SemaDeclCXX.cpp revision 40c072f44ff081293f79909ecc518af23938108e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403  } else {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if all the direct base classes of its
406    //   class have trivial constructors.
407    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408                                    hasTrivialConstructor());
409  }
410
411  // C++ [class.ctor]p3:
412  //   A destructor is trivial if all the direct base classes of its class
413  //   have trivial destructors.
414  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415                                 hasTrivialDestructor());
416
417  // Create the base specifier.
418  // FIXME: Allocate via ASTContext?
419  return new CXXBaseSpecifier(SpecifierRange, Virtual,
420                              Class->getTagKind() == RecordDecl::TK_class,
421                              Access, BaseType);
422}
423
424/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425/// one entry in the base class list of a class specifier, for
426/// example:
427///    class foo : public bar, virtual private baz {
428/// 'public bar' and 'virtual private baz' are each base-specifiers.
429Sema::BaseResult
430Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431                         bool Virtual, AccessSpecifier Access,
432                         TypeTy *basetype, SourceLocation BaseLoc) {
433  if (!classdecl)
434    return true;
435
436  AdjustDeclIfTemplate(classdecl);
437  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438  QualType BaseType = QualType::getFromOpaquePtr(basetype);
439  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440                                                      Virtual, Access,
441                                                      BaseType, BaseLoc))
442    return BaseSpec;
443
444  return true;
445}
446
447/// \brief Performs the actual work of attaching the given base class
448/// specifiers to a C++ class.
449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450                                unsigned NumBases) {
451 if (NumBases == 0)
452    return false;
453
454  // Used to keep track of which base types we have already seen, so
455  // that we can properly diagnose redundant direct base types. Note
456  // that the key is always the unqualified canonical type of the base
457  // class.
458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
459
460  // Copy non-redundant base specifiers into permanent storage.
461  unsigned NumGoodBases = 0;
462  bool Invalid = false;
463  for (unsigned idx = 0; idx < NumBases; ++idx) {
464    QualType NewBaseType
465      = Context.getCanonicalType(Bases[idx]->getType());
466    NewBaseType = NewBaseType.getUnqualifiedType();
467
468    if (KnownBaseTypes[NewBaseType]) {
469      // C++ [class.mi]p3:
470      //   A class shall not be specified as a direct base class of a
471      //   derived class more than once.
472      Diag(Bases[idx]->getSourceRange().getBegin(),
473           diag::err_duplicate_base_class)
474        << KnownBaseTypes[NewBaseType]->getType()
475        << Bases[idx]->getSourceRange();
476
477      // Delete the duplicate base class specifier; we're going to
478      // overwrite its pointer later.
479      delete Bases[idx];
480
481      Invalid = true;
482    } else {
483      // Okay, add this new base class.
484      KnownBaseTypes[NewBaseType] = Bases[idx];
485      Bases[NumGoodBases++] = Bases[idx];
486    }
487  }
488
489  // Attach the remaining base class specifiers to the derived class.
490  Class->setBases(Context, Bases, NumGoodBases);
491
492  // Delete the remaining (good) base class specifiers, since their
493  // data has been copied into the CXXRecordDecl.
494  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495    delete Bases[idx];
496
497  return Invalid;
498}
499
500/// ActOnBaseSpecifiers - Attach the given base specifiers to the
501/// class, after checking whether there are any duplicate base
502/// classes.
503void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504                               unsigned NumBases) {
505  if (!ClassDecl || !Bases || !NumBases)
506    return;
507
508  AdjustDeclIfTemplate(ClassDecl);
509  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510                       (CXXBaseSpecifier**)(Bases), NumBases);
511}
512
513//===----------------------------------------------------------------------===//
514// C++ class member Handling
515//===----------------------------------------------------------------------===//
516
517/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519/// bitfield width if there is one and 'InitExpr' specifies the initializer if
520/// any.
521Sema::DeclPtrTy
522Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524  const DeclSpec &DS = D.getDeclSpec();
525  DeclarationName Name = GetNameForDeclarator(D);
526  Expr *BitWidth = static_cast<Expr*>(BW);
527  Expr *Init = static_cast<Expr*>(InitExpr);
528  SourceLocation Loc = D.getIdentifierLoc();
529
530  bool isFunc = D.isFunctionDeclarator();
531
532  // C++ 9.2p6: A member shall not be declared to have automatic storage
533  // duration (auto, register) or with the extern storage-class-specifier.
534  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535  // data members and cannot be applied to names declared const or static,
536  // and cannot be applied to reference members.
537  switch (DS.getStorageClassSpec()) {
538    case DeclSpec::SCS_unspecified:
539    case DeclSpec::SCS_typedef:
540    case DeclSpec::SCS_static:
541      // FALL THROUGH.
542      break;
543    case DeclSpec::SCS_mutable:
544      if (isFunc) {
545        if (DS.getStorageClassSpecLoc().isValid())
546          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547        else
548          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
549
550        // FIXME: It would be nicer if the keyword was ignored only for this
551        // declarator. Otherwise we could get follow-up errors.
552        D.getMutableDeclSpec().ClearStorageClassSpecs();
553      } else {
554        QualType T = GetTypeForDeclarator(D, S);
555        diag::kind err = static_cast<diag::kind>(0);
556        if (T->isReferenceType())
557          err = diag::err_mutable_reference;
558        else if (T.isConstQualified())
559          err = diag::err_mutable_const;
560        if (err != 0) {
561          if (DS.getStorageClassSpecLoc().isValid())
562            Diag(DS.getStorageClassSpecLoc(), err);
563          else
564            Diag(DS.getThreadSpecLoc(), err);
565          // FIXME: It would be nicer if the keyword was ignored only for this
566          // declarator. Otherwise we could get follow-up errors.
567          D.getMutableDeclSpec().ClearStorageClassSpecs();
568        }
569      }
570      break;
571    default:
572      if (DS.getStorageClassSpecLoc().isValid())
573        Diag(DS.getStorageClassSpecLoc(),
574             diag::err_storageclass_invalid_for_member);
575      else
576        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577      D.getMutableDeclSpec().ClearStorageClassSpecs();
578  }
579
580  if (!isFunc &&
581      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582      D.getNumTypeObjects() == 0) {
583    // Check also for this case:
584    //
585    // typedef int f();
586    // f a;
587    //
588    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589    isFunc = TDType->isFunctionType();
590  }
591
592  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594                      !isFunc);
595
596  Decl *Member;
597  if (isInstField) {
598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599                         AS);
600    assert(Member && "HandleField never returns null");
601  } else {
602    Member = ActOnDeclarator(S, D).getAs<Decl>();
603    if (!Member) {
604      if (BitWidth) DeleteExpr(BitWidth);
605      return DeclPtrTy();
606    }
607
608    // Non-instance-fields can't have a bitfield.
609    if (BitWidth) {
610      if (Member->isInvalidDecl()) {
611        // don't emit another diagnostic.
612      } else if (isa<VarDecl>(Member)) {
613        // C++ 9.6p3: A bit-field shall not be a static member.
614        // "static member 'A' cannot be a bit-field"
615        Diag(Loc, diag::err_static_not_bitfield)
616          << Name << BitWidth->getSourceRange();
617      } else if (isa<TypedefDecl>(Member)) {
618        // "typedef member 'x' cannot be a bit-field"
619        Diag(Loc, diag::err_typedef_not_bitfield)
620          << Name << BitWidth->getSourceRange();
621      } else {
622        // A function typedef ("typedef int f(); f a;").
623        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624        Diag(Loc, diag::err_not_integral_type_bitfield)
625          << Name << cast<ValueDecl>(Member)->getType()
626          << BitWidth->getSourceRange();
627      }
628
629      DeleteExpr(BitWidth);
630      BitWidth = 0;
631      Member->setInvalidDecl();
632    }
633
634    Member->setAccess(AS);
635  }
636
637  assert((Name || isInstField) && "No identifier for non-field ?");
638
639  if (Init)
640    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641  if (Deleted) // FIXME: Source location is not very good.
642    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return DeclPtrTy();
647  }
648  return DeclPtrTy::make(Member);
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654                          Scope *S,
655                          const CXXScopeSpec &SS,
656                          IdentifierInfo *MemberOrBase,
657                          TypeTy *TemplateTypeTy,
658                          SourceLocation IdLoc,
659                          SourceLocation LParenLoc,
660                          ExprTy **Args, unsigned NumArgs,
661                          SourceLocation *CommaLocs,
662                          SourceLocation RParenLoc) {
663  if (!ConstructorD)
664    return true;
665
666  CXXConstructorDecl *Constructor
667    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668  if (!Constructor) {
669    // The user wrote a constructor initializer on a function that is
670    // not a C++ constructor. Ignore the error for now, because we may
671    // have more member initializers coming; we'll diagnose it just
672    // once in ActOnMemInitializers.
673    return true;
674  }
675
676  CXXRecordDecl *ClassDecl = Constructor->getParent();
677
678  // C++ [class.base.init]p2:
679  //   Names in a mem-initializer-id are looked up in the scope of the
680  //   constructor’s class and, if not found in that scope, are looked
681  //   up in the scope containing the constructor’s
682  //   definition. [Note: if the constructor’s class contains a member
683  //   with the same name as a direct or virtual base class of the
684  //   class, a mem-initializer-id naming the member or base class and
685  //   composed of a single identifier refers to the class member. A
686  //   mem-initializer-id for the hidden base class may be specified
687  //   using a qualified name. ]
688  if (!SS.getScopeRep() && !TemplateTypeTy) {
689    // Look for a member, first.
690    FieldDecl *Member = 0;
691    DeclContext::lookup_result Result
692      = ClassDecl->lookup(MemberOrBase);
693    if (Result.first != Result.second)
694      Member = dyn_cast<FieldDecl>(*Result.first);
695
696    // FIXME: Handle members of an anonymous union.
697
698    if (Member) {
699      // FIXME: Perform direct initialization of the member.
700      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701                                            IdLoc);
702    }
703  }
704  // It didn't name a member, so see if it names a class.
705  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707  if (!BaseTy)
708    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
710
711  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712  if (!BaseType->isRecordType() && !BaseType->isDependentType())
713    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714      << BaseType << SourceRange(IdLoc, RParenLoc);
715
716  // C++ [class.base.init]p2:
717  //   [...] Unless the mem-initializer-id names a nonstatic data
718  //   member of the constructor’s class or a direct or virtual base
719  //   of that class, the mem-initializer is ill-formed. A
720  //   mem-initializer-list can initialize a base class using any
721  //   name that denotes that base class type.
722
723  // First, check for a direct base class.
724  const CXXBaseSpecifier *DirectBaseSpec = 0;
725  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726       Base != ClassDecl->bases_end(); ++Base) {
727    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729      // We found a direct base of this type. That's what we're
730      // initializing.
731      DirectBaseSpec = &*Base;
732      break;
733    }
734  }
735
736  // Check for a virtual base class.
737  // FIXME: We might be able to short-circuit this if we know in advance that
738  // there are no virtual bases.
739  const CXXBaseSpecifier *VirtualBaseSpec = 0;
740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741    // We haven't found a base yet; search the class hierarchy for a
742    // virtual base class.
743    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744                    /*DetectVirtual=*/false);
745    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746      for (BasePaths::paths_iterator Path = Paths.begin();
747           Path != Paths.end(); ++Path) {
748        if (Path->back().Base->isVirtual()) {
749          VirtualBaseSpec = Path->back().Base;
750          break;
751        }
752      }
753    }
754  }
755
756  // C++ [base.class.init]p2:
757  //   If a mem-initializer-id is ambiguous because it designates both
758  //   a direct non-virtual base class and an inherited virtual base
759  //   class, the mem-initializer is ill-formed.
760  if (DirectBaseSpec && VirtualBaseSpec)
761    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763  // C++ [base.class.init]p2:
764  // Unless the mem-initializer-id names a nonstatic data membeer of the
765  // constructor's class ot a direst or virtual base of that class, the
766  // mem-initializer is ill-formed.
767  if (!DirectBaseSpec && !VirtualBaseSpec)
768    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769    << BaseType << ClassDecl->getNameAsCString()
770    << SourceRange(IdLoc, RParenLoc);
771
772
773  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774                                        IdLoc);
775}
776
777void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
778                                SourceLocation ColonLoc,
779                                MemInitTy **MemInits, unsigned NumMemInits) {
780  if (!ConstructorDecl)
781    return;
782
783  CXXConstructorDecl *Constructor
784    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
785
786  if (!Constructor) {
787    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
788    return;
789  }
790  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
791  bool err = false;
792  for (unsigned i = 0; i < NumMemInits; i++) {
793    CXXBaseOrMemberInitializer *Member =
794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
795    void *KeyToMember = Member->getBaseOrMember();
796    // For fields injected into the class via declaration of an anonymous union,
797    // use its anonymous union class declaration as the unique key.
798    if (FieldDecl *Field = Member->getMember())
799      if (Field->getDeclContext()->isRecord() &&
800          cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
801        KeyToMember = static_cast<void *>(Field->getDeclContext());
802    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
803    if (!PrevMember) {
804      PrevMember = Member;
805      continue;
806    }
807    if (FieldDecl *Field = Member->getMember())
808      Diag(Member->getSourceLocation(),
809           diag::error_multiple_mem_initialization)
810      << Field->getNameAsString();
811    else {
812      Type *BaseClass = Member->getBaseClass();
813      assert(BaseClass && "ActOnMemInitializers - neither field or base");
814      Diag(Member->getSourceLocation(),
815           diag::error_multiple_base_initialization)
816        << BaseClass->getDesugaredType(true);
817    }
818    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
819      << 0;
820    err = true;
821  }
822  if (!err) {
823    Constructor->setBaseOrMemberInitializers(Context,
824                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
825                    NumMemInits);
826    // Also issue warning if order of ctor-initializer list does not match order
827    // of 1) base class declarations and 2) order of non-static data members.
828    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
829
830    CXXRecordDecl *ClassDecl
831      = cast<CXXRecordDecl>(Constructor->getDeclContext());
832    // Push virtual bases before others.
833    for (CXXRecordDecl::base_class_iterator VBase =
834         ClassDecl->vbases_begin(),
835         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
836      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
837
838    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
839         E = ClassDecl->bases_end(); Base != E; ++Base) {
840      // Virtuals are alread in the virtual base list and are constructed
841      // first.
842      if (Base->isVirtual())
843        continue;
844      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
845    }
846
847    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
848         E = ClassDecl->field_end(); Field != E; ++Field)
849      AllBaseOrMembers.push_back(*Field);
850
851    int Last = AllBaseOrMembers.size();
852    int curIndex = 0;
853    CXXBaseOrMemberInitializer *PrevMember = 0;
854    for (unsigned i = 0; i < NumMemInits; i++) {
855      CXXBaseOrMemberInitializer *Member =
856        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
857      void *MemberInCtorList;
858      if (Member->isBaseInitializer())
859        MemberInCtorList = Member->getBaseClass();
860      else
861        MemberInCtorList = Member->getMember();
862
863      int j;
864      for (j = curIndex; j < Last; j++)
865        if (MemberInCtorList == AllBaseOrMembers[j])
866          break;
867      if (j == Last) {
868        if (!PrevMember)
869          continue;
870        // Initializer as specified in ctor-initializer list is out of order.
871        // Issue a warning diagnostic.
872        if (PrevMember->isBaseInitializer()) {
873          // Diagnostics is for an initialized base class.
874          Type *BaseClass = PrevMember->getBaseClass();
875          Diag(PrevMember->getSourceLocation(),
876               diag::warn_base_initialized)
877                << BaseClass->getDesugaredType(true);
878        }
879        else {
880          FieldDecl *Field = PrevMember->getMember();
881          Diag(PrevMember->getSourceLocation(),
882               diag::warn_field_initialized)
883            << Field->getNameAsString();
884        }
885        // Also the note!
886        if (FieldDecl *Field = Member->getMember())
887          Diag(Member->getSourceLocation(),
888               diag::note_fieldorbase_initialized_here) << 0
889            << Field->getNameAsString();
890        else {
891          Type *BaseClass = Member->getBaseClass();
892          Diag(Member->getSourceLocation(),
893               diag::note_fieldorbase_initialized_here) << 1
894            << BaseClass->getDesugaredType(true);
895        }
896      }
897      PrevMember = Member;
898      for (curIndex=0; curIndex < Last; curIndex++)
899        if (MemberInCtorList == AllBaseOrMembers[curIndex])
900          break;
901    }
902  }
903}
904
905namespace {
906  /// PureVirtualMethodCollector - traverses a class and its superclasses
907  /// and determines if it has any pure virtual methods.
908  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
909    ASTContext &Context;
910
911  public:
912    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
913
914  private:
915    MethodList Methods;
916
917    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
918
919  public:
920    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
921      : Context(Ctx) {
922
923      MethodList List;
924      Collect(RD, List);
925
926      // Copy the temporary list to methods, and make sure to ignore any
927      // null entries.
928      for (size_t i = 0, e = List.size(); i != e; ++i) {
929        if (List[i])
930          Methods.push_back(List[i]);
931      }
932    }
933
934    bool empty() const { return Methods.empty(); }
935
936    MethodList::const_iterator methods_begin() { return Methods.begin(); }
937    MethodList::const_iterator methods_end() { return Methods.end(); }
938  };
939
940  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
941                                           MethodList& Methods) {
942    // First, collect the pure virtual methods for the base classes.
943    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
944         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
945      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
946        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
947        if (BaseDecl && BaseDecl->isAbstract())
948          Collect(BaseDecl, Methods);
949      }
950    }
951
952    // Next, zero out any pure virtual methods that this class overrides.
953    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
954
955    MethodSetTy OverriddenMethods;
956    size_t MethodsSize = Methods.size();
957
958    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
959         i != e; ++i) {
960      // Traverse the record, looking for methods.
961      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
962        // If the method is pure virtual, add it to the methods vector.
963        if (MD->isPure()) {
964          Methods.push_back(MD);
965          continue;
966        }
967
968        // Otherwise, record all the overridden methods in our set.
969        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
970             E = MD->end_overridden_methods(); I != E; ++I) {
971          // Keep track of the overridden methods.
972          OverriddenMethods.insert(*I);
973        }
974      }
975    }
976
977    // Now go through the methods and zero out all the ones we know are
978    // overridden.
979    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
980      if (OverriddenMethods.count(Methods[i]))
981        Methods[i] = 0;
982    }
983
984  }
985}
986
987bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
988                                  unsigned DiagID, AbstractDiagSelID SelID,
989                                  const CXXRecordDecl *CurrentRD) {
990
991  if (!getLangOptions().CPlusPlus)
992    return false;
993
994  if (const ArrayType *AT = Context.getAsArrayType(T))
995    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
996                                  CurrentRD);
997
998  if (const PointerType *PT = T->getAsPointerType()) {
999    // Find the innermost pointer type.
1000    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1001      PT = T;
1002
1003    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1004      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1005                                    CurrentRD);
1006  }
1007
1008  const RecordType *RT = T->getAsRecordType();
1009  if (!RT)
1010    return false;
1011
1012  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1013  if (!RD)
1014    return false;
1015
1016  if (CurrentRD && CurrentRD != RD)
1017    return false;
1018
1019  if (!RD->isAbstract())
1020    return false;
1021
1022  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1023
1024  // Check if we've already emitted the list of pure virtual functions for this
1025  // class.
1026  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1027    return true;
1028
1029  PureVirtualMethodCollector Collector(Context, RD);
1030
1031  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1032       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1033    const CXXMethodDecl *MD = *I;
1034
1035    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1036      MD->getDeclName();
1037  }
1038
1039  if (!PureVirtualClassDiagSet)
1040    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1041  PureVirtualClassDiagSet->insert(RD);
1042
1043  return true;
1044}
1045
1046namespace {
1047  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1048    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1049    Sema &SemaRef;
1050    CXXRecordDecl *AbstractClass;
1051
1052    bool VisitDeclContext(const DeclContext *DC) {
1053      bool Invalid = false;
1054
1055      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1056           E = DC->decls_end(); I != E; ++I)
1057        Invalid |= Visit(*I);
1058
1059      return Invalid;
1060    }
1061
1062  public:
1063    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1064      : SemaRef(SemaRef), AbstractClass(ac) {
1065        Visit(SemaRef.Context.getTranslationUnitDecl());
1066    }
1067
1068    bool VisitFunctionDecl(const FunctionDecl *FD) {
1069      if (FD->isThisDeclarationADefinition()) {
1070        // No need to do the check if we're in a definition, because it requires
1071        // that the return/param types are complete.
1072        // because that requires
1073        return VisitDeclContext(FD);
1074      }
1075
1076      // Check the return type.
1077      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1078      bool Invalid =
1079        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1080                                       diag::err_abstract_type_in_decl,
1081                                       Sema::AbstractReturnType,
1082                                       AbstractClass);
1083
1084      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1085           E = FD->param_end(); I != E; ++I) {
1086        const ParmVarDecl *VD = *I;
1087        Invalid |=
1088          SemaRef.RequireNonAbstractType(VD->getLocation(),
1089                                         VD->getOriginalType(),
1090                                         diag::err_abstract_type_in_decl,
1091                                         Sema::AbstractParamType,
1092                                         AbstractClass);
1093      }
1094
1095      return Invalid;
1096    }
1097
1098    bool VisitDecl(const Decl* D) {
1099      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1100        return VisitDeclContext(DC);
1101
1102      return false;
1103    }
1104  };
1105}
1106
1107void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1108                                             DeclPtrTy TagDecl,
1109                                             SourceLocation LBrac,
1110                                             SourceLocation RBrac) {
1111  if (!TagDecl)
1112    return;
1113
1114  AdjustDeclIfTemplate(TagDecl);
1115  ActOnFields(S, RLoc, TagDecl,
1116              (DeclPtrTy*)FieldCollector->getCurFields(),
1117              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1118
1119  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1120  if (!RD->isAbstract()) {
1121    // Collect all the pure virtual methods and see if this is an abstract
1122    // class after all.
1123    PureVirtualMethodCollector Collector(Context, RD);
1124    if (!Collector.empty())
1125      RD->setAbstract(true);
1126  }
1127
1128  if (RD->isAbstract())
1129    AbstractClassUsageDiagnoser(*this, RD);
1130
1131  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1132    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1133         i != e; ++i) {
1134      // All the nonstatic data members must have trivial constructors.
1135      QualType FTy = i->getType();
1136      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1137        FTy = AT->getElementType();
1138
1139      if (const RecordType *RT = FTy->getAsRecordType()) {
1140        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1141
1142        if (!FieldRD->hasTrivialConstructor())
1143          RD->setHasTrivialConstructor(false);
1144        if (!FieldRD->hasTrivialDestructor())
1145          RD->setHasTrivialDestructor(false);
1146
1147        // If RD has neither a trivial constructor nor a trivial destructor
1148        // we don't need to continue checking.
1149        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1150          break;
1151      }
1152    }
1153  }
1154
1155  if (!RD->isDependentType())
1156    AddImplicitlyDeclaredMembersToClass(RD);
1157}
1158
1159/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1160/// special functions, such as the default constructor, copy
1161/// constructor, or destructor, to the given C++ class (C++
1162/// [special]p1).  This routine can only be executed just before the
1163/// definition of the class is complete.
1164void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1165  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1166  ClassType = Context.getCanonicalType(ClassType);
1167
1168  // FIXME: Implicit declarations have exception specifications, which are
1169  // the union of the specifications of the implicitly called functions.
1170
1171  if (!ClassDecl->hasUserDeclaredConstructor()) {
1172    // C++ [class.ctor]p5:
1173    //   A default constructor for a class X is a constructor of class X
1174    //   that can be called without an argument. If there is no
1175    //   user-declared constructor for class X, a default constructor is
1176    //   implicitly declared. An implicitly-declared default constructor
1177    //   is an inline public member of its class.
1178    DeclarationName Name
1179      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1180    CXXConstructorDecl *DefaultCon =
1181      CXXConstructorDecl::Create(Context, ClassDecl,
1182                                 ClassDecl->getLocation(), Name,
1183                                 Context.getFunctionType(Context.VoidTy,
1184                                                         0, 0, false, 0),
1185                                 /*isExplicit=*/false,
1186                                 /*isInline=*/true,
1187                                 /*isImplicitlyDeclared=*/true);
1188    DefaultCon->setAccess(AS_public);
1189    DefaultCon->setImplicit();
1190    ClassDecl->addDecl(DefaultCon);
1191  }
1192
1193  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1194    // C++ [class.copy]p4:
1195    //   If the class definition does not explicitly declare a copy
1196    //   constructor, one is declared implicitly.
1197
1198    // C++ [class.copy]p5:
1199    //   The implicitly-declared copy constructor for a class X will
1200    //   have the form
1201    //
1202    //       X::X(const X&)
1203    //
1204    //   if
1205    bool HasConstCopyConstructor = true;
1206
1207    //     -- each direct or virtual base class B of X has a copy
1208    //        constructor whose first parameter is of type const B& or
1209    //        const volatile B&, and
1210    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1211         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1212      const CXXRecordDecl *BaseClassDecl
1213        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1214      HasConstCopyConstructor
1215        = BaseClassDecl->hasConstCopyConstructor(Context);
1216    }
1217
1218    //     -- for all the nonstatic data members of X that are of a
1219    //        class type M (or array thereof), each such class type
1220    //        has a copy constructor whose first parameter is of type
1221    //        const M& or const volatile M&.
1222    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1223         HasConstCopyConstructor && Field != ClassDecl->field_end();
1224         ++Field) {
1225      QualType FieldType = (*Field)->getType();
1226      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1227        FieldType = Array->getElementType();
1228      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1229        const CXXRecordDecl *FieldClassDecl
1230          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1231        HasConstCopyConstructor
1232          = FieldClassDecl->hasConstCopyConstructor(Context);
1233      }
1234    }
1235
1236    //   Otherwise, the implicitly declared copy constructor will have
1237    //   the form
1238    //
1239    //       X::X(X&)
1240    QualType ArgType = ClassType;
1241    if (HasConstCopyConstructor)
1242      ArgType = ArgType.withConst();
1243    ArgType = Context.getLValueReferenceType(ArgType);
1244
1245    //   An implicitly-declared copy constructor is an inline public
1246    //   member of its class.
1247    DeclarationName Name
1248      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1249    CXXConstructorDecl *CopyConstructor
1250      = CXXConstructorDecl::Create(Context, ClassDecl,
1251                                   ClassDecl->getLocation(), Name,
1252                                   Context.getFunctionType(Context.VoidTy,
1253                                                           &ArgType, 1,
1254                                                           false, 0),
1255                                   /*isExplicit=*/false,
1256                                   /*isInline=*/true,
1257                                   /*isImplicitlyDeclared=*/true);
1258    CopyConstructor->setAccess(AS_public);
1259    CopyConstructor->setImplicit();
1260
1261    // Add the parameter to the constructor.
1262    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1263                                                 ClassDecl->getLocation(),
1264                                                 /*IdentifierInfo=*/0,
1265                                                 ArgType, VarDecl::None, 0);
1266    CopyConstructor->setParams(Context, &FromParam, 1);
1267    ClassDecl->addDecl(CopyConstructor);
1268  }
1269
1270  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1271    // Note: The following rules are largely analoguous to the copy
1272    // constructor rules. Note that virtual bases are not taken into account
1273    // for determining the argument type of the operator. Note also that
1274    // operators taking an object instead of a reference are allowed.
1275    //
1276    // C++ [class.copy]p10:
1277    //   If the class definition does not explicitly declare a copy
1278    //   assignment operator, one is declared implicitly.
1279    //   The implicitly-defined copy assignment operator for a class X
1280    //   will have the form
1281    //
1282    //       X& X::operator=(const X&)
1283    //
1284    //   if
1285    bool HasConstCopyAssignment = true;
1286
1287    //       -- each direct base class B of X has a copy assignment operator
1288    //          whose parameter is of type const B&, const volatile B& or B,
1289    //          and
1290    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1291         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1292      const CXXRecordDecl *BaseClassDecl
1293        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1294      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1295    }
1296
1297    //       -- for all the nonstatic data members of X that are of a class
1298    //          type M (or array thereof), each such class type has a copy
1299    //          assignment operator whose parameter is of type const M&,
1300    //          const volatile M& or M.
1301    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1302         HasConstCopyAssignment && Field != ClassDecl->field_end();
1303         ++Field) {
1304      QualType FieldType = (*Field)->getType();
1305      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1306        FieldType = Array->getElementType();
1307      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1308        const CXXRecordDecl *FieldClassDecl
1309          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1310        HasConstCopyAssignment
1311          = FieldClassDecl->hasConstCopyAssignment(Context);
1312      }
1313    }
1314
1315    //   Otherwise, the implicitly declared copy assignment operator will
1316    //   have the form
1317    //
1318    //       X& X::operator=(X&)
1319    QualType ArgType = ClassType;
1320    QualType RetType = Context.getLValueReferenceType(ArgType);
1321    if (HasConstCopyAssignment)
1322      ArgType = ArgType.withConst();
1323    ArgType = Context.getLValueReferenceType(ArgType);
1324
1325    //   An implicitly-declared copy assignment operator is an inline public
1326    //   member of its class.
1327    DeclarationName Name =
1328      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1329    CXXMethodDecl *CopyAssignment =
1330      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1331                            Context.getFunctionType(RetType, &ArgType, 1,
1332                                                    false, 0),
1333                            /*isStatic=*/false, /*isInline=*/true);
1334    CopyAssignment->setAccess(AS_public);
1335    CopyAssignment->setImplicit();
1336
1337    // Add the parameter to the operator.
1338    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1339                                                 ClassDecl->getLocation(),
1340                                                 /*IdentifierInfo=*/0,
1341                                                 ArgType, VarDecl::None, 0);
1342    CopyAssignment->setParams(Context, &FromParam, 1);
1343
1344    // Don't call addedAssignmentOperator. There is no way to distinguish an
1345    // implicit from an explicit assignment operator.
1346    ClassDecl->addDecl(CopyAssignment);
1347  }
1348
1349  if (!ClassDecl->hasUserDeclaredDestructor()) {
1350    // C++ [class.dtor]p2:
1351    //   If a class has no user-declared destructor, a destructor is
1352    //   declared implicitly. An implicitly-declared destructor is an
1353    //   inline public member of its class.
1354    DeclarationName Name
1355      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1356    CXXDestructorDecl *Destructor
1357      = CXXDestructorDecl::Create(Context, ClassDecl,
1358                                  ClassDecl->getLocation(), Name,
1359                                  Context.getFunctionType(Context.VoidTy,
1360                                                          0, 0, false, 0),
1361                                  /*isInline=*/true,
1362                                  /*isImplicitlyDeclared=*/true);
1363    Destructor->setAccess(AS_public);
1364    Destructor->setImplicit();
1365    ClassDecl->addDecl(Destructor);
1366  }
1367}
1368
1369void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1370  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1371  if (!Template)
1372    return;
1373
1374  TemplateParameterList *Params = Template->getTemplateParameters();
1375  for (TemplateParameterList::iterator Param = Params->begin(),
1376                                    ParamEnd = Params->end();
1377       Param != ParamEnd; ++Param) {
1378    NamedDecl *Named = cast<NamedDecl>(*Param);
1379    if (Named->getDeclName()) {
1380      S->AddDecl(DeclPtrTy::make(Named));
1381      IdResolver.AddDecl(Named);
1382    }
1383  }
1384}
1385
1386/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1387/// parsing a top-level (non-nested) C++ class, and we are now
1388/// parsing those parts of the given Method declaration that could
1389/// not be parsed earlier (C++ [class.mem]p2), such as default
1390/// arguments. This action should enter the scope of the given
1391/// Method declaration as if we had just parsed the qualified method
1392/// name. However, it should not bring the parameters into scope;
1393/// that will be performed by ActOnDelayedCXXMethodParameter.
1394void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1395  if (!MethodD)
1396    return;
1397
1398  CXXScopeSpec SS;
1399  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1400  QualType ClassTy
1401    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1402  SS.setScopeRep(
1403    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1404  ActOnCXXEnterDeclaratorScope(S, SS);
1405}
1406
1407/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1408/// C++ method declaration. We're (re-)introducing the given
1409/// function parameter into scope for use in parsing later parts of
1410/// the method declaration. For example, we could see an
1411/// ActOnParamDefaultArgument event for this parameter.
1412void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1413  if (!ParamD)
1414    return;
1415
1416  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1417
1418  // If this parameter has an unparsed default argument, clear it out
1419  // to make way for the parsed default argument.
1420  if (Param->hasUnparsedDefaultArg())
1421    Param->setDefaultArg(0);
1422
1423  S->AddDecl(DeclPtrTy::make(Param));
1424  if (Param->getDeclName())
1425    IdResolver.AddDecl(Param);
1426}
1427
1428/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1429/// processing the delayed method declaration for Method. The method
1430/// declaration is now considered finished. There may be a separate
1431/// ActOnStartOfFunctionDef action later (not necessarily
1432/// immediately!) for this method, if it was also defined inside the
1433/// class body.
1434void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1435  if (!MethodD)
1436    return;
1437
1438  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1439  CXXScopeSpec SS;
1440  QualType ClassTy
1441    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1442  SS.setScopeRep(
1443    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1444  ActOnCXXExitDeclaratorScope(S, SS);
1445
1446  // Now that we have our default arguments, check the constructor
1447  // again. It could produce additional diagnostics or affect whether
1448  // the class has implicitly-declared destructors, among other
1449  // things.
1450  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1451    CheckConstructor(Constructor);
1452
1453  // Check the default arguments, which we may have added.
1454  if (!Method->isInvalidDecl())
1455    CheckCXXDefaultArguments(Method);
1456}
1457
1458/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1459/// the well-formedness of the constructor declarator @p D with type @p
1460/// R. If there are any errors in the declarator, this routine will
1461/// emit diagnostics and set the invalid bit to true.  In any case, the type
1462/// will be updated to reflect a well-formed type for the constructor and
1463/// returned.
1464QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1465                                          FunctionDecl::StorageClass &SC) {
1466  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1467
1468  // C++ [class.ctor]p3:
1469  //   A constructor shall not be virtual (10.3) or static (9.4). A
1470  //   constructor can be invoked for a const, volatile or const
1471  //   volatile object. A constructor shall not be declared const,
1472  //   volatile, or const volatile (9.3.2).
1473  if (isVirtual) {
1474    if (!D.isInvalidType())
1475      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1476        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1477        << SourceRange(D.getIdentifierLoc());
1478    D.setInvalidType();
1479  }
1480  if (SC == FunctionDecl::Static) {
1481    if (!D.isInvalidType())
1482      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1483        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1484        << SourceRange(D.getIdentifierLoc());
1485    D.setInvalidType();
1486    SC = FunctionDecl::None;
1487  }
1488
1489  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1490  if (FTI.TypeQuals != 0) {
1491    if (FTI.TypeQuals & QualType::Const)
1492      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1493        << "const" << SourceRange(D.getIdentifierLoc());
1494    if (FTI.TypeQuals & QualType::Volatile)
1495      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1496        << "volatile" << SourceRange(D.getIdentifierLoc());
1497    if (FTI.TypeQuals & QualType::Restrict)
1498      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1499        << "restrict" << SourceRange(D.getIdentifierLoc());
1500  }
1501
1502  // Rebuild the function type "R" without any type qualifiers (in
1503  // case any of the errors above fired) and with "void" as the
1504  // return type, since constructors don't have return types. We
1505  // *always* have to do this, because GetTypeForDeclarator will
1506  // put in a result type of "int" when none was specified.
1507  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1508  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1509                                 Proto->getNumArgs(),
1510                                 Proto->isVariadic(), 0);
1511}
1512
1513/// CheckConstructor - Checks a fully-formed constructor for
1514/// well-formedness, issuing any diagnostics required. Returns true if
1515/// the constructor declarator is invalid.
1516void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1517  CXXRecordDecl *ClassDecl
1518    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1519  if (!ClassDecl)
1520    return Constructor->setInvalidDecl();
1521
1522  // C++ [class.copy]p3:
1523  //   A declaration of a constructor for a class X is ill-formed if
1524  //   its first parameter is of type (optionally cv-qualified) X and
1525  //   either there are no other parameters or else all other
1526  //   parameters have default arguments.
1527  if (!Constructor->isInvalidDecl() &&
1528      ((Constructor->getNumParams() == 1) ||
1529       (Constructor->getNumParams() > 1 &&
1530        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1531    QualType ParamType = Constructor->getParamDecl(0)->getType();
1532    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1533    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1534      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1535      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1536        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1537      Constructor->setInvalidDecl();
1538    }
1539  }
1540
1541  // Notify the class that we've added a constructor.
1542  ClassDecl->addedConstructor(Context, Constructor);
1543}
1544
1545static inline bool
1546FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1547  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1548          FTI.ArgInfo[0].Param &&
1549          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1550}
1551
1552/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1553/// the well-formednes of the destructor declarator @p D with type @p
1554/// R. If there are any errors in the declarator, this routine will
1555/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1556/// will be updated to reflect a well-formed type for the destructor and
1557/// returned.
1558QualType Sema::CheckDestructorDeclarator(Declarator &D,
1559                                         FunctionDecl::StorageClass& SC) {
1560  // C++ [class.dtor]p1:
1561  //   [...] A typedef-name that names a class is a class-name
1562  //   (7.1.3); however, a typedef-name that names a class shall not
1563  //   be used as the identifier in the declarator for a destructor
1564  //   declaration.
1565  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1566  if (isa<TypedefType>(DeclaratorType)) {
1567    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1568      << DeclaratorType;
1569    D.setInvalidType();
1570  }
1571
1572  // C++ [class.dtor]p2:
1573  //   A destructor is used to destroy objects of its class type. A
1574  //   destructor takes no parameters, and no return type can be
1575  //   specified for it (not even void). The address of a destructor
1576  //   shall not be taken. A destructor shall not be static. A
1577  //   destructor can be invoked for a const, volatile or const
1578  //   volatile object. A destructor shall not be declared const,
1579  //   volatile or const volatile (9.3.2).
1580  if (SC == FunctionDecl::Static) {
1581    if (!D.isInvalidType())
1582      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1583        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1584        << SourceRange(D.getIdentifierLoc());
1585    SC = FunctionDecl::None;
1586    D.setInvalidType();
1587  }
1588  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1589    // Destructors don't have return types, but the parser will
1590    // happily parse something like:
1591    //
1592    //   class X {
1593    //     float ~X();
1594    //   };
1595    //
1596    // The return type will be eliminated later.
1597    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1598      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1599      << SourceRange(D.getIdentifierLoc());
1600  }
1601
1602  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1603  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1604    if (FTI.TypeQuals & QualType::Const)
1605      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1606        << "const" << SourceRange(D.getIdentifierLoc());
1607    if (FTI.TypeQuals & QualType::Volatile)
1608      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1609        << "volatile" << SourceRange(D.getIdentifierLoc());
1610    if (FTI.TypeQuals & QualType::Restrict)
1611      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1612        << "restrict" << SourceRange(D.getIdentifierLoc());
1613    D.setInvalidType();
1614  }
1615
1616  // Make sure we don't have any parameters.
1617  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1618    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1619
1620    // Delete the parameters.
1621    FTI.freeArgs();
1622    D.setInvalidType();
1623  }
1624
1625  // Make sure the destructor isn't variadic.
1626  if (FTI.isVariadic) {
1627    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1628    D.setInvalidType();
1629  }
1630
1631  // Rebuild the function type "R" without any type qualifiers or
1632  // parameters (in case any of the errors above fired) and with
1633  // "void" as the return type, since destructors don't have return
1634  // types. We *always* have to do this, because GetTypeForDeclarator
1635  // will put in a result type of "int" when none was specified.
1636  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1637}
1638
1639/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1640/// well-formednes of the conversion function declarator @p D with
1641/// type @p R. If there are any errors in the declarator, this routine
1642/// will emit diagnostics and return true. Otherwise, it will return
1643/// false. Either way, the type @p R will be updated to reflect a
1644/// well-formed type for the conversion operator.
1645void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1646                                     FunctionDecl::StorageClass& SC) {
1647  // C++ [class.conv.fct]p1:
1648  //   Neither parameter types nor return type can be specified. The
1649  //   type of a conversion function (8.3.5) is “function taking no
1650  //   parameter returning conversion-type-id.”
1651  if (SC == FunctionDecl::Static) {
1652    if (!D.isInvalidType())
1653      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1654        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1655        << SourceRange(D.getIdentifierLoc());
1656    D.setInvalidType();
1657    SC = FunctionDecl::None;
1658  }
1659  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1660    // Conversion functions don't have return types, but the parser will
1661    // happily parse something like:
1662    //
1663    //   class X {
1664    //     float operator bool();
1665    //   };
1666    //
1667    // The return type will be changed later anyway.
1668    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1669      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1670      << SourceRange(D.getIdentifierLoc());
1671  }
1672
1673  // Make sure we don't have any parameters.
1674  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1675    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1676
1677    // Delete the parameters.
1678    D.getTypeObject(0).Fun.freeArgs();
1679    D.setInvalidType();
1680  }
1681
1682  // Make sure the conversion function isn't variadic.
1683  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1684    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1685    D.setInvalidType();
1686  }
1687
1688  // C++ [class.conv.fct]p4:
1689  //   The conversion-type-id shall not represent a function type nor
1690  //   an array type.
1691  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1692  if (ConvType->isArrayType()) {
1693    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1694    ConvType = Context.getPointerType(ConvType);
1695    D.setInvalidType();
1696  } else if (ConvType->isFunctionType()) {
1697    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1698    ConvType = Context.getPointerType(ConvType);
1699    D.setInvalidType();
1700  }
1701
1702  // Rebuild the function type "R" without any parameters (in case any
1703  // of the errors above fired) and with the conversion type as the
1704  // return type.
1705  R = Context.getFunctionType(ConvType, 0, 0, false,
1706                              R->getAsFunctionProtoType()->getTypeQuals());
1707
1708  // C++0x explicit conversion operators.
1709  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1710    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1711         diag::warn_explicit_conversion_functions)
1712      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1713}
1714
1715/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1716/// the declaration of the given C++ conversion function. This routine
1717/// is responsible for recording the conversion function in the C++
1718/// class, if possible.
1719Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1720  assert(Conversion && "Expected to receive a conversion function declaration");
1721
1722  // Set the lexical context of this conversion function
1723  Conversion->setLexicalDeclContext(CurContext);
1724
1725  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1726
1727  // Make sure we aren't redeclaring the conversion function.
1728  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1729
1730  // C++ [class.conv.fct]p1:
1731  //   [...] A conversion function is never used to convert a
1732  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1733  //   same object type (or a reference to it), to a (possibly
1734  //   cv-qualified) base class of that type (or a reference to it),
1735  //   or to (possibly cv-qualified) void.
1736  // FIXME: Suppress this warning if the conversion function ends up being a
1737  // virtual function that overrides a virtual function in a base class.
1738  QualType ClassType
1739    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1740  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1741    ConvType = ConvTypeRef->getPointeeType();
1742  if (ConvType->isRecordType()) {
1743    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1744    if (ConvType == ClassType)
1745      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1746        << ClassType;
1747    else if (IsDerivedFrom(ClassType, ConvType))
1748      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1749        <<  ClassType << ConvType;
1750  } else if (ConvType->isVoidType()) {
1751    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1752      << ClassType << ConvType;
1753  }
1754
1755  if (Conversion->getPreviousDeclaration()) {
1756    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1757    for (OverloadedFunctionDecl::function_iterator
1758           Conv = Conversions->function_begin(),
1759           ConvEnd = Conversions->function_end();
1760         Conv != ConvEnd; ++Conv) {
1761      if (*Conv
1762            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1763        *Conv = Conversion;
1764        return DeclPtrTy::make(Conversion);
1765      }
1766    }
1767    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1768  } else
1769    ClassDecl->addConversionFunction(Context, Conversion);
1770
1771  return DeclPtrTy::make(Conversion);
1772}
1773
1774//===----------------------------------------------------------------------===//
1775// Namespace Handling
1776//===----------------------------------------------------------------------===//
1777
1778/// ActOnStartNamespaceDef - This is called at the start of a namespace
1779/// definition.
1780Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1781                                             SourceLocation IdentLoc,
1782                                             IdentifierInfo *II,
1783                                             SourceLocation LBrace) {
1784  NamespaceDecl *Namespc =
1785      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1786  Namespc->setLBracLoc(LBrace);
1787
1788  Scope *DeclRegionScope = NamespcScope->getParent();
1789
1790  if (II) {
1791    // C++ [namespace.def]p2:
1792    // The identifier in an original-namespace-definition shall not have been
1793    // previously defined in the declarative region in which the
1794    // original-namespace-definition appears. The identifier in an
1795    // original-namespace-definition is the name of the namespace. Subsequently
1796    // in that declarative region, it is treated as an original-namespace-name.
1797
1798    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1799                                     true);
1800
1801    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1802      // This is an extended namespace definition.
1803      // Attach this namespace decl to the chain of extended namespace
1804      // definitions.
1805      OrigNS->setNextNamespace(Namespc);
1806      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1807
1808      // Remove the previous declaration from the scope.
1809      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1810        IdResolver.RemoveDecl(OrigNS);
1811        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1812      }
1813    } else if (PrevDecl) {
1814      // This is an invalid name redefinition.
1815      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1816       << Namespc->getDeclName();
1817      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1818      Namespc->setInvalidDecl();
1819      // Continue on to push Namespc as current DeclContext and return it.
1820    }
1821
1822    PushOnScopeChains(Namespc, DeclRegionScope);
1823  } else {
1824    // FIXME: Handle anonymous namespaces
1825  }
1826
1827  // Although we could have an invalid decl (i.e. the namespace name is a
1828  // redefinition), push it as current DeclContext and try to continue parsing.
1829  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1830  // for the namespace has the declarations that showed up in that particular
1831  // namespace definition.
1832  PushDeclContext(NamespcScope, Namespc);
1833  return DeclPtrTy::make(Namespc);
1834}
1835
1836/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1837/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1838void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1839  Decl *Dcl = D.getAs<Decl>();
1840  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1841  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1842  Namespc->setRBracLoc(RBrace);
1843  PopDeclContext();
1844}
1845
1846Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1847                                          SourceLocation UsingLoc,
1848                                          SourceLocation NamespcLoc,
1849                                          const CXXScopeSpec &SS,
1850                                          SourceLocation IdentLoc,
1851                                          IdentifierInfo *NamespcName,
1852                                          AttributeList *AttrList) {
1853  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1854  assert(NamespcName && "Invalid NamespcName.");
1855  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1856  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1857
1858  UsingDirectiveDecl *UDir = 0;
1859
1860  // Lookup namespace name.
1861  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1862                                    LookupNamespaceName, false);
1863  if (R.isAmbiguous()) {
1864    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1865    return DeclPtrTy();
1866  }
1867  if (NamedDecl *NS = R) {
1868    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1869    // C++ [namespace.udir]p1:
1870    //   A using-directive specifies that the names in the nominated
1871    //   namespace can be used in the scope in which the
1872    //   using-directive appears after the using-directive. During
1873    //   unqualified name lookup (3.4.1), the names appear as if they
1874    //   were declared in the nearest enclosing namespace which
1875    //   contains both the using-directive and the nominated
1876    //   namespace. [Note: in this context, “contains” means “contains
1877    //   directly or indirectly”. ]
1878
1879    // Find enclosing context containing both using-directive and
1880    // nominated namespace.
1881    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1882    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1883      CommonAncestor = CommonAncestor->getParent();
1884
1885    UDir = UsingDirectiveDecl::Create(Context,
1886                                      CurContext, UsingLoc,
1887                                      NamespcLoc,
1888                                      SS.getRange(),
1889                                      (NestedNameSpecifier *)SS.getScopeRep(),
1890                                      IdentLoc,
1891                                      cast<NamespaceDecl>(NS),
1892                                      CommonAncestor);
1893    PushUsingDirective(S, UDir);
1894  } else {
1895    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1896  }
1897
1898  // FIXME: We ignore attributes for now.
1899  delete AttrList;
1900  return DeclPtrTy::make(UDir);
1901}
1902
1903void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1904  // If scope has associated entity, then using directive is at namespace
1905  // or translation unit scope. We add UsingDirectiveDecls, into
1906  // it's lookup structure.
1907  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1908    Ctx->addDecl(UDir);
1909  else
1910    // Otherwise it is block-sope. using-directives will affect lookup
1911    // only to the end of scope.
1912    S->PushUsingDirective(DeclPtrTy::make(UDir));
1913}
1914
1915
1916Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1917                                          SourceLocation UsingLoc,
1918                                          const CXXScopeSpec &SS,
1919                                          SourceLocation IdentLoc,
1920                                          IdentifierInfo *TargetName,
1921                                          OverloadedOperatorKind Op,
1922                                          AttributeList *AttrList,
1923                                          bool IsTypeName) {
1924  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1925  assert((TargetName || Op) && "Invalid TargetName.");
1926  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1927  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1928
1929  UsingDecl *UsingAlias = 0;
1930
1931  DeclarationName Name;
1932  if (TargetName)
1933    Name = TargetName;
1934  else
1935    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1936
1937  // Lookup target name.
1938  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1939
1940  if (NamedDecl *NS = R) {
1941    if (IsTypeName && !isa<TypeDecl>(NS)) {
1942      Diag(IdentLoc, diag::err_using_typename_non_type);
1943    }
1944    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1945        NS->getLocation(), UsingLoc, NS,
1946        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1947        IsTypeName);
1948    PushOnScopeChains(UsingAlias, S);
1949  } else {
1950    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1951  }
1952
1953  // FIXME: We ignore attributes for now.
1954  delete AttrList;
1955  return DeclPtrTy::make(UsingAlias);
1956}
1957
1958/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1959/// is a namespace alias, returns the namespace it points to.
1960static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1961  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1962    return AD->getNamespace();
1963  return dyn_cast_or_null<NamespaceDecl>(D);
1964}
1965
1966Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1967                                             SourceLocation NamespaceLoc,
1968                                             SourceLocation AliasLoc,
1969                                             IdentifierInfo *Alias,
1970                                             const CXXScopeSpec &SS,
1971                                             SourceLocation IdentLoc,
1972                                             IdentifierInfo *Ident) {
1973
1974  // Lookup the namespace name.
1975  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1976
1977  // Check if we have a previous declaration with the same name.
1978  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1979    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1980      // We already have an alias with the same name that points to the same
1981      // namespace, so don't create a new one.
1982      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1983        return DeclPtrTy();
1984    }
1985
1986    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1987      diag::err_redefinition_different_kind;
1988    Diag(AliasLoc, DiagID) << Alias;
1989    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1990    return DeclPtrTy();
1991  }
1992
1993  if (R.isAmbiguous()) {
1994    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1995    return DeclPtrTy();
1996  }
1997
1998  if (!R) {
1999    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2000    return DeclPtrTy();
2001  }
2002
2003  NamespaceAliasDecl *AliasDecl =
2004    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2005                               Alias, SS.getRange(),
2006                               (NestedNameSpecifier *)SS.getScopeRep(),
2007                               IdentLoc, R);
2008
2009  CurContext->addDecl(AliasDecl);
2010  return DeclPtrTy::make(AliasDecl);
2011}
2012
2013void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2014                                            CXXConstructorDecl *Constructor) {
2015  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2016          !Constructor->isUsed()) &&
2017    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2018
2019  CXXRecordDecl *ClassDecl
2020    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2021  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2022  // Before the implicitly-declared default constructor for a class is
2023  // implicitly defined, all the implicitly-declared default constructors
2024  // for its base class and its non-static data members shall have been
2025  // implicitly defined.
2026  bool err = false;
2027  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2028       E = ClassDecl->bases_end(); Base != E; ++Base) {
2029    CXXRecordDecl *BaseClassDecl
2030      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2031    if (!BaseClassDecl->hasTrivialConstructor()) {
2032      if (CXXConstructorDecl *BaseCtor =
2033            BaseClassDecl->getDefaultConstructor(Context))
2034        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2035      else {
2036        Diag(CurrentLocation, diag::err_defining_default_ctor)
2037          << Context.getTagDeclType(ClassDecl) << 1
2038          << Context.getTagDeclType(BaseClassDecl);
2039        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2040              << Context.getTagDeclType(BaseClassDecl);
2041        err = true;
2042      }
2043    }
2044  }
2045  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2046       E = ClassDecl->field_end(); Field != E; ++Field) {
2047    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2048    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2049      FieldType = Array->getElementType();
2050    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2051      CXXRecordDecl *FieldClassDecl
2052        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2053      if (!FieldClassDecl->hasTrivialConstructor()) {
2054        if (CXXConstructorDecl *FieldCtor =
2055            FieldClassDecl->getDefaultConstructor(Context))
2056          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2057        else {
2058          Diag(CurrentLocation, diag::err_defining_default_ctor)
2059          << Context.getTagDeclType(ClassDecl) << 0 <<
2060              Context.getTagDeclType(FieldClassDecl);
2061          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2062          << Context.getTagDeclType(FieldClassDecl);
2063          err = true;
2064        }
2065      }
2066    }
2067    else if (FieldType->isReferenceType()) {
2068      Diag(CurrentLocation, diag::err_unintialized_member)
2069        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2070      Diag((*Field)->getLocation(), diag::note_declared_at);
2071      err = true;
2072    }
2073    else if (FieldType.isConstQualified()) {
2074      Diag(CurrentLocation, diag::err_unintialized_member)
2075        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2076       Diag((*Field)->getLocation(), diag::note_declared_at);
2077      err = true;
2078    }
2079  }
2080  if (!err)
2081    Constructor->setUsed();
2082  else
2083    Constructor->setInvalidDecl();
2084}
2085
2086void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2087                                            CXXDestructorDecl *Destructor) {
2088  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2089         "DefineImplicitDestructor - call it for implicit default dtor");
2090
2091  CXXRecordDecl *ClassDecl
2092  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2093  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2094  // C++ [class.dtor] p5
2095  // Before the implicitly-declared default destructor for a class is
2096  // implicitly defined, all the implicitly-declared default destructors
2097  // for its base class and its non-static data members shall have been
2098  // implicitly defined.
2099  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2100       E = ClassDecl->bases_end(); Base != E; ++Base) {
2101    CXXRecordDecl *BaseClassDecl
2102      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2103    if (!BaseClassDecl->hasTrivialDestructor()) {
2104      if (CXXDestructorDecl *BaseDtor =
2105          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2106        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2107      else
2108        assert(false &&
2109               "DefineImplicitDestructor - missing dtor in a base class");
2110    }
2111  }
2112
2113  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2114       E = ClassDecl->field_end(); Field != E; ++Field) {
2115    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2116    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2117      FieldType = Array->getElementType();
2118    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2119      CXXRecordDecl *FieldClassDecl
2120        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2121      if (!FieldClassDecl->hasTrivialDestructor()) {
2122        if (CXXDestructorDecl *FieldDtor =
2123            const_cast<CXXDestructorDecl*>(
2124                                        FieldClassDecl->getDestructor(Context)))
2125          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2126        else
2127          assert(false &&
2128          "DefineImplicitDestructor - missing dtor in class of a data member");
2129      }
2130    }
2131  }
2132  Destructor->setUsed();
2133}
2134
2135void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2136                                          CXXMethodDecl *MethodDecl) {
2137  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2138          MethodDecl->getOverloadedOperator() == OO_Equal &&
2139          !MethodDecl->isUsed()) &&
2140         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2141
2142  CXXRecordDecl *ClassDecl
2143    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2144
2145  // C++[class.copy] p12
2146  // Before the implicitly-declared copy assignment operator for a class is
2147  // implicitly defined, all implicitly-declared copy assignment operators
2148  // for its direct base classes and its nonstatic data members shall have
2149  // been implicitly defined.
2150  bool err = false;
2151  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2152       E = ClassDecl->bases_end(); Base != E; ++Base) {
2153    CXXRecordDecl *BaseClassDecl
2154      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2155    if (CXXMethodDecl *BaseAssignOpMethod =
2156          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2157      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2158  }
2159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2160       E = ClassDecl->field_end(); Field != E; ++Field) {
2161    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2162    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2163      FieldType = Array->getElementType();
2164    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2165      CXXRecordDecl *FieldClassDecl
2166        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2167      if (CXXMethodDecl *FieldAssignOpMethod =
2168          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2169        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2170    }
2171    else if (FieldType->isReferenceType()) {
2172      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2173      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2174      Diag(Field->getLocation(), diag::note_declared_at);
2175      Diag(CurrentLocation, diag::note_first_required_here);
2176      err = true;
2177    }
2178    else if (FieldType.isConstQualified()) {
2179      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2180      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2181      Diag(Field->getLocation(), diag::note_declared_at);
2182      Diag(CurrentLocation, diag::note_first_required_here);
2183      err = true;
2184    }
2185  }
2186  if (!err)
2187    MethodDecl->setUsed();
2188}
2189
2190CXXMethodDecl *
2191Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2192                              CXXRecordDecl *ClassDecl) {
2193  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2194  QualType RHSType(LHSType);
2195  // If class's assignment operator argument is const/volatile qualified,
2196  // look for operator = (const/volatile B&). Otherwise, look for
2197  // operator = (B&).
2198  if (ParmDecl->getType().isConstQualified())
2199    RHSType.addConst();
2200  if (ParmDecl->getType().isVolatileQualified())
2201    RHSType.addVolatile();
2202  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2203                                                          LHSType,
2204                                                          SourceLocation()));
2205  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2206                                                          RHSType,
2207                                                          SourceLocation()));
2208  Expr *Args[2] = { &*LHS, &*RHS };
2209  OverloadCandidateSet CandidateSet;
2210  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2211                              CandidateSet);
2212  OverloadCandidateSet::iterator Best;
2213  if (BestViableFunction(CandidateSet,
2214                         ClassDecl->getLocation(), Best) == OR_Success)
2215    return cast<CXXMethodDecl>(Best->Function);
2216  assert(false &&
2217         "getAssignOperatorMethod - copy assignment operator method not found");
2218  return 0;
2219}
2220
2221void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2222                                   CXXConstructorDecl *CopyConstructor,
2223                                   unsigned TypeQuals) {
2224  assert((CopyConstructor->isImplicit() &&
2225          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2226          !CopyConstructor->isUsed()) &&
2227         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2228
2229  CXXRecordDecl *ClassDecl
2230    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2231  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2232  // C++ [class.copy] p209
2233  // Before the implicitly-declared copy constructor for a class is
2234  // implicitly defined, all the implicitly-declared copy constructors
2235  // for its base class and its non-static data members shall have been
2236  // implicitly defined.
2237  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2238       Base != ClassDecl->bases_end(); ++Base) {
2239    CXXRecordDecl *BaseClassDecl
2240      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2241    if (CXXConstructorDecl *BaseCopyCtor =
2242        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2243      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2244  }
2245  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2246                                  FieldEnd = ClassDecl->field_end();
2247       Field != FieldEnd; ++Field) {
2248    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2249    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2250      FieldType = Array->getElementType();
2251    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2252      CXXRecordDecl *FieldClassDecl
2253        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2254      if (CXXConstructorDecl *FieldCopyCtor =
2255          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2256        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2257    }
2258  }
2259  CopyConstructor->setUsed();
2260}
2261
2262void Sema::InitializeVarWithConstructor(VarDecl *VD,
2263                                        CXXConstructorDecl *Constructor,
2264                                        QualType DeclInitType,
2265                                        Expr **Exprs, unsigned NumExprs) {
2266  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2267                                        false, Exprs, NumExprs);
2268  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2269  VD->setInit(Context, Temp);
2270}
2271
2272void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2273{
2274  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2275                                  DeclInitType->getAsRecordType()->getDecl());
2276  if (!ClassDecl->hasTrivialDestructor())
2277    if (CXXDestructorDecl *Destructor =
2278        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2279      MarkDeclarationReferenced(Loc, Destructor);
2280}
2281
2282/// AddCXXDirectInitializerToDecl - This action is called immediately after
2283/// ActOnDeclarator, when a C++ direct initializer is present.
2284/// e.g: "int x(1);"
2285void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2286                                         SourceLocation LParenLoc,
2287                                         MultiExprArg Exprs,
2288                                         SourceLocation *CommaLocs,
2289                                         SourceLocation RParenLoc) {
2290  unsigned NumExprs = Exprs.size();
2291  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2292  Decl *RealDecl = Dcl.getAs<Decl>();
2293
2294  // If there is no declaration, there was an error parsing it.  Just ignore
2295  // the initializer.
2296  if (RealDecl == 0)
2297    return;
2298
2299  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2300  if (!VDecl) {
2301    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2302    RealDecl->setInvalidDecl();
2303    return;
2304  }
2305
2306  // FIXME: Need to handle dependent types and expressions here.
2307
2308  // We will treat direct-initialization as a copy-initialization:
2309  //    int x(1);  -as-> int x = 1;
2310  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2311  //
2312  // Clients that want to distinguish between the two forms, can check for
2313  // direct initializer using VarDecl::hasCXXDirectInitializer().
2314  // A major benefit is that clients that don't particularly care about which
2315  // exactly form was it (like the CodeGen) can handle both cases without
2316  // special case code.
2317
2318  // C++ 8.5p11:
2319  // The form of initialization (using parentheses or '=') is generally
2320  // insignificant, but does matter when the entity being initialized has a
2321  // class type.
2322  QualType DeclInitType = VDecl->getType();
2323  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2324    DeclInitType = Array->getElementType();
2325
2326  // FIXME: This isn't the right place to complete the type.
2327  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2328                          diag::err_typecheck_decl_incomplete_type)) {
2329    VDecl->setInvalidDecl();
2330    return;
2331  }
2332
2333  if (VDecl->getType()->isRecordType()) {
2334    CXXConstructorDecl *Constructor
2335      = PerformInitializationByConstructor(DeclInitType,
2336                                           (Expr **)Exprs.get(), NumExprs,
2337                                           VDecl->getLocation(),
2338                                           SourceRange(VDecl->getLocation(),
2339                                                       RParenLoc),
2340                                           VDecl->getDeclName(),
2341                                           IK_Direct);
2342    if (!Constructor)
2343      RealDecl->setInvalidDecl();
2344    else {
2345      VDecl->setCXXDirectInitializer(true);
2346      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2347                                   (Expr**)Exprs.release(), NumExprs);
2348      // FIXME. Must do all that is needed to destroy the object
2349      // on scope exit. For now, just mark the destructor as used.
2350      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2351    }
2352    return;
2353  }
2354
2355  if (NumExprs > 1) {
2356    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2357      << SourceRange(VDecl->getLocation(), RParenLoc);
2358    RealDecl->setInvalidDecl();
2359    return;
2360  }
2361
2362  // Let clients know that initialization was done with a direct initializer.
2363  VDecl->setCXXDirectInitializer(true);
2364
2365  assert(NumExprs == 1 && "Expected 1 expression");
2366  // Set the init expression, handles conversions.
2367  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2368                       /*DirectInit=*/true);
2369}
2370
2371/// PerformInitializationByConstructor - Perform initialization by
2372/// constructor (C++ [dcl.init]p14), which may occur as part of
2373/// direct-initialization or copy-initialization. We are initializing
2374/// an object of type @p ClassType with the given arguments @p
2375/// Args. @p Loc is the location in the source code where the
2376/// initializer occurs (e.g., a declaration, member initializer,
2377/// functional cast, etc.) while @p Range covers the whole
2378/// initialization. @p InitEntity is the entity being initialized,
2379/// which may by the name of a declaration or a type. @p Kind is the
2380/// kind of initialization we're performing, which affects whether
2381/// explicit constructors will be considered. When successful, returns
2382/// the constructor that will be used to perform the initialization;
2383/// when the initialization fails, emits a diagnostic and returns
2384/// null.
2385CXXConstructorDecl *
2386Sema::PerformInitializationByConstructor(QualType ClassType,
2387                                         Expr **Args, unsigned NumArgs,
2388                                         SourceLocation Loc, SourceRange Range,
2389                                         DeclarationName InitEntity,
2390                                         InitializationKind Kind) {
2391  const RecordType *ClassRec = ClassType->getAsRecordType();
2392  assert(ClassRec && "Can only initialize a class type here");
2393
2394  // C++ [dcl.init]p14:
2395  //
2396  //   If the initialization is direct-initialization, or if it is
2397  //   copy-initialization where the cv-unqualified version of the
2398  //   source type is the same class as, or a derived class of, the
2399  //   class of the destination, constructors are considered. The
2400  //   applicable constructors are enumerated (13.3.1.3), and the
2401  //   best one is chosen through overload resolution (13.3). The
2402  //   constructor so selected is called to initialize the object,
2403  //   with the initializer expression(s) as its argument(s). If no
2404  //   constructor applies, or the overload resolution is ambiguous,
2405  //   the initialization is ill-formed.
2406  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2407  OverloadCandidateSet CandidateSet;
2408
2409  // Add constructors to the overload set.
2410  DeclarationName ConstructorName
2411    = Context.DeclarationNames.getCXXConstructorName(
2412                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2413  DeclContext::lookup_const_iterator Con, ConEnd;
2414  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2415       Con != ConEnd; ++Con) {
2416    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2417    if ((Kind == IK_Direct) ||
2418        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2419        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2420      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2421  }
2422
2423  // FIXME: When we decide not to synthesize the implicitly-declared
2424  // constructors, we'll need to make them appear here.
2425
2426  OverloadCandidateSet::iterator Best;
2427  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2428  case OR_Success:
2429    // We found a constructor. Return it.
2430    return cast<CXXConstructorDecl>(Best->Function);
2431
2432  case OR_No_Viable_Function:
2433    if (InitEntity)
2434      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2435        << InitEntity << Range;
2436    else
2437      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2438        << ClassType << Range;
2439    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2440    return 0;
2441
2442  case OR_Ambiguous:
2443    if (InitEntity)
2444      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2445    else
2446      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2447    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2448    return 0;
2449
2450  case OR_Deleted:
2451    if (InitEntity)
2452      Diag(Loc, diag::err_ovl_deleted_init)
2453        << Best->Function->isDeleted()
2454        << InitEntity << Range;
2455    else
2456      Diag(Loc, diag::err_ovl_deleted_init)
2457        << Best->Function->isDeleted()
2458        << InitEntity << Range;
2459    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2460    return 0;
2461  }
2462
2463  return 0;
2464}
2465
2466/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2467/// determine whether they are reference-related,
2468/// reference-compatible, reference-compatible with added
2469/// qualification, or incompatible, for use in C++ initialization by
2470/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2471/// type, and the first type (T1) is the pointee type of the reference
2472/// type being initialized.
2473Sema::ReferenceCompareResult
2474Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2475                                   bool& DerivedToBase) {
2476  assert(!T1->isReferenceType() &&
2477    "T1 must be the pointee type of the reference type");
2478  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2479
2480  T1 = Context.getCanonicalType(T1);
2481  T2 = Context.getCanonicalType(T2);
2482  QualType UnqualT1 = T1.getUnqualifiedType();
2483  QualType UnqualT2 = T2.getUnqualifiedType();
2484
2485  // C++ [dcl.init.ref]p4:
2486  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2487  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2488  //   T1 is a base class of T2.
2489  if (UnqualT1 == UnqualT2)
2490    DerivedToBase = false;
2491  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2492    DerivedToBase = true;
2493  else
2494    return Ref_Incompatible;
2495
2496  // At this point, we know that T1 and T2 are reference-related (at
2497  // least).
2498
2499  // C++ [dcl.init.ref]p4:
2500  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2501  //   reference-related to T2 and cv1 is the same cv-qualification
2502  //   as, or greater cv-qualification than, cv2. For purposes of
2503  //   overload resolution, cases for which cv1 is greater
2504  //   cv-qualification than cv2 are identified as
2505  //   reference-compatible with added qualification (see 13.3.3.2).
2506  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2507    return Ref_Compatible;
2508  else if (T1.isMoreQualifiedThan(T2))
2509    return Ref_Compatible_With_Added_Qualification;
2510  else
2511    return Ref_Related;
2512}
2513
2514/// CheckReferenceInit - Check the initialization of a reference
2515/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2516/// the initializer (either a simple initializer or an initializer
2517/// list), and DeclType is the type of the declaration. When ICS is
2518/// non-null, this routine will compute the implicit conversion
2519/// sequence according to C++ [over.ics.ref] and will not produce any
2520/// diagnostics; when ICS is null, it will emit diagnostics when any
2521/// errors are found. Either way, a return value of true indicates
2522/// that there was a failure, a return value of false indicates that
2523/// the reference initialization succeeded.
2524///
2525/// When @p SuppressUserConversions, user-defined conversions are
2526/// suppressed.
2527/// When @p AllowExplicit, we also permit explicit user-defined
2528/// conversion functions.
2529/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2530bool
2531Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2532                         ImplicitConversionSequence *ICS,
2533                         bool SuppressUserConversions,
2534                         bool AllowExplicit, bool ForceRValue) {
2535  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2536
2537  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2538  QualType T2 = Init->getType();
2539
2540  // If the initializer is the address of an overloaded function, try
2541  // to resolve the overloaded function. If all goes well, T2 is the
2542  // type of the resulting function.
2543  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2544    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2545                                                          ICS != 0);
2546    if (Fn) {
2547      // Since we're performing this reference-initialization for
2548      // real, update the initializer with the resulting function.
2549      if (!ICS) {
2550        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2551          return true;
2552
2553        FixOverloadedFunctionReference(Init, Fn);
2554      }
2555
2556      T2 = Fn->getType();
2557    }
2558  }
2559
2560  // Compute some basic properties of the types and the initializer.
2561  bool isRValRef = DeclType->isRValueReferenceType();
2562  bool DerivedToBase = false;
2563  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2564                                                  Init->isLvalue(Context);
2565  ReferenceCompareResult RefRelationship
2566    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2567
2568  // Most paths end in a failed conversion.
2569  if (ICS)
2570    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2571
2572  // C++ [dcl.init.ref]p5:
2573  //   A reference to type “cv1 T1” is initialized by an expression
2574  //   of type “cv2 T2” as follows:
2575
2576  //     -- If the initializer expression
2577
2578  // Rvalue references cannot bind to lvalues (N2812).
2579  // There is absolutely no situation where they can. In particular, note that
2580  // this is ill-formed, even if B has a user-defined conversion to A&&:
2581  //   B b;
2582  //   A&& r = b;
2583  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2584    if (!ICS)
2585      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2586        << Init->getSourceRange();
2587    return true;
2588  }
2589
2590  bool BindsDirectly = false;
2591  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2592  //          reference-compatible with “cv2 T2,” or
2593  //
2594  // Note that the bit-field check is skipped if we are just computing
2595  // the implicit conversion sequence (C++ [over.best.ics]p2).
2596  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2597      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2598    BindsDirectly = true;
2599
2600    if (ICS) {
2601      // C++ [over.ics.ref]p1:
2602      //   When a parameter of reference type binds directly (8.5.3)
2603      //   to an argument expression, the implicit conversion sequence
2604      //   is the identity conversion, unless the argument expression
2605      //   has a type that is a derived class of the parameter type,
2606      //   in which case the implicit conversion sequence is a
2607      //   derived-to-base Conversion (13.3.3.1).
2608      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2609      ICS->Standard.First = ICK_Identity;
2610      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2611      ICS->Standard.Third = ICK_Identity;
2612      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2613      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2614      ICS->Standard.ReferenceBinding = true;
2615      ICS->Standard.DirectBinding = true;
2616      ICS->Standard.RRefBinding = false;
2617      ICS->Standard.CopyConstructor = 0;
2618
2619      // Nothing more to do: the inaccessibility/ambiguity check for
2620      // derived-to-base conversions is suppressed when we're
2621      // computing the implicit conversion sequence (C++
2622      // [over.best.ics]p2).
2623      return false;
2624    } else {
2625      // Perform the conversion.
2626      // FIXME: Binding to a subobject of the lvalue is going to require more
2627      // AST annotation than this.
2628      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2629    }
2630  }
2631
2632  //       -- has a class type (i.e., T2 is a class type) and can be
2633  //          implicitly converted to an lvalue of type “cv3 T3,”
2634  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2635  //          92) (this conversion is selected by enumerating the
2636  //          applicable conversion functions (13.3.1.6) and choosing
2637  //          the best one through overload resolution (13.3)),
2638  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2639    // FIXME: Look for conversions in base classes!
2640    CXXRecordDecl *T2RecordDecl
2641      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2642
2643    OverloadCandidateSet CandidateSet;
2644    OverloadedFunctionDecl *Conversions
2645      = T2RecordDecl->getConversionFunctions();
2646    for (OverloadedFunctionDecl::function_iterator Func
2647           = Conversions->function_begin();
2648         Func != Conversions->function_end(); ++Func) {
2649      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2650
2651      // If the conversion function doesn't return a reference type,
2652      // it can't be considered for this conversion.
2653      if (Conv->getConversionType()->isLValueReferenceType() &&
2654          (AllowExplicit || !Conv->isExplicit()))
2655        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2656    }
2657
2658    OverloadCandidateSet::iterator Best;
2659    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2660    case OR_Success:
2661      // This is a direct binding.
2662      BindsDirectly = true;
2663
2664      if (ICS) {
2665        // C++ [over.ics.ref]p1:
2666        //
2667        //   [...] If the parameter binds directly to the result of
2668        //   applying a conversion function to the argument
2669        //   expression, the implicit conversion sequence is a
2670        //   user-defined conversion sequence (13.3.3.1.2), with the
2671        //   second standard conversion sequence either an identity
2672        //   conversion or, if the conversion function returns an
2673        //   entity of a type that is a derived class of the parameter
2674        //   type, a derived-to-base Conversion.
2675        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2676        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2677        ICS->UserDefined.After = Best->FinalConversion;
2678        ICS->UserDefined.ConversionFunction = Best->Function;
2679        assert(ICS->UserDefined.After.ReferenceBinding &&
2680               ICS->UserDefined.After.DirectBinding &&
2681               "Expected a direct reference binding!");
2682        return false;
2683      } else {
2684        // Perform the conversion.
2685        // FIXME: Binding to a subobject of the lvalue is going to require more
2686        // AST annotation than this.
2687        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2688      }
2689      break;
2690
2691    case OR_Ambiguous:
2692      assert(false && "Ambiguous reference binding conversions not implemented.");
2693      return true;
2694
2695    case OR_No_Viable_Function:
2696    case OR_Deleted:
2697      // There was no suitable conversion, or we found a deleted
2698      // conversion; continue with other checks.
2699      break;
2700    }
2701  }
2702
2703  if (BindsDirectly) {
2704    // C++ [dcl.init.ref]p4:
2705    //   [...] In all cases where the reference-related or
2706    //   reference-compatible relationship of two types is used to
2707    //   establish the validity of a reference binding, and T1 is a
2708    //   base class of T2, a program that necessitates such a binding
2709    //   is ill-formed if T1 is an inaccessible (clause 11) or
2710    //   ambiguous (10.2) base class of T2.
2711    //
2712    // Note that we only check this condition when we're allowed to
2713    // complain about errors, because we should not be checking for
2714    // ambiguity (or inaccessibility) unless the reference binding
2715    // actually happens.
2716    if (DerivedToBase)
2717      return CheckDerivedToBaseConversion(T2, T1,
2718                                          Init->getSourceRange().getBegin(),
2719                                          Init->getSourceRange());
2720    else
2721      return false;
2722  }
2723
2724  //     -- Otherwise, the reference shall be to a non-volatile const
2725  //        type (i.e., cv1 shall be const), or the reference shall be an
2726  //        rvalue reference and the initializer expression shall be an rvalue.
2727  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2728    if (!ICS)
2729      Diag(Init->getSourceRange().getBegin(),
2730           diag::err_not_reference_to_const_init)
2731        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2732        << T2 << Init->getSourceRange();
2733    return true;
2734  }
2735
2736  //       -- If the initializer expression is an rvalue, with T2 a
2737  //          class type, and “cv1 T1” is reference-compatible with
2738  //          “cv2 T2,” the reference is bound in one of the
2739  //          following ways (the choice is implementation-defined):
2740  //
2741  //          -- The reference is bound to the object represented by
2742  //             the rvalue (see 3.10) or to a sub-object within that
2743  //             object.
2744  //
2745  //          -- A temporary of type “cv1 T2” [sic] is created, and
2746  //             a constructor is called to copy the entire rvalue
2747  //             object into the temporary. The reference is bound to
2748  //             the temporary or to a sub-object within the
2749  //             temporary.
2750  //
2751  //          The constructor that would be used to make the copy
2752  //          shall be callable whether or not the copy is actually
2753  //          done.
2754  //
2755  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2756  // freedom, so we will always take the first option and never build
2757  // a temporary in this case. FIXME: We will, however, have to check
2758  // for the presence of a copy constructor in C++98/03 mode.
2759  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2760      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2761    if (ICS) {
2762      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2763      ICS->Standard.First = ICK_Identity;
2764      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2765      ICS->Standard.Third = ICK_Identity;
2766      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2767      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2768      ICS->Standard.ReferenceBinding = true;
2769      ICS->Standard.DirectBinding = false;
2770      ICS->Standard.RRefBinding = isRValRef;
2771      ICS->Standard.CopyConstructor = 0;
2772    } else {
2773      // FIXME: Binding to a subobject of the rvalue is going to require more
2774      // AST annotation than this.
2775      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2776    }
2777    return false;
2778  }
2779
2780  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2781  //          initialized from the initializer expression using the
2782  //          rules for a non-reference copy initialization (8.5). The
2783  //          reference is then bound to the temporary. If T1 is
2784  //          reference-related to T2, cv1 must be the same
2785  //          cv-qualification as, or greater cv-qualification than,
2786  //          cv2; otherwise, the program is ill-formed.
2787  if (RefRelationship == Ref_Related) {
2788    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2789    // we would be reference-compatible or reference-compatible with
2790    // added qualification. But that wasn't the case, so the reference
2791    // initialization fails.
2792    if (!ICS)
2793      Diag(Init->getSourceRange().getBegin(),
2794           diag::err_reference_init_drops_quals)
2795        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2796        << T2 << Init->getSourceRange();
2797    return true;
2798  }
2799
2800  // If at least one of the types is a class type, the types are not
2801  // related, and we aren't allowed any user conversions, the
2802  // reference binding fails. This case is important for breaking
2803  // recursion, since TryImplicitConversion below will attempt to
2804  // create a temporary through the use of a copy constructor.
2805  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2806      (T1->isRecordType() || T2->isRecordType())) {
2807    if (!ICS)
2808      Diag(Init->getSourceRange().getBegin(),
2809           diag::err_typecheck_convert_incompatible)
2810        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2811    return true;
2812  }
2813
2814  // Actually try to convert the initializer to T1.
2815  if (ICS) {
2816    // C++ [over.ics.ref]p2:
2817    //
2818    //   When a parameter of reference type is not bound directly to
2819    //   an argument expression, the conversion sequence is the one
2820    //   required to convert the argument expression to the
2821    //   underlying type of the reference according to
2822    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2823    //   to copy-initializing a temporary of the underlying type with
2824    //   the argument expression. Any difference in top-level
2825    //   cv-qualification is subsumed by the initialization itself
2826    //   and does not constitute a conversion.
2827    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2828    // Of course, that's still a reference binding.
2829    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2830      ICS->Standard.ReferenceBinding = true;
2831      ICS->Standard.RRefBinding = isRValRef;
2832    } else if(ICS->ConversionKind ==
2833              ImplicitConversionSequence::UserDefinedConversion) {
2834      ICS->UserDefined.After.ReferenceBinding = true;
2835      ICS->UserDefined.After.RRefBinding = isRValRef;
2836    }
2837    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2838  } else {
2839    return PerformImplicitConversion(Init, T1, "initializing");
2840  }
2841}
2842
2843/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2844/// of this overloaded operator is well-formed. If so, returns false;
2845/// otherwise, emits appropriate diagnostics and returns true.
2846bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2847  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2848         "Expected an overloaded operator declaration");
2849
2850  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2851
2852  // C++ [over.oper]p5:
2853  //   The allocation and deallocation functions, operator new,
2854  //   operator new[], operator delete and operator delete[], are
2855  //   described completely in 3.7.3. The attributes and restrictions
2856  //   found in the rest of this subclause do not apply to them unless
2857  //   explicitly stated in 3.7.3.
2858  // FIXME: Write a separate routine for checking this. For now, just allow it.
2859  if (Op == OO_New || Op == OO_Array_New ||
2860      Op == OO_Delete || Op == OO_Array_Delete)
2861    return false;
2862
2863  // C++ [over.oper]p6:
2864  //   An operator function shall either be a non-static member
2865  //   function or be a non-member function and have at least one
2866  //   parameter whose type is a class, a reference to a class, an
2867  //   enumeration, or a reference to an enumeration.
2868  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2869    if (MethodDecl->isStatic())
2870      return Diag(FnDecl->getLocation(),
2871                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2872  } else {
2873    bool ClassOrEnumParam = false;
2874    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2875                                   ParamEnd = FnDecl->param_end();
2876         Param != ParamEnd; ++Param) {
2877      QualType ParamType = (*Param)->getType().getNonReferenceType();
2878      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2879          ParamType->isEnumeralType()) {
2880        ClassOrEnumParam = true;
2881        break;
2882      }
2883    }
2884
2885    if (!ClassOrEnumParam)
2886      return Diag(FnDecl->getLocation(),
2887                  diag::err_operator_overload_needs_class_or_enum)
2888        << FnDecl->getDeclName();
2889  }
2890
2891  // C++ [over.oper]p8:
2892  //   An operator function cannot have default arguments (8.3.6),
2893  //   except where explicitly stated below.
2894  //
2895  // Only the function-call operator allows default arguments
2896  // (C++ [over.call]p1).
2897  if (Op != OO_Call) {
2898    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2899         Param != FnDecl->param_end(); ++Param) {
2900      if ((*Param)->hasUnparsedDefaultArg())
2901        return Diag((*Param)->getLocation(),
2902                    diag::err_operator_overload_default_arg)
2903          << FnDecl->getDeclName();
2904      else if (Expr *DefArg = (*Param)->getDefaultArg())
2905        return Diag((*Param)->getLocation(),
2906                    diag::err_operator_overload_default_arg)
2907          << FnDecl->getDeclName() << DefArg->getSourceRange();
2908    }
2909  }
2910
2911  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2912    { false, false, false }
2913#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2914    , { Unary, Binary, MemberOnly }
2915#include "clang/Basic/OperatorKinds.def"
2916  };
2917
2918  bool CanBeUnaryOperator = OperatorUses[Op][0];
2919  bool CanBeBinaryOperator = OperatorUses[Op][1];
2920  bool MustBeMemberOperator = OperatorUses[Op][2];
2921
2922  // C++ [over.oper]p8:
2923  //   [...] Operator functions cannot have more or fewer parameters
2924  //   than the number required for the corresponding operator, as
2925  //   described in the rest of this subclause.
2926  unsigned NumParams = FnDecl->getNumParams()
2927                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2928  if (Op != OO_Call &&
2929      ((NumParams == 1 && !CanBeUnaryOperator) ||
2930       (NumParams == 2 && !CanBeBinaryOperator) ||
2931       (NumParams < 1) || (NumParams > 2))) {
2932    // We have the wrong number of parameters.
2933    unsigned ErrorKind;
2934    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2935      ErrorKind = 2;  // 2 -> unary or binary.
2936    } else if (CanBeUnaryOperator) {
2937      ErrorKind = 0;  // 0 -> unary
2938    } else {
2939      assert(CanBeBinaryOperator &&
2940             "All non-call overloaded operators are unary or binary!");
2941      ErrorKind = 1;  // 1 -> binary
2942    }
2943
2944    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2945      << FnDecl->getDeclName() << NumParams << ErrorKind;
2946  }
2947
2948  // Overloaded operators other than operator() cannot be variadic.
2949  if (Op != OO_Call &&
2950      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2951    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2952      << FnDecl->getDeclName();
2953  }
2954
2955  // Some operators must be non-static member functions.
2956  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2957    return Diag(FnDecl->getLocation(),
2958                diag::err_operator_overload_must_be_member)
2959      << FnDecl->getDeclName();
2960  }
2961
2962  // C++ [over.inc]p1:
2963  //   The user-defined function called operator++ implements the
2964  //   prefix and postfix ++ operator. If this function is a member
2965  //   function with no parameters, or a non-member function with one
2966  //   parameter of class or enumeration type, it defines the prefix
2967  //   increment operator ++ for objects of that type. If the function
2968  //   is a member function with one parameter (which shall be of type
2969  //   int) or a non-member function with two parameters (the second
2970  //   of which shall be of type int), it defines the postfix
2971  //   increment operator ++ for objects of that type.
2972  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2973    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2974    bool ParamIsInt = false;
2975    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2976      ParamIsInt = BT->getKind() == BuiltinType::Int;
2977
2978    if (!ParamIsInt)
2979      return Diag(LastParam->getLocation(),
2980                  diag::err_operator_overload_post_incdec_must_be_int)
2981        << LastParam->getType() << (Op == OO_MinusMinus);
2982  }
2983
2984  // Notify the class if it got an assignment operator.
2985  if (Op == OO_Equal) {
2986    // Would have returned earlier otherwise.
2987    assert(isa<CXXMethodDecl>(FnDecl) &&
2988      "Overloaded = not member, but not filtered.");
2989    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2990    Method->getParent()->addedAssignmentOperator(Context, Method);
2991  }
2992
2993  return false;
2994}
2995
2996/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2997/// linkage specification, including the language and (if present)
2998/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2999/// the location of the language string literal, which is provided
3000/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3001/// the '{' brace. Otherwise, this linkage specification does not
3002/// have any braces.
3003Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3004                                                     SourceLocation ExternLoc,
3005                                                     SourceLocation LangLoc,
3006                                                     const char *Lang,
3007                                                     unsigned StrSize,
3008                                                     SourceLocation LBraceLoc) {
3009  LinkageSpecDecl::LanguageIDs Language;
3010  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3011    Language = LinkageSpecDecl::lang_c;
3012  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3013    Language = LinkageSpecDecl::lang_cxx;
3014  else {
3015    Diag(LangLoc, diag::err_bad_language);
3016    return DeclPtrTy();
3017  }
3018
3019  // FIXME: Add all the various semantics of linkage specifications
3020
3021  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3022                                               LangLoc, Language,
3023                                               LBraceLoc.isValid());
3024  CurContext->addDecl(D);
3025  PushDeclContext(S, D);
3026  return DeclPtrTy::make(D);
3027}
3028
3029/// ActOnFinishLinkageSpecification - Completely the definition of
3030/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3031/// valid, it's the position of the closing '}' brace in a linkage
3032/// specification that uses braces.
3033Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3034                                                      DeclPtrTy LinkageSpec,
3035                                                      SourceLocation RBraceLoc) {
3036  if (LinkageSpec)
3037    PopDeclContext();
3038  return LinkageSpec;
3039}
3040
3041/// \brief Perform semantic analysis for the variable declaration that
3042/// occurs within a C++ catch clause, returning the newly-created
3043/// variable.
3044VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3045                                         IdentifierInfo *Name,
3046                                         SourceLocation Loc,
3047                                         SourceRange Range) {
3048  bool Invalid = false;
3049
3050  // Arrays and functions decay.
3051  if (ExDeclType->isArrayType())
3052    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3053  else if (ExDeclType->isFunctionType())
3054    ExDeclType = Context.getPointerType(ExDeclType);
3055
3056  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3057  // The exception-declaration shall not denote a pointer or reference to an
3058  // incomplete type, other than [cv] void*.
3059  // N2844 forbids rvalue references.
3060  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3061    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3062    Invalid = true;
3063  }
3064
3065  QualType BaseType = ExDeclType;
3066  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3067  unsigned DK = diag::err_catch_incomplete;
3068  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3069    BaseType = Ptr->getPointeeType();
3070    Mode = 1;
3071    DK = diag::err_catch_incomplete_ptr;
3072  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3073    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3074    BaseType = Ref->getPointeeType();
3075    Mode = 2;
3076    DK = diag::err_catch_incomplete_ref;
3077  }
3078  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3079      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3080    Invalid = true;
3081
3082  if (!Invalid && !ExDeclType->isDependentType() &&
3083      RequireNonAbstractType(Loc, ExDeclType,
3084                             diag::err_abstract_type_in_decl,
3085                             AbstractVariableType))
3086    Invalid = true;
3087
3088  // FIXME: Need to test for ability to copy-construct and destroy the
3089  // exception variable.
3090
3091  // FIXME: Need to check for abstract classes.
3092
3093  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3094                                    Name, ExDeclType, VarDecl::None,
3095                                    Range.getBegin());
3096
3097  if (Invalid)
3098    ExDecl->setInvalidDecl();
3099
3100  return ExDecl;
3101}
3102
3103/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3104/// handler.
3105Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3106  QualType ExDeclType = GetTypeForDeclarator(D, S);
3107
3108  bool Invalid = D.isInvalidType();
3109  IdentifierInfo *II = D.getIdentifier();
3110  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3111    // The scope should be freshly made just for us. There is just no way
3112    // it contains any previous declaration.
3113    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3114    if (PrevDecl->isTemplateParameter()) {
3115      // Maybe we will complain about the shadowed template parameter.
3116      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3117    }
3118  }
3119
3120  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3121    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3122      << D.getCXXScopeSpec().getRange();
3123    Invalid = true;
3124  }
3125
3126  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3127                                              D.getIdentifier(),
3128                                              D.getIdentifierLoc(),
3129                                            D.getDeclSpec().getSourceRange());
3130
3131  if (Invalid)
3132    ExDecl->setInvalidDecl();
3133
3134  // Add the exception declaration into this scope.
3135  if (II)
3136    PushOnScopeChains(ExDecl, S);
3137  else
3138    CurContext->addDecl(ExDecl);
3139
3140  ProcessDeclAttributes(S, ExDecl, D);
3141  return DeclPtrTy::make(ExDecl);
3142}
3143
3144Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3145                                                   ExprArg assertexpr,
3146                                                   ExprArg assertmessageexpr) {
3147  Expr *AssertExpr = (Expr *)assertexpr.get();
3148  StringLiteral *AssertMessage =
3149    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3150
3151  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3152    llvm::APSInt Value(32);
3153    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3154      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3155        AssertExpr->getSourceRange();
3156      return DeclPtrTy();
3157    }
3158
3159    if (Value == 0) {
3160      std::string str(AssertMessage->getStrData(),
3161                      AssertMessage->getByteLength());
3162      Diag(AssertLoc, diag::err_static_assert_failed)
3163        << str << AssertExpr->getSourceRange();
3164    }
3165  }
3166
3167  assertexpr.release();
3168  assertmessageexpr.release();
3169  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3170                                        AssertExpr, AssertMessage);
3171
3172  CurContext->addDecl(Decl);
3173  return DeclPtrTy::make(Decl);
3174}
3175
3176bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3177  if (!(S->getFlags() & Scope::ClassScope)) {
3178    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3179    return true;
3180  }
3181
3182  return false;
3183}
3184
3185void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3186  Decl *Dcl = dcl.getAs<Decl>();
3187  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3188  if (!Fn) {
3189    Diag(DelLoc, diag::err_deleted_non_function);
3190    return;
3191  }
3192  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3193    Diag(DelLoc, diag::err_deleted_decl_not_first);
3194    Diag(Prev->getLocation(), diag::note_previous_declaration);
3195    // If the declaration wasn't the first, we delete the function anyway for
3196    // recovery.
3197  }
3198  Fn->setDeleted();
3199}
3200
3201static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3202  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3203       ++CI) {
3204    Stmt *SubStmt = *CI;
3205    if (!SubStmt)
3206      continue;
3207    if (isa<ReturnStmt>(SubStmt))
3208      Self.Diag(SubStmt->getSourceRange().getBegin(),
3209           diag::err_return_in_constructor_handler);
3210    if (!isa<Expr>(SubStmt))
3211      SearchForReturnInStmt(Self, SubStmt);
3212  }
3213}
3214
3215void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3216  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3217    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3218    SearchForReturnInStmt(*this, Handler);
3219  }
3220}
3221
3222bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3223                                             const CXXMethodDecl *Old) {
3224  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3225  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3226
3227  QualType CNewTy = Context.getCanonicalType(NewTy);
3228  QualType COldTy = Context.getCanonicalType(OldTy);
3229
3230  if (CNewTy == COldTy &&
3231      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3232    return false;
3233
3234  // Check if the return types are covariant
3235  QualType NewClassTy, OldClassTy;
3236
3237  /// Both types must be pointers or references to classes.
3238  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3239    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3240      NewClassTy = NewPT->getPointeeType();
3241      OldClassTy = OldPT->getPointeeType();
3242    }
3243  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3244    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3245      NewClassTy = NewRT->getPointeeType();
3246      OldClassTy = OldRT->getPointeeType();
3247    }
3248  }
3249
3250  // The return types aren't either both pointers or references to a class type.
3251  if (NewClassTy.isNull()) {
3252    Diag(New->getLocation(),
3253         diag::err_different_return_type_for_overriding_virtual_function)
3254      << New->getDeclName() << NewTy << OldTy;
3255    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3256
3257    return true;
3258  }
3259
3260  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3261    // Check if the new class derives from the old class.
3262    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3263      Diag(New->getLocation(),
3264           diag::err_covariant_return_not_derived)
3265      << New->getDeclName() << NewTy << OldTy;
3266      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3267      return true;
3268    }
3269
3270    // Check if we the conversion from derived to base is valid.
3271    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3272                      diag::err_covariant_return_inaccessible_base,
3273                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3274                      // FIXME: Should this point to the return type?
3275                      New->getLocation(), SourceRange(), New->getDeclName())) {
3276      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3277      return true;
3278    }
3279  }
3280
3281  // The qualifiers of the return types must be the same.
3282  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3283    Diag(New->getLocation(),
3284         diag::err_covariant_return_type_different_qualifications)
3285    << New->getDeclName() << NewTy << OldTy;
3286    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3287    return true;
3288  };
3289
3290
3291  // The new class type must have the same or less qualifiers as the old type.
3292  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3293    Diag(New->getLocation(),
3294         diag::err_covariant_return_type_class_type_more_qualified)
3295    << New->getDeclName() << NewTy << OldTy;
3296    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3297    return true;
3298  };
3299
3300  return false;
3301}
3302
3303bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3304                                                const CXXMethodDecl *Old)
3305{
3306  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3307                                  diag::note_overridden_virtual_function,
3308                                  Old->getType()->getAsFunctionProtoType(),
3309                                  Old->getLocation(),
3310                                  New->getType()->getAsFunctionProtoType(),
3311                                  New->getLocation());
3312}
3313
3314/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3315/// initializer for the declaration 'Dcl'.
3316/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3317/// static data member of class X, names should be looked up in the scope of
3318/// class X.
3319void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3320  Decl *D = Dcl.getAs<Decl>();
3321  // If there is no declaration, there was an error parsing it.
3322  if (D == 0)
3323    return;
3324
3325  // Check whether it is a declaration with a nested name specifier like
3326  // int foo::bar;
3327  if (!D->isOutOfLine())
3328    return;
3329
3330  // C++ [basic.lookup.unqual]p13
3331  //
3332  // A name used in the definition of a static data member of class X
3333  // (after the qualified-id of the static member) is looked up as if the name
3334  // was used in a member function of X.
3335
3336  // Change current context into the context of the initializing declaration.
3337  EnterDeclaratorContext(S, D->getDeclContext());
3338}
3339
3340/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3341/// initializer for the declaration 'Dcl'.
3342void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3343  Decl *D = Dcl.getAs<Decl>();
3344  // If there is no declaration, there was an error parsing it.
3345  if (D == 0)
3346    return;
3347
3348  // Check whether it is a declaration with a nested name specifier like
3349  // int foo::bar;
3350  if (!D->isOutOfLine())
3351    return;
3352
3353  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3354  ExitDeclaratorContext(S);
3355}
3356