 T2" [sic] is created, and
4695  //             a constructor is called to copy the entire rvalue
4696  //             object into the temporary. The reference is bound to
4697  //             the temporary or to a sub-object within the
4698  //             temporary.
4699  //
4700  //          The constructor that would be used to make the copy
4701  //          shall be callable whether or not the copy is actually
4702  //          done.
4703  //
4704  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4705  // freedom, so we will always take the first option and never build
4706  // a temporary in this case. FIXME: We will, however, have to check
4707  // for the presence of a copy constructor in C++98/03 mode.
4708  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4709      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4710    if (ICS) {
4711      ICS->setStandard();
4712      ICS->Standard.First = ICK_Identity;
4713      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4714      ICS->Standard.Third = ICK_Identity;
4715      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4716      ICS->Standard.setToType(0, T2);
4717      ICS->Standard.setToType(1, T1);
4718      ICS->Standard.setToType(2, T1);
4719      ICS->Standard.ReferenceBinding = true;
4720      ICS->Standard.DirectBinding = false;
4721      ICS->Standard.RRefBinding = isRValRef;
4722      ICS->Standard.CopyConstructor = 0;
4723    } else {
4724      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4725      if (DerivedToBase)
4726        CK = CastExpr::CK_DerivedToBase;
4727      else if(CheckExceptionSpecCompatibility(Init, T1))
4728        return true;
4729      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4730    }
4731    return false;
4732  }
4733
4734  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4735  //          initialized from the initializer expression using the
4736  //          rules for a non-reference copy initialization (8.5). The
4737  //          reference is then bound to the temporary. If T1 is
4738  //          reference-related to T2, cv1 must be the same
4739  //          cv-qualification as, or greater cv-qualification than,
4740  //          cv2; otherwise, the program is ill-formed.
4741  if (RefRelationship == Ref_Related) {
4742    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4743    // we would be reference-compatible or reference-compatible with
4744    // added qualification. But that wasn't the case, so the reference
4745    // initialization fails.
4746    if (!ICS)
4747      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4748        << T1 << int(InitLvalue != Expr::LV_Valid)
4749        << T2 << Init->getSourceRange();
4750    return true;
4751  }
4752
4753  // If at least one of the types is a class type, the types are not
4754  // related, and we aren't allowed any user conversions, the
4755  // reference binding fails. This case is important for breaking
4756  // recursion, since TryImplicitConversion below will attempt to
4757  // create a temporary through the use of a copy constructor.
4758  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4759      (T1->isRecordType() || T2->isRecordType())) {
4760    if (!ICS)
4761      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4762        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4763    return true;
4764  }
4765
4766  // Actually try to convert the initializer to T1.
4767  if (ICS) {
4768    // C++ [over.ics.ref]p2:
4769    //
4770    //   When a parameter of reference type is not bound directly to
4771    //   an argument expression, the conversion sequence is the one
4772    //   required to convert the argument expression to the
4773    //   underlying type of the reference according to
4774    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4775    //   to copy-initializing a temporary of the underlying type with
4776    //   the argument expression. Any difference in top-level
4777    //   cv-qualification is subsumed by the initialization itself
4778    //   and does not constitute a conversion.
4779    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4780                                 /*AllowExplicit=*/false,
4781                                 /*ForceRValue=*/false,
4782                                 /*InOverloadResolution=*/false);
4783
4784    // Of course, that's still a reference binding.
4785    if (ICS->isStandard()) {
4786      ICS->Standard.ReferenceBinding = true;
4787      ICS->Standard.RRefBinding = isRValRef;
4788    } else if (ICS->isUserDefined()) {
4789      ICS->UserDefined.After.ReferenceBinding = true;
4790      ICS->UserDefined.After.RRefBinding = isRValRef;
4791    }
4792    return ICS->isBad();
4793  } else {
4794    ImplicitConversionSequence Conversions;
4795    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4796                                                   false, false,
4797                                                   Conversions);
4798    if (badConversion) {
4799      if (Conversions.isAmbiguous()) {
4800        Diag(DeclLoc,
4801             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4802        for (int j = Conversions.Ambiguous.conversions().size()-1;
4803             j >= 0; j--) {
4804          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4805          NoteOverloadCandidate(Func);
4806        }
4807      }
4808      else {
4809        if (isRValRef)
4810          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4811            << Init->getSourceRange();
4812        else
4813          Diag(DeclLoc, diag::err_invalid_initialization)
4814            << DeclType << Init->getType() << Init->getSourceRange();
4815      }
4816    }
4817    return badConversion;
4818  }
4819}
4820
4821static inline bool
4822CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4823                                       const FunctionDecl *FnDecl) {
4824  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4825  if (isa<NamespaceDecl>(DC)) {
4826    return SemaRef.Diag(FnDecl->getLocation(),
4827                        diag::err_operator_new_delete_declared_in_namespace)
4828      << FnDecl->getDeclName();
4829  }
4830
4831  if (isa<TranslationUnitDecl>(DC) &&
4832      FnDecl->getStorageClass() == FunctionDecl::Static) {
4833    return SemaRef.Diag(FnDecl->getLocation(),
4834                        diag::err_operator_new_delete_declared_static)
4835      << FnDecl->getDeclName();
4836  }
4837
4838  return false;
4839}
4840
4841static inline bool
4842CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4843                            CanQualType ExpectedResultType,
4844                            CanQualType ExpectedFirstParamType,
4845                            unsigned DependentParamTypeDiag,
4846                            unsigned InvalidParamTypeDiag) {
4847  QualType ResultType =
4848    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4849
4850  // Check that the result type is not dependent.
4851  if (ResultType->isDependentType())
4852    return SemaRef.Diag(FnDecl->getLocation(),
4853                        diag::err_operator_new_delete_dependent_result_type)
4854    << FnDecl->getDeclName() << ExpectedResultType;
4855
4856  // Check that the result type is what we expect.
4857  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4858    return SemaRef.Diag(FnDecl->getLocation(),
4859                        diag::err_operator_new_delete_invalid_result_type)
4860    << FnDecl->getDeclName() << ExpectedResultType;
4861
4862  // A function template must have at least 2 parameters.
4863  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4864    return SemaRef.Diag(FnDecl->getLocation(),
4865                      diag::err_operator_new_delete_template_too_few_parameters)
4866        << FnDecl->getDeclName();
4867
4868  // The function decl must have at least 1 parameter.
4869  if (FnDecl->getNumParams() == 0)
4870    return SemaRef.Diag(FnDecl->getLocation(),
4871                        diag::err_operator_new_delete_too_few_parameters)
4872      << FnDecl->getDeclName();
4873
4874  // Check the the first parameter type is not dependent.
4875  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4876  if (FirstParamType->isDependentType())
4877    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4878      << FnDecl->getDeclName() << ExpectedFirstParamType;
4879
4880  // Check that the first parameter type is what we expect.
4881  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4882      ExpectedFirstParamType)
4883    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4884    << FnDecl->getDeclName() << ExpectedFirstParamType;
4885
4886  return false;
4887}
4888
4889static bool
4890CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4891  // C++ [basic.stc.dynamic.allocation]p1:
4892  //   A program is ill-formed if an allocation function is declared in a
4893  //   namespace scope other than global scope or declared static in global
4894  //   scope.
4895  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4896    return true;
4897
4898  CanQualType SizeTy =
4899    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4900
4901  // C++ [basic.stc.dynamic.allocation]p1:
4902  //  The return type shall be void*. The first parameter shall have type
4903  //  std::size_t.
4904  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4905                                  SizeTy,
4906                                  diag::err_operator_new_dependent_param_type,
4907                                  diag::err_operator_new_param_type))
4908    return true;
4909
4910  // C++ [basic.stc.dynamic.allocation]p1:
4911  //  The first parameter shall not have an associated default argument.
4912  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4913    return SemaRef.Diag(FnDecl->getLocation(),
4914                        diag::err_operator_new_default_arg)
4915      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4916
4917  return false;
4918}
4919
4920static bool
4921CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4922  // C++ [basic.stc.dynamic.deallocation]p1:
4923  //   A program is ill-formed if deallocation functions are declared in a
4924  //   namespace scope other than global scope or declared static in global
4925  //   scope.
4926  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4927    return true;
4928
4929  // C++ [basic.stc.dynamic.deallocation]p2:
4930  //   Each deallocation function shall return void and its first parameter
4931  //   shall be void*.
4932  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4933                                  SemaRef.Context.VoidPtrTy,
4934                                 diag::err_operator_delete_dependent_param_type,
4935                                 diag::err_operator_delete_param_type))
4936    return true;
4937
4938  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4939  if (FirstParamType->isDependentType())
4940    return SemaRef.Diag(FnDecl->getLocation(),
4941                        diag::err_operator_delete_dependent_param_type)
4942    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4943
4944  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4945      SemaRef.Context.VoidPtrTy)
4946    return SemaRef.Diag(FnDecl->getLocation(),
4947                        diag::err_operator_delete_param_type)
4948      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4949
4950  return false;
4951}
4952
4953/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4954/// of this overloaded operator is well-formed. If so, returns false;
4955/// otherwise, emits appropriate diagnostics and returns true.
4956bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4957  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4958         "Expected an overloaded operator declaration");
4959
4960  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4961
4962  // C++ [over.oper]p5:
4963  //   The allocation and deallocation functions, operator new,
4964  //   operator new[], operator delete and operator delete[], are
4965  //   described completely in 3.7.3. The attributes and restrictions
4966  //   found in the rest of this subclause do not apply to them unless
4967  //   explicitly stated in 3.7.3.
4968  if (Op == OO_Delete || Op == OO_Array_Delete)
4969    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4970
4971  if (Op == OO_New || Op == OO_Array_New)
4972    return CheckOperatorNewDeclaration(*this, FnDecl);
4973
4974  // C++ [over.oper]p6:
4975  //   An operator function shall either be a non-static member
4976  //   function or be a non-member function and have at least one
4977  //   parameter whose type is a class, a reference to a class, an
4978  //   enumeration, or a reference to an enumeration.
4979  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4980    if (MethodDecl->isStatic())
4981      return Diag(FnDecl->getLocation(),
4982                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4983  } else {
4984    bool ClassOrEnumParam = false;
4985    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4986                                   ParamEnd = FnDecl->param_end();
4987         Param != ParamEnd; ++Param) {
4988      QualType ParamType = (*Param)->getType().getNonReferenceType();
4989      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4990          ParamType->isEnumeralType()) {
4991        ClassOrEnumParam = true;
4992        break;
4993      }
4994    }
4995
4996    if (!ClassOrEnumParam)
4997      return Diag(FnDecl->getLocation(),
4998                  diag::err_operator_overload_needs_class_or_enum)
4999        << FnDecl->getDeclName();
5000  }
5001
5002  // C++ [over.oper]p8:
5003  //   An operator function cannot have default arguments (8.3.6),
5004  //   except where explicitly stated below.
5005  //
5006  // Only the function-call operator allows default arguments
5007  // (C++ [over.call]p1).
5008  if (Op != OO_Call) {
5009    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5010         Param != FnDecl->param_end(); ++Param) {
5011      if ((*Param)->hasDefaultArg())
5012        return Diag((*Param)->getLocation(),
5013                    diag::err_operator_overload_default_arg)
5014          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5015    }
5016  }
5017
5018  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5019    { false, false, false }
5020#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5021    , { Unary, Binary, MemberOnly }
5022#include "clang/Basic/OperatorKinds.def"
5023  };
5024
5025  bool CanBeUnaryOperator = OperatorUses[Op][0];
5026  bool CanBeBinaryOperator = OperatorUses[Op][1];
5027  bool MustBeMemberOperator = OperatorUses[Op][2];
5028
5029  // C++ [over.oper]p8:
5030  //   [...] Operator functions cannot have more or fewer parameters
5031  //   than the number required for the corresponding operator, as
5032  //   described in the rest of this subclause.
5033  unsigned NumParams = FnDecl->getNumParams()
5034                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5035  if (Op != OO_Call &&
5036      ((NumParams == 1 && !CanBeUnaryOperator) ||
5037       (NumParams == 2 && !CanBeBinaryOperator) ||
5038       (NumParams < 1) || (NumParams > 2))) {
5039    // We have the wrong number of parameters.
5040    unsigned ErrorKind;
5041    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5042      ErrorKind = 2;  // 2 -> unary or binary.
5043    } else if (CanBeUnaryOperator) {
5044      ErrorKind = 0;  // 0 -> unary
5045    } else {
5046      assert(CanBeBinaryOperator &&
5047             "All non-call overloaded operators are unary or binary!");
5048      ErrorKind = 1;  // 1 -> binary
5049    }
5050
5051    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5052      << FnDecl->getDeclName() << NumParams << ErrorKind;
5053  }
5054
5055  // Overloaded operators other than operator() cannot be variadic.
5056  if (Op != OO_Call &&
5057      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5058    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5059      << FnDecl->getDeclName();
5060  }
5061
5062  // Some operators must be non-static member functions.
5063  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5064    return Diag(FnDecl->getLocation(),
5065                diag::err_operator_overload_must_be_member)
5066      << FnDecl->getDeclName();
5067  }
5068
5069  // C++ [over.inc]p1:
5070  //   The user-defined function called operator++ implements the
5071  //   prefix and postfix ++ operator. If this function is a member
5072  //   function with no parameters, or a non-member function with one
5073  //   parameter of class or enumeration type, it defines the prefix
5074  //   increment operator ++ for objects of that type. If the function
5075  //   is a member function with one parameter (which shall be of type
5076  //   int) or a non-member function with two parameters (the second
5077  //   of which shall be of type int), it defines the postfix
5078  //   increment operator ++ for objects of that type.
5079  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5080    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5081    bool ParamIsInt = false;
5082    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5083      ParamIsInt = BT->getKind() == BuiltinType::Int;
5084
5085    if (!ParamIsInt)
5086      return Diag(LastParam->getLocation(),
5087                  diag::err_operator_overload_post_incdec_must_be_int)
5088        << LastParam->getType() << (Op == OO_MinusMinus);
5089  }
5090
5091  // Notify the class if it got an assignment operator.
5092  if (Op == OO_Equal) {
5093    // Would have returned earlier otherwise.
5094    assert(isa<CXXMethodDecl>(FnDecl) &&
5095      "Overloaded = not member, but not filtered.");
5096    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5097    Method->getParent()->addedAssignmentOperator(Context, Method);
5098  }
5099
5100  return false;
5101}
5102
5103/// CheckLiteralOperatorDeclaration - Check whether the declaration
5104/// of this literal operator function is well-formed. If so, returns
5105/// false; otherwise, emits appropriate diagnostics and returns true.
5106bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5107  DeclContext *DC = FnDecl->getDeclContext();
5108  Decl::Kind Kind = DC->getDeclKind();
5109  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5110      Kind != Decl::LinkageSpec) {
5111    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5112      << FnDecl->getDeclName();
5113    return true;
5114  }
5115
5116  bool Valid = false;
5117
5118  // template <char...> type operator "" name() is the only valid template
5119  // signature, and the only valid signature with no parameters.
5120  if (FnDecl->param_size() == 0) {
5121    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5122      // Must have only one template parameter
5123      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5124      if (Params->size() == 1) {
5125        NonTypeTemplateParmDecl *PmDecl =
5126          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5127
5128        // The template parameter must be a char parameter pack.
5129        // FIXME: This test will always fail because non-type parameter packs
5130        //   have not been implemented.
5131        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5132            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5133          Valid = true;
5134      }
5135    }
5136  } else {
5137    // Check the first parameter
5138    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5139
5140    QualType T = (*Param)->getType();
5141
5142    // unsigned long long int, long double, and any character type are allowed
5143    // as the only parameters.
5144    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5145        Context.hasSameType(T, Context.LongDoubleTy) ||
5146        Context.hasSameType(T, Context.CharTy) ||
5147        Context.hasSameType(T, Context.WCharTy) ||
5148        Context.hasSameType(T, Context.Char16Ty) ||
5149        Context.hasSameType(T, Context.Char32Ty)) {
5150      if (++Param == FnDecl->param_end())
5151        Valid = true;
5152      goto FinishedParams;
5153    }
5154
5155    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5156    const PointerType *PT = T->getAs<PointerType>();
5157    if (!PT)
5158      goto FinishedParams;
5159    T = PT->getPointeeType();
5160    if (!T.isConstQualified())
5161      goto FinishedParams;
5162    T = T.getUnqualifiedType();
5163
5164    // Move on to the second parameter;
5165    ++Param;
5166
5167    // If there is no second parameter, the first must be a const char *
5168    if (Param == FnDecl->param_end()) {
5169      if (Context.hasSameType(T, Context.CharTy))
5170        Valid = true;
5171      goto FinishedParams;
5172    }
5173
5174    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5175    // are allowed as the first parameter to a two-parameter function
5176    if (!(Context.hasSameType(T, Context.CharTy) ||
5177          Context.hasSameType(T, Context.WCharTy) ||
5178          Context.hasSameType(T, Context.Char16Ty) ||
5179          Context.hasSameType(T, Context.Char32Ty)))
5180      goto FinishedParams;
5181
5182    // The second and final parameter must be an std::size_t
5183    T = (*Param)->getType().getUnqualifiedType();
5184    if (Context.hasSameType(T, Context.getSizeType()) &&
5185        ++Param == FnDecl->param_end())
5186      Valid = true;
5187  }
5188
5189  // FIXME: This diagnostic is absolutely terrible.
5190FinishedParams:
5191  if (!Valid) {
5192    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5193      << FnDecl->getDeclName();
5194    return true;
5195  }
5196
5197  return false;
5198}
5199
5200/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5201/// linkage specification, including the language and (if present)
5202/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5203/// the location of the language string literal, which is provided
5204/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5205/// the '{' brace. Otherwise, this linkage specification does not
5206/// have any braces.
5207Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5208                                                     SourceLocation ExternLoc,
5209                                                     SourceLocation LangLoc,
5210                                                     const char *Lang,
5211                                                     unsigned StrSize,
5212                                                     SourceLocation LBraceLoc) {
5213  LinkageSpecDecl::LanguageIDs Language;
5214  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5215    Language = LinkageSpecDecl::lang_c;
5216  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5217    Language = LinkageSpecDecl::lang_cxx;
5218  else {
5219    Diag(LangLoc, diag::err_bad_language);
5220    return DeclPtrTy();
5221  }
5222
5223  // FIXME: Add all the various semantics of linkage specifications
5224
5225  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5226                                               LangLoc, Language,
5227                                               LBraceLoc.isValid());
5228  CurContext->addDecl(D);
5229  PushDeclContext(S, D);
5230  return DeclPtrTy::make(D);
5231}
5232
5233/// ActOnFinishLinkageSpecification - Completely the definition of
5234/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5235/// valid, it's the position of the closing '}' brace in a linkage
5236/// specification that uses braces.
5237Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5238                                                      DeclPtrTy LinkageSpec,
5239                                                      SourceLocation RBraceLoc) {
5240  if (LinkageSpec)
5241    PopDeclContext();
5242  return LinkageSpec;
5243}
5244
5245/// \brief Perform semantic analysis for the variable declaration that
5246/// occurs within a C++ catch clause, returning the newly-created
5247/// variable.
5248VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5249                                         TypeSourceInfo *TInfo,
5250                                         IdentifierInfo *Name,
5251                                         SourceLocation Loc,
5252                                         SourceRange Range) {
5253  bool Invalid = false;
5254
5255  // Arrays and functions decay.
5256  if (ExDeclType->isArrayType())
5257    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5258  else if (ExDeclType->isFunctionType())
5259    ExDeclType = Context.getPointerType(ExDeclType);
5260
5261  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5262  // The exception-declaration shall not denote a pointer or reference to an
5263  // incomplete type, other than [cv] void*.
5264  // N2844 forbids rvalue references.
5265  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5266    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5267    Invalid = true;
5268  }
5269
5270  // GCC allows catching pointers and references to incomplete types
5271  // as an extension; so do we, but we warn by default.
5272
5273  QualType BaseType = ExDeclType;
5274  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5275  unsigned DK = diag::err_catch_incomplete;
5276  bool IncompleteCatchIsInvalid = true;
5277  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5278    BaseType = Ptr->getPointeeType();
5279    Mode = 1;
5280    DK = diag::ext_catch_incomplete_ptr;
5281    IncompleteCatchIsInvalid = false;
5282  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5283    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5284    BaseType = Ref->getPointeeType();
5285    Mode = 2;
5286    DK = diag::ext_catch_incomplete_ref;
5287    IncompleteCatchIsInvalid = false;
5288  }
5289  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5290      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5291      IncompleteCatchIsInvalid)
5292    Invalid = true;
5293
5294  if (!Invalid && !ExDeclType->isDependentType() &&
5295      RequireNonAbstractType(Loc, ExDeclType,
5296                             diag::err_abstract_type_in_decl,
5297                             AbstractVariableType))
5298    Invalid = true;
5299
5300  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5301                                    Name, ExDeclType, TInfo, VarDecl::None);
5302
5303  if (!Invalid) {
5304    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5305      // C++ [except.handle]p16:
5306      //   The object declared in an exception-declaration or, if the
5307      //   exception-declaration does not specify a name, a temporary (12.2) is
5308      //   copy-initialized (8.5) from the exception object. [...]
5309      //   The object is destroyed when the handler exits, after the destruction
5310      //   of any automatic objects initialized within the handler.
5311      //
5312      // We just pretend to initialize the object with itself, then make sure
5313      // it can be destroyed later.
5314      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5315      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5316                                            Loc, ExDeclType, 0);
5317      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5318                                                               SourceLocation());
5319      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5320      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5321                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5322      if (Result.isInvalid())
5323        Invalid = true;
5324      else
5325        FinalizeVarWithDestructor(ExDecl, RecordTy);
5326    }
5327  }
5328
5329  if (Invalid)
5330    ExDecl->setInvalidDecl();
5331
5332  return ExDecl;
5333}
5334
5335/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5336/// handler.
5337Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5338  TypeSourceInfo *TInfo = 0;
5339  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5340
5341  bool Invalid = D.isInvalidType();
5342  IdentifierInfo *II = D.getIdentifier();
5343  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5344    // The scope should be freshly made just for us. There is just no way
5345    // it contains any previous declaration.
5346    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5347    if (PrevDecl->isTemplateParameter()) {
5348      // Maybe we will complain about the shadowed template parameter.
5349      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5350    }
5351  }
5352
5353  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5354    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5355      << D.getCXXScopeSpec().getRange();
5356    Invalid = true;
5357  }
5358
5359  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5360                                              D.getIdentifier(),
5361                                              D.getIdentifierLoc(),
5362                                            D.getDeclSpec().getSourceRange());
5363
5364  if (Invalid)
5365    ExDecl->setInvalidDecl();
5366
5367  // Add the exception declaration into this scope.
5368  if (II)
5369    PushOnScopeChains(ExDecl, S);
5370  else
5371    CurContext->addDecl(ExDecl);
5372
5373  ProcessDeclAttributes(S, ExDecl, D);
5374  return DeclPtrTy::make(ExDecl);
5375}
5376
5377Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5378                                                   ExprArg assertexpr,
5379                                                   ExprArg assertmessageexpr) {
5380  Expr *AssertExpr = (Expr *)assertexpr.get();
5381  StringLiteral *AssertMessage =
5382    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5383
5384  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5385    llvm::APSInt Value(32);
5386    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5387      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5388        AssertExpr->getSourceRange();
5389      return DeclPtrTy();
5390    }
5391
5392    if (Value == 0) {
5393      Diag(AssertLoc, diag::err_static_assert_failed)
5394        << AssertMessage->getString() << AssertExpr->getSourceRange();
5395    }
5396  }
5397
5398  assertexpr.release();
5399  assertmessageexpr.release();
5400  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5401                                        AssertExpr, AssertMessage);
5402
5403  CurContext->addDecl(Decl);
5404  return DeclPtrTy::make(Decl);
5405}
5406
5407/// \brief Perform semantic analysis of the given friend type declaration.
5408///
5409/// \returns A friend declaration that.
5410FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5411                                      TypeSourceInfo *TSInfo) {
5412  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5413
5414  QualType T = TSInfo->getType();
5415  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5416
5417  if (!getLangOptions().CPlusPlus0x) {
5418    // C++03 [class.friend]p2:
5419    //   An elaborated-type-specifier shall be used in a friend declaration
5420    //   for a class.*
5421    //
5422    //   * The class-key of the elaborated-type-specifier is required.
5423    if (!ActiveTemplateInstantiations.empty()) {
5424      // Do not complain about the form of friend template types during
5425      // template instantiation; we will already have complained when the
5426      // template was declared.
5427    } else if (!T->isElaboratedTypeSpecifier()) {
5428      // If we evaluated the type to a record type, suggest putting
5429      // a tag in front.
5430      if (const RecordType *RT = T->getAs<RecordType>()) {
5431        RecordDecl *RD = RT->getDecl();
5432
5433        std::string InsertionText = std::string(" ") + RD->getKindName();
5434
5435        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5436          << (unsigned) RD->getTagKind()
5437          << T
5438          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5439                                        InsertionText);
5440      } else {
5441        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5442          << T
5443          << SourceRange(FriendLoc, TypeRange.getEnd());
5444      }
5445    } else if (T->getAs<EnumType>()) {
5446      Diag(FriendLoc, diag::ext_enum_friend)
5447        << T
5448        << SourceRange(FriendLoc, TypeRange.getEnd());
5449    }
5450  }
5451
5452  // C++0x [class.friend]p3:
5453  //   If the type specifier in a friend declaration designates a (possibly
5454  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5455  //   the friend declaration is ignored.
5456
5457  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5458  // in [class.friend]p3 that we do not implement.
5459
5460  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5461}
5462
5463/// Handle a friend type declaration.  This works in tandem with
5464/// ActOnTag.
5465///
5466/// Notes on friend class templates:
5467///
5468/// We generally treat friend class declarations as if they were
5469/// declaring a class.  So, for example, the elaborated type specifier
5470/// in a friend declaration is required to obey the restrictions of a
5471/// class-head (i.e. no typedefs in the scope chain), template
5472/// parameters are required to match up with simple template-ids, &c.
5473/// However, unlike when declaring a template specialization, it's
5474/// okay to refer to a template specialization without an empty
5475/// template parameter declaration, e.g.
5476///   friend class A<T>::B<unsigned>;
5477/// We permit this as a special case; if there are any template
5478/// parameters present at all, require proper matching, i.e.
5479///   template <> template <class T> friend class A<int>::B;
5480Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5481                                          MultiTemplateParamsArg TempParams) {
5482  SourceLocation Loc = DS.getSourceRange().getBegin();
5483
5484  assert(DS.isFriendSpecified());
5485  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5486
5487  // Try to convert the decl specifier to a type.  This works for
5488  // friend templates because ActOnTag never produces a ClassTemplateDecl
5489  // for a TUK_Friend.
5490  Declarator TheDeclarator(DS, Declarator::MemberContext);
5491  TypeSourceInfo *TSI;
5492  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5493  if (TheDeclarator.isInvalidType())
5494    return DeclPtrTy();
5495
5496  if (!TSI)
5497    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5498
5499  // This is definitely an error in C++98.  It's probably meant to
5500  // be forbidden in C++0x, too, but the specification is just
5501  // poorly written.
5502  //
5503  // The problem is with declarations like the following:
5504  //   template <T> friend A<T>::foo;
5505  // where deciding whether a class C is a friend or not now hinges
5506  // on whether there exists an instantiation of A that causes
5507  // 'foo' to equal C.  There are restrictions on class-heads
5508  // (which we declare (by fiat) elaborated friend declarations to
5509  // be) that makes this tractable.
5510  //
5511  // FIXME: handle "template <> friend class A<T>;", which
5512  // is possibly well-formed?  Who even knows?
5513  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5514    Diag(Loc, diag::err_tagless_friend_type_template)
5515      << DS.getSourceRange();
5516    return DeclPtrTy();
5517  }
5518
5519  // C++98 [class.friend]p1: A friend of a class is a function
5520  //   or class that is not a member of the class . . .
5521  // This is fixed in DR77, which just barely didn't make the C++03
5522  // deadline.  It's also a very silly restriction that seriously
5523  // affects inner classes and which nobody else seems to implement;
5524  // thus we never diagnose it, not even in -pedantic.
5525  //
5526  // But note that we could warn about it: it's always useless to
5527  // friend one of your own members (it's not, however, worthless to
5528  // friend a member of an arbitrary specialization of your template).
5529
5530  Decl *D;
5531  if (unsigned NumTempParamLists = TempParams.size())
5532    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5533                                   NumTempParamLists,
5534                                 (TemplateParameterList**) TempParams.release(),
5535                                   TSI,
5536                                   DS.getFriendSpecLoc());
5537  else
5538    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5539
5540  if (!D)
5541    return DeclPtrTy();
5542
5543  D->setAccess(AS_public);
5544  CurContext->addDecl(D);
5545
5546  return DeclPtrTy::make(D);
5547}
5548
5549Sema::DeclPtrTy
5550Sema::ActOnFriendFunctionDecl(Scope *S,
5551                              Declarator &D,
5552                              bool IsDefinition,
5553                              MultiTemplateParamsArg TemplateParams) {
5554  const DeclSpec &DS = D.getDeclSpec();
5555
5556  assert(DS.isFriendSpecified());
5557  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5558
5559  SourceLocation Loc = D.getIdentifierLoc();
5560  TypeSourceInfo *TInfo = 0;
5561  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5562
5563  // C++ [class.friend]p1
5564  //   A friend of a class is a function or class....
5565  // Note that this sees through typedefs, which is intended.
5566  // It *doesn't* see through dependent types, which is correct
5567  // according to [temp.arg.type]p3:
5568  //   If a declaration acquires a function type through a
5569  //   type dependent on a template-parameter and this causes
5570  //   a declaration that does not use the syntactic form of a
5571  //   function declarator to have a function type, the program
5572  //   is ill-formed.
5573  if (!T->isFunctionType()) {
5574    Diag(Loc, diag::err_unexpected_friend);
5575
5576    // It might be worthwhile to try to recover by creating an
5577    // appropriate declaration.
5578    return DeclPtrTy();
5579  }
5580
5581  // C++ [namespace.memdef]p3
5582  //  - If a friend declaration in a non-local class first declares a
5583  //    class or function, the friend class or function is a member
5584  //    of the innermost enclosing namespace.
5585  //  - The name of the friend is not found by simple name lookup
5586  //    until a matching declaration is provided in that namespace
5587  //    scope (either before or after the class declaration granting
5588  //    friendship).
5589  //  - If a friend function is called, its name may be found by the
5590  //    name lookup that considers functions from namespaces and
5591  //    classes associated with the types of the function arguments.
5592  //  - When looking for a prior declaration of a class or a function
5593  //    declared as a friend, scopes outside the innermost enclosing
5594  //    namespace scope are not considered.
5595
5596  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5597  DeclarationName Name = GetNameForDeclarator(D);
5598  assert(Name);
5599
5600  // The context we found the declaration in, or in which we should
5601  // create the declaration.
5602  DeclContext *DC;
5603
5604  // FIXME: handle local classes
5605
5606  // Recover from invalid scope qualifiers as if they just weren't there.
5607  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5608                        ForRedeclaration);
5609  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5610    // FIXME: RequireCompleteDeclContext
5611    DC = computeDeclContext(ScopeQual);
5612
5613    // FIXME: handle dependent contexts
5614    if (!DC) return DeclPtrTy();
5615
5616    LookupQualifiedName(Previous, DC);
5617
5618    // If searching in that context implicitly found a declaration in
5619    // a different context, treat it like it wasn't found at all.
5620    // TODO: better diagnostics for this case.  Suggesting the right
5621    // qualified scope would be nice...
5622    // FIXME: getRepresentativeDecl() is not right here at all
5623    if (Previous.empty() ||
5624        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5625      D.setInvalidType();
5626      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5627      return DeclPtrTy();
5628    }
5629
5630    // C++ [class.friend]p1: A friend of a class is a function or
5631    //   class that is not a member of the class . . .
5632    if (DC->Equals(CurContext))
5633      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5634
5635  // Otherwise walk out to the nearest namespace scope looking for matches.
5636  } else {
5637    // TODO: handle local class contexts.
5638
5639    DC = CurContext;
5640    while (true) {
5641      // Skip class contexts.  If someone can cite chapter and verse
5642      // for this behavior, that would be nice --- it's what GCC and
5643      // EDG do, and it seems like a reasonable intent, but the spec
5644      // really only says that checks for unqualified existing
5645      // declarations should stop at the nearest enclosing namespace,
5646      // not that they should only consider the nearest enclosing
5647      // namespace.
5648      while (DC->isRecord())
5649        DC = DC->getParent();
5650
5651      LookupQualifiedName(Previous, DC);
5652
5653      // TODO: decide what we think about using declarations.
5654      if (!Previous.empty())
5655        break;
5656
5657      if (DC->isFileContext()) break;
5658      DC = DC->getParent();
5659    }
5660
5661    // C++ [class.friend]p1: A friend of a class is a function or
5662    //   class that is not a member of the class . . .
5663    // C++0x changes this for both friend types and functions.
5664    // Most C++ 98 compilers do seem to give an error here, so
5665    // we do, too.
5666    if (!Previous.empty() && DC->Equals(CurContext)
5667        && !getLangOptions().CPlusPlus0x)
5668      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5669  }
5670
5671  if (DC->isFileContext()) {
5672    // This implies that it has to be an operator or function.
5673    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5674        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5675        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5676      Diag(Loc, diag::err_introducing_special_friend) <<
5677        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5678         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5679      return DeclPtrTy();
5680    }
5681  }
5682
5683  bool Redeclaration = false;
5684  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5685                                          move(TemplateParams),
5686                                          IsDefinition,
5687                                          Redeclaration);
5688  if (!ND) return DeclPtrTy();
5689
5690  assert(ND->getDeclContext() == DC);
5691  assert(ND->getLexicalDeclContext() == CurContext);
5692
5693  // Add the function declaration to the appropriate lookup tables,
5694  // adjusting the redeclarations list as necessary.  We don't
5695  // want to do this yet if the friending class is dependent.
5696  //
5697  // Also update the scope-based lookup if the target context's
5698  // lookup context is in lexical scope.
5699  if (!CurContext->isDependentContext()) {
5700    DC = DC->getLookupContext();
5701    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5702    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5703      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5704  }
5705
5706  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5707                                       D.getIdentifierLoc(), ND,
5708                                       DS.getFriendSpecLoc());
5709  FrD->setAccess(AS_public);
5710  CurContext->addDecl(FrD);
5711
5712  return DeclPtrTy::make(ND);
5713}
5714
5715void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5716  AdjustDeclIfTemplate(dcl);
5717
5718  Decl *Dcl = dcl.getAs<Decl>();
5719  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5720  if (!Fn) {
5721    Diag(DelLoc, diag::err_deleted_non_function);
5722    return;
5723  }
5724  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5725    Diag(DelLoc, diag::err_deleted_decl_not_first);
5726    Diag(Prev->getLocation(), diag::note_previous_declaration);
5727    // If the declaration wasn't the first, we delete the function anyway for
5728    // recovery.
5729  }
5730  Fn->setDeleted();
5731}
5732
5733static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5734  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5735       ++CI) {
5736    Stmt *SubStmt = *CI;
5737    if (!SubStmt)
5738      continue;
5739    if (isa<ReturnStmt>(SubStmt))
5740      Self.Diag(SubStmt->getSourceRange().getBegin(),
5741           diag::err_return_in_constructor_handler);
5742    if (!isa<Expr>(SubStmt))
5743      SearchForReturnInStmt(Self, SubStmt);
5744  }
5745}
5746
5747void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5748  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5749    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5750    SearchForReturnInStmt(*this, Handler);
5751  }
5752}
5753
5754bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5755                                             const CXXMethodDecl *Old) {
5756  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5757  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5758
5759  if (Context.hasSameType(NewTy, OldTy) ||
5760      NewTy->isDependentType() || OldTy->isDependentType())
5761    return false;
5762
5763  // Check if the return types are covariant
5764  QualType NewClassTy, OldClassTy;
5765
5766  /// Both types must be pointers or references to classes.
5767  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5768    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5769      NewClassTy = NewPT->getPointeeType();
5770      OldClassTy = OldPT->getPointeeType();
5771    }
5772  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5773    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5774      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5775        NewClassTy = NewRT->getPointeeType();
5776        OldClassTy = OldRT->getPointeeType();
5777      }
5778    }
5779  }
5780
5781  // The return types aren't either both pointers or references to a class type.
5782  if (NewClassTy.isNull()) {
5783    Diag(New->getLocation(),
5784         diag::err_different_return_type_for_overriding_virtual_function)
5785      << New->getDeclName() << NewTy << OldTy;
5786    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5787
5788    return true;
5789  }
5790
5791  // C++ [class.virtual]p6:
5792  //   If the return type of D::f differs from the return type of B::f, the
5793  //   class type in the return type of D::f shall be complete at the point of
5794  //   declaration of D::f or shall be the class type D.
5795  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5796    if (!RT->isBeingDefined() &&
5797        RequireCompleteType(New->getLocation(), NewClassTy,
5798                            PDiag(diag::err_covariant_return_incomplete)
5799                              << New->getDeclName()))
5800    return true;
5801  }
5802
5803  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5804    // Check if the new class derives from the old class.
5805    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5806      Diag(New->getLocation(),
5807           diag::err_covariant_return_not_derived)
5808      << New->getDeclName() << NewTy << OldTy;
5809      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5810      return true;
5811    }
5812
5813    // Check if we the conversion from derived to base is valid.
5814    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5815                      diag::err_covariant_return_inaccessible_base,
5816                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5817                      // FIXME: Should this point to the return type?
5818                      New->getLocation(), SourceRange(), New->getDeclName())) {
5819      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5820      return true;
5821    }
5822  }
5823
5824  // The qualifiers of the return types must be the same.
5825  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5826    Diag(New->getLocation(),
5827         diag::err_covariant_return_type_different_qualifications)
5828    << New->getDeclName() << NewTy << OldTy;
5829    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5830    return true;
5831  };
5832
5833
5834  // The new class type must have the same or less qualifiers as the old type.
5835  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5836    Diag(New->getLocation(),
5837         diag::err_covariant_return_type_class_type_more_qualified)
5838    << New->getDeclName() << NewTy << OldTy;
5839    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5840    return true;
5841  };
5842
5843  return false;
5844}
5845
5846bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5847                                             const CXXMethodDecl *Old)
5848{
5849  if (Old->hasAttr<FinalAttr>()) {
5850    Diag(New->getLocation(), diag::err_final_function_overridden)
5851      << New->getDeclName();
5852    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5853    return true;
5854  }
5855
5856  return false;
5857}
5858
5859/// \brief Mark the given method pure.
5860///
5861/// \param Method the method to be marked pure.
5862///
5863/// \param InitRange the source range that covers the "0" initializer.
5864bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5865  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5866    Method->setPure();
5867
5868    // A class is abstract if at least one function is pure virtual.
5869    Method->getParent()->setAbstract(true);
5870    return false;
5871  }
5872
5873  if (!Method->isInvalidDecl())
5874    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5875      << Method->getDeclName() << InitRange;
5876  return true;
5877}
5878
5879/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5880/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5881/// is a fresh scope pushed for just this purpose.
5882///
5883/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5884/// static data member of class X, names should be looked up in the scope of
5885/// class X.
5886void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5887  // If there is no declaration, there was an error parsing it.
5888  Decl *D = Dcl.getAs<Decl>();
5889  if (D == 0) return;
5890
5891  // We should only get called for declarations with scope specifiers, like:
5892  //   int foo::bar;
5893  assert(D->isOutOfLine());
5894  EnterDeclaratorContext(S, D->getDeclContext());
5895}
5896
5897/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5898/// initializer for the out-of-line declaration 'Dcl'.
5899void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5900  // If there is no declaration, there was an error parsing it.
5901  Decl *D = Dcl.getAs<Decl>();
5902  if (D == 0) return;
5903
5904  assert(D->isOutOfLine());
5905  ExitDeclaratorContext(S);
5906}
5907
5908/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5909/// C++ if/switch/while/for statement.
5910/// e.g: "if (int x = f()) {...}"
5911Action::DeclResult
5912Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5913  // C++ 6.4p2:
5914  // The declarator shall not specify a function or an array.
5915  // The type-specifier-seq shall not contain typedef and shall not declare a
5916  // new class or enumeration.
5917  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5918         "Parser allowed 'typedef' as storage class of condition decl.");
5919
5920  TypeSourceInfo *TInfo = 0;
5921  TagDecl *OwnedTag = 0;
5922  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5923
5924  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5925                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5926                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5927    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5928      << D.getSourceRange();
5929    return DeclResult();
5930  } else if (OwnedTag && OwnedTag->isDefinition()) {
5931    // The type-specifier-seq shall not declare a new class or enumeration.
5932    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5933  }
5934
5935  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5936  if (!Dcl)
5937    return DeclResult();
5938
5939  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5940  VD->setDeclaredInCondition(true);
5941  return Dcl;
5942}
5943
5944static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5945  // Ignore dependent types.
5946  if (MD->isDependentContext())
5947    return false;
5948
5949  // Ignore declarations that are not definitions.
5950  if (!MD->isThisDeclarationADefinition())
5951    return false;
5952
5953  CXXRecordDecl *RD = MD->getParent();
5954
5955  // Ignore classes without a vtable.
5956  if (!RD->isDynamicClass())
5957    return false;
5958
5959  switch (MD->getParent()->getTemplateSpecializationKind()) {
5960  case TSK_Undeclared:
5961  case TSK_ExplicitSpecialization:
5962    // Classes that aren't instantiations of templates don't need their
5963    // virtual methods marked until we see the definition of the key
5964    // function.
5965    break;
5966
5967  case TSK_ImplicitInstantiation:
5968    // This is a constructor of a class template; mark all of the virtual
5969    // members as referenced to ensure that they get instantiatied.
5970    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5971      return true;
5972    break;
5973
5974  case TSK_ExplicitInstantiationDeclaration:
5975    return false;
5976
5977  case TSK_ExplicitInstantiationDefinition:
5978    // This is method of a explicit instantiation; mark all of the virtual
5979    // members as referenced to ensure that they get instantiatied.
5980    return true;
5981  }
5982
5983  // Consider only out-of-line definitions of member functions. When we see
5984  // an inline definition, it's too early to compute the key function.
5985  if (!MD->isOutOfLine())
5986    return false;
5987
5988  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5989
5990  // If there is no key function, we will need a copy of the vtable.
5991  if (!KeyFunction)
5992    return true;
5993
5994  // If this is the key function, we need to mark virtual members.
5995  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5996    return true;
5997
5998  return false;
5999}
6000
6001void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
6002                                             CXXMethodDecl *MD) {
6003  CXXRecordDecl *RD = MD->getParent();
6004
6005  // We will need to mark all of the virtual members as referenced to build the
6006  // vtable.
6007  if (!needsVtable(MD, Context))
6008    return;
6009
6010  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
6011  if (kind == TSK_ImplicitInstantiation)
6012    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
6013  else
6014    MarkVirtualMembersReferenced(Loc, RD);
6015}
6016
6017bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
6018  if (ClassesWithUnmarkedVirtualMembers.empty())
6019    return false;
6020
6021  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
6022    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
6023    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
6024    ClassesWithUnmarkedVirtualMembers.pop_back();
6025    MarkVirtualMembersReferenced(Loc, RD);
6026  }
6027
6028  return true;
6029}
6030
6031void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6032                                        const CXXRecordDecl *RD) {
6033  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6034       e = RD->method_end(); i != e; ++i) {
6035    CXXMethodDecl *MD = *i;
6036
6037    // C++ [basic.def.odr]p2:
6038    //   [...] A virtual member function is used if it is not pure. [...]
6039    if (MD->isVirtual() && !MD->isPure())
6040      MarkDeclarationReferenced(Loc, MD);
6041  }
6042
6043  // Only classes that have virtual bases need a VTT.
6044  if (RD->getNumVBases() == 0)
6045    return;
6046
6047  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6048           e = RD->bases_end(); i != e; ++i) {
6049    const CXXRecordDecl *Base =
6050        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6051    if (i->isVirtual())
6052      continue;
6053    if (Base->getNumVBases() == 0)
6054      continue;
6055    MarkVirtualMembersReferenced(Loc, Base);
6056  }
6057}
6058