SemaDeclCXX.cpp revision 429bb276991ff2dbc7c5b438828b9b7737cb15eb
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// \brief Merge the exception specifications of two variable declarations.
387///
388/// This is called when there's a redeclaration of a VarDecl. The function
389/// checks if the redeclaration might have an exception specification and
390/// validates compatibility and merges the specs if necessary.
391void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
392  // Shortcut if exceptions are disabled.
393  if (!getLangOptions().CXXExceptions)
394    return;
395
396  assert(Context.hasSameType(New->getType(), Old->getType()) &&
397         "Should only be called if types are otherwise the same.");
398
399  QualType NewType = New->getType();
400  QualType OldType = Old->getType();
401
402  // We're only interested in pointers and references to functions, as well
403  // as pointers to member functions.
404  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
405    NewType = R->getPointeeType();
406    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
407  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
408    NewType = P->getPointeeType();
409    OldType = OldType->getAs<PointerType>()->getPointeeType();
410  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
411    NewType = M->getPointeeType();
412    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
413  }
414
415  if (!NewType->isFunctionProtoType())
416    return;
417
418  // There's lots of special cases for functions. For function pointers, system
419  // libraries are hopefully not as broken so that we don't need these
420  // workarounds.
421  if (CheckEquivalentExceptionSpec(
422        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
423        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
424    New->setInvalidDecl();
425  }
426}
427
428/// CheckCXXDefaultArguments - Verify that the default arguments for a
429/// function declaration are well-formed according to C++
430/// [dcl.fct.default].
431void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
432  unsigned NumParams = FD->getNumParams();
433  unsigned p;
434
435  // Find first parameter with a default argument
436  for (p = 0; p < NumParams; ++p) {
437    ParmVarDecl *Param = FD->getParamDecl(p);
438    if (Param->hasDefaultArg())
439      break;
440  }
441
442  // C++ [dcl.fct.default]p4:
443  //   In a given function declaration, all parameters
444  //   subsequent to a parameter with a default argument shall
445  //   have default arguments supplied in this or previous
446  //   declarations. A default argument shall not be redefined
447  //   by a later declaration (not even to the same value).
448  unsigned LastMissingDefaultArg = 0;
449  for (; p < NumParams; ++p) {
450    ParmVarDecl *Param = FD->getParamDecl(p);
451    if (!Param->hasDefaultArg()) {
452      if (Param->isInvalidDecl())
453        /* We already complained about this parameter. */;
454      else if (Param->getIdentifier())
455        Diag(Param->getLocation(),
456             diag::err_param_default_argument_missing_name)
457          << Param->getIdentifier();
458      else
459        Diag(Param->getLocation(),
460             diag::err_param_default_argument_missing);
461
462      LastMissingDefaultArg = p;
463    }
464  }
465
466  if (LastMissingDefaultArg > 0) {
467    // Some default arguments were missing. Clear out all of the
468    // default arguments up to (and including) the last missing
469    // default argument, so that we leave the function parameters
470    // in a semantically valid state.
471    for (p = 0; p <= LastMissingDefaultArg; ++p) {
472      ParmVarDecl *Param = FD->getParamDecl(p);
473      if (Param->hasDefaultArg()) {
474        Param->setDefaultArg(0);
475      }
476    }
477  }
478}
479
480/// isCurrentClassName - Determine whether the identifier II is the
481/// name of the class type currently being defined. In the case of
482/// nested classes, this will only return true if II is the name of
483/// the innermost class.
484bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
485                              const CXXScopeSpec *SS) {
486  assert(getLangOptions().CPlusPlus && "No class names in C!");
487
488  CXXRecordDecl *CurDecl;
489  if (SS && SS->isSet() && !SS->isInvalid()) {
490    DeclContext *DC = computeDeclContext(*SS, true);
491    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
492  } else
493    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
494
495  if (CurDecl && CurDecl->getIdentifier())
496    return &II == CurDecl->getIdentifier();
497  else
498    return false;
499}
500
501/// \brief Check the validity of a C++ base class specifier.
502///
503/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
504/// and returns NULL otherwise.
505CXXBaseSpecifier *
506Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
507                         SourceRange SpecifierRange,
508                         bool Virtual, AccessSpecifier Access,
509                         TypeSourceInfo *TInfo,
510                         SourceLocation EllipsisLoc) {
511  QualType BaseType = TInfo->getType();
512
513  // C++ [class.union]p1:
514  //   A union shall not have base classes.
515  if (Class->isUnion()) {
516    Diag(Class->getLocation(), diag::err_base_clause_on_union)
517      << SpecifierRange;
518    return 0;
519  }
520
521  if (EllipsisLoc.isValid() &&
522      !TInfo->getType()->containsUnexpandedParameterPack()) {
523    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
524      << TInfo->getTypeLoc().getSourceRange();
525    EllipsisLoc = SourceLocation();
526  }
527
528  if (BaseType->isDependentType())
529    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
530                                          Class->getTagKind() == TTK_Class,
531                                          Access, TInfo, EllipsisLoc);
532
533  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
534
535  // Base specifiers must be record types.
536  if (!BaseType->isRecordType()) {
537    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
538    return 0;
539  }
540
541  // C++ [class.union]p1:
542  //   A union shall not be used as a base class.
543  if (BaseType->isUnionType()) {
544    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
545    return 0;
546  }
547
548  // C++ [class.derived]p2:
549  //   The class-name in a base-specifier shall not be an incompletely
550  //   defined class.
551  if (RequireCompleteType(BaseLoc, BaseType,
552                          PDiag(diag::err_incomplete_base_class)
553                            << SpecifierRange)) {
554    Class->setInvalidDecl();
555    return 0;
556  }
557
558  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
559  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
560  assert(BaseDecl && "Record type has no declaration");
561  BaseDecl = BaseDecl->getDefinition();
562  assert(BaseDecl && "Base type is not incomplete, but has no definition");
563  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
564  assert(CXXBaseDecl && "Base type is not a C++ type");
565
566  // C++ [class]p3:
567  //   If a class is marked final and it appears as a base-type-specifier in
568  //   base-clause, the program is ill-formed.
569  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
570    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
571      << CXXBaseDecl->getDeclName();
572    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
573      << CXXBaseDecl->getDeclName();
574    return 0;
575  }
576
577  if (BaseDecl->isInvalidDecl())
578    Class->setInvalidDecl();
579
580  // Create the base specifier.
581  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
582                                        Class->getTagKind() == TTK_Class,
583                                        Access, TInfo, EllipsisLoc);
584}
585
586/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
587/// one entry in the base class list of a class specifier, for
588/// example:
589///    class foo : public bar, virtual private baz {
590/// 'public bar' and 'virtual private baz' are each base-specifiers.
591BaseResult
592Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
593                         bool Virtual, AccessSpecifier Access,
594                         ParsedType basetype, SourceLocation BaseLoc,
595                         SourceLocation EllipsisLoc) {
596  if (!classdecl)
597    return true;
598
599  AdjustDeclIfTemplate(classdecl);
600  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
601  if (!Class)
602    return true;
603
604  TypeSourceInfo *TInfo = 0;
605  GetTypeFromParser(basetype, &TInfo);
606
607  if (EllipsisLoc.isInvalid() &&
608      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
609                                      UPPC_BaseType))
610    return true;
611
612  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
613                                                      Virtual, Access, TInfo,
614                                                      EllipsisLoc))
615    return BaseSpec;
616
617  return true;
618}
619
620/// \brief Performs the actual work of attaching the given base class
621/// specifiers to a C++ class.
622bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
623                                unsigned NumBases) {
624 if (NumBases == 0)
625    return false;
626
627  // Used to keep track of which base types we have already seen, so
628  // that we can properly diagnose redundant direct base types. Note
629  // that the key is always the unqualified canonical type of the base
630  // class.
631  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
632
633  // Copy non-redundant base specifiers into permanent storage.
634  unsigned NumGoodBases = 0;
635  bool Invalid = false;
636  for (unsigned idx = 0; idx < NumBases; ++idx) {
637    QualType NewBaseType
638      = Context.getCanonicalType(Bases[idx]->getType());
639    NewBaseType = NewBaseType.getLocalUnqualifiedType();
640    if (!Class->hasObjectMember()) {
641      if (const RecordType *FDTTy =
642            NewBaseType.getTypePtr()->getAs<RecordType>())
643        if (FDTTy->getDecl()->hasObjectMember())
644          Class->setHasObjectMember(true);
645    }
646
647    if (KnownBaseTypes[NewBaseType]) {
648      // C++ [class.mi]p3:
649      //   A class shall not be specified as a direct base class of a
650      //   derived class more than once.
651      Diag(Bases[idx]->getSourceRange().getBegin(),
652           diag::err_duplicate_base_class)
653        << KnownBaseTypes[NewBaseType]->getType()
654        << Bases[idx]->getSourceRange();
655
656      // Delete the duplicate base class specifier; we're going to
657      // overwrite its pointer later.
658      Context.Deallocate(Bases[idx]);
659
660      Invalid = true;
661    } else {
662      // Okay, add this new base class.
663      KnownBaseTypes[NewBaseType] = Bases[idx];
664      Bases[NumGoodBases++] = Bases[idx];
665    }
666  }
667
668  // Attach the remaining base class specifiers to the derived class.
669  Class->setBases(Bases, NumGoodBases);
670
671  // Delete the remaining (good) base class specifiers, since their
672  // data has been copied into the CXXRecordDecl.
673  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
674    Context.Deallocate(Bases[idx]);
675
676  return Invalid;
677}
678
679/// ActOnBaseSpecifiers - Attach the given base specifiers to the
680/// class, after checking whether there are any duplicate base
681/// classes.
682void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
683                               unsigned NumBases) {
684  if (!ClassDecl || !Bases || !NumBases)
685    return;
686
687  AdjustDeclIfTemplate(ClassDecl);
688  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
689                       (CXXBaseSpecifier**)(Bases), NumBases);
690}
691
692static CXXRecordDecl *GetClassForType(QualType T) {
693  if (const RecordType *RT = T->getAs<RecordType>())
694    return cast<CXXRecordDecl>(RT->getDecl());
695  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
696    return ICT->getDecl();
697  else
698    return 0;
699}
700
701/// \brief Determine whether the type \p Derived is a C++ class that is
702/// derived from the type \p Base.
703bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
704  if (!getLangOptions().CPlusPlus)
705    return false;
706
707  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
708  if (!DerivedRD)
709    return false;
710
711  CXXRecordDecl *BaseRD = GetClassForType(Base);
712  if (!BaseRD)
713    return false;
714
715  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
716  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
717}
718
719/// \brief Determine whether the type \p Derived is a C++ class that is
720/// derived from the type \p Base.
721bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
722  if (!getLangOptions().CPlusPlus)
723    return false;
724
725  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
726  if (!DerivedRD)
727    return false;
728
729  CXXRecordDecl *BaseRD = GetClassForType(Base);
730  if (!BaseRD)
731    return false;
732
733  return DerivedRD->isDerivedFrom(BaseRD, Paths);
734}
735
736void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
737                              CXXCastPath &BasePathArray) {
738  assert(BasePathArray.empty() && "Base path array must be empty!");
739  assert(Paths.isRecordingPaths() && "Must record paths!");
740
741  const CXXBasePath &Path = Paths.front();
742
743  // We first go backward and check if we have a virtual base.
744  // FIXME: It would be better if CXXBasePath had the base specifier for
745  // the nearest virtual base.
746  unsigned Start = 0;
747  for (unsigned I = Path.size(); I != 0; --I) {
748    if (Path[I - 1].Base->isVirtual()) {
749      Start = I - 1;
750      break;
751    }
752  }
753
754  // Now add all bases.
755  for (unsigned I = Start, E = Path.size(); I != E; ++I)
756    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
757}
758
759/// \brief Determine whether the given base path includes a virtual
760/// base class.
761bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
762  for (CXXCastPath::const_iterator B = BasePath.begin(),
763                                BEnd = BasePath.end();
764       B != BEnd; ++B)
765    if ((*B)->isVirtual())
766      return true;
767
768  return false;
769}
770
771/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
772/// conversion (where Derived and Base are class types) is
773/// well-formed, meaning that the conversion is unambiguous (and
774/// that all of the base classes are accessible). Returns true
775/// and emits a diagnostic if the code is ill-formed, returns false
776/// otherwise. Loc is the location where this routine should point to
777/// if there is an error, and Range is the source range to highlight
778/// if there is an error.
779bool
780Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
781                                   unsigned InaccessibleBaseID,
782                                   unsigned AmbigiousBaseConvID,
783                                   SourceLocation Loc, SourceRange Range,
784                                   DeclarationName Name,
785                                   CXXCastPath *BasePath) {
786  // First, determine whether the path from Derived to Base is
787  // ambiguous. This is slightly more expensive than checking whether
788  // the Derived to Base conversion exists, because here we need to
789  // explore multiple paths to determine if there is an ambiguity.
790  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
791                     /*DetectVirtual=*/false);
792  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
793  assert(DerivationOkay &&
794         "Can only be used with a derived-to-base conversion");
795  (void)DerivationOkay;
796
797  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
798    if (InaccessibleBaseID) {
799      // Check that the base class can be accessed.
800      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
801                                   InaccessibleBaseID)) {
802        case AR_inaccessible:
803          return true;
804        case AR_accessible:
805        case AR_dependent:
806        case AR_delayed:
807          break;
808      }
809    }
810
811    // Build a base path if necessary.
812    if (BasePath)
813      BuildBasePathArray(Paths, *BasePath);
814    return false;
815  }
816
817  // We know that the derived-to-base conversion is ambiguous, and
818  // we're going to produce a diagnostic. Perform the derived-to-base
819  // search just one more time to compute all of the possible paths so
820  // that we can print them out. This is more expensive than any of
821  // the previous derived-to-base checks we've done, but at this point
822  // performance isn't as much of an issue.
823  Paths.clear();
824  Paths.setRecordingPaths(true);
825  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
826  assert(StillOkay && "Can only be used with a derived-to-base conversion");
827  (void)StillOkay;
828
829  // Build up a textual representation of the ambiguous paths, e.g.,
830  // D -> B -> A, that will be used to illustrate the ambiguous
831  // conversions in the diagnostic. We only print one of the paths
832  // to each base class subobject.
833  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
834
835  Diag(Loc, AmbigiousBaseConvID)
836  << Derived << Base << PathDisplayStr << Range << Name;
837  return true;
838}
839
840bool
841Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
842                                   SourceLocation Loc, SourceRange Range,
843                                   CXXCastPath *BasePath,
844                                   bool IgnoreAccess) {
845  return CheckDerivedToBaseConversion(Derived, Base,
846                                      IgnoreAccess ? 0
847                                       : diag::err_upcast_to_inaccessible_base,
848                                      diag::err_ambiguous_derived_to_base_conv,
849                                      Loc, Range, DeclarationName(),
850                                      BasePath);
851}
852
853
854/// @brief Builds a string representing ambiguous paths from a
855/// specific derived class to different subobjects of the same base
856/// class.
857///
858/// This function builds a string that can be used in error messages
859/// to show the different paths that one can take through the
860/// inheritance hierarchy to go from the derived class to different
861/// subobjects of a base class. The result looks something like this:
862/// @code
863/// struct D -> struct B -> struct A
864/// struct D -> struct C -> struct A
865/// @endcode
866std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
867  std::string PathDisplayStr;
868  std::set<unsigned> DisplayedPaths;
869  for (CXXBasePaths::paths_iterator Path = Paths.begin();
870       Path != Paths.end(); ++Path) {
871    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
872      // We haven't displayed a path to this particular base
873      // class subobject yet.
874      PathDisplayStr += "\n    ";
875      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
876      for (CXXBasePath::const_iterator Element = Path->begin();
877           Element != Path->end(); ++Element)
878        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
879    }
880  }
881
882  return PathDisplayStr;
883}
884
885//===----------------------------------------------------------------------===//
886// C++ class member Handling
887//===----------------------------------------------------------------------===//
888
889/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
890Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
891                                 SourceLocation ASLoc,
892                                 SourceLocation ColonLoc) {
893  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
894  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
895                                                  ASLoc, ColonLoc);
896  CurContext->addHiddenDecl(ASDecl);
897  return ASDecl;
898}
899
900/// CheckOverrideControl - Check C++0x override control semantics.
901void Sema::CheckOverrideControl(const Decl *D) {
902  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
903  if (!MD || !MD->isVirtual())
904    return;
905
906  if (MD->isDependentContext())
907    return;
908
909  // C++0x [class.virtual]p3:
910  //   If a virtual function is marked with the virt-specifier override and does
911  //   not override a member function of a base class,
912  //   the program is ill-formed.
913  bool HasOverriddenMethods =
914    MD->begin_overridden_methods() != MD->end_overridden_methods();
915  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
916    Diag(MD->getLocation(),
917                 diag::err_function_marked_override_not_overriding)
918      << MD->getDeclName();
919    return;
920  }
921}
922
923/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
924/// function overrides a virtual member function marked 'final', according to
925/// C++0x [class.virtual]p3.
926bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
927                                                  const CXXMethodDecl *Old) {
928  if (!Old->hasAttr<FinalAttr>())
929    return false;
930
931  Diag(New->getLocation(), diag::err_final_function_overridden)
932    << New->getDeclName();
933  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
934  return true;
935}
936
937/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
938/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
939/// bitfield width if there is one and 'InitExpr' specifies the initializer if
940/// any.
941Decl *
942Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
943                               MultiTemplateParamsArg TemplateParameterLists,
944                               ExprTy *BW, const VirtSpecifiers &VS,
945                               ExprTy *InitExpr, bool IsDefinition,
946                               bool Deleted) {
947  const DeclSpec &DS = D.getDeclSpec();
948  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
949  DeclarationName Name = NameInfo.getName();
950  SourceLocation Loc = NameInfo.getLoc();
951
952  // For anonymous bitfields, the location should point to the type.
953  if (Loc.isInvalid())
954    Loc = D.getSourceRange().getBegin();
955
956  Expr *BitWidth = static_cast<Expr*>(BW);
957  Expr *Init = static_cast<Expr*>(InitExpr);
958
959  assert(isa<CXXRecordDecl>(CurContext));
960  assert(!DS.isFriendSpecified());
961
962  bool isFunc = false;
963  if (D.isFunctionDeclarator())
964    isFunc = true;
965  else if (D.getNumTypeObjects() == 0 &&
966           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
967    QualType TDType = GetTypeFromParser(DS.getRepAsType());
968    isFunc = TDType->isFunctionType();
969  }
970
971  // C++ 9.2p6: A member shall not be declared to have automatic storage
972  // duration (auto, register) or with the extern storage-class-specifier.
973  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
974  // data members and cannot be applied to names declared const or static,
975  // and cannot be applied to reference members.
976  switch (DS.getStorageClassSpec()) {
977    case DeclSpec::SCS_unspecified:
978    case DeclSpec::SCS_typedef:
979    case DeclSpec::SCS_static:
980      // FALL THROUGH.
981      break;
982    case DeclSpec::SCS_mutable:
983      if (isFunc) {
984        if (DS.getStorageClassSpecLoc().isValid())
985          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
986        else
987          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
988
989        // FIXME: It would be nicer if the keyword was ignored only for this
990        // declarator. Otherwise we could get follow-up errors.
991        D.getMutableDeclSpec().ClearStorageClassSpecs();
992      }
993      break;
994    default:
995      if (DS.getStorageClassSpecLoc().isValid())
996        Diag(DS.getStorageClassSpecLoc(),
997             diag::err_storageclass_invalid_for_member);
998      else
999        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1000      D.getMutableDeclSpec().ClearStorageClassSpecs();
1001  }
1002
1003  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1004                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1005                      !isFunc);
1006
1007  Decl *Member;
1008  if (isInstField) {
1009    CXXScopeSpec &SS = D.getCXXScopeSpec();
1010
1011
1012    if (SS.isSet() && !SS.isInvalid()) {
1013      // The user provided a superfluous scope specifier inside a class
1014      // definition:
1015      //
1016      // class X {
1017      //   int X::member;
1018      // };
1019      DeclContext *DC = 0;
1020      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1021        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1022        << Name << FixItHint::CreateRemoval(SS.getRange());
1023      else
1024        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1025          << Name << SS.getRange();
1026
1027      SS.clear();
1028    }
1029
1030    // FIXME: Check for template parameters!
1031    // FIXME: Check that the name is an identifier!
1032    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1033                         AS);
1034    assert(Member && "HandleField never returns null");
1035  } else {
1036    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1037    if (!Member) {
1038      return 0;
1039    }
1040
1041    // Non-instance-fields can't have a bitfield.
1042    if (BitWidth) {
1043      if (Member->isInvalidDecl()) {
1044        // don't emit another diagnostic.
1045      } else if (isa<VarDecl>(Member)) {
1046        // C++ 9.6p3: A bit-field shall not be a static member.
1047        // "static member 'A' cannot be a bit-field"
1048        Diag(Loc, diag::err_static_not_bitfield)
1049          << Name << BitWidth->getSourceRange();
1050      } else if (isa<TypedefDecl>(Member)) {
1051        // "typedef member 'x' cannot be a bit-field"
1052        Diag(Loc, diag::err_typedef_not_bitfield)
1053          << Name << BitWidth->getSourceRange();
1054      } else {
1055        // A function typedef ("typedef int f(); f a;").
1056        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1057        Diag(Loc, diag::err_not_integral_type_bitfield)
1058          << Name << cast<ValueDecl>(Member)->getType()
1059          << BitWidth->getSourceRange();
1060      }
1061
1062      BitWidth = 0;
1063      Member->setInvalidDecl();
1064    }
1065
1066    Member->setAccess(AS);
1067
1068    // If we have declared a member function template, set the access of the
1069    // templated declaration as well.
1070    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1071      FunTmpl->getTemplatedDecl()->setAccess(AS);
1072  }
1073
1074  if (VS.isOverrideSpecified()) {
1075    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1076    if (!MD || !MD->isVirtual()) {
1077      Diag(Member->getLocStart(),
1078           diag::override_keyword_only_allowed_on_virtual_member_functions)
1079        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1080    } else
1081      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1082  }
1083  if (VS.isFinalSpecified()) {
1084    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1085    if (!MD || !MD->isVirtual()) {
1086      Diag(Member->getLocStart(),
1087           diag::override_keyword_only_allowed_on_virtual_member_functions)
1088      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1089    } else
1090      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1091  }
1092
1093  if (VS.getLastLocation().isValid()) {
1094    // Update the end location of a method that has a virt-specifiers.
1095    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1096      MD->setRangeEnd(VS.getLastLocation());
1097  }
1098
1099  CheckOverrideControl(Member);
1100
1101  assert((Name || isInstField) && "No identifier for non-field ?");
1102
1103  if (Init)
1104    AddInitializerToDecl(Member, Init, false,
1105                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1106  if (Deleted) // FIXME: Source location is not very good.
1107    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1108
1109  FinalizeDeclaration(Member);
1110
1111  if (isInstField)
1112    FieldCollector->Add(cast<FieldDecl>(Member));
1113  return Member;
1114}
1115
1116/// \brief Find the direct and/or virtual base specifiers that
1117/// correspond to the given base type, for use in base initialization
1118/// within a constructor.
1119static bool FindBaseInitializer(Sema &SemaRef,
1120                                CXXRecordDecl *ClassDecl,
1121                                QualType BaseType,
1122                                const CXXBaseSpecifier *&DirectBaseSpec,
1123                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1124  // First, check for a direct base class.
1125  DirectBaseSpec = 0;
1126  for (CXXRecordDecl::base_class_const_iterator Base
1127         = ClassDecl->bases_begin();
1128       Base != ClassDecl->bases_end(); ++Base) {
1129    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1130      // We found a direct base of this type. That's what we're
1131      // initializing.
1132      DirectBaseSpec = &*Base;
1133      break;
1134    }
1135  }
1136
1137  // Check for a virtual base class.
1138  // FIXME: We might be able to short-circuit this if we know in advance that
1139  // there are no virtual bases.
1140  VirtualBaseSpec = 0;
1141  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1142    // We haven't found a base yet; search the class hierarchy for a
1143    // virtual base class.
1144    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1145                       /*DetectVirtual=*/false);
1146    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1147                              BaseType, Paths)) {
1148      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1149           Path != Paths.end(); ++Path) {
1150        if (Path->back().Base->isVirtual()) {
1151          VirtualBaseSpec = Path->back().Base;
1152          break;
1153        }
1154      }
1155    }
1156  }
1157
1158  return DirectBaseSpec || VirtualBaseSpec;
1159}
1160
1161/// ActOnMemInitializer - Handle a C++ member initializer.
1162MemInitResult
1163Sema::ActOnMemInitializer(Decl *ConstructorD,
1164                          Scope *S,
1165                          CXXScopeSpec &SS,
1166                          IdentifierInfo *MemberOrBase,
1167                          ParsedType TemplateTypeTy,
1168                          SourceLocation IdLoc,
1169                          SourceLocation LParenLoc,
1170                          ExprTy **Args, unsigned NumArgs,
1171                          SourceLocation RParenLoc,
1172                          SourceLocation EllipsisLoc) {
1173  if (!ConstructorD)
1174    return true;
1175
1176  AdjustDeclIfTemplate(ConstructorD);
1177
1178  CXXConstructorDecl *Constructor
1179    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1180  if (!Constructor) {
1181    // The user wrote a constructor initializer on a function that is
1182    // not a C++ constructor. Ignore the error for now, because we may
1183    // have more member initializers coming; we'll diagnose it just
1184    // once in ActOnMemInitializers.
1185    return true;
1186  }
1187
1188  CXXRecordDecl *ClassDecl = Constructor->getParent();
1189
1190  // C++ [class.base.init]p2:
1191  //   Names in a mem-initializer-id are looked up in the scope of the
1192  //   constructor's class and, if not found in that scope, are looked
1193  //   up in the scope containing the constructor's definition.
1194  //   [Note: if the constructor's class contains a member with the
1195  //   same name as a direct or virtual base class of the class, a
1196  //   mem-initializer-id naming the member or base class and composed
1197  //   of a single identifier refers to the class member. A
1198  //   mem-initializer-id for the hidden base class may be specified
1199  //   using a qualified name. ]
1200  if (!SS.getScopeRep() && !TemplateTypeTy) {
1201    // Look for a member, first.
1202    FieldDecl *Member = 0;
1203    DeclContext::lookup_result Result
1204      = ClassDecl->lookup(MemberOrBase);
1205    if (Result.first != Result.second) {
1206      Member = dyn_cast<FieldDecl>(*Result.first);
1207
1208      if (Member) {
1209        if (EllipsisLoc.isValid())
1210          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1211            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1212
1213        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1214                                    LParenLoc, RParenLoc);
1215      }
1216
1217      // Handle anonymous union case.
1218      if (IndirectFieldDecl* IndirectField
1219            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1220        if (EllipsisLoc.isValid())
1221          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1222            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1223
1224         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1225                                       NumArgs, IdLoc,
1226                                       LParenLoc, RParenLoc);
1227      }
1228    }
1229  }
1230  // It didn't name a member, so see if it names a class.
1231  QualType BaseType;
1232  TypeSourceInfo *TInfo = 0;
1233
1234  if (TemplateTypeTy) {
1235    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1236  } else {
1237    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1238    LookupParsedName(R, S, &SS);
1239
1240    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1241    if (!TyD) {
1242      if (R.isAmbiguous()) return true;
1243
1244      // We don't want access-control diagnostics here.
1245      R.suppressDiagnostics();
1246
1247      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1248        bool NotUnknownSpecialization = false;
1249        DeclContext *DC = computeDeclContext(SS, false);
1250        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1251          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1252
1253        if (!NotUnknownSpecialization) {
1254          // When the scope specifier can refer to a member of an unknown
1255          // specialization, we take it as a type name.
1256          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1257                                       SS.getWithLocInContext(Context),
1258                                       *MemberOrBase, IdLoc);
1259          if (BaseType.isNull())
1260            return true;
1261
1262          R.clear();
1263          R.setLookupName(MemberOrBase);
1264        }
1265      }
1266
1267      // If no results were found, try to correct typos.
1268      if (R.empty() && BaseType.isNull() &&
1269          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1270          R.isSingleResult()) {
1271        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1272          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1273            // We have found a non-static data member with a similar
1274            // name to what was typed; complain and initialize that
1275            // member.
1276            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1277              << MemberOrBase << true << R.getLookupName()
1278              << FixItHint::CreateReplacement(R.getNameLoc(),
1279                                              R.getLookupName().getAsString());
1280            Diag(Member->getLocation(), diag::note_previous_decl)
1281              << Member->getDeclName();
1282
1283            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1284                                          LParenLoc, RParenLoc);
1285          }
1286        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1287          const CXXBaseSpecifier *DirectBaseSpec;
1288          const CXXBaseSpecifier *VirtualBaseSpec;
1289          if (FindBaseInitializer(*this, ClassDecl,
1290                                  Context.getTypeDeclType(Type),
1291                                  DirectBaseSpec, VirtualBaseSpec)) {
1292            // We have found a direct or virtual base class with a
1293            // similar name to what was typed; complain and initialize
1294            // that base class.
1295            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1296              << MemberOrBase << false << R.getLookupName()
1297              << FixItHint::CreateReplacement(R.getNameLoc(),
1298                                              R.getLookupName().getAsString());
1299
1300            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1301                                                             : VirtualBaseSpec;
1302            Diag(BaseSpec->getSourceRange().getBegin(),
1303                 diag::note_base_class_specified_here)
1304              << BaseSpec->getType()
1305              << BaseSpec->getSourceRange();
1306
1307            TyD = Type;
1308          }
1309        }
1310      }
1311
1312      if (!TyD && BaseType.isNull()) {
1313        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1314          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1315        return true;
1316      }
1317    }
1318
1319    if (BaseType.isNull()) {
1320      BaseType = Context.getTypeDeclType(TyD);
1321      if (SS.isSet()) {
1322        NestedNameSpecifier *Qualifier =
1323          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1324
1325        // FIXME: preserve source range information
1326        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1327      }
1328    }
1329  }
1330
1331  if (!TInfo)
1332    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1333
1334  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1335                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1336}
1337
1338/// Checks an initializer expression for use of uninitialized fields, such as
1339/// containing the field that is being initialized. Returns true if there is an
1340/// uninitialized field was used an updates the SourceLocation parameter; false
1341/// otherwise.
1342static bool InitExprContainsUninitializedFields(const Stmt *S,
1343                                                const ValueDecl *LhsField,
1344                                                SourceLocation *L) {
1345  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1346
1347  if (isa<CallExpr>(S)) {
1348    // Do not descend into function calls or constructors, as the use
1349    // of an uninitialized field may be valid. One would have to inspect
1350    // the contents of the function/ctor to determine if it is safe or not.
1351    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1352    // may be safe, depending on what the function/ctor does.
1353    return false;
1354  }
1355  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1356    const NamedDecl *RhsField = ME->getMemberDecl();
1357
1358    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1359      // The member expression points to a static data member.
1360      assert(VD->isStaticDataMember() &&
1361             "Member points to non-static data member!");
1362      (void)VD;
1363      return false;
1364    }
1365
1366    if (isa<EnumConstantDecl>(RhsField)) {
1367      // The member expression points to an enum.
1368      return false;
1369    }
1370
1371    if (RhsField == LhsField) {
1372      // Initializing a field with itself. Throw a warning.
1373      // But wait; there are exceptions!
1374      // Exception #1:  The field may not belong to this record.
1375      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1376      const Expr *base = ME->getBase();
1377      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1378        // Even though the field matches, it does not belong to this record.
1379        return false;
1380      }
1381      // None of the exceptions triggered; return true to indicate an
1382      // uninitialized field was used.
1383      *L = ME->getMemberLoc();
1384      return true;
1385    }
1386  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1387    // sizeof/alignof doesn't reference contents, do not warn.
1388    return false;
1389  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1390    // address-of doesn't reference contents (the pointer may be dereferenced
1391    // in the same expression but it would be rare; and weird).
1392    if (UOE->getOpcode() == UO_AddrOf)
1393      return false;
1394  }
1395  for (Stmt::const_child_range it = S->children(); it; ++it) {
1396    if (!*it) {
1397      // An expression such as 'member(arg ?: "")' may trigger this.
1398      continue;
1399    }
1400    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1401      return true;
1402  }
1403  return false;
1404}
1405
1406MemInitResult
1407Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1408                             unsigned NumArgs, SourceLocation IdLoc,
1409                             SourceLocation LParenLoc,
1410                             SourceLocation RParenLoc) {
1411  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1412  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1413  assert((DirectMember || IndirectMember) &&
1414         "Member must be a FieldDecl or IndirectFieldDecl");
1415
1416  if (Member->isInvalidDecl())
1417    return true;
1418
1419  // Diagnose value-uses of fields to initialize themselves, e.g.
1420  //   foo(foo)
1421  // where foo is not also a parameter to the constructor.
1422  // TODO: implement -Wuninitialized and fold this into that framework.
1423  for (unsigned i = 0; i < NumArgs; ++i) {
1424    SourceLocation L;
1425    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1426      // FIXME: Return true in the case when other fields are used before being
1427      // uninitialized. For example, let this field be the i'th field. When
1428      // initializing the i'th field, throw a warning if any of the >= i'th
1429      // fields are used, as they are not yet initialized.
1430      // Right now we are only handling the case where the i'th field uses
1431      // itself in its initializer.
1432      Diag(L, diag::warn_field_is_uninit);
1433    }
1434  }
1435
1436  bool HasDependentArg = false;
1437  for (unsigned i = 0; i < NumArgs; i++)
1438    HasDependentArg |= Args[i]->isTypeDependent();
1439
1440  Expr *Init;
1441  if (Member->getType()->isDependentType() || HasDependentArg) {
1442    // Can't check initialization for a member of dependent type or when
1443    // any of the arguments are type-dependent expressions.
1444    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1445                                       RParenLoc);
1446
1447    // Erase any temporaries within this evaluation context; we're not
1448    // going to track them in the AST, since we'll be rebuilding the
1449    // ASTs during template instantiation.
1450    ExprTemporaries.erase(
1451              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1452                          ExprTemporaries.end());
1453  } else {
1454    // Initialize the member.
1455    InitializedEntity MemberEntity =
1456      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1457                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1458    InitializationKind Kind =
1459      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1460
1461    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1462
1463    ExprResult MemberInit =
1464      InitSeq.Perform(*this, MemberEntity, Kind,
1465                      MultiExprArg(*this, Args, NumArgs), 0);
1466    if (MemberInit.isInvalid())
1467      return true;
1468
1469    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1470
1471    // C++0x [class.base.init]p7:
1472    //   The initialization of each base and member constitutes a
1473    //   full-expression.
1474    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1475    if (MemberInit.isInvalid())
1476      return true;
1477
1478    // If we are in a dependent context, template instantiation will
1479    // perform this type-checking again. Just save the arguments that we
1480    // received in a ParenListExpr.
1481    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1482    // of the information that we have about the member
1483    // initializer. However, deconstructing the ASTs is a dicey process,
1484    // and this approach is far more likely to get the corner cases right.
1485    if (CurContext->isDependentContext())
1486      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1487                                               RParenLoc);
1488    else
1489      Init = MemberInit.get();
1490  }
1491
1492  if (DirectMember) {
1493    return new (Context) CXXCtorInitializer(Context, DirectMember,
1494                                                    IdLoc, LParenLoc, Init,
1495                                                    RParenLoc);
1496  } else {
1497    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1498                                                    IdLoc, LParenLoc, Init,
1499                                                    RParenLoc);
1500  }
1501}
1502
1503MemInitResult
1504Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1505                                 Expr **Args, unsigned NumArgs,
1506                                 SourceLocation NameLoc,
1507                                 SourceLocation LParenLoc,
1508                                 SourceLocation RParenLoc,
1509                                 CXXRecordDecl *ClassDecl) {
1510  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1511  if (!LangOpts.CPlusPlus0x)
1512    return Diag(Loc, diag::err_delegation_0x_only)
1513      << TInfo->getTypeLoc().getLocalSourceRange();
1514
1515  // Initialize the object.
1516  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1517                                     QualType(ClassDecl->getTypeForDecl(), 0));
1518  InitializationKind Kind =
1519    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1520
1521  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1522
1523  ExprResult DelegationInit =
1524    InitSeq.Perform(*this, DelegationEntity, Kind,
1525                    MultiExprArg(*this, Args, NumArgs), 0);
1526  if (DelegationInit.isInvalid())
1527    return true;
1528
1529  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1530  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1531  assert(Constructor && "Delegating constructor with no target?");
1532
1533  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1534
1535  // C++0x [class.base.init]p7:
1536  //   The initialization of each base and member constitutes a
1537  //   full-expression.
1538  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1539  if (DelegationInit.isInvalid())
1540    return true;
1541
1542  // If we are in a dependent context, template instantiation will
1543  // perform this type-checking again. Just save the arguments that we
1544  // received in a ParenListExpr.
1545  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1546  // of the information that we have about the base
1547  // initializer. However, deconstructing the ASTs is a dicey process,
1548  // and this approach is far more likely to get the corner cases right.
1549  if (CurContext->isDependentContext()) {
1550    ExprResult Init
1551      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1552                                          NumArgs, RParenLoc));
1553    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1554                                            Constructor, Init.takeAs<Expr>(),
1555                                            RParenLoc);
1556  }
1557
1558  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1559                                          DelegationInit.takeAs<Expr>(),
1560                                          RParenLoc);
1561}
1562
1563MemInitResult
1564Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1565                           Expr **Args, unsigned NumArgs,
1566                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1567                           CXXRecordDecl *ClassDecl,
1568                           SourceLocation EllipsisLoc) {
1569  bool HasDependentArg = false;
1570  for (unsigned i = 0; i < NumArgs; i++)
1571    HasDependentArg |= Args[i]->isTypeDependent();
1572
1573  SourceLocation BaseLoc
1574    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1575
1576  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1577    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1578             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1579
1580  // C++ [class.base.init]p2:
1581  //   [...] Unless the mem-initializer-id names a nonstatic data
1582  //   member of the constructor's class or a direct or virtual base
1583  //   of that class, the mem-initializer is ill-formed. A
1584  //   mem-initializer-list can initialize a base class using any
1585  //   name that denotes that base class type.
1586  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1587
1588  if (EllipsisLoc.isValid()) {
1589    // This is a pack expansion.
1590    if (!BaseType->containsUnexpandedParameterPack())  {
1591      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1592        << SourceRange(BaseLoc, RParenLoc);
1593
1594      EllipsisLoc = SourceLocation();
1595    }
1596  } else {
1597    // Check for any unexpanded parameter packs.
1598    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1599      return true;
1600
1601    for (unsigned I = 0; I != NumArgs; ++I)
1602      if (DiagnoseUnexpandedParameterPack(Args[I]))
1603        return true;
1604  }
1605
1606  // Check for direct and virtual base classes.
1607  const CXXBaseSpecifier *DirectBaseSpec = 0;
1608  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1609  if (!Dependent) {
1610    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1611                                       BaseType))
1612      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1613                                        LParenLoc, RParenLoc, ClassDecl);
1614
1615    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1616                        VirtualBaseSpec);
1617
1618    // C++ [base.class.init]p2:
1619    // Unless the mem-initializer-id names a nonstatic data member of the
1620    // constructor's class or a direct or virtual base of that class, the
1621    // mem-initializer is ill-formed.
1622    if (!DirectBaseSpec && !VirtualBaseSpec) {
1623      // If the class has any dependent bases, then it's possible that
1624      // one of those types will resolve to the same type as
1625      // BaseType. Therefore, just treat this as a dependent base
1626      // class initialization.  FIXME: Should we try to check the
1627      // initialization anyway? It seems odd.
1628      if (ClassDecl->hasAnyDependentBases())
1629        Dependent = true;
1630      else
1631        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1632          << BaseType << Context.getTypeDeclType(ClassDecl)
1633          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1634    }
1635  }
1636
1637  if (Dependent) {
1638    // Can't check initialization for a base of dependent type or when
1639    // any of the arguments are type-dependent expressions.
1640    ExprResult BaseInit
1641      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1642                                          RParenLoc));
1643
1644    // Erase any temporaries within this evaluation context; we're not
1645    // going to track them in the AST, since we'll be rebuilding the
1646    // ASTs during template instantiation.
1647    ExprTemporaries.erase(
1648              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1649                          ExprTemporaries.end());
1650
1651    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1652                                                    /*IsVirtual=*/false,
1653                                                    LParenLoc,
1654                                                    BaseInit.takeAs<Expr>(),
1655                                                    RParenLoc,
1656                                                    EllipsisLoc);
1657  }
1658
1659  // C++ [base.class.init]p2:
1660  //   If a mem-initializer-id is ambiguous because it designates both
1661  //   a direct non-virtual base class and an inherited virtual base
1662  //   class, the mem-initializer is ill-formed.
1663  if (DirectBaseSpec && VirtualBaseSpec)
1664    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1665      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1666
1667  CXXBaseSpecifier *BaseSpec
1668    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1669  if (!BaseSpec)
1670    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1671
1672  // Initialize the base.
1673  InitializedEntity BaseEntity =
1674    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1675  InitializationKind Kind =
1676    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1677
1678  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1679
1680  ExprResult BaseInit =
1681    InitSeq.Perform(*this, BaseEntity, Kind,
1682                    MultiExprArg(*this, Args, NumArgs), 0);
1683  if (BaseInit.isInvalid())
1684    return true;
1685
1686  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1687
1688  // C++0x [class.base.init]p7:
1689  //   The initialization of each base and member constitutes a
1690  //   full-expression.
1691  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1692  if (BaseInit.isInvalid())
1693    return true;
1694
1695  // If we are in a dependent context, template instantiation will
1696  // perform this type-checking again. Just save the arguments that we
1697  // received in a ParenListExpr.
1698  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1699  // of the information that we have about the base
1700  // initializer. However, deconstructing the ASTs is a dicey process,
1701  // and this approach is far more likely to get the corner cases right.
1702  if (CurContext->isDependentContext()) {
1703    ExprResult Init
1704      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1705                                          RParenLoc));
1706    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1707                                                    BaseSpec->isVirtual(),
1708                                                    LParenLoc,
1709                                                    Init.takeAs<Expr>(),
1710                                                    RParenLoc,
1711                                                    EllipsisLoc);
1712  }
1713
1714  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1715                                                  BaseSpec->isVirtual(),
1716                                                  LParenLoc,
1717                                                  BaseInit.takeAs<Expr>(),
1718                                                  RParenLoc,
1719                                                  EllipsisLoc);
1720}
1721
1722/// ImplicitInitializerKind - How an implicit base or member initializer should
1723/// initialize its base or member.
1724enum ImplicitInitializerKind {
1725  IIK_Default,
1726  IIK_Copy,
1727  IIK_Move
1728};
1729
1730static bool
1731BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1732                             ImplicitInitializerKind ImplicitInitKind,
1733                             CXXBaseSpecifier *BaseSpec,
1734                             bool IsInheritedVirtualBase,
1735                             CXXCtorInitializer *&CXXBaseInit) {
1736  InitializedEntity InitEntity
1737    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1738                                        IsInheritedVirtualBase);
1739
1740  ExprResult BaseInit;
1741
1742  switch (ImplicitInitKind) {
1743  case IIK_Default: {
1744    InitializationKind InitKind
1745      = InitializationKind::CreateDefault(Constructor->getLocation());
1746    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1747    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1748                               MultiExprArg(SemaRef, 0, 0));
1749    break;
1750  }
1751
1752  case IIK_Copy: {
1753    ParmVarDecl *Param = Constructor->getParamDecl(0);
1754    QualType ParamType = Param->getType().getNonReferenceType();
1755
1756    Expr *CopyCtorArg =
1757      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1758                          Constructor->getLocation(), ParamType,
1759                          VK_LValue, 0);
1760
1761    // Cast to the base class to avoid ambiguities.
1762    QualType ArgTy =
1763      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1764                                       ParamType.getQualifiers());
1765
1766    CXXCastPath BasePath;
1767    BasePath.push_back(BaseSpec);
1768    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1769                                            CK_UncheckedDerivedToBase,
1770                                            VK_LValue, &BasePath).take();
1771
1772    InitializationKind InitKind
1773      = InitializationKind::CreateDirect(Constructor->getLocation(),
1774                                         SourceLocation(), SourceLocation());
1775    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1776                                   &CopyCtorArg, 1);
1777    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1778                               MultiExprArg(&CopyCtorArg, 1));
1779    break;
1780  }
1781
1782  case IIK_Move:
1783    assert(false && "Unhandled initializer kind!");
1784  }
1785
1786  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1787  if (BaseInit.isInvalid())
1788    return true;
1789
1790  CXXBaseInit =
1791    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1792               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1793                                                        SourceLocation()),
1794                                             BaseSpec->isVirtual(),
1795                                             SourceLocation(),
1796                                             BaseInit.takeAs<Expr>(),
1797                                             SourceLocation(),
1798                                             SourceLocation());
1799
1800  return false;
1801}
1802
1803static bool
1804BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1805                               ImplicitInitializerKind ImplicitInitKind,
1806                               FieldDecl *Field,
1807                               CXXCtorInitializer *&CXXMemberInit) {
1808  if (Field->isInvalidDecl())
1809    return true;
1810
1811  SourceLocation Loc = Constructor->getLocation();
1812
1813  if (ImplicitInitKind == IIK_Copy) {
1814    ParmVarDecl *Param = Constructor->getParamDecl(0);
1815    QualType ParamType = Param->getType().getNonReferenceType();
1816
1817    Expr *MemberExprBase =
1818      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1819                          Loc, ParamType, VK_LValue, 0);
1820
1821    // Build a reference to this field within the parameter.
1822    CXXScopeSpec SS;
1823    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1824                              Sema::LookupMemberName);
1825    MemberLookup.addDecl(Field, AS_public);
1826    MemberLookup.resolveKind();
1827    ExprResult CopyCtorArg
1828      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1829                                         ParamType, Loc,
1830                                         /*IsArrow=*/false,
1831                                         SS,
1832                                         /*FirstQualifierInScope=*/0,
1833                                         MemberLookup,
1834                                         /*TemplateArgs=*/0);
1835    if (CopyCtorArg.isInvalid())
1836      return true;
1837
1838    // When the field we are copying is an array, create index variables for
1839    // each dimension of the array. We use these index variables to subscript
1840    // the source array, and other clients (e.g., CodeGen) will perform the
1841    // necessary iteration with these index variables.
1842    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1843    QualType BaseType = Field->getType();
1844    QualType SizeType = SemaRef.Context.getSizeType();
1845    while (const ConstantArrayType *Array
1846                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1847      // Create the iteration variable for this array index.
1848      IdentifierInfo *IterationVarName = 0;
1849      {
1850        llvm::SmallString<8> Str;
1851        llvm::raw_svector_ostream OS(Str);
1852        OS << "__i" << IndexVariables.size();
1853        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1854      }
1855      VarDecl *IterationVar
1856        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1857                          IterationVarName, SizeType,
1858                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1859                          SC_None, SC_None);
1860      IndexVariables.push_back(IterationVar);
1861
1862      // Create a reference to the iteration variable.
1863      ExprResult IterationVarRef
1864        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1865      assert(!IterationVarRef.isInvalid() &&
1866             "Reference to invented variable cannot fail!");
1867
1868      // Subscript the array with this iteration variable.
1869      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1870                                                            Loc,
1871                                                        IterationVarRef.take(),
1872                                                            Loc);
1873      if (CopyCtorArg.isInvalid())
1874        return true;
1875
1876      BaseType = Array->getElementType();
1877    }
1878
1879    // Construct the entity that we will be initializing. For an array, this
1880    // will be first element in the array, which may require several levels
1881    // of array-subscript entities.
1882    llvm::SmallVector<InitializedEntity, 4> Entities;
1883    Entities.reserve(1 + IndexVariables.size());
1884    Entities.push_back(InitializedEntity::InitializeMember(Field));
1885    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1886      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1887                                                              0,
1888                                                              Entities.back()));
1889
1890    // Direct-initialize to use the copy constructor.
1891    InitializationKind InitKind =
1892      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1893
1894    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1895    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1896                                   &CopyCtorArgE, 1);
1897
1898    ExprResult MemberInit
1899      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1900                        MultiExprArg(&CopyCtorArgE, 1));
1901    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1902    if (MemberInit.isInvalid())
1903      return true;
1904
1905    CXXMemberInit
1906      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1907                                           MemberInit.takeAs<Expr>(), Loc,
1908                                           IndexVariables.data(),
1909                                           IndexVariables.size());
1910    return false;
1911  }
1912
1913  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1914
1915  QualType FieldBaseElementType =
1916    SemaRef.Context.getBaseElementType(Field->getType());
1917
1918  if (FieldBaseElementType->isRecordType()) {
1919    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1920    InitializationKind InitKind =
1921      InitializationKind::CreateDefault(Loc);
1922
1923    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1924    ExprResult MemberInit =
1925      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1926
1927    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1928    if (MemberInit.isInvalid())
1929      return true;
1930
1931    CXXMemberInit =
1932      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1933                                                       Field, Loc, Loc,
1934                                                       MemberInit.get(),
1935                                                       Loc);
1936    return false;
1937  }
1938
1939  if (FieldBaseElementType->isReferenceType()) {
1940    SemaRef.Diag(Constructor->getLocation(),
1941                 diag::err_uninitialized_member_in_ctor)
1942    << (int)Constructor->isImplicit()
1943    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1944    << 0 << Field->getDeclName();
1945    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1946    return true;
1947  }
1948
1949  if (FieldBaseElementType.isConstQualified()) {
1950    SemaRef.Diag(Constructor->getLocation(),
1951                 diag::err_uninitialized_member_in_ctor)
1952    << (int)Constructor->isImplicit()
1953    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1954    << 1 << Field->getDeclName();
1955    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1956    return true;
1957  }
1958
1959  // Nothing to initialize.
1960  CXXMemberInit = 0;
1961  return false;
1962}
1963
1964namespace {
1965struct BaseAndFieldInfo {
1966  Sema &S;
1967  CXXConstructorDecl *Ctor;
1968  bool AnyErrorsInInits;
1969  ImplicitInitializerKind IIK;
1970  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1971  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1972
1973  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1974    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1975    // FIXME: Handle implicit move constructors.
1976    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1977      IIK = IIK_Copy;
1978    else
1979      IIK = IIK_Default;
1980  }
1981};
1982}
1983
1984static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1985                                    FieldDecl *Top, FieldDecl *Field) {
1986
1987  // Overwhelmingly common case: we have a direct initializer for this field.
1988  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1989    Info.AllToInit.push_back(Init);
1990    return false;
1991  }
1992
1993  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1994    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1995    assert(FieldClassType && "anonymous struct/union without record type");
1996    CXXRecordDecl *FieldClassDecl
1997      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1998
1999    // Even though union members never have non-trivial default
2000    // constructions in C++03, we still build member initializers for aggregate
2001    // record types which can be union members, and C++0x allows non-trivial
2002    // default constructors for union members, so we ensure that only one
2003    // member is initialized for these.
2004    if (FieldClassDecl->isUnion()) {
2005      // First check for an explicit initializer for one field.
2006      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2007           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2008        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2009          Info.AllToInit.push_back(Init);
2010
2011          // Once we've initialized a field of an anonymous union, the union
2012          // field in the class is also initialized, so exit immediately.
2013          return false;
2014        } else if ((*FA)->isAnonymousStructOrUnion()) {
2015          if (CollectFieldInitializer(Info, Top, *FA))
2016            return true;
2017        }
2018      }
2019
2020      // Fallthrough and construct a default initializer for the union as
2021      // a whole, which can call its default constructor if such a thing exists
2022      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2023      // behavior going forward with C++0x, when anonymous unions there are
2024      // finalized, we should revisit this.
2025    } else {
2026      // For structs, we simply descend through to initialize all members where
2027      // necessary.
2028      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2029           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2030        if (CollectFieldInitializer(Info, Top, *FA))
2031          return true;
2032      }
2033    }
2034  }
2035
2036  // Don't try to build an implicit initializer if there were semantic
2037  // errors in any of the initializers (and therefore we might be
2038  // missing some that the user actually wrote).
2039  if (Info.AnyErrorsInInits)
2040    return false;
2041
2042  CXXCtorInitializer *Init = 0;
2043  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2044    return true;
2045
2046  if (Init)
2047    Info.AllToInit.push_back(Init);
2048
2049  return false;
2050}
2051
2052bool
2053Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2054                                  CXXCtorInitializer **Initializers,
2055                                  unsigned NumInitializers,
2056                                  bool AnyErrors) {
2057  if (Constructor->getDeclContext()->isDependentContext()) {
2058    // Just store the initializers as written, they will be checked during
2059    // instantiation.
2060    if (NumInitializers > 0) {
2061      Constructor->setNumCtorInitializers(NumInitializers);
2062      CXXCtorInitializer **baseOrMemberInitializers =
2063        new (Context) CXXCtorInitializer*[NumInitializers];
2064      memcpy(baseOrMemberInitializers, Initializers,
2065             NumInitializers * sizeof(CXXCtorInitializer*));
2066      Constructor->setCtorInitializers(baseOrMemberInitializers);
2067    }
2068
2069    return false;
2070  }
2071
2072  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2073
2074  // We need to build the initializer AST according to order of construction
2075  // and not what user specified in the Initializers list.
2076  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2077  if (!ClassDecl)
2078    return true;
2079
2080  bool HadError = false;
2081
2082  for (unsigned i = 0; i < NumInitializers; i++) {
2083    CXXCtorInitializer *Member = Initializers[i];
2084
2085    if (Member->isBaseInitializer())
2086      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2087    else
2088      Info.AllBaseFields[Member->getAnyMember()] = Member;
2089  }
2090
2091  // Keep track of the direct virtual bases.
2092  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2093  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2094       E = ClassDecl->bases_end(); I != E; ++I) {
2095    if (I->isVirtual())
2096      DirectVBases.insert(I);
2097  }
2098
2099  // Push virtual bases before others.
2100  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2101       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2102
2103    if (CXXCtorInitializer *Value
2104        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2105      Info.AllToInit.push_back(Value);
2106    } else if (!AnyErrors) {
2107      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2108      CXXCtorInitializer *CXXBaseInit;
2109      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2110                                       VBase, IsInheritedVirtualBase,
2111                                       CXXBaseInit)) {
2112        HadError = true;
2113        continue;
2114      }
2115
2116      Info.AllToInit.push_back(CXXBaseInit);
2117    }
2118  }
2119
2120  // Non-virtual bases.
2121  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2122       E = ClassDecl->bases_end(); Base != E; ++Base) {
2123    // Virtuals are in the virtual base list and already constructed.
2124    if (Base->isVirtual())
2125      continue;
2126
2127    if (CXXCtorInitializer *Value
2128          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2129      Info.AllToInit.push_back(Value);
2130    } else if (!AnyErrors) {
2131      CXXCtorInitializer *CXXBaseInit;
2132      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2133                                       Base, /*IsInheritedVirtualBase=*/false,
2134                                       CXXBaseInit)) {
2135        HadError = true;
2136        continue;
2137      }
2138
2139      Info.AllToInit.push_back(CXXBaseInit);
2140    }
2141  }
2142
2143  // Fields.
2144  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2145       E = ClassDecl->field_end(); Field != E; ++Field) {
2146    if ((*Field)->getType()->isIncompleteArrayType()) {
2147      assert(ClassDecl->hasFlexibleArrayMember() &&
2148             "Incomplete array type is not valid");
2149      continue;
2150    }
2151    if (CollectFieldInitializer(Info, *Field, *Field))
2152      HadError = true;
2153  }
2154
2155  NumInitializers = Info.AllToInit.size();
2156  if (NumInitializers > 0) {
2157    Constructor->setNumCtorInitializers(NumInitializers);
2158    CXXCtorInitializer **baseOrMemberInitializers =
2159      new (Context) CXXCtorInitializer*[NumInitializers];
2160    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2161           NumInitializers * sizeof(CXXCtorInitializer*));
2162    Constructor->setCtorInitializers(baseOrMemberInitializers);
2163
2164    // Constructors implicitly reference the base and member
2165    // destructors.
2166    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2167                                           Constructor->getParent());
2168  }
2169
2170  return HadError;
2171}
2172
2173static void *GetKeyForTopLevelField(FieldDecl *Field) {
2174  // For anonymous unions, use the class declaration as the key.
2175  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2176    if (RT->getDecl()->isAnonymousStructOrUnion())
2177      return static_cast<void *>(RT->getDecl());
2178  }
2179  return static_cast<void *>(Field);
2180}
2181
2182static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2183  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2184}
2185
2186static void *GetKeyForMember(ASTContext &Context,
2187                             CXXCtorInitializer *Member) {
2188  if (!Member->isAnyMemberInitializer())
2189    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2190
2191  // For fields injected into the class via declaration of an anonymous union,
2192  // use its anonymous union class declaration as the unique key.
2193  FieldDecl *Field = Member->getAnyMember();
2194
2195  // If the field is a member of an anonymous struct or union, our key
2196  // is the anonymous record decl that's a direct child of the class.
2197  RecordDecl *RD = Field->getParent();
2198  if (RD->isAnonymousStructOrUnion()) {
2199    while (true) {
2200      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2201      if (Parent->isAnonymousStructOrUnion())
2202        RD = Parent;
2203      else
2204        break;
2205    }
2206
2207    return static_cast<void *>(RD);
2208  }
2209
2210  return static_cast<void *>(Field);
2211}
2212
2213static void
2214DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2215                                  const CXXConstructorDecl *Constructor,
2216                                  CXXCtorInitializer **Inits,
2217                                  unsigned NumInits) {
2218  if (Constructor->getDeclContext()->isDependentContext())
2219    return;
2220
2221  // Don't check initializers order unless the warning is enabled at the
2222  // location of at least one initializer.
2223  bool ShouldCheckOrder = false;
2224  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2225    CXXCtorInitializer *Init = Inits[InitIndex];
2226    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2227                                         Init->getSourceLocation())
2228          != Diagnostic::Ignored) {
2229      ShouldCheckOrder = true;
2230      break;
2231    }
2232  }
2233  if (!ShouldCheckOrder)
2234    return;
2235
2236  // Build the list of bases and members in the order that they'll
2237  // actually be initialized.  The explicit initializers should be in
2238  // this same order but may be missing things.
2239  llvm::SmallVector<const void*, 32> IdealInitKeys;
2240
2241  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2242
2243  // 1. Virtual bases.
2244  for (CXXRecordDecl::base_class_const_iterator VBase =
2245       ClassDecl->vbases_begin(),
2246       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2247    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2248
2249  // 2. Non-virtual bases.
2250  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2251       E = ClassDecl->bases_end(); Base != E; ++Base) {
2252    if (Base->isVirtual())
2253      continue;
2254    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2255  }
2256
2257  // 3. Direct fields.
2258  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2259       E = ClassDecl->field_end(); Field != E; ++Field)
2260    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2261
2262  unsigned NumIdealInits = IdealInitKeys.size();
2263  unsigned IdealIndex = 0;
2264
2265  CXXCtorInitializer *PrevInit = 0;
2266  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2267    CXXCtorInitializer *Init = Inits[InitIndex];
2268    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2269
2270    // Scan forward to try to find this initializer in the idealized
2271    // initializers list.
2272    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2273      if (InitKey == IdealInitKeys[IdealIndex])
2274        break;
2275
2276    // If we didn't find this initializer, it must be because we
2277    // scanned past it on a previous iteration.  That can only
2278    // happen if we're out of order;  emit a warning.
2279    if (IdealIndex == NumIdealInits && PrevInit) {
2280      Sema::SemaDiagnosticBuilder D =
2281        SemaRef.Diag(PrevInit->getSourceLocation(),
2282                     diag::warn_initializer_out_of_order);
2283
2284      if (PrevInit->isAnyMemberInitializer())
2285        D << 0 << PrevInit->getAnyMember()->getDeclName();
2286      else
2287        D << 1 << PrevInit->getBaseClassInfo()->getType();
2288
2289      if (Init->isAnyMemberInitializer())
2290        D << 0 << Init->getAnyMember()->getDeclName();
2291      else
2292        D << 1 << Init->getBaseClassInfo()->getType();
2293
2294      // Move back to the initializer's location in the ideal list.
2295      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2296        if (InitKey == IdealInitKeys[IdealIndex])
2297          break;
2298
2299      assert(IdealIndex != NumIdealInits &&
2300             "initializer not found in initializer list");
2301    }
2302
2303    PrevInit = Init;
2304  }
2305}
2306
2307namespace {
2308bool CheckRedundantInit(Sema &S,
2309                        CXXCtorInitializer *Init,
2310                        CXXCtorInitializer *&PrevInit) {
2311  if (!PrevInit) {
2312    PrevInit = Init;
2313    return false;
2314  }
2315
2316  if (FieldDecl *Field = Init->getMember())
2317    S.Diag(Init->getSourceLocation(),
2318           diag::err_multiple_mem_initialization)
2319      << Field->getDeclName()
2320      << Init->getSourceRange();
2321  else {
2322    const Type *BaseClass = Init->getBaseClass();
2323    assert(BaseClass && "neither field nor base");
2324    S.Diag(Init->getSourceLocation(),
2325           diag::err_multiple_base_initialization)
2326      << QualType(BaseClass, 0)
2327      << Init->getSourceRange();
2328  }
2329  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2330    << 0 << PrevInit->getSourceRange();
2331
2332  return true;
2333}
2334
2335typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2336typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2337
2338bool CheckRedundantUnionInit(Sema &S,
2339                             CXXCtorInitializer *Init,
2340                             RedundantUnionMap &Unions) {
2341  FieldDecl *Field = Init->getAnyMember();
2342  RecordDecl *Parent = Field->getParent();
2343  if (!Parent->isAnonymousStructOrUnion())
2344    return false;
2345
2346  NamedDecl *Child = Field;
2347  do {
2348    if (Parent->isUnion()) {
2349      UnionEntry &En = Unions[Parent];
2350      if (En.first && En.first != Child) {
2351        S.Diag(Init->getSourceLocation(),
2352               diag::err_multiple_mem_union_initialization)
2353          << Field->getDeclName()
2354          << Init->getSourceRange();
2355        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2356          << 0 << En.second->getSourceRange();
2357        return true;
2358      } else if (!En.first) {
2359        En.first = Child;
2360        En.second = Init;
2361      }
2362    }
2363
2364    Child = Parent;
2365    Parent = cast<RecordDecl>(Parent->getDeclContext());
2366  } while (Parent->isAnonymousStructOrUnion());
2367
2368  return false;
2369}
2370}
2371
2372/// ActOnMemInitializers - Handle the member initializers for a constructor.
2373void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2374                                SourceLocation ColonLoc,
2375                                MemInitTy **meminits, unsigned NumMemInits,
2376                                bool AnyErrors) {
2377  if (!ConstructorDecl)
2378    return;
2379
2380  AdjustDeclIfTemplate(ConstructorDecl);
2381
2382  CXXConstructorDecl *Constructor
2383    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2384
2385  if (!Constructor) {
2386    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2387    return;
2388  }
2389
2390  CXXCtorInitializer **MemInits =
2391    reinterpret_cast<CXXCtorInitializer **>(meminits);
2392
2393  // Mapping for the duplicate initializers check.
2394  // For member initializers, this is keyed with a FieldDecl*.
2395  // For base initializers, this is keyed with a Type*.
2396  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2397
2398  // Mapping for the inconsistent anonymous-union initializers check.
2399  RedundantUnionMap MemberUnions;
2400
2401  bool HadError = false;
2402  for (unsigned i = 0; i < NumMemInits; i++) {
2403    CXXCtorInitializer *Init = MemInits[i];
2404
2405    // Set the source order index.
2406    Init->setSourceOrder(i);
2407
2408    if (Init->isAnyMemberInitializer()) {
2409      FieldDecl *Field = Init->getAnyMember();
2410      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2411          CheckRedundantUnionInit(*this, Init, MemberUnions))
2412        HadError = true;
2413    } else if (Init->isBaseInitializer()) {
2414      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2415      if (CheckRedundantInit(*this, Init, Members[Key]))
2416        HadError = true;
2417    } else {
2418      assert(Init->isDelegatingInitializer());
2419      // This must be the only initializer
2420      if (i != 0 || NumMemInits > 1) {
2421        Diag(MemInits[0]->getSourceLocation(),
2422             diag::err_delegating_initializer_alone)
2423          << MemInits[0]->getSourceRange();
2424        HadError = true;
2425      }
2426    }
2427  }
2428
2429  if (HadError)
2430    return;
2431
2432  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2433
2434  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2435}
2436
2437void
2438Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2439                                             CXXRecordDecl *ClassDecl) {
2440  // Ignore dependent contexts.
2441  if (ClassDecl->isDependentContext())
2442    return;
2443
2444  // FIXME: all the access-control diagnostics are positioned on the
2445  // field/base declaration.  That's probably good; that said, the
2446  // user might reasonably want to know why the destructor is being
2447  // emitted, and we currently don't say.
2448
2449  // Non-static data members.
2450  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2451       E = ClassDecl->field_end(); I != E; ++I) {
2452    FieldDecl *Field = *I;
2453    if (Field->isInvalidDecl())
2454      continue;
2455    QualType FieldType = Context.getBaseElementType(Field->getType());
2456
2457    const RecordType* RT = FieldType->getAs<RecordType>();
2458    if (!RT)
2459      continue;
2460
2461    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2462    if (FieldClassDecl->isInvalidDecl())
2463      continue;
2464    if (FieldClassDecl->hasTrivialDestructor())
2465      continue;
2466
2467    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2468    assert(Dtor && "No dtor found for FieldClassDecl!");
2469    CheckDestructorAccess(Field->getLocation(), Dtor,
2470                          PDiag(diag::err_access_dtor_field)
2471                            << Field->getDeclName()
2472                            << FieldType);
2473
2474    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2475  }
2476
2477  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2478
2479  // Bases.
2480  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2481       E = ClassDecl->bases_end(); Base != E; ++Base) {
2482    // Bases are always records in a well-formed non-dependent class.
2483    const RecordType *RT = Base->getType()->getAs<RecordType>();
2484
2485    // Remember direct virtual bases.
2486    if (Base->isVirtual())
2487      DirectVirtualBases.insert(RT);
2488
2489    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2490    // If our base class is invalid, we probably can't get its dtor anyway.
2491    if (BaseClassDecl->isInvalidDecl())
2492      continue;
2493    // Ignore trivial destructors.
2494    if (BaseClassDecl->hasTrivialDestructor())
2495      continue;
2496
2497    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2498    assert(Dtor && "No dtor found for BaseClassDecl!");
2499
2500    // FIXME: caret should be on the start of the class name
2501    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2502                          PDiag(diag::err_access_dtor_base)
2503                            << Base->getType()
2504                            << Base->getSourceRange());
2505
2506    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2507  }
2508
2509  // Virtual bases.
2510  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2511       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2512
2513    // Bases are always records in a well-formed non-dependent class.
2514    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2515
2516    // Ignore direct virtual bases.
2517    if (DirectVirtualBases.count(RT))
2518      continue;
2519
2520    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2521    // If our base class is invalid, we probably can't get its dtor anyway.
2522    if (BaseClassDecl->isInvalidDecl())
2523      continue;
2524    // Ignore trivial destructors.
2525    if (BaseClassDecl->hasTrivialDestructor())
2526      continue;
2527
2528    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2529    assert(Dtor && "No dtor found for BaseClassDecl!");
2530    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2531                          PDiag(diag::err_access_dtor_vbase)
2532                            << VBase->getType());
2533
2534    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2535  }
2536}
2537
2538void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2539  if (!CDtorDecl)
2540    return;
2541
2542  if (CXXConstructorDecl *Constructor
2543      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2544    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2545}
2546
2547bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2548                                  unsigned DiagID, AbstractDiagSelID SelID) {
2549  if (SelID == -1)
2550    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2551  else
2552    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2553}
2554
2555bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2556                                  const PartialDiagnostic &PD) {
2557  if (!getLangOptions().CPlusPlus)
2558    return false;
2559
2560  if (const ArrayType *AT = Context.getAsArrayType(T))
2561    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2562
2563  if (const PointerType *PT = T->getAs<PointerType>()) {
2564    // Find the innermost pointer type.
2565    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2566      PT = T;
2567
2568    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2569      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2570  }
2571
2572  const RecordType *RT = T->getAs<RecordType>();
2573  if (!RT)
2574    return false;
2575
2576  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2577
2578  // We can't answer whether something is abstract until it has a
2579  // definition.  If it's currently being defined, we'll walk back
2580  // over all the declarations when we have a full definition.
2581  const CXXRecordDecl *Def = RD->getDefinition();
2582  if (!Def || Def->isBeingDefined())
2583    return false;
2584
2585  if (!RD->isAbstract())
2586    return false;
2587
2588  Diag(Loc, PD) << RD->getDeclName();
2589  DiagnoseAbstractType(RD);
2590
2591  return true;
2592}
2593
2594void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2595  // Check if we've already emitted the list of pure virtual functions
2596  // for this class.
2597  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2598    return;
2599
2600  CXXFinalOverriderMap FinalOverriders;
2601  RD->getFinalOverriders(FinalOverriders);
2602
2603  // Keep a set of seen pure methods so we won't diagnose the same method
2604  // more than once.
2605  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2606
2607  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2608                                   MEnd = FinalOverriders.end();
2609       M != MEnd;
2610       ++M) {
2611    for (OverridingMethods::iterator SO = M->second.begin(),
2612                                  SOEnd = M->second.end();
2613         SO != SOEnd; ++SO) {
2614      // C++ [class.abstract]p4:
2615      //   A class is abstract if it contains or inherits at least one
2616      //   pure virtual function for which the final overrider is pure
2617      //   virtual.
2618
2619      //
2620      if (SO->second.size() != 1)
2621        continue;
2622
2623      if (!SO->second.front().Method->isPure())
2624        continue;
2625
2626      if (!SeenPureMethods.insert(SO->second.front().Method))
2627        continue;
2628
2629      Diag(SO->second.front().Method->getLocation(),
2630           diag::note_pure_virtual_function)
2631        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2632    }
2633  }
2634
2635  if (!PureVirtualClassDiagSet)
2636    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2637  PureVirtualClassDiagSet->insert(RD);
2638}
2639
2640namespace {
2641struct AbstractUsageInfo {
2642  Sema &S;
2643  CXXRecordDecl *Record;
2644  CanQualType AbstractType;
2645  bool Invalid;
2646
2647  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2648    : S(S), Record(Record),
2649      AbstractType(S.Context.getCanonicalType(
2650                   S.Context.getTypeDeclType(Record))),
2651      Invalid(false) {}
2652
2653  void DiagnoseAbstractType() {
2654    if (Invalid) return;
2655    S.DiagnoseAbstractType(Record);
2656    Invalid = true;
2657  }
2658
2659  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2660};
2661
2662struct CheckAbstractUsage {
2663  AbstractUsageInfo &Info;
2664  const NamedDecl *Ctx;
2665
2666  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2667    : Info(Info), Ctx(Ctx) {}
2668
2669  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2670    switch (TL.getTypeLocClass()) {
2671#define ABSTRACT_TYPELOC(CLASS, PARENT)
2672#define TYPELOC(CLASS, PARENT) \
2673    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2674#include "clang/AST/TypeLocNodes.def"
2675    }
2676  }
2677
2678  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2679    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2680    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2681      if (!TL.getArg(I))
2682        continue;
2683
2684      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2685      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2686    }
2687  }
2688
2689  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2690    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2691  }
2692
2693  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2694    // Visit the type parameters from a permissive context.
2695    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2696      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2697      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2698        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2699          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2700      // TODO: other template argument types?
2701    }
2702  }
2703
2704  // Visit pointee types from a permissive context.
2705#define CheckPolymorphic(Type) \
2706  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2707    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2708  }
2709  CheckPolymorphic(PointerTypeLoc)
2710  CheckPolymorphic(ReferenceTypeLoc)
2711  CheckPolymorphic(MemberPointerTypeLoc)
2712  CheckPolymorphic(BlockPointerTypeLoc)
2713
2714  /// Handle all the types we haven't given a more specific
2715  /// implementation for above.
2716  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2717    // Every other kind of type that we haven't called out already
2718    // that has an inner type is either (1) sugar or (2) contains that
2719    // inner type in some way as a subobject.
2720    if (TypeLoc Next = TL.getNextTypeLoc())
2721      return Visit(Next, Sel);
2722
2723    // If there's no inner type and we're in a permissive context,
2724    // don't diagnose.
2725    if (Sel == Sema::AbstractNone) return;
2726
2727    // Check whether the type matches the abstract type.
2728    QualType T = TL.getType();
2729    if (T->isArrayType()) {
2730      Sel = Sema::AbstractArrayType;
2731      T = Info.S.Context.getBaseElementType(T);
2732    }
2733    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2734    if (CT != Info.AbstractType) return;
2735
2736    // It matched; do some magic.
2737    if (Sel == Sema::AbstractArrayType) {
2738      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2739        << T << TL.getSourceRange();
2740    } else {
2741      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2742        << Sel << T << TL.getSourceRange();
2743    }
2744    Info.DiagnoseAbstractType();
2745  }
2746};
2747
2748void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2749                                  Sema::AbstractDiagSelID Sel) {
2750  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2751}
2752
2753}
2754
2755/// Check for invalid uses of an abstract type in a method declaration.
2756static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2757                                    CXXMethodDecl *MD) {
2758  // No need to do the check on definitions, which require that
2759  // the return/param types be complete.
2760  if (MD->isThisDeclarationADefinition())
2761    return;
2762
2763  // For safety's sake, just ignore it if we don't have type source
2764  // information.  This should never happen for non-implicit methods,
2765  // but...
2766  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2767    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2768}
2769
2770/// Check for invalid uses of an abstract type within a class definition.
2771static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2772                                    CXXRecordDecl *RD) {
2773  for (CXXRecordDecl::decl_iterator
2774         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2775    Decl *D = *I;
2776    if (D->isImplicit()) continue;
2777
2778    // Methods and method templates.
2779    if (isa<CXXMethodDecl>(D)) {
2780      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2781    } else if (isa<FunctionTemplateDecl>(D)) {
2782      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2783      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2784
2785    // Fields and static variables.
2786    } else if (isa<FieldDecl>(D)) {
2787      FieldDecl *FD = cast<FieldDecl>(D);
2788      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2789        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2790    } else if (isa<VarDecl>(D)) {
2791      VarDecl *VD = cast<VarDecl>(D);
2792      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2793        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2794
2795    // Nested classes and class templates.
2796    } else if (isa<CXXRecordDecl>(D)) {
2797      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2798    } else if (isa<ClassTemplateDecl>(D)) {
2799      CheckAbstractClassUsage(Info,
2800                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2801    }
2802  }
2803}
2804
2805/// \brief Perform semantic checks on a class definition that has been
2806/// completing, introducing implicitly-declared members, checking for
2807/// abstract types, etc.
2808void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2809  if (!Record)
2810    return;
2811
2812  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2813    AbstractUsageInfo Info(*this, Record);
2814    CheckAbstractClassUsage(Info, Record);
2815  }
2816
2817  // If this is not an aggregate type and has no user-declared constructor,
2818  // complain about any non-static data members of reference or const scalar
2819  // type, since they will never get initializers.
2820  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2821      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2822    bool Complained = false;
2823    for (RecordDecl::field_iterator F = Record->field_begin(),
2824                                 FEnd = Record->field_end();
2825         F != FEnd; ++F) {
2826      if (F->getType()->isReferenceType() ||
2827          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2828        if (!Complained) {
2829          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2830            << Record->getTagKind() << Record;
2831          Complained = true;
2832        }
2833
2834        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2835          << F->getType()->isReferenceType()
2836          << F->getDeclName();
2837      }
2838    }
2839  }
2840
2841  if (Record->isDynamicClass() && !Record->isDependentType())
2842    DynamicClasses.push_back(Record);
2843
2844  if (Record->getIdentifier()) {
2845    // C++ [class.mem]p13:
2846    //   If T is the name of a class, then each of the following shall have a
2847    //   name different from T:
2848    //     - every member of every anonymous union that is a member of class T.
2849    //
2850    // C++ [class.mem]p14:
2851    //   In addition, if class T has a user-declared constructor (12.1), every
2852    //   non-static data member of class T shall have a name different from T.
2853    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2854         R.first != R.second; ++R.first) {
2855      NamedDecl *D = *R.first;
2856      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2857          isa<IndirectFieldDecl>(D)) {
2858        Diag(D->getLocation(), diag::err_member_name_of_class)
2859          << D->getDeclName();
2860        break;
2861      }
2862    }
2863  }
2864
2865  // Warn if the class has virtual methods but non-virtual public destructor.
2866  if (Record->isPolymorphic() && !Record->isDependentType()) {
2867    CXXDestructorDecl *dtor = Record->getDestructor();
2868    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2869      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2870           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2871  }
2872
2873  // See if a method overloads virtual methods in a base
2874  /// class without overriding any.
2875  if (!Record->isDependentType()) {
2876    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2877                                     MEnd = Record->method_end();
2878         M != MEnd; ++M) {
2879      if (!(*M)->isStatic())
2880        DiagnoseHiddenVirtualMethods(Record, *M);
2881    }
2882  }
2883
2884  // Declare inherited constructors. We do this eagerly here because:
2885  // - The standard requires an eager diagnostic for conflicting inherited
2886  //   constructors from different classes.
2887  // - The lazy declaration of the other implicit constructors is so as to not
2888  //   waste space and performance on classes that are not meant to be
2889  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2890  //   have inherited constructors.
2891  DeclareInheritedConstructors(Record);
2892}
2893
2894/// \brief Data used with FindHiddenVirtualMethod
2895namespace {
2896  struct FindHiddenVirtualMethodData {
2897    Sema *S;
2898    CXXMethodDecl *Method;
2899    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2900    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2901  };
2902}
2903
2904/// \brief Member lookup function that determines whether a given C++
2905/// method overloads virtual methods in a base class without overriding any,
2906/// to be used with CXXRecordDecl::lookupInBases().
2907static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2908                                    CXXBasePath &Path,
2909                                    void *UserData) {
2910  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2911
2912  FindHiddenVirtualMethodData &Data
2913    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2914
2915  DeclarationName Name = Data.Method->getDeclName();
2916  assert(Name.getNameKind() == DeclarationName::Identifier);
2917
2918  bool foundSameNameMethod = false;
2919  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2920  for (Path.Decls = BaseRecord->lookup(Name);
2921       Path.Decls.first != Path.Decls.second;
2922       ++Path.Decls.first) {
2923    NamedDecl *D = *Path.Decls.first;
2924    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2925      MD = MD->getCanonicalDecl();
2926      foundSameNameMethod = true;
2927      // Interested only in hidden virtual methods.
2928      if (!MD->isVirtual())
2929        continue;
2930      // If the method we are checking overrides a method from its base
2931      // don't warn about the other overloaded methods.
2932      if (!Data.S->IsOverload(Data.Method, MD, false))
2933        return true;
2934      // Collect the overload only if its hidden.
2935      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2936        overloadedMethods.push_back(MD);
2937    }
2938  }
2939
2940  if (foundSameNameMethod)
2941    Data.OverloadedMethods.append(overloadedMethods.begin(),
2942                                   overloadedMethods.end());
2943  return foundSameNameMethod;
2944}
2945
2946/// \brief See if a method overloads virtual methods in a base class without
2947/// overriding any.
2948void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2949  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2950                               MD->getLocation()) == Diagnostic::Ignored)
2951    return;
2952  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2953    return;
2954
2955  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2956                     /*bool RecordPaths=*/false,
2957                     /*bool DetectVirtual=*/false);
2958  FindHiddenVirtualMethodData Data;
2959  Data.Method = MD;
2960  Data.S = this;
2961
2962  // Keep the base methods that were overriden or introduced in the subclass
2963  // by 'using' in a set. A base method not in this set is hidden.
2964  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2965       res.first != res.second; ++res.first) {
2966    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2967      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2968                                          E = MD->end_overridden_methods();
2969           I != E; ++I)
2970        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2971    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2972      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2973        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2974  }
2975
2976  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2977      !Data.OverloadedMethods.empty()) {
2978    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2979      << MD << (Data.OverloadedMethods.size() > 1);
2980
2981    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2982      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2983      Diag(overloadedMD->getLocation(),
2984           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2985    }
2986  }
2987}
2988
2989void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2990                                             Decl *TagDecl,
2991                                             SourceLocation LBrac,
2992                                             SourceLocation RBrac,
2993                                             AttributeList *AttrList) {
2994  if (!TagDecl)
2995    return;
2996
2997  AdjustDeclIfTemplate(TagDecl);
2998
2999  ActOnFields(S, RLoc, TagDecl,
3000              // strict aliasing violation!
3001              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3002              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3003
3004  CheckCompletedCXXClass(
3005                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3006}
3007
3008namespace {
3009  /// \brief Helper class that collects exception specifications for
3010  /// implicitly-declared special member functions.
3011  class ImplicitExceptionSpecification {
3012    ASTContext &Context;
3013    // We order exception specifications thus:
3014    // noexcept is the most restrictive, but is only used in C++0x.
3015    // throw() comes next.
3016    // Then a throw(collected exceptions)
3017    // Finally no specification.
3018    // throw(...) is used instead if any called function uses it.
3019    ExceptionSpecificationType ComputedEST;
3020    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
3021    llvm::SmallVector<QualType, 4> Exceptions;
3022
3023    void ClearExceptions() {
3024      ExceptionsSeen.clear();
3025      Exceptions.clear();
3026    }
3027
3028  public:
3029    explicit ImplicitExceptionSpecification(ASTContext &Context)
3030      : Context(Context), ComputedEST(EST_BasicNoexcept) {
3031      if (!Context.getLangOptions().CPlusPlus0x)
3032        ComputedEST = EST_DynamicNone;
3033    }
3034
3035    /// \brief Get the computed exception specification type.
3036    ExceptionSpecificationType getExceptionSpecType() const {
3037      assert(ComputedEST != EST_ComputedNoexcept &&
3038             "noexcept(expr) should not be a possible result");
3039      return ComputedEST;
3040    }
3041
3042    /// \brief The number of exceptions in the exception specification.
3043    unsigned size() const { return Exceptions.size(); }
3044
3045    /// \brief The set of exceptions in the exception specification.
3046    const QualType *data() const { return Exceptions.data(); }
3047
3048    /// \brief Integrate another called method into the collected data.
3049    void CalledDecl(CXXMethodDecl *Method) {
3050      // If we have an MSAny spec already, don't bother.
3051      if (!Method || ComputedEST == EST_MSAny)
3052        return;
3053
3054      const FunctionProtoType *Proto
3055        = Method->getType()->getAs<FunctionProtoType>();
3056
3057      ExceptionSpecificationType EST = Proto->getExceptionSpecType();
3058
3059      // If this function can throw any exceptions, make a note of that.
3060      if (EST == EST_MSAny || EST == EST_None) {
3061        ClearExceptions();
3062        ComputedEST = EST;
3063        return;
3064      }
3065
3066      // If this function has a basic noexcept, it doesn't affect the outcome.
3067      if (EST == EST_BasicNoexcept)
3068        return;
3069
3070      // If we have a throw-all spec at this point, ignore the function.
3071      if (ComputedEST == EST_None)
3072        return;
3073
3074      // If we're still at noexcept(true) and there's a nothrow() callee,
3075      // change to that specification.
3076      if (EST == EST_DynamicNone) {
3077        if (ComputedEST == EST_BasicNoexcept)
3078          ComputedEST = EST_DynamicNone;
3079        return;
3080      }
3081
3082      // Check out noexcept specs.
3083      if (EST == EST_ComputedNoexcept) {
3084        FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
3085        assert(NR != FunctionProtoType::NR_NoNoexcept &&
3086               "Must have noexcept result for EST_ComputedNoexcept.");
3087        assert(NR != FunctionProtoType::NR_Dependent &&
3088               "Should not generate implicit declarations for dependent cases, "
3089               "and don't know how to handle them anyway.");
3090
3091        // noexcept(false) -> no spec on the new function
3092        if (NR == FunctionProtoType::NR_Throw) {
3093          ClearExceptions();
3094          ComputedEST = EST_None;
3095        }
3096        // noexcept(true) won't change anything either.
3097        return;
3098      }
3099
3100      assert(EST == EST_Dynamic && "EST case not considered earlier.");
3101      assert(ComputedEST != EST_None &&
3102             "Shouldn't collect exceptions when throw-all is guaranteed.");
3103      ComputedEST = EST_Dynamic;
3104      // Record the exceptions in this function's exception specification.
3105      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3106                                              EEnd = Proto->exception_end();
3107           E != EEnd; ++E)
3108        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3109          Exceptions.push_back(*E);
3110    }
3111  };
3112}
3113
3114
3115/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3116/// special functions, such as the default constructor, copy
3117/// constructor, or destructor, to the given C++ class (C++
3118/// [special]p1).  This routine can only be executed just before the
3119/// definition of the class is complete.
3120void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3121  if (!ClassDecl->hasUserDeclaredConstructor())
3122    ++ASTContext::NumImplicitDefaultConstructors;
3123
3124  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3125    ++ASTContext::NumImplicitCopyConstructors;
3126
3127  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3128    ++ASTContext::NumImplicitCopyAssignmentOperators;
3129
3130    // If we have a dynamic class, then the copy assignment operator may be
3131    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3132    // it shows up in the right place in the vtable and that we diagnose
3133    // problems with the implicit exception specification.
3134    if (ClassDecl->isDynamicClass())
3135      DeclareImplicitCopyAssignment(ClassDecl);
3136  }
3137
3138  if (!ClassDecl->hasUserDeclaredDestructor()) {
3139    ++ASTContext::NumImplicitDestructors;
3140
3141    // If we have a dynamic class, then the destructor may be virtual, so we
3142    // have to declare the destructor immediately. This ensures that, e.g., it
3143    // shows up in the right place in the vtable and that we diagnose problems
3144    // with the implicit exception specification.
3145    if (ClassDecl->isDynamicClass())
3146      DeclareImplicitDestructor(ClassDecl);
3147  }
3148}
3149
3150void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3151  if (!D)
3152    return;
3153
3154  TemplateParameterList *Params = 0;
3155  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3156    Params = Template->getTemplateParameters();
3157  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3158           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3159    Params = PartialSpec->getTemplateParameters();
3160  else
3161    return;
3162
3163  for (TemplateParameterList::iterator Param = Params->begin(),
3164                                    ParamEnd = Params->end();
3165       Param != ParamEnd; ++Param) {
3166    NamedDecl *Named = cast<NamedDecl>(*Param);
3167    if (Named->getDeclName()) {
3168      S->AddDecl(Named);
3169      IdResolver.AddDecl(Named);
3170    }
3171  }
3172}
3173
3174void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3175  if (!RecordD) return;
3176  AdjustDeclIfTemplate(RecordD);
3177  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3178  PushDeclContext(S, Record);
3179}
3180
3181void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3182  if (!RecordD) return;
3183  PopDeclContext();
3184}
3185
3186/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3187/// parsing a top-level (non-nested) C++ class, and we are now
3188/// parsing those parts of the given Method declaration that could
3189/// not be parsed earlier (C++ [class.mem]p2), such as default
3190/// arguments. This action should enter the scope of the given
3191/// Method declaration as if we had just parsed the qualified method
3192/// name. However, it should not bring the parameters into scope;
3193/// that will be performed by ActOnDelayedCXXMethodParameter.
3194void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3195}
3196
3197/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3198/// C++ method declaration. We're (re-)introducing the given
3199/// function parameter into scope for use in parsing later parts of
3200/// the method declaration. For example, we could see an
3201/// ActOnParamDefaultArgument event for this parameter.
3202void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3203  if (!ParamD)
3204    return;
3205
3206  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3207
3208  // If this parameter has an unparsed default argument, clear it out
3209  // to make way for the parsed default argument.
3210  if (Param->hasUnparsedDefaultArg())
3211    Param->setDefaultArg(0);
3212
3213  S->AddDecl(Param);
3214  if (Param->getDeclName())
3215    IdResolver.AddDecl(Param);
3216}
3217
3218/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3219/// processing the delayed method declaration for Method. The method
3220/// declaration is now considered finished. There may be a separate
3221/// ActOnStartOfFunctionDef action later (not necessarily
3222/// immediately!) for this method, if it was also defined inside the
3223/// class body.
3224void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3225  if (!MethodD)
3226    return;
3227
3228  AdjustDeclIfTemplate(MethodD);
3229
3230  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3231
3232  // Now that we have our default arguments, check the constructor
3233  // again. It could produce additional diagnostics or affect whether
3234  // the class has implicitly-declared destructors, among other
3235  // things.
3236  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3237    CheckConstructor(Constructor);
3238
3239  // Check the default arguments, which we may have added.
3240  if (!Method->isInvalidDecl())
3241    CheckCXXDefaultArguments(Method);
3242}
3243
3244/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3245/// the well-formedness of the constructor declarator @p D with type @p
3246/// R. If there are any errors in the declarator, this routine will
3247/// emit diagnostics and set the invalid bit to true.  In any case, the type
3248/// will be updated to reflect a well-formed type for the constructor and
3249/// returned.
3250QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3251                                          StorageClass &SC) {
3252  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3253
3254  // C++ [class.ctor]p3:
3255  //   A constructor shall not be virtual (10.3) or static (9.4). A
3256  //   constructor can be invoked for a const, volatile or const
3257  //   volatile object. A constructor shall not be declared const,
3258  //   volatile, or const volatile (9.3.2).
3259  if (isVirtual) {
3260    if (!D.isInvalidType())
3261      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3262        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3263        << SourceRange(D.getIdentifierLoc());
3264    D.setInvalidType();
3265  }
3266  if (SC == SC_Static) {
3267    if (!D.isInvalidType())
3268      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3269        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3270        << SourceRange(D.getIdentifierLoc());
3271    D.setInvalidType();
3272    SC = SC_None;
3273  }
3274
3275  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3276  if (FTI.TypeQuals != 0) {
3277    if (FTI.TypeQuals & Qualifiers::Const)
3278      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3279        << "const" << SourceRange(D.getIdentifierLoc());
3280    if (FTI.TypeQuals & Qualifiers::Volatile)
3281      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3282        << "volatile" << SourceRange(D.getIdentifierLoc());
3283    if (FTI.TypeQuals & Qualifiers::Restrict)
3284      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3285        << "restrict" << SourceRange(D.getIdentifierLoc());
3286    D.setInvalidType();
3287  }
3288
3289  // C++0x [class.ctor]p4:
3290  //   A constructor shall not be declared with a ref-qualifier.
3291  if (FTI.hasRefQualifier()) {
3292    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3293      << FTI.RefQualifierIsLValueRef
3294      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3295    D.setInvalidType();
3296  }
3297
3298  // Rebuild the function type "R" without any type qualifiers (in
3299  // case any of the errors above fired) and with "void" as the
3300  // return type, since constructors don't have return types.
3301  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3302  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3303    return R;
3304
3305  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3306  EPI.TypeQuals = 0;
3307  EPI.RefQualifier = RQ_None;
3308
3309  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3310                                 Proto->getNumArgs(), EPI);
3311}
3312
3313/// CheckConstructor - Checks a fully-formed constructor for
3314/// well-formedness, issuing any diagnostics required. Returns true if
3315/// the constructor declarator is invalid.
3316void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3317  CXXRecordDecl *ClassDecl
3318    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3319  if (!ClassDecl)
3320    return Constructor->setInvalidDecl();
3321
3322  // C++ [class.copy]p3:
3323  //   A declaration of a constructor for a class X is ill-formed if
3324  //   its first parameter is of type (optionally cv-qualified) X and
3325  //   either there are no other parameters or else all other
3326  //   parameters have default arguments.
3327  if (!Constructor->isInvalidDecl() &&
3328      ((Constructor->getNumParams() == 1) ||
3329       (Constructor->getNumParams() > 1 &&
3330        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3331      Constructor->getTemplateSpecializationKind()
3332                                              != TSK_ImplicitInstantiation) {
3333    QualType ParamType = Constructor->getParamDecl(0)->getType();
3334    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3335    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3336      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3337      const char *ConstRef
3338        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3339                                                        : " const &";
3340      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3341        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3342
3343      // FIXME: Rather that making the constructor invalid, we should endeavor
3344      // to fix the type.
3345      Constructor->setInvalidDecl();
3346    }
3347  }
3348}
3349
3350/// CheckDestructor - Checks a fully-formed destructor definition for
3351/// well-formedness, issuing any diagnostics required.  Returns true
3352/// on error.
3353bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3354  CXXRecordDecl *RD = Destructor->getParent();
3355
3356  if (Destructor->isVirtual()) {
3357    SourceLocation Loc;
3358
3359    if (!Destructor->isImplicit())
3360      Loc = Destructor->getLocation();
3361    else
3362      Loc = RD->getLocation();
3363
3364    // If we have a virtual destructor, look up the deallocation function
3365    FunctionDecl *OperatorDelete = 0;
3366    DeclarationName Name =
3367    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3368    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3369      return true;
3370
3371    MarkDeclarationReferenced(Loc, OperatorDelete);
3372
3373    Destructor->setOperatorDelete(OperatorDelete);
3374  }
3375
3376  return false;
3377}
3378
3379static inline bool
3380FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3381  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3382          FTI.ArgInfo[0].Param &&
3383          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3384}
3385
3386/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3387/// the well-formednes of the destructor declarator @p D with type @p
3388/// R. If there are any errors in the declarator, this routine will
3389/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3390/// will be updated to reflect a well-formed type for the destructor and
3391/// returned.
3392QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3393                                         StorageClass& SC) {
3394  // C++ [class.dtor]p1:
3395  //   [...] A typedef-name that names a class is a class-name
3396  //   (7.1.3); however, a typedef-name that names a class shall not
3397  //   be used as the identifier in the declarator for a destructor
3398  //   declaration.
3399  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3400  if (isa<TypedefType>(DeclaratorType))
3401    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3402      << DeclaratorType;
3403
3404  // C++ [class.dtor]p2:
3405  //   A destructor is used to destroy objects of its class type. A
3406  //   destructor takes no parameters, and no return type can be
3407  //   specified for it (not even void). The address of a destructor
3408  //   shall not be taken. A destructor shall not be static. A
3409  //   destructor can be invoked for a const, volatile or const
3410  //   volatile object. A destructor shall not be declared const,
3411  //   volatile or const volatile (9.3.2).
3412  if (SC == SC_Static) {
3413    if (!D.isInvalidType())
3414      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3415        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3416        << SourceRange(D.getIdentifierLoc())
3417        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3418
3419    SC = SC_None;
3420  }
3421  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3422    // Destructors don't have return types, but the parser will
3423    // happily parse something like:
3424    //
3425    //   class X {
3426    //     float ~X();
3427    //   };
3428    //
3429    // The return type will be eliminated later.
3430    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3431      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3432      << SourceRange(D.getIdentifierLoc());
3433  }
3434
3435  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3436  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3437    if (FTI.TypeQuals & Qualifiers::Const)
3438      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3439        << "const" << SourceRange(D.getIdentifierLoc());
3440    if (FTI.TypeQuals & Qualifiers::Volatile)
3441      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3442        << "volatile" << SourceRange(D.getIdentifierLoc());
3443    if (FTI.TypeQuals & Qualifiers::Restrict)
3444      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3445        << "restrict" << SourceRange(D.getIdentifierLoc());
3446    D.setInvalidType();
3447  }
3448
3449  // C++0x [class.dtor]p2:
3450  //   A destructor shall not be declared with a ref-qualifier.
3451  if (FTI.hasRefQualifier()) {
3452    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3453      << FTI.RefQualifierIsLValueRef
3454      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3455    D.setInvalidType();
3456  }
3457
3458  // Make sure we don't have any parameters.
3459  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3460    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3461
3462    // Delete the parameters.
3463    FTI.freeArgs();
3464    D.setInvalidType();
3465  }
3466
3467  // Make sure the destructor isn't variadic.
3468  if (FTI.isVariadic) {
3469    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3470    D.setInvalidType();
3471  }
3472
3473  // Rebuild the function type "R" without any type qualifiers or
3474  // parameters (in case any of the errors above fired) and with
3475  // "void" as the return type, since destructors don't have return
3476  // types.
3477  if (!D.isInvalidType())
3478    return R;
3479
3480  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3481  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3482  EPI.Variadic = false;
3483  EPI.TypeQuals = 0;
3484  EPI.RefQualifier = RQ_None;
3485  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3486}
3487
3488/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3489/// well-formednes of the conversion function declarator @p D with
3490/// type @p R. If there are any errors in the declarator, this routine
3491/// will emit diagnostics and return true. Otherwise, it will return
3492/// false. Either way, the type @p R will be updated to reflect a
3493/// well-formed type for the conversion operator.
3494void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3495                                     StorageClass& SC) {
3496  // C++ [class.conv.fct]p1:
3497  //   Neither parameter types nor return type can be specified. The
3498  //   type of a conversion function (8.3.5) is "function taking no
3499  //   parameter returning conversion-type-id."
3500  if (SC == SC_Static) {
3501    if (!D.isInvalidType())
3502      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3503        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3504        << SourceRange(D.getIdentifierLoc());
3505    D.setInvalidType();
3506    SC = SC_None;
3507  }
3508
3509  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3510
3511  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3512    // Conversion functions don't have return types, but the parser will
3513    // happily parse something like:
3514    //
3515    //   class X {
3516    //     float operator bool();
3517    //   };
3518    //
3519    // The return type will be changed later anyway.
3520    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3521      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3522      << SourceRange(D.getIdentifierLoc());
3523    D.setInvalidType();
3524  }
3525
3526  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3527
3528  // Make sure we don't have any parameters.
3529  if (Proto->getNumArgs() > 0) {
3530    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3531
3532    // Delete the parameters.
3533    D.getFunctionTypeInfo().freeArgs();
3534    D.setInvalidType();
3535  } else if (Proto->isVariadic()) {
3536    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3537    D.setInvalidType();
3538  }
3539
3540  // Diagnose "&operator bool()" and other such nonsense.  This
3541  // is actually a gcc extension which we don't support.
3542  if (Proto->getResultType() != ConvType) {
3543    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3544      << Proto->getResultType();
3545    D.setInvalidType();
3546    ConvType = Proto->getResultType();
3547  }
3548
3549  // C++ [class.conv.fct]p4:
3550  //   The conversion-type-id shall not represent a function type nor
3551  //   an array type.
3552  if (ConvType->isArrayType()) {
3553    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3554    ConvType = Context.getPointerType(ConvType);
3555    D.setInvalidType();
3556  } else if (ConvType->isFunctionType()) {
3557    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3558    ConvType = Context.getPointerType(ConvType);
3559    D.setInvalidType();
3560  }
3561
3562  // Rebuild the function type "R" without any parameters (in case any
3563  // of the errors above fired) and with the conversion type as the
3564  // return type.
3565  if (D.isInvalidType())
3566    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3567
3568  // C++0x explicit conversion operators.
3569  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3570    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3571         diag::warn_explicit_conversion_functions)
3572      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3573}
3574
3575/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3576/// the declaration of the given C++ conversion function. This routine
3577/// is responsible for recording the conversion function in the C++
3578/// class, if possible.
3579Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3580  assert(Conversion && "Expected to receive a conversion function declaration");
3581
3582  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3583
3584  // Make sure we aren't redeclaring the conversion function.
3585  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3586
3587  // C++ [class.conv.fct]p1:
3588  //   [...] A conversion function is never used to convert a
3589  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3590  //   same object type (or a reference to it), to a (possibly
3591  //   cv-qualified) base class of that type (or a reference to it),
3592  //   or to (possibly cv-qualified) void.
3593  // FIXME: Suppress this warning if the conversion function ends up being a
3594  // virtual function that overrides a virtual function in a base class.
3595  QualType ClassType
3596    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3597  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3598    ConvType = ConvTypeRef->getPointeeType();
3599  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3600      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3601    /* Suppress diagnostics for instantiations. */;
3602  else if (ConvType->isRecordType()) {
3603    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3604    if (ConvType == ClassType)
3605      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3606        << ClassType;
3607    else if (IsDerivedFrom(ClassType, ConvType))
3608      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3609        <<  ClassType << ConvType;
3610  } else if (ConvType->isVoidType()) {
3611    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3612      << ClassType << ConvType;
3613  }
3614
3615  if (FunctionTemplateDecl *ConversionTemplate
3616                                = Conversion->getDescribedFunctionTemplate())
3617    return ConversionTemplate;
3618
3619  return Conversion;
3620}
3621
3622//===----------------------------------------------------------------------===//
3623// Namespace Handling
3624//===----------------------------------------------------------------------===//
3625
3626
3627
3628/// ActOnStartNamespaceDef - This is called at the start of a namespace
3629/// definition.
3630Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3631                                   SourceLocation InlineLoc,
3632                                   SourceLocation NamespaceLoc,
3633                                   SourceLocation IdentLoc,
3634                                   IdentifierInfo *II,
3635                                   SourceLocation LBrace,
3636                                   AttributeList *AttrList) {
3637  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3638  // For anonymous namespace, take the location of the left brace.
3639  SourceLocation Loc = II ? IdentLoc : LBrace;
3640  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3641                                                 StartLoc, Loc, II);
3642  Namespc->setInline(InlineLoc.isValid());
3643
3644  Scope *DeclRegionScope = NamespcScope->getParent();
3645
3646  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3647
3648  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3649    PushNamespaceVisibilityAttr(Attr);
3650
3651  if (II) {
3652    // C++ [namespace.def]p2:
3653    //   The identifier in an original-namespace-definition shall not
3654    //   have been previously defined in the declarative region in
3655    //   which the original-namespace-definition appears. The
3656    //   identifier in an original-namespace-definition is the name of
3657    //   the namespace. Subsequently in that declarative region, it is
3658    //   treated as an original-namespace-name.
3659    //
3660    // Since namespace names are unique in their scope, and we don't
3661    // look through using directives, just
3662    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3663    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3664
3665    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3666      // This is an extended namespace definition.
3667      if (Namespc->isInline() != OrigNS->isInline()) {
3668        // inline-ness must match
3669        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3670          << Namespc->isInline();
3671        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3672        Namespc->setInvalidDecl();
3673        // Recover by ignoring the new namespace's inline status.
3674        Namespc->setInline(OrigNS->isInline());
3675      }
3676
3677      // Attach this namespace decl to the chain of extended namespace
3678      // definitions.
3679      OrigNS->setNextNamespace(Namespc);
3680      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3681
3682      // Remove the previous declaration from the scope.
3683      if (DeclRegionScope->isDeclScope(OrigNS)) {
3684        IdResolver.RemoveDecl(OrigNS);
3685        DeclRegionScope->RemoveDecl(OrigNS);
3686      }
3687    } else if (PrevDecl) {
3688      // This is an invalid name redefinition.
3689      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3690       << Namespc->getDeclName();
3691      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3692      Namespc->setInvalidDecl();
3693      // Continue on to push Namespc as current DeclContext and return it.
3694    } else if (II->isStr("std") &&
3695               CurContext->getRedeclContext()->isTranslationUnit()) {
3696      // This is the first "real" definition of the namespace "std", so update
3697      // our cache of the "std" namespace to point at this definition.
3698      if (NamespaceDecl *StdNS = getStdNamespace()) {
3699        // We had already defined a dummy namespace "std". Link this new
3700        // namespace definition to the dummy namespace "std".
3701        StdNS->setNextNamespace(Namespc);
3702        StdNS->setLocation(IdentLoc);
3703        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3704      }
3705
3706      // Make our StdNamespace cache point at the first real definition of the
3707      // "std" namespace.
3708      StdNamespace = Namespc;
3709    }
3710
3711    PushOnScopeChains(Namespc, DeclRegionScope);
3712  } else {
3713    // Anonymous namespaces.
3714    assert(Namespc->isAnonymousNamespace());
3715
3716    // Link the anonymous namespace into its parent.
3717    NamespaceDecl *PrevDecl;
3718    DeclContext *Parent = CurContext->getRedeclContext();
3719    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3720      PrevDecl = TU->getAnonymousNamespace();
3721      TU->setAnonymousNamespace(Namespc);
3722    } else {
3723      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3724      PrevDecl = ND->getAnonymousNamespace();
3725      ND->setAnonymousNamespace(Namespc);
3726    }
3727
3728    // Link the anonymous namespace with its previous declaration.
3729    if (PrevDecl) {
3730      assert(PrevDecl->isAnonymousNamespace());
3731      assert(!PrevDecl->getNextNamespace());
3732      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3733      PrevDecl->setNextNamespace(Namespc);
3734
3735      if (Namespc->isInline() != PrevDecl->isInline()) {
3736        // inline-ness must match
3737        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3738          << Namespc->isInline();
3739        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3740        Namespc->setInvalidDecl();
3741        // Recover by ignoring the new namespace's inline status.
3742        Namespc->setInline(PrevDecl->isInline());
3743      }
3744    }
3745
3746    CurContext->addDecl(Namespc);
3747
3748    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3749    //   behaves as if it were replaced by
3750    //     namespace unique { /* empty body */ }
3751    //     using namespace unique;
3752    //     namespace unique { namespace-body }
3753    //   where all occurrences of 'unique' in a translation unit are
3754    //   replaced by the same identifier and this identifier differs
3755    //   from all other identifiers in the entire program.
3756
3757    // We just create the namespace with an empty name and then add an
3758    // implicit using declaration, just like the standard suggests.
3759    //
3760    // CodeGen enforces the "universally unique" aspect by giving all
3761    // declarations semantically contained within an anonymous
3762    // namespace internal linkage.
3763
3764    if (!PrevDecl) {
3765      UsingDirectiveDecl* UD
3766        = UsingDirectiveDecl::Create(Context, CurContext,
3767                                     /* 'using' */ LBrace,
3768                                     /* 'namespace' */ SourceLocation(),
3769                                     /* qualifier */ NestedNameSpecifierLoc(),
3770                                     /* identifier */ SourceLocation(),
3771                                     Namespc,
3772                                     /* Ancestor */ CurContext);
3773      UD->setImplicit();
3774      CurContext->addDecl(UD);
3775    }
3776  }
3777
3778  // Although we could have an invalid decl (i.e. the namespace name is a
3779  // redefinition), push it as current DeclContext and try to continue parsing.
3780  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3781  // for the namespace has the declarations that showed up in that particular
3782  // namespace definition.
3783  PushDeclContext(NamespcScope, Namespc);
3784  return Namespc;
3785}
3786
3787/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3788/// is a namespace alias, returns the namespace it points to.
3789static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3790  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3791    return AD->getNamespace();
3792  return dyn_cast_or_null<NamespaceDecl>(D);
3793}
3794
3795/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3796/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3797void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3798  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3799  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3800  Namespc->setRBraceLoc(RBrace);
3801  PopDeclContext();
3802  if (Namespc->hasAttr<VisibilityAttr>())
3803    PopPragmaVisibility();
3804}
3805
3806CXXRecordDecl *Sema::getStdBadAlloc() const {
3807  return cast_or_null<CXXRecordDecl>(
3808                                  StdBadAlloc.get(Context.getExternalSource()));
3809}
3810
3811NamespaceDecl *Sema::getStdNamespace() const {
3812  return cast_or_null<NamespaceDecl>(
3813                                 StdNamespace.get(Context.getExternalSource()));
3814}
3815
3816/// \brief Retrieve the special "std" namespace, which may require us to
3817/// implicitly define the namespace.
3818NamespaceDecl *Sema::getOrCreateStdNamespace() {
3819  if (!StdNamespace) {
3820    // The "std" namespace has not yet been defined, so build one implicitly.
3821    StdNamespace = NamespaceDecl::Create(Context,
3822                                         Context.getTranslationUnitDecl(),
3823                                         SourceLocation(), SourceLocation(),
3824                                         &PP.getIdentifierTable().get("std"));
3825    getStdNamespace()->setImplicit(true);
3826  }
3827
3828  return getStdNamespace();
3829}
3830
3831/// \brief Determine whether a using statement is in a context where it will be
3832/// apply in all contexts.
3833static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
3834  switch (CurContext->getDeclKind()) {
3835    case Decl::TranslationUnit:
3836      return true;
3837    case Decl::LinkageSpec:
3838      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
3839    default:
3840      return false;
3841  }
3842}
3843
3844Decl *Sema::ActOnUsingDirective(Scope *S,
3845                                          SourceLocation UsingLoc,
3846                                          SourceLocation NamespcLoc,
3847                                          CXXScopeSpec &SS,
3848                                          SourceLocation IdentLoc,
3849                                          IdentifierInfo *NamespcName,
3850                                          AttributeList *AttrList) {
3851  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3852  assert(NamespcName && "Invalid NamespcName.");
3853  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3854
3855  // This can only happen along a recovery path.
3856  while (S->getFlags() & Scope::TemplateParamScope)
3857    S = S->getParent();
3858  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3859
3860  UsingDirectiveDecl *UDir = 0;
3861  NestedNameSpecifier *Qualifier = 0;
3862  if (SS.isSet())
3863    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3864
3865  // Lookup namespace name.
3866  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3867  LookupParsedName(R, S, &SS);
3868  if (R.isAmbiguous())
3869    return 0;
3870
3871  if (R.empty()) {
3872    // Allow "using namespace std;" or "using namespace ::std;" even if
3873    // "std" hasn't been defined yet, for GCC compatibility.
3874    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3875        NamespcName->isStr("std")) {
3876      Diag(IdentLoc, diag::ext_using_undefined_std);
3877      R.addDecl(getOrCreateStdNamespace());
3878      R.resolveKind();
3879    }
3880    // Otherwise, attempt typo correction.
3881    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3882                                                       CTC_NoKeywords, 0)) {
3883      if (R.getAsSingle<NamespaceDecl>() ||
3884          R.getAsSingle<NamespaceAliasDecl>()) {
3885        if (DeclContext *DC = computeDeclContext(SS, false))
3886          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3887            << NamespcName << DC << Corrected << SS.getRange()
3888            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3889        else
3890          Diag(IdentLoc, diag::err_using_directive_suggest)
3891            << NamespcName << Corrected
3892            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3893        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3894          << Corrected;
3895
3896        NamespcName = Corrected.getAsIdentifierInfo();
3897      } else {
3898        R.clear();
3899        R.setLookupName(NamespcName);
3900      }
3901    }
3902  }
3903
3904  if (!R.empty()) {
3905    NamedDecl *Named = R.getFoundDecl();
3906    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3907        && "expected namespace decl");
3908    // C++ [namespace.udir]p1:
3909    //   A using-directive specifies that the names in the nominated
3910    //   namespace can be used in the scope in which the
3911    //   using-directive appears after the using-directive. During
3912    //   unqualified name lookup (3.4.1), the names appear as if they
3913    //   were declared in the nearest enclosing namespace which
3914    //   contains both the using-directive and the nominated
3915    //   namespace. [Note: in this context, "contains" means "contains
3916    //   directly or indirectly". ]
3917
3918    // Find enclosing context containing both using-directive and
3919    // nominated namespace.
3920    NamespaceDecl *NS = getNamespaceDecl(Named);
3921    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3922    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3923      CommonAncestor = CommonAncestor->getParent();
3924
3925    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3926                                      SS.getWithLocInContext(Context),
3927                                      IdentLoc, Named, CommonAncestor);
3928
3929    if (IsUsingDirectiveInToplevelContext(CurContext) &&
3930        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
3931      Diag(IdentLoc, diag::warn_using_directive_in_header);
3932    }
3933
3934    PushUsingDirective(S, UDir);
3935  } else {
3936    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3937  }
3938
3939  // FIXME: We ignore attributes for now.
3940  return UDir;
3941}
3942
3943void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3944  // If scope has associated entity, then using directive is at namespace
3945  // or translation unit scope. We add UsingDirectiveDecls, into
3946  // it's lookup structure.
3947  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3948    Ctx->addDecl(UDir);
3949  else
3950    // Otherwise it is block-sope. using-directives will affect lookup
3951    // only to the end of scope.
3952    S->PushUsingDirective(UDir);
3953}
3954
3955
3956Decl *Sema::ActOnUsingDeclaration(Scope *S,
3957                                  AccessSpecifier AS,
3958                                  bool HasUsingKeyword,
3959                                  SourceLocation UsingLoc,
3960                                  CXXScopeSpec &SS,
3961                                  UnqualifiedId &Name,
3962                                  AttributeList *AttrList,
3963                                  bool IsTypeName,
3964                                  SourceLocation TypenameLoc) {
3965  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3966
3967  switch (Name.getKind()) {
3968  case UnqualifiedId::IK_Identifier:
3969  case UnqualifiedId::IK_OperatorFunctionId:
3970  case UnqualifiedId::IK_LiteralOperatorId:
3971  case UnqualifiedId::IK_ConversionFunctionId:
3972    break;
3973
3974  case UnqualifiedId::IK_ConstructorName:
3975  case UnqualifiedId::IK_ConstructorTemplateId:
3976    // C++0x inherited constructors.
3977    if (getLangOptions().CPlusPlus0x) break;
3978
3979    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3980      << SS.getRange();
3981    return 0;
3982
3983  case UnqualifiedId::IK_DestructorName:
3984    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3985      << SS.getRange();
3986    return 0;
3987
3988  case UnqualifiedId::IK_TemplateId:
3989    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3990      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3991    return 0;
3992  }
3993
3994  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3995  DeclarationName TargetName = TargetNameInfo.getName();
3996  if (!TargetName)
3997    return 0;
3998
3999  // Warn about using declarations.
4000  // TODO: store that the declaration was written without 'using' and
4001  // talk about access decls instead of using decls in the
4002  // diagnostics.
4003  if (!HasUsingKeyword) {
4004    UsingLoc = Name.getSourceRange().getBegin();
4005
4006    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4007      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4008  }
4009
4010  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4011      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4012    return 0;
4013
4014  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4015                                        TargetNameInfo, AttrList,
4016                                        /* IsInstantiation */ false,
4017                                        IsTypeName, TypenameLoc);
4018  if (UD)
4019    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4020
4021  return UD;
4022}
4023
4024/// \brief Determine whether a using declaration considers the given
4025/// declarations as "equivalent", e.g., if they are redeclarations of
4026/// the same entity or are both typedefs of the same type.
4027static bool
4028IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4029                         bool &SuppressRedeclaration) {
4030  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4031    SuppressRedeclaration = false;
4032    return true;
4033  }
4034
4035  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
4036    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
4037      SuppressRedeclaration = true;
4038      return Context.hasSameType(TD1->getUnderlyingType(),
4039                                 TD2->getUnderlyingType());
4040    }
4041
4042  return false;
4043}
4044
4045
4046/// Determines whether to create a using shadow decl for a particular
4047/// decl, given the set of decls existing prior to this using lookup.
4048bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4049                                const LookupResult &Previous) {
4050  // Diagnose finding a decl which is not from a base class of the
4051  // current class.  We do this now because there are cases where this
4052  // function will silently decide not to build a shadow decl, which
4053  // will pre-empt further diagnostics.
4054  //
4055  // We don't need to do this in C++0x because we do the check once on
4056  // the qualifier.
4057  //
4058  // FIXME: diagnose the following if we care enough:
4059  //   struct A { int foo; };
4060  //   struct B : A { using A::foo; };
4061  //   template <class T> struct C : A {};
4062  //   template <class T> struct D : C<T> { using B::foo; } // <---
4063  // This is invalid (during instantiation) in C++03 because B::foo
4064  // resolves to the using decl in B, which is not a base class of D<T>.
4065  // We can't diagnose it immediately because C<T> is an unknown
4066  // specialization.  The UsingShadowDecl in D<T> then points directly
4067  // to A::foo, which will look well-formed when we instantiate.
4068  // The right solution is to not collapse the shadow-decl chain.
4069  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4070    DeclContext *OrigDC = Orig->getDeclContext();
4071
4072    // Handle enums and anonymous structs.
4073    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4074    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4075    while (OrigRec->isAnonymousStructOrUnion())
4076      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4077
4078    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4079      if (OrigDC == CurContext) {
4080        Diag(Using->getLocation(),
4081             diag::err_using_decl_nested_name_specifier_is_current_class)
4082          << Using->getQualifierLoc().getSourceRange();
4083        Diag(Orig->getLocation(), diag::note_using_decl_target);
4084        return true;
4085      }
4086
4087      Diag(Using->getQualifierLoc().getBeginLoc(),
4088           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4089        << Using->getQualifier()
4090        << cast<CXXRecordDecl>(CurContext)
4091        << Using->getQualifierLoc().getSourceRange();
4092      Diag(Orig->getLocation(), diag::note_using_decl_target);
4093      return true;
4094    }
4095  }
4096
4097  if (Previous.empty()) return false;
4098
4099  NamedDecl *Target = Orig;
4100  if (isa<UsingShadowDecl>(Target))
4101    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4102
4103  // If the target happens to be one of the previous declarations, we
4104  // don't have a conflict.
4105  //
4106  // FIXME: but we might be increasing its access, in which case we
4107  // should redeclare it.
4108  NamedDecl *NonTag = 0, *Tag = 0;
4109  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4110         I != E; ++I) {
4111    NamedDecl *D = (*I)->getUnderlyingDecl();
4112    bool Result;
4113    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4114      return Result;
4115
4116    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4117  }
4118
4119  if (Target->isFunctionOrFunctionTemplate()) {
4120    FunctionDecl *FD;
4121    if (isa<FunctionTemplateDecl>(Target))
4122      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4123    else
4124      FD = cast<FunctionDecl>(Target);
4125
4126    NamedDecl *OldDecl = 0;
4127    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4128    case Ovl_Overload:
4129      return false;
4130
4131    case Ovl_NonFunction:
4132      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4133      break;
4134
4135    // We found a decl with the exact signature.
4136    case Ovl_Match:
4137      // If we're in a record, we want to hide the target, so we
4138      // return true (without a diagnostic) to tell the caller not to
4139      // build a shadow decl.
4140      if (CurContext->isRecord())
4141        return true;
4142
4143      // If we're not in a record, this is an error.
4144      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4145      break;
4146    }
4147
4148    Diag(Target->getLocation(), diag::note_using_decl_target);
4149    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4150    return true;
4151  }
4152
4153  // Target is not a function.
4154
4155  if (isa<TagDecl>(Target)) {
4156    // No conflict between a tag and a non-tag.
4157    if (!Tag) return false;
4158
4159    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4160    Diag(Target->getLocation(), diag::note_using_decl_target);
4161    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4162    return true;
4163  }
4164
4165  // No conflict between a tag and a non-tag.
4166  if (!NonTag) return false;
4167
4168  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4169  Diag(Target->getLocation(), diag::note_using_decl_target);
4170  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4171  return true;
4172}
4173
4174/// Builds a shadow declaration corresponding to a 'using' declaration.
4175UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4176                                            UsingDecl *UD,
4177                                            NamedDecl *Orig) {
4178
4179  // If we resolved to another shadow declaration, just coalesce them.
4180  NamedDecl *Target = Orig;
4181  if (isa<UsingShadowDecl>(Target)) {
4182    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4183    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4184  }
4185
4186  UsingShadowDecl *Shadow
4187    = UsingShadowDecl::Create(Context, CurContext,
4188                              UD->getLocation(), UD, Target);
4189  UD->addShadowDecl(Shadow);
4190
4191  Shadow->setAccess(UD->getAccess());
4192  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4193    Shadow->setInvalidDecl();
4194
4195  if (S)
4196    PushOnScopeChains(Shadow, S);
4197  else
4198    CurContext->addDecl(Shadow);
4199
4200
4201  return Shadow;
4202}
4203
4204/// Hides a using shadow declaration.  This is required by the current
4205/// using-decl implementation when a resolvable using declaration in a
4206/// class is followed by a declaration which would hide or override
4207/// one or more of the using decl's targets; for example:
4208///
4209///   struct Base { void foo(int); };
4210///   struct Derived : Base {
4211///     using Base::foo;
4212///     void foo(int);
4213///   };
4214///
4215/// The governing language is C++03 [namespace.udecl]p12:
4216///
4217///   When a using-declaration brings names from a base class into a
4218///   derived class scope, member functions in the derived class
4219///   override and/or hide member functions with the same name and
4220///   parameter types in a base class (rather than conflicting).
4221///
4222/// There are two ways to implement this:
4223///   (1) optimistically create shadow decls when they're not hidden
4224///       by existing declarations, or
4225///   (2) don't create any shadow decls (or at least don't make them
4226///       visible) until we've fully parsed/instantiated the class.
4227/// The problem with (1) is that we might have to retroactively remove
4228/// a shadow decl, which requires several O(n) operations because the
4229/// decl structures are (very reasonably) not designed for removal.
4230/// (2) avoids this but is very fiddly and phase-dependent.
4231void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4232  if (Shadow->getDeclName().getNameKind() ==
4233        DeclarationName::CXXConversionFunctionName)
4234    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4235
4236  // Remove it from the DeclContext...
4237  Shadow->getDeclContext()->removeDecl(Shadow);
4238
4239  // ...and the scope, if applicable...
4240  if (S) {
4241    S->RemoveDecl(Shadow);
4242    IdResolver.RemoveDecl(Shadow);
4243  }
4244
4245  // ...and the using decl.
4246  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4247
4248  // TODO: complain somehow if Shadow was used.  It shouldn't
4249  // be possible for this to happen, because...?
4250}
4251
4252/// Builds a using declaration.
4253///
4254/// \param IsInstantiation - Whether this call arises from an
4255///   instantiation of an unresolved using declaration.  We treat
4256///   the lookup differently for these declarations.
4257NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4258                                       SourceLocation UsingLoc,
4259                                       CXXScopeSpec &SS,
4260                                       const DeclarationNameInfo &NameInfo,
4261                                       AttributeList *AttrList,
4262                                       bool IsInstantiation,
4263                                       bool IsTypeName,
4264                                       SourceLocation TypenameLoc) {
4265  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4266  SourceLocation IdentLoc = NameInfo.getLoc();
4267  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4268
4269  // FIXME: We ignore attributes for now.
4270
4271  if (SS.isEmpty()) {
4272    Diag(IdentLoc, diag::err_using_requires_qualname);
4273    return 0;
4274  }
4275
4276  // Do the redeclaration lookup in the current scope.
4277  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4278                        ForRedeclaration);
4279  Previous.setHideTags(false);
4280  if (S) {
4281    LookupName(Previous, S);
4282
4283    // It is really dumb that we have to do this.
4284    LookupResult::Filter F = Previous.makeFilter();
4285    while (F.hasNext()) {
4286      NamedDecl *D = F.next();
4287      if (!isDeclInScope(D, CurContext, S))
4288        F.erase();
4289    }
4290    F.done();
4291  } else {
4292    assert(IsInstantiation && "no scope in non-instantiation");
4293    assert(CurContext->isRecord() && "scope not record in instantiation");
4294    LookupQualifiedName(Previous, CurContext);
4295  }
4296
4297  // Check for invalid redeclarations.
4298  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4299    return 0;
4300
4301  // Check for bad qualifiers.
4302  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4303    return 0;
4304
4305  DeclContext *LookupContext = computeDeclContext(SS);
4306  NamedDecl *D;
4307  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4308  if (!LookupContext) {
4309    if (IsTypeName) {
4310      // FIXME: not all declaration name kinds are legal here
4311      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4312                                              UsingLoc, TypenameLoc,
4313                                              QualifierLoc,
4314                                              IdentLoc, NameInfo.getName());
4315    } else {
4316      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4317                                           QualifierLoc, NameInfo);
4318    }
4319  } else {
4320    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4321                          NameInfo, IsTypeName);
4322  }
4323  D->setAccess(AS);
4324  CurContext->addDecl(D);
4325
4326  if (!LookupContext) return D;
4327  UsingDecl *UD = cast<UsingDecl>(D);
4328
4329  if (RequireCompleteDeclContext(SS, LookupContext)) {
4330    UD->setInvalidDecl();
4331    return UD;
4332  }
4333
4334  // Constructor inheriting using decls get special treatment.
4335  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4336    if (CheckInheritedConstructorUsingDecl(UD))
4337      UD->setInvalidDecl();
4338    return UD;
4339  }
4340
4341  // Otherwise, look up the target name.
4342
4343  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4344
4345  // Unlike most lookups, we don't always want to hide tag
4346  // declarations: tag names are visible through the using declaration
4347  // even if hidden by ordinary names, *except* in a dependent context
4348  // where it's important for the sanity of two-phase lookup.
4349  if (!IsInstantiation)
4350    R.setHideTags(false);
4351
4352  LookupQualifiedName(R, LookupContext);
4353
4354  if (R.empty()) {
4355    Diag(IdentLoc, diag::err_no_member)
4356      << NameInfo.getName() << LookupContext << SS.getRange();
4357    UD->setInvalidDecl();
4358    return UD;
4359  }
4360
4361  if (R.isAmbiguous()) {
4362    UD->setInvalidDecl();
4363    return UD;
4364  }
4365
4366  if (IsTypeName) {
4367    // If we asked for a typename and got a non-type decl, error out.
4368    if (!R.getAsSingle<TypeDecl>()) {
4369      Diag(IdentLoc, diag::err_using_typename_non_type);
4370      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4371        Diag((*I)->getUnderlyingDecl()->getLocation(),
4372             diag::note_using_decl_target);
4373      UD->setInvalidDecl();
4374      return UD;
4375    }
4376  } else {
4377    // If we asked for a non-typename and we got a type, error out,
4378    // but only if this is an instantiation of an unresolved using
4379    // decl.  Otherwise just silently find the type name.
4380    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4381      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4382      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4383      UD->setInvalidDecl();
4384      return UD;
4385    }
4386  }
4387
4388  // C++0x N2914 [namespace.udecl]p6:
4389  // A using-declaration shall not name a namespace.
4390  if (R.getAsSingle<NamespaceDecl>()) {
4391    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4392      << SS.getRange();
4393    UD->setInvalidDecl();
4394    return UD;
4395  }
4396
4397  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4398    if (!CheckUsingShadowDecl(UD, *I, Previous))
4399      BuildUsingShadowDecl(S, UD, *I);
4400  }
4401
4402  return UD;
4403}
4404
4405/// Additional checks for a using declaration referring to a constructor name.
4406bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4407  if (UD->isTypeName()) {
4408    // FIXME: Cannot specify typename when specifying constructor
4409    return true;
4410  }
4411
4412  const Type *SourceType = UD->getQualifier()->getAsType();
4413  assert(SourceType &&
4414         "Using decl naming constructor doesn't have type in scope spec.");
4415  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4416
4417  // Check whether the named type is a direct base class.
4418  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4419  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4420  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4421       BaseIt != BaseE; ++BaseIt) {
4422    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4423    if (CanonicalSourceType == BaseType)
4424      break;
4425  }
4426
4427  if (BaseIt == BaseE) {
4428    // Did not find SourceType in the bases.
4429    Diag(UD->getUsingLocation(),
4430         diag::err_using_decl_constructor_not_in_direct_base)
4431      << UD->getNameInfo().getSourceRange()
4432      << QualType(SourceType, 0) << TargetClass;
4433    return true;
4434  }
4435
4436  BaseIt->setInheritConstructors();
4437
4438  return false;
4439}
4440
4441/// Checks that the given using declaration is not an invalid
4442/// redeclaration.  Note that this is checking only for the using decl
4443/// itself, not for any ill-formedness among the UsingShadowDecls.
4444bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4445                                       bool isTypeName,
4446                                       const CXXScopeSpec &SS,
4447                                       SourceLocation NameLoc,
4448                                       const LookupResult &Prev) {
4449  // C++03 [namespace.udecl]p8:
4450  // C++0x [namespace.udecl]p10:
4451  //   A using-declaration is a declaration and can therefore be used
4452  //   repeatedly where (and only where) multiple declarations are
4453  //   allowed.
4454  //
4455  // That's in non-member contexts.
4456  if (!CurContext->getRedeclContext()->isRecord())
4457    return false;
4458
4459  NestedNameSpecifier *Qual
4460    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4461
4462  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4463    NamedDecl *D = *I;
4464
4465    bool DTypename;
4466    NestedNameSpecifier *DQual;
4467    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4468      DTypename = UD->isTypeName();
4469      DQual = UD->getQualifier();
4470    } else if (UnresolvedUsingValueDecl *UD
4471                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4472      DTypename = false;
4473      DQual = UD->getQualifier();
4474    } else if (UnresolvedUsingTypenameDecl *UD
4475                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4476      DTypename = true;
4477      DQual = UD->getQualifier();
4478    } else continue;
4479
4480    // using decls differ if one says 'typename' and the other doesn't.
4481    // FIXME: non-dependent using decls?
4482    if (isTypeName != DTypename) continue;
4483
4484    // using decls differ if they name different scopes (but note that
4485    // template instantiation can cause this check to trigger when it
4486    // didn't before instantiation).
4487    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4488        Context.getCanonicalNestedNameSpecifier(DQual))
4489      continue;
4490
4491    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4492    Diag(D->getLocation(), diag::note_using_decl) << 1;
4493    return true;
4494  }
4495
4496  return false;
4497}
4498
4499
4500/// Checks that the given nested-name qualifier used in a using decl
4501/// in the current context is appropriately related to the current
4502/// scope.  If an error is found, diagnoses it and returns true.
4503bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4504                                   const CXXScopeSpec &SS,
4505                                   SourceLocation NameLoc) {
4506  DeclContext *NamedContext = computeDeclContext(SS);
4507
4508  if (!CurContext->isRecord()) {
4509    // C++03 [namespace.udecl]p3:
4510    // C++0x [namespace.udecl]p8:
4511    //   A using-declaration for a class member shall be a member-declaration.
4512
4513    // If we weren't able to compute a valid scope, it must be a
4514    // dependent class scope.
4515    if (!NamedContext || NamedContext->isRecord()) {
4516      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4517        << SS.getRange();
4518      return true;
4519    }
4520
4521    // Otherwise, everything is known to be fine.
4522    return false;
4523  }
4524
4525  // The current scope is a record.
4526
4527  // If the named context is dependent, we can't decide much.
4528  if (!NamedContext) {
4529    // FIXME: in C++0x, we can diagnose if we can prove that the
4530    // nested-name-specifier does not refer to a base class, which is
4531    // still possible in some cases.
4532
4533    // Otherwise we have to conservatively report that things might be
4534    // okay.
4535    return false;
4536  }
4537
4538  if (!NamedContext->isRecord()) {
4539    // Ideally this would point at the last name in the specifier,
4540    // but we don't have that level of source info.
4541    Diag(SS.getRange().getBegin(),
4542         diag::err_using_decl_nested_name_specifier_is_not_class)
4543      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4544    return true;
4545  }
4546
4547  if (!NamedContext->isDependentContext() &&
4548      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4549    return true;
4550
4551  if (getLangOptions().CPlusPlus0x) {
4552    // C++0x [namespace.udecl]p3:
4553    //   In a using-declaration used as a member-declaration, the
4554    //   nested-name-specifier shall name a base class of the class
4555    //   being defined.
4556
4557    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4558                                 cast<CXXRecordDecl>(NamedContext))) {
4559      if (CurContext == NamedContext) {
4560        Diag(NameLoc,
4561             diag::err_using_decl_nested_name_specifier_is_current_class)
4562          << SS.getRange();
4563        return true;
4564      }
4565
4566      Diag(SS.getRange().getBegin(),
4567           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4568        << (NestedNameSpecifier*) SS.getScopeRep()
4569        << cast<CXXRecordDecl>(CurContext)
4570        << SS.getRange();
4571      return true;
4572    }
4573
4574    return false;
4575  }
4576
4577  // C++03 [namespace.udecl]p4:
4578  //   A using-declaration used as a member-declaration shall refer
4579  //   to a member of a base class of the class being defined [etc.].
4580
4581  // Salient point: SS doesn't have to name a base class as long as
4582  // lookup only finds members from base classes.  Therefore we can
4583  // diagnose here only if we can prove that that can't happen,
4584  // i.e. if the class hierarchies provably don't intersect.
4585
4586  // TODO: it would be nice if "definitely valid" results were cached
4587  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4588  // need to be repeated.
4589
4590  struct UserData {
4591    llvm::DenseSet<const CXXRecordDecl*> Bases;
4592
4593    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4594      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4595      Data->Bases.insert(Base);
4596      return true;
4597    }
4598
4599    bool hasDependentBases(const CXXRecordDecl *Class) {
4600      return !Class->forallBases(collect, this);
4601    }
4602
4603    /// Returns true if the base is dependent or is one of the
4604    /// accumulated base classes.
4605    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4606      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4607      return !Data->Bases.count(Base);
4608    }
4609
4610    bool mightShareBases(const CXXRecordDecl *Class) {
4611      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4612    }
4613  };
4614
4615  UserData Data;
4616
4617  // Returns false if we find a dependent base.
4618  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4619    return false;
4620
4621  // Returns false if the class has a dependent base or if it or one
4622  // of its bases is present in the base set of the current context.
4623  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4624    return false;
4625
4626  Diag(SS.getRange().getBegin(),
4627       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4628    << (NestedNameSpecifier*) SS.getScopeRep()
4629    << cast<CXXRecordDecl>(CurContext)
4630    << SS.getRange();
4631
4632  return true;
4633}
4634
4635Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4636                                             SourceLocation NamespaceLoc,
4637                                             SourceLocation AliasLoc,
4638                                             IdentifierInfo *Alias,
4639                                             CXXScopeSpec &SS,
4640                                             SourceLocation IdentLoc,
4641                                             IdentifierInfo *Ident) {
4642
4643  // Lookup the namespace name.
4644  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4645  LookupParsedName(R, S, &SS);
4646
4647  // Check if we have a previous declaration with the same name.
4648  NamedDecl *PrevDecl
4649    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4650                       ForRedeclaration);
4651  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4652    PrevDecl = 0;
4653
4654  if (PrevDecl) {
4655    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4656      // We already have an alias with the same name that points to the same
4657      // namespace, so don't create a new one.
4658      // FIXME: At some point, we'll want to create the (redundant)
4659      // declaration to maintain better source information.
4660      if (!R.isAmbiguous() && !R.empty() &&
4661          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4662        return 0;
4663    }
4664
4665    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4666      diag::err_redefinition_different_kind;
4667    Diag(AliasLoc, DiagID) << Alias;
4668    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4669    return 0;
4670  }
4671
4672  if (R.isAmbiguous())
4673    return 0;
4674
4675  if (R.empty()) {
4676    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4677                                                CTC_NoKeywords, 0)) {
4678      if (R.getAsSingle<NamespaceDecl>() ||
4679          R.getAsSingle<NamespaceAliasDecl>()) {
4680        if (DeclContext *DC = computeDeclContext(SS, false))
4681          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4682            << Ident << DC << Corrected << SS.getRange()
4683            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4684        else
4685          Diag(IdentLoc, diag::err_using_directive_suggest)
4686            << Ident << Corrected
4687            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4688
4689        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4690          << Corrected;
4691
4692        Ident = Corrected.getAsIdentifierInfo();
4693      } else {
4694        R.clear();
4695        R.setLookupName(Ident);
4696      }
4697    }
4698
4699    if (R.empty()) {
4700      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4701      return 0;
4702    }
4703  }
4704
4705  NamespaceAliasDecl *AliasDecl =
4706    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4707                               Alias, SS.getWithLocInContext(Context),
4708                               IdentLoc, R.getFoundDecl());
4709
4710  PushOnScopeChains(AliasDecl, S);
4711  return AliasDecl;
4712}
4713
4714namespace {
4715  /// \brief Scoped object used to handle the state changes required in Sema
4716  /// to implicitly define the body of a C++ member function;
4717  class ImplicitlyDefinedFunctionScope {
4718    Sema &S;
4719    Sema::ContextRAII SavedContext;
4720
4721  public:
4722    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4723      : S(S), SavedContext(S, Method)
4724    {
4725      S.PushFunctionScope();
4726      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4727    }
4728
4729    ~ImplicitlyDefinedFunctionScope() {
4730      S.PopExpressionEvaluationContext();
4731      S.PopFunctionOrBlockScope();
4732    }
4733  };
4734}
4735
4736static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4737                                                       CXXRecordDecl *D) {
4738  ASTContext &Context = Self.Context;
4739  QualType ClassType = Context.getTypeDeclType(D);
4740  DeclarationName ConstructorName
4741    = Context.DeclarationNames.getCXXConstructorName(
4742                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4743
4744  DeclContext::lookup_const_iterator Con, ConEnd;
4745  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4746       Con != ConEnd; ++Con) {
4747    // FIXME: In C++0x, a constructor template can be a default constructor.
4748    if (isa<FunctionTemplateDecl>(*Con))
4749      continue;
4750
4751    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4752    if (Constructor->isDefaultConstructor())
4753      return Constructor;
4754  }
4755  return 0;
4756}
4757
4758CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4759                                                     CXXRecordDecl *ClassDecl) {
4760  // C++ [class.ctor]p5:
4761  //   A default constructor for a class X is a constructor of class X
4762  //   that can be called without an argument. If there is no
4763  //   user-declared constructor for class X, a default constructor is
4764  //   implicitly declared. An implicitly-declared default constructor
4765  //   is an inline public member of its class.
4766  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4767         "Should not build implicit default constructor!");
4768
4769  // C++ [except.spec]p14:
4770  //   An implicitly declared special member function (Clause 12) shall have an
4771  //   exception-specification. [...]
4772  ImplicitExceptionSpecification ExceptSpec(Context);
4773
4774  // Direct base-class constructors.
4775  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4776                                       BEnd = ClassDecl->bases_end();
4777       B != BEnd; ++B) {
4778    if (B->isVirtual()) // Handled below.
4779      continue;
4780
4781    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4782      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4783      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4784        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4785      else if (CXXConstructorDecl *Constructor
4786                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4787        ExceptSpec.CalledDecl(Constructor);
4788    }
4789  }
4790
4791  // Virtual base-class constructors.
4792  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4793                                       BEnd = ClassDecl->vbases_end();
4794       B != BEnd; ++B) {
4795    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4796      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4797      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4798        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4799      else if (CXXConstructorDecl *Constructor
4800                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4801        ExceptSpec.CalledDecl(Constructor);
4802    }
4803  }
4804
4805  // Field constructors.
4806  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4807                               FEnd = ClassDecl->field_end();
4808       F != FEnd; ++F) {
4809    if (const RecordType *RecordTy
4810              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4811      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4812      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4813        ExceptSpec.CalledDecl(
4814                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4815      else if (CXXConstructorDecl *Constructor
4816                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4817        ExceptSpec.CalledDecl(Constructor);
4818    }
4819  }
4820
4821  FunctionProtoType::ExtProtoInfo EPI;
4822  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
4823  EPI.NumExceptions = ExceptSpec.size();
4824  EPI.Exceptions = ExceptSpec.data();
4825
4826  // Create the actual constructor declaration.
4827  CanQualType ClassType
4828    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4829  SourceLocation ClassLoc = ClassDecl->getLocation();
4830  DeclarationName Name
4831    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4832  DeclarationNameInfo NameInfo(Name, ClassLoc);
4833  CXXConstructorDecl *DefaultCon
4834    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4835                                 Context.getFunctionType(Context.VoidTy,
4836                                                         0, 0, EPI),
4837                                 /*TInfo=*/0,
4838                                 /*isExplicit=*/false,
4839                                 /*isInline=*/true,
4840                                 /*isImplicitlyDeclared=*/true);
4841  DefaultCon->setAccess(AS_public);
4842  DefaultCon->setImplicit();
4843  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4844
4845  // Note that we have declared this constructor.
4846  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4847
4848  if (Scope *S = getScopeForContext(ClassDecl))
4849    PushOnScopeChains(DefaultCon, S, false);
4850  ClassDecl->addDecl(DefaultCon);
4851
4852  return DefaultCon;
4853}
4854
4855void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4856                                            CXXConstructorDecl *Constructor) {
4857  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4858          !Constructor->isUsed(false)) &&
4859    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4860
4861  CXXRecordDecl *ClassDecl = Constructor->getParent();
4862  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4863
4864  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4865  DiagnosticErrorTrap Trap(Diags);
4866  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4867      Trap.hasErrorOccurred()) {
4868    Diag(CurrentLocation, diag::note_member_synthesized_at)
4869      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4870    Constructor->setInvalidDecl();
4871    return;
4872  }
4873
4874  SourceLocation Loc = Constructor->getLocation();
4875  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4876
4877  Constructor->setUsed();
4878  MarkVTableUsed(CurrentLocation, ClassDecl);
4879}
4880
4881void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4882  // We start with an initial pass over the base classes to collect those that
4883  // inherit constructors from. If there are none, we can forgo all further
4884  // processing.
4885  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4886  BasesVector BasesToInheritFrom;
4887  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4888                                          BaseE = ClassDecl->bases_end();
4889         BaseIt != BaseE; ++BaseIt) {
4890    if (BaseIt->getInheritConstructors()) {
4891      QualType Base = BaseIt->getType();
4892      if (Base->isDependentType()) {
4893        // If we inherit constructors from anything that is dependent, just
4894        // abort processing altogether. We'll get another chance for the
4895        // instantiations.
4896        return;
4897      }
4898      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4899    }
4900  }
4901  if (BasesToInheritFrom.empty())
4902    return;
4903
4904  // Now collect the constructors that we already have in the current class.
4905  // Those take precedence over inherited constructors.
4906  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4907  //   unless there is a user-declared constructor with the same signature in
4908  //   the class where the using-declaration appears.
4909  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4910  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4911                                    CtorE = ClassDecl->ctor_end();
4912       CtorIt != CtorE; ++CtorIt) {
4913    ExistingConstructors.insert(
4914        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4915  }
4916
4917  Scope *S = getScopeForContext(ClassDecl);
4918  DeclarationName CreatedCtorName =
4919      Context.DeclarationNames.getCXXConstructorName(
4920          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4921
4922  // Now comes the true work.
4923  // First, we keep a map from constructor types to the base that introduced
4924  // them. Needed for finding conflicting constructors. We also keep the
4925  // actually inserted declarations in there, for pretty diagnostics.
4926  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4927  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4928  ConstructorToSourceMap InheritedConstructors;
4929  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4930                             BaseE = BasesToInheritFrom.end();
4931       BaseIt != BaseE; ++BaseIt) {
4932    const RecordType *Base = *BaseIt;
4933    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4934    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4935    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4936                                      CtorE = BaseDecl->ctor_end();
4937         CtorIt != CtorE; ++CtorIt) {
4938      // Find the using declaration for inheriting this base's constructors.
4939      DeclarationName Name =
4940          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4941      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4942          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4943      SourceLocation UsingLoc = UD ? UD->getLocation() :
4944                                     ClassDecl->getLocation();
4945
4946      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4947      //   from the class X named in the using-declaration consists of actual
4948      //   constructors and notional constructors that result from the
4949      //   transformation of defaulted parameters as follows:
4950      //   - all non-template default constructors of X, and
4951      //   - for each non-template constructor of X that has at least one
4952      //     parameter with a default argument, the set of constructors that
4953      //     results from omitting any ellipsis parameter specification and
4954      //     successively omitting parameters with a default argument from the
4955      //     end of the parameter-type-list.
4956      CXXConstructorDecl *BaseCtor = *CtorIt;
4957      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4958      const FunctionProtoType *BaseCtorType =
4959          BaseCtor->getType()->getAs<FunctionProtoType>();
4960
4961      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4962                    maxParams = BaseCtor->getNumParams();
4963           params <= maxParams; ++params) {
4964        // Skip default constructors. They're never inherited.
4965        if (params == 0)
4966          continue;
4967        // Skip copy and move constructors for the same reason.
4968        if (CanBeCopyOrMove && params == 1)
4969          continue;
4970
4971        // Build up a function type for this particular constructor.
4972        // FIXME: The working paper does not consider that the exception spec
4973        // for the inheriting constructor might be larger than that of the
4974        // source. This code doesn't yet, either.
4975        const Type *NewCtorType;
4976        if (params == maxParams)
4977          NewCtorType = BaseCtorType;
4978        else {
4979          llvm::SmallVector<QualType, 16> Args;
4980          for (unsigned i = 0; i < params; ++i) {
4981            Args.push_back(BaseCtorType->getArgType(i));
4982          }
4983          FunctionProtoType::ExtProtoInfo ExtInfo =
4984              BaseCtorType->getExtProtoInfo();
4985          ExtInfo.Variadic = false;
4986          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4987                                                Args.data(), params, ExtInfo)
4988                       .getTypePtr();
4989        }
4990        const Type *CanonicalNewCtorType =
4991            Context.getCanonicalType(NewCtorType);
4992
4993        // Now that we have the type, first check if the class already has a
4994        // constructor with this signature.
4995        if (ExistingConstructors.count(CanonicalNewCtorType))
4996          continue;
4997
4998        // Then we check if we have already declared an inherited constructor
4999        // with this signature.
5000        std::pair<ConstructorToSourceMap::iterator, bool> result =
5001            InheritedConstructors.insert(std::make_pair(
5002                CanonicalNewCtorType,
5003                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
5004        if (!result.second) {
5005          // Already in the map. If it came from a different class, that's an
5006          // error. Not if it's from the same.
5007          CanQualType PreviousBase = result.first->second.first;
5008          if (CanonicalBase != PreviousBase) {
5009            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5010            const CXXConstructorDecl *PrevBaseCtor =
5011                PrevCtor->getInheritedConstructor();
5012            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5013
5014            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5015            Diag(BaseCtor->getLocation(),
5016                 diag::note_using_decl_constructor_conflict_current_ctor);
5017            Diag(PrevBaseCtor->getLocation(),
5018                 diag::note_using_decl_constructor_conflict_previous_ctor);
5019            Diag(PrevCtor->getLocation(),
5020                 diag::note_using_decl_constructor_conflict_previous_using);
5021          }
5022          continue;
5023        }
5024
5025        // OK, we're there, now add the constructor.
5026        // C++0x [class.inhctor]p8: [...] that would be performed by a
5027        //   user-writtern inline constructor [...]
5028        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5029        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5030            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5031            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5032            /*ImplicitlyDeclared=*/true);
5033        NewCtor->setAccess(BaseCtor->getAccess());
5034
5035        // Build up the parameter decls and add them.
5036        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5037        for (unsigned i = 0; i < params; ++i) {
5038          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5039                                                   UsingLoc, UsingLoc,
5040                                                   /*IdentifierInfo=*/0,
5041                                                   BaseCtorType->getArgType(i),
5042                                                   /*TInfo=*/0, SC_None,
5043                                                   SC_None, /*DefaultArg=*/0));
5044        }
5045        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5046        NewCtor->setInheritedConstructor(BaseCtor);
5047
5048        PushOnScopeChains(NewCtor, S, false);
5049        ClassDecl->addDecl(NewCtor);
5050        result.first->second.second = NewCtor;
5051      }
5052    }
5053  }
5054}
5055
5056CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5057  // C++ [class.dtor]p2:
5058  //   If a class has no user-declared destructor, a destructor is
5059  //   declared implicitly. An implicitly-declared destructor is an
5060  //   inline public member of its class.
5061
5062  // C++ [except.spec]p14:
5063  //   An implicitly declared special member function (Clause 12) shall have
5064  //   an exception-specification.
5065  ImplicitExceptionSpecification ExceptSpec(Context);
5066
5067  // Direct base-class destructors.
5068  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5069                                       BEnd = ClassDecl->bases_end();
5070       B != BEnd; ++B) {
5071    if (B->isVirtual()) // Handled below.
5072      continue;
5073
5074    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5075      ExceptSpec.CalledDecl(
5076                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5077  }
5078
5079  // Virtual base-class destructors.
5080  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5081                                       BEnd = ClassDecl->vbases_end();
5082       B != BEnd; ++B) {
5083    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5084      ExceptSpec.CalledDecl(
5085                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5086  }
5087
5088  // Field destructors.
5089  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5090                               FEnd = ClassDecl->field_end();
5091       F != FEnd; ++F) {
5092    if (const RecordType *RecordTy
5093        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5094      ExceptSpec.CalledDecl(
5095                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5096  }
5097
5098  // Create the actual destructor declaration.
5099  FunctionProtoType::ExtProtoInfo EPI;
5100  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5101  EPI.NumExceptions = ExceptSpec.size();
5102  EPI.Exceptions = ExceptSpec.data();
5103  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5104
5105  CanQualType ClassType
5106    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5107  SourceLocation ClassLoc = ClassDecl->getLocation();
5108  DeclarationName Name
5109    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5110  DeclarationNameInfo NameInfo(Name, ClassLoc);
5111  CXXDestructorDecl *Destructor
5112      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5113                                  /*isInline=*/true,
5114                                  /*isImplicitlyDeclared=*/true);
5115  Destructor->setAccess(AS_public);
5116  Destructor->setImplicit();
5117  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5118
5119  // Note that we have declared this destructor.
5120  ++ASTContext::NumImplicitDestructorsDeclared;
5121
5122  // Introduce this destructor into its scope.
5123  if (Scope *S = getScopeForContext(ClassDecl))
5124    PushOnScopeChains(Destructor, S, false);
5125  ClassDecl->addDecl(Destructor);
5126
5127  // This could be uniqued if it ever proves significant.
5128  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5129
5130  AddOverriddenMethods(ClassDecl, Destructor);
5131
5132  return Destructor;
5133}
5134
5135void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5136                                    CXXDestructorDecl *Destructor) {
5137  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5138         "DefineImplicitDestructor - call it for implicit default dtor");
5139  CXXRecordDecl *ClassDecl = Destructor->getParent();
5140  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5141
5142  if (Destructor->isInvalidDecl())
5143    return;
5144
5145  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5146
5147  DiagnosticErrorTrap Trap(Diags);
5148  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5149                                         Destructor->getParent());
5150
5151  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5152    Diag(CurrentLocation, diag::note_member_synthesized_at)
5153      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5154
5155    Destructor->setInvalidDecl();
5156    return;
5157  }
5158
5159  SourceLocation Loc = Destructor->getLocation();
5160  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5161
5162  Destructor->setUsed();
5163  MarkVTableUsed(CurrentLocation, ClassDecl);
5164}
5165
5166/// \brief Builds a statement that copies the given entity from \p From to
5167/// \c To.
5168///
5169/// This routine is used to copy the members of a class with an
5170/// implicitly-declared copy assignment operator. When the entities being
5171/// copied are arrays, this routine builds for loops to copy them.
5172///
5173/// \param S The Sema object used for type-checking.
5174///
5175/// \param Loc The location where the implicit copy is being generated.
5176///
5177/// \param T The type of the expressions being copied. Both expressions must
5178/// have this type.
5179///
5180/// \param To The expression we are copying to.
5181///
5182/// \param From The expression we are copying from.
5183///
5184/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5185/// Otherwise, it's a non-static member subobject.
5186///
5187/// \param Depth Internal parameter recording the depth of the recursion.
5188///
5189/// \returns A statement or a loop that copies the expressions.
5190static StmtResult
5191BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5192                      Expr *To, Expr *From,
5193                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5194  // C++0x [class.copy]p30:
5195  //   Each subobject is assigned in the manner appropriate to its type:
5196  //
5197  //     - if the subobject is of class type, the copy assignment operator
5198  //       for the class is used (as if by explicit qualification; that is,
5199  //       ignoring any possible virtual overriding functions in more derived
5200  //       classes);
5201  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5202    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5203
5204    // Look for operator=.
5205    DeclarationName Name
5206      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5207    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5208    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5209
5210    // Filter out any result that isn't a copy-assignment operator.
5211    LookupResult::Filter F = OpLookup.makeFilter();
5212    while (F.hasNext()) {
5213      NamedDecl *D = F.next();
5214      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5215        if (Method->isCopyAssignmentOperator())
5216          continue;
5217
5218      F.erase();
5219    }
5220    F.done();
5221
5222    // Suppress the protected check (C++ [class.protected]) for each of the
5223    // assignment operators we found. This strange dance is required when
5224    // we're assigning via a base classes's copy-assignment operator. To
5225    // ensure that we're getting the right base class subobject (without
5226    // ambiguities), we need to cast "this" to that subobject type; to
5227    // ensure that we don't go through the virtual call mechanism, we need
5228    // to qualify the operator= name with the base class (see below). However,
5229    // this means that if the base class has a protected copy assignment
5230    // operator, the protected member access check will fail. So, we
5231    // rewrite "protected" access to "public" access in this case, since we
5232    // know by construction that we're calling from a derived class.
5233    if (CopyingBaseSubobject) {
5234      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5235           L != LEnd; ++L) {
5236        if (L.getAccess() == AS_protected)
5237          L.setAccess(AS_public);
5238      }
5239    }
5240
5241    // Create the nested-name-specifier that will be used to qualify the
5242    // reference to operator=; this is required to suppress the virtual
5243    // call mechanism.
5244    CXXScopeSpec SS;
5245    SS.MakeTrivial(S.Context,
5246                   NestedNameSpecifier::Create(S.Context, 0, false,
5247                                               T.getTypePtr()),
5248                   Loc);
5249
5250    // Create the reference to operator=.
5251    ExprResult OpEqualRef
5252      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5253                                   /*FirstQualifierInScope=*/0, OpLookup,
5254                                   /*TemplateArgs=*/0,
5255                                   /*SuppressQualifierCheck=*/true);
5256    if (OpEqualRef.isInvalid())
5257      return StmtError();
5258
5259    // Build the call to the assignment operator.
5260
5261    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5262                                                  OpEqualRef.takeAs<Expr>(),
5263                                                  Loc, &From, 1, Loc);
5264    if (Call.isInvalid())
5265      return StmtError();
5266
5267    return S.Owned(Call.takeAs<Stmt>());
5268  }
5269
5270  //     - if the subobject is of scalar type, the built-in assignment
5271  //       operator is used.
5272  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5273  if (!ArrayTy) {
5274    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5275    if (Assignment.isInvalid())
5276      return StmtError();
5277
5278    return S.Owned(Assignment.takeAs<Stmt>());
5279  }
5280
5281  //     - if the subobject is an array, each element is assigned, in the
5282  //       manner appropriate to the element type;
5283
5284  // Construct a loop over the array bounds, e.g.,
5285  //
5286  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5287  //
5288  // that will copy each of the array elements.
5289  QualType SizeType = S.Context.getSizeType();
5290
5291  // Create the iteration variable.
5292  IdentifierInfo *IterationVarName = 0;
5293  {
5294    llvm::SmallString<8> Str;
5295    llvm::raw_svector_ostream OS(Str);
5296    OS << "__i" << Depth;
5297    IterationVarName = &S.Context.Idents.get(OS.str());
5298  }
5299  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5300                                          IterationVarName, SizeType,
5301                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5302                                          SC_None, SC_None);
5303
5304  // Initialize the iteration variable to zero.
5305  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5306  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5307
5308  // Create a reference to the iteration variable; we'll use this several
5309  // times throughout.
5310  Expr *IterationVarRef
5311    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5312  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5313
5314  // Create the DeclStmt that holds the iteration variable.
5315  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5316
5317  // Create the comparison against the array bound.
5318  llvm::APInt Upper
5319    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5320  Expr *Comparison
5321    = new (S.Context) BinaryOperator(IterationVarRef,
5322                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5323                                     BO_NE, S.Context.BoolTy,
5324                                     VK_RValue, OK_Ordinary, Loc);
5325
5326  // Create the pre-increment of the iteration variable.
5327  Expr *Increment
5328    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5329                                    VK_LValue, OK_Ordinary, Loc);
5330
5331  // Subscript the "from" and "to" expressions with the iteration variable.
5332  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5333                                                         IterationVarRef, Loc));
5334  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5335                                                       IterationVarRef, Loc));
5336
5337  // Build the copy for an individual element of the array.
5338  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5339                                          To, From, CopyingBaseSubobject,
5340                                          Depth + 1);
5341  if (Copy.isInvalid())
5342    return StmtError();
5343
5344  // Construct the loop that copies all elements of this array.
5345  return S.ActOnForStmt(Loc, Loc, InitStmt,
5346                        S.MakeFullExpr(Comparison),
5347                        0, S.MakeFullExpr(Increment),
5348                        Loc, Copy.take());
5349}
5350
5351/// \brief Determine whether the given class has a copy assignment operator
5352/// that accepts a const-qualified argument.
5353static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5354  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5355
5356  if (!Class->hasDeclaredCopyAssignment())
5357    S.DeclareImplicitCopyAssignment(Class);
5358
5359  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5360  DeclarationName OpName
5361    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5362
5363  DeclContext::lookup_const_iterator Op, OpEnd;
5364  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5365    // C++ [class.copy]p9:
5366    //   A user-declared copy assignment operator is a non-static non-template
5367    //   member function of class X with exactly one parameter of type X, X&,
5368    //   const X&, volatile X& or const volatile X&.
5369    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5370    if (!Method)
5371      continue;
5372
5373    if (Method->isStatic())
5374      continue;
5375    if (Method->getPrimaryTemplate())
5376      continue;
5377    const FunctionProtoType *FnType =
5378    Method->getType()->getAs<FunctionProtoType>();
5379    assert(FnType && "Overloaded operator has no prototype.");
5380    // Don't assert on this; an invalid decl might have been left in the AST.
5381    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5382      continue;
5383    bool AcceptsConst = true;
5384    QualType ArgType = FnType->getArgType(0);
5385    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5386      ArgType = Ref->getPointeeType();
5387      // Is it a non-const lvalue reference?
5388      if (!ArgType.isConstQualified())
5389        AcceptsConst = false;
5390    }
5391    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5392      continue;
5393
5394    // We have a single argument of type cv X or cv X&, i.e. we've found the
5395    // copy assignment operator. Return whether it accepts const arguments.
5396    return AcceptsConst;
5397  }
5398  assert(Class->isInvalidDecl() &&
5399         "No copy assignment operator declared in valid code.");
5400  return false;
5401}
5402
5403CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5404  // Note: The following rules are largely analoguous to the copy
5405  // constructor rules. Note that virtual bases are not taken into account
5406  // for determining the argument type of the operator. Note also that
5407  // operators taking an object instead of a reference are allowed.
5408
5409
5410  // C++ [class.copy]p10:
5411  //   If the class definition does not explicitly declare a copy
5412  //   assignment operator, one is declared implicitly.
5413  //   The implicitly-defined copy assignment operator for a class X
5414  //   will have the form
5415  //
5416  //       X& X::operator=(const X&)
5417  //
5418  //   if
5419  bool HasConstCopyAssignment = true;
5420
5421  //       -- each direct base class B of X has a copy assignment operator
5422  //          whose parameter is of type const B&, const volatile B& or B,
5423  //          and
5424  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5425                                       BaseEnd = ClassDecl->bases_end();
5426       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5427    assert(!Base->getType()->isDependentType() &&
5428           "Cannot generate implicit members for class with dependent bases.");
5429    const CXXRecordDecl *BaseClassDecl
5430      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5431    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5432  }
5433
5434  //       -- for all the nonstatic data members of X that are of a class
5435  //          type M (or array thereof), each such class type has a copy
5436  //          assignment operator whose parameter is of type const M&,
5437  //          const volatile M& or M.
5438  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5439                                  FieldEnd = ClassDecl->field_end();
5440       HasConstCopyAssignment && Field != FieldEnd;
5441       ++Field) {
5442    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5443    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5444      const CXXRecordDecl *FieldClassDecl
5445        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5446      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5447    }
5448  }
5449
5450  //   Otherwise, the implicitly declared copy assignment operator will
5451  //   have the form
5452  //
5453  //       X& X::operator=(X&)
5454  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5455  QualType RetType = Context.getLValueReferenceType(ArgType);
5456  if (HasConstCopyAssignment)
5457    ArgType = ArgType.withConst();
5458  ArgType = Context.getLValueReferenceType(ArgType);
5459
5460  // C++ [except.spec]p14:
5461  //   An implicitly declared special member function (Clause 12) shall have an
5462  //   exception-specification. [...]
5463  ImplicitExceptionSpecification ExceptSpec(Context);
5464  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5465                                       BaseEnd = ClassDecl->bases_end();
5466       Base != BaseEnd; ++Base) {
5467    CXXRecordDecl *BaseClassDecl
5468      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5469
5470    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5471      DeclareImplicitCopyAssignment(BaseClassDecl);
5472
5473    if (CXXMethodDecl *CopyAssign
5474           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5475      ExceptSpec.CalledDecl(CopyAssign);
5476  }
5477  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5478                                  FieldEnd = ClassDecl->field_end();
5479       Field != FieldEnd;
5480       ++Field) {
5481    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5482    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5483      CXXRecordDecl *FieldClassDecl
5484        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5485
5486      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5487        DeclareImplicitCopyAssignment(FieldClassDecl);
5488
5489      if (CXXMethodDecl *CopyAssign
5490            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5491        ExceptSpec.CalledDecl(CopyAssign);
5492    }
5493  }
5494
5495  //   An implicitly-declared copy assignment operator is an inline public
5496  //   member of its class.
5497  FunctionProtoType::ExtProtoInfo EPI;
5498  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5499  EPI.NumExceptions = ExceptSpec.size();
5500  EPI.Exceptions = ExceptSpec.data();
5501  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5502  SourceLocation ClassLoc = ClassDecl->getLocation();
5503  DeclarationNameInfo NameInfo(Name, ClassLoc);
5504  CXXMethodDecl *CopyAssignment
5505    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5506                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5507                            /*TInfo=*/0, /*isStatic=*/false,
5508                            /*StorageClassAsWritten=*/SC_None,
5509                            /*isInline=*/true,
5510                            SourceLocation());
5511  CopyAssignment->setAccess(AS_public);
5512  CopyAssignment->setImplicit();
5513  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5514
5515  // Add the parameter to the operator.
5516  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5517                                               ClassLoc, ClassLoc, /*Id=*/0,
5518                                               ArgType, /*TInfo=*/0,
5519                                               SC_None,
5520                                               SC_None, 0);
5521  CopyAssignment->setParams(&FromParam, 1);
5522
5523  // Note that we have added this copy-assignment operator.
5524  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5525
5526  if (Scope *S = getScopeForContext(ClassDecl))
5527    PushOnScopeChains(CopyAssignment, S, false);
5528  ClassDecl->addDecl(CopyAssignment);
5529
5530  AddOverriddenMethods(ClassDecl, CopyAssignment);
5531  return CopyAssignment;
5532}
5533
5534void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5535                                        CXXMethodDecl *CopyAssignOperator) {
5536  assert((CopyAssignOperator->isImplicit() &&
5537          CopyAssignOperator->isOverloadedOperator() &&
5538          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5539          !CopyAssignOperator->isUsed(false)) &&
5540         "DefineImplicitCopyAssignment called for wrong function");
5541
5542  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5543
5544  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5545    CopyAssignOperator->setInvalidDecl();
5546    return;
5547  }
5548
5549  CopyAssignOperator->setUsed();
5550
5551  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5552  DiagnosticErrorTrap Trap(Diags);
5553
5554  // C++0x [class.copy]p30:
5555  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5556  //   for a non-union class X performs memberwise copy assignment of its
5557  //   subobjects. The direct base classes of X are assigned first, in the
5558  //   order of their declaration in the base-specifier-list, and then the
5559  //   immediate non-static data members of X are assigned, in the order in
5560  //   which they were declared in the class definition.
5561
5562  // The statements that form the synthesized function body.
5563  ASTOwningVector<Stmt*> Statements(*this);
5564
5565  // The parameter for the "other" object, which we are copying from.
5566  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5567  Qualifiers OtherQuals = Other->getType().getQualifiers();
5568  QualType OtherRefType = Other->getType();
5569  if (const LValueReferenceType *OtherRef
5570                                = OtherRefType->getAs<LValueReferenceType>()) {
5571    OtherRefType = OtherRef->getPointeeType();
5572    OtherQuals = OtherRefType.getQualifiers();
5573  }
5574
5575  // Our location for everything implicitly-generated.
5576  SourceLocation Loc = CopyAssignOperator->getLocation();
5577
5578  // Construct a reference to the "other" object. We'll be using this
5579  // throughout the generated ASTs.
5580  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5581  assert(OtherRef && "Reference to parameter cannot fail!");
5582
5583  // Construct the "this" pointer. We'll be using this throughout the generated
5584  // ASTs.
5585  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5586  assert(This && "Reference to this cannot fail!");
5587
5588  // Assign base classes.
5589  bool Invalid = false;
5590  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5591       E = ClassDecl->bases_end(); Base != E; ++Base) {
5592    // Form the assignment:
5593    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5594    QualType BaseType = Base->getType().getUnqualifiedType();
5595    if (!BaseType->isRecordType()) {
5596      Invalid = true;
5597      continue;
5598    }
5599
5600    CXXCastPath BasePath;
5601    BasePath.push_back(Base);
5602
5603    // Construct the "from" expression, which is an implicit cast to the
5604    // appropriately-qualified base type.
5605    Expr *From = OtherRef;
5606    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5607                             CK_UncheckedDerivedToBase,
5608                             VK_LValue, &BasePath).take();
5609
5610    // Dereference "this".
5611    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5612
5613    // Implicitly cast "this" to the appropriately-qualified base type.
5614    To = ImpCastExprToType(To.take(),
5615                           Context.getCVRQualifiedType(BaseType,
5616                                     CopyAssignOperator->getTypeQualifiers()),
5617                           CK_UncheckedDerivedToBase,
5618                           VK_LValue, &BasePath);
5619
5620    // Build the copy.
5621    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5622                                            To.get(), From,
5623                                            /*CopyingBaseSubobject=*/true);
5624    if (Copy.isInvalid()) {
5625      Diag(CurrentLocation, diag::note_member_synthesized_at)
5626        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5627      CopyAssignOperator->setInvalidDecl();
5628      return;
5629    }
5630
5631    // Success! Record the copy.
5632    Statements.push_back(Copy.takeAs<Expr>());
5633  }
5634
5635  // \brief Reference to the __builtin_memcpy function.
5636  Expr *BuiltinMemCpyRef = 0;
5637  // \brief Reference to the __builtin_objc_memmove_collectable function.
5638  Expr *CollectableMemCpyRef = 0;
5639
5640  // Assign non-static members.
5641  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5642                                  FieldEnd = ClassDecl->field_end();
5643       Field != FieldEnd; ++Field) {
5644    // Check for members of reference type; we can't copy those.
5645    if (Field->getType()->isReferenceType()) {
5646      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5647        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5648      Diag(Field->getLocation(), diag::note_declared_at);
5649      Diag(CurrentLocation, diag::note_member_synthesized_at)
5650        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5651      Invalid = true;
5652      continue;
5653    }
5654
5655    // Check for members of const-qualified, non-class type.
5656    QualType BaseType = Context.getBaseElementType(Field->getType());
5657    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5658      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5659        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5660      Diag(Field->getLocation(), diag::note_declared_at);
5661      Diag(CurrentLocation, diag::note_member_synthesized_at)
5662        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5663      Invalid = true;
5664      continue;
5665    }
5666
5667    QualType FieldType = Field->getType().getNonReferenceType();
5668    if (FieldType->isIncompleteArrayType()) {
5669      assert(ClassDecl->hasFlexibleArrayMember() &&
5670             "Incomplete array type is not valid");
5671      continue;
5672    }
5673
5674    // Build references to the field in the object we're copying from and to.
5675    CXXScopeSpec SS; // Intentionally empty
5676    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5677                              LookupMemberName);
5678    MemberLookup.addDecl(*Field);
5679    MemberLookup.resolveKind();
5680    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5681                                               Loc, /*IsArrow=*/false,
5682                                               SS, 0, MemberLookup, 0);
5683    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5684                                             Loc, /*IsArrow=*/true,
5685                                             SS, 0, MemberLookup, 0);
5686    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5687    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5688
5689    // If the field should be copied with __builtin_memcpy rather than via
5690    // explicit assignments, do so. This optimization only applies for arrays
5691    // of scalars and arrays of class type with trivial copy-assignment
5692    // operators.
5693    if (FieldType->isArrayType() &&
5694        (!BaseType->isRecordType() ||
5695         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5696           ->hasTrivialCopyAssignment())) {
5697      // Compute the size of the memory buffer to be copied.
5698      QualType SizeType = Context.getSizeType();
5699      llvm::APInt Size(Context.getTypeSize(SizeType),
5700                       Context.getTypeSizeInChars(BaseType).getQuantity());
5701      for (const ConstantArrayType *Array
5702              = Context.getAsConstantArrayType(FieldType);
5703           Array;
5704           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5705        llvm::APInt ArraySize
5706          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5707        Size *= ArraySize;
5708      }
5709
5710      // Take the address of the field references for "from" and "to".
5711      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5712      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5713
5714      bool NeedsCollectableMemCpy =
5715          (BaseType->isRecordType() &&
5716           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5717
5718      if (NeedsCollectableMemCpy) {
5719        if (!CollectableMemCpyRef) {
5720          // Create a reference to the __builtin_objc_memmove_collectable function.
5721          LookupResult R(*this,
5722                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5723                         Loc, LookupOrdinaryName);
5724          LookupName(R, TUScope, true);
5725
5726          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5727          if (!CollectableMemCpy) {
5728            // Something went horribly wrong earlier, and we will have
5729            // complained about it.
5730            Invalid = true;
5731            continue;
5732          }
5733
5734          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5735                                                  CollectableMemCpy->getType(),
5736                                                  VK_LValue, Loc, 0).take();
5737          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5738        }
5739      }
5740      // Create a reference to the __builtin_memcpy builtin function.
5741      else if (!BuiltinMemCpyRef) {
5742        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5743                       LookupOrdinaryName);
5744        LookupName(R, TUScope, true);
5745
5746        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5747        if (!BuiltinMemCpy) {
5748          // Something went horribly wrong earlier, and we will have complained
5749          // about it.
5750          Invalid = true;
5751          continue;
5752        }
5753
5754        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5755                                            BuiltinMemCpy->getType(),
5756                                            VK_LValue, Loc, 0).take();
5757        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5758      }
5759
5760      ASTOwningVector<Expr*> CallArgs(*this);
5761      CallArgs.push_back(To.takeAs<Expr>());
5762      CallArgs.push_back(From.takeAs<Expr>());
5763      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5764      ExprResult Call = ExprError();
5765      if (NeedsCollectableMemCpy)
5766        Call = ActOnCallExpr(/*Scope=*/0,
5767                             CollectableMemCpyRef,
5768                             Loc, move_arg(CallArgs),
5769                             Loc);
5770      else
5771        Call = ActOnCallExpr(/*Scope=*/0,
5772                             BuiltinMemCpyRef,
5773                             Loc, move_arg(CallArgs),
5774                             Loc);
5775
5776      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5777      Statements.push_back(Call.takeAs<Expr>());
5778      continue;
5779    }
5780
5781    // Build the copy of this field.
5782    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5783                                                  To.get(), From.get(),
5784                                              /*CopyingBaseSubobject=*/false);
5785    if (Copy.isInvalid()) {
5786      Diag(CurrentLocation, diag::note_member_synthesized_at)
5787        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5788      CopyAssignOperator->setInvalidDecl();
5789      return;
5790    }
5791
5792    // Success! Record the copy.
5793    Statements.push_back(Copy.takeAs<Stmt>());
5794  }
5795
5796  if (!Invalid) {
5797    // Add a "return *this;"
5798    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5799
5800    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5801    if (Return.isInvalid())
5802      Invalid = true;
5803    else {
5804      Statements.push_back(Return.takeAs<Stmt>());
5805
5806      if (Trap.hasErrorOccurred()) {
5807        Diag(CurrentLocation, diag::note_member_synthesized_at)
5808          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5809        Invalid = true;
5810      }
5811    }
5812  }
5813
5814  if (Invalid) {
5815    CopyAssignOperator->setInvalidDecl();
5816    return;
5817  }
5818
5819  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5820                                            /*isStmtExpr=*/false);
5821  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5822  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5823}
5824
5825CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5826                                                    CXXRecordDecl *ClassDecl) {
5827  // C++ [class.copy]p4:
5828  //   If the class definition does not explicitly declare a copy
5829  //   constructor, one is declared implicitly.
5830
5831  // C++ [class.copy]p5:
5832  //   The implicitly-declared copy constructor for a class X will
5833  //   have the form
5834  //
5835  //       X::X(const X&)
5836  //
5837  //   if
5838  bool HasConstCopyConstructor = true;
5839
5840  //     -- each direct or virtual base class B of X has a copy
5841  //        constructor whose first parameter is of type const B& or
5842  //        const volatile B&, and
5843  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5844                                       BaseEnd = ClassDecl->bases_end();
5845       HasConstCopyConstructor && Base != BaseEnd;
5846       ++Base) {
5847    // Virtual bases are handled below.
5848    if (Base->isVirtual())
5849      continue;
5850
5851    CXXRecordDecl *BaseClassDecl
5852      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5853    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5854      DeclareImplicitCopyConstructor(BaseClassDecl);
5855
5856    HasConstCopyConstructor
5857      = BaseClassDecl->hasConstCopyConstructor(Context);
5858  }
5859
5860  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5861                                       BaseEnd = ClassDecl->vbases_end();
5862       HasConstCopyConstructor && Base != BaseEnd;
5863       ++Base) {
5864    CXXRecordDecl *BaseClassDecl
5865      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5866    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5867      DeclareImplicitCopyConstructor(BaseClassDecl);
5868
5869    HasConstCopyConstructor
5870      = BaseClassDecl->hasConstCopyConstructor(Context);
5871  }
5872
5873  //     -- for all the nonstatic data members of X that are of a
5874  //        class type M (or array thereof), each such class type
5875  //        has a copy constructor whose first parameter is of type
5876  //        const M& or const volatile M&.
5877  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5878                                  FieldEnd = ClassDecl->field_end();
5879       HasConstCopyConstructor && Field != FieldEnd;
5880       ++Field) {
5881    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5882    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5883      CXXRecordDecl *FieldClassDecl
5884        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5885      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5886        DeclareImplicitCopyConstructor(FieldClassDecl);
5887
5888      HasConstCopyConstructor
5889        = FieldClassDecl->hasConstCopyConstructor(Context);
5890    }
5891  }
5892
5893  //   Otherwise, the implicitly declared copy constructor will have
5894  //   the form
5895  //
5896  //       X::X(X&)
5897  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5898  QualType ArgType = ClassType;
5899  if (HasConstCopyConstructor)
5900    ArgType = ArgType.withConst();
5901  ArgType = Context.getLValueReferenceType(ArgType);
5902
5903  // C++ [except.spec]p14:
5904  //   An implicitly declared special member function (Clause 12) shall have an
5905  //   exception-specification. [...]
5906  ImplicitExceptionSpecification ExceptSpec(Context);
5907  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5908  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5909                                       BaseEnd = ClassDecl->bases_end();
5910       Base != BaseEnd;
5911       ++Base) {
5912    // Virtual bases are handled below.
5913    if (Base->isVirtual())
5914      continue;
5915
5916    CXXRecordDecl *BaseClassDecl
5917      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5918    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5919      DeclareImplicitCopyConstructor(BaseClassDecl);
5920
5921    if (CXXConstructorDecl *CopyConstructor
5922                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5923      ExceptSpec.CalledDecl(CopyConstructor);
5924  }
5925  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5926                                       BaseEnd = ClassDecl->vbases_end();
5927       Base != BaseEnd;
5928       ++Base) {
5929    CXXRecordDecl *BaseClassDecl
5930      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5931    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5932      DeclareImplicitCopyConstructor(BaseClassDecl);
5933
5934    if (CXXConstructorDecl *CopyConstructor
5935                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5936      ExceptSpec.CalledDecl(CopyConstructor);
5937  }
5938  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5939                                  FieldEnd = ClassDecl->field_end();
5940       Field != FieldEnd;
5941       ++Field) {
5942    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5943    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5944      CXXRecordDecl *FieldClassDecl
5945        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5946      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5947        DeclareImplicitCopyConstructor(FieldClassDecl);
5948
5949      if (CXXConstructorDecl *CopyConstructor
5950                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5951        ExceptSpec.CalledDecl(CopyConstructor);
5952    }
5953  }
5954
5955  //   An implicitly-declared copy constructor is an inline public
5956  //   member of its class.
5957  FunctionProtoType::ExtProtoInfo EPI;
5958  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5959  EPI.NumExceptions = ExceptSpec.size();
5960  EPI.Exceptions = ExceptSpec.data();
5961  DeclarationName Name
5962    = Context.DeclarationNames.getCXXConstructorName(
5963                                           Context.getCanonicalType(ClassType));
5964  SourceLocation ClassLoc = ClassDecl->getLocation();
5965  DeclarationNameInfo NameInfo(Name, ClassLoc);
5966  CXXConstructorDecl *CopyConstructor
5967    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5968                                 Context.getFunctionType(Context.VoidTy,
5969                                                         &ArgType, 1, EPI),
5970                                 /*TInfo=*/0,
5971                                 /*isExplicit=*/false,
5972                                 /*isInline=*/true,
5973                                 /*isImplicitlyDeclared=*/true);
5974  CopyConstructor->setAccess(AS_public);
5975  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5976
5977  // Note that we have declared this constructor.
5978  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5979
5980  // Add the parameter to the constructor.
5981  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5982                                               ClassLoc, ClassLoc,
5983                                               /*IdentifierInfo=*/0,
5984                                               ArgType, /*TInfo=*/0,
5985                                               SC_None,
5986                                               SC_None, 0);
5987  CopyConstructor->setParams(&FromParam, 1);
5988  if (Scope *S = getScopeForContext(ClassDecl))
5989    PushOnScopeChains(CopyConstructor, S, false);
5990  ClassDecl->addDecl(CopyConstructor);
5991
5992  return CopyConstructor;
5993}
5994
5995void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5996                                   CXXConstructorDecl *CopyConstructor,
5997                                   unsigned TypeQuals) {
5998  assert((CopyConstructor->isImplicit() &&
5999          CopyConstructor->isCopyConstructor(TypeQuals) &&
6000          !CopyConstructor->isUsed(false)) &&
6001         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
6002
6003  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6004  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6005
6006  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6007  DiagnosticErrorTrap Trap(Diags);
6008
6009  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6010      Trap.hasErrorOccurred()) {
6011    Diag(CurrentLocation, diag::note_member_synthesized_at)
6012      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6013    CopyConstructor->setInvalidDecl();
6014  }  else {
6015    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6016                                               CopyConstructor->getLocation(),
6017                                               MultiStmtArg(*this, 0, 0),
6018                                               /*isStmtExpr=*/false)
6019                                                              .takeAs<Stmt>());
6020  }
6021
6022  CopyConstructor->setUsed();
6023}
6024
6025ExprResult
6026Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6027                            CXXConstructorDecl *Constructor,
6028                            MultiExprArg ExprArgs,
6029                            bool RequiresZeroInit,
6030                            unsigned ConstructKind,
6031                            SourceRange ParenRange) {
6032  bool Elidable = false;
6033
6034  // C++0x [class.copy]p34:
6035  //   When certain criteria are met, an implementation is allowed to
6036  //   omit the copy/move construction of a class object, even if the
6037  //   copy/move constructor and/or destructor for the object have
6038  //   side effects. [...]
6039  //     - when a temporary class object that has not been bound to a
6040  //       reference (12.2) would be copied/moved to a class object
6041  //       with the same cv-unqualified type, the copy/move operation
6042  //       can be omitted by constructing the temporary object
6043  //       directly into the target of the omitted copy/move
6044  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6045      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6046    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6047    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6048  }
6049
6050  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6051                               Elidable, move(ExprArgs), RequiresZeroInit,
6052                               ConstructKind, ParenRange);
6053}
6054
6055/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6056/// including handling of its default argument expressions.
6057ExprResult
6058Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6059                            CXXConstructorDecl *Constructor, bool Elidable,
6060                            MultiExprArg ExprArgs,
6061                            bool RequiresZeroInit,
6062                            unsigned ConstructKind,
6063                            SourceRange ParenRange) {
6064  unsigned NumExprs = ExprArgs.size();
6065  Expr **Exprs = (Expr **)ExprArgs.release();
6066
6067  for (specific_attr_iterator<NonNullAttr>
6068           i = Constructor->specific_attr_begin<NonNullAttr>(),
6069           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
6070    const NonNullAttr *NonNull = *i;
6071    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
6072  }
6073
6074  MarkDeclarationReferenced(ConstructLoc, Constructor);
6075  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6076                                        Constructor, Elidable, Exprs, NumExprs,
6077                                        RequiresZeroInit,
6078              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6079                                        ParenRange));
6080}
6081
6082bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6083                                        CXXConstructorDecl *Constructor,
6084                                        MultiExprArg Exprs) {
6085  // FIXME: Provide the correct paren SourceRange when available.
6086  ExprResult TempResult =
6087    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6088                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6089                          SourceRange());
6090  if (TempResult.isInvalid())
6091    return true;
6092
6093  Expr *Temp = TempResult.takeAs<Expr>();
6094  CheckImplicitConversions(Temp, VD->getLocation());
6095  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6096  Temp = MaybeCreateExprWithCleanups(Temp);
6097  VD->setInit(Temp);
6098
6099  return false;
6100}
6101
6102void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6103  if (VD->isInvalidDecl()) return;
6104
6105  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6106  if (ClassDecl->isInvalidDecl()) return;
6107  if (ClassDecl->hasTrivialDestructor()) return;
6108  if (ClassDecl->isDependentContext()) return;
6109
6110  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6111  MarkDeclarationReferenced(VD->getLocation(), Destructor);
6112  CheckDestructorAccess(VD->getLocation(), Destructor,
6113                        PDiag(diag::err_access_dtor_var)
6114                        << VD->getDeclName()
6115                        << VD->getType());
6116
6117  if (!VD->hasGlobalStorage()) return;
6118
6119  // Emit warning for non-trivial dtor in global scope (a real global,
6120  // class-static, function-static).
6121  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
6122
6123  // TODO: this should be re-enabled for static locals by !CXAAtExit
6124  if (!VD->isStaticLocal())
6125    Diag(VD->getLocation(), diag::warn_global_destructor);
6126}
6127
6128/// AddCXXDirectInitializerToDecl - This action is called immediately after
6129/// ActOnDeclarator, when a C++ direct initializer is present.
6130/// e.g: "int x(1);"
6131void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6132                                         SourceLocation LParenLoc,
6133                                         MultiExprArg Exprs,
6134                                         SourceLocation RParenLoc,
6135                                         bool TypeMayContainAuto) {
6136  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6137
6138  // If there is no declaration, there was an error parsing it.  Just ignore
6139  // the initializer.
6140  if (RealDecl == 0)
6141    return;
6142
6143  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6144  if (!VDecl) {
6145    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6146    RealDecl->setInvalidDecl();
6147    return;
6148  }
6149
6150  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6151  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6152    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6153    if (Exprs.size() > 1) {
6154      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6155           diag::err_auto_var_init_multiple_expressions)
6156        << VDecl->getDeclName() << VDecl->getType()
6157        << VDecl->getSourceRange();
6158      RealDecl->setInvalidDecl();
6159      return;
6160    }
6161
6162    Expr *Init = Exprs.get()[0];
6163    TypeSourceInfo *DeducedType = 0;
6164    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
6165      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6166        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6167        << Init->getSourceRange();
6168    if (!DeducedType) {
6169      RealDecl->setInvalidDecl();
6170      return;
6171    }
6172    VDecl->setTypeSourceInfo(DeducedType);
6173    VDecl->setType(DeducedType->getType());
6174
6175    // If this is a redeclaration, check that the type we just deduced matches
6176    // the previously declared type.
6177    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6178      MergeVarDeclTypes(VDecl, Old);
6179  }
6180
6181  // We will represent direct-initialization similarly to copy-initialization:
6182  //    int x(1);  -as-> int x = 1;
6183  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6184  //
6185  // Clients that want to distinguish between the two forms, can check for
6186  // direct initializer using VarDecl::hasCXXDirectInitializer().
6187  // A major benefit is that clients that don't particularly care about which
6188  // exactly form was it (like the CodeGen) can handle both cases without
6189  // special case code.
6190
6191  // C++ 8.5p11:
6192  // The form of initialization (using parentheses or '=') is generally
6193  // insignificant, but does matter when the entity being initialized has a
6194  // class type.
6195
6196  if (!VDecl->getType()->isDependentType() &&
6197      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6198                          diag::err_typecheck_decl_incomplete_type)) {
6199    VDecl->setInvalidDecl();
6200    return;
6201  }
6202
6203  // The variable can not have an abstract class type.
6204  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6205                             diag::err_abstract_type_in_decl,
6206                             AbstractVariableType))
6207    VDecl->setInvalidDecl();
6208
6209  const VarDecl *Def;
6210  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6211    Diag(VDecl->getLocation(), diag::err_redefinition)
6212    << VDecl->getDeclName();
6213    Diag(Def->getLocation(), diag::note_previous_definition);
6214    VDecl->setInvalidDecl();
6215    return;
6216  }
6217
6218  // C++ [class.static.data]p4
6219  //   If a static data member is of const integral or const
6220  //   enumeration type, its declaration in the class definition can
6221  //   specify a constant-initializer which shall be an integral
6222  //   constant expression (5.19). In that case, the member can appear
6223  //   in integral constant expressions. The member shall still be
6224  //   defined in a namespace scope if it is used in the program and the
6225  //   namespace scope definition shall not contain an initializer.
6226  //
6227  // We already performed a redefinition check above, but for static
6228  // data members we also need to check whether there was an in-class
6229  // declaration with an initializer.
6230  const VarDecl* PrevInit = 0;
6231  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6232    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6233    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6234    return;
6235  }
6236
6237  bool IsDependent = false;
6238  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6239    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6240      VDecl->setInvalidDecl();
6241      return;
6242    }
6243
6244    if (Exprs.get()[I]->isTypeDependent())
6245      IsDependent = true;
6246  }
6247
6248  // If either the declaration has a dependent type or if any of the
6249  // expressions is type-dependent, we represent the initialization
6250  // via a ParenListExpr for later use during template instantiation.
6251  if (VDecl->getType()->isDependentType() || IsDependent) {
6252    // Let clients know that initialization was done with a direct initializer.
6253    VDecl->setCXXDirectInitializer(true);
6254
6255    // Store the initialization expressions as a ParenListExpr.
6256    unsigned NumExprs = Exprs.size();
6257    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6258                                               (Expr **)Exprs.release(),
6259                                               NumExprs, RParenLoc));
6260    return;
6261  }
6262
6263  // Capture the variable that is being initialized and the style of
6264  // initialization.
6265  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6266
6267  // FIXME: Poor source location information.
6268  InitializationKind Kind
6269    = InitializationKind::CreateDirect(VDecl->getLocation(),
6270                                       LParenLoc, RParenLoc);
6271
6272  InitializationSequence InitSeq(*this, Entity, Kind,
6273                                 Exprs.get(), Exprs.size());
6274  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6275  if (Result.isInvalid()) {
6276    VDecl->setInvalidDecl();
6277    return;
6278  }
6279
6280  CheckImplicitConversions(Result.get(), LParenLoc);
6281
6282  Result = MaybeCreateExprWithCleanups(Result);
6283  VDecl->setInit(Result.takeAs<Expr>());
6284  VDecl->setCXXDirectInitializer(true);
6285
6286  CheckCompleteVariableDeclaration(VDecl);
6287}
6288
6289/// \brief Given a constructor and the set of arguments provided for the
6290/// constructor, convert the arguments and add any required default arguments
6291/// to form a proper call to this constructor.
6292///
6293/// \returns true if an error occurred, false otherwise.
6294bool
6295Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6296                              MultiExprArg ArgsPtr,
6297                              SourceLocation Loc,
6298                              ASTOwningVector<Expr*> &ConvertedArgs) {
6299  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6300  unsigned NumArgs = ArgsPtr.size();
6301  Expr **Args = (Expr **)ArgsPtr.get();
6302
6303  const FunctionProtoType *Proto
6304    = Constructor->getType()->getAs<FunctionProtoType>();
6305  assert(Proto && "Constructor without a prototype?");
6306  unsigned NumArgsInProto = Proto->getNumArgs();
6307
6308  // If too few arguments are available, we'll fill in the rest with defaults.
6309  if (NumArgs < NumArgsInProto)
6310    ConvertedArgs.reserve(NumArgsInProto);
6311  else
6312    ConvertedArgs.reserve(NumArgs);
6313
6314  VariadicCallType CallType =
6315    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6316  llvm::SmallVector<Expr *, 8> AllArgs;
6317  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6318                                        Proto, 0, Args, NumArgs, AllArgs,
6319                                        CallType);
6320  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6321    ConvertedArgs.push_back(AllArgs[i]);
6322  return Invalid;
6323}
6324
6325static inline bool
6326CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6327                                       const FunctionDecl *FnDecl) {
6328  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6329  if (isa<NamespaceDecl>(DC)) {
6330    return SemaRef.Diag(FnDecl->getLocation(),
6331                        diag::err_operator_new_delete_declared_in_namespace)
6332      << FnDecl->getDeclName();
6333  }
6334
6335  if (isa<TranslationUnitDecl>(DC) &&
6336      FnDecl->getStorageClass() == SC_Static) {
6337    return SemaRef.Diag(FnDecl->getLocation(),
6338                        diag::err_operator_new_delete_declared_static)
6339      << FnDecl->getDeclName();
6340  }
6341
6342  return false;
6343}
6344
6345static inline bool
6346CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6347                            CanQualType ExpectedResultType,
6348                            CanQualType ExpectedFirstParamType,
6349                            unsigned DependentParamTypeDiag,
6350                            unsigned InvalidParamTypeDiag) {
6351  QualType ResultType =
6352    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6353
6354  // Check that the result type is not dependent.
6355  if (ResultType->isDependentType())
6356    return SemaRef.Diag(FnDecl->getLocation(),
6357                        diag::err_operator_new_delete_dependent_result_type)
6358    << FnDecl->getDeclName() << ExpectedResultType;
6359
6360  // Check that the result type is what we expect.
6361  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6362    return SemaRef.Diag(FnDecl->getLocation(),
6363                        diag::err_operator_new_delete_invalid_result_type)
6364    << FnDecl->getDeclName() << ExpectedResultType;
6365
6366  // A function template must have at least 2 parameters.
6367  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6368    return SemaRef.Diag(FnDecl->getLocation(),
6369                      diag::err_operator_new_delete_template_too_few_parameters)
6370        << FnDecl->getDeclName();
6371
6372  // The function decl must have at least 1 parameter.
6373  if (FnDecl->getNumParams() == 0)
6374    return SemaRef.Diag(FnDecl->getLocation(),
6375                        diag::err_operator_new_delete_too_few_parameters)
6376      << FnDecl->getDeclName();
6377
6378  // Check the the first parameter type is not dependent.
6379  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6380  if (FirstParamType->isDependentType())
6381    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6382      << FnDecl->getDeclName() << ExpectedFirstParamType;
6383
6384  // Check that the first parameter type is what we expect.
6385  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6386      ExpectedFirstParamType)
6387    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6388    << FnDecl->getDeclName() << ExpectedFirstParamType;
6389
6390  return false;
6391}
6392
6393static bool
6394CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6395  // C++ [basic.stc.dynamic.allocation]p1:
6396  //   A program is ill-formed if an allocation function is declared in a
6397  //   namespace scope other than global scope or declared static in global
6398  //   scope.
6399  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6400    return true;
6401
6402  CanQualType SizeTy =
6403    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6404
6405  // C++ [basic.stc.dynamic.allocation]p1:
6406  //  The return type shall be void*. The first parameter shall have type
6407  //  std::size_t.
6408  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6409                                  SizeTy,
6410                                  diag::err_operator_new_dependent_param_type,
6411                                  diag::err_operator_new_param_type))
6412    return true;
6413
6414  // C++ [basic.stc.dynamic.allocation]p1:
6415  //  The first parameter shall not have an associated default argument.
6416  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6417    return SemaRef.Diag(FnDecl->getLocation(),
6418                        diag::err_operator_new_default_arg)
6419      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6420
6421  return false;
6422}
6423
6424static bool
6425CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6426  // C++ [basic.stc.dynamic.deallocation]p1:
6427  //   A program is ill-formed if deallocation functions are declared in a
6428  //   namespace scope other than global scope or declared static in global
6429  //   scope.
6430  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6431    return true;
6432
6433  // C++ [basic.stc.dynamic.deallocation]p2:
6434  //   Each deallocation function shall return void and its first parameter
6435  //   shall be void*.
6436  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6437                                  SemaRef.Context.VoidPtrTy,
6438                                 diag::err_operator_delete_dependent_param_type,
6439                                 diag::err_operator_delete_param_type))
6440    return true;
6441
6442  return false;
6443}
6444
6445/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6446/// of this overloaded operator is well-formed. If so, returns false;
6447/// otherwise, emits appropriate diagnostics and returns true.
6448bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6449  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6450         "Expected an overloaded operator declaration");
6451
6452  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6453
6454  // C++ [over.oper]p5:
6455  //   The allocation and deallocation functions, operator new,
6456  //   operator new[], operator delete and operator delete[], are
6457  //   described completely in 3.7.3. The attributes and restrictions
6458  //   found in the rest of this subclause do not apply to them unless
6459  //   explicitly stated in 3.7.3.
6460  if (Op == OO_Delete || Op == OO_Array_Delete)
6461    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6462
6463  if (Op == OO_New || Op == OO_Array_New)
6464    return CheckOperatorNewDeclaration(*this, FnDecl);
6465
6466  // C++ [over.oper]p6:
6467  //   An operator function shall either be a non-static member
6468  //   function or be a non-member function and have at least one
6469  //   parameter whose type is a class, a reference to a class, an
6470  //   enumeration, or a reference to an enumeration.
6471  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6472    if (MethodDecl->isStatic())
6473      return Diag(FnDecl->getLocation(),
6474                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6475  } else {
6476    bool ClassOrEnumParam = false;
6477    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6478                                   ParamEnd = FnDecl->param_end();
6479         Param != ParamEnd; ++Param) {
6480      QualType ParamType = (*Param)->getType().getNonReferenceType();
6481      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6482          ParamType->isEnumeralType()) {
6483        ClassOrEnumParam = true;
6484        break;
6485      }
6486    }
6487
6488    if (!ClassOrEnumParam)
6489      return Diag(FnDecl->getLocation(),
6490                  diag::err_operator_overload_needs_class_or_enum)
6491        << FnDecl->getDeclName();
6492  }
6493
6494  // C++ [over.oper]p8:
6495  //   An operator function cannot have default arguments (8.3.6),
6496  //   except where explicitly stated below.
6497  //
6498  // Only the function-call operator allows default arguments
6499  // (C++ [over.call]p1).
6500  if (Op != OO_Call) {
6501    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6502         Param != FnDecl->param_end(); ++Param) {
6503      if ((*Param)->hasDefaultArg())
6504        return Diag((*Param)->getLocation(),
6505                    diag::err_operator_overload_default_arg)
6506          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6507    }
6508  }
6509
6510  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6511    { false, false, false }
6512#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6513    , { Unary, Binary, MemberOnly }
6514#include "clang/Basic/OperatorKinds.def"
6515  };
6516
6517  bool CanBeUnaryOperator = OperatorUses[Op][0];
6518  bool CanBeBinaryOperator = OperatorUses[Op][1];
6519  bool MustBeMemberOperator = OperatorUses[Op][2];
6520
6521  // C++ [over.oper]p8:
6522  //   [...] Operator functions cannot have more or fewer parameters
6523  //   than the number required for the corresponding operator, as
6524  //   described in the rest of this subclause.
6525  unsigned NumParams = FnDecl->getNumParams()
6526                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6527  if (Op != OO_Call &&
6528      ((NumParams == 1 && !CanBeUnaryOperator) ||
6529       (NumParams == 2 && !CanBeBinaryOperator) ||
6530       (NumParams < 1) || (NumParams > 2))) {
6531    // We have the wrong number of parameters.
6532    unsigned ErrorKind;
6533    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6534      ErrorKind = 2;  // 2 -> unary or binary.
6535    } else if (CanBeUnaryOperator) {
6536      ErrorKind = 0;  // 0 -> unary
6537    } else {
6538      assert(CanBeBinaryOperator &&
6539             "All non-call overloaded operators are unary or binary!");
6540      ErrorKind = 1;  // 1 -> binary
6541    }
6542
6543    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6544      << FnDecl->getDeclName() << NumParams << ErrorKind;
6545  }
6546
6547  // Overloaded operators other than operator() cannot be variadic.
6548  if (Op != OO_Call &&
6549      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6550    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6551      << FnDecl->getDeclName();
6552  }
6553
6554  // Some operators must be non-static member functions.
6555  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6556    return Diag(FnDecl->getLocation(),
6557                diag::err_operator_overload_must_be_member)
6558      << FnDecl->getDeclName();
6559  }
6560
6561  // C++ [over.inc]p1:
6562  //   The user-defined function called operator++ implements the
6563  //   prefix and postfix ++ operator. If this function is a member
6564  //   function with no parameters, or a non-member function with one
6565  //   parameter of class or enumeration type, it defines the prefix
6566  //   increment operator ++ for objects of that type. If the function
6567  //   is a member function with one parameter (which shall be of type
6568  //   int) or a non-member function with two parameters (the second
6569  //   of which shall be of type int), it defines the postfix
6570  //   increment operator ++ for objects of that type.
6571  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6572    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6573    bool ParamIsInt = false;
6574    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6575      ParamIsInt = BT->getKind() == BuiltinType::Int;
6576
6577    if (!ParamIsInt)
6578      return Diag(LastParam->getLocation(),
6579                  diag::err_operator_overload_post_incdec_must_be_int)
6580        << LastParam->getType() << (Op == OO_MinusMinus);
6581  }
6582
6583  return false;
6584}
6585
6586/// CheckLiteralOperatorDeclaration - Check whether the declaration
6587/// of this literal operator function is well-formed. If so, returns
6588/// false; otherwise, emits appropriate diagnostics and returns true.
6589bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6590  DeclContext *DC = FnDecl->getDeclContext();
6591  Decl::Kind Kind = DC->getDeclKind();
6592  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6593      Kind != Decl::LinkageSpec) {
6594    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6595      << FnDecl->getDeclName();
6596    return true;
6597  }
6598
6599  bool Valid = false;
6600
6601  // template <char...> type operator "" name() is the only valid template
6602  // signature, and the only valid signature with no parameters.
6603  if (FnDecl->param_size() == 0) {
6604    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6605      // Must have only one template parameter
6606      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6607      if (Params->size() == 1) {
6608        NonTypeTemplateParmDecl *PmDecl =
6609          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6610
6611        // The template parameter must be a char parameter pack.
6612        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6613            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6614          Valid = true;
6615      }
6616    }
6617  } else {
6618    // Check the first parameter
6619    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6620
6621    QualType T = (*Param)->getType();
6622
6623    // unsigned long long int, long double, and any character type are allowed
6624    // as the only parameters.
6625    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6626        Context.hasSameType(T, Context.LongDoubleTy) ||
6627        Context.hasSameType(T, Context.CharTy) ||
6628        Context.hasSameType(T, Context.WCharTy) ||
6629        Context.hasSameType(T, Context.Char16Ty) ||
6630        Context.hasSameType(T, Context.Char32Ty)) {
6631      if (++Param == FnDecl->param_end())
6632        Valid = true;
6633      goto FinishedParams;
6634    }
6635
6636    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6637    const PointerType *PT = T->getAs<PointerType>();
6638    if (!PT)
6639      goto FinishedParams;
6640    T = PT->getPointeeType();
6641    if (!T.isConstQualified())
6642      goto FinishedParams;
6643    T = T.getUnqualifiedType();
6644
6645    // Move on to the second parameter;
6646    ++Param;
6647
6648    // If there is no second parameter, the first must be a const char *
6649    if (Param == FnDecl->param_end()) {
6650      if (Context.hasSameType(T, Context.CharTy))
6651        Valid = true;
6652      goto FinishedParams;
6653    }
6654
6655    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6656    // are allowed as the first parameter to a two-parameter function
6657    if (!(Context.hasSameType(T, Context.CharTy) ||
6658          Context.hasSameType(T, Context.WCharTy) ||
6659          Context.hasSameType(T, Context.Char16Ty) ||
6660          Context.hasSameType(T, Context.Char32Ty)))
6661      goto FinishedParams;
6662
6663    // The second and final parameter must be an std::size_t
6664    T = (*Param)->getType().getUnqualifiedType();
6665    if (Context.hasSameType(T, Context.getSizeType()) &&
6666        ++Param == FnDecl->param_end())
6667      Valid = true;
6668  }
6669
6670  // FIXME: This diagnostic is absolutely terrible.
6671FinishedParams:
6672  if (!Valid) {
6673    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6674      << FnDecl->getDeclName();
6675    return true;
6676  }
6677
6678  return false;
6679}
6680
6681/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6682/// linkage specification, including the language and (if present)
6683/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6684/// the location of the language string literal, which is provided
6685/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6686/// the '{' brace. Otherwise, this linkage specification does not
6687/// have any braces.
6688Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6689                                           SourceLocation LangLoc,
6690                                           llvm::StringRef Lang,
6691                                           SourceLocation LBraceLoc) {
6692  LinkageSpecDecl::LanguageIDs Language;
6693  if (Lang == "\"C\"")
6694    Language = LinkageSpecDecl::lang_c;
6695  else if (Lang == "\"C++\"")
6696    Language = LinkageSpecDecl::lang_cxx;
6697  else {
6698    Diag(LangLoc, diag::err_bad_language);
6699    return 0;
6700  }
6701
6702  // FIXME: Add all the various semantics of linkage specifications
6703
6704  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6705                                               ExternLoc, LangLoc, Language);
6706  CurContext->addDecl(D);
6707  PushDeclContext(S, D);
6708  return D;
6709}
6710
6711/// ActOnFinishLinkageSpecification - Complete the definition of
6712/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6713/// valid, it's the position of the closing '}' brace in a linkage
6714/// specification that uses braces.
6715Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6716                                            Decl *LinkageSpec,
6717                                            SourceLocation RBraceLoc) {
6718  if (LinkageSpec) {
6719    if (RBraceLoc.isValid()) {
6720      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6721      LSDecl->setRBraceLoc(RBraceLoc);
6722    }
6723    PopDeclContext();
6724  }
6725  return LinkageSpec;
6726}
6727
6728/// \brief Perform semantic analysis for the variable declaration that
6729/// occurs within a C++ catch clause, returning the newly-created
6730/// variable.
6731VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6732                                         TypeSourceInfo *TInfo,
6733                                         SourceLocation StartLoc,
6734                                         SourceLocation Loc,
6735                                         IdentifierInfo *Name) {
6736  bool Invalid = false;
6737  QualType ExDeclType = TInfo->getType();
6738
6739  // Arrays and functions decay.
6740  if (ExDeclType->isArrayType())
6741    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6742  else if (ExDeclType->isFunctionType())
6743    ExDeclType = Context.getPointerType(ExDeclType);
6744
6745  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6746  // The exception-declaration shall not denote a pointer or reference to an
6747  // incomplete type, other than [cv] void*.
6748  // N2844 forbids rvalue references.
6749  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6750    Diag(Loc, diag::err_catch_rvalue_ref);
6751    Invalid = true;
6752  }
6753
6754  // GCC allows catching pointers and references to incomplete types
6755  // as an extension; so do we, but we warn by default.
6756
6757  QualType BaseType = ExDeclType;
6758  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6759  unsigned DK = diag::err_catch_incomplete;
6760  bool IncompleteCatchIsInvalid = true;
6761  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6762    BaseType = Ptr->getPointeeType();
6763    Mode = 1;
6764    DK = diag::ext_catch_incomplete_ptr;
6765    IncompleteCatchIsInvalid = false;
6766  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6767    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6768    BaseType = Ref->getPointeeType();
6769    Mode = 2;
6770    DK = diag::ext_catch_incomplete_ref;
6771    IncompleteCatchIsInvalid = false;
6772  }
6773  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6774      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6775      IncompleteCatchIsInvalid)
6776    Invalid = true;
6777
6778  if (!Invalid && !ExDeclType->isDependentType() &&
6779      RequireNonAbstractType(Loc, ExDeclType,
6780                             diag::err_abstract_type_in_decl,
6781                             AbstractVariableType))
6782    Invalid = true;
6783
6784  // Only the non-fragile NeXT runtime currently supports C++ catches
6785  // of ObjC types, and no runtime supports catching ObjC types by value.
6786  if (!Invalid && getLangOptions().ObjC1) {
6787    QualType T = ExDeclType;
6788    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6789      T = RT->getPointeeType();
6790
6791    if (T->isObjCObjectType()) {
6792      Diag(Loc, diag::err_objc_object_catch);
6793      Invalid = true;
6794    } else if (T->isObjCObjectPointerType()) {
6795      if (!getLangOptions().ObjCNonFragileABI) {
6796        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6797        Invalid = true;
6798      }
6799    }
6800  }
6801
6802  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6803                                    ExDeclType, TInfo, SC_None, SC_None);
6804  ExDecl->setExceptionVariable(true);
6805
6806  if (!Invalid) {
6807    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6808      // C++ [except.handle]p16:
6809      //   The object declared in an exception-declaration or, if the
6810      //   exception-declaration does not specify a name, a temporary (12.2) is
6811      //   copy-initialized (8.5) from the exception object. [...]
6812      //   The object is destroyed when the handler exits, after the destruction
6813      //   of any automatic objects initialized within the handler.
6814      //
6815      // We just pretend to initialize the object with itself, then make sure
6816      // it can be destroyed later.
6817      QualType initType = ExDeclType;
6818
6819      InitializedEntity entity =
6820        InitializedEntity::InitializeVariable(ExDecl);
6821      InitializationKind initKind =
6822        InitializationKind::CreateCopy(Loc, SourceLocation());
6823
6824      Expr *opaqueValue =
6825        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6826      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6827      ExprResult result = sequence.Perform(*this, entity, initKind,
6828                                           MultiExprArg(&opaqueValue, 1));
6829      if (result.isInvalid())
6830        Invalid = true;
6831      else {
6832        // If the constructor used was non-trivial, set this as the
6833        // "initializer".
6834        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6835        if (!construct->getConstructor()->isTrivial()) {
6836          Expr *init = MaybeCreateExprWithCleanups(construct);
6837          ExDecl->setInit(init);
6838        }
6839
6840        // And make sure it's destructable.
6841        FinalizeVarWithDestructor(ExDecl, recordType);
6842      }
6843    }
6844  }
6845
6846  if (Invalid)
6847    ExDecl->setInvalidDecl();
6848
6849  return ExDecl;
6850}
6851
6852/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6853/// handler.
6854Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6855  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6856  bool Invalid = D.isInvalidType();
6857
6858  // Check for unexpanded parameter packs.
6859  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6860                                               UPPC_ExceptionType)) {
6861    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6862                                             D.getIdentifierLoc());
6863    Invalid = true;
6864  }
6865
6866  IdentifierInfo *II = D.getIdentifier();
6867  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6868                                             LookupOrdinaryName,
6869                                             ForRedeclaration)) {
6870    // The scope should be freshly made just for us. There is just no way
6871    // it contains any previous declaration.
6872    assert(!S->isDeclScope(PrevDecl));
6873    if (PrevDecl->isTemplateParameter()) {
6874      // Maybe we will complain about the shadowed template parameter.
6875      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6876    }
6877  }
6878
6879  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6880    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6881      << D.getCXXScopeSpec().getRange();
6882    Invalid = true;
6883  }
6884
6885  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6886                                              D.getSourceRange().getBegin(),
6887                                              D.getIdentifierLoc(),
6888                                              D.getIdentifier());
6889  if (Invalid)
6890    ExDecl->setInvalidDecl();
6891
6892  // Add the exception declaration into this scope.
6893  if (II)
6894    PushOnScopeChains(ExDecl, S);
6895  else
6896    CurContext->addDecl(ExDecl);
6897
6898  ProcessDeclAttributes(S, ExDecl, D);
6899  return ExDecl;
6900}
6901
6902Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
6903                                         Expr *AssertExpr,
6904                                         Expr *AssertMessageExpr_,
6905                                         SourceLocation RParenLoc) {
6906  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6907
6908  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6909    llvm::APSInt Value(32);
6910    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6911      Diag(StaticAssertLoc,
6912           diag::err_static_assert_expression_is_not_constant) <<
6913        AssertExpr->getSourceRange();
6914      return 0;
6915    }
6916
6917    if (Value == 0) {
6918      Diag(StaticAssertLoc, diag::err_static_assert_failed)
6919        << AssertMessage->getString() << AssertExpr->getSourceRange();
6920    }
6921  }
6922
6923  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6924    return 0;
6925
6926  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
6927                                        AssertExpr, AssertMessage, RParenLoc);
6928
6929  CurContext->addDecl(Decl);
6930  return Decl;
6931}
6932
6933/// \brief Perform semantic analysis of the given friend type declaration.
6934///
6935/// \returns A friend declaration that.
6936FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6937                                      TypeSourceInfo *TSInfo) {
6938  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6939
6940  QualType T = TSInfo->getType();
6941  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6942
6943  if (!getLangOptions().CPlusPlus0x) {
6944    // C++03 [class.friend]p2:
6945    //   An elaborated-type-specifier shall be used in a friend declaration
6946    //   for a class.*
6947    //
6948    //   * The class-key of the elaborated-type-specifier is required.
6949    if (!ActiveTemplateInstantiations.empty()) {
6950      // Do not complain about the form of friend template types during
6951      // template instantiation; we will already have complained when the
6952      // template was declared.
6953    } else if (!T->isElaboratedTypeSpecifier()) {
6954      // If we evaluated the type to a record type, suggest putting
6955      // a tag in front.
6956      if (const RecordType *RT = T->getAs<RecordType>()) {
6957        RecordDecl *RD = RT->getDecl();
6958
6959        std::string InsertionText = std::string(" ") + RD->getKindName();
6960
6961        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6962          << (unsigned) RD->getTagKind()
6963          << T
6964          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6965                                        InsertionText);
6966      } else {
6967        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6968          << T
6969          << SourceRange(FriendLoc, TypeRange.getEnd());
6970      }
6971    } else if (T->getAs<EnumType>()) {
6972      Diag(FriendLoc, diag::ext_enum_friend)
6973        << T
6974        << SourceRange(FriendLoc, TypeRange.getEnd());
6975    }
6976  }
6977
6978  // C++0x [class.friend]p3:
6979  //   If the type specifier in a friend declaration designates a (possibly
6980  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6981  //   the friend declaration is ignored.
6982
6983  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6984  // in [class.friend]p3 that we do not implement.
6985
6986  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6987}
6988
6989/// Handle a friend tag declaration where the scope specifier was
6990/// templated.
6991Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6992                                    unsigned TagSpec, SourceLocation TagLoc,
6993                                    CXXScopeSpec &SS,
6994                                    IdentifierInfo *Name, SourceLocation NameLoc,
6995                                    AttributeList *Attr,
6996                                    MultiTemplateParamsArg TempParamLists) {
6997  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6998
6999  bool isExplicitSpecialization = false;
7000  bool Invalid = false;
7001
7002  if (TemplateParameterList *TemplateParams
7003        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
7004                                                  TempParamLists.get(),
7005                                                  TempParamLists.size(),
7006                                                  /*friend*/ true,
7007                                                  isExplicitSpecialization,
7008                                                  Invalid)) {
7009    if (TemplateParams->size() > 0) {
7010      // This is a declaration of a class template.
7011      if (Invalid)
7012        return 0;
7013
7014      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7015                                SS, Name, NameLoc, Attr,
7016                                TemplateParams, AS_public,
7017                                TempParamLists.size() - 1,
7018                   (TemplateParameterList**) TempParamLists.release()).take();
7019    } else {
7020      // The "template<>" header is extraneous.
7021      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7022        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7023      isExplicitSpecialization = true;
7024    }
7025  }
7026
7027  if (Invalid) return 0;
7028
7029  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7030
7031  bool isAllExplicitSpecializations = true;
7032  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
7033    if (TempParamLists.get()[I]->size()) {
7034      isAllExplicitSpecializations = false;
7035      break;
7036    }
7037  }
7038
7039  // FIXME: don't ignore attributes.
7040
7041  // If it's explicit specializations all the way down, just forget
7042  // about the template header and build an appropriate non-templated
7043  // friend.  TODO: for source fidelity, remember the headers.
7044  if (isAllExplicitSpecializations) {
7045    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7046    ElaboratedTypeKeyword Keyword
7047      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7048    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7049                                   *Name, NameLoc);
7050    if (T.isNull())
7051      return 0;
7052
7053    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7054    if (isa<DependentNameType>(T)) {
7055      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7056      TL.setKeywordLoc(TagLoc);
7057      TL.setQualifierLoc(QualifierLoc);
7058      TL.setNameLoc(NameLoc);
7059    } else {
7060      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7061      TL.setKeywordLoc(TagLoc);
7062      TL.setQualifierLoc(QualifierLoc);
7063      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7064    }
7065
7066    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7067                                            TSI, FriendLoc);
7068    Friend->setAccess(AS_public);
7069    CurContext->addDecl(Friend);
7070    return Friend;
7071  }
7072
7073  // Handle the case of a templated-scope friend class.  e.g.
7074  //   template <class T> class A<T>::B;
7075  // FIXME: we don't support these right now.
7076  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7077  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7078  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7079  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7080  TL.setKeywordLoc(TagLoc);
7081  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7082  TL.setNameLoc(NameLoc);
7083
7084  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7085                                          TSI, FriendLoc);
7086  Friend->setAccess(AS_public);
7087  Friend->setUnsupportedFriend(true);
7088  CurContext->addDecl(Friend);
7089  return Friend;
7090}
7091
7092
7093/// Handle a friend type declaration.  This works in tandem with
7094/// ActOnTag.
7095///
7096/// Notes on friend class templates:
7097///
7098/// We generally treat friend class declarations as if they were
7099/// declaring a class.  So, for example, the elaborated type specifier
7100/// in a friend declaration is required to obey the restrictions of a
7101/// class-head (i.e. no typedefs in the scope chain), template
7102/// parameters are required to match up with simple template-ids, &c.
7103/// However, unlike when declaring a template specialization, it's
7104/// okay to refer to a template specialization without an empty
7105/// template parameter declaration, e.g.
7106///   friend class A<T>::B<unsigned>;
7107/// We permit this as a special case; if there are any template
7108/// parameters present at all, require proper matching, i.e.
7109///   template <> template <class T> friend class A<int>::B;
7110Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7111                                MultiTemplateParamsArg TempParams) {
7112  SourceLocation Loc = DS.getSourceRange().getBegin();
7113
7114  assert(DS.isFriendSpecified());
7115  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7116
7117  // Try to convert the decl specifier to a type.  This works for
7118  // friend templates because ActOnTag never produces a ClassTemplateDecl
7119  // for a TUK_Friend.
7120  Declarator TheDeclarator(DS, Declarator::MemberContext);
7121  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7122  QualType T = TSI->getType();
7123  if (TheDeclarator.isInvalidType())
7124    return 0;
7125
7126  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7127    return 0;
7128
7129  // This is definitely an error in C++98.  It's probably meant to
7130  // be forbidden in C++0x, too, but the specification is just
7131  // poorly written.
7132  //
7133  // The problem is with declarations like the following:
7134  //   template <T> friend A<T>::foo;
7135  // where deciding whether a class C is a friend or not now hinges
7136  // on whether there exists an instantiation of A that causes
7137  // 'foo' to equal C.  There are restrictions on class-heads
7138  // (which we declare (by fiat) elaborated friend declarations to
7139  // be) that makes this tractable.
7140  //
7141  // FIXME: handle "template <> friend class A<T>;", which
7142  // is possibly well-formed?  Who even knows?
7143  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7144    Diag(Loc, diag::err_tagless_friend_type_template)
7145      << DS.getSourceRange();
7146    return 0;
7147  }
7148
7149  // C++98 [class.friend]p1: A friend of a class is a function
7150  //   or class that is not a member of the class . . .
7151  // This is fixed in DR77, which just barely didn't make the C++03
7152  // deadline.  It's also a very silly restriction that seriously
7153  // affects inner classes and which nobody else seems to implement;
7154  // thus we never diagnose it, not even in -pedantic.
7155  //
7156  // But note that we could warn about it: it's always useless to
7157  // friend one of your own members (it's not, however, worthless to
7158  // friend a member of an arbitrary specialization of your template).
7159
7160  Decl *D;
7161  if (unsigned NumTempParamLists = TempParams.size())
7162    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7163                                   NumTempParamLists,
7164                                   TempParams.release(),
7165                                   TSI,
7166                                   DS.getFriendSpecLoc());
7167  else
7168    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7169
7170  if (!D)
7171    return 0;
7172
7173  D->setAccess(AS_public);
7174  CurContext->addDecl(D);
7175
7176  return D;
7177}
7178
7179Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7180                                    MultiTemplateParamsArg TemplateParams) {
7181  const DeclSpec &DS = D.getDeclSpec();
7182
7183  assert(DS.isFriendSpecified());
7184  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7185
7186  SourceLocation Loc = D.getIdentifierLoc();
7187  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7188  QualType T = TInfo->getType();
7189
7190  // C++ [class.friend]p1
7191  //   A friend of a class is a function or class....
7192  // Note that this sees through typedefs, which is intended.
7193  // It *doesn't* see through dependent types, which is correct
7194  // according to [temp.arg.type]p3:
7195  //   If a declaration acquires a function type through a
7196  //   type dependent on a template-parameter and this causes
7197  //   a declaration that does not use the syntactic form of a
7198  //   function declarator to have a function type, the program
7199  //   is ill-formed.
7200  if (!T->isFunctionType()) {
7201    Diag(Loc, diag::err_unexpected_friend);
7202
7203    // It might be worthwhile to try to recover by creating an
7204    // appropriate declaration.
7205    return 0;
7206  }
7207
7208  // C++ [namespace.memdef]p3
7209  //  - If a friend declaration in a non-local class first declares a
7210  //    class or function, the friend class or function is a member
7211  //    of the innermost enclosing namespace.
7212  //  - The name of the friend is not found by simple name lookup
7213  //    until a matching declaration is provided in that namespace
7214  //    scope (either before or after the class declaration granting
7215  //    friendship).
7216  //  - If a friend function is called, its name may be found by the
7217  //    name lookup that considers functions from namespaces and
7218  //    classes associated with the types of the function arguments.
7219  //  - When looking for a prior declaration of a class or a function
7220  //    declared as a friend, scopes outside the innermost enclosing
7221  //    namespace scope are not considered.
7222
7223  CXXScopeSpec &SS = D.getCXXScopeSpec();
7224  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7225  DeclarationName Name = NameInfo.getName();
7226  assert(Name);
7227
7228  // Check for unexpanded parameter packs.
7229  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7230      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7231      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7232    return 0;
7233
7234  // The context we found the declaration in, or in which we should
7235  // create the declaration.
7236  DeclContext *DC;
7237  Scope *DCScope = S;
7238  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7239                        ForRedeclaration);
7240
7241  // FIXME: there are different rules in local classes
7242
7243  // There are four cases here.
7244  //   - There's no scope specifier, in which case we just go to the
7245  //     appropriate scope and look for a function or function template
7246  //     there as appropriate.
7247  // Recover from invalid scope qualifiers as if they just weren't there.
7248  if (SS.isInvalid() || !SS.isSet()) {
7249    // C++0x [namespace.memdef]p3:
7250    //   If the name in a friend declaration is neither qualified nor
7251    //   a template-id and the declaration is a function or an
7252    //   elaborated-type-specifier, the lookup to determine whether
7253    //   the entity has been previously declared shall not consider
7254    //   any scopes outside the innermost enclosing namespace.
7255    // C++0x [class.friend]p11:
7256    //   If a friend declaration appears in a local class and the name
7257    //   specified is an unqualified name, a prior declaration is
7258    //   looked up without considering scopes that are outside the
7259    //   innermost enclosing non-class scope. For a friend function
7260    //   declaration, if there is no prior declaration, the program is
7261    //   ill-formed.
7262    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7263    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7264
7265    // Find the appropriate context according to the above.
7266    DC = CurContext;
7267    while (true) {
7268      // Skip class contexts.  If someone can cite chapter and verse
7269      // for this behavior, that would be nice --- it's what GCC and
7270      // EDG do, and it seems like a reasonable intent, but the spec
7271      // really only says that checks for unqualified existing
7272      // declarations should stop at the nearest enclosing namespace,
7273      // not that they should only consider the nearest enclosing
7274      // namespace.
7275      while (DC->isRecord())
7276        DC = DC->getParent();
7277
7278      LookupQualifiedName(Previous, DC);
7279
7280      // TODO: decide what we think about using declarations.
7281      if (isLocal || !Previous.empty())
7282        break;
7283
7284      if (isTemplateId) {
7285        if (isa<TranslationUnitDecl>(DC)) break;
7286      } else {
7287        if (DC->isFileContext()) break;
7288      }
7289      DC = DC->getParent();
7290    }
7291
7292    // C++ [class.friend]p1: A friend of a class is a function or
7293    //   class that is not a member of the class . . .
7294    // C++0x changes this for both friend types and functions.
7295    // Most C++ 98 compilers do seem to give an error here, so
7296    // we do, too.
7297    if (!Previous.empty() && DC->Equals(CurContext)
7298        && !getLangOptions().CPlusPlus0x)
7299      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7300
7301    DCScope = getScopeForDeclContext(S, DC);
7302
7303  //   - There's a non-dependent scope specifier, in which case we
7304  //     compute it and do a previous lookup there for a function
7305  //     or function template.
7306  } else if (!SS.getScopeRep()->isDependent()) {
7307    DC = computeDeclContext(SS);
7308    if (!DC) return 0;
7309
7310    if (RequireCompleteDeclContext(SS, DC)) return 0;
7311
7312    LookupQualifiedName(Previous, DC);
7313
7314    // Ignore things found implicitly in the wrong scope.
7315    // TODO: better diagnostics for this case.  Suggesting the right
7316    // qualified scope would be nice...
7317    LookupResult::Filter F = Previous.makeFilter();
7318    while (F.hasNext()) {
7319      NamedDecl *D = F.next();
7320      if (!DC->InEnclosingNamespaceSetOf(
7321              D->getDeclContext()->getRedeclContext()))
7322        F.erase();
7323    }
7324    F.done();
7325
7326    if (Previous.empty()) {
7327      D.setInvalidType();
7328      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7329      return 0;
7330    }
7331
7332    // C++ [class.friend]p1: A friend of a class is a function or
7333    //   class that is not a member of the class . . .
7334    if (DC->Equals(CurContext))
7335      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7336
7337  //   - There's a scope specifier that does not match any template
7338  //     parameter lists, in which case we use some arbitrary context,
7339  //     create a method or method template, and wait for instantiation.
7340  //   - There's a scope specifier that does match some template
7341  //     parameter lists, which we don't handle right now.
7342  } else {
7343    DC = CurContext;
7344    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7345  }
7346
7347  if (!DC->isRecord()) {
7348    // This implies that it has to be an operator or function.
7349    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7350        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7351        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7352      Diag(Loc, diag::err_introducing_special_friend) <<
7353        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7354         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7355      return 0;
7356    }
7357  }
7358
7359  bool Redeclaration = false;
7360  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7361                                          move(TemplateParams),
7362                                          IsDefinition,
7363                                          Redeclaration);
7364  if (!ND) return 0;
7365
7366  assert(ND->getDeclContext() == DC);
7367  assert(ND->getLexicalDeclContext() == CurContext);
7368
7369  // Add the function declaration to the appropriate lookup tables,
7370  // adjusting the redeclarations list as necessary.  We don't
7371  // want to do this yet if the friending class is dependent.
7372  //
7373  // Also update the scope-based lookup if the target context's
7374  // lookup context is in lexical scope.
7375  if (!CurContext->isDependentContext()) {
7376    DC = DC->getRedeclContext();
7377    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7378    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7379      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7380  }
7381
7382  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7383                                       D.getIdentifierLoc(), ND,
7384                                       DS.getFriendSpecLoc());
7385  FrD->setAccess(AS_public);
7386  CurContext->addDecl(FrD);
7387
7388  if (ND->isInvalidDecl())
7389    FrD->setInvalidDecl();
7390  else {
7391    FunctionDecl *FD;
7392    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7393      FD = FTD->getTemplatedDecl();
7394    else
7395      FD = cast<FunctionDecl>(ND);
7396
7397    // Mark templated-scope function declarations as unsupported.
7398    if (FD->getNumTemplateParameterLists())
7399      FrD->setUnsupportedFriend(true);
7400  }
7401
7402  return ND;
7403}
7404
7405void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7406  AdjustDeclIfTemplate(Dcl);
7407
7408  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7409  if (!Fn) {
7410    Diag(DelLoc, diag::err_deleted_non_function);
7411    return;
7412  }
7413  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7414    Diag(DelLoc, diag::err_deleted_decl_not_first);
7415    Diag(Prev->getLocation(), diag::note_previous_declaration);
7416    // If the declaration wasn't the first, we delete the function anyway for
7417    // recovery.
7418  }
7419  Fn->setDeleted();
7420}
7421
7422static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7423  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7424    Stmt *SubStmt = *CI;
7425    if (!SubStmt)
7426      continue;
7427    if (isa<ReturnStmt>(SubStmt))
7428      Self.Diag(SubStmt->getSourceRange().getBegin(),
7429           diag::err_return_in_constructor_handler);
7430    if (!isa<Expr>(SubStmt))
7431      SearchForReturnInStmt(Self, SubStmt);
7432  }
7433}
7434
7435void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7436  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7437    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7438    SearchForReturnInStmt(*this, Handler);
7439  }
7440}
7441
7442bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7443                                             const CXXMethodDecl *Old) {
7444  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7445  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7446
7447  if (Context.hasSameType(NewTy, OldTy) ||
7448      NewTy->isDependentType() || OldTy->isDependentType())
7449    return false;
7450
7451  // Check if the return types are covariant
7452  QualType NewClassTy, OldClassTy;
7453
7454  /// Both types must be pointers or references to classes.
7455  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7456    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7457      NewClassTy = NewPT->getPointeeType();
7458      OldClassTy = OldPT->getPointeeType();
7459    }
7460  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7461    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7462      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7463        NewClassTy = NewRT->getPointeeType();
7464        OldClassTy = OldRT->getPointeeType();
7465      }
7466    }
7467  }
7468
7469  // The return types aren't either both pointers or references to a class type.
7470  if (NewClassTy.isNull()) {
7471    Diag(New->getLocation(),
7472         diag::err_different_return_type_for_overriding_virtual_function)
7473      << New->getDeclName() << NewTy << OldTy;
7474    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7475
7476    return true;
7477  }
7478
7479  // C++ [class.virtual]p6:
7480  //   If the return type of D::f differs from the return type of B::f, the
7481  //   class type in the return type of D::f shall be complete at the point of
7482  //   declaration of D::f or shall be the class type D.
7483  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7484    if (!RT->isBeingDefined() &&
7485        RequireCompleteType(New->getLocation(), NewClassTy,
7486                            PDiag(diag::err_covariant_return_incomplete)
7487                              << New->getDeclName()))
7488    return true;
7489  }
7490
7491  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7492    // Check if the new class derives from the old class.
7493    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7494      Diag(New->getLocation(),
7495           diag::err_covariant_return_not_derived)
7496      << New->getDeclName() << NewTy << OldTy;
7497      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7498      return true;
7499    }
7500
7501    // Check if we the conversion from derived to base is valid.
7502    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7503                    diag::err_covariant_return_inaccessible_base,
7504                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7505                    // FIXME: Should this point to the return type?
7506                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7507      // FIXME: this note won't trigger for delayed access control
7508      // diagnostics, and it's impossible to get an undelayed error
7509      // here from access control during the original parse because
7510      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7511      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7512      return true;
7513    }
7514  }
7515
7516  // The qualifiers of the return types must be the same.
7517  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7518    Diag(New->getLocation(),
7519         diag::err_covariant_return_type_different_qualifications)
7520    << New->getDeclName() << NewTy << OldTy;
7521    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7522    return true;
7523  };
7524
7525
7526  // The new class type must have the same or less qualifiers as the old type.
7527  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7528    Diag(New->getLocation(),
7529         diag::err_covariant_return_type_class_type_more_qualified)
7530    << New->getDeclName() << NewTy << OldTy;
7531    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7532    return true;
7533  };
7534
7535  return false;
7536}
7537
7538/// \brief Mark the given method pure.
7539///
7540/// \param Method the method to be marked pure.
7541///
7542/// \param InitRange the source range that covers the "0" initializer.
7543bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7544  SourceLocation EndLoc = InitRange.getEnd();
7545  if (EndLoc.isValid())
7546    Method->setRangeEnd(EndLoc);
7547
7548  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7549    Method->setPure();
7550    return false;
7551  }
7552
7553  if (!Method->isInvalidDecl())
7554    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7555      << Method->getDeclName() << InitRange;
7556  return true;
7557}
7558
7559/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7560/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7561/// is a fresh scope pushed for just this purpose.
7562///
7563/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7564/// static data member of class X, names should be looked up in the scope of
7565/// class X.
7566void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7567  // If there is no declaration, there was an error parsing it.
7568  if (D == 0) return;
7569
7570  // We should only get called for declarations with scope specifiers, like:
7571  //   int foo::bar;
7572  assert(D->isOutOfLine());
7573  EnterDeclaratorContext(S, D->getDeclContext());
7574}
7575
7576/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7577/// initializer for the out-of-line declaration 'D'.
7578void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7579  // If there is no declaration, there was an error parsing it.
7580  if (D == 0) return;
7581
7582  assert(D->isOutOfLine());
7583  ExitDeclaratorContext(S);
7584}
7585
7586/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7587/// C++ if/switch/while/for statement.
7588/// e.g: "if (int x = f()) {...}"
7589DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7590  // C++ 6.4p2:
7591  // The declarator shall not specify a function or an array.
7592  // The type-specifier-seq shall not contain typedef and shall not declare a
7593  // new class or enumeration.
7594  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7595         "Parser allowed 'typedef' as storage class of condition decl.");
7596
7597  TagDecl *OwnedTag = 0;
7598  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7599  QualType Ty = TInfo->getType();
7600
7601  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7602                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7603                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7604    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7605      << D.getSourceRange();
7606    return DeclResult();
7607  } else if (OwnedTag && OwnedTag->isDefinition()) {
7608    // The type-specifier-seq shall not declare a new class or enumeration.
7609    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7610  }
7611
7612  Decl *Dcl = ActOnDeclarator(S, D);
7613  if (!Dcl)
7614    return DeclResult();
7615
7616  return Dcl;
7617}
7618
7619void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7620                          bool DefinitionRequired) {
7621  // Ignore any vtable uses in unevaluated operands or for classes that do
7622  // not have a vtable.
7623  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7624      CurContext->isDependentContext() ||
7625      ExprEvalContexts.back().Context == Unevaluated)
7626    return;
7627
7628  // Try to insert this class into the map.
7629  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7630  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7631    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7632  if (!Pos.second) {
7633    // If we already had an entry, check to see if we are promoting this vtable
7634    // to required a definition. If so, we need to reappend to the VTableUses
7635    // list, since we may have already processed the first entry.
7636    if (DefinitionRequired && !Pos.first->second) {
7637      Pos.first->second = true;
7638    } else {
7639      // Otherwise, we can early exit.
7640      return;
7641    }
7642  }
7643
7644  // Local classes need to have their virtual members marked
7645  // immediately. For all other classes, we mark their virtual members
7646  // at the end of the translation unit.
7647  if (Class->isLocalClass())
7648    MarkVirtualMembersReferenced(Loc, Class);
7649  else
7650    VTableUses.push_back(std::make_pair(Class, Loc));
7651}
7652
7653bool Sema::DefineUsedVTables() {
7654  if (VTableUses.empty())
7655    return false;
7656
7657  // Note: The VTableUses vector could grow as a result of marking
7658  // the members of a class as "used", so we check the size each
7659  // time through the loop and prefer indices (with are stable) to
7660  // iterators (which are not).
7661  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7662    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7663    if (!Class)
7664      continue;
7665
7666    SourceLocation Loc = VTableUses[I].second;
7667
7668    // If this class has a key function, but that key function is
7669    // defined in another translation unit, we don't need to emit the
7670    // vtable even though we're using it.
7671    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7672    if (KeyFunction && !KeyFunction->hasBody()) {
7673      switch (KeyFunction->getTemplateSpecializationKind()) {
7674      case TSK_Undeclared:
7675      case TSK_ExplicitSpecialization:
7676      case TSK_ExplicitInstantiationDeclaration:
7677        // The key function is in another translation unit.
7678        continue;
7679
7680      case TSK_ExplicitInstantiationDefinition:
7681      case TSK_ImplicitInstantiation:
7682        // We will be instantiating the key function.
7683        break;
7684      }
7685    } else if (!KeyFunction) {
7686      // If we have a class with no key function that is the subject
7687      // of an explicit instantiation declaration, suppress the
7688      // vtable; it will live with the explicit instantiation
7689      // definition.
7690      bool IsExplicitInstantiationDeclaration
7691        = Class->getTemplateSpecializationKind()
7692                                      == TSK_ExplicitInstantiationDeclaration;
7693      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7694                                 REnd = Class->redecls_end();
7695           R != REnd; ++R) {
7696        TemplateSpecializationKind TSK
7697          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7698        if (TSK == TSK_ExplicitInstantiationDeclaration)
7699          IsExplicitInstantiationDeclaration = true;
7700        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7701          IsExplicitInstantiationDeclaration = false;
7702          break;
7703        }
7704      }
7705
7706      if (IsExplicitInstantiationDeclaration)
7707        continue;
7708    }
7709
7710    // Mark all of the virtual members of this class as referenced, so
7711    // that we can build a vtable. Then, tell the AST consumer that a
7712    // vtable for this class is required.
7713    MarkVirtualMembersReferenced(Loc, Class);
7714    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7715    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7716
7717    // Optionally warn if we're emitting a weak vtable.
7718    if (Class->getLinkage() == ExternalLinkage &&
7719        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7720      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7721        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7722    }
7723  }
7724  VTableUses.clear();
7725
7726  return true;
7727}
7728
7729void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7730                                        const CXXRecordDecl *RD) {
7731  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7732       e = RD->method_end(); i != e; ++i) {
7733    CXXMethodDecl *MD = *i;
7734
7735    // C++ [basic.def.odr]p2:
7736    //   [...] A virtual member function is used if it is not pure. [...]
7737    if (MD->isVirtual() && !MD->isPure())
7738      MarkDeclarationReferenced(Loc, MD);
7739  }
7740
7741  // Only classes that have virtual bases need a VTT.
7742  if (RD->getNumVBases() == 0)
7743    return;
7744
7745  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7746           e = RD->bases_end(); i != e; ++i) {
7747    const CXXRecordDecl *Base =
7748        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7749    if (Base->getNumVBases() == 0)
7750      continue;
7751    MarkVirtualMembersReferenced(Loc, Base);
7752  }
7753}
7754
7755/// SetIvarInitializers - This routine builds initialization ASTs for the
7756/// Objective-C implementation whose ivars need be initialized.
7757void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7758  if (!getLangOptions().CPlusPlus)
7759    return;
7760  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7761    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7762    CollectIvarsToConstructOrDestruct(OID, ivars);
7763    if (ivars.empty())
7764      return;
7765    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7766    for (unsigned i = 0; i < ivars.size(); i++) {
7767      FieldDecl *Field = ivars[i];
7768      if (Field->isInvalidDecl())
7769        continue;
7770
7771      CXXCtorInitializer *Member;
7772      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7773      InitializationKind InitKind =
7774        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7775
7776      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7777      ExprResult MemberInit =
7778        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7779      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7780      // Note, MemberInit could actually come back empty if no initialization
7781      // is required (e.g., because it would call a trivial default constructor)
7782      if (!MemberInit.get() || MemberInit.isInvalid())
7783        continue;
7784
7785      Member =
7786        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7787                                         SourceLocation(),
7788                                         MemberInit.takeAs<Expr>(),
7789                                         SourceLocation());
7790      AllToInit.push_back(Member);
7791
7792      // Be sure that the destructor is accessible and is marked as referenced.
7793      if (const RecordType *RecordTy
7794                  = Context.getBaseElementType(Field->getType())
7795                                                        ->getAs<RecordType>()) {
7796                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7797        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7798          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7799          CheckDestructorAccess(Field->getLocation(), Destructor,
7800                            PDiag(diag::err_access_dtor_ivar)
7801                              << Context.getBaseElementType(Field->getType()));
7802        }
7803      }
7804    }
7805    ObjCImplementation->setIvarInitializers(Context,
7806                                            AllToInit.data(), AllToInit.size());
7807  }
7808}
7809