SemaDeclCXX.cpp revision 3fb9e4b89f72823f162096086f0f964e6dcf66d6
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
525  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
526    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
527    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
528      << BaseType;
529    return 0;
530  }
531
532  if (BaseDecl->isInvalidDecl())
533    Class->setInvalidDecl();
534
535  // Create the base specifier.
536  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
537                                        Class->getTagKind() == TTK_Class,
538                                        Access, TInfo, EllipsisLoc);
539}
540
541/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
542/// one entry in the base class list of a class specifier, for
543/// example:
544///    class foo : public bar, virtual private baz {
545/// 'public bar' and 'virtual private baz' are each base-specifiers.
546BaseResult
547Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
548                         bool Virtual, AccessSpecifier Access,
549                         ParsedType basetype, SourceLocation BaseLoc,
550                         SourceLocation EllipsisLoc) {
551  if (!classdecl)
552    return true;
553
554  AdjustDeclIfTemplate(classdecl);
555  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
556  if (!Class)
557    return true;
558
559  TypeSourceInfo *TInfo = 0;
560  GetTypeFromParser(basetype, &TInfo);
561
562  if (EllipsisLoc.isInvalid() &&
563      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
564                                      UPPC_BaseType))
565    return true;
566
567  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
568                                                      Virtual, Access, TInfo,
569                                                      EllipsisLoc))
570    return BaseSpec;
571
572  return true;
573}
574
575/// \brief Performs the actual work of attaching the given base class
576/// specifiers to a C++ class.
577bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
578                                unsigned NumBases) {
579 if (NumBases == 0)
580    return false;
581
582  // Used to keep track of which base types we have already seen, so
583  // that we can properly diagnose redundant direct base types. Note
584  // that the key is always the unqualified canonical type of the base
585  // class.
586  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
587
588  // Copy non-redundant base specifiers into permanent storage.
589  unsigned NumGoodBases = 0;
590  bool Invalid = false;
591  for (unsigned idx = 0; idx < NumBases; ++idx) {
592    QualType NewBaseType
593      = Context.getCanonicalType(Bases[idx]->getType());
594    NewBaseType = NewBaseType.getLocalUnqualifiedType();
595    if (!Class->hasObjectMember()) {
596      if (const RecordType *FDTTy =
597            NewBaseType.getTypePtr()->getAs<RecordType>())
598        if (FDTTy->getDecl()->hasObjectMember())
599          Class->setHasObjectMember(true);
600    }
601
602    if (KnownBaseTypes[NewBaseType]) {
603      // C++ [class.mi]p3:
604      //   A class shall not be specified as a direct base class of a
605      //   derived class more than once.
606      Diag(Bases[idx]->getSourceRange().getBegin(),
607           diag::err_duplicate_base_class)
608        << KnownBaseTypes[NewBaseType]->getType()
609        << Bases[idx]->getSourceRange();
610
611      // Delete the duplicate base class specifier; we're going to
612      // overwrite its pointer later.
613      Context.Deallocate(Bases[idx]);
614
615      Invalid = true;
616    } else {
617      // Okay, add this new base class.
618      KnownBaseTypes[NewBaseType] = Bases[idx];
619      Bases[NumGoodBases++] = Bases[idx];
620    }
621  }
622
623  // Attach the remaining base class specifiers to the derived class.
624  Class->setBases(Bases, NumGoodBases);
625
626  // Delete the remaining (good) base class specifiers, since their
627  // data has been copied into the CXXRecordDecl.
628  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
629    Context.Deallocate(Bases[idx]);
630
631  return Invalid;
632}
633
634/// ActOnBaseSpecifiers - Attach the given base specifiers to the
635/// class, after checking whether there are any duplicate base
636/// classes.
637void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
638                               unsigned NumBases) {
639  if (!ClassDecl || !Bases || !NumBases)
640    return;
641
642  AdjustDeclIfTemplate(ClassDecl);
643  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
644                       (CXXBaseSpecifier**)(Bases), NumBases);
645}
646
647static CXXRecordDecl *GetClassForType(QualType T) {
648  if (const RecordType *RT = T->getAs<RecordType>())
649    return cast<CXXRecordDecl>(RT->getDecl());
650  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
651    return ICT->getDecl();
652  else
653    return 0;
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
663  if (!DerivedRD)
664    return false;
665
666  CXXRecordDecl *BaseRD = GetClassForType(Base);
667  if (!BaseRD)
668    return false;
669
670  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
671  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
672}
673
674/// \brief Determine whether the type \p Derived is a C++ class that is
675/// derived from the type \p Base.
676bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
677  if (!getLangOptions().CPlusPlus)
678    return false;
679
680  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
681  if (!DerivedRD)
682    return false;
683
684  CXXRecordDecl *BaseRD = GetClassForType(Base);
685  if (!BaseRD)
686    return false;
687
688  return DerivedRD->isDerivedFrom(BaseRD, Paths);
689}
690
691void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
692                              CXXCastPath &BasePathArray) {
693  assert(BasePathArray.empty() && "Base path array must be empty!");
694  assert(Paths.isRecordingPaths() && "Must record paths!");
695
696  const CXXBasePath &Path = Paths.front();
697
698  // We first go backward and check if we have a virtual base.
699  // FIXME: It would be better if CXXBasePath had the base specifier for
700  // the nearest virtual base.
701  unsigned Start = 0;
702  for (unsigned I = Path.size(); I != 0; --I) {
703    if (Path[I - 1].Base->isVirtual()) {
704      Start = I - 1;
705      break;
706    }
707  }
708
709  // Now add all bases.
710  for (unsigned I = Start, E = Path.size(); I != E; ++I)
711    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
712}
713
714/// \brief Determine whether the given base path includes a virtual
715/// base class.
716bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
717  for (CXXCastPath::const_iterator B = BasePath.begin(),
718                                BEnd = BasePath.end();
719       B != BEnd; ++B)
720    if ((*B)->isVirtual())
721      return true;
722
723  return false;
724}
725
726/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
727/// conversion (where Derived and Base are class types) is
728/// well-formed, meaning that the conversion is unambiguous (and
729/// that all of the base classes are accessible). Returns true
730/// and emits a diagnostic if the code is ill-formed, returns false
731/// otherwise. Loc is the location where this routine should point to
732/// if there is an error, and Range is the source range to highlight
733/// if there is an error.
734bool
735Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
736                                   unsigned InaccessibleBaseID,
737                                   unsigned AmbigiousBaseConvID,
738                                   SourceLocation Loc, SourceRange Range,
739                                   DeclarationName Name,
740                                   CXXCastPath *BasePath) {
741  // First, determine whether the path from Derived to Base is
742  // ambiguous. This is slightly more expensive than checking whether
743  // the Derived to Base conversion exists, because here we need to
744  // explore multiple paths to determine if there is an ambiguity.
745  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
746                     /*DetectVirtual=*/false);
747  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
748  assert(DerivationOkay &&
749         "Can only be used with a derived-to-base conversion");
750  (void)DerivationOkay;
751
752  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
753    if (InaccessibleBaseID) {
754      // Check that the base class can be accessed.
755      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
756                                   InaccessibleBaseID)) {
757        case AR_inaccessible:
758          return true;
759        case AR_accessible:
760        case AR_dependent:
761        case AR_delayed:
762          break;
763      }
764    }
765
766    // Build a base path if necessary.
767    if (BasePath)
768      BuildBasePathArray(Paths, *BasePath);
769    return false;
770  }
771
772  // We know that the derived-to-base conversion is ambiguous, and
773  // we're going to produce a diagnostic. Perform the derived-to-base
774  // search just one more time to compute all of the possible paths so
775  // that we can print them out. This is more expensive than any of
776  // the previous derived-to-base checks we've done, but at this point
777  // performance isn't as much of an issue.
778  Paths.clear();
779  Paths.setRecordingPaths(true);
780  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
781  assert(StillOkay && "Can only be used with a derived-to-base conversion");
782  (void)StillOkay;
783
784  // Build up a textual representation of the ambiguous paths, e.g.,
785  // D -> B -> A, that will be used to illustrate the ambiguous
786  // conversions in the diagnostic. We only print one of the paths
787  // to each base class subobject.
788  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
789
790  Diag(Loc, AmbigiousBaseConvID)
791  << Derived << Base << PathDisplayStr << Range << Name;
792  return true;
793}
794
795bool
796Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
797                                   SourceLocation Loc, SourceRange Range,
798                                   CXXCastPath *BasePath,
799                                   bool IgnoreAccess) {
800  return CheckDerivedToBaseConversion(Derived, Base,
801                                      IgnoreAccess ? 0
802                                       : diag::err_upcast_to_inaccessible_base,
803                                      diag::err_ambiguous_derived_to_base_conv,
804                                      Loc, Range, DeclarationName(),
805                                      BasePath);
806}
807
808
809/// @brief Builds a string representing ambiguous paths from a
810/// specific derived class to different subobjects of the same base
811/// class.
812///
813/// This function builds a string that can be used in error messages
814/// to show the different paths that one can take through the
815/// inheritance hierarchy to go from the derived class to different
816/// subobjects of a base class. The result looks something like this:
817/// @code
818/// struct D -> struct B -> struct A
819/// struct D -> struct C -> struct A
820/// @endcode
821std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
822  std::string PathDisplayStr;
823  std::set<unsigned> DisplayedPaths;
824  for (CXXBasePaths::paths_iterator Path = Paths.begin();
825       Path != Paths.end(); ++Path) {
826    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
827      // We haven't displayed a path to this particular base
828      // class subobject yet.
829      PathDisplayStr += "\n    ";
830      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
831      for (CXXBasePath::const_iterator Element = Path->begin();
832           Element != Path->end(); ++Element)
833        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
834    }
835  }
836
837  return PathDisplayStr;
838}
839
840//===----------------------------------------------------------------------===//
841// C++ class member Handling
842//===----------------------------------------------------------------------===//
843
844/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
845Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
846                                 SourceLocation ASLoc,
847                                 SourceLocation ColonLoc) {
848  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
849  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
850                                                  ASLoc, ColonLoc);
851  CurContext->addHiddenDecl(ASDecl);
852  return ASDecl;
853}
854
855/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
856/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
857/// bitfield width if there is one and 'InitExpr' specifies the initializer if
858/// any.
859Decl *
860Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
861                               MultiTemplateParamsArg TemplateParameterLists,
862                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
863                               bool Deleted) {
864  const DeclSpec &DS = D.getDeclSpec();
865  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
866  DeclarationName Name = NameInfo.getName();
867  SourceLocation Loc = NameInfo.getLoc();
868
869  // For anonymous bitfields, the location should point to the type.
870  if (Loc.isInvalid())
871    Loc = D.getSourceRange().getBegin();
872
873  Expr *BitWidth = static_cast<Expr*>(BW);
874  Expr *Init = static_cast<Expr*>(InitExpr);
875
876  assert(isa<CXXRecordDecl>(CurContext));
877  assert(!DS.isFriendSpecified());
878
879  bool isFunc = false;
880  if (D.isFunctionDeclarator())
881    isFunc = true;
882  else if (D.getNumTypeObjects() == 0 &&
883           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
884    QualType TDType = GetTypeFromParser(DS.getRepAsType());
885    isFunc = TDType->isFunctionType();
886  }
887
888  // C++ 9.2p6: A member shall not be declared to have automatic storage
889  // duration (auto, register) or with the extern storage-class-specifier.
890  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
891  // data members and cannot be applied to names declared const or static,
892  // and cannot be applied to reference members.
893  switch (DS.getStorageClassSpec()) {
894    case DeclSpec::SCS_unspecified:
895    case DeclSpec::SCS_typedef:
896    case DeclSpec::SCS_static:
897      // FALL THROUGH.
898      break;
899    case DeclSpec::SCS_mutable:
900      if (isFunc) {
901        if (DS.getStorageClassSpecLoc().isValid())
902          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
903        else
904          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
905
906        // FIXME: It would be nicer if the keyword was ignored only for this
907        // declarator. Otherwise we could get follow-up errors.
908        D.getMutableDeclSpec().ClearStorageClassSpecs();
909      }
910      break;
911    default:
912      if (DS.getStorageClassSpecLoc().isValid())
913        Diag(DS.getStorageClassSpecLoc(),
914             diag::err_storageclass_invalid_for_member);
915      else
916        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
917      D.getMutableDeclSpec().ClearStorageClassSpecs();
918  }
919
920  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
921                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
922                      !isFunc);
923
924  Decl *Member;
925  if (isInstField) {
926    CXXScopeSpec &SS = D.getCXXScopeSpec();
927
928
929    if (SS.isSet() && !SS.isInvalid()) {
930      // The user provided a superfluous scope specifier inside a class
931      // definition:
932      //
933      // class X {
934      //   int X::member;
935      // };
936      DeclContext *DC = 0;
937      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
938        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
939        << Name << FixItHint::CreateRemoval(SS.getRange());
940      else
941        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
942          << Name << SS.getRange();
943
944      SS.clear();
945    }
946
947    // FIXME: Check for template parameters!
948    // FIXME: Check that the name is an identifier!
949    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
950                         AS);
951    assert(Member && "HandleField never returns null");
952  } else {
953    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
954    if (!Member) {
955      return 0;
956    }
957
958    // Non-instance-fields can't have a bitfield.
959    if (BitWidth) {
960      if (Member->isInvalidDecl()) {
961        // don't emit another diagnostic.
962      } else if (isa<VarDecl>(Member)) {
963        // C++ 9.6p3: A bit-field shall not be a static member.
964        // "static member 'A' cannot be a bit-field"
965        Diag(Loc, diag::err_static_not_bitfield)
966          << Name << BitWidth->getSourceRange();
967      } else if (isa<TypedefDecl>(Member)) {
968        // "typedef member 'x' cannot be a bit-field"
969        Diag(Loc, diag::err_typedef_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else {
972        // A function typedef ("typedef int f(); f a;").
973        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
974        Diag(Loc, diag::err_not_integral_type_bitfield)
975          << Name << cast<ValueDecl>(Member)->getType()
976          << BitWidth->getSourceRange();
977      }
978
979      BitWidth = 0;
980      Member->setInvalidDecl();
981    }
982
983    Member->setAccess(AS);
984
985    // If we have declared a member function template, set the access of the
986    // templated declaration as well.
987    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
988      FunTmpl->getTemplatedDecl()->setAccess(AS);
989  }
990
991  assert((Name || isInstField) && "No identifier for non-field ?");
992
993  if (Init)
994    AddInitializerToDecl(Member, Init, false);
995  if (Deleted) // FIXME: Source location is not very good.
996    SetDeclDeleted(Member, D.getSourceRange().getBegin());
997
998  if (isInstField) {
999    FieldCollector->Add(cast<FieldDecl>(Member));
1000    return 0;
1001  }
1002  return Member;
1003}
1004
1005/// \brief Find the direct and/or virtual base specifiers that
1006/// correspond to the given base type, for use in base initialization
1007/// within a constructor.
1008static bool FindBaseInitializer(Sema &SemaRef,
1009                                CXXRecordDecl *ClassDecl,
1010                                QualType BaseType,
1011                                const CXXBaseSpecifier *&DirectBaseSpec,
1012                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1013  // First, check for a direct base class.
1014  DirectBaseSpec = 0;
1015  for (CXXRecordDecl::base_class_const_iterator Base
1016         = ClassDecl->bases_begin();
1017       Base != ClassDecl->bases_end(); ++Base) {
1018    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1019      // We found a direct base of this type. That's what we're
1020      // initializing.
1021      DirectBaseSpec = &*Base;
1022      break;
1023    }
1024  }
1025
1026  // Check for a virtual base class.
1027  // FIXME: We might be able to short-circuit this if we know in advance that
1028  // there are no virtual bases.
1029  VirtualBaseSpec = 0;
1030  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1031    // We haven't found a base yet; search the class hierarchy for a
1032    // virtual base class.
1033    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1034                       /*DetectVirtual=*/false);
1035    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1036                              BaseType, Paths)) {
1037      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1038           Path != Paths.end(); ++Path) {
1039        if (Path->back().Base->isVirtual()) {
1040          VirtualBaseSpec = Path->back().Base;
1041          break;
1042        }
1043      }
1044    }
1045  }
1046
1047  return DirectBaseSpec || VirtualBaseSpec;
1048}
1049
1050/// ActOnMemInitializer - Handle a C++ member initializer.
1051MemInitResult
1052Sema::ActOnMemInitializer(Decl *ConstructorD,
1053                          Scope *S,
1054                          CXXScopeSpec &SS,
1055                          IdentifierInfo *MemberOrBase,
1056                          ParsedType TemplateTypeTy,
1057                          SourceLocation IdLoc,
1058                          SourceLocation LParenLoc,
1059                          ExprTy **Args, unsigned NumArgs,
1060                          SourceLocation RParenLoc,
1061                          SourceLocation EllipsisLoc) {
1062  if (!ConstructorD)
1063    return true;
1064
1065  AdjustDeclIfTemplate(ConstructorD);
1066
1067  CXXConstructorDecl *Constructor
1068    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1069  if (!Constructor) {
1070    // The user wrote a constructor initializer on a function that is
1071    // not a C++ constructor. Ignore the error for now, because we may
1072    // have more member initializers coming; we'll diagnose it just
1073    // once in ActOnMemInitializers.
1074    return true;
1075  }
1076
1077  CXXRecordDecl *ClassDecl = Constructor->getParent();
1078
1079  // C++ [class.base.init]p2:
1080  //   Names in a mem-initializer-id are looked up in the scope of the
1081  //   constructor's class and, if not found in that scope, are looked
1082  //   up in the scope containing the constructor's definition.
1083  //   [Note: if the constructor's class contains a member with the
1084  //   same name as a direct or virtual base class of the class, a
1085  //   mem-initializer-id naming the member or base class and composed
1086  //   of a single identifier refers to the class member. A
1087  //   mem-initializer-id for the hidden base class may be specified
1088  //   using a qualified name. ]
1089  if (!SS.getScopeRep() && !TemplateTypeTy) {
1090    // Look for a member, first.
1091    FieldDecl *Member = 0;
1092    DeclContext::lookup_result Result
1093      = ClassDecl->lookup(MemberOrBase);
1094    if (Result.first != Result.second) {
1095      Member = dyn_cast<FieldDecl>(*Result.first);
1096
1097      if (Member) {
1098        if (EllipsisLoc.isValid())
1099          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1100            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1101
1102        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1103                                    LParenLoc, RParenLoc);
1104      }
1105
1106      // Handle anonymous union case.
1107      if (IndirectFieldDecl* IndirectField
1108            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1109        if (EllipsisLoc.isValid())
1110          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1111            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1112
1113         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1114                                       NumArgs, IdLoc,
1115                                       LParenLoc, RParenLoc);
1116      }
1117    }
1118  }
1119  // It didn't name a member, so see if it names a class.
1120  QualType BaseType;
1121  TypeSourceInfo *TInfo = 0;
1122
1123  if (TemplateTypeTy) {
1124    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1125  } else {
1126    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1127    LookupParsedName(R, S, &SS);
1128
1129    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1130    if (!TyD) {
1131      if (R.isAmbiguous()) return true;
1132
1133      // We don't want access-control diagnostics here.
1134      R.suppressDiagnostics();
1135
1136      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1137        bool NotUnknownSpecialization = false;
1138        DeclContext *DC = computeDeclContext(SS, false);
1139        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1140          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1141
1142        if (!NotUnknownSpecialization) {
1143          // When the scope specifier can refer to a member of an unknown
1144          // specialization, we take it as a type name.
1145          BaseType = CheckTypenameType(ETK_None,
1146                                       (NestedNameSpecifier *)SS.getScopeRep(),
1147                                       *MemberOrBase, SourceLocation(),
1148                                       SS.getRange(), IdLoc);
1149          if (BaseType.isNull())
1150            return true;
1151
1152          R.clear();
1153          R.setLookupName(MemberOrBase);
1154        }
1155      }
1156
1157      // If no results were found, try to correct typos.
1158      if (R.empty() && BaseType.isNull() &&
1159          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1160          R.isSingleResult()) {
1161        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1162          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1163            // We have found a non-static data member with a similar
1164            // name to what was typed; complain and initialize that
1165            // member.
1166            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1167              << MemberOrBase << true << R.getLookupName()
1168              << FixItHint::CreateReplacement(R.getNameLoc(),
1169                                              R.getLookupName().getAsString());
1170            Diag(Member->getLocation(), diag::note_previous_decl)
1171              << Member->getDeclName();
1172
1173            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1174                                          LParenLoc, RParenLoc);
1175          }
1176        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1177          const CXXBaseSpecifier *DirectBaseSpec;
1178          const CXXBaseSpecifier *VirtualBaseSpec;
1179          if (FindBaseInitializer(*this, ClassDecl,
1180                                  Context.getTypeDeclType(Type),
1181                                  DirectBaseSpec, VirtualBaseSpec)) {
1182            // We have found a direct or virtual base class with a
1183            // similar name to what was typed; complain and initialize
1184            // that base class.
1185            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1186              << MemberOrBase << false << R.getLookupName()
1187              << FixItHint::CreateReplacement(R.getNameLoc(),
1188                                              R.getLookupName().getAsString());
1189
1190            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1191                                                             : VirtualBaseSpec;
1192            Diag(BaseSpec->getSourceRange().getBegin(),
1193                 diag::note_base_class_specified_here)
1194              << BaseSpec->getType()
1195              << BaseSpec->getSourceRange();
1196
1197            TyD = Type;
1198          }
1199        }
1200      }
1201
1202      if (!TyD && BaseType.isNull()) {
1203        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1204          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1205        return true;
1206      }
1207    }
1208
1209    if (BaseType.isNull()) {
1210      BaseType = Context.getTypeDeclType(TyD);
1211      if (SS.isSet()) {
1212        NestedNameSpecifier *Qualifier =
1213          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1214
1215        // FIXME: preserve source range information
1216        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1217      }
1218    }
1219  }
1220
1221  if (!TInfo)
1222    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1223
1224  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1225                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1226}
1227
1228/// Checks an initializer expression for use of uninitialized fields, such as
1229/// containing the field that is being initialized. Returns true if there is an
1230/// uninitialized field was used an updates the SourceLocation parameter; false
1231/// otherwise.
1232static bool InitExprContainsUninitializedFields(const Stmt *S,
1233                                                const ValueDecl *LhsField,
1234                                                SourceLocation *L) {
1235  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1236
1237  if (isa<CallExpr>(S)) {
1238    // Do not descend into function calls or constructors, as the use
1239    // of an uninitialized field may be valid. One would have to inspect
1240    // the contents of the function/ctor to determine if it is safe or not.
1241    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1242    // may be safe, depending on what the function/ctor does.
1243    return false;
1244  }
1245  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1246    const NamedDecl *RhsField = ME->getMemberDecl();
1247
1248    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1249      // The member expression points to a static data member.
1250      assert(VD->isStaticDataMember() &&
1251             "Member points to non-static data member!");
1252      (void)VD;
1253      return false;
1254    }
1255
1256    if (isa<EnumConstantDecl>(RhsField)) {
1257      // The member expression points to an enum.
1258      return false;
1259    }
1260
1261    if (RhsField == LhsField) {
1262      // Initializing a field with itself. Throw a warning.
1263      // But wait; there are exceptions!
1264      // Exception #1:  The field may not belong to this record.
1265      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1266      const Expr *base = ME->getBase();
1267      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1268        // Even though the field matches, it does not belong to this record.
1269        return false;
1270      }
1271      // None of the exceptions triggered; return true to indicate an
1272      // uninitialized field was used.
1273      *L = ME->getMemberLoc();
1274      return true;
1275    }
1276  } else if (isa<SizeOfAlignOfExpr>(S)) {
1277    // sizeof/alignof doesn't reference contents, do not warn.
1278    return false;
1279  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1280    // address-of doesn't reference contents (the pointer may be dereferenced
1281    // in the same expression but it would be rare; and weird).
1282    if (UOE->getOpcode() == UO_AddrOf)
1283      return false;
1284  }
1285  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1286       it != e; ++it) {
1287    if (!*it) {
1288      // An expression such as 'member(arg ?: "")' may trigger this.
1289      continue;
1290    }
1291    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1292      return true;
1293  }
1294  return false;
1295}
1296
1297MemInitResult
1298Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1299                             unsigned NumArgs, SourceLocation IdLoc,
1300                             SourceLocation LParenLoc,
1301                             SourceLocation RParenLoc) {
1302  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1303  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1304  assert((DirectMember || IndirectMember) &&
1305         "Member must be a FieldDecl or IndirectFieldDecl");
1306
1307  if (Member->isInvalidDecl())
1308    return true;
1309
1310  // Diagnose value-uses of fields to initialize themselves, e.g.
1311  //   foo(foo)
1312  // where foo is not also a parameter to the constructor.
1313  // TODO: implement -Wuninitialized and fold this into that framework.
1314  for (unsigned i = 0; i < NumArgs; ++i) {
1315    SourceLocation L;
1316    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1317      // FIXME: Return true in the case when other fields are used before being
1318      // uninitialized. For example, let this field be the i'th field. When
1319      // initializing the i'th field, throw a warning if any of the >= i'th
1320      // fields are used, as they are not yet initialized.
1321      // Right now we are only handling the case where the i'th field uses
1322      // itself in its initializer.
1323      Diag(L, diag::warn_field_is_uninit);
1324    }
1325  }
1326
1327  bool HasDependentArg = false;
1328  for (unsigned i = 0; i < NumArgs; i++)
1329    HasDependentArg |= Args[i]->isTypeDependent();
1330
1331  Expr *Init;
1332  if (Member->getType()->isDependentType() || HasDependentArg) {
1333    // Can't check initialization for a member of dependent type or when
1334    // any of the arguments are type-dependent expressions.
1335    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1336                                       RParenLoc);
1337
1338    // Erase any temporaries within this evaluation context; we're not
1339    // going to track them in the AST, since we'll be rebuilding the
1340    // ASTs during template instantiation.
1341    ExprTemporaries.erase(
1342              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1343                          ExprTemporaries.end());
1344  } else {
1345    // Initialize the member.
1346    InitializedEntity MemberEntity =
1347      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1348                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1349    InitializationKind Kind =
1350      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1351
1352    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1353
1354    ExprResult MemberInit =
1355      InitSeq.Perform(*this, MemberEntity, Kind,
1356                      MultiExprArg(*this, Args, NumArgs), 0);
1357    if (MemberInit.isInvalid())
1358      return true;
1359
1360    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1361
1362    // C++0x [class.base.init]p7:
1363    //   The initialization of each base and member constitutes a
1364    //   full-expression.
1365    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1366    if (MemberInit.isInvalid())
1367      return true;
1368
1369    // If we are in a dependent context, template instantiation will
1370    // perform this type-checking again. Just save the arguments that we
1371    // received in a ParenListExpr.
1372    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1373    // of the information that we have about the member
1374    // initializer. However, deconstructing the ASTs is a dicey process,
1375    // and this approach is far more likely to get the corner cases right.
1376    if (CurContext->isDependentContext())
1377      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1378                                               RParenLoc);
1379    else
1380      Init = MemberInit.get();
1381  }
1382
1383  if (DirectMember) {
1384    return new (Context) CXXBaseOrMemberInitializer(Context, DirectMember,
1385                                                    IdLoc, LParenLoc, Init,
1386                                                    RParenLoc);
1387  } else {
1388    return new (Context) CXXBaseOrMemberInitializer(Context, IndirectMember,
1389                                                    IdLoc, LParenLoc, Init,
1390                                                    RParenLoc);
1391  }
1392}
1393
1394MemInitResult
1395Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1396                           Expr **Args, unsigned NumArgs,
1397                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1398                           CXXRecordDecl *ClassDecl,
1399                           SourceLocation EllipsisLoc) {
1400  bool HasDependentArg = false;
1401  for (unsigned i = 0; i < NumArgs; i++)
1402    HasDependentArg |= Args[i]->isTypeDependent();
1403
1404  SourceLocation BaseLoc
1405    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1406
1407  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1408    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1409             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1410
1411  // C++ [class.base.init]p2:
1412  //   [...] Unless the mem-initializer-id names a nonstatic data
1413  //   member of the constructor's class or a direct or virtual base
1414  //   of that class, the mem-initializer is ill-formed. A
1415  //   mem-initializer-list can initialize a base class using any
1416  //   name that denotes that base class type.
1417  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1418
1419  if (EllipsisLoc.isValid()) {
1420    // This is a pack expansion.
1421    if (!BaseType->containsUnexpandedParameterPack())  {
1422      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1423        << SourceRange(BaseLoc, RParenLoc);
1424
1425      EllipsisLoc = SourceLocation();
1426    }
1427  } else {
1428    // Check for any unexpanded parameter packs.
1429    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1430      return true;
1431
1432    for (unsigned I = 0; I != NumArgs; ++I)
1433      if (DiagnoseUnexpandedParameterPack(Args[I]))
1434        return true;
1435  }
1436
1437  // Check for direct and virtual base classes.
1438  const CXXBaseSpecifier *DirectBaseSpec = 0;
1439  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1440  if (!Dependent) {
1441    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1442                        VirtualBaseSpec);
1443
1444    // C++ [base.class.init]p2:
1445    // Unless the mem-initializer-id names a nonstatic data member of the
1446    // constructor's class or a direct or virtual base of that class, the
1447    // mem-initializer is ill-formed.
1448    if (!DirectBaseSpec && !VirtualBaseSpec) {
1449      // If the class has any dependent bases, then it's possible that
1450      // one of those types will resolve to the same type as
1451      // BaseType. Therefore, just treat this as a dependent base
1452      // class initialization.  FIXME: Should we try to check the
1453      // initialization anyway? It seems odd.
1454      if (ClassDecl->hasAnyDependentBases())
1455        Dependent = true;
1456      else
1457        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1458          << BaseType << Context.getTypeDeclType(ClassDecl)
1459          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1460    }
1461  }
1462
1463  if (Dependent) {
1464    // Can't check initialization for a base of dependent type or when
1465    // any of the arguments are type-dependent expressions.
1466    ExprResult BaseInit
1467      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1468                                          RParenLoc));
1469
1470    // Erase any temporaries within this evaluation context; we're not
1471    // going to track them in the AST, since we'll be rebuilding the
1472    // ASTs during template instantiation.
1473    ExprTemporaries.erase(
1474              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1475                          ExprTemporaries.end());
1476
1477    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1478                                                    /*IsVirtual=*/false,
1479                                                    LParenLoc,
1480                                                    BaseInit.takeAs<Expr>(),
1481                                                    RParenLoc,
1482                                                    EllipsisLoc);
1483  }
1484
1485  // C++ [base.class.init]p2:
1486  //   If a mem-initializer-id is ambiguous because it designates both
1487  //   a direct non-virtual base class and an inherited virtual base
1488  //   class, the mem-initializer is ill-formed.
1489  if (DirectBaseSpec && VirtualBaseSpec)
1490    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1491      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1492
1493  CXXBaseSpecifier *BaseSpec
1494    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1495  if (!BaseSpec)
1496    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1497
1498  // Initialize the base.
1499  InitializedEntity BaseEntity =
1500    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1501  InitializationKind Kind =
1502    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1503
1504  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1505
1506  ExprResult BaseInit =
1507    InitSeq.Perform(*this, BaseEntity, Kind,
1508                    MultiExprArg(*this, Args, NumArgs), 0);
1509  if (BaseInit.isInvalid())
1510    return true;
1511
1512  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1513
1514  // C++0x [class.base.init]p7:
1515  //   The initialization of each base and member constitutes a
1516  //   full-expression.
1517  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1518  if (BaseInit.isInvalid())
1519    return true;
1520
1521  // If we are in a dependent context, template instantiation will
1522  // perform this type-checking again. Just save the arguments that we
1523  // received in a ParenListExpr.
1524  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1525  // of the information that we have about the base
1526  // initializer. However, deconstructing the ASTs is a dicey process,
1527  // and this approach is far more likely to get the corner cases right.
1528  if (CurContext->isDependentContext()) {
1529    ExprResult Init
1530      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1531                                          RParenLoc));
1532    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1533                                                    BaseSpec->isVirtual(),
1534                                                    LParenLoc,
1535                                                    Init.takeAs<Expr>(),
1536                                                    RParenLoc,
1537                                                    EllipsisLoc);
1538  }
1539
1540  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1541                                                  BaseSpec->isVirtual(),
1542                                                  LParenLoc,
1543                                                  BaseInit.takeAs<Expr>(),
1544                                                  RParenLoc,
1545                                                  EllipsisLoc);
1546}
1547
1548/// ImplicitInitializerKind - How an implicit base or member initializer should
1549/// initialize its base or member.
1550enum ImplicitInitializerKind {
1551  IIK_Default,
1552  IIK_Copy,
1553  IIK_Move
1554};
1555
1556static bool
1557BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1558                             ImplicitInitializerKind ImplicitInitKind,
1559                             CXXBaseSpecifier *BaseSpec,
1560                             bool IsInheritedVirtualBase,
1561                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1562  InitializedEntity InitEntity
1563    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1564                                        IsInheritedVirtualBase);
1565
1566  ExprResult BaseInit;
1567
1568  switch (ImplicitInitKind) {
1569  case IIK_Default: {
1570    InitializationKind InitKind
1571      = InitializationKind::CreateDefault(Constructor->getLocation());
1572    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1573    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1574                               MultiExprArg(SemaRef, 0, 0));
1575    break;
1576  }
1577
1578  case IIK_Copy: {
1579    ParmVarDecl *Param = Constructor->getParamDecl(0);
1580    QualType ParamType = Param->getType().getNonReferenceType();
1581
1582    Expr *CopyCtorArg =
1583      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1584                          Constructor->getLocation(), ParamType,
1585                          VK_LValue, 0);
1586
1587    // Cast to the base class to avoid ambiguities.
1588    QualType ArgTy =
1589      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1590                                       ParamType.getQualifiers());
1591
1592    CXXCastPath BasePath;
1593    BasePath.push_back(BaseSpec);
1594    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1595                              CK_UncheckedDerivedToBase,
1596                              VK_LValue, &BasePath);
1597
1598    InitializationKind InitKind
1599      = InitializationKind::CreateDirect(Constructor->getLocation(),
1600                                         SourceLocation(), SourceLocation());
1601    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1602                                   &CopyCtorArg, 1);
1603    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1604                               MultiExprArg(&CopyCtorArg, 1));
1605    break;
1606  }
1607
1608  case IIK_Move:
1609    assert(false && "Unhandled initializer kind!");
1610  }
1611
1612  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1613  if (BaseInit.isInvalid())
1614    return true;
1615
1616  CXXBaseInit =
1617    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1618               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1619                                                        SourceLocation()),
1620                                             BaseSpec->isVirtual(),
1621                                             SourceLocation(),
1622                                             BaseInit.takeAs<Expr>(),
1623                                             SourceLocation(),
1624                                             SourceLocation());
1625
1626  return false;
1627}
1628
1629static bool
1630BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1631                               ImplicitInitializerKind ImplicitInitKind,
1632                               FieldDecl *Field,
1633                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1634  if (Field->isInvalidDecl())
1635    return true;
1636
1637  SourceLocation Loc = Constructor->getLocation();
1638
1639  if (ImplicitInitKind == IIK_Copy) {
1640    ParmVarDecl *Param = Constructor->getParamDecl(0);
1641    QualType ParamType = Param->getType().getNonReferenceType();
1642
1643    Expr *MemberExprBase =
1644      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1645                          Loc, ParamType, VK_LValue, 0);
1646
1647    // Build a reference to this field within the parameter.
1648    CXXScopeSpec SS;
1649    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1650                              Sema::LookupMemberName);
1651    MemberLookup.addDecl(Field, AS_public);
1652    MemberLookup.resolveKind();
1653    ExprResult CopyCtorArg
1654      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1655                                         ParamType, Loc,
1656                                         /*IsArrow=*/false,
1657                                         SS,
1658                                         /*FirstQualifierInScope=*/0,
1659                                         MemberLookup,
1660                                         /*TemplateArgs=*/0);
1661    if (CopyCtorArg.isInvalid())
1662      return true;
1663
1664    // When the field we are copying is an array, create index variables for
1665    // each dimension of the array. We use these index variables to subscript
1666    // the source array, and other clients (e.g., CodeGen) will perform the
1667    // necessary iteration with these index variables.
1668    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1669    QualType BaseType = Field->getType();
1670    QualType SizeType = SemaRef.Context.getSizeType();
1671    while (const ConstantArrayType *Array
1672                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1673      // Create the iteration variable for this array index.
1674      IdentifierInfo *IterationVarName = 0;
1675      {
1676        llvm::SmallString<8> Str;
1677        llvm::raw_svector_ostream OS(Str);
1678        OS << "__i" << IndexVariables.size();
1679        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1680      }
1681      VarDecl *IterationVar
1682        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1683                          IterationVarName, SizeType,
1684                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1685                          SC_None, SC_None);
1686      IndexVariables.push_back(IterationVar);
1687
1688      // Create a reference to the iteration variable.
1689      ExprResult IterationVarRef
1690        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1691      assert(!IterationVarRef.isInvalid() &&
1692             "Reference to invented variable cannot fail!");
1693
1694      // Subscript the array with this iteration variable.
1695      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1696                                                            Loc,
1697                                                        IterationVarRef.take(),
1698                                                            Loc);
1699      if (CopyCtorArg.isInvalid())
1700        return true;
1701
1702      BaseType = Array->getElementType();
1703    }
1704
1705    // Construct the entity that we will be initializing. For an array, this
1706    // will be first element in the array, which may require several levels
1707    // of array-subscript entities.
1708    llvm::SmallVector<InitializedEntity, 4> Entities;
1709    Entities.reserve(1 + IndexVariables.size());
1710    Entities.push_back(InitializedEntity::InitializeMember(Field));
1711    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1712      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1713                                                              0,
1714                                                              Entities.back()));
1715
1716    // Direct-initialize to use the copy constructor.
1717    InitializationKind InitKind =
1718      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1719
1720    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1721    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1722                                   &CopyCtorArgE, 1);
1723
1724    ExprResult MemberInit
1725      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1726                        MultiExprArg(&CopyCtorArgE, 1));
1727    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1728    if (MemberInit.isInvalid())
1729      return true;
1730
1731    CXXMemberInit
1732      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1733                                           MemberInit.takeAs<Expr>(), Loc,
1734                                           IndexVariables.data(),
1735                                           IndexVariables.size());
1736    return false;
1737  }
1738
1739  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1740
1741  QualType FieldBaseElementType =
1742    SemaRef.Context.getBaseElementType(Field->getType());
1743
1744  if (FieldBaseElementType->isRecordType()) {
1745    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1746    InitializationKind InitKind =
1747      InitializationKind::CreateDefault(Loc);
1748
1749    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1750    ExprResult MemberInit =
1751      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1752
1753    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1754    if (MemberInit.isInvalid())
1755      return true;
1756
1757    CXXMemberInit =
1758      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1759                                                       Field, Loc, Loc,
1760                                                       MemberInit.get(),
1761                                                       Loc);
1762    return false;
1763  }
1764
1765  if (FieldBaseElementType->isReferenceType()) {
1766    SemaRef.Diag(Constructor->getLocation(),
1767                 diag::err_uninitialized_member_in_ctor)
1768    << (int)Constructor->isImplicit()
1769    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1770    << 0 << Field->getDeclName();
1771    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1772    return true;
1773  }
1774
1775  if (FieldBaseElementType.isConstQualified()) {
1776    SemaRef.Diag(Constructor->getLocation(),
1777                 diag::err_uninitialized_member_in_ctor)
1778    << (int)Constructor->isImplicit()
1779    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1780    << 1 << Field->getDeclName();
1781    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1782    return true;
1783  }
1784
1785  // Nothing to initialize.
1786  CXXMemberInit = 0;
1787  return false;
1788}
1789
1790namespace {
1791struct BaseAndFieldInfo {
1792  Sema &S;
1793  CXXConstructorDecl *Ctor;
1794  bool AnyErrorsInInits;
1795  ImplicitInitializerKind IIK;
1796  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1797  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1798
1799  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1800    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1801    // FIXME: Handle implicit move constructors.
1802    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1803      IIK = IIK_Copy;
1804    else
1805      IIK = IIK_Default;
1806  }
1807};
1808}
1809
1810static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1811                                    FieldDecl *Top, FieldDecl *Field) {
1812
1813  // Overwhelmingly common case: we have a direct initializer for this field.
1814  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1815    Info.AllToInit.push_back(Init);
1816    return false;
1817  }
1818
1819  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1820    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1821    assert(FieldClassType && "anonymous struct/union without record type");
1822    CXXRecordDecl *FieldClassDecl
1823      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1824
1825    // Even though union members never have non-trivial default
1826    // constructions in C++03, we still build member initializers for aggregate
1827    // record types which can be union members, and C++0x allows non-trivial
1828    // default constructors for union members, so we ensure that only one
1829    // member is initialized for these.
1830    if (FieldClassDecl->isUnion()) {
1831      // First check for an explicit initializer for one field.
1832      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1833           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1834        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1835          Info.AllToInit.push_back(Init);
1836
1837          // Once we've initialized a field of an anonymous union, the union
1838          // field in the class is also initialized, so exit immediately.
1839          return false;
1840        } else if ((*FA)->isAnonymousStructOrUnion()) {
1841          if (CollectFieldInitializer(Info, Top, *FA))
1842            return true;
1843        }
1844      }
1845
1846      // Fallthrough and construct a default initializer for the union as
1847      // a whole, which can call its default constructor if such a thing exists
1848      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1849      // behavior going forward with C++0x, when anonymous unions there are
1850      // finalized, we should revisit this.
1851    } else {
1852      // For structs, we simply descend through to initialize all members where
1853      // necessary.
1854      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1855           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1856        if (CollectFieldInitializer(Info, Top, *FA))
1857          return true;
1858      }
1859    }
1860  }
1861
1862  // Don't try to build an implicit initializer if there were semantic
1863  // errors in any of the initializers (and therefore we might be
1864  // missing some that the user actually wrote).
1865  if (Info.AnyErrorsInInits)
1866    return false;
1867
1868  CXXBaseOrMemberInitializer *Init = 0;
1869  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1870    return true;
1871
1872  if (Init)
1873    Info.AllToInit.push_back(Init);
1874
1875  return false;
1876}
1877
1878bool
1879Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1880                                  CXXBaseOrMemberInitializer **Initializers,
1881                                  unsigned NumInitializers,
1882                                  bool AnyErrors) {
1883  if (Constructor->getDeclContext()->isDependentContext()) {
1884    // Just store the initializers as written, they will be checked during
1885    // instantiation.
1886    if (NumInitializers > 0) {
1887      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1888      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1889        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1890      memcpy(baseOrMemberInitializers, Initializers,
1891             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1892      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1893    }
1894
1895    return false;
1896  }
1897
1898  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1899
1900  // We need to build the initializer AST according to order of construction
1901  // and not what user specified in the Initializers list.
1902  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1903  if (!ClassDecl)
1904    return true;
1905
1906  bool HadError = false;
1907
1908  for (unsigned i = 0; i < NumInitializers; i++) {
1909    CXXBaseOrMemberInitializer *Member = Initializers[i];
1910
1911    if (Member->isBaseInitializer())
1912      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1913    else
1914      Info.AllBaseFields[Member->getAnyMember()] = Member;
1915  }
1916
1917  // Keep track of the direct virtual bases.
1918  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1919  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1920       E = ClassDecl->bases_end(); I != E; ++I) {
1921    if (I->isVirtual())
1922      DirectVBases.insert(I);
1923  }
1924
1925  // Push virtual bases before others.
1926  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1927       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1928
1929    if (CXXBaseOrMemberInitializer *Value
1930        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1931      Info.AllToInit.push_back(Value);
1932    } else if (!AnyErrors) {
1933      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1934      CXXBaseOrMemberInitializer *CXXBaseInit;
1935      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1936                                       VBase, IsInheritedVirtualBase,
1937                                       CXXBaseInit)) {
1938        HadError = true;
1939        continue;
1940      }
1941
1942      Info.AllToInit.push_back(CXXBaseInit);
1943    }
1944  }
1945
1946  // Non-virtual bases.
1947  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1948       E = ClassDecl->bases_end(); Base != E; ++Base) {
1949    // Virtuals are in the virtual base list and already constructed.
1950    if (Base->isVirtual())
1951      continue;
1952
1953    if (CXXBaseOrMemberInitializer *Value
1954          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1955      Info.AllToInit.push_back(Value);
1956    } else if (!AnyErrors) {
1957      CXXBaseOrMemberInitializer *CXXBaseInit;
1958      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1959                                       Base, /*IsInheritedVirtualBase=*/false,
1960                                       CXXBaseInit)) {
1961        HadError = true;
1962        continue;
1963      }
1964
1965      Info.AllToInit.push_back(CXXBaseInit);
1966    }
1967  }
1968
1969  // Fields.
1970  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1971       E = ClassDecl->field_end(); Field != E; ++Field) {
1972    if ((*Field)->getType()->isIncompleteArrayType()) {
1973      assert(ClassDecl->hasFlexibleArrayMember() &&
1974             "Incomplete array type is not valid");
1975      continue;
1976    }
1977    if (CollectFieldInitializer(Info, *Field, *Field))
1978      HadError = true;
1979  }
1980
1981  NumInitializers = Info.AllToInit.size();
1982  if (NumInitializers > 0) {
1983    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1984    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1985      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1986    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1987           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1988    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1989
1990    // Constructors implicitly reference the base and member
1991    // destructors.
1992    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1993                                           Constructor->getParent());
1994  }
1995
1996  return HadError;
1997}
1998
1999static void *GetKeyForTopLevelField(FieldDecl *Field) {
2000  // For anonymous unions, use the class declaration as the key.
2001  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2002    if (RT->getDecl()->isAnonymousStructOrUnion())
2003      return static_cast<void *>(RT->getDecl());
2004  }
2005  return static_cast<void *>(Field);
2006}
2007
2008static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2009  return Context.getCanonicalType(BaseType).getTypePtr();
2010}
2011
2012static void *GetKeyForMember(ASTContext &Context,
2013                             CXXBaseOrMemberInitializer *Member) {
2014  if (!Member->isAnyMemberInitializer())
2015    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2016
2017  // For fields injected into the class via declaration of an anonymous union,
2018  // use its anonymous union class declaration as the unique key.
2019  FieldDecl *Field = Member->getAnyMember();
2020
2021  // If the field is a member of an anonymous struct or union, our key
2022  // is the anonymous record decl that's a direct child of the class.
2023  RecordDecl *RD = Field->getParent();
2024  if (RD->isAnonymousStructOrUnion()) {
2025    while (true) {
2026      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2027      if (Parent->isAnonymousStructOrUnion())
2028        RD = Parent;
2029      else
2030        break;
2031    }
2032
2033    return static_cast<void *>(RD);
2034  }
2035
2036  return static_cast<void *>(Field);
2037}
2038
2039static void
2040DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2041                                  const CXXConstructorDecl *Constructor,
2042                                  CXXBaseOrMemberInitializer **Inits,
2043                                  unsigned NumInits) {
2044  if (Constructor->getDeclContext()->isDependentContext())
2045    return;
2046
2047  // Don't check initializers order unless the warning is enabled at the
2048  // location of at least one initializer.
2049  bool ShouldCheckOrder = false;
2050  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2051    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2052    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2053                                         Init->getSourceLocation())
2054          != Diagnostic::Ignored) {
2055      ShouldCheckOrder = true;
2056      break;
2057    }
2058  }
2059  if (!ShouldCheckOrder)
2060    return;
2061
2062  // Build the list of bases and members in the order that they'll
2063  // actually be initialized.  The explicit initializers should be in
2064  // this same order but may be missing things.
2065  llvm::SmallVector<const void*, 32> IdealInitKeys;
2066
2067  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2068
2069  // 1. Virtual bases.
2070  for (CXXRecordDecl::base_class_const_iterator VBase =
2071       ClassDecl->vbases_begin(),
2072       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2073    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2074
2075  // 2. Non-virtual bases.
2076  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2077       E = ClassDecl->bases_end(); Base != E; ++Base) {
2078    if (Base->isVirtual())
2079      continue;
2080    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2081  }
2082
2083  // 3. Direct fields.
2084  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2085       E = ClassDecl->field_end(); Field != E; ++Field)
2086    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2087
2088  unsigned NumIdealInits = IdealInitKeys.size();
2089  unsigned IdealIndex = 0;
2090
2091  CXXBaseOrMemberInitializer *PrevInit = 0;
2092  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2093    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2094    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2095
2096    // Scan forward to try to find this initializer in the idealized
2097    // initializers list.
2098    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2099      if (InitKey == IdealInitKeys[IdealIndex])
2100        break;
2101
2102    // If we didn't find this initializer, it must be because we
2103    // scanned past it on a previous iteration.  That can only
2104    // happen if we're out of order;  emit a warning.
2105    if (IdealIndex == NumIdealInits && PrevInit) {
2106      Sema::SemaDiagnosticBuilder D =
2107        SemaRef.Diag(PrevInit->getSourceLocation(),
2108                     diag::warn_initializer_out_of_order);
2109
2110      if (PrevInit->isAnyMemberInitializer())
2111        D << 0 << PrevInit->getAnyMember()->getDeclName();
2112      else
2113        D << 1 << PrevInit->getBaseClassInfo()->getType();
2114
2115      if (Init->isAnyMemberInitializer())
2116        D << 0 << Init->getAnyMember()->getDeclName();
2117      else
2118        D << 1 << Init->getBaseClassInfo()->getType();
2119
2120      // Move back to the initializer's location in the ideal list.
2121      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2122        if (InitKey == IdealInitKeys[IdealIndex])
2123          break;
2124
2125      assert(IdealIndex != NumIdealInits &&
2126             "initializer not found in initializer list");
2127    }
2128
2129    PrevInit = Init;
2130  }
2131}
2132
2133namespace {
2134bool CheckRedundantInit(Sema &S,
2135                        CXXBaseOrMemberInitializer *Init,
2136                        CXXBaseOrMemberInitializer *&PrevInit) {
2137  if (!PrevInit) {
2138    PrevInit = Init;
2139    return false;
2140  }
2141
2142  if (FieldDecl *Field = Init->getMember())
2143    S.Diag(Init->getSourceLocation(),
2144           diag::err_multiple_mem_initialization)
2145      << Field->getDeclName()
2146      << Init->getSourceRange();
2147  else {
2148    Type *BaseClass = Init->getBaseClass();
2149    assert(BaseClass && "neither field nor base");
2150    S.Diag(Init->getSourceLocation(),
2151           diag::err_multiple_base_initialization)
2152      << QualType(BaseClass, 0)
2153      << Init->getSourceRange();
2154  }
2155  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2156    << 0 << PrevInit->getSourceRange();
2157
2158  return true;
2159}
2160
2161typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2162typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2163
2164bool CheckRedundantUnionInit(Sema &S,
2165                             CXXBaseOrMemberInitializer *Init,
2166                             RedundantUnionMap &Unions) {
2167  FieldDecl *Field = Init->getAnyMember();
2168  RecordDecl *Parent = Field->getParent();
2169  if (!Parent->isAnonymousStructOrUnion())
2170    return false;
2171
2172  NamedDecl *Child = Field;
2173  do {
2174    if (Parent->isUnion()) {
2175      UnionEntry &En = Unions[Parent];
2176      if (En.first && En.first != Child) {
2177        S.Diag(Init->getSourceLocation(),
2178               diag::err_multiple_mem_union_initialization)
2179          << Field->getDeclName()
2180          << Init->getSourceRange();
2181        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2182          << 0 << En.second->getSourceRange();
2183        return true;
2184      } else if (!En.first) {
2185        En.first = Child;
2186        En.second = Init;
2187      }
2188    }
2189
2190    Child = Parent;
2191    Parent = cast<RecordDecl>(Parent->getDeclContext());
2192  } while (Parent->isAnonymousStructOrUnion());
2193
2194  return false;
2195}
2196}
2197
2198/// ActOnMemInitializers - Handle the member initializers for a constructor.
2199void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2200                                SourceLocation ColonLoc,
2201                                MemInitTy **meminits, unsigned NumMemInits,
2202                                bool AnyErrors) {
2203  if (!ConstructorDecl)
2204    return;
2205
2206  AdjustDeclIfTemplate(ConstructorDecl);
2207
2208  CXXConstructorDecl *Constructor
2209    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2210
2211  if (!Constructor) {
2212    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2213    return;
2214  }
2215
2216  CXXBaseOrMemberInitializer **MemInits =
2217    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2218
2219  // Mapping for the duplicate initializers check.
2220  // For member initializers, this is keyed with a FieldDecl*.
2221  // For base initializers, this is keyed with a Type*.
2222  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2223
2224  // Mapping for the inconsistent anonymous-union initializers check.
2225  RedundantUnionMap MemberUnions;
2226
2227  bool HadError = false;
2228  for (unsigned i = 0; i < NumMemInits; i++) {
2229    CXXBaseOrMemberInitializer *Init = MemInits[i];
2230
2231    // Set the source order index.
2232    Init->setSourceOrder(i);
2233
2234    if (Init->isAnyMemberInitializer()) {
2235      FieldDecl *Field = Init->getAnyMember();
2236      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2237          CheckRedundantUnionInit(*this, Init, MemberUnions))
2238        HadError = true;
2239    } else {
2240      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2241      if (CheckRedundantInit(*this, Init, Members[Key]))
2242        HadError = true;
2243    }
2244  }
2245
2246  if (HadError)
2247    return;
2248
2249  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2250
2251  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2252}
2253
2254void
2255Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2256                                             CXXRecordDecl *ClassDecl) {
2257  // Ignore dependent contexts.
2258  if (ClassDecl->isDependentContext())
2259    return;
2260
2261  // FIXME: all the access-control diagnostics are positioned on the
2262  // field/base declaration.  That's probably good; that said, the
2263  // user might reasonably want to know why the destructor is being
2264  // emitted, and we currently don't say.
2265
2266  // Non-static data members.
2267  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2268       E = ClassDecl->field_end(); I != E; ++I) {
2269    FieldDecl *Field = *I;
2270    if (Field->isInvalidDecl())
2271      continue;
2272    QualType FieldType = Context.getBaseElementType(Field->getType());
2273
2274    const RecordType* RT = FieldType->getAs<RecordType>();
2275    if (!RT)
2276      continue;
2277
2278    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2279    if (FieldClassDecl->hasTrivialDestructor())
2280      continue;
2281
2282    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2283    CheckDestructorAccess(Field->getLocation(), Dtor,
2284                          PDiag(diag::err_access_dtor_field)
2285                            << Field->getDeclName()
2286                            << FieldType);
2287
2288    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2289  }
2290
2291  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2292
2293  // Bases.
2294  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2295       E = ClassDecl->bases_end(); Base != E; ++Base) {
2296    // Bases are always records in a well-formed non-dependent class.
2297    const RecordType *RT = Base->getType()->getAs<RecordType>();
2298
2299    // Remember direct virtual bases.
2300    if (Base->isVirtual())
2301      DirectVirtualBases.insert(RT);
2302
2303    // Ignore trivial destructors.
2304    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2305    if (BaseClassDecl->hasTrivialDestructor())
2306      continue;
2307
2308    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2309
2310    // FIXME: caret should be on the start of the class name
2311    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2312                          PDiag(diag::err_access_dtor_base)
2313                            << Base->getType()
2314                            << Base->getSourceRange());
2315
2316    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2317  }
2318
2319  // Virtual bases.
2320  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2321       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2322
2323    // Bases are always records in a well-formed non-dependent class.
2324    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2325
2326    // Ignore direct virtual bases.
2327    if (DirectVirtualBases.count(RT))
2328      continue;
2329
2330    // Ignore trivial destructors.
2331    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2332    if (BaseClassDecl->hasTrivialDestructor())
2333      continue;
2334
2335    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2336    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2337                          PDiag(diag::err_access_dtor_vbase)
2338                            << VBase->getType());
2339
2340    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2341  }
2342}
2343
2344void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2345  if (!CDtorDecl)
2346    return;
2347
2348  if (CXXConstructorDecl *Constructor
2349      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2350    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2351}
2352
2353bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2354                                  unsigned DiagID, AbstractDiagSelID SelID) {
2355  if (SelID == -1)
2356    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2357  else
2358    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2359}
2360
2361bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2362                                  const PartialDiagnostic &PD) {
2363  if (!getLangOptions().CPlusPlus)
2364    return false;
2365
2366  if (const ArrayType *AT = Context.getAsArrayType(T))
2367    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2368
2369  if (const PointerType *PT = T->getAs<PointerType>()) {
2370    // Find the innermost pointer type.
2371    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2372      PT = T;
2373
2374    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2375      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2376  }
2377
2378  const RecordType *RT = T->getAs<RecordType>();
2379  if (!RT)
2380    return false;
2381
2382  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2383
2384  // We can't answer whether something is abstract until it has a
2385  // definition.  If it's currently being defined, we'll walk back
2386  // over all the declarations when we have a full definition.
2387  const CXXRecordDecl *Def = RD->getDefinition();
2388  if (!Def || Def->isBeingDefined())
2389    return false;
2390
2391  if (!RD->isAbstract())
2392    return false;
2393
2394  Diag(Loc, PD) << RD->getDeclName();
2395  DiagnoseAbstractType(RD);
2396
2397  return true;
2398}
2399
2400void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2401  // Check if we've already emitted the list of pure virtual functions
2402  // for this class.
2403  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2404    return;
2405
2406  CXXFinalOverriderMap FinalOverriders;
2407  RD->getFinalOverriders(FinalOverriders);
2408
2409  // Keep a set of seen pure methods so we won't diagnose the same method
2410  // more than once.
2411  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2412
2413  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2414                                   MEnd = FinalOverriders.end();
2415       M != MEnd;
2416       ++M) {
2417    for (OverridingMethods::iterator SO = M->second.begin(),
2418                                  SOEnd = M->second.end();
2419         SO != SOEnd; ++SO) {
2420      // C++ [class.abstract]p4:
2421      //   A class is abstract if it contains or inherits at least one
2422      //   pure virtual function for which the final overrider is pure
2423      //   virtual.
2424
2425      //
2426      if (SO->second.size() != 1)
2427        continue;
2428
2429      if (!SO->second.front().Method->isPure())
2430        continue;
2431
2432      if (!SeenPureMethods.insert(SO->second.front().Method))
2433        continue;
2434
2435      Diag(SO->second.front().Method->getLocation(),
2436           diag::note_pure_virtual_function)
2437        << SO->second.front().Method->getDeclName();
2438    }
2439  }
2440
2441  if (!PureVirtualClassDiagSet)
2442    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2443  PureVirtualClassDiagSet->insert(RD);
2444}
2445
2446namespace {
2447struct AbstractUsageInfo {
2448  Sema &S;
2449  CXXRecordDecl *Record;
2450  CanQualType AbstractType;
2451  bool Invalid;
2452
2453  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2454    : S(S), Record(Record),
2455      AbstractType(S.Context.getCanonicalType(
2456                   S.Context.getTypeDeclType(Record))),
2457      Invalid(false) {}
2458
2459  void DiagnoseAbstractType() {
2460    if (Invalid) return;
2461    S.DiagnoseAbstractType(Record);
2462    Invalid = true;
2463  }
2464
2465  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2466};
2467
2468struct CheckAbstractUsage {
2469  AbstractUsageInfo &Info;
2470  const NamedDecl *Ctx;
2471
2472  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2473    : Info(Info), Ctx(Ctx) {}
2474
2475  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2476    switch (TL.getTypeLocClass()) {
2477#define ABSTRACT_TYPELOC(CLASS, PARENT)
2478#define TYPELOC(CLASS, PARENT) \
2479    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2480#include "clang/AST/TypeLocNodes.def"
2481    }
2482  }
2483
2484  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2485    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2486    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2487      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2488      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2489    }
2490  }
2491
2492  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2493    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2494  }
2495
2496  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2497    // Visit the type parameters from a permissive context.
2498    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2499      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2500      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2501        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2502          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2503      // TODO: other template argument types?
2504    }
2505  }
2506
2507  // Visit pointee types from a permissive context.
2508#define CheckPolymorphic(Type) \
2509  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2510    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2511  }
2512  CheckPolymorphic(PointerTypeLoc)
2513  CheckPolymorphic(ReferenceTypeLoc)
2514  CheckPolymorphic(MemberPointerTypeLoc)
2515  CheckPolymorphic(BlockPointerTypeLoc)
2516
2517  /// Handle all the types we haven't given a more specific
2518  /// implementation for above.
2519  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2520    // Every other kind of type that we haven't called out already
2521    // that has an inner type is either (1) sugar or (2) contains that
2522    // inner type in some way as a subobject.
2523    if (TypeLoc Next = TL.getNextTypeLoc())
2524      return Visit(Next, Sel);
2525
2526    // If there's no inner type and we're in a permissive context,
2527    // don't diagnose.
2528    if (Sel == Sema::AbstractNone) return;
2529
2530    // Check whether the type matches the abstract type.
2531    QualType T = TL.getType();
2532    if (T->isArrayType()) {
2533      Sel = Sema::AbstractArrayType;
2534      T = Info.S.Context.getBaseElementType(T);
2535    }
2536    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2537    if (CT != Info.AbstractType) return;
2538
2539    // It matched; do some magic.
2540    if (Sel == Sema::AbstractArrayType) {
2541      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2542        << T << TL.getSourceRange();
2543    } else {
2544      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2545        << Sel << T << TL.getSourceRange();
2546    }
2547    Info.DiagnoseAbstractType();
2548  }
2549};
2550
2551void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2552                                  Sema::AbstractDiagSelID Sel) {
2553  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2554}
2555
2556}
2557
2558/// Check for invalid uses of an abstract type in a method declaration.
2559static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2560                                    CXXMethodDecl *MD) {
2561  // No need to do the check on definitions, which require that
2562  // the return/param types be complete.
2563  if (MD->isThisDeclarationADefinition())
2564    return;
2565
2566  // For safety's sake, just ignore it if we don't have type source
2567  // information.  This should never happen for non-implicit methods,
2568  // but...
2569  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2570    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2571}
2572
2573/// Check for invalid uses of an abstract type within a class definition.
2574static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2575                                    CXXRecordDecl *RD) {
2576  for (CXXRecordDecl::decl_iterator
2577         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2578    Decl *D = *I;
2579    if (D->isImplicit()) continue;
2580
2581    // Methods and method templates.
2582    if (isa<CXXMethodDecl>(D)) {
2583      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2584    } else if (isa<FunctionTemplateDecl>(D)) {
2585      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2586      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2587
2588    // Fields and static variables.
2589    } else if (isa<FieldDecl>(D)) {
2590      FieldDecl *FD = cast<FieldDecl>(D);
2591      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2592        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2593    } else if (isa<VarDecl>(D)) {
2594      VarDecl *VD = cast<VarDecl>(D);
2595      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2596        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2597
2598    // Nested classes and class templates.
2599    } else if (isa<CXXRecordDecl>(D)) {
2600      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2601    } else if (isa<ClassTemplateDecl>(D)) {
2602      CheckAbstractClassUsage(Info,
2603                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2604    }
2605  }
2606}
2607
2608/// \brief Perform semantic checks on a class definition that has been
2609/// completing, introducing implicitly-declared members, checking for
2610/// abstract types, etc.
2611void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2612  if (!Record)
2613    return;
2614
2615  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2616    AbstractUsageInfo Info(*this, Record);
2617    CheckAbstractClassUsage(Info, Record);
2618  }
2619
2620  // If this is not an aggregate type and has no user-declared constructor,
2621  // complain about any non-static data members of reference or const scalar
2622  // type, since they will never get initializers.
2623  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2624      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2625    bool Complained = false;
2626    for (RecordDecl::field_iterator F = Record->field_begin(),
2627                                 FEnd = Record->field_end();
2628         F != FEnd; ++F) {
2629      if (F->getType()->isReferenceType() ||
2630          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2631        if (!Complained) {
2632          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2633            << Record->getTagKind() << Record;
2634          Complained = true;
2635        }
2636
2637        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2638          << F->getType()->isReferenceType()
2639          << F->getDeclName();
2640      }
2641    }
2642  }
2643
2644  if (Record->isDynamicClass())
2645    DynamicClasses.push_back(Record);
2646
2647  if (Record->getIdentifier()) {
2648    // C++ [class.mem]p13:
2649    //   If T is the name of a class, then each of the following shall have a
2650    //   name different from T:
2651    //     - every member of every anonymous union that is a member of class T.
2652    //
2653    // C++ [class.mem]p14:
2654    //   In addition, if class T has a user-declared constructor (12.1), every
2655    //   non-static data member of class T shall have a name different from T.
2656    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2657         R.first != R.second; ++R.first) {
2658      NamedDecl *D = *R.first;
2659      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2660          isa<IndirectFieldDecl>(D)) {
2661        Diag(D->getLocation(), diag::err_member_name_of_class)
2662          << D->getDeclName();
2663        break;
2664      }
2665    }
2666  }
2667}
2668
2669void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2670                                             Decl *TagDecl,
2671                                             SourceLocation LBrac,
2672                                             SourceLocation RBrac,
2673                                             AttributeList *AttrList) {
2674  if (!TagDecl)
2675    return;
2676
2677  AdjustDeclIfTemplate(TagDecl);
2678
2679  ActOnFields(S, RLoc, TagDecl,
2680              // strict aliasing violation!
2681              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2682              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2683
2684  CheckCompletedCXXClass(
2685                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2686}
2687
2688namespace {
2689  /// \brief Helper class that collects exception specifications for
2690  /// implicitly-declared special member functions.
2691  class ImplicitExceptionSpecification {
2692    ASTContext &Context;
2693    bool AllowsAllExceptions;
2694    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2695    llvm::SmallVector<QualType, 4> Exceptions;
2696
2697  public:
2698    explicit ImplicitExceptionSpecification(ASTContext &Context)
2699      : Context(Context), AllowsAllExceptions(false) { }
2700
2701    /// \brief Whether the special member function should have any
2702    /// exception specification at all.
2703    bool hasExceptionSpecification() const {
2704      return !AllowsAllExceptions;
2705    }
2706
2707    /// \brief Whether the special member function should have a
2708    /// throw(...) exception specification (a Microsoft extension).
2709    bool hasAnyExceptionSpecification() const {
2710      return false;
2711    }
2712
2713    /// \brief The number of exceptions in the exception specification.
2714    unsigned size() const { return Exceptions.size(); }
2715
2716    /// \brief The set of exceptions in the exception specification.
2717    const QualType *data() const { return Exceptions.data(); }
2718
2719    /// \brief Note that
2720    void CalledDecl(CXXMethodDecl *Method) {
2721      // If we already know that we allow all exceptions, do nothing.
2722      if (AllowsAllExceptions || !Method)
2723        return;
2724
2725      const FunctionProtoType *Proto
2726        = Method->getType()->getAs<FunctionProtoType>();
2727
2728      // If this function can throw any exceptions, make a note of that.
2729      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2730        AllowsAllExceptions = true;
2731        ExceptionsSeen.clear();
2732        Exceptions.clear();
2733        return;
2734      }
2735
2736      // Record the exceptions in this function's exception specification.
2737      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2738                                              EEnd = Proto->exception_end();
2739           E != EEnd; ++E)
2740        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2741          Exceptions.push_back(*E);
2742    }
2743  };
2744}
2745
2746
2747/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2748/// special functions, such as the default constructor, copy
2749/// constructor, or destructor, to the given C++ class (C++
2750/// [special]p1).  This routine can only be executed just before the
2751/// definition of the class is complete.
2752void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2753  if (!ClassDecl->hasUserDeclaredConstructor())
2754    ++ASTContext::NumImplicitDefaultConstructors;
2755
2756  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2757    ++ASTContext::NumImplicitCopyConstructors;
2758
2759  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2760    ++ASTContext::NumImplicitCopyAssignmentOperators;
2761
2762    // If we have a dynamic class, then the copy assignment operator may be
2763    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2764    // it shows up in the right place in the vtable and that we diagnose
2765    // problems with the implicit exception specification.
2766    if (ClassDecl->isDynamicClass())
2767      DeclareImplicitCopyAssignment(ClassDecl);
2768  }
2769
2770  if (!ClassDecl->hasUserDeclaredDestructor()) {
2771    ++ASTContext::NumImplicitDestructors;
2772
2773    // If we have a dynamic class, then the destructor may be virtual, so we
2774    // have to declare the destructor immediately. This ensures that, e.g., it
2775    // shows up in the right place in the vtable and that we diagnose problems
2776    // with the implicit exception specification.
2777    if (ClassDecl->isDynamicClass())
2778      DeclareImplicitDestructor(ClassDecl);
2779  }
2780}
2781
2782void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2783  if (!D)
2784    return;
2785
2786  TemplateParameterList *Params = 0;
2787  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2788    Params = Template->getTemplateParameters();
2789  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2790           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2791    Params = PartialSpec->getTemplateParameters();
2792  else
2793    return;
2794
2795  for (TemplateParameterList::iterator Param = Params->begin(),
2796                                    ParamEnd = Params->end();
2797       Param != ParamEnd; ++Param) {
2798    NamedDecl *Named = cast<NamedDecl>(*Param);
2799    if (Named->getDeclName()) {
2800      S->AddDecl(Named);
2801      IdResolver.AddDecl(Named);
2802    }
2803  }
2804}
2805
2806void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2807  if (!RecordD) return;
2808  AdjustDeclIfTemplate(RecordD);
2809  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2810  PushDeclContext(S, Record);
2811}
2812
2813void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2814  if (!RecordD) return;
2815  PopDeclContext();
2816}
2817
2818/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2819/// parsing a top-level (non-nested) C++ class, and we are now
2820/// parsing those parts of the given Method declaration that could
2821/// not be parsed earlier (C++ [class.mem]p2), such as default
2822/// arguments. This action should enter the scope of the given
2823/// Method declaration as if we had just parsed the qualified method
2824/// name. However, it should not bring the parameters into scope;
2825/// that will be performed by ActOnDelayedCXXMethodParameter.
2826void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2827}
2828
2829/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2830/// C++ method declaration. We're (re-)introducing the given
2831/// function parameter into scope for use in parsing later parts of
2832/// the method declaration. For example, we could see an
2833/// ActOnParamDefaultArgument event for this parameter.
2834void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2835  if (!ParamD)
2836    return;
2837
2838  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2839
2840  // If this parameter has an unparsed default argument, clear it out
2841  // to make way for the parsed default argument.
2842  if (Param->hasUnparsedDefaultArg())
2843    Param->setDefaultArg(0);
2844
2845  S->AddDecl(Param);
2846  if (Param->getDeclName())
2847    IdResolver.AddDecl(Param);
2848}
2849
2850/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2851/// processing the delayed method declaration for Method. The method
2852/// declaration is now considered finished. There may be a separate
2853/// ActOnStartOfFunctionDef action later (not necessarily
2854/// immediately!) for this method, if it was also defined inside the
2855/// class body.
2856void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2857  if (!MethodD)
2858    return;
2859
2860  AdjustDeclIfTemplate(MethodD);
2861
2862  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2863
2864  // Now that we have our default arguments, check the constructor
2865  // again. It could produce additional diagnostics or affect whether
2866  // the class has implicitly-declared destructors, among other
2867  // things.
2868  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2869    CheckConstructor(Constructor);
2870
2871  // Check the default arguments, which we may have added.
2872  if (!Method->isInvalidDecl())
2873    CheckCXXDefaultArguments(Method);
2874}
2875
2876/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2877/// the well-formedness of the constructor declarator @p D with type @p
2878/// R. If there are any errors in the declarator, this routine will
2879/// emit diagnostics and set the invalid bit to true.  In any case, the type
2880/// will be updated to reflect a well-formed type for the constructor and
2881/// returned.
2882QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2883                                          StorageClass &SC) {
2884  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2885
2886  // C++ [class.ctor]p3:
2887  //   A constructor shall not be virtual (10.3) or static (9.4). A
2888  //   constructor can be invoked for a const, volatile or const
2889  //   volatile object. A constructor shall not be declared const,
2890  //   volatile, or const volatile (9.3.2).
2891  if (isVirtual) {
2892    if (!D.isInvalidType())
2893      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2894        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2895        << SourceRange(D.getIdentifierLoc());
2896    D.setInvalidType();
2897  }
2898  if (SC == SC_Static) {
2899    if (!D.isInvalidType())
2900      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2901        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2902        << SourceRange(D.getIdentifierLoc());
2903    D.setInvalidType();
2904    SC = SC_None;
2905  }
2906
2907  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
2908  if (FTI.TypeQuals != 0) {
2909    if (FTI.TypeQuals & Qualifiers::Const)
2910      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2911        << "const" << SourceRange(D.getIdentifierLoc());
2912    if (FTI.TypeQuals & Qualifiers::Volatile)
2913      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2914        << "volatile" << SourceRange(D.getIdentifierLoc());
2915    if (FTI.TypeQuals & Qualifiers::Restrict)
2916      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2917        << "restrict" << SourceRange(D.getIdentifierLoc());
2918    D.setInvalidType();
2919  }
2920
2921  // Rebuild the function type "R" without any type qualifiers (in
2922  // case any of the errors above fired) and with "void" as the
2923  // return type, since constructors don't have return types.
2924  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2925  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
2926    return R;
2927
2928  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
2929  EPI.TypeQuals = 0;
2930
2931  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2932                                 Proto->getNumArgs(), EPI);
2933}
2934
2935/// CheckConstructor - Checks a fully-formed constructor for
2936/// well-formedness, issuing any diagnostics required. Returns true if
2937/// the constructor declarator is invalid.
2938void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2939  CXXRecordDecl *ClassDecl
2940    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2941  if (!ClassDecl)
2942    return Constructor->setInvalidDecl();
2943
2944  // C++ [class.copy]p3:
2945  //   A declaration of a constructor for a class X is ill-formed if
2946  //   its first parameter is of type (optionally cv-qualified) X and
2947  //   either there are no other parameters or else all other
2948  //   parameters have default arguments.
2949  if (!Constructor->isInvalidDecl() &&
2950      ((Constructor->getNumParams() == 1) ||
2951       (Constructor->getNumParams() > 1 &&
2952        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2953      Constructor->getTemplateSpecializationKind()
2954                                              != TSK_ImplicitInstantiation) {
2955    QualType ParamType = Constructor->getParamDecl(0)->getType();
2956    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2957    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2958      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2959      const char *ConstRef
2960        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2961                                                        : " const &";
2962      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2963        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2964
2965      // FIXME: Rather that making the constructor invalid, we should endeavor
2966      // to fix the type.
2967      Constructor->setInvalidDecl();
2968    }
2969  }
2970}
2971
2972/// CheckDestructor - Checks a fully-formed destructor definition for
2973/// well-formedness, issuing any diagnostics required.  Returns true
2974/// on error.
2975bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2976  CXXRecordDecl *RD = Destructor->getParent();
2977
2978  if (Destructor->isVirtual()) {
2979    SourceLocation Loc;
2980
2981    if (!Destructor->isImplicit())
2982      Loc = Destructor->getLocation();
2983    else
2984      Loc = RD->getLocation();
2985
2986    // If we have a virtual destructor, look up the deallocation function
2987    FunctionDecl *OperatorDelete = 0;
2988    DeclarationName Name =
2989    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2990    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2991      return true;
2992
2993    MarkDeclarationReferenced(Loc, OperatorDelete);
2994
2995    Destructor->setOperatorDelete(OperatorDelete);
2996  }
2997
2998  return false;
2999}
3000
3001static inline bool
3002FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3003  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3004          FTI.ArgInfo[0].Param &&
3005          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3006}
3007
3008/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3009/// the well-formednes of the destructor declarator @p D with type @p
3010/// R. If there are any errors in the declarator, this routine will
3011/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3012/// will be updated to reflect a well-formed type for the destructor and
3013/// returned.
3014QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3015                                         StorageClass& SC) {
3016  // C++ [class.dtor]p1:
3017  //   [...] A typedef-name that names a class is a class-name
3018  //   (7.1.3); however, a typedef-name that names a class shall not
3019  //   be used as the identifier in the declarator for a destructor
3020  //   declaration.
3021  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3022  if (isa<TypedefType>(DeclaratorType))
3023    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3024      << DeclaratorType;
3025
3026  // C++ [class.dtor]p2:
3027  //   A destructor is used to destroy objects of its class type. A
3028  //   destructor takes no parameters, and no return type can be
3029  //   specified for it (not even void). The address of a destructor
3030  //   shall not be taken. A destructor shall not be static. A
3031  //   destructor can be invoked for a const, volatile or const
3032  //   volatile object. A destructor shall not be declared const,
3033  //   volatile or const volatile (9.3.2).
3034  if (SC == SC_Static) {
3035    if (!D.isInvalidType())
3036      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3037        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3038        << SourceRange(D.getIdentifierLoc())
3039        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3040
3041    SC = SC_None;
3042  }
3043  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3044    // Destructors don't have return types, but the parser will
3045    // happily parse something like:
3046    //
3047    //   class X {
3048    //     float ~X();
3049    //   };
3050    //
3051    // The return type will be eliminated later.
3052    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3053      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3054      << SourceRange(D.getIdentifierLoc());
3055  }
3056
3057  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3058  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3059    if (FTI.TypeQuals & Qualifiers::Const)
3060      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3061        << "const" << SourceRange(D.getIdentifierLoc());
3062    if (FTI.TypeQuals & Qualifiers::Volatile)
3063      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3064        << "volatile" << SourceRange(D.getIdentifierLoc());
3065    if (FTI.TypeQuals & Qualifiers::Restrict)
3066      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3067        << "restrict" << SourceRange(D.getIdentifierLoc());
3068    D.setInvalidType();
3069  }
3070
3071  // Make sure we don't have any parameters.
3072  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3073    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3074
3075    // Delete the parameters.
3076    FTI.freeArgs();
3077    D.setInvalidType();
3078  }
3079
3080  // Make sure the destructor isn't variadic.
3081  if (FTI.isVariadic) {
3082    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3083    D.setInvalidType();
3084  }
3085
3086  // Rebuild the function type "R" without any type qualifiers or
3087  // parameters (in case any of the errors above fired) and with
3088  // "void" as the return type, since destructors don't have return
3089  // types.
3090  if (!D.isInvalidType())
3091    return R;
3092
3093  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3094  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3095  EPI.Variadic = false;
3096  EPI.TypeQuals = 0;
3097  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3098}
3099
3100/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3101/// well-formednes of the conversion function declarator @p D with
3102/// type @p R. If there are any errors in the declarator, this routine
3103/// will emit diagnostics and return true. Otherwise, it will return
3104/// false. Either way, the type @p R will be updated to reflect a
3105/// well-formed type for the conversion operator.
3106void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3107                                     StorageClass& SC) {
3108  // C++ [class.conv.fct]p1:
3109  //   Neither parameter types nor return type can be specified. The
3110  //   type of a conversion function (8.3.5) is "function taking no
3111  //   parameter returning conversion-type-id."
3112  if (SC == SC_Static) {
3113    if (!D.isInvalidType())
3114      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3115        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3116        << SourceRange(D.getIdentifierLoc());
3117    D.setInvalidType();
3118    SC = SC_None;
3119  }
3120
3121  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3122
3123  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3124    // Conversion functions don't have return types, but the parser will
3125    // happily parse something like:
3126    //
3127    //   class X {
3128    //     float operator bool();
3129    //   };
3130    //
3131    // The return type will be changed later anyway.
3132    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3133      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3134      << SourceRange(D.getIdentifierLoc());
3135    D.setInvalidType();
3136  }
3137
3138  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3139
3140  // Make sure we don't have any parameters.
3141  if (Proto->getNumArgs() > 0) {
3142    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3143
3144    // Delete the parameters.
3145    D.getFunctionTypeInfo().freeArgs();
3146    D.setInvalidType();
3147  } else if (Proto->isVariadic()) {
3148    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3149    D.setInvalidType();
3150  }
3151
3152  // Diagnose "&operator bool()" and other such nonsense.  This
3153  // is actually a gcc extension which we don't support.
3154  if (Proto->getResultType() != ConvType) {
3155    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3156      << Proto->getResultType();
3157    D.setInvalidType();
3158    ConvType = Proto->getResultType();
3159  }
3160
3161  // C++ [class.conv.fct]p4:
3162  //   The conversion-type-id shall not represent a function type nor
3163  //   an array type.
3164  if (ConvType->isArrayType()) {
3165    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3166    ConvType = Context.getPointerType(ConvType);
3167    D.setInvalidType();
3168  } else if (ConvType->isFunctionType()) {
3169    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3170    ConvType = Context.getPointerType(ConvType);
3171    D.setInvalidType();
3172  }
3173
3174  // Rebuild the function type "R" without any parameters (in case any
3175  // of the errors above fired) and with the conversion type as the
3176  // return type.
3177  if (D.isInvalidType())
3178    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3179
3180  // C++0x explicit conversion operators.
3181  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3182    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3183         diag::warn_explicit_conversion_functions)
3184      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3185}
3186
3187/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3188/// the declaration of the given C++ conversion function. This routine
3189/// is responsible for recording the conversion function in the C++
3190/// class, if possible.
3191Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3192  assert(Conversion && "Expected to receive a conversion function declaration");
3193
3194  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3195
3196  // Make sure we aren't redeclaring the conversion function.
3197  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3198
3199  // C++ [class.conv.fct]p1:
3200  //   [...] A conversion function is never used to convert a
3201  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3202  //   same object type (or a reference to it), to a (possibly
3203  //   cv-qualified) base class of that type (or a reference to it),
3204  //   or to (possibly cv-qualified) void.
3205  // FIXME: Suppress this warning if the conversion function ends up being a
3206  // virtual function that overrides a virtual function in a base class.
3207  QualType ClassType
3208    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3209  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3210    ConvType = ConvTypeRef->getPointeeType();
3211  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3212      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3213    /* Suppress diagnostics for instantiations. */;
3214  else if (ConvType->isRecordType()) {
3215    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3216    if (ConvType == ClassType)
3217      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3218        << ClassType;
3219    else if (IsDerivedFrom(ClassType, ConvType))
3220      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3221        <<  ClassType << ConvType;
3222  } else if (ConvType->isVoidType()) {
3223    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3224      << ClassType << ConvType;
3225  }
3226
3227  if (FunctionTemplateDecl *ConversionTemplate
3228                                = Conversion->getDescribedFunctionTemplate())
3229    return ConversionTemplate;
3230
3231  return Conversion;
3232}
3233
3234//===----------------------------------------------------------------------===//
3235// Namespace Handling
3236//===----------------------------------------------------------------------===//
3237
3238
3239
3240/// ActOnStartNamespaceDef - This is called at the start of a namespace
3241/// definition.
3242Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3243                                   SourceLocation InlineLoc,
3244                                   SourceLocation IdentLoc,
3245                                   IdentifierInfo *II,
3246                                   SourceLocation LBrace,
3247                                   AttributeList *AttrList) {
3248  // anonymous namespace starts at its left brace
3249  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3250    (II ? IdentLoc : LBrace) , II);
3251  Namespc->setLBracLoc(LBrace);
3252  Namespc->setInline(InlineLoc.isValid());
3253
3254  Scope *DeclRegionScope = NamespcScope->getParent();
3255
3256  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3257
3258  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3259    PushNamespaceVisibilityAttr(Attr);
3260
3261  if (II) {
3262    // C++ [namespace.def]p2:
3263    //   The identifier in an original-namespace-definition shall not
3264    //   have been previously defined in the declarative region in
3265    //   which the original-namespace-definition appears. The
3266    //   identifier in an original-namespace-definition is the name of
3267    //   the namespace. Subsequently in that declarative region, it is
3268    //   treated as an original-namespace-name.
3269    //
3270    // Since namespace names are unique in their scope, and we don't
3271    // look through using directives, just
3272    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3273    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3274
3275    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3276      // This is an extended namespace definition.
3277      if (Namespc->isInline() != OrigNS->isInline()) {
3278        // inline-ness must match
3279        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3280          << Namespc->isInline();
3281        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3282        Namespc->setInvalidDecl();
3283        // Recover by ignoring the new namespace's inline status.
3284        Namespc->setInline(OrigNS->isInline());
3285      }
3286
3287      // Attach this namespace decl to the chain of extended namespace
3288      // definitions.
3289      OrigNS->setNextNamespace(Namespc);
3290      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3291
3292      // Remove the previous declaration from the scope.
3293      if (DeclRegionScope->isDeclScope(OrigNS)) {
3294        IdResolver.RemoveDecl(OrigNS);
3295        DeclRegionScope->RemoveDecl(OrigNS);
3296      }
3297    } else if (PrevDecl) {
3298      // This is an invalid name redefinition.
3299      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3300       << Namespc->getDeclName();
3301      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3302      Namespc->setInvalidDecl();
3303      // Continue on to push Namespc as current DeclContext and return it.
3304    } else if (II->isStr("std") &&
3305               CurContext->getRedeclContext()->isTranslationUnit()) {
3306      // This is the first "real" definition of the namespace "std", so update
3307      // our cache of the "std" namespace to point at this definition.
3308      if (NamespaceDecl *StdNS = getStdNamespace()) {
3309        // We had already defined a dummy namespace "std". Link this new
3310        // namespace definition to the dummy namespace "std".
3311        StdNS->setNextNamespace(Namespc);
3312        StdNS->setLocation(IdentLoc);
3313        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3314      }
3315
3316      // Make our StdNamespace cache point at the first real definition of the
3317      // "std" namespace.
3318      StdNamespace = Namespc;
3319    }
3320
3321    PushOnScopeChains(Namespc, DeclRegionScope);
3322  } else {
3323    // Anonymous namespaces.
3324    assert(Namespc->isAnonymousNamespace());
3325
3326    // Link the anonymous namespace into its parent.
3327    NamespaceDecl *PrevDecl;
3328    DeclContext *Parent = CurContext->getRedeclContext();
3329    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3330      PrevDecl = TU->getAnonymousNamespace();
3331      TU->setAnonymousNamespace(Namespc);
3332    } else {
3333      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3334      PrevDecl = ND->getAnonymousNamespace();
3335      ND->setAnonymousNamespace(Namespc);
3336    }
3337
3338    // Link the anonymous namespace with its previous declaration.
3339    if (PrevDecl) {
3340      assert(PrevDecl->isAnonymousNamespace());
3341      assert(!PrevDecl->getNextNamespace());
3342      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3343      PrevDecl->setNextNamespace(Namespc);
3344
3345      if (Namespc->isInline() != PrevDecl->isInline()) {
3346        // inline-ness must match
3347        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3348          << Namespc->isInline();
3349        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3350        Namespc->setInvalidDecl();
3351        // Recover by ignoring the new namespace's inline status.
3352        Namespc->setInline(PrevDecl->isInline());
3353      }
3354    }
3355
3356    CurContext->addDecl(Namespc);
3357
3358    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3359    //   behaves as if it were replaced by
3360    //     namespace unique { /* empty body */ }
3361    //     using namespace unique;
3362    //     namespace unique { namespace-body }
3363    //   where all occurrences of 'unique' in a translation unit are
3364    //   replaced by the same identifier and this identifier differs
3365    //   from all other identifiers in the entire program.
3366
3367    // We just create the namespace with an empty name and then add an
3368    // implicit using declaration, just like the standard suggests.
3369    //
3370    // CodeGen enforces the "universally unique" aspect by giving all
3371    // declarations semantically contained within an anonymous
3372    // namespace internal linkage.
3373
3374    if (!PrevDecl) {
3375      UsingDirectiveDecl* UD
3376        = UsingDirectiveDecl::Create(Context, CurContext,
3377                                     /* 'using' */ LBrace,
3378                                     /* 'namespace' */ SourceLocation(),
3379                                     /* qualifier */ SourceRange(),
3380                                     /* NNS */ NULL,
3381                                     /* identifier */ SourceLocation(),
3382                                     Namespc,
3383                                     /* Ancestor */ CurContext);
3384      UD->setImplicit();
3385      CurContext->addDecl(UD);
3386    }
3387  }
3388
3389  // Although we could have an invalid decl (i.e. the namespace name is a
3390  // redefinition), push it as current DeclContext and try to continue parsing.
3391  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3392  // for the namespace has the declarations that showed up in that particular
3393  // namespace definition.
3394  PushDeclContext(NamespcScope, Namespc);
3395  return Namespc;
3396}
3397
3398/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3399/// is a namespace alias, returns the namespace it points to.
3400static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3401  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3402    return AD->getNamespace();
3403  return dyn_cast_or_null<NamespaceDecl>(D);
3404}
3405
3406/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3407/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3408void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3409  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3410  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3411  Namespc->setRBracLoc(RBrace);
3412  PopDeclContext();
3413  if (Namespc->hasAttr<VisibilityAttr>())
3414    PopPragmaVisibility();
3415}
3416
3417CXXRecordDecl *Sema::getStdBadAlloc() const {
3418  return cast_or_null<CXXRecordDecl>(
3419                                  StdBadAlloc.get(Context.getExternalSource()));
3420}
3421
3422NamespaceDecl *Sema::getStdNamespace() const {
3423  return cast_or_null<NamespaceDecl>(
3424                                 StdNamespace.get(Context.getExternalSource()));
3425}
3426
3427/// \brief Retrieve the special "std" namespace, which may require us to
3428/// implicitly define the namespace.
3429NamespaceDecl *Sema::getOrCreateStdNamespace() {
3430  if (!StdNamespace) {
3431    // The "std" namespace has not yet been defined, so build one implicitly.
3432    StdNamespace = NamespaceDecl::Create(Context,
3433                                         Context.getTranslationUnitDecl(),
3434                                         SourceLocation(),
3435                                         &PP.getIdentifierTable().get("std"));
3436    getStdNamespace()->setImplicit(true);
3437  }
3438
3439  return getStdNamespace();
3440}
3441
3442Decl *Sema::ActOnUsingDirective(Scope *S,
3443                                          SourceLocation UsingLoc,
3444                                          SourceLocation NamespcLoc,
3445                                          CXXScopeSpec &SS,
3446                                          SourceLocation IdentLoc,
3447                                          IdentifierInfo *NamespcName,
3448                                          AttributeList *AttrList) {
3449  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3450  assert(NamespcName && "Invalid NamespcName.");
3451  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3452
3453  // This can only happen along a recovery path.
3454  while (S->getFlags() & Scope::TemplateParamScope)
3455    S = S->getParent();
3456  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3457
3458  UsingDirectiveDecl *UDir = 0;
3459  NestedNameSpecifier *Qualifier = 0;
3460  if (SS.isSet())
3461    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3462
3463  // Lookup namespace name.
3464  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3465  LookupParsedName(R, S, &SS);
3466  if (R.isAmbiguous())
3467    return 0;
3468
3469  if (R.empty()) {
3470    // Allow "using namespace std;" or "using namespace ::std;" even if
3471    // "std" hasn't been defined yet, for GCC compatibility.
3472    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3473        NamespcName->isStr("std")) {
3474      Diag(IdentLoc, diag::ext_using_undefined_std);
3475      R.addDecl(getOrCreateStdNamespace());
3476      R.resolveKind();
3477    }
3478    // Otherwise, attempt typo correction.
3479    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3480                                                       CTC_NoKeywords, 0)) {
3481      if (R.getAsSingle<NamespaceDecl>() ||
3482          R.getAsSingle<NamespaceAliasDecl>()) {
3483        if (DeclContext *DC = computeDeclContext(SS, false))
3484          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3485            << NamespcName << DC << Corrected << SS.getRange()
3486            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3487        else
3488          Diag(IdentLoc, diag::err_using_directive_suggest)
3489            << NamespcName << Corrected
3490            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3491        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3492          << Corrected;
3493
3494        NamespcName = Corrected.getAsIdentifierInfo();
3495      } else {
3496        R.clear();
3497        R.setLookupName(NamespcName);
3498      }
3499    }
3500  }
3501
3502  if (!R.empty()) {
3503    NamedDecl *Named = R.getFoundDecl();
3504    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3505        && "expected namespace decl");
3506    // C++ [namespace.udir]p1:
3507    //   A using-directive specifies that the names in the nominated
3508    //   namespace can be used in the scope in which the
3509    //   using-directive appears after the using-directive. During
3510    //   unqualified name lookup (3.4.1), the names appear as if they
3511    //   were declared in the nearest enclosing namespace which
3512    //   contains both the using-directive and the nominated
3513    //   namespace. [Note: in this context, "contains" means "contains
3514    //   directly or indirectly". ]
3515
3516    // Find enclosing context containing both using-directive and
3517    // nominated namespace.
3518    NamespaceDecl *NS = getNamespaceDecl(Named);
3519    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3520    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3521      CommonAncestor = CommonAncestor->getParent();
3522
3523    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3524                                      SS.getRange(),
3525                                      (NestedNameSpecifier *)SS.getScopeRep(),
3526                                      IdentLoc, Named, CommonAncestor);
3527    PushUsingDirective(S, UDir);
3528  } else {
3529    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3530  }
3531
3532  // FIXME: We ignore attributes for now.
3533  return UDir;
3534}
3535
3536void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3537  // If scope has associated entity, then using directive is at namespace
3538  // or translation unit scope. We add UsingDirectiveDecls, into
3539  // it's lookup structure.
3540  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3541    Ctx->addDecl(UDir);
3542  else
3543    // Otherwise it is block-sope. using-directives will affect lookup
3544    // only to the end of scope.
3545    S->PushUsingDirective(UDir);
3546}
3547
3548
3549Decl *Sema::ActOnUsingDeclaration(Scope *S,
3550                                  AccessSpecifier AS,
3551                                  bool HasUsingKeyword,
3552                                  SourceLocation UsingLoc,
3553                                  CXXScopeSpec &SS,
3554                                  UnqualifiedId &Name,
3555                                  AttributeList *AttrList,
3556                                  bool IsTypeName,
3557                                  SourceLocation TypenameLoc) {
3558  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3559
3560  switch (Name.getKind()) {
3561  case UnqualifiedId::IK_Identifier:
3562  case UnqualifiedId::IK_OperatorFunctionId:
3563  case UnqualifiedId::IK_LiteralOperatorId:
3564  case UnqualifiedId::IK_ConversionFunctionId:
3565    break;
3566
3567  case UnqualifiedId::IK_ConstructorName:
3568  case UnqualifiedId::IK_ConstructorTemplateId:
3569    // C++0x inherited constructors.
3570    if (getLangOptions().CPlusPlus0x) break;
3571
3572    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3573      << SS.getRange();
3574    return 0;
3575
3576  case UnqualifiedId::IK_DestructorName:
3577    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3578      << SS.getRange();
3579    return 0;
3580
3581  case UnqualifiedId::IK_TemplateId:
3582    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3583      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3584    return 0;
3585  }
3586
3587  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3588  DeclarationName TargetName = TargetNameInfo.getName();
3589  if (!TargetName)
3590    return 0;
3591
3592  // Warn about using declarations.
3593  // TODO: store that the declaration was written without 'using' and
3594  // talk about access decls instead of using decls in the
3595  // diagnostics.
3596  if (!HasUsingKeyword) {
3597    UsingLoc = Name.getSourceRange().getBegin();
3598
3599    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3600      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3601  }
3602
3603  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3604      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3605    return 0;
3606
3607  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3608                                        TargetNameInfo, AttrList,
3609                                        /* IsInstantiation */ false,
3610                                        IsTypeName, TypenameLoc);
3611  if (UD)
3612    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3613
3614  return UD;
3615}
3616
3617/// \brief Determine whether a using declaration considers the given
3618/// declarations as "equivalent", e.g., if they are redeclarations of
3619/// the same entity or are both typedefs of the same type.
3620static bool
3621IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3622                         bool &SuppressRedeclaration) {
3623  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3624    SuppressRedeclaration = false;
3625    return true;
3626  }
3627
3628  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3629    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3630      SuppressRedeclaration = true;
3631      return Context.hasSameType(TD1->getUnderlyingType(),
3632                                 TD2->getUnderlyingType());
3633    }
3634
3635  return false;
3636}
3637
3638
3639/// Determines whether to create a using shadow decl for a particular
3640/// decl, given the set of decls existing prior to this using lookup.
3641bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3642                                const LookupResult &Previous) {
3643  // Diagnose finding a decl which is not from a base class of the
3644  // current class.  We do this now because there are cases where this
3645  // function will silently decide not to build a shadow decl, which
3646  // will pre-empt further diagnostics.
3647  //
3648  // We don't need to do this in C++0x because we do the check once on
3649  // the qualifier.
3650  //
3651  // FIXME: diagnose the following if we care enough:
3652  //   struct A { int foo; };
3653  //   struct B : A { using A::foo; };
3654  //   template <class T> struct C : A {};
3655  //   template <class T> struct D : C<T> { using B::foo; } // <---
3656  // This is invalid (during instantiation) in C++03 because B::foo
3657  // resolves to the using decl in B, which is not a base class of D<T>.
3658  // We can't diagnose it immediately because C<T> is an unknown
3659  // specialization.  The UsingShadowDecl in D<T> then points directly
3660  // to A::foo, which will look well-formed when we instantiate.
3661  // The right solution is to not collapse the shadow-decl chain.
3662  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3663    DeclContext *OrigDC = Orig->getDeclContext();
3664
3665    // Handle enums and anonymous structs.
3666    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3667    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3668    while (OrigRec->isAnonymousStructOrUnion())
3669      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3670
3671    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3672      if (OrigDC == CurContext) {
3673        Diag(Using->getLocation(),
3674             diag::err_using_decl_nested_name_specifier_is_current_class)
3675          << Using->getNestedNameRange();
3676        Diag(Orig->getLocation(), diag::note_using_decl_target);
3677        return true;
3678      }
3679
3680      Diag(Using->getNestedNameRange().getBegin(),
3681           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3682        << Using->getTargetNestedNameDecl()
3683        << cast<CXXRecordDecl>(CurContext)
3684        << Using->getNestedNameRange();
3685      Diag(Orig->getLocation(), diag::note_using_decl_target);
3686      return true;
3687    }
3688  }
3689
3690  if (Previous.empty()) return false;
3691
3692  NamedDecl *Target = Orig;
3693  if (isa<UsingShadowDecl>(Target))
3694    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3695
3696  // If the target happens to be one of the previous declarations, we
3697  // don't have a conflict.
3698  //
3699  // FIXME: but we might be increasing its access, in which case we
3700  // should redeclare it.
3701  NamedDecl *NonTag = 0, *Tag = 0;
3702  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3703         I != E; ++I) {
3704    NamedDecl *D = (*I)->getUnderlyingDecl();
3705    bool Result;
3706    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3707      return Result;
3708
3709    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3710  }
3711
3712  if (Target->isFunctionOrFunctionTemplate()) {
3713    FunctionDecl *FD;
3714    if (isa<FunctionTemplateDecl>(Target))
3715      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3716    else
3717      FD = cast<FunctionDecl>(Target);
3718
3719    NamedDecl *OldDecl = 0;
3720    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3721    case Ovl_Overload:
3722      return false;
3723
3724    case Ovl_NonFunction:
3725      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3726      break;
3727
3728    // We found a decl with the exact signature.
3729    case Ovl_Match:
3730      // If we're in a record, we want to hide the target, so we
3731      // return true (without a diagnostic) to tell the caller not to
3732      // build a shadow decl.
3733      if (CurContext->isRecord())
3734        return true;
3735
3736      // If we're not in a record, this is an error.
3737      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3738      break;
3739    }
3740
3741    Diag(Target->getLocation(), diag::note_using_decl_target);
3742    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3743    return true;
3744  }
3745
3746  // Target is not a function.
3747
3748  if (isa<TagDecl>(Target)) {
3749    // No conflict between a tag and a non-tag.
3750    if (!Tag) return false;
3751
3752    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3753    Diag(Target->getLocation(), diag::note_using_decl_target);
3754    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3755    return true;
3756  }
3757
3758  // No conflict between a tag and a non-tag.
3759  if (!NonTag) return false;
3760
3761  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3762  Diag(Target->getLocation(), diag::note_using_decl_target);
3763  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3764  return true;
3765}
3766
3767/// Builds a shadow declaration corresponding to a 'using' declaration.
3768UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3769                                            UsingDecl *UD,
3770                                            NamedDecl *Orig) {
3771
3772  // If we resolved to another shadow declaration, just coalesce them.
3773  NamedDecl *Target = Orig;
3774  if (isa<UsingShadowDecl>(Target)) {
3775    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3776    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3777  }
3778
3779  UsingShadowDecl *Shadow
3780    = UsingShadowDecl::Create(Context, CurContext,
3781                              UD->getLocation(), UD, Target);
3782  UD->addShadowDecl(Shadow);
3783
3784  Shadow->setAccess(UD->getAccess());
3785  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3786    Shadow->setInvalidDecl();
3787
3788  if (S)
3789    PushOnScopeChains(Shadow, S);
3790  else
3791    CurContext->addDecl(Shadow);
3792
3793
3794  return Shadow;
3795}
3796
3797/// Hides a using shadow declaration.  This is required by the current
3798/// using-decl implementation when a resolvable using declaration in a
3799/// class is followed by a declaration which would hide or override
3800/// one or more of the using decl's targets; for example:
3801///
3802///   struct Base { void foo(int); };
3803///   struct Derived : Base {
3804///     using Base::foo;
3805///     void foo(int);
3806///   };
3807///
3808/// The governing language is C++03 [namespace.udecl]p12:
3809///
3810///   When a using-declaration brings names from a base class into a
3811///   derived class scope, member functions in the derived class
3812///   override and/or hide member functions with the same name and
3813///   parameter types in a base class (rather than conflicting).
3814///
3815/// There are two ways to implement this:
3816///   (1) optimistically create shadow decls when they're not hidden
3817///       by existing declarations, or
3818///   (2) don't create any shadow decls (or at least don't make them
3819///       visible) until we've fully parsed/instantiated the class.
3820/// The problem with (1) is that we might have to retroactively remove
3821/// a shadow decl, which requires several O(n) operations because the
3822/// decl structures are (very reasonably) not designed for removal.
3823/// (2) avoids this but is very fiddly and phase-dependent.
3824void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3825  if (Shadow->getDeclName().getNameKind() ==
3826        DeclarationName::CXXConversionFunctionName)
3827    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3828
3829  // Remove it from the DeclContext...
3830  Shadow->getDeclContext()->removeDecl(Shadow);
3831
3832  // ...and the scope, if applicable...
3833  if (S) {
3834    S->RemoveDecl(Shadow);
3835    IdResolver.RemoveDecl(Shadow);
3836  }
3837
3838  // ...and the using decl.
3839  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3840
3841  // TODO: complain somehow if Shadow was used.  It shouldn't
3842  // be possible for this to happen, because...?
3843}
3844
3845/// Builds a using declaration.
3846///
3847/// \param IsInstantiation - Whether this call arises from an
3848///   instantiation of an unresolved using declaration.  We treat
3849///   the lookup differently for these declarations.
3850NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3851                                       SourceLocation UsingLoc,
3852                                       CXXScopeSpec &SS,
3853                                       const DeclarationNameInfo &NameInfo,
3854                                       AttributeList *AttrList,
3855                                       bool IsInstantiation,
3856                                       bool IsTypeName,
3857                                       SourceLocation TypenameLoc) {
3858  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3859  SourceLocation IdentLoc = NameInfo.getLoc();
3860  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3861
3862  // FIXME: We ignore attributes for now.
3863
3864  if (SS.isEmpty()) {
3865    Diag(IdentLoc, diag::err_using_requires_qualname);
3866    return 0;
3867  }
3868
3869  // Do the redeclaration lookup in the current scope.
3870  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3871                        ForRedeclaration);
3872  Previous.setHideTags(false);
3873  if (S) {
3874    LookupName(Previous, S);
3875
3876    // It is really dumb that we have to do this.
3877    LookupResult::Filter F = Previous.makeFilter();
3878    while (F.hasNext()) {
3879      NamedDecl *D = F.next();
3880      if (!isDeclInScope(D, CurContext, S))
3881        F.erase();
3882    }
3883    F.done();
3884  } else {
3885    assert(IsInstantiation && "no scope in non-instantiation");
3886    assert(CurContext->isRecord() && "scope not record in instantiation");
3887    LookupQualifiedName(Previous, CurContext);
3888  }
3889
3890  NestedNameSpecifier *NNS =
3891    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3892
3893  // Check for invalid redeclarations.
3894  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3895    return 0;
3896
3897  // Check for bad qualifiers.
3898  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3899    return 0;
3900
3901  DeclContext *LookupContext = computeDeclContext(SS);
3902  NamedDecl *D;
3903  if (!LookupContext) {
3904    if (IsTypeName) {
3905      // FIXME: not all declaration name kinds are legal here
3906      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3907                                              UsingLoc, TypenameLoc,
3908                                              SS.getRange(), NNS,
3909                                              IdentLoc, NameInfo.getName());
3910    } else {
3911      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3912                                           UsingLoc, SS.getRange(),
3913                                           NNS, NameInfo);
3914    }
3915  } else {
3916    D = UsingDecl::Create(Context, CurContext,
3917                          SS.getRange(), UsingLoc, NNS, NameInfo,
3918                          IsTypeName);
3919  }
3920  D->setAccess(AS);
3921  CurContext->addDecl(D);
3922
3923  if (!LookupContext) return D;
3924  UsingDecl *UD = cast<UsingDecl>(D);
3925
3926  if (RequireCompleteDeclContext(SS, LookupContext)) {
3927    UD->setInvalidDecl();
3928    return UD;
3929  }
3930
3931  // Look up the target name.
3932
3933  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3934
3935  // Unlike most lookups, we don't always want to hide tag
3936  // declarations: tag names are visible through the using declaration
3937  // even if hidden by ordinary names, *except* in a dependent context
3938  // where it's important for the sanity of two-phase lookup.
3939  if (!IsInstantiation)
3940    R.setHideTags(false);
3941
3942  LookupQualifiedName(R, LookupContext);
3943
3944  if (R.empty()) {
3945    Diag(IdentLoc, diag::err_no_member)
3946      << NameInfo.getName() << LookupContext << SS.getRange();
3947    UD->setInvalidDecl();
3948    return UD;
3949  }
3950
3951  if (R.isAmbiguous()) {
3952    UD->setInvalidDecl();
3953    return UD;
3954  }
3955
3956  if (IsTypeName) {
3957    // If we asked for a typename and got a non-type decl, error out.
3958    if (!R.getAsSingle<TypeDecl>()) {
3959      Diag(IdentLoc, diag::err_using_typename_non_type);
3960      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3961        Diag((*I)->getUnderlyingDecl()->getLocation(),
3962             diag::note_using_decl_target);
3963      UD->setInvalidDecl();
3964      return UD;
3965    }
3966  } else {
3967    // If we asked for a non-typename and we got a type, error out,
3968    // but only if this is an instantiation of an unresolved using
3969    // decl.  Otherwise just silently find the type name.
3970    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3971      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3972      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3973      UD->setInvalidDecl();
3974      return UD;
3975    }
3976  }
3977
3978  // C++0x N2914 [namespace.udecl]p6:
3979  // A using-declaration shall not name a namespace.
3980  if (R.getAsSingle<NamespaceDecl>()) {
3981    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3982      << SS.getRange();
3983    UD->setInvalidDecl();
3984    return UD;
3985  }
3986
3987  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3988    if (!CheckUsingShadowDecl(UD, *I, Previous))
3989      BuildUsingShadowDecl(S, UD, *I);
3990  }
3991
3992  return UD;
3993}
3994
3995/// Checks that the given using declaration is not an invalid
3996/// redeclaration.  Note that this is checking only for the using decl
3997/// itself, not for any ill-formedness among the UsingShadowDecls.
3998bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3999                                       bool isTypeName,
4000                                       const CXXScopeSpec &SS,
4001                                       SourceLocation NameLoc,
4002                                       const LookupResult &Prev) {
4003  // C++03 [namespace.udecl]p8:
4004  // C++0x [namespace.udecl]p10:
4005  //   A using-declaration is a declaration and can therefore be used
4006  //   repeatedly where (and only where) multiple declarations are
4007  //   allowed.
4008  //
4009  // That's in non-member contexts.
4010  if (!CurContext->getRedeclContext()->isRecord())
4011    return false;
4012
4013  NestedNameSpecifier *Qual
4014    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4015
4016  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4017    NamedDecl *D = *I;
4018
4019    bool DTypename;
4020    NestedNameSpecifier *DQual;
4021    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4022      DTypename = UD->isTypeName();
4023      DQual = UD->getTargetNestedNameDecl();
4024    } else if (UnresolvedUsingValueDecl *UD
4025                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4026      DTypename = false;
4027      DQual = UD->getTargetNestedNameSpecifier();
4028    } else if (UnresolvedUsingTypenameDecl *UD
4029                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4030      DTypename = true;
4031      DQual = UD->getTargetNestedNameSpecifier();
4032    } else continue;
4033
4034    // using decls differ if one says 'typename' and the other doesn't.
4035    // FIXME: non-dependent using decls?
4036    if (isTypeName != DTypename) continue;
4037
4038    // using decls differ if they name different scopes (but note that
4039    // template instantiation can cause this check to trigger when it
4040    // didn't before instantiation).
4041    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4042        Context.getCanonicalNestedNameSpecifier(DQual))
4043      continue;
4044
4045    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4046    Diag(D->getLocation(), diag::note_using_decl) << 1;
4047    return true;
4048  }
4049
4050  return false;
4051}
4052
4053
4054/// Checks that the given nested-name qualifier used in a using decl
4055/// in the current context is appropriately related to the current
4056/// scope.  If an error is found, diagnoses it and returns true.
4057bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4058                                   const CXXScopeSpec &SS,
4059                                   SourceLocation NameLoc) {
4060  DeclContext *NamedContext = computeDeclContext(SS);
4061
4062  if (!CurContext->isRecord()) {
4063    // C++03 [namespace.udecl]p3:
4064    // C++0x [namespace.udecl]p8:
4065    //   A using-declaration for a class member shall be a member-declaration.
4066
4067    // If we weren't able to compute a valid scope, it must be a
4068    // dependent class scope.
4069    if (!NamedContext || NamedContext->isRecord()) {
4070      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4071        << SS.getRange();
4072      return true;
4073    }
4074
4075    // Otherwise, everything is known to be fine.
4076    return false;
4077  }
4078
4079  // The current scope is a record.
4080
4081  // If the named context is dependent, we can't decide much.
4082  if (!NamedContext) {
4083    // FIXME: in C++0x, we can diagnose if we can prove that the
4084    // nested-name-specifier does not refer to a base class, which is
4085    // still possible in some cases.
4086
4087    // Otherwise we have to conservatively report that things might be
4088    // okay.
4089    return false;
4090  }
4091
4092  if (!NamedContext->isRecord()) {
4093    // Ideally this would point at the last name in the specifier,
4094    // but we don't have that level of source info.
4095    Diag(SS.getRange().getBegin(),
4096         diag::err_using_decl_nested_name_specifier_is_not_class)
4097      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4098    return true;
4099  }
4100
4101  if (!NamedContext->isDependentContext() &&
4102      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4103    return true;
4104
4105  if (getLangOptions().CPlusPlus0x) {
4106    // C++0x [namespace.udecl]p3:
4107    //   In a using-declaration used as a member-declaration, the
4108    //   nested-name-specifier shall name a base class of the class
4109    //   being defined.
4110
4111    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4112                                 cast<CXXRecordDecl>(NamedContext))) {
4113      if (CurContext == NamedContext) {
4114        Diag(NameLoc,
4115             diag::err_using_decl_nested_name_specifier_is_current_class)
4116          << SS.getRange();
4117        return true;
4118      }
4119
4120      Diag(SS.getRange().getBegin(),
4121           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4122        << (NestedNameSpecifier*) SS.getScopeRep()
4123        << cast<CXXRecordDecl>(CurContext)
4124        << SS.getRange();
4125      return true;
4126    }
4127
4128    return false;
4129  }
4130
4131  // C++03 [namespace.udecl]p4:
4132  //   A using-declaration used as a member-declaration shall refer
4133  //   to a member of a base class of the class being defined [etc.].
4134
4135  // Salient point: SS doesn't have to name a base class as long as
4136  // lookup only finds members from base classes.  Therefore we can
4137  // diagnose here only if we can prove that that can't happen,
4138  // i.e. if the class hierarchies provably don't intersect.
4139
4140  // TODO: it would be nice if "definitely valid" results were cached
4141  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4142  // need to be repeated.
4143
4144  struct UserData {
4145    llvm::DenseSet<const CXXRecordDecl*> Bases;
4146
4147    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4148      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4149      Data->Bases.insert(Base);
4150      return true;
4151    }
4152
4153    bool hasDependentBases(const CXXRecordDecl *Class) {
4154      return !Class->forallBases(collect, this);
4155    }
4156
4157    /// Returns true if the base is dependent or is one of the
4158    /// accumulated base classes.
4159    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4160      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4161      return !Data->Bases.count(Base);
4162    }
4163
4164    bool mightShareBases(const CXXRecordDecl *Class) {
4165      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4166    }
4167  };
4168
4169  UserData Data;
4170
4171  // Returns false if we find a dependent base.
4172  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4173    return false;
4174
4175  // Returns false if the class has a dependent base or if it or one
4176  // of its bases is present in the base set of the current context.
4177  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4178    return false;
4179
4180  Diag(SS.getRange().getBegin(),
4181       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4182    << (NestedNameSpecifier*) SS.getScopeRep()
4183    << cast<CXXRecordDecl>(CurContext)
4184    << SS.getRange();
4185
4186  return true;
4187}
4188
4189Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4190                                             SourceLocation NamespaceLoc,
4191                                             SourceLocation AliasLoc,
4192                                             IdentifierInfo *Alias,
4193                                             CXXScopeSpec &SS,
4194                                             SourceLocation IdentLoc,
4195                                             IdentifierInfo *Ident) {
4196
4197  // Lookup the namespace name.
4198  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4199  LookupParsedName(R, S, &SS);
4200
4201  // Check if we have a previous declaration with the same name.
4202  NamedDecl *PrevDecl
4203    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4204                       ForRedeclaration);
4205  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4206    PrevDecl = 0;
4207
4208  if (PrevDecl) {
4209    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4210      // We already have an alias with the same name that points to the same
4211      // namespace, so don't create a new one.
4212      // FIXME: At some point, we'll want to create the (redundant)
4213      // declaration to maintain better source information.
4214      if (!R.isAmbiguous() && !R.empty() &&
4215          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4216        return 0;
4217    }
4218
4219    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4220      diag::err_redefinition_different_kind;
4221    Diag(AliasLoc, DiagID) << Alias;
4222    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4223    return 0;
4224  }
4225
4226  if (R.isAmbiguous())
4227    return 0;
4228
4229  if (R.empty()) {
4230    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4231                                                CTC_NoKeywords, 0)) {
4232      if (R.getAsSingle<NamespaceDecl>() ||
4233          R.getAsSingle<NamespaceAliasDecl>()) {
4234        if (DeclContext *DC = computeDeclContext(SS, false))
4235          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4236            << Ident << DC << Corrected << SS.getRange()
4237            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4238        else
4239          Diag(IdentLoc, diag::err_using_directive_suggest)
4240            << Ident << Corrected
4241            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4242
4243        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4244          << Corrected;
4245
4246        Ident = Corrected.getAsIdentifierInfo();
4247      } else {
4248        R.clear();
4249        R.setLookupName(Ident);
4250      }
4251    }
4252
4253    if (R.empty()) {
4254      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4255      return 0;
4256    }
4257  }
4258
4259  NamespaceAliasDecl *AliasDecl =
4260    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4261                               Alias, SS.getRange(),
4262                               (NestedNameSpecifier *)SS.getScopeRep(),
4263                               IdentLoc, R.getFoundDecl());
4264
4265  PushOnScopeChains(AliasDecl, S);
4266  return AliasDecl;
4267}
4268
4269namespace {
4270  /// \brief Scoped object used to handle the state changes required in Sema
4271  /// to implicitly define the body of a C++ member function;
4272  class ImplicitlyDefinedFunctionScope {
4273    Sema &S;
4274    DeclContext *PreviousContext;
4275
4276  public:
4277    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4278      : S(S), PreviousContext(S.CurContext)
4279    {
4280      S.CurContext = Method;
4281      S.PushFunctionScope();
4282      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4283    }
4284
4285    ~ImplicitlyDefinedFunctionScope() {
4286      S.PopExpressionEvaluationContext();
4287      S.PopFunctionOrBlockScope();
4288      S.CurContext = PreviousContext;
4289    }
4290  };
4291}
4292
4293static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4294                                                       CXXRecordDecl *D) {
4295  ASTContext &Context = Self.Context;
4296  QualType ClassType = Context.getTypeDeclType(D);
4297  DeclarationName ConstructorName
4298    = Context.DeclarationNames.getCXXConstructorName(
4299                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4300
4301  DeclContext::lookup_const_iterator Con, ConEnd;
4302  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4303       Con != ConEnd; ++Con) {
4304    // FIXME: In C++0x, a constructor template can be a default constructor.
4305    if (isa<FunctionTemplateDecl>(*Con))
4306      continue;
4307
4308    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4309    if (Constructor->isDefaultConstructor())
4310      return Constructor;
4311  }
4312  return 0;
4313}
4314
4315CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4316                                                     CXXRecordDecl *ClassDecl) {
4317  // C++ [class.ctor]p5:
4318  //   A default constructor for a class X is a constructor of class X
4319  //   that can be called without an argument. If there is no
4320  //   user-declared constructor for class X, a default constructor is
4321  //   implicitly declared. An implicitly-declared default constructor
4322  //   is an inline public member of its class.
4323  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4324         "Should not build implicit default constructor!");
4325
4326  // C++ [except.spec]p14:
4327  //   An implicitly declared special member function (Clause 12) shall have an
4328  //   exception-specification. [...]
4329  ImplicitExceptionSpecification ExceptSpec(Context);
4330
4331  // Direct base-class destructors.
4332  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4333                                       BEnd = ClassDecl->bases_end();
4334       B != BEnd; ++B) {
4335    if (B->isVirtual()) // Handled below.
4336      continue;
4337
4338    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4339      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4340      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4341        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4342      else if (CXXConstructorDecl *Constructor
4343                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4344        ExceptSpec.CalledDecl(Constructor);
4345    }
4346  }
4347
4348  // Virtual base-class destructors.
4349  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4350                                       BEnd = ClassDecl->vbases_end();
4351       B != BEnd; ++B) {
4352    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4353      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4354      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4355        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4356      else if (CXXConstructorDecl *Constructor
4357                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4358        ExceptSpec.CalledDecl(Constructor);
4359    }
4360  }
4361
4362  // Field destructors.
4363  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4364                               FEnd = ClassDecl->field_end();
4365       F != FEnd; ++F) {
4366    if (const RecordType *RecordTy
4367              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4368      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4369      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4370        ExceptSpec.CalledDecl(
4371                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4372      else if (CXXConstructorDecl *Constructor
4373                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4374        ExceptSpec.CalledDecl(Constructor);
4375    }
4376  }
4377
4378  FunctionProtoType::ExtProtoInfo EPI;
4379  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4380  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4381  EPI.NumExceptions = ExceptSpec.size();
4382  EPI.Exceptions = ExceptSpec.data();
4383
4384  // Create the actual constructor declaration.
4385  CanQualType ClassType
4386    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4387  DeclarationName Name
4388    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4389  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4390  CXXConstructorDecl *DefaultCon
4391    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4392                                 Context.getFunctionType(Context.VoidTy,
4393                                                         0, 0, EPI),
4394                                 /*TInfo=*/0,
4395                                 /*isExplicit=*/false,
4396                                 /*isInline=*/true,
4397                                 /*isImplicitlyDeclared=*/true);
4398  DefaultCon->setAccess(AS_public);
4399  DefaultCon->setImplicit();
4400  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4401
4402  // Note that we have declared this constructor.
4403  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4404
4405  if (Scope *S = getScopeForContext(ClassDecl))
4406    PushOnScopeChains(DefaultCon, S, false);
4407  ClassDecl->addDecl(DefaultCon);
4408
4409  return DefaultCon;
4410}
4411
4412void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4413                                            CXXConstructorDecl *Constructor) {
4414  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4415          !Constructor->isUsed(false)) &&
4416    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4417
4418  CXXRecordDecl *ClassDecl = Constructor->getParent();
4419  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4420
4421  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4422  DiagnosticErrorTrap Trap(Diags);
4423  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4424      Trap.hasErrorOccurred()) {
4425    Diag(CurrentLocation, diag::note_member_synthesized_at)
4426      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4427    Constructor->setInvalidDecl();
4428    return;
4429  }
4430
4431  SourceLocation Loc = Constructor->getLocation();
4432  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4433
4434  Constructor->setUsed();
4435  MarkVTableUsed(CurrentLocation, ClassDecl);
4436}
4437
4438CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4439  // C++ [class.dtor]p2:
4440  //   If a class has no user-declared destructor, a destructor is
4441  //   declared implicitly. An implicitly-declared destructor is an
4442  //   inline public member of its class.
4443
4444  // C++ [except.spec]p14:
4445  //   An implicitly declared special member function (Clause 12) shall have
4446  //   an exception-specification.
4447  ImplicitExceptionSpecification ExceptSpec(Context);
4448
4449  // Direct base-class destructors.
4450  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4451                                       BEnd = ClassDecl->bases_end();
4452       B != BEnd; ++B) {
4453    if (B->isVirtual()) // Handled below.
4454      continue;
4455
4456    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4457      ExceptSpec.CalledDecl(
4458                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4459  }
4460
4461  // Virtual base-class destructors.
4462  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4463                                       BEnd = ClassDecl->vbases_end();
4464       B != BEnd; ++B) {
4465    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4466      ExceptSpec.CalledDecl(
4467                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4468  }
4469
4470  // Field destructors.
4471  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4472                               FEnd = ClassDecl->field_end();
4473       F != FEnd; ++F) {
4474    if (const RecordType *RecordTy
4475        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4476      ExceptSpec.CalledDecl(
4477                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4478  }
4479
4480  // Create the actual destructor declaration.
4481  FunctionProtoType::ExtProtoInfo EPI;
4482  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4483  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4484  EPI.NumExceptions = ExceptSpec.size();
4485  EPI.Exceptions = ExceptSpec.data();
4486  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4487
4488  CanQualType ClassType
4489    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4490  DeclarationName Name
4491    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4492  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4493  CXXDestructorDecl *Destructor
4494      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4495                                /*isInline=*/true,
4496                                /*isImplicitlyDeclared=*/true);
4497  Destructor->setAccess(AS_public);
4498  Destructor->setImplicit();
4499  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4500
4501  // Note that we have declared this destructor.
4502  ++ASTContext::NumImplicitDestructorsDeclared;
4503
4504  // Introduce this destructor into its scope.
4505  if (Scope *S = getScopeForContext(ClassDecl))
4506    PushOnScopeChains(Destructor, S, false);
4507  ClassDecl->addDecl(Destructor);
4508
4509  // This could be uniqued if it ever proves significant.
4510  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4511
4512  AddOverriddenMethods(ClassDecl, Destructor);
4513
4514  return Destructor;
4515}
4516
4517void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4518                                    CXXDestructorDecl *Destructor) {
4519  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4520         "DefineImplicitDestructor - call it for implicit default dtor");
4521  CXXRecordDecl *ClassDecl = Destructor->getParent();
4522  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4523
4524  if (Destructor->isInvalidDecl())
4525    return;
4526
4527  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4528
4529  DiagnosticErrorTrap Trap(Diags);
4530  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4531                                         Destructor->getParent());
4532
4533  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4534    Diag(CurrentLocation, diag::note_member_synthesized_at)
4535      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4536
4537    Destructor->setInvalidDecl();
4538    return;
4539  }
4540
4541  SourceLocation Loc = Destructor->getLocation();
4542  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4543
4544  Destructor->setUsed();
4545  MarkVTableUsed(CurrentLocation, ClassDecl);
4546}
4547
4548/// \brief Builds a statement that copies the given entity from \p From to
4549/// \c To.
4550///
4551/// This routine is used to copy the members of a class with an
4552/// implicitly-declared copy assignment operator. When the entities being
4553/// copied are arrays, this routine builds for loops to copy them.
4554///
4555/// \param S The Sema object used for type-checking.
4556///
4557/// \param Loc The location where the implicit copy is being generated.
4558///
4559/// \param T The type of the expressions being copied. Both expressions must
4560/// have this type.
4561///
4562/// \param To The expression we are copying to.
4563///
4564/// \param From The expression we are copying from.
4565///
4566/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4567/// Otherwise, it's a non-static member subobject.
4568///
4569/// \param Depth Internal parameter recording the depth of the recursion.
4570///
4571/// \returns A statement or a loop that copies the expressions.
4572static StmtResult
4573BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4574                      Expr *To, Expr *From,
4575                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4576  // C++0x [class.copy]p30:
4577  //   Each subobject is assigned in the manner appropriate to its type:
4578  //
4579  //     - if the subobject is of class type, the copy assignment operator
4580  //       for the class is used (as if by explicit qualification; that is,
4581  //       ignoring any possible virtual overriding functions in more derived
4582  //       classes);
4583  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4584    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4585
4586    // Look for operator=.
4587    DeclarationName Name
4588      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4589    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4590    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4591
4592    // Filter out any result that isn't a copy-assignment operator.
4593    LookupResult::Filter F = OpLookup.makeFilter();
4594    while (F.hasNext()) {
4595      NamedDecl *D = F.next();
4596      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4597        if (Method->isCopyAssignmentOperator())
4598          continue;
4599
4600      F.erase();
4601    }
4602    F.done();
4603
4604    // Suppress the protected check (C++ [class.protected]) for each of the
4605    // assignment operators we found. This strange dance is required when
4606    // we're assigning via a base classes's copy-assignment operator. To
4607    // ensure that we're getting the right base class subobject (without
4608    // ambiguities), we need to cast "this" to that subobject type; to
4609    // ensure that we don't go through the virtual call mechanism, we need
4610    // to qualify the operator= name with the base class (see below). However,
4611    // this means that if the base class has a protected copy assignment
4612    // operator, the protected member access check will fail. So, we
4613    // rewrite "protected" access to "public" access in this case, since we
4614    // know by construction that we're calling from a derived class.
4615    if (CopyingBaseSubobject) {
4616      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4617           L != LEnd; ++L) {
4618        if (L.getAccess() == AS_protected)
4619          L.setAccess(AS_public);
4620      }
4621    }
4622
4623    // Create the nested-name-specifier that will be used to qualify the
4624    // reference to operator=; this is required to suppress the virtual
4625    // call mechanism.
4626    CXXScopeSpec SS;
4627    SS.setRange(Loc);
4628    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4629                                               T.getTypePtr()));
4630
4631    // Create the reference to operator=.
4632    ExprResult OpEqualRef
4633      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4634                                   /*FirstQualifierInScope=*/0, OpLookup,
4635                                   /*TemplateArgs=*/0,
4636                                   /*SuppressQualifierCheck=*/true);
4637    if (OpEqualRef.isInvalid())
4638      return StmtError();
4639
4640    // Build the call to the assignment operator.
4641
4642    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4643                                                  OpEqualRef.takeAs<Expr>(),
4644                                                  Loc, &From, 1, Loc);
4645    if (Call.isInvalid())
4646      return StmtError();
4647
4648    return S.Owned(Call.takeAs<Stmt>());
4649  }
4650
4651  //     - if the subobject is of scalar type, the built-in assignment
4652  //       operator is used.
4653  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4654  if (!ArrayTy) {
4655    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4656    if (Assignment.isInvalid())
4657      return StmtError();
4658
4659    return S.Owned(Assignment.takeAs<Stmt>());
4660  }
4661
4662  //     - if the subobject is an array, each element is assigned, in the
4663  //       manner appropriate to the element type;
4664
4665  // Construct a loop over the array bounds, e.g.,
4666  //
4667  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4668  //
4669  // that will copy each of the array elements.
4670  QualType SizeType = S.Context.getSizeType();
4671
4672  // Create the iteration variable.
4673  IdentifierInfo *IterationVarName = 0;
4674  {
4675    llvm::SmallString<8> Str;
4676    llvm::raw_svector_ostream OS(Str);
4677    OS << "__i" << Depth;
4678    IterationVarName = &S.Context.Idents.get(OS.str());
4679  }
4680  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4681                                          IterationVarName, SizeType,
4682                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4683                                          SC_None, SC_None);
4684
4685  // Initialize the iteration variable to zero.
4686  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4687  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4688
4689  // Create a reference to the iteration variable; we'll use this several
4690  // times throughout.
4691  Expr *IterationVarRef
4692    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4693  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4694
4695  // Create the DeclStmt that holds the iteration variable.
4696  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4697
4698  // Create the comparison against the array bound.
4699  llvm::APInt Upper
4700    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4701  Expr *Comparison
4702    = new (S.Context) BinaryOperator(IterationVarRef,
4703                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4704                                     BO_NE, S.Context.BoolTy,
4705                                     VK_RValue, OK_Ordinary, Loc);
4706
4707  // Create the pre-increment of the iteration variable.
4708  Expr *Increment
4709    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4710                                    VK_LValue, OK_Ordinary, Loc);
4711
4712  // Subscript the "from" and "to" expressions with the iteration variable.
4713  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4714                                                         IterationVarRef, Loc));
4715  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4716                                                       IterationVarRef, Loc));
4717
4718  // Build the copy for an individual element of the array.
4719  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4720                                          To, From, CopyingBaseSubobject,
4721                                          Depth + 1);
4722  if (Copy.isInvalid())
4723    return StmtError();
4724
4725  // Construct the loop that copies all elements of this array.
4726  return S.ActOnForStmt(Loc, Loc, InitStmt,
4727                        S.MakeFullExpr(Comparison),
4728                        0, S.MakeFullExpr(Increment),
4729                        Loc, Copy.take());
4730}
4731
4732/// \brief Determine whether the given class has a copy assignment operator
4733/// that accepts a const-qualified argument.
4734static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4735  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4736
4737  if (!Class->hasDeclaredCopyAssignment())
4738    S.DeclareImplicitCopyAssignment(Class);
4739
4740  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4741  DeclarationName OpName
4742    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4743
4744  DeclContext::lookup_const_iterator Op, OpEnd;
4745  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4746    // C++ [class.copy]p9:
4747    //   A user-declared copy assignment operator is a non-static non-template
4748    //   member function of class X with exactly one parameter of type X, X&,
4749    //   const X&, volatile X& or const volatile X&.
4750    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4751    if (!Method)
4752      continue;
4753
4754    if (Method->isStatic())
4755      continue;
4756    if (Method->getPrimaryTemplate())
4757      continue;
4758    const FunctionProtoType *FnType =
4759    Method->getType()->getAs<FunctionProtoType>();
4760    assert(FnType && "Overloaded operator has no prototype.");
4761    // Don't assert on this; an invalid decl might have been left in the AST.
4762    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4763      continue;
4764    bool AcceptsConst = true;
4765    QualType ArgType = FnType->getArgType(0);
4766    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4767      ArgType = Ref->getPointeeType();
4768      // Is it a non-const lvalue reference?
4769      if (!ArgType.isConstQualified())
4770        AcceptsConst = false;
4771    }
4772    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4773      continue;
4774
4775    // We have a single argument of type cv X or cv X&, i.e. we've found the
4776    // copy assignment operator. Return whether it accepts const arguments.
4777    return AcceptsConst;
4778  }
4779  assert(Class->isInvalidDecl() &&
4780         "No copy assignment operator declared in valid code.");
4781  return false;
4782}
4783
4784CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4785  // Note: The following rules are largely analoguous to the copy
4786  // constructor rules. Note that virtual bases are not taken into account
4787  // for determining the argument type of the operator. Note also that
4788  // operators taking an object instead of a reference are allowed.
4789
4790
4791  // C++ [class.copy]p10:
4792  //   If the class definition does not explicitly declare a copy
4793  //   assignment operator, one is declared implicitly.
4794  //   The implicitly-defined copy assignment operator for a class X
4795  //   will have the form
4796  //
4797  //       X& X::operator=(const X&)
4798  //
4799  //   if
4800  bool HasConstCopyAssignment = true;
4801
4802  //       -- each direct base class B of X has a copy assignment operator
4803  //          whose parameter is of type const B&, const volatile B& or B,
4804  //          and
4805  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4806                                       BaseEnd = ClassDecl->bases_end();
4807       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4808    assert(!Base->getType()->isDependentType() &&
4809           "Cannot generate implicit members for class with dependent bases.");
4810    const CXXRecordDecl *BaseClassDecl
4811      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4812    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4813  }
4814
4815  //       -- for all the nonstatic data members of X that are of a class
4816  //          type M (or array thereof), each such class type has a copy
4817  //          assignment operator whose parameter is of type const M&,
4818  //          const volatile M& or M.
4819  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4820                                  FieldEnd = ClassDecl->field_end();
4821       HasConstCopyAssignment && Field != FieldEnd;
4822       ++Field) {
4823    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4824    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4825      const CXXRecordDecl *FieldClassDecl
4826        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4827      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4828    }
4829  }
4830
4831  //   Otherwise, the implicitly declared copy assignment operator will
4832  //   have the form
4833  //
4834  //       X& X::operator=(X&)
4835  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4836  QualType RetType = Context.getLValueReferenceType(ArgType);
4837  if (HasConstCopyAssignment)
4838    ArgType = ArgType.withConst();
4839  ArgType = Context.getLValueReferenceType(ArgType);
4840
4841  // C++ [except.spec]p14:
4842  //   An implicitly declared special member function (Clause 12) shall have an
4843  //   exception-specification. [...]
4844  ImplicitExceptionSpecification ExceptSpec(Context);
4845  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4846                                       BaseEnd = ClassDecl->bases_end();
4847       Base != BaseEnd; ++Base) {
4848    CXXRecordDecl *BaseClassDecl
4849      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4850
4851    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4852      DeclareImplicitCopyAssignment(BaseClassDecl);
4853
4854    if (CXXMethodDecl *CopyAssign
4855           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4856      ExceptSpec.CalledDecl(CopyAssign);
4857  }
4858  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4859                                  FieldEnd = ClassDecl->field_end();
4860       Field != FieldEnd;
4861       ++Field) {
4862    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4863    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4864      CXXRecordDecl *FieldClassDecl
4865        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4866
4867      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4868        DeclareImplicitCopyAssignment(FieldClassDecl);
4869
4870      if (CXXMethodDecl *CopyAssign
4871            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4872        ExceptSpec.CalledDecl(CopyAssign);
4873    }
4874  }
4875
4876  //   An implicitly-declared copy assignment operator is an inline public
4877  //   member of its class.
4878  FunctionProtoType::ExtProtoInfo EPI;
4879  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4880  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4881  EPI.NumExceptions = ExceptSpec.size();
4882  EPI.Exceptions = ExceptSpec.data();
4883  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4884  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4885  CXXMethodDecl *CopyAssignment
4886    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4887                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
4888                            /*TInfo=*/0, /*isStatic=*/false,
4889                            /*StorageClassAsWritten=*/SC_None,
4890                            /*isInline=*/true);
4891  CopyAssignment->setAccess(AS_public);
4892  CopyAssignment->setImplicit();
4893  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4894
4895  // Add the parameter to the operator.
4896  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4897                                               ClassDecl->getLocation(),
4898                                               /*Id=*/0,
4899                                               ArgType, /*TInfo=*/0,
4900                                               SC_None,
4901                                               SC_None, 0);
4902  CopyAssignment->setParams(&FromParam, 1);
4903
4904  // Note that we have added this copy-assignment operator.
4905  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4906
4907  if (Scope *S = getScopeForContext(ClassDecl))
4908    PushOnScopeChains(CopyAssignment, S, false);
4909  ClassDecl->addDecl(CopyAssignment);
4910
4911  AddOverriddenMethods(ClassDecl, CopyAssignment);
4912  return CopyAssignment;
4913}
4914
4915void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4916                                        CXXMethodDecl *CopyAssignOperator) {
4917  assert((CopyAssignOperator->isImplicit() &&
4918          CopyAssignOperator->isOverloadedOperator() &&
4919          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4920          !CopyAssignOperator->isUsed(false)) &&
4921         "DefineImplicitCopyAssignment called for wrong function");
4922
4923  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4924
4925  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4926    CopyAssignOperator->setInvalidDecl();
4927    return;
4928  }
4929
4930  CopyAssignOperator->setUsed();
4931
4932  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4933  DiagnosticErrorTrap Trap(Diags);
4934
4935  // C++0x [class.copy]p30:
4936  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4937  //   for a non-union class X performs memberwise copy assignment of its
4938  //   subobjects. The direct base classes of X are assigned first, in the
4939  //   order of their declaration in the base-specifier-list, and then the
4940  //   immediate non-static data members of X are assigned, in the order in
4941  //   which they were declared in the class definition.
4942
4943  // The statements that form the synthesized function body.
4944  ASTOwningVector<Stmt*> Statements(*this);
4945
4946  // The parameter for the "other" object, which we are copying from.
4947  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4948  Qualifiers OtherQuals = Other->getType().getQualifiers();
4949  QualType OtherRefType = Other->getType();
4950  if (const LValueReferenceType *OtherRef
4951                                = OtherRefType->getAs<LValueReferenceType>()) {
4952    OtherRefType = OtherRef->getPointeeType();
4953    OtherQuals = OtherRefType.getQualifiers();
4954  }
4955
4956  // Our location for everything implicitly-generated.
4957  SourceLocation Loc = CopyAssignOperator->getLocation();
4958
4959  // Construct a reference to the "other" object. We'll be using this
4960  // throughout the generated ASTs.
4961  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
4962  assert(OtherRef && "Reference to parameter cannot fail!");
4963
4964  // Construct the "this" pointer. We'll be using this throughout the generated
4965  // ASTs.
4966  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4967  assert(This && "Reference to this cannot fail!");
4968
4969  // Assign base classes.
4970  bool Invalid = false;
4971  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4972       E = ClassDecl->bases_end(); Base != E; ++Base) {
4973    // Form the assignment:
4974    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4975    QualType BaseType = Base->getType().getUnqualifiedType();
4976    CXXRecordDecl *BaseClassDecl = 0;
4977    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4978      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4979    else {
4980      Invalid = true;
4981      continue;
4982    }
4983
4984    CXXCastPath BasePath;
4985    BasePath.push_back(Base);
4986
4987    // Construct the "from" expression, which is an implicit cast to the
4988    // appropriately-qualified base type.
4989    Expr *From = OtherRef;
4990    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4991                      CK_UncheckedDerivedToBase,
4992                      VK_LValue, &BasePath);
4993
4994    // Dereference "this".
4995    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4996
4997    // Implicitly cast "this" to the appropriately-qualified base type.
4998    Expr *ToE = To.takeAs<Expr>();
4999    ImpCastExprToType(ToE,
5000                      Context.getCVRQualifiedType(BaseType,
5001                                      CopyAssignOperator->getTypeQualifiers()),
5002                      CK_UncheckedDerivedToBase,
5003                      VK_LValue, &BasePath);
5004    To = Owned(ToE);
5005
5006    // Build the copy.
5007    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5008                                            To.get(), From,
5009                                            /*CopyingBaseSubobject=*/true);
5010    if (Copy.isInvalid()) {
5011      Diag(CurrentLocation, diag::note_member_synthesized_at)
5012        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5013      CopyAssignOperator->setInvalidDecl();
5014      return;
5015    }
5016
5017    // Success! Record the copy.
5018    Statements.push_back(Copy.takeAs<Expr>());
5019  }
5020
5021  // \brief Reference to the __builtin_memcpy function.
5022  Expr *BuiltinMemCpyRef = 0;
5023  // \brief Reference to the __builtin_objc_memmove_collectable function.
5024  Expr *CollectableMemCpyRef = 0;
5025
5026  // Assign non-static members.
5027  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5028                                  FieldEnd = ClassDecl->field_end();
5029       Field != FieldEnd; ++Field) {
5030    // Check for members of reference type; we can't copy those.
5031    if (Field->getType()->isReferenceType()) {
5032      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5033        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5034      Diag(Field->getLocation(), diag::note_declared_at);
5035      Diag(CurrentLocation, diag::note_member_synthesized_at)
5036        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5037      Invalid = true;
5038      continue;
5039    }
5040
5041    // Check for members of const-qualified, non-class type.
5042    QualType BaseType = Context.getBaseElementType(Field->getType());
5043    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5044      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5045        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5046      Diag(Field->getLocation(), diag::note_declared_at);
5047      Diag(CurrentLocation, diag::note_member_synthesized_at)
5048        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5049      Invalid = true;
5050      continue;
5051    }
5052
5053    QualType FieldType = Field->getType().getNonReferenceType();
5054    if (FieldType->isIncompleteArrayType()) {
5055      assert(ClassDecl->hasFlexibleArrayMember() &&
5056             "Incomplete array type is not valid");
5057      continue;
5058    }
5059
5060    // Build references to the field in the object we're copying from and to.
5061    CXXScopeSpec SS; // Intentionally empty
5062    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5063                              LookupMemberName);
5064    MemberLookup.addDecl(*Field);
5065    MemberLookup.resolveKind();
5066    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5067                                               Loc, /*IsArrow=*/false,
5068                                               SS, 0, MemberLookup, 0);
5069    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5070                                             Loc, /*IsArrow=*/true,
5071                                             SS, 0, MemberLookup, 0);
5072    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5073    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5074
5075    // If the field should be copied with __builtin_memcpy rather than via
5076    // explicit assignments, do so. This optimization only applies for arrays
5077    // of scalars and arrays of class type with trivial copy-assignment
5078    // operators.
5079    if (FieldType->isArrayType() &&
5080        (!BaseType->isRecordType() ||
5081         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5082           ->hasTrivialCopyAssignment())) {
5083      // Compute the size of the memory buffer to be copied.
5084      QualType SizeType = Context.getSizeType();
5085      llvm::APInt Size(Context.getTypeSize(SizeType),
5086                       Context.getTypeSizeInChars(BaseType).getQuantity());
5087      for (const ConstantArrayType *Array
5088              = Context.getAsConstantArrayType(FieldType);
5089           Array;
5090           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5091        llvm::APInt ArraySize
5092          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5093        Size *= ArraySize;
5094      }
5095
5096      // Take the address of the field references for "from" and "to".
5097      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5098      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5099
5100      bool NeedsCollectableMemCpy =
5101          (BaseType->isRecordType() &&
5102           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5103
5104      if (NeedsCollectableMemCpy) {
5105        if (!CollectableMemCpyRef) {
5106          // Create a reference to the __builtin_objc_memmove_collectable function.
5107          LookupResult R(*this,
5108                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5109                         Loc, LookupOrdinaryName);
5110          LookupName(R, TUScope, true);
5111
5112          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5113          if (!CollectableMemCpy) {
5114            // Something went horribly wrong earlier, and we will have
5115            // complained about it.
5116            Invalid = true;
5117            continue;
5118          }
5119
5120          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5121                                                  CollectableMemCpy->getType(),
5122                                                  VK_LValue, Loc, 0).take();
5123          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5124        }
5125      }
5126      // Create a reference to the __builtin_memcpy builtin function.
5127      else if (!BuiltinMemCpyRef) {
5128        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5129                       LookupOrdinaryName);
5130        LookupName(R, TUScope, true);
5131
5132        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5133        if (!BuiltinMemCpy) {
5134          // Something went horribly wrong earlier, and we will have complained
5135          // about it.
5136          Invalid = true;
5137          continue;
5138        }
5139
5140        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5141                                            BuiltinMemCpy->getType(),
5142                                            VK_LValue, Loc, 0).take();
5143        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5144      }
5145
5146      ASTOwningVector<Expr*> CallArgs(*this);
5147      CallArgs.push_back(To.takeAs<Expr>());
5148      CallArgs.push_back(From.takeAs<Expr>());
5149      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5150      ExprResult Call = ExprError();
5151      if (NeedsCollectableMemCpy)
5152        Call = ActOnCallExpr(/*Scope=*/0,
5153                             CollectableMemCpyRef,
5154                             Loc, move_arg(CallArgs),
5155                             Loc);
5156      else
5157        Call = ActOnCallExpr(/*Scope=*/0,
5158                             BuiltinMemCpyRef,
5159                             Loc, move_arg(CallArgs),
5160                             Loc);
5161
5162      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5163      Statements.push_back(Call.takeAs<Expr>());
5164      continue;
5165    }
5166
5167    // Build the copy of this field.
5168    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5169                                                  To.get(), From.get(),
5170                                              /*CopyingBaseSubobject=*/false);
5171    if (Copy.isInvalid()) {
5172      Diag(CurrentLocation, diag::note_member_synthesized_at)
5173        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5174      CopyAssignOperator->setInvalidDecl();
5175      return;
5176    }
5177
5178    // Success! Record the copy.
5179    Statements.push_back(Copy.takeAs<Stmt>());
5180  }
5181
5182  if (!Invalid) {
5183    // Add a "return *this;"
5184    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5185
5186    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5187    if (Return.isInvalid())
5188      Invalid = true;
5189    else {
5190      Statements.push_back(Return.takeAs<Stmt>());
5191
5192      if (Trap.hasErrorOccurred()) {
5193        Diag(CurrentLocation, diag::note_member_synthesized_at)
5194          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5195        Invalid = true;
5196      }
5197    }
5198  }
5199
5200  if (Invalid) {
5201    CopyAssignOperator->setInvalidDecl();
5202    return;
5203  }
5204
5205  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5206                                            /*isStmtExpr=*/false);
5207  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5208  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5209}
5210
5211CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5212                                                    CXXRecordDecl *ClassDecl) {
5213  // C++ [class.copy]p4:
5214  //   If the class definition does not explicitly declare a copy
5215  //   constructor, one is declared implicitly.
5216
5217  // C++ [class.copy]p5:
5218  //   The implicitly-declared copy constructor for a class X will
5219  //   have the form
5220  //
5221  //       X::X(const X&)
5222  //
5223  //   if
5224  bool HasConstCopyConstructor = true;
5225
5226  //     -- each direct or virtual base class B of X has a copy
5227  //        constructor whose first parameter is of type const B& or
5228  //        const volatile B&, and
5229  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5230                                       BaseEnd = ClassDecl->bases_end();
5231       HasConstCopyConstructor && Base != BaseEnd;
5232       ++Base) {
5233    // Virtual bases are handled below.
5234    if (Base->isVirtual())
5235      continue;
5236
5237    CXXRecordDecl *BaseClassDecl
5238      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5239    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5240      DeclareImplicitCopyConstructor(BaseClassDecl);
5241
5242    HasConstCopyConstructor
5243      = BaseClassDecl->hasConstCopyConstructor(Context);
5244  }
5245
5246  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5247                                       BaseEnd = ClassDecl->vbases_end();
5248       HasConstCopyConstructor && Base != BaseEnd;
5249       ++Base) {
5250    CXXRecordDecl *BaseClassDecl
5251      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5252    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5253      DeclareImplicitCopyConstructor(BaseClassDecl);
5254
5255    HasConstCopyConstructor
5256      = BaseClassDecl->hasConstCopyConstructor(Context);
5257  }
5258
5259  //     -- for all the nonstatic data members of X that are of a
5260  //        class type M (or array thereof), each such class type
5261  //        has a copy constructor whose first parameter is of type
5262  //        const M& or const volatile M&.
5263  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5264                                  FieldEnd = ClassDecl->field_end();
5265       HasConstCopyConstructor && Field != FieldEnd;
5266       ++Field) {
5267    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5268    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5269      CXXRecordDecl *FieldClassDecl
5270        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5271      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5272        DeclareImplicitCopyConstructor(FieldClassDecl);
5273
5274      HasConstCopyConstructor
5275        = FieldClassDecl->hasConstCopyConstructor(Context);
5276    }
5277  }
5278
5279  //   Otherwise, the implicitly declared copy constructor will have
5280  //   the form
5281  //
5282  //       X::X(X&)
5283  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5284  QualType ArgType = ClassType;
5285  if (HasConstCopyConstructor)
5286    ArgType = ArgType.withConst();
5287  ArgType = Context.getLValueReferenceType(ArgType);
5288
5289  // C++ [except.spec]p14:
5290  //   An implicitly declared special member function (Clause 12) shall have an
5291  //   exception-specification. [...]
5292  ImplicitExceptionSpecification ExceptSpec(Context);
5293  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5294  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5295                                       BaseEnd = ClassDecl->bases_end();
5296       Base != BaseEnd;
5297       ++Base) {
5298    // Virtual bases are handled below.
5299    if (Base->isVirtual())
5300      continue;
5301
5302    CXXRecordDecl *BaseClassDecl
5303      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5304    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5305      DeclareImplicitCopyConstructor(BaseClassDecl);
5306
5307    if (CXXConstructorDecl *CopyConstructor
5308                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5309      ExceptSpec.CalledDecl(CopyConstructor);
5310  }
5311  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5312                                       BaseEnd = ClassDecl->vbases_end();
5313       Base != BaseEnd;
5314       ++Base) {
5315    CXXRecordDecl *BaseClassDecl
5316      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5317    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5318      DeclareImplicitCopyConstructor(BaseClassDecl);
5319
5320    if (CXXConstructorDecl *CopyConstructor
5321                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5322      ExceptSpec.CalledDecl(CopyConstructor);
5323  }
5324  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5325                                  FieldEnd = ClassDecl->field_end();
5326       Field != FieldEnd;
5327       ++Field) {
5328    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5329    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5330      CXXRecordDecl *FieldClassDecl
5331        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5332      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5333        DeclareImplicitCopyConstructor(FieldClassDecl);
5334
5335      if (CXXConstructorDecl *CopyConstructor
5336                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5337        ExceptSpec.CalledDecl(CopyConstructor);
5338    }
5339  }
5340
5341  //   An implicitly-declared copy constructor is an inline public
5342  //   member of its class.
5343  FunctionProtoType::ExtProtoInfo EPI;
5344  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5345  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5346  EPI.NumExceptions = ExceptSpec.size();
5347  EPI.Exceptions = ExceptSpec.data();
5348  DeclarationName Name
5349    = Context.DeclarationNames.getCXXConstructorName(
5350                                           Context.getCanonicalType(ClassType));
5351  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5352  CXXConstructorDecl *CopyConstructor
5353    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5354                                 Context.getFunctionType(Context.VoidTy,
5355                                                         &ArgType, 1, EPI),
5356                                 /*TInfo=*/0,
5357                                 /*isExplicit=*/false,
5358                                 /*isInline=*/true,
5359                                 /*isImplicitlyDeclared=*/true);
5360  CopyConstructor->setAccess(AS_public);
5361  CopyConstructor->setImplicit();
5362  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5363
5364  // Note that we have declared this constructor.
5365  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5366
5367  // Add the parameter to the constructor.
5368  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5369                                               ClassDecl->getLocation(),
5370                                               /*IdentifierInfo=*/0,
5371                                               ArgType, /*TInfo=*/0,
5372                                               SC_None,
5373                                               SC_None, 0);
5374  CopyConstructor->setParams(&FromParam, 1);
5375  if (Scope *S = getScopeForContext(ClassDecl))
5376    PushOnScopeChains(CopyConstructor, S, false);
5377  ClassDecl->addDecl(CopyConstructor);
5378
5379  return CopyConstructor;
5380}
5381
5382void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5383                                   CXXConstructorDecl *CopyConstructor,
5384                                   unsigned TypeQuals) {
5385  assert((CopyConstructor->isImplicit() &&
5386          CopyConstructor->isCopyConstructor(TypeQuals) &&
5387          !CopyConstructor->isUsed(false)) &&
5388         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5389
5390  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5391  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5392
5393  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5394  DiagnosticErrorTrap Trap(Diags);
5395
5396  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5397      Trap.hasErrorOccurred()) {
5398    Diag(CurrentLocation, diag::note_member_synthesized_at)
5399      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5400    CopyConstructor->setInvalidDecl();
5401  }  else {
5402    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5403                                               CopyConstructor->getLocation(),
5404                                               MultiStmtArg(*this, 0, 0),
5405                                               /*isStmtExpr=*/false)
5406                                                              .takeAs<Stmt>());
5407  }
5408
5409  CopyConstructor->setUsed();
5410}
5411
5412ExprResult
5413Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5414                            CXXConstructorDecl *Constructor,
5415                            MultiExprArg ExprArgs,
5416                            bool RequiresZeroInit,
5417                            unsigned ConstructKind,
5418                            SourceRange ParenRange) {
5419  bool Elidable = false;
5420
5421  // C++0x [class.copy]p34:
5422  //   When certain criteria are met, an implementation is allowed to
5423  //   omit the copy/move construction of a class object, even if the
5424  //   copy/move constructor and/or destructor for the object have
5425  //   side effects. [...]
5426  //     - when a temporary class object that has not been bound to a
5427  //       reference (12.2) would be copied/moved to a class object
5428  //       with the same cv-unqualified type, the copy/move operation
5429  //       can be omitted by constructing the temporary object
5430  //       directly into the target of the omitted copy/move
5431  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5432      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5433    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5434    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5435  }
5436
5437  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5438                               Elidable, move(ExprArgs), RequiresZeroInit,
5439                               ConstructKind, ParenRange);
5440}
5441
5442/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5443/// including handling of its default argument expressions.
5444ExprResult
5445Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5446                            CXXConstructorDecl *Constructor, bool Elidable,
5447                            MultiExprArg ExprArgs,
5448                            bool RequiresZeroInit,
5449                            unsigned ConstructKind,
5450                            SourceRange ParenRange) {
5451  unsigned NumExprs = ExprArgs.size();
5452  Expr **Exprs = (Expr **)ExprArgs.release();
5453
5454  MarkDeclarationReferenced(ConstructLoc, Constructor);
5455  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5456                                        Constructor, Elidable, Exprs, NumExprs,
5457                                        RequiresZeroInit,
5458              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5459                                        ParenRange));
5460}
5461
5462bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5463                                        CXXConstructorDecl *Constructor,
5464                                        MultiExprArg Exprs) {
5465  // FIXME: Provide the correct paren SourceRange when available.
5466  ExprResult TempResult =
5467    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5468                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5469                          SourceRange());
5470  if (TempResult.isInvalid())
5471    return true;
5472
5473  Expr *Temp = TempResult.takeAs<Expr>();
5474  CheckImplicitConversions(Temp, VD->getLocation());
5475  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5476  Temp = MaybeCreateExprWithCleanups(Temp);
5477  VD->setInit(Temp);
5478
5479  return false;
5480}
5481
5482void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5483  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5484  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5485      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5486    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5487    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5488    CheckDestructorAccess(VD->getLocation(), Destructor,
5489                          PDiag(diag::err_access_dtor_var)
5490                            << VD->getDeclName()
5491                            << VD->getType());
5492
5493    // TODO: this should be re-enabled for static locals by !CXAAtExit
5494    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5495      Diag(VD->getLocation(), diag::warn_global_destructor);
5496  }
5497}
5498
5499/// AddCXXDirectInitializerToDecl - This action is called immediately after
5500/// ActOnDeclarator, when a C++ direct initializer is present.
5501/// e.g: "int x(1);"
5502void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5503                                         SourceLocation LParenLoc,
5504                                         MultiExprArg Exprs,
5505                                         SourceLocation RParenLoc) {
5506  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5507
5508  // If there is no declaration, there was an error parsing it.  Just ignore
5509  // the initializer.
5510  if (RealDecl == 0)
5511    return;
5512
5513  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5514  if (!VDecl) {
5515    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5516    RealDecl->setInvalidDecl();
5517    return;
5518  }
5519
5520  // We will represent direct-initialization similarly to copy-initialization:
5521  //    int x(1);  -as-> int x = 1;
5522  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5523  //
5524  // Clients that want to distinguish between the two forms, can check for
5525  // direct initializer using VarDecl::hasCXXDirectInitializer().
5526  // A major benefit is that clients that don't particularly care about which
5527  // exactly form was it (like the CodeGen) can handle both cases without
5528  // special case code.
5529
5530  // C++ 8.5p11:
5531  // The form of initialization (using parentheses or '=') is generally
5532  // insignificant, but does matter when the entity being initialized has a
5533  // class type.
5534
5535  if (!VDecl->getType()->isDependentType() &&
5536      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5537                          diag::err_typecheck_decl_incomplete_type)) {
5538    VDecl->setInvalidDecl();
5539    return;
5540  }
5541
5542  // The variable can not have an abstract class type.
5543  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5544                             diag::err_abstract_type_in_decl,
5545                             AbstractVariableType))
5546    VDecl->setInvalidDecl();
5547
5548  const VarDecl *Def;
5549  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5550    Diag(VDecl->getLocation(), diag::err_redefinition)
5551    << VDecl->getDeclName();
5552    Diag(Def->getLocation(), diag::note_previous_definition);
5553    VDecl->setInvalidDecl();
5554    return;
5555  }
5556
5557  // C++ [class.static.data]p4
5558  //   If a static data member is of const integral or const
5559  //   enumeration type, its declaration in the class definition can
5560  //   specify a constant-initializer which shall be an integral
5561  //   constant expression (5.19). In that case, the member can appear
5562  //   in integral constant expressions. The member shall still be
5563  //   defined in a namespace scope if it is used in the program and the
5564  //   namespace scope definition shall not contain an initializer.
5565  //
5566  // We already performed a redefinition check above, but for static
5567  // data members we also need to check whether there was an in-class
5568  // declaration with an initializer.
5569  const VarDecl* PrevInit = 0;
5570  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5571    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5572    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5573    return;
5574  }
5575
5576  bool IsDependent = false;
5577  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5578    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5579      VDecl->setInvalidDecl();
5580      return;
5581    }
5582
5583    if (Exprs.get()[I]->isTypeDependent())
5584      IsDependent = true;
5585  }
5586
5587  // If either the declaration has a dependent type or if any of the
5588  // expressions is type-dependent, we represent the initialization
5589  // via a ParenListExpr for later use during template instantiation.
5590  if (VDecl->getType()->isDependentType() || IsDependent) {
5591    // Let clients know that initialization was done with a direct initializer.
5592    VDecl->setCXXDirectInitializer(true);
5593
5594    // Store the initialization expressions as a ParenListExpr.
5595    unsigned NumExprs = Exprs.size();
5596    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5597                                               (Expr **)Exprs.release(),
5598                                               NumExprs, RParenLoc));
5599    return;
5600  }
5601
5602  // Capture the variable that is being initialized and the style of
5603  // initialization.
5604  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5605
5606  // FIXME: Poor source location information.
5607  InitializationKind Kind
5608    = InitializationKind::CreateDirect(VDecl->getLocation(),
5609                                       LParenLoc, RParenLoc);
5610
5611  InitializationSequence InitSeq(*this, Entity, Kind,
5612                                 Exprs.get(), Exprs.size());
5613  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5614  if (Result.isInvalid()) {
5615    VDecl->setInvalidDecl();
5616    return;
5617  }
5618
5619  CheckImplicitConversions(Result.get(), LParenLoc);
5620
5621  Result = MaybeCreateExprWithCleanups(Result);
5622  VDecl->setInit(Result.takeAs<Expr>());
5623  VDecl->setCXXDirectInitializer(true);
5624
5625    if (!VDecl->isInvalidDecl() &&
5626        !VDecl->getDeclContext()->isDependentContext() &&
5627        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5628        !VDecl->getInit()->isConstantInitializer(Context,
5629                                        VDecl->getType()->isReferenceType()))
5630      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5631        << VDecl->getInit()->getSourceRange();
5632
5633  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5634    FinalizeVarWithDestructor(VDecl, Record);
5635}
5636
5637/// \brief Given a constructor and the set of arguments provided for the
5638/// constructor, convert the arguments and add any required default arguments
5639/// to form a proper call to this constructor.
5640///
5641/// \returns true if an error occurred, false otherwise.
5642bool
5643Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5644                              MultiExprArg ArgsPtr,
5645                              SourceLocation Loc,
5646                              ASTOwningVector<Expr*> &ConvertedArgs) {
5647  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5648  unsigned NumArgs = ArgsPtr.size();
5649  Expr **Args = (Expr **)ArgsPtr.get();
5650
5651  const FunctionProtoType *Proto
5652    = Constructor->getType()->getAs<FunctionProtoType>();
5653  assert(Proto && "Constructor without a prototype?");
5654  unsigned NumArgsInProto = Proto->getNumArgs();
5655
5656  // If too few arguments are available, we'll fill in the rest with defaults.
5657  if (NumArgs < NumArgsInProto)
5658    ConvertedArgs.reserve(NumArgsInProto);
5659  else
5660    ConvertedArgs.reserve(NumArgs);
5661
5662  VariadicCallType CallType =
5663    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5664  llvm::SmallVector<Expr *, 8> AllArgs;
5665  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5666                                        Proto, 0, Args, NumArgs, AllArgs,
5667                                        CallType);
5668  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5669    ConvertedArgs.push_back(AllArgs[i]);
5670  return Invalid;
5671}
5672
5673static inline bool
5674CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5675                                       const FunctionDecl *FnDecl) {
5676  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5677  if (isa<NamespaceDecl>(DC)) {
5678    return SemaRef.Diag(FnDecl->getLocation(),
5679                        diag::err_operator_new_delete_declared_in_namespace)
5680      << FnDecl->getDeclName();
5681  }
5682
5683  if (isa<TranslationUnitDecl>(DC) &&
5684      FnDecl->getStorageClass() == SC_Static) {
5685    return SemaRef.Diag(FnDecl->getLocation(),
5686                        diag::err_operator_new_delete_declared_static)
5687      << FnDecl->getDeclName();
5688  }
5689
5690  return false;
5691}
5692
5693static inline bool
5694CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5695                            CanQualType ExpectedResultType,
5696                            CanQualType ExpectedFirstParamType,
5697                            unsigned DependentParamTypeDiag,
5698                            unsigned InvalidParamTypeDiag) {
5699  QualType ResultType =
5700    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5701
5702  // Check that the result type is not dependent.
5703  if (ResultType->isDependentType())
5704    return SemaRef.Diag(FnDecl->getLocation(),
5705                        diag::err_operator_new_delete_dependent_result_type)
5706    << FnDecl->getDeclName() << ExpectedResultType;
5707
5708  // Check that the result type is what we expect.
5709  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5710    return SemaRef.Diag(FnDecl->getLocation(),
5711                        diag::err_operator_new_delete_invalid_result_type)
5712    << FnDecl->getDeclName() << ExpectedResultType;
5713
5714  // A function template must have at least 2 parameters.
5715  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5716    return SemaRef.Diag(FnDecl->getLocation(),
5717                      diag::err_operator_new_delete_template_too_few_parameters)
5718        << FnDecl->getDeclName();
5719
5720  // The function decl must have at least 1 parameter.
5721  if (FnDecl->getNumParams() == 0)
5722    return SemaRef.Diag(FnDecl->getLocation(),
5723                        diag::err_operator_new_delete_too_few_parameters)
5724      << FnDecl->getDeclName();
5725
5726  // Check the the first parameter type is not dependent.
5727  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5728  if (FirstParamType->isDependentType())
5729    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5730      << FnDecl->getDeclName() << ExpectedFirstParamType;
5731
5732  // Check that the first parameter type is what we expect.
5733  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5734      ExpectedFirstParamType)
5735    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5736    << FnDecl->getDeclName() << ExpectedFirstParamType;
5737
5738  return false;
5739}
5740
5741static bool
5742CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5743  // C++ [basic.stc.dynamic.allocation]p1:
5744  //   A program is ill-formed if an allocation function is declared in a
5745  //   namespace scope other than global scope or declared static in global
5746  //   scope.
5747  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5748    return true;
5749
5750  CanQualType SizeTy =
5751    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5752
5753  // C++ [basic.stc.dynamic.allocation]p1:
5754  //  The return type shall be void*. The first parameter shall have type
5755  //  std::size_t.
5756  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5757                                  SizeTy,
5758                                  diag::err_operator_new_dependent_param_type,
5759                                  diag::err_operator_new_param_type))
5760    return true;
5761
5762  // C++ [basic.stc.dynamic.allocation]p1:
5763  //  The first parameter shall not have an associated default argument.
5764  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5765    return SemaRef.Diag(FnDecl->getLocation(),
5766                        diag::err_operator_new_default_arg)
5767      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5768
5769  return false;
5770}
5771
5772static bool
5773CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5774  // C++ [basic.stc.dynamic.deallocation]p1:
5775  //   A program is ill-formed if deallocation functions are declared in a
5776  //   namespace scope other than global scope or declared static in global
5777  //   scope.
5778  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5779    return true;
5780
5781  // C++ [basic.stc.dynamic.deallocation]p2:
5782  //   Each deallocation function shall return void and its first parameter
5783  //   shall be void*.
5784  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5785                                  SemaRef.Context.VoidPtrTy,
5786                                 diag::err_operator_delete_dependent_param_type,
5787                                 diag::err_operator_delete_param_type))
5788    return true;
5789
5790  return false;
5791}
5792
5793/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5794/// of this overloaded operator is well-formed. If so, returns false;
5795/// otherwise, emits appropriate diagnostics and returns true.
5796bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5797  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5798         "Expected an overloaded operator declaration");
5799
5800  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5801
5802  // C++ [over.oper]p5:
5803  //   The allocation and deallocation functions, operator new,
5804  //   operator new[], operator delete and operator delete[], are
5805  //   described completely in 3.7.3. The attributes and restrictions
5806  //   found in the rest of this subclause do not apply to them unless
5807  //   explicitly stated in 3.7.3.
5808  if (Op == OO_Delete || Op == OO_Array_Delete)
5809    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5810
5811  if (Op == OO_New || Op == OO_Array_New)
5812    return CheckOperatorNewDeclaration(*this, FnDecl);
5813
5814  // C++ [over.oper]p6:
5815  //   An operator function shall either be a non-static member
5816  //   function or be a non-member function and have at least one
5817  //   parameter whose type is a class, a reference to a class, an
5818  //   enumeration, or a reference to an enumeration.
5819  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5820    if (MethodDecl->isStatic())
5821      return Diag(FnDecl->getLocation(),
5822                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5823  } else {
5824    bool ClassOrEnumParam = false;
5825    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5826                                   ParamEnd = FnDecl->param_end();
5827         Param != ParamEnd; ++Param) {
5828      QualType ParamType = (*Param)->getType().getNonReferenceType();
5829      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5830          ParamType->isEnumeralType()) {
5831        ClassOrEnumParam = true;
5832        break;
5833      }
5834    }
5835
5836    if (!ClassOrEnumParam)
5837      return Diag(FnDecl->getLocation(),
5838                  diag::err_operator_overload_needs_class_or_enum)
5839        << FnDecl->getDeclName();
5840  }
5841
5842  // C++ [over.oper]p8:
5843  //   An operator function cannot have default arguments (8.3.6),
5844  //   except where explicitly stated below.
5845  //
5846  // Only the function-call operator allows default arguments
5847  // (C++ [over.call]p1).
5848  if (Op != OO_Call) {
5849    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5850         Param != FnDecl->param_end(); ++Param) {
5851      if ((*Param)->hasDefaultArg())
5852        return Diag((*Param)->getLocation(),
5853                    diag::err_operator_overload_default_arg)
5854          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5855    }
5856  }
5857
5858  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5859    { false, false, false }
5860#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5861    , { Unary, Binary, MemberOnly }
5862#include "clang/Basic/OperatorKinds.def"
5863  };
5864
5865  bool CanBeUnaryOperator = OperatorUses[Op][0];
5866  bool CanBeBinaryOperator = OperatorUses[Op][1];
5867  bool MustBeMemberOperator = OperatorUses[Op][2];
5868
5869  // C++ [over.oper]p8:
5870  //   [...] Operator functions cannot have more or fewer parameters
5871  //   than the number required for the corresponding operator, as
5872  //   described in the rest of this subclause.
5873  unsigned NumParams = FnDecl->getNumParams()
5874                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5875  if (Op != OO_Call &&
5876      ((NumParams == 1 && !CanBeUnaryOperator) ||
5877       (NumParams == 2 && !CanBeBinaryOperator) ||
5878       (NumParams < 1) || (NumParams > 2))) {
5879    // We have the wrong number of parameters.
5880    unsigned ErrorKind;
5881    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5882      ErrorKind = 2;  // 2 -> unary or binary.
5883    } else if (CanBeUnaryOperator) {
5884      ErrorKind = 0;  // 0 -> unary
5885    } else {
5886      assert(CanBeBinaryOperator &&
5887             "All non-call overloaded operators are unary or binary!");
5888      ErrorKind = 1;  // 1 -> binary
5889    }
5890
5891    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5892      << FnDecl->getDeclName() << NumParams << ErrorKind;
5893  }
5894
5895  // Overloaded operators other than operator() cannot be variadic.
5896  if (Op != OO_Call &&
5897      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5898    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5899      << FnDecl->getDeclName();
5900  }
5901
5902  // Some operators must be non-static member functions.
5903  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5904    return Diag(FnDecl->getLocation(),
5905                diag::err_operator_overload_must_be_member)
5906      << FnDecl->getDeclName();
5907  }
5908
5909  // C++ [over.inc]p1:
5910  //   The user-defined function called operator++ implements the
5911  //   prefix and postfix ++ operator. If this function is a member
5912  //   function with no parameters, or a non-member function with one
5913  //   parameter of class or enumeration type, it defines the prefix
5914  //   increment operator ++ for objects of that type. If the function
5915  //   is a member function with one parameter (which shall be of type
5916  //   int) or a non-member function with two parameters (the second
5917  //   of which shall be of type int), it defines the postfix
5918  //   increment operator ++ for objects of that type.
5919  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5920    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5921    bool ParamIsInt = false;
5922    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5923      ParamIsInt = BT->getKind() == BuiltinType::Int;
5924
5925    if (!ParamIsInt)
5926      return Diag(LastParam->getLocation(),
5927                  diag::err_operator_overload_post_incdec_must_be_int)
5928        << LastParam->getType() << (Op == OO_MinusMinus);
5929  }
5930
5931  return false;
5932}
5933
5934/// CheckLiteralOperatorDeclaration - Check whether the declaration
5935/// of this literal operator function is well-formed. If so, returns
5936/// false; otherwise, emits appropriate diagnostics and returns true.
5937bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5938  DeclContext *DC = FnDecl->getDeclContext();
5939  Decl::Kind Kind = DC->getDeclKind();
5940  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5941      Kind != Decl::LinkageSpec) {
5942    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5943      << FnDecl->getDeclName();
5944    return true;
5945  }
5946
5947  bool Valid = false;
5948
5949  // template <char...> type operator "" name() is the only valid template
5950  // signature, and the only valid signature with no parameters.
5951  if (FnDecl->param_size() == 0) {
5952    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5953      // Must have only one template parameter
5954      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5955      if (Params->size() == 1) {
5956        NonTypeTemplateParmDecl *PmDecl =
5957          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5958
5959        // The template parameter must be a char parameter pack.
5960        // FIXME: This test will always fail because non-type parameter packs
5961        //   have not been implemented.
5962        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5963            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5964          Valid = true;
5965      }
5966    }
5967  } else {
5968    // Check the first parameter
5969    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5970
5971    QualType T = (*Param)->getType();
5972
5973    // unsigned long long int, long double, and any character type are allowed
5974    // as the only parameters.
5975    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5976        Context.hasSameType(T, Context.LongDoubleTy) ||
5977        Context.hasSameType(T, Context.CharTy) ||
5978        Context.hasSameType(T, Context.WCharTy) ||
5979        Context.hasSameType(T, Context.Char16Ty) ||
5980        Context.hasSameType(T, Context.Char32Ty)) {
5981      if (++Param == FnDecl->param_end())
5982        Valid = true;
5983      goto FinishedParams;
5984    }
5985
5986    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5987    const PointerType *PT = T->getAs<PointerType>();
5988    if (!PT)
5989      goto FinishedParams;
5990    T = PT->getPointeeType();
5991    if (!T.isConstQualified())
5992      goto FinishedParams;
5993    T = T.getUnqualifiedType();
5994
5995    // Move on to the second parameter;
5996    ++Param;
5997
5998    // If there is no second parameter, the first must be a const char *
5999    if (Param == FnDecl->param_end()) {
6000      if (Context.hasSameType(T, Context.CharTy))
6001        Valid = true;
6002      goto FinishedParams;
6003    }
6004
6005    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6006    // are allowed as the first parameter to a two-parameter function
6007    if (!(Context.hasSameType(T, Context.CharTy) ||
6008          Context.hasSameType(T, Context.WCharTy) ||
6009          Context.hasSameType(T, Context.Char16Ty) ||
6010          Context.hasSameType(T, Context.Char32Ty)))
6011      goto FinishedParams;
6012
6013    // The second and final parameter must be an std::size_t
6014    T = (*Param)->getType().getUnqualifiedType();
6015    if (Context.hasSameType(T, Context.getSizeType()) &&
6016        ++Param == FnDecl->param_end())
6017      Valid = true;
6018  }
6019
6020  // FIXME: This diagnostic is absolutely terrible.
6021FinishedParams:
6022  if (!Valid) {
6023    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6024      << FnDecl->getDeclName();
6025    return true;
6026  }
6027
6028  return false;
6029}
6030
6031/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6032/// linkage specification, including the language and (if present)
6033/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6034/// the location of the language string literal, which is provided
6035/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6036/// the '{' brace. Otherwise, this linkage specification does not
6037/// have any braces.
6038Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6039                                           SourceLocation LangLoc,
6040                                           llvm::StringRef Lang,
6041                                           SourceLocation LBraceLoc) {
6042  LinkageSpecDecl::LanguageIDs Language;
6043  if (Lang == "\"C\"")
6044    Language = LinkageSpecDecl::lang_c;
6045  else if (Lang == "\"C++\"")
6046    Language = LinkageSpecDecl::lang_cxx;
6047  else {
6048    Diag(LangLoc, diag::err_bad_language);
6049    return 0;
6050  }
6051
6052  // FIXME: Add all the various semantics of linkage specifications
6053
6054  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6055                                               LangLoc, Language,
6056                                               LBraceLoc.isValid());
6057  CurContext->addDecl(D);
6058  PushDeclContext(S, D);
6059  return D;
6060}
6061
6062/// ActOnFinishLinkageSpecification - Complete the definition of
6063/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6064/// valid, it's the position of the closing '}' brace in a linkage
6065/// specification that uses braces.
6066Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6067                                                      Decl *LinkageSpec,
6068                                                      SourceLocation RBraceLoc) {
6069  if (LinkageSpec)
6070    PopDeclContext();
6071  return LinkageSpec;
6072}
6073
6074/// \brief Perform semantic analysis for the variable declaration that
6075/// occurs within a C++ catch clause, returning the newly-created
6076/// variable.
6077VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6078                                         TypeSourceInfo *TInfo,
6079                                         IdentifierInfo *Name,
6080                                         SourceLocation Loc) {
6081  bool Invalid = false;
6082  QualType ExDeclType = TInfo->getType();
6083
6084  // Arrays and functions decay.
6085  if (ExDeclType->isArrayType())
6086    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6087  else if (ExDeclType->isFunctionType())
6088    ExDeclType = Context.getPointerType(ExDeclType);
6089
6090  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6091  // The exception-declaration shall not denote a pointer or reference to an
6092  // incomplete type, other than [cv] void*.
6093  // N2844 forbids rvalue references.
6094  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6095    Diag(Loc, diag::err_catch_rvalue_ref);
6096    Invalid = true;
6097  }
6098
6099  // GCC allows catching pointers and references to incomplete types
6100  // as an extension; so do we, but we warn by default.
6101
6102  QualType BaseType = ExDeclType;
6103  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6104  unsigned DK = diag::err_catch_incomplete;
6105  bool IncompleteCatchIsInvalid = true;
6106  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6107    BaseType = Ptr->getPointeeType();
6108    Mode = 1;
6109    DK = diag::ext_catch_incomplete_ptr;
6110    IncompleteCatchIsInvalid = false;
6111  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6112    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6113    BaseType = Ref->getPointeeType();
6114    Mode = 2;
6115    DK = diag::ext_catch_incomplete_ref;
6116    IncompleteCatchIsInvalid = false;
6117  }
6118  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6119      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6120      IncompleteCatchIsInvalid)
6121    Invalid = true;
6122
6123  if (!Invalid && !ExDeclType->isDependentType() &&
6124      RequireNonAbstractType(Loc, ExDeclType,
6125                             diag::err_abstract_type_in_decl,
6126                             AbstractVariableType))
6127    Invalid = true;
6128
6129  // Only the non-fragile NeXT runtime currently supports C++ catches
6130  // of ObjC types, and no runtime supports catching ObjC types by value.
6131  if (!Invalid && getLangOptions().ObjC1) {
6132    QualType T = ExDeclType;
6133    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6134      T = RT->getPointeeType();
6135
6136    if (T->isObjCObjectType()) {
6137      Diag(Loc, diag::err_objc_object_catch);
6138      Invalid = true;
6139    } else if (T->isObjCObjectPointerType()) {
6140      if (!getLangOptions().NeXTRuntime) {
6141        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6142        Invalid = true;
6143      } else if (!getLangOptions().ObjCNonFragileABI) {
6144        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6145        Invalid = true;
6146      }
6147    }
6148  }
6149
6150  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6151                                    Name, ExDeclType, TInfo, SC_None,
6152                                    SC_None);
6153  ExDecl->setExceptionVariable(true);
6154
6155  if (!Invalid) {
6156    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6157      // C++ [except.handle]p16:
6158      //   The object declared in an exception-declaration or, if the
6159      //   exception-declaration does not specify a name, a temporary (12.2) is
6160      //   copy-initialized (8.5) from the exception object. [...]
6161      //   The object is destroyed when the handler exits, after the destruction
6162      //   of any automatic objects initialized within the handler.
6163      //
6164      // We just pretend to initialize the object with itself, then make sure
6165      // it can be destroyed later.
6166      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6167      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6168                                            Loc, ExDeclType, VK_LValue, 0);
6169      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6170                                                               SourceLocation());
6171      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6172      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6173                                         MultiExprArg(*this, &ExDeclRef, 1));
6174      if (Result.isInvalid())
6175        Invalid = true;
6176      else
6177        FinalizeVarWithDestructor(ExDecl, RecordTy);
6178    }
6179  }
6180
6181  if (Invalid)
6182    ExDecl->setInvalidDecl();
6183
6184  return ExDecl;
6185}
6186
6187/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6188/// handler.
6189Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6190  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6191  bool Invalid = D.isInvalidType();
6192
6193  // Check for unexpanded parameter packs.
6194  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6195                                               UPPC_ExceptionType)) {
6196    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6197                                             D.getIdentifierLoc());
6198    Invalid = true;
6199  }
6200
6201  QualType ExDeclType = TInfo->getType();
6202
6203  IdentifierInfo *II = D.getIdentifier();
6204  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6205                                             LookupOrdinaryName,
6206                                             ForRedeclaration)) {
6207    // The scope should be freshly made just for us. There is just no way
6208    // it contains any previous declaration.
6209    assert(!S->isDeclScope(PrevDecl));
6210    if (PrevDecl->isTemplateParameter()) {
6211      // Maybe we will complain about the shadowed template parameter.
6212      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6213    }
6214  }
6215
6216  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6217    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6218      << D.getCXXScopeSpec().getRange();
6219    Invalid = true;
6220  }
6221
6222  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6223                                              D.getIdentifier(),
6224                                              D.getIdentifierLoc());
6225
6226  if (Invalid)
6227    ExDecl->setInvalidDecl();
6228
6229  // Add the exception declaration into this scope.
6230  if (II)
6231    PushOnScopeChains(ExDecl, S);
6232  else
6233    CurContext->addDecl(ExDecl);
6234
6235  ProcessDeclAttributes(S, ExDecl, D);
6236  return ExDecl;
6237}
6238
6239Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6240                                         Expr *AssertExpr,
6241                                         Expr *AssertMessageExpr_) {
6242  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6243
6244  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6245    llvm::APSInt Value(32);
6246    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6247      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6248        AssertExpr->getSourceRange();
6249      return 0;
6250    }
6251
6252    if (Value == 0) {
6253      Diag(AssertLoc, diag::err_static_assert_failed)
6254        << AssertMessage->getString() << AssertExpr->getSourceRange();
6255    }
6256  }
6257
6258  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6259    return 0;
6260
6261  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6262                                        AssertExpr, AssertMessage);
6263
6264  CurContext->addDecl(Decl);
6265  return Decl;
6266}
6267
6268/// \brief Perform semantic analysis of the given friend type declaration.
6269///
6270/// \returns A friend declaration that.
6271FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6272                                      TypeSourceInfo *TSInfo) {
6273  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6274
6275  QualType T = TSInfo->getType();
6276  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6277
6278  if (!getLangOptions().CPlusPlus0x) {
6279    // C++03 [class.friend]p2:
6280    //   An elaborated-type-specifier shall be used in a friend declaration
6281    //   for a class.*
6282    //
6283    //   * The class-key of the elaborated-type-specifier is required.
6284    if (!ActiveTemplateInstantiations.empty()) {
6285      // Do not complain about the form of friend template types during
6286      // template instantiation; we will already have complained when the
6287      // template was declared.
6288    } else if (!T->isElaboratedTypeSpecifier()) {
6289      // If we evaluated the type to a record type, suggest putting
6290      // a tag in front.
6291      if (const RecordType *RT = T->getAs<RecordType>()) {
6292        RecordDecl *RD = RT->getDecl();
6293
6294        std::string InsertionText = std::string(" ") + RD->getKindName();
6295
6296        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6297          << (unsigned) RD->getTagKind()
6298          << T
6299          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6300                                        InsertionText);
6301      } else {
6302        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6303          << T
6304          << SourceRange(FriendLoc, TypeRange.getEnd());
6305      }
6306    } else if (T->getAs<EnumType>()) {
6307      Diag(FriendLoc, diag::ext_enum_friend)
6308        << T
6309        << SourceRange(FriendLoc, TypeRange.getEnd());
6310    }
6311  }
6312
6313  // C++0x [class.friend]p3:
6314  //   If the type specifier in a friend declaration designates a (possibly
6315  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6316  //   the friend declaration is ignored.
6317
6318  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6319  // in [class.friend]p3 that we do not implement.
6320
6321  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6322}
6323
6324/// Handle a friend tag declaration where the scope specifier was
6325/// templated.
6326Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6327                                    unsigned TagSpec, SourceLocation TagLoc,
6328                                    CXXScopeSpec &SS,
6329                                    IdentifierInfo *Name, SourceLocation NameLoc,
6330                                    AttributeList *Attr,
6331                                    MultiTemplateParamsArg TempParamLists) {
6332  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6333
6334  bool isExplicitSpecialization = false;
6335  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6336  bool Invalid = false;
6337
6338  if (TemplateParameterList *TemplateParams
6339        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6340                                                  TempParamLists.get(),
6341                                                  TempParamLists.size(),
6342                                                  /*friend*/ true,
6343                                                  isExplicitSpecialization,
6344                                                  Invalid)) {
6345    --NumMatchedTemplateParamLists;
6346
6347    if (TemplateParams->size() > 0) {
6348      // This is a declaration of a class template.
6349      if (Invalid)
6350        return 0;
6351
6352      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6353                                SS, Name, NameLoc, Attr,
6354                                TemplateParams, AS_public).take();
6355    } else {
6356      // The "template<>" header is extraneous.
6357      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6358        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6359      isExplicitSpecialization = true;
6360    }
6361  }
6362
6363  if (Invalid) return 0;
6364
6365  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6366
6367  bool isAllExplicitSpecializations = true;
6368  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6369    if (TempParamLists.get()[I]->size()) {
6370      isAllExplicitSpecializations = false;
6371      break;
6372    }
6373  }
6374
6375  // FIXME: don't ignore attributes.
6376
6377  // If it's explicit specializations all the way down, just forget
6378  // about the template header and build an appropriate non-templated
6379  // friend.  TODO: for source fidelity, remember the headers.
6380  if (isAllExplicitSpecializations) {
6381    ElaboratedTypeKeyword Keyword
6382      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6383    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6384                                   TagLoc, SS.getRange(), NameLoc);
6385    if (T.isNull())
6386      return 0;
6387
6388    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6389    if (isa<DependentNameType>(T)) {
6390      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6391      TL.setKeywordLoc(TagLoc);
6392      TL.setQualifierRange(SS.getRange());
6393      TL.setNameLoc(NameLoc);
6394    } else {
6395      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6396      TL.setKeywordLoc(TagLoc);
6397      TL.setQualifierRange(SS.getRange());
6398      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6399    }
6400
6401    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6402                                            TSI, FriendLoc);
6403    Friend->setAccess(AS_public);
6404    CurContext->addDecl(Friend);
6405    return Friend;
6406  }
6407
6408  // Handle the case of a templated-scope friend class.  e.g.
6409  //   template <class T> class A<T>::B;
6410  // FIXME: we don't support these right now.
6411  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6412  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6413  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6414  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6415  TL.setKeywordLoc(TagLoc);
6416  TL.setQualifierRange(SS.getRange());
6417  TL.setNameLoc(NameLoc);
6418
6419  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6420                                          TSI, FriendLoc);
6421  Friend->setAccess(AS_public);
6422  Friend->setUnsupportedFriend(true);
6423  CurContext->addDecl(Friend);
6424  return Friend;
6425}
6426
6427
6428/// Handle a friend type declaration.  This works in tandem with
6429/// ActOnTag.
6430///
6431/// Notes on friend class templates:
6432///
6433/// We generally treat friend class declarations as if they were
6434/// declaring a class.  So, for example, the elaborated type specifier
6435/// in a friend declaration is required to obey the restrictions of a
6436/// class-head (i.e. no typedefs in the scope chain), template
6437/// parameters are required to match up with simple template-ids, &c.
6438/// However, unlike when declaring a template specialization, it's
6439/// okay to refer to a template specialization without an empty
6440/// template parameter declaration, e.g.
6441///   friend class A<T>::B<unsigned>;
6442/// We permit this as a special case; if there are any template
6443/// parameters present at all, require proper matching, i.e.
6444///   template <> template <class T> friend class A<int>::B;
6445Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6446                                MultiTemplateParamsArg TempParams) {
6447  SourceLocation Loc = DS.getSourceRange().getBegin();
6448
6449  assert(DS.isFriendSpecified());
6450  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6451
6452  // Try to convert the decl specifier to a type.  This works for
6453  // friend templates because ActOnTag never produces a ClassTemplateDecl
6454  // for a TUK_Friend.
6455  Declarator TheDeclarator(DS, Declarator::MemberContext);
6456  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6457  QualType T = TSI->getType();
6458  if (TheDeclarator.isInvalidType())
6459    return 0;
6460
6461  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6462    return 0;
6463
6464  // This is definitely an error in C++98.  It's probably meant to
6465  // be forbidden in C++0x, too, but the specification is just
6466  // poorly written.
6467  //
6468  // The problem is with declarations like the following:
6469  //   template <T> friend A<T>::foo;
6470  // where deciding whether a class C is a friend or not now hinges
6471  // on whether there exists an instantiation of A that causes
6472  // 'foo' to equal C.  There are restrictions on class-heads
6473  // (which we declare (by fiat) elaborated friend declarations to
6474  // be) that makes this tractable.
6475  //
6476  // FIXME: handle "template <> friend class A<T>;", which
6477  // is possibly well-formed?  Who even knows?
6478  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6479    Diag(Loc, diag::err_tagless_friend_type_template)
6480      << DS.getSourceRange();
6481    return 0;
6482  }
6483
6484  // C++98 [class.friend]p1: A friend of a class is a function
6485  //   or class that is not a member of the class . . .
6486  // This is fixed in DR77, which just barely didn't make the C++03
6487  // deadline.  It's also a very silly restriction that seriously
6488  // affects inner classes and which nobody else seems to implement;
6489  // thus we never diagnose it, not even in -pedantic.
6490  //
6491  // But note that we could warn about it: it's always useless to
6492  // friend one of your own members (it's not, however, worthless to
6493  // friend a member of an arbitrary specialization of your template).
6494
6495  Decl *D;
6496  if (unsigned NumTempParamLists = TempParams.size())
6497    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6498                                   NumTempParamLists,
6499                                   TempParams.release(),
6500                                   TSI,
6501                                   DS.getFriendSpecLoc());
6502  else
6503    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6504
6505  if (!D)
6506    return 0;
6507
6508  D->setAccess(AS_public);
6509  CurContext->addDecl(D);
6510
6511  return D;
6512}
6513
6514Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6515                                    MultiTemplateParamsArg TemplateParams) {
6516  const DeclSpec &DS = D.getDeclSpec();
6517
6518  assert(DS.isFriendSpecified());
6519  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6520
6521  SourceLocation Loc = D.getIdentifierLoc();
6522  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6523  QualType T = TInfo->getType();
6524
6525  // C++ [class.friend]p1
6526  //   A friend of a class is a function or class....
6527  // Note that this sees through typedefs, which is intended.
6528  // It *doesn't* see through dependent types, which is correct
6529  // according to [temp.arg.type]p3:
6530  //   If a declaration acquires a function type through a
6531  //   type dependent on a template-parameter and this causes
6532  //   a declaration that does not use the syntactic form of a
6533  //   function declarator to have a function type, the program
6534  //   is ill-formed.
6535  if (!T->isFunctionType()) {
6536    Diag(Loc, diag::err_unexpected_friend);
6537
6538    // It might be worthwhile to try to recover by creating an
6539    // appropriate declaration.
6540    return 0;
6541  }
6542
6543  // C++ [namespace.memdef]p3
6544  //  - If a friend declaration in a non-local class first declares a
6545  //    class or function, the friend class or function is a member
6546  //    of the innermost enclosing namespace.
6547  //  - The name of the friend is not found by simple name lookup
6548  //    until a matching declaration is provided in that namespace
6549  //    scope (either before or after the class declaration granting
6550  //    friendship).
6551  //  - If a friend function is called, its name may be found by the
6552  //    name lookup that considers functions from namespaces and
6553  //    classes associated with the types of the function arguments.
6554  //  - When looking for a prior declaration of a class or a function
6555  //    declared as a friend, scopes outside the innermost enclosing
6556  //    namespace scope are not considered.
6557
6558  CXXScopeSpec &SS = D.getCXXScopeSpec();
6559  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6560  DeclarationName Name = NameInfo.getName();
6561  assert(Name);
6562
6563  // Check for unexpanded parameter packs.
6564  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6565      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6566      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6567    return 0;
6568
6569  // The context we found the declaration in, or in which we should
6570  // create the declaration.
6571  DeclContext *DC;
6572  Scope *DCScope = S;
6573  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6574                        ForRedeclaration);
6575
6576  // FIXME: there are different rules in local classes
6577
6578  // There are four cases here.
6579  //   - There's no scope specifier, in which case we just go to the
6580  //     appropriate scope and look for a function or function template
6581  //     there as appropriate.
6582  // Recover from invalid scope qualifiers as if they just weren't there.
6583  if (SS.isInvalid() || !SS.isSet()) {
6584    // C++0x [namespace.memdef]p3:
6585    //   If the name in a friend declaration is neither qualified nor
6586    //   a template-id and the declaration is a function or an
6587    //   elaborated-type-specifier, the lookup to determine whether
6588    //   the entity has been previously declared shall not consider
6589    //   any scopes outside the innermost enclosing namespace.
6590    // C++0x [class.friend]p11:
6591    //   If a friend declaration appears in a local class and the name
6592    //   specified is an unqualified name, a prior declaration is
6593    //   looked up without considering scopes that are outside the
6594    //   innermost enclosing non-class scope. For a friend function
6595    //   declaration, if there is no prior declaration, the program is
6596    //   ill-formed.
6597    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6598    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6599
6600    // Find the appropriate context according to the above.
6601    DC = CurContext;
6602    while (true) {
6603      // Skip class contexts.  If someone can cite chapter and verse
6604      // for this behavior, that would be nice --- it's what GCC and
6605      // EDG do, and it seems like a reasonable intent, but the spec
6606      // really only says that checks for unqualified existing
6607      // declarations should stop at the nearest enclosing namespace,
6608      // not that they should only consider the nearest enclosing
6609      // namespace.
6610      while (DC->isRecord())
6611        DC = DC->getParent();
6612
6613      LookupQualifiedName(Previous, DC);
6614
6615      // TODO: decide what we think about using declarations.
6616      if (isLocal || !Previous.empty())
6617        break;
6618
6619      if (isTemplateId) {
6620        if (isa<TranslationUnitDecl>(DC)) break;
6621      } else {
6622        if (DC->isFileContext()) break;
6623      }
6624      DC = DC->getParent();
6625    }
6626
6627    // C++ [class.friend]p1: A friend of a class is a function or
6628    //   class that is not a member of the class . . .
6629    // C++0x changes this for both friend types and functions.
6630    // Most C++ 98 compilers do seem to give an error here, so
6631    // we do, too.
6632    if (!Previous.empty() && DC->Equals(CurContext)
6633        && !getLangOptions().CPlusPlus0x)
6634      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6635
6636    DCScope = getScopeForDeclContext(S, DC);
6637
6638  //   - There's a non-dependent scope specifier, in which case we
6639  //     compute it and do a previous lookup there for a function
6640  //     or function template.
6641  } else if (!SS.getScopeRep()->isDependent()) {
6642    DC = computeDeclContext(SS);
6643    if (!DC) return 0;
6644
6645    if (RequireCompleteDeclContext(SS, DC)) return 0;
6646
6647    LookupQualifiedName(Previous, DC);
6648
6649    // Ignore things found implicitly in the wrong scope.
6650    // TODO: better diagnostics for this case.  Suggesting the right
6651    // qualified scope would be nice...
6652    LookupResult::Filter F = Previous.makeFilter();
6653    while (F.hasNext()) {
6654      NamedDecl *D = F.next();
6655      if (!DC->InEnclosingNamespaceSetOf(
6656              D->getDeclContext()->getRedeclContext()))
6657        F.erase();
6658    }
6659    F.done();
6660
6661    if (Previous.empty()) {
6662      D.setInvalidType();
6663      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6664      return 0;
6665    }
6666
6667    // C++ [class.friend]p1: A friend of a class is a function or
6668    //   class that is not a member of the class . . .
6669    if (DC->Equals(CurContext))
6670      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6671
6672  //   - There's a scope specifier that does not match any template
6673  //     parameter lists, in which case we use some arbitrary context,
6674  //     create a method or method template, and wait for instantiation.
6675  //   - There's a scope specifier that does match some template
6676  //     parameter lists, which we don't handle right now.
6677  } else {
6678    DC = CurContext;
6679    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6680  }
6681
6682  if (!DC->isRecord()) {
6683    // This implies that it has to be an operator or function.
6684    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6685        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6686        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6687      Diag(Loc, diag::err_introducing_special_friend) <<
6688        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6689         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6690      return 0;
6691    }
6692  }
6693
6694  bool Redeclaration = false;
6695  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6696                                          move(TemplateParams),
6697                                          IsDefinition,
6698                                          Redeclaration);
6699  if (!ND) return 0;
6700
6701  assert(ND->getDeclContext() == DC);
6702  assert(ND->getLexicalDeclContext() == CurContext);
6703
6704  // Add the function declaration to the appropriate lookup tables,
6705  // adjusting the redeclarations list as necessary.  We don't
6706  // want to do this yet if the friending class is dependent.
6707  //
6708  // Also update the scope-based lookup if the target context's
6709  // lookup context is in lexical scope.
6710  if (!CurContext->isDependentContext()) {
6711    DC = DC->getRedeclContext();
6712    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6713    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6714      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6715  }
6716
6717  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6718                                       D.getIdentifierLoc(), ND,
6719                                       DS.getFriendSpecLoc());
6720  FrD->setAccess(AS_public);
6721  CurContext->addDecl(FrD);
6722
6723  if (ND->isInvalidDecl())
6724    FrD->setInvalidDecl();
6725  else {
6726    FunctionDecl *FD;
6727    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6728      FD = FTD->getTemplatedDecl();
6729    else
6730      FD = cast<FunctionDecl>(ND);
6731
6732    // Mark templated-scope function declarations as unsupported.
6733    if (FD->getNumTemplateParameterLists())
6734      FrD->setUnsupportedFriend(true);
6735  }
6736
6737  return ND;
6738}
6739
6740void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6741  AdjustDeclIfTemplate(Dcl);
6742
6743  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6744  if (!Fn) {
6745    Diag(DelLoc, diag::err_deleted_non_function);
6746    return;
6747  }
6748  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6749    Diag(DelLoc, diag::err_deleted_decl_not_first);
6750    Diag(Prev->getLocation(), diag::note_previous_declaration);
6751    // If the declaration wasn't the first, we delete the function anyway for
6752    // recovery.
6753  }
6754  Fn->setDeleted();
6755}
6756
6757static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6758  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6759       ++CI) {
6760    Stmt *SubStmt = *CI;
6761    if (!SubStmt)
6762      continue;
6763    if (isa<ReturnStmt>(SubStmt))
6764      Self.Diag(SubStmt->getSourceRange().getBegin(),
6765           diag::err_return_in_constructor_handler);
6766    if (!isa<Expr>(SubStmt))
6767      SearchForReturnInStmt(Self, SubStmt);
6768  }
6769}
6770
6771void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6772  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6773    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6774    SearchForReturnInStmt(*this, Handler);
6775  }
6776}
6777
6778bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6779                                             const CXXMethodDecl *Old) {
6780  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6781  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6782
6783  if (Context.hasSameType(NewTy, OldTy) ||
6784      NewTy->isDependentType() || OldTy->isDependentType())
6785    return false;
6786
6787  // Check if the return types are covariant
6788  QualType NewClassTy, OldClassTy;
6789
6790  /// Both types must be pointers or references to classes.
6791  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6792    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6793      NewClassTy = NewPT->getPointeeType();
6794      OldClassTy = OldPT->getPointeeType();
6795    }
6796  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6797    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6798      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6799        NewClassTy = NewRT->getPointeeType();
6800        OldClassTy = OldRT->getPointeeType();
6801      }
6802    }
6803  }
6804
6805  // The return types aren't either both pointers or references to a class type.
6806  if (NewClassTy.isNull()) {
6807    Diag(New->getLocation(),
6808         diag::err_different_return_type_for_overriding_virtual_function)
6809      << New->getDeclName() << NewTy << OldTy;
6810    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6811
6812    return true;
6813  }
6814
6815  // C++ [class.virtual]p6:
6816  //   If the return type of D::f differs from the return type of B::f, the
6817  //   class type in the return type of D::f shall be complete at the point of
6818  //   declaration of D::f or shall be the class type D.
6819  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6820    if (!RT->isBeingDefined() &&
6821        RequireCompleteType(New->getLocation(), NewClassTy,
6822                            PDiag(diag::err_covariant_return_incomplete)
6823                              << New->getDeclName()))
6824    return true;
6825  }
6826
6827  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6828    // Check if the new class derives from the old class.
6829    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6830      Diag(New->getLocation(),
6831           diag::err_covariant_return_not_derived)
6832      << New->getDeclName() << NewTy << OldTy;
6833      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6834      return true;
6835    }
6836
6837    // Check if we the conversion from derived to base is valid.
6838    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6839                    diag::err_covariant_return_inaccessible_base,
6840                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6841                    // FIXME: Should this point to the return type?
6842                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6843      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6844      return true;
6845    }
6846  }
6847
6848  // The qualifiers of the return types must be the same.
6849  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6850    Diag(New->getLocation(),
6851         diag::err_covariant_return_type_different_qualifications)
6852    << New->getDeclName() << NewTy << OldTy;
6853    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6854    return true;
6855  };
6856
6857
6858  // The new class type must have the same or less qualifiers as the old type.
6859  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6860    Diag(New->getLocation(),
6861         diag::err_covariant_return_type_class_type_more_qualified)
6862    << New->getDeclName() << NewTy << OldTy;
6863    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6864    return true;
6865  };
6866
6867  return false;
6868}
6869
6870bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6871                                             const CXXMethodDecl *Old)
6872{
6873  if (Old->hasAttr<FinalAttr>()) {
6874    Diag(New->getLocation(), diag::err_final_function_overridden)
6875      << New->getDeclName();
6876    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6877    return true;
6878  }
6879
6880  return false;
6881}
6882
6883/// \brief Mark the given method pure.
6884///
6885/// \param Method the method to be marked pure.
6886///
6887/// \param InitRange the source range that covers the "0" initializer.
6888bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6889  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6890    Method->setPure();
6891    return false;
6892  }
6893
6894  if (!Method->isInvalidDecl())
6895    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6896      << Method->getDeclName() << InitRange;
6897  return true;
6898}
6899
6900/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6901/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6902/// is a fresh scope pushed for just this purpose.
6903///
6904/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6905/// static data member of class X, names should be looked up in the scope of
6906/// class X.
6907void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6908  // If there is no declaration, there was an error parsing it.
6909  if (D == 0) return;
6910
6911  // We should only get called for declarations with scope specifiers, like:
6912  //   int foo::bar;
6913  assert(D->isOutOfLine());
6914  EnterDeclaratorContext(S, D->getDeclContext());
6915}
6916
6917/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6918/// initializer for the out-of-line declaration 'D'.
6919void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6920  // If there is no declaration, there was an error parsing it.
6921  if (D == 0) return;
6922
6923  assert(D->isOutOfLine());
6924  ExitDeclaratorContext(S);
6925}
6926
6927/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6928/// C++ if/switch/while/for statement.
6929/// e.g: "if (int x = f()) {...}"
6930DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6931  // C++ 6.4p2:
6932  // The declarator shall not specify a function or an array.
6933  // The type-specifier-seq shall not contain typedef and shall not declare a
6934  // new class or enumeration.
6935  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6936         "Parser allowed 'typedef' as storage class of condition decl.");
6937
6938  TagDecl *OwnedTag = 0;
6939  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6940  QualType Ty = TInfo->getType();
6941
6942  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6943                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6944                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6945    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6946      << D.getSourceRange();
6947    return DeclResult();
6948  } else if (OwnedTag && OwnedTag->isDefinition()) {
6949    // The type-specifier-seq shall not declare a new class or enumeration.
6950    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6951  }
6952
6953  Decl *Dcl = ActOnDeclarator(S, D);
6954  if (!Dcl)
6955    return DeclResult();
6956
6957  return Dcl;
6958}
6959
6960void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6961                          bool DefinitionRequired) {
6962  // Ignore any vtable uses in unevaluated operands or for classes that do
6963  // not have a vtable.
6964  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6965      CurContext->isDependentContext() ||
6966      ExprEvalContexts.back().Context == Unevaluated)
6967    return;
6968
6969  // Try to insert this class into the map.
6970  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6971  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6972    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6973  if (!Pos.second) {
6974    // If we already had an entry, check to see if we are promoting this vtable
6975    // to required a definition. If so, we need to reappend to the VTableUses
6976    // list, since we may have already processed the first entry.
6977    if (DefinitionRequired && !Pos.first->second) {
6978      Pos.first->second = true;
6979    } else {
6980      // Otherwise, we can early exit.
6981      return;
6982    }
6983  }
6984
6985  // Local classes need to have their virtual members marked
6986  // immediately. For all other classes, we mark their virtual members
6987  // at the end of the translation unit.
6988  if (Class->isLocalClass())
6989    MarkVirtualMembersReferenced(Loc, Class);
6990  else
6991    VTableUses.push_back(std::make_pair(Class, Loc));
6992}
6993
6994bool Sema::DefineUsedVTables() {
6995  if (VTableUses.empty())
6996    return false;
6997
6998  // Note: The VTableUses vector could grow as a result of marking
6999  // the members of a class as "used", so we check the size each
7000  // time through the loop and prefer indices (with are stable) to
7001  // iterators (which are not).
7002  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7003    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7004    if (!Class)
7005      continue;
7006
7007    SourceLocation Loc = VTableUses[I].second;
7008
7009    // If this class has a key function, but that key function is
7010    // defined in another translation unit, we don't need to emit the
7011    // vtable even though we're using it.
7012    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7013    if (KeyFunction && !KeyFunction->hasBody()) {
7014      switch (KeyFunction->getTemplateSpecializationKind()) {
7015      case TSK_Undeclared:
7016      case TSK_ExplicitSpecialization:
7017      case TSK_ExplicitInstantiationDeclaration:
7018        // The key function is in another translation unit.
7019        continue;
7020
7021      case TSK_ExplicitInstantiationDefinition:
7022      case TSK_ImplicitInstantiation:
7023        // We will be instantiating the key function.
7024        break;
7025      }
7026    } else if (!KeyFunction) {
7027      // If we have a class with no key function that is the subject
7028      // of an explicit instantiation declaration, suppress the
7029      // vtable; it will live with the explicit instantiation
7030      // definition.
7031      bool IsExplicitInstantiationDeclaration
7032        = Class->getTemplateSpecializationKind()
7033                                      == TSK_ExplicitInstantiationDeclaration;
7034      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7035                                 REnd = Class->redecls_end();
7036           R != REnd; ++R) {
7037        TemplateSpecializationKind TSK
7038          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7039        if (TSK == TSK_ExplicitInstantiationDeclaration)
7040          IsExplicitInstantiationDeclaration = true;
7041        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7042          IsExplicitInstantiationDeclaration = false;
7043          break;
7044        }
7045      }
7046
7047      if (IsExplicitInstantiationDeclaration)
7048        continue;
7049    }
7050
7051    // Mark all of the virtual members of this class as referenced, so
7052    // that we can build a vtable. Then, tell the AST consumer that a
7053    // vtable for this class is required.
7054    MarkVirtualMembersReferenced(Loc, Class);
7055    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7056    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7057
7058    // Optionally warn if we're emitting a weak vtable.
7059    if (Class->getLinkage() == ExternalLinkage &&
7060        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7061      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7062        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7063    }
7064  }
7065  VTableUses.clear();
7066
7067  return true;
7068}
7069
7070void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7071                                        const CXXRecordDecl *RD) {
7072  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7073       e = RD->method_end(); i != e; ++i) {
7074    CXXMethodDecl *MD = *i;
7075
7076    // C++ [basic.def.odr]p2:
7077    //   [...] A virtual member function is used if it is not pure. [...]
7078    if (MD->isVirtual() && !MD->isPure())
7079      MarkDeclarationReferenced(Loc, MD);
7080  }
7081
7082  // Only classes that have virtual bases need a VTT.
7083  if (RD->getNumVBases() == 0)
7084    return;
7085
7086  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7087           e = RD->bases_end(); i != e; ++i) {
7088    const CXXRecordDecl *Base =
7089        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7090    if (Base->getNumVBases() == 0)
7091      continue;
7092    MarkVirtualMembersReferenced(Loc, Base);
7093  }
7094}
7095
7096/// SetIvarInitializers - This routine builds initialization ASTs for the
7097/// Objective-C implementation whose ivars need be initialized.
7098void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7099  if (!getLangOptions().CPlusPlus)
7100    return;
7101  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7102    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7103    CollectIvarsToConstructOrDestruct(OID, ivars);
7104    if (ivars.empty())
7105      return;
7106    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
7107    for (unsigned i = 0; i < ivars.size(); i++) {
7108      FieldDecl *Field = ivars[i];
7109      if (Field->isInvalidDecl())
7110        continue;
7111
7112      CXXBaseOrMemberInitializer *Member;
7113      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7114      InitializationKind InitKind =
7115        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7116
7117      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7118      ExprResult MemberInit =
7119        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7120      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7121      // Note, MemberInit could actually come back empty if no initialization
7122      // is required (e.g., because it would call a trivial default constructor)
7123      if (!MemberInit.get() || MemberInit.isInvalid())
7124        continue;
7125
7126      Member =
7127        new (Context) CXXBaseOrMemberInitializer(Context,
7128                                                 Field, SourceLocation(),
7129                                                 SourceLocation(),
7130                                                 MemberInit.takeAs<Expr>(),
7131                                                 SourceLocation());
7132      AllToInit.push_back(Member);
7133
7134      // Be sure that the destructor is accessible and is marked as referenced.
7135      if (const RecordType *RecordTy
7136                  = Context.getBaseElementType(Field->getType())
7137                                                        ->getAs<RecordType>()) {
7138                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7139        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7140          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7141          CheckDestructorAccess(Field->getLocation(), Destructor,
7142                            PDiag(diag::err_access_dtor_ivar)
7143                              << Context.getBaseElementType(Field->getType()));
7144        }
7145      }
7146    }
7147    ObjCImplementation->setIvarInitializers(Context,
7148                                            AllToInit.data(), AllToInit.size());
7149  }
7150}
7151