SemaDeclCXX.cpp revision 483b9f3bc05c5409e2c6643f1c9d91e21c8ff9d2
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_range I = Node->children(); I; ++I)
67      IsInvalid |= Visit(*I);
68    return IsInvalid;
69  }
70
71  /// VisitDeclRefExpr - Visit a reference to a declaration, to
72  /// determine whether this declaration can be used in the default
73  /// argument expression.
74  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
75    NamedDecl *Decl = DRE->getDecl();
76    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
77      // C++ [dcl.fct.default]p9
78      //   Default arguments are evaluated each time the function is
79      //   called. The order of evaluation of function arguments is
80      //   unspecified. Consequently, parameters of a function shall not
81      //   be used in default argument expressions, even if they are not
82      //   evaluated. Parameters of a function declared before a default
83      //   argument expression are in scope and can hide namespace and
84      //   class member names.
85      return S->Diag(DRE->getSourceRange().getBegin(),
86                     diag::err_param_default_argument_references_param)
87         << Param->getDeclName() << DefaultArg->getSourceRange();
88    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
89      // C++ [dcl.fct.default]p7
90      //   Local variables shall not be used in default argument
91      //   expressions.
92      if (VDecl->isLocalVarDecl())
93        return S->Diag(DRE->getSourceRange().getBegin(),
94                       diag::err_param_default_argument_references_local)
95          << VDecl->getDeclName() << DefaultArg->getSourceRange();
96    }
97
98    return false;
99  }
100
101  /// VisitCXXThisExpr - Visit a C++ "this" expression.
102  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
103    // C++ [dcl.fct.default]p8:
104    //   The keyword this shall not be used in a default argument of a
105    //   member function.
106    return S->Diag(ThisE->getSourceRange().getBegin(),
107                   diag::err_param_default_argument_references_this)
108               << ThisE->getSourceRange();
109  }
110}
111
112bool
113Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
114                              SourceLocation EqualLoc) {
115  if (RequireCompleteType(Param->getLocation(), Param->getType(),
116                          diag::err_typecheck_decl_incomplete_type)) {
117    Param->setInvalidDecl();
118    return true;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
128                                                                    Param);
129  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
130                                                           EqualLoc);
131  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
132  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
133                                      MultiExprArg(*this, &Arg, 1));
134  if (Result.isInvalid())
135    return true;
136  Arg = Result.takeAs<Expr>();
137
138  CheckImplicitConversions(Arg, EqualLoc);
139  Arg = MaybeCreateExprWithCleanups(Arg);
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(Arg);
143
144  // We have already instantiated this parameter; provide each of the
145  // instantiations with the uninstantiated default argument.
146  UnparsedDefaultArgInstantiationsMap::iterator InstPos
147    = UnparsedDefaultArgInstantiations.find(Param);
148  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
149    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
150      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
151
152    // We're done tracking this parameter's instantiations.
153    UnparsedDefaultArgInstantiations.erase(InstPos);
154  }
155
156  return false;
157}
158
159/// ActOnParamDefaultArgument - Check whether the default argument
160/// provided for a function parameter is well-formed. If so, attach it
161/// to the parameter declaration.
162void
163Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
164                                Expr *DefaultArg) {
165  if (!param || !DefaultArg)
166    return;
167
168  ParmVarDecl *Param = cast<ParmVarDecl>(param);
169  UnparsedDefaultArgLocs.erase(Param);
170
171  // Default arguments are only permitted in C++
172  if (!getLangOptions().CPlusPlus) {
173    Diag(EqualLoc, diag::err_param_default_argument)
174      << DefaultArg->getSourceRange();
175    Param->setInvalidDecl();
176    return;
177  }
178
179  // Check for unexpanded parameter packs.
180  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
181    Param->setInvalidDecl();
182    return;
183  }
184
185  // Check that the default argument is well-formed
186  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
187  if (DefaultArgChecker.Visit(DefaultArg)) {
188    Param->setInvalidDecl();
189    return;
190  }
191
192  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
193}
194
195/// ActOnParamUnparsedDefaultArgument - We've seen a default
196/// argument for a function parameter, but we can't parse it yet
197/// because we're inside a class definition. Note that this default
198/// argument will be parsed later.
199void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
200                                             SourceLocation EqualLoc,
201                                             SourceLocation ArgLoc) {
202  if (!param)
203    return;
204
205  ParmVarDecl *Param = cast<ParmVarDecl>(param);
206  if (Param)
207    Param->setUnparsedDefaultArg();
208
209  UnparsedDefaultArgLocs[Param] = ArgLoc;
210}
211
212/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
213/// the default argument for the parameter param failed.
214void Sema::ActOnParamDefaultArgumentError(Decl *param) {
215  if (!param)
216    return;
217
218  ParmVarDecl *Param = cast<ParmVarDecl>(param);
219
220  Param->setInvalidDecl();
221
222  UnparsedDefaultArgLocs.erase(Param);
223}
224
225/// CheckExtraCXXDefaultArguments - Check for any extra default
226/// arguments in the declarator, which is not a function declaration
227/// or definition and therefore is not permitted to have default
228/// arguments. This routine should be invoked for every declarator
229/// that is not a function declaration or definition.
230void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
231  // C++ [dcl.fct.default]p3
232  //   A default argument expression shall be specified only in the
233  //   parameter-declaration-clause of a function declaration or in a
234  //   template-parameter (14.1). It shall not be specified for a
235  //   parameter pack. If it is specified in a
236  //   parameter-declaration-clause, it shall not occur within a
237  //   declarator or abstract-declarator of a parameter-declaration.
238  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
239    DeclaratorChunk &chunk = D.getTypeObject(i);
240    if (chunk.Kind == DeclaratorChunk::Function) {
241      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
242        ParmVarDecl *Param =
243          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
244        if (Param->hasUnparsedDefaultArg()) {
245          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
248          delete Toks;
249          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
250        } else if (Param->getDefaultArg()) {
251          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
252            << Param->getDefaultArg()->getSourceRange();
253          Param->setDefaultArg(0);
254        }
255      }
256    }
257  }
258}
259
260// MergeCXXFunctionDecl - Merge two declarations of the same C++
261// function, once we already know that they have the same
262// type. Subroutine of MergeFunctionDecl. Returns true if there was an
263// error, false otherwise.
264bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
265  bool Invalid = false;
266
267  // C++ [dcl.fct.default]p4:
268  //   For non-template functions, default arguments can be added in
269  //   later declarations of a function in the same
270  //   scope. Declarations in different scopes have completely
271  //   distinct sets of default arguments. That is, declarations in
272  //   inner scopes do not acquire default arguments from
273  //   declarations in outer scopes, and vice versa. In a given
274  //   function declaration, all parameters subsequent to a
275  //   parameter with a default argument shall have default
276  //   arguments supplied in this or previous declarations. A
277  //   default argument shall not be redefined by a later
278  //   declaration (not even to the same value).
279  //
280  // C++ [dcl.fct.default]p6:
281  //   Except for member functions of class templates, the default arguments
282  //   in a member function definition that appears outside of the class
283  //   definition are added to the set of default arguments provided by the
284  //   member function declaration in the class definition.
285  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
286    ParmVarDecl *OldParam = Old->getParamDecl(p);
287    ParmVarDecl *NewParam = New->getParamDecl(p);
288
289    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
290      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
291      // hint here. Alternatively, we could walk the type-source information
292      // for NewParam to find the last source location in the type... but it
293      // isn't worth the effort right now. This is the kind of test case that
294      // is hard to get right:
295
296      //   int f(int);
297      //   void g(int (*fp)(int) = f);
298      //   void g(int (*fp)(int) = &f);
299      Diag(NewParam->getLocation(),
300           diag::err_param_default_argument_redefinition)
301        << NewParam->getDefaultArgRange();
302
303      // Look for the function declaration where the default argument was
304      // actually written, which may be a declaration prior to Old.
305      for (FunctionDecl *Older = Old->getPreviousDeclaration();
306           Older; Older = Older->getPreviousDeclaration()) {
307        if (!Older->getParamDecl(p)->hasDefaultArg())
308          break;
309
310        OldParam = Older->getParamDecl(p);
311      }
312
313      Diag(OldParam->getLocation(), diag::note_previous_definition)
314        << OldParam->getDefaultArgRange();
315      Invalid = true;
316    } else if (OldParam->hasDefaultArg()) {
317      // Merge the old default argument into the new parameter.
318      // It's important to use getInit() here;  getDefaultArg()
319      // strips off any top-level ExprWithCleanups.
320      NewParam->setHasInheritedDefaultArg();
321      if (OldParam->hasUninstantiatedDefaultArg())
322        NewParam->setUninstantiatedDefaultArg(
323                                      OldParam->getUninstantiatedDefaultArg());
324      else
325        NewParam->setDefaultArg(OldParam->getInit());
326    } else if (NewParam->hasDefaultArg()) {
327      if (New->getDescribedFunctionTemplate()) {
328        // Paragraph 4, quoted above, only applies to non-template functions.
329        Diag(NewParam->getLocation(),
330             diag::err_param_default_argument_template_redecl)
331          << NewParam->getDefaultArgRange();
332        Diag(Old->getLocation(), diag::note_template_prev_declaration)
333          << false;
334      } else if (New->getTemplateSpecializationKind()
335                   != TSK_ImplicitInstantiation &&
336                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
337        // C++ [temp.expr.spec]p21:
338        //   Default function arguments shall not be specified in a declaration
339        //   or a definition for one of the following explicit specializations:
340        //     - the explicit specialization of a function template;
341        //     - the explicit specialization of a member function template;
342        //     - the explicit specialization of a member function of a class
343        //       template where the class template specialization to which the
344        //       member function specialization belongs is implicitly
345        //       instantiated.
346        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
347          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
348          << New->getDeclName()
349          << NewParam->getDefaultArgRange();
350      } else if (New->getDeclContext()->isDependentContext()) {
351        // C++ [dcl.fct.default]p6 (DR217):
352        //   Default arguments for a member function of a class template shall
353        //   be specified on the initial declaration of the member function
354        //   within the class template.
355        //
356        // Reading the tea leaves a bit in DR217 and its reference to DR205
357        // leads me to the conclusion that one cannot add default function
358        // arguments for an out-of-line definition of a member function of a
359        // dependent type.
360        int WhichKind = 2;
361        if (CXXRecordDecl *Record
362              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
363          if (Record->getDescribedClassTemplate())
364            WhichKind = 0;
365          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
366            WhichKind = 1;
367          else
368            WhichKind = 2;
369        }
370
371        Diag(NewParam->getLocation(),
372             diag::err_param_default_argument_member_template_redecl)
373          << WhichKind
374          << NewParam->getDefaultArgRange();
375      }
376    }
377  }
378
379  if (CheckEquivalentExceptionSpec(Old, New))
380    Invalid = true;
381
382  return Invalid;
383}
384
385/// CheckCXXDefaultArguments - Verify that the default arguments for a
386/// function declaration are well-formed according to C++
387/// [dcl.fct.default].
388void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
389  unsigned NumParams = FD->getNumParams();
390  unsigned p;
391
392  // Find first parameter with a default argument
393  for (p = 0; p < NumParams; ++p) {
394    ParmVarDecl *Param = FD->getParamDecl(p);
395    if (Param->hasDefaultArg())
396      break;
397  }
398
399  // C++ [dcl.fct.default]p4:
400  //   In a given function declaration, all parameters
401  //   subsequent to a parameter with a default argument shall
402  //   have default arguments supplied in this or previous
403  //   declarations. A default argument shall not be redefined
404  //   by a later declaration (not even to the same value).
405  unsigned LastMissingDefaultArg = 0;
406  for (; p < NumParams; ++p) {
407    ParmVarDecl *Param = FD->getParamDecl(p);
408    if (!Param->hasDefaultArg()) {
409      if (Param->isInvalidDecl())
410        /* We already complained about this parameter. */;
411      else if (Param->getIdentifier())
412        Diag(Param->getLocation(),
413             diag::err_param_default_argument_missing_name)
414          << Param->getIdentifier();
415      else
416        Diag(Param->getLocation(),
417             diag::err_param_default_argument_missing);
418
419      LastMissingDefaultArg = p;
420    }
421  }
422
423  if (LastMissingDefaultArg > 0) {
424    // Some default arguments were missing. Clear out all of the
425    // default arguments up to (and including) the last missing
426    // default argument, so that we leave the function parameters
427    // in a semantically valid state.
428    for (p = 0; p <= LastMissingDefaultArg; ++p) {
429      ParmVarDecl *Param = FD->getParamDecl(p);
430      if (Param->hasDefaultArg()) {
431        Param->setDefaultArg(0);
432      }
433    }
434  }
435}
436
437/// isCurrentClassName - Determine whether the identifier II is the
438/// name of the class type currently being defined. In the case of
439/// nested classes, this will only return true if II is the name of
440/// the innermost class.
441bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
442                              const CXXScopeSpec *SS) {
443  assert(getLangOptions().CPlusPlus && "No class names in C!");
444
445  CXXRecordDecl *CurDecl;
446  if (SS && SS->isSet() && !SS->isInvalid()) {
447    DeclContext *DC = computeDeclContext(*SS, true);
448    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
449  } else
450    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
451
452  if (CurDecl && CurDecl->getIdentifier())
453    return &II == CurDecl->getIdentifier();
454  else
455    return false;
456}
457
458/// \brief Check the validity of a C++ base class specifier.
459///
460/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
461/// and returns NULL otherwise.
462CXXBaseSpecifier *
463Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
464                         SourceRange SpecifierRange,
465                         bool Virtual, AccessSpecifier Access,
466                         TypeSourceInfo *TInfo,
467                         SourceLocation EllipsisLoc) {
468  QualType BaseType = TInfo->getType();
469
470  // C++ [class.union]p1:
471  //   A union shall not have base classes.
472  if (Class->isUnion()) {
473    Diag(Class->getLocation(), diag::err_base_clause_on_union)
474      << SpecifierRange;
475    return 0;
476  }
477
478  if (EllipsisLoc.isValid() &&
479      !TInfo->getType()->containsUnexpandedParameterPack()) {
480    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
481      << TInfo->getTypeLoc().getSourceRange();
482    EllipsisLoc = SourceLocation();
483  }
484
485  if (BaseType->isDependentType())
486    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
487                                          Class->getTagKind() == TTK_Class,
488                                          Access, TInfo, EllipsisLoc);
489
490  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
491
492  // Base specifiers must be record types.
493  if (!BaseType->isRecordType()) {
494    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
495    return 0;
496  }
497
498  // C++ [class.union]p1:
499  //   A union shall not be used as a base class.
500  if (BaseType->isUnionType()) {
501    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
502    return 0;
503  }
504
505  // C++ [class.derived]p2:
506  //   The class-name in a base-specifier shall not be an incompletely
507  //   defined class.
508  if (RequireCompleteType(BaseLoc, BaseType,
509                          PDiag(diag::err_incomplete_base_class)
510                            << SpecifierRange)) {
511    Class->setInvalidDecl();
512    return 0;
513  }
514
515  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
516  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
517  assert(BaseDecl && "Record type has no declaration");
518  BaseDecl = BaseDecl->getDefinition();
519  assert(BaseDecl && "Base type is not incomplete, but has no definition");
520  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
521  assert(CXXBaseDecl && "Base type is not a C++ type");
522
523  // C++ [class.derived]p2:
524  //   If a class is marked with the class-virt-specifier final and it appears
525  //   as a base-type-specifier in a base-clause (10 class.derived), the program
526  //   is ill-formed.
527  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
528    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
529      << CXXBaseDecl->getDeclName();
530    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
531      << CXXBaseDecl->getDeclName();
532    return 0;
533  }
534
535  if (BaseDecl->isInvalidDecl())
536    Class->setInvalidDecl();
537
538  // Create the base specifier.
539  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
540                                        Class->getTagKind() == TTK_Class,
541                                        Access, TInfo, EllipsisLoc);
542}
543
544/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
545/// one entry in the base class list of a class specifier, for
546/// example:
547///    class foo : public bar, virtual private baz {
548/// 'public bar' and 'virtual private baz' are each base-specifiers.
549BaseResult
550Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
551                         bool Virtual, AccessSpecifier Access,
552                         ParsedType basetype, SourceLocation BaseLoc,
553                         SourceLocation EllipsisLoc) {
554  if (!classdecl)
555    return true;
556
557  AdjustDeclIfTemplate(classdecl);
558  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
559  if (!Class)
560    return true;
561
562  TypeSourceInfo *TInfo = 0;
563  GetTypeFromParser(basetype, &TInfo);
564
565  if (EllipsisLoc.isInvalid() &&
566      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
567                                      UPPC_BaseType))
568    return true;
569
570  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
571                                                      Virtual, Access, TInfo,
572                                                      EllipsisLoc))
573    return BaseSpec;
574
575  return true;
576}
577
578/// \brief Performs the actual work of attaching the given base class
579/// specifiers to a C++ class.
580bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
581                                unsigned NumBases) {
582 if (NumBases == 0)
583    return false;
584
585  // Used to keep track of which base types we have already seen, so
586  // that we can properly diagnose redundant direct base types. Note
587  // that the key is always the unqualified canonical type of the base
588  // class.
589  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
590
591  // Copy non-redundant base specifiers into permanent storage.
592  unsigned NumGoodBases = 0;
593  bool Invalid = false;
594  for (unsigned idx = 0; idx < NumBases; ++idx) {
595    QualType NewBaseType
596      = Context.getCanonicalType(Bases[idx]->getType());
597    NewBaseType = NewBaseType.getLocalUnqualifiedType();
598    if (!Class->hasObjectMember()) {
599      if (const RecordType *FDTTy =
600            NewBaseType.getTypePtr()->getAs<RecordType>())
601        if (FDTTy->getDecl()->hasObjectMember())
602          Class->setHasObjectMember(true);
603    }
604
605    if (KnownBaseTypes[NewBaseType]) {
606      // C++ [class.mi]p3:
607      //   A class shall not be specified as a direct base class of a
608      //   derived class more than once.
609      Diag(Bases[idx]->getSourceRange().getBegin(),
610           diag::err_duplicate_base_class)
611        << KnownBaseTypes[NewBaseType]->getType()
612        << Bases[idx]->getSourceRange();
613
614      // Delete the duplicate base class specifier; we're going to
615      // overwrite its pointer later.
616      Context.Deallocate(Bases[idx]);
617
618      Invalid = true;
619    } else {
620      // Okay, add this new base class.
621      KnownBaseTypes[NewBaseType] = Bases[idx];
622      Bases[NumGoodBases++] = Bases[idx];
623    }
624  }
625
626  // Attach the remaining base class specifiers to the derived class.
627  Class->setBases(Bases, NumGoodBases);
628
629  // Delete the remaining (good) base class specifiers, since their
630  // data has been copied into the CXXRecordDecl.
631  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
632    Context.Deallocate(Bases[idx]);
633
634  return Invalid;
635}
636
637/// ActOnBaseSpecifiers - Attach the given base specifiers to the
638/// class, after checking whether there are any duplicate base
639/// classes.
640void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
641                               unsigned NumBases) {
642  if (!ClassDecl || !Bases || !NumBases)
643    return;
644
645  AdjustDeclIfTemplate(ClassDecl);
646  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
647                       (CXXBaseSpecifier**)(Bases), NumBases);
648}
649
650static CXXRecordDecl *GetClassForType(QualType T) {
651  if (const RecordType *RT = T->getAs<RecordType>())
652    return cast<CXXRecordDecl>(RT->getDecl());
653  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
654    return ICT->getDecl();
655  else
656    return 0;
657}
658
659/// \brief Determine whether the type \p Derived is a C++ class that is
660/// derived from the type \p Base.
661bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
662  if (!getLangOptions().CPlusPlus)
663    return false;
664
665  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
666  if (!DerivedRD)
667    return false;
668
669  CXXRecordDecl *BaseRD = GetClassForType(Base);
670  if (!BaseRD)
671    return false;
672
673  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
674  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
675}
676
677/// \brief Determine whether the type \p Derived is a C++ class that is
678/// derived from the type \p Base.
679bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
680  if (!getLangOptions().CPlusPlus)
681    return false;
682
683  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
684  if (!DerivedRD)
685    return false;
686
687  CXXRecordDecl *BaseRD = GetClassForType(Base);
688  if (!BaseRD)
689    return false;
690
691  return DerivedRD->isDerivedFrom(BaseRD, Paths);
692}
693
694void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
695                              CXXCastPath &BasePathArray) {
696  assert(BasePathArray.empty() && "Base path array must be empty!");
697  assert(Paths.isRecordingPaths() && "Must record paths!");
698
699  const CXXBasePath &Path = Paths.front();
700
701  // We first go backward and check if we have a virtual base.
702  // FIXME: It would be better if CXXBasePath had the base specifier for
703  // the nearest virtual base.
704  unsigned Start = 0;
705  for (unsigned I = Path.size(); I != 0; --I) {
706    if (Path[I - 1].Base->isVirtual()) {
707      Start = I - 1;
708      break;
709    }
710  }
711
712  // Now add all bases.
713  for (unsigned I = Start, E = Path.size(); I != E; ++I)
714    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
715}
716
717/// \brief Determine whether the given base path includes a virtual
718/// base class.
719bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
720  for (CXXCastPath::const_iterator B = BasePath.begin(),
721                                BEnd = BasePath.end();
722       B != BEnd; ++B)
723    if ((*B)->isVirtual())
724      return true;
725
726  return false;
727}
728
729/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
730/// conversion (where Derived and Base are class types) is
731/// well-formed, meaning that the conversion is unambiguous (and
732/// that all of the base classes are accessible). Returns true
733/// and emits a diagnostic if the code is ill-formed, returns false
734/// otherwise. Loc is the location where this routine should point to
735/// if there is an error, and Range is the source range to highlight
736/// if there is an error.
737bool
738Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
739                                   unsigned InaccessibleBaseID,
740                                   unsigned AmbigiousBaseConvID,
741                                   SourceLocation Loc, SourceRange Range,
742                                   DeclarationName Name,
743                                   CXXCastPath *BasePath) {
744  // First, determine whether the path from Derived to Base is
745  // ambiguous. This is slightly more expensive than checking whether
746  // the Derived to Base conversion exists, because here we need to
747  // explore multiple paths to determine if there is an ambiguity.
748  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
749                     /*DetectVirtual=*/false);
750  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
751  assert(DerivationOkay &&
752         "Can only be used with a derived-to-base conversion");
753  (void)DerivationOkay;
754
755  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
756    if (InaccessibleBaseID) {
757      // Check that the base class can be accessed.
758      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
759                                   InaccessibleBaseID)) {
760        case AR_inaccessible:
761          return true;
762        case AR_accessible:
763        case AR_dependent:
764        case AR_delayed:
765          break;
766      }
767    }
768
769    // Build a base path if necessary.
770    if (BasePath)
771      BuildBasePathArray(Paths, *BasePath);
772    return false;
773  }
774
775  // We know that the derived-to-base conversion is ambiguous, and
776  // we're going to produce a diagnostic. Perform the derived-to-base
777  // search just one more time to compute all of the possible paths so
778  // that we can print them out. This is more expensive than any of
779  // the previous derived-to-base checks we've done, but at this point
780  // performance isn't as much of an issue.
781  Paths.clear();
782  Paths.setRecordingPaths(true);
783  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(StillOkay && "Can only be used with a derived-to-base conversion");
785  (void)StillOkay;
786
787  // Build up a textual representation of the ambiguous paths, e.g.,
788  // D -> B -> A, that will be used to illustrate the ambiguous
789  // conversions in the diagnostic. We only print one of the paths
790  // to each base class subobject.
791  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
792
793  Diag(Loc, AmbigiousBaseConvID)
794  << Derived << Base << PathDisplayStr << Range << Name;
795  return true;
796}
797
798bool
799Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
800                                   SourceLocation Loc, SourceRange Range,
801                                   CXXCastPath *BasePath,
802                                   bool IgnoreAccess) {
803  return CheckDerivedToBaseConversion(Derived, Base,
804                                      IgnoreAccess ? 0
805                                       : diag::err_upcast_to_inaccessible_base,
806                                      diag::err_ambiguous_derived_to_base_conv,
807                                      Loc, Range, DeclarationName(),
808                                      BasePath);
809}
810
811
812/// @brief Builds a string representing ambiguous paths from a
813/// specific derived class to different subobjects of the same base
814/// class.
815///
816/// This function builds a string that can be used in error messages
817/// to show the different paths that one can take through the
818/// inheritance hierarchy to go from the derived class to different
819/// subobjects of a base class. The result looks something like this:
820/// @code
821/// struct D -> struct B -> struct A
822/// struct D -> struct C -> struct A
823/// @endcode
824std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
825  std::string PathDisplayStr;
826  std::set<unsigned> DisplayedPaths;
827  for (CXXBasePaths::paths_iterator Path = Paths.begin();
828       Path != Paths.end(); ++Path) {
829    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
830      // We haven't displayed a path to this particular base
831      // class subobject yet.
832      PathDisplayStr += "\n    ";
833      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
834      for (CXXBasePath::const_iterator Element = Path->begin();
835           Element != Path->end(); ++Element)
836        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
837    }
838  }
839
840  return PathDisplayStr;
841}
842
843//===----------------------------------------------------------------------===//
844// C++ class member Handling
845//===----------------------------------------------------------------------===//
846
847/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
848Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
849                                 SourceLocation ASLoc,
850                                 SourceLocation ColonLoc) {
851  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
852  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
853                                                  ASLoc, ColonLoc);
854  CurContext->addHiddenDecl(ASDecl);
855  return ASDecl;
856}
857
858/// CheckOverrideControl - Check C++0x override control semantics.
859void Sema::CheckOverrideControl(const Decl *D) {
860  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
861  if (!MD || !MD->isVirtual())
862    return;
863
864  if (MD->isDependentContext())
865    return;
866
867  // C++0x [class.virtual]p3:
868  //   If a virtual function is marked with the virt-specifier override and does
869  //   not override a member function of a base class,
870  //   the program is ill-formed.
871  bool HasOverriddenMethods =
872    MD->begin_overridden_methods() != MD->end_overridden_methods();
873  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
874    Diag(MD->getLocation(),
875                 diag::err_function_marked_override_not_overriding)
876      << MD->getDeclName();
877    return;
878  }
879
880  // C++0x [class.derived]p8:
881  //   In a class definition marked with the class-virt-specifier explicit,
882  //   if a virtual member function that is neither implicitly-declared nor a
883  //   destructor overrides a member function of a base class and it is not
884  //   marked with the virt-specifier override, the program is ill-formed.
885  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
886      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
887    llvm::SmallVector<const CXXMethodDecl*, 4>
888      OverriddenMethods(MD->begin_overridden_methods(),
889                        MD->end_overridden_methods());
890
891    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
892      << MD->getDeclName()
893      << (unsigned)OverriddenMethods.size();
894
895    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
896      Diag(OverriddenMethods[I]->getLocation(),
897           diag::note_overridden_virtual_function);
898  }
899}
900
901/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
902/// function overrides a virtual member function marked 'final', according to
903/// C++0x [class.virtual]p3.
904bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
905                                                  const CXXMethodDecl *Old) {
906  if (!Old->hasAttr<FinalAttr>())
907    return false;
908
909  Diag(New->getLocation(), diag::err_final_function_overridden)
910    << New->getDeclName();
911  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
912  return true;
913}
914
915/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
916/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
917/// bitfield width if there is one and 'InitExpr' specifies the initializer if
918/// any.
919Decl *
920Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
921                               MultiTemplateParamsArg TemplateParameterLists,
922                               ExprTy *BW, const VirtSpecifiers &VS,
923                               ExprTy *InitExpr, bool IsDefinition,
924                               bool Deleted) {
925  const DeclSpec &DS = D.getDeclSpec();
926  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
927  DeclarationName Name = NameInfo.getName();
928  SourceLocation Loc = NameInfo.getLoc();
929
930  // For anonymous bitfields, the location should point to the type.
931  if (Loc.isInvalid())
932    Loc = D.getSourceRange().getBegin();
933
934  Expr *BitWidth = static_cast<Expr*>(BW);
935  Expr *Init = static_cast<Expr*>(InitExpr);
936
937  assert(isa<CXXRecordDecl>(CurContext));
938  assert(!DS.isFriendSpecified());
939
940  bool isFunc = false;
941  if (D.isFunctionDeclarator())
942    isFunc = true;
943  else if (D.getNumTypeObjects() == 0 &&
944           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
945    QualType TDType = GetTypeFromParser(DS.getRepAsType());
946    isFunc = TDType->isFunctionType();
947  }
948
949  // C++ 9.2p6: A member shall not be declared to have automatic storage
950  // duration (auto, register) or with the extern storage-class-specifier.
951  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
952  // data members and cannot be applied to names declared const or static,
953  // and cannot be applied to reference members.
954  switch (DS.getStorageClassSpec()) {
955    case DeclSpec::SCS_unspecified:
956    case DeclSpec::SCS_typedef:
957    case DeclSpec::SCS_static:
958      // FALL THROUGH.
959      break;
960    case DeclSpec::SCS_mutable:
961      if (isFunc) {
962        if (DS.getStorageClassSpecLoc().isValid())
963          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
964        else
965          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
966
967        // FIXME: It would be nicer if the keyword was ignored only for this
968        // declarator. Otherwise we could get follow-up errors.
969        D.getMutableDeclSpec().ClearStorageClassSpecs();
970      }
971      break;
972    default:
973      if (DS.getStorageClassSpecLoc().isValid())
974        Diag(DS.getStorageClassSpecLoc(),
975             diag::err_storageclass_invalid_for_member);
976      else
977        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
978      D.getMutableDeclSpec().ClearStorageClassSpecs();
979  }
980
981  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
982                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
983                      !isFunc);
984
985  Decl *Member;
986  if (isInstField) {
987    CXXScopeSpec &SS = D.getCXXScopeSpec();
988
989
990    if (SS.isSet() && !SS.isInvalid()) {
991      // The user provided a superfluous scope specifier inside a class
992      // definition:
993      //
994      // class X {
995      //   int X::member;
996      // };
997      DeclContext *DC = 0;
998      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
999        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1000        << Name << FixItHint::CreateRemoval(SS.getRange());
1001      else
1002        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1003          << Name << SS.getRange();
1004
1005      SS.clear();
1006    }
1007
1008    // FIXME: Check for template parameters!
1009    // FIXME: Check that the name is an identifier!
1010    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1011                         AS);
1012    assert(Member && "HandleField never returns null");
1013  } else {
1014    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1015    if (!Member) {
1016      return 0;
1017    }
1018
1019    // Non-instance-fields can't have a bitfield.
1020    if (BitWidth) {
1021      if (Member->isInvalidDecl()) {
1022        // don't emit another diagnostic.
1023      } else if (isa<VarDecl>(Member)) {
1024        // C++ 9.6p3: A bit-field shall not be a static member.
1025        // "static member 'A' cannot be a bit-field"
1026        Diag(Loc, diag::err_static_not_bitfield)
1027          << Name << BitWidth->getSourceRange();
1028      } else if (isa<TypedefDecl>(Member)) {
1029        // "typedef member 'x' cannot be a bit-field"
1030        Diag(Loc, diag::err_typedef_not_bitfield)
1031          << Name << BitWidth->getSourceRange();
1032      } else {
1033        // A function typedef ("typedef int f(); f a;").
1034        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1035        Diag(Loc, diag::err_not_integral_type_bitfield)
1036          << Name << cast<ValueDecl>(Member)->getType()
1037          << BitWidth->getSourceRange();
1038      }
1039
1040      BitWidth = 0;
1041      Member->setInvalidDecl();
1042    }
1043
1044    Member->setAccess(AS);
1045
1046    // If we have declared a member function template, set the access of the
1047    // templated declaration as well.
1048    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1049      FunTmpl->getTemplatedDecl()->setAccess(AS);
1050  }
1051
1052  if (VS.isOverrideSpecified()) {
1053    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1054    if (!MD || !MD->isVirtual()) {
1055      Diag(Member->getLocStart(),
1056           diag::override_keyword_only_allowed_on_virtual_member_functions)
1057        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1058    } else
1059      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1060  }
1061  if (VS.isFinalSpecified()) {
1062    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1063    if (!MD || !MD->isVirtual()) {
1064      Diag(Member->getLocStart(),
1065           diag::override_keyword_only_allowed_on_virtual_member_functions)
1066      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1067    } else
1068      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1069  }
1070
1071  CheckOverrideControl(Member);
1072
1073  assert((Name || isInstField) && "No identifier for non-field ?");
1074
1075  if (Init)
1076    AddInitializerToDecl(Member, Init, false,
1077                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1078  if (Deleted) // FIXME: Source location is not very good.
1079    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1080
1081  FinalizeDeclaration(Member);
1082
1083  if (isInstField)
1084    FieldCollector->Add(cast<FieldDecl>(Member));
1085  return Member;
1086}
1087
1088/// \brief Find the direct and/or virtual base specifiers that
1089/// correspond to the given base type, for use in base initialization
1090/// within a constructor.
1091static bool FindBaseInitializer(Sema &SemaRef,
1092                                CXXRecordDecl *ClassDecl,
1093                                QualType BaseType,
1094                                const CXXBaseSpecifier *&DirectBaseSpec,
1095                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1096  // First, check for a direct base class.
1097  DirectBaseSpec = 0;
1098  for (CXXRecordDecl::base_class_const_iterator Base
1099         = ClassDecl->bases_begin();
1100       Base != ClassDecl->bases_end(); ++Base) {
1101    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1102      // We found a direct base of this type. That's what we're
1103      // initializing.
1104      DirectBaseSpec = &*Base;
1105      break;
1106    }
1107  }
1108
1109  // Check for a virtual base class.
1110  // FIXME: We might be able to short-circuit this if we know in advance that
1111  // there are no virtual bases.
1112  VirtualBaseSpec = 0;
1113  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1114    // We haven't found a base yet; search the class hierarchy for a
1115    // virtual base class.
1116    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1117                       /*DetectVirtual=*/false);
1118    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1119                              BaseType, Paths)) {
1120      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1121           Path != Paths.end(); ++Path) {
1122        if (Path->back().Base->isVirtual()) {
1123          VirtualBaseSpec = Path->back().Base;
1124          break;
1125        }
1126      }
1127    }
1128  }
1129
1130  return DirectBaseSpec || VirtualBaseSpec;
1131}
1132
1133/// ActOnMemInitializer - Handle a C++ member initializer.
1134MemInitResult
1135Sema::ActOnMemInitializer(Decl *ConstructorD,
1136                          Scope *S,
1137                          CXXScopeSpec &SS,
1138                          IdentifierInfo *MemberOrBase,
1139                          ParsedType TemplateTypeTy,
1140                          SourceLocation IdLoc,
1141                          SourceLocation LParenLoc,
1142                          ExprTy **Args, unsigned NumArgs,
1143                          SourceLocation RParenLoc,
1144                          SourceLocation EllipsisLoc) {
1145  if (!ConstructorD)
1146    return true;
1147
1148  AdjustDeclIfTemplate(ConstructorD);
1149
1150  CXXConstructorDecl *Constructor
1151    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1152  if (!Constructor) {
1153    // The user wrote a constructor initializer on a function that is
1154    // not a C++ constructor. Ignore the error for now, because we may
1155    // have more member initializers coming; we'll diagnose it just
1156    // once in ActOnMemInitializers.
1157    return true;
1158  }
1159
1160  CXXRecordDecl *ClassDecl = Constructor->getParent();
1161
1162  // C++ [class.base.init]p2:
1163  //   Names in a mem-initializer-id are looked up in the scope of the
1164  //   constructor's class and, if not found in that scope, are looked
1165  //   up in the scope containing the constructor's definition.
1166  //   [Note: if the constructor's class contains a member with the
1167  //   same name as a direct or virtual base class of the class, a
1168  //   mem-initializer-id naming the member or base class and composed
1169  //   of a single identifier refers to the class member. A
1170  //   mem-initializer-id for the hidden base class may be specified
1171  //   using a qualified name. ]
1172  if (!SS.getScopeRep() && !TemplateTypeTy) {
1173    // Look for a member, first.
1174    FieldDecl *Member = 0;
1175    DeclContext::lookup_result Result
1176      = ClassDecl->lookup(MemberOrBase);
1177    if (Result.first != Result.second) {
1178      Member = dyn_cast<FieldDecl>(*Result.first);
1179
1180      if (Member) {
1181        if (EllipsisLoc.isValid())
1182          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1183            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1184
1185        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1186                                    LParenLoc, RParenLoc);
1187      }
1188
1189      // Handle anonymous union case.
1190      if (IndirectFieldDecl* IndirectField
1191            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1192        if (EllipsisLoc.isValid())
1193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1194            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195
1196         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1197                                       NumArgs, IdLoc,
1198                                       LParenLoc, RParenLoc);
1199      }
1200    }
1201  }
1202  // It didn't name a member, so see if it names a class.
1203  QualType BaseType;
1204  TypeSourceInfo *TInfo = 0;
1205
1206  if (TemplateTypeTy) {
1207    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1208  } else {
1209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1210    LookupParsedName(R, S, &SS);
1211
1212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1213    if (!TyD) {
1214      if (R.isAmbiguous()) return true;
1215
1216      // We don't want access-control diagnostics here.
1217      R.suppressDiagnostics();
1218
1219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1220        bool NotUnknownSpecialization = false;
1221        DeclContext *DC = computeDeclContext(SS, false);
1222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1224
1225        if (!NotUnknownSpecialization) {
1226          // When the scope specifier can refer to a member of an unknown
1227          // specialization, we take it as a type name.
1228          BaseType = CheckTypenameType(ETK_None,
1229                                       (NestedNameSpecifier *)SS.getScopeRep(),
1230                                       *MemberOrBase, SourceLocation(),
1231                                       SS.getRange(), IdLoc);
1232          if (BaseType.isNull())
1233            return true;
1234
1235          R.clear();
1236          R.setLookupName(MemberOrBase);
1237        }
1238      }
1239
1240      // If no results were found, try to correct typos.
1241      if (R.empty() && BaseType.isNull() &&
1242          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1243          R.isSingleResult()) {
1244        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1245          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1246            // We have found a non-static data member with a similar
1247            // name to what was typed; complain and initialize that
1248            // member.
1249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1250              << MemberOrBase << true << R.getLookupName()
1251              << FixItHint::CreateReplacement(R.getNameLoc(),
1252                                              R.getLookupName().getAsString());
1253            Diag(Member->getLocation(), diag::note_previous_decl)
1254              << Member->getDeclName();
1255
1256            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1257                                          LParenLoc, RParenLoc);
1258          }
1259        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1260          const CXXBaseSpecifier *DirectBaseSpec;
1261          const CXXBaseSpecifier *VirtualBaseSpec;
1262          if (FindBaseInitializer(*this, ClassDecl,
1263                                  Context.getTypeDeclType(Type),
1264                                  DirectBaseSpec, VirtualBaseSpec)) {
1265            // We have found a direct or virtual base class with a
1266            // similar name to what was typed; complain and initialize
1267            // that base class.
1268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1269              << MemberOrBase << false << R.getLookupName()
1270              << FixItHint::CreateReplacement(R.getNameLoc(),
1271                                              R.getLookupName().getAsString());
1272
1273            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1274                                                             : VirtualBaseSpec;
1275            Diag(BaseSpec->getSourceRange().getBegin(),
1276                 diag::note_base_class_specified_here)
1277              << BaseSpec->getType()
1278              << BaseSpec->getSourceRange();
1279
1280            TyD = Type;
1281          }
1282        }
1283      }
1284
1285      if (!TyD && BaseType.isNull()) {
1286        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1287          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1288        return true;
1289      }
1290    }
1291
1292    if (BaseType.isNull()) {
1293      BaseType = Context.getTypeDeclType(TyD);
1294      if (SS.isSet()) {
1295        NestedNameSpecifier *Qualifier =
1296          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1297
1298        // FIXME: preserve source range information
1299        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1300      }
1301    }
1302  }
1303
1304  if (!TInfo)
1305    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1306
1307  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1308                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1309}
1310
1311/// Checks an initializer expression for use of uninitialized fields, such as
1312/// containing the field that is being initialized. Returns true if there is an
1313/// uninitialized field was used an updates the SourceLocation parameter; false
1314/// otherwise.
1315static bool InitExprContainsUninitializedFields(const Stmt *S,
1316                                                const ValueDecl *LhsField,
1317                                                SourceLocation *L) {
1318  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1319
1320  if (isa<CallExpr>(S)) {
1321    // Do not descend into function calls or constructors, as the use
1322    // of an uninitialized field may be valid. One would have to inspect
1323    // the contents of the function/ctor to determine if it is safe or not.
1324    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1325    // may be safe, depending on what the function/ctor does.
1326    return false;
1327  }
1328  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1329    const NamedDecl *RhsField = ME->getMemberDecl();
1330
1331    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1332      // The member expression points to a static data member.
1333      assert(VD->isStaticDataMember() &&
1334             "Member points to non-static data member!");
1335      (void)VD;
1336      return false;
1337    }
1338
1339    if (isa<EnumConstantDecl>(RhsField)) {
1340      // The member expression points to an enum.
1341      return false;
1342    }
1343
1344    if (RhsField == LhsField) {
1345      // Initializing a field with itself. Throw a warning.
1346      // But wait; there are exceptions!
1347      // Exception #1:  The field may not belong to this record.
1348      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1349      const Expr *base = ME->getBase();
1350      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1351        // Even though the field matches, it does not belong to this record.
1352        return false;
1353      }
1354      // None of the exceptions triggered; return true to indicate an
1355      // uninitialized field was used.
1356      *L = ME->getMemberLoc();
1357      return true;
1358    }
1359  } else if (isa<SizeOfAlignOfExpr>(S)) {
1360    // sizeof/alignof doesn't reference contents, do not warn.
1361    return false;
1362  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1363    // address-of doesn't reference contents (the pointer may be dereferenced
1364    // in the same expression but it would be rare; and weird).
1365    if (UOE->getOpcode() == UO_AddrOf)
1366      return false;
1367  }
1368  for (Stmt::const_child_range it = S->children(); it; ++it) {
1369    if (!*it) {
1370      // An expression such as 'member(arg ?: "")' may trigger this.
1371      continue;
1372    }
1373    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1374      return true;
1375  }
1376  return false;
1377}
1378
1379MemInitResult
1380Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1381                             unsigned NumArgs, SourceLocation IdLoc,
1382                             SourceLocation LParenLoc,
1383                             SourceLocation RParenLoc) {
1384  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1385  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1386  assert((DirectMember || IndirectMember) &&
1387         "Member must be a FieldDecl or IndirectFieldDecl");
1388
1389  if (Member->isInvalidDecl())
1390    return true;
1391
1392  // Diagnose value-uses of fields to initialize themselves, e.g.
1393  //   foo(foo)
1394  // where foo is not also a parameter to the constructor.
1395  // TODO: implement -Wuninitialized and fold this into that framework.
1396  for (unsigned i = 0; i < NumArgs; ++i) {
1397    SourceLocation L;
1398    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1399      // FIXME: Return true in the case when other fields are used before being
1400      // uninitialized. For example, let this field be the i'th field. When
1401      // initializing the i'th field, throw a warning if any of the >= i'th
1402      // fields are used, as they are not yet initialized.
1403      // Right now we are only handling the case where the i'th field uses
1404      // itself in its initializer.
1405      Diag(L, diag::warn_field_is_uninit);
1406    }
1407  }
1408
1409  bool HasDependentArg = false;
1410  for (unsigned i = 0; i < NumArgs; i++)
1411    HasDependentArg |= Args[i]->isTypeDependent();
1412
1413  Expr *Init;
1414  if (Member->getType()->isDependentType() || HasDependentArg) {
1415    // Can't check initialization for a member of dependent type or when
1416    // any of the arguments are type-dependent expressions.
1417    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                       RParenLoc);
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426  } else {
1427    // Initialize the member.
1428    InitializedEntity MemberEntity =
1429      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1430                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1431    InitializationKind Kind =
1432      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1433
1434    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1435
1436    ExprResult MemberInit =
1437      InitSeq.Perform(*this, MemberEntity, Kind,
1438                      MultiExprArg(*this, Args, NumArgs), 0);
1439    if (MemberInit.isInvalid())
1440      return true;
1441
1442    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1443
1444    // C++0x [class.base.init]p7:
1445    //   The initialization of each base and member constitutes a
1446    //   full-expression.
1447    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1448    if (MemberInit.isInvalid())
1449      return true;
1450
1451    // If we are in a dependent context, template instantiation will
1452    // perform this type-checking again. Just save the arguments that we
1453    // received in a ParenListExpr.
1454    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1455    // of the information that we have about the member
1456    // initializer. However, deconstructing the ASTs is a dicey process,
1457    // and this approach is far more likely to get the corner cases right.
1458    if (CurContext->isDependentContext())
1459      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1460                                               RParenLoc);
1461    else
1462      Init = MemberInit.get();
1463  }
1464
1465  if (DirectMember) {
1466    return new (Context) CXXCtorInitializer(Context, DirectMember,
1467                                                    IdLoc, LParenLoc, Init,
1468                                                    RParenLoc);
1469  } else {
1470    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1471                                                    IdLoc, LParenLoc, Init,
1472                                                    RParenLoc);
1473  }
1474}
1475
1476MemInitResult
1477Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1478                                 Expr **Args, unsigned NumArgs,
1479                                 SourceLocation LParenLoc,
1480                                 SourceLocation RParenLoc,
1481                                 CXXRecordDecl *ClassDecl,
1482                                 SourceLocation EllipsisLoc) {
1483  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1484  if (!LangOpts.CPlusPlus0x)
1485    return Diag(Loc, diag::err_delegation_0x_only)
1486      << TInfo->getTypeLoc().getLocalSourceRange();
1487
1488  return Diag(Loc, diag::err_delegation_unimplemented)
1489    << TInfo->getTypeLoc().getLocalSourceRange();
1490}
1491
1492MemInitResult
1493Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1494                           Expr **Args, unsigned NumArgs,
1495                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1496                           CXXRecordDecl *ClassDecl,
1497                           SourceLocation EllipsisLoc) {
1498  bool HasDependentArg = false;
1499  for (unsigned i = 0; i < NumArgs; i++)
1500    HasDependentArg |= Args[i]->isTypeDependent();
1501
1502  SourceLocation BaseLoc
1503    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1504
1505  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1506    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1507             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1508
1509  // C++ [class.base.init]p2:
1510  //   [...] Unless the mem-initializer-id names a nonstatic data
1511  //   member of the constructor's class or a direct or virtual base
1512  //   of that class, the mem-initializer is ill-formed. A
1513  //   mem-initializer-list can initialize a base class using any
1514  //   name that denotes that base class type.
1515  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1516
1517  if (EllipsisLoc.isValid()) {
1518    // This is a pack expansion.
1519    if (!BaseType->containsUnexpandedParameterPack())  {
1520      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1521        << SourceRange(BaseLoc, RParenLoc);
1522
1523      EllipsisLoc = SourceLocation();
1524    }
1525  } else {
1526    // Check for any unexpanded parameter packs.
1527    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1528      return true;
1529
1530    for (unsigned I = 0; I != NumArgs; ++I)
1531      if (DiagnoseUnexpandedParameterPack(Args[I]))
1532        return true;
1533  }
1534
1535  // Check for direct and virtual base classes.
1536  const CXXBaseSpecifier *DirectBaseSpec = 0;
1537  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1538  if (!Dependent) {
1539    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1540                                       BaseType))
1541      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1542                                        LParenLoc, RParenLoc, ClassDecl,
1543                                        EllipsisLoc);
1544
1545    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1546                        VirtualBaseSpec);
1547
1548    // C++ [base.class.init]p2:
1549    // Unless the mem-initializer-id names a nonstatic data member of the
1550    // constructor's class or a direct or virtual base of that class, the
1551    // mem-initializer is ill-formed.
1552    if (!DirectBaseSpec && !VirtualBaseSpec) {
1553      // If the class has any dependent bases, then it's possible that
1554      // one of those types will resolve to the same type as
1555      // BaseType. Therefore, just treat this as a dependent base
1556      // class initialization.  FIXME: Should we try to check the
1557      // initialization anyway? It seems odd.
1558      if (ClassDecl->hasAnyDependentBases())
1559        Dependent = true;
1560      else
1561        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1562          << BaseType << Context.getTypeDeclType(ClassDecl)
1563          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1564    }
1565  }
1566
1567  if (Dependent) {
1568    // Can't check initialization for a base of dependent type or when
1569    // any of the arguments are type-dependent expressions.
1570    ExprResult BaseInit
1571      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1572                                          RParenLoc));
1573
1574    // Erase any temporaries within this evaluation context; we're not
1575    // going to track them in the AST, since we'll be rebuilding the
1576    // ASTs during template instantiation.
1577    ExprTemporaries.erase(
1578              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1579                          ExprTemporaries.end());
1580
1581    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1582                                                    /*IsVirtual=*/false,
1583                                                    LParenLoc,
1584                                                    BaseInit.takeAs<Expr>(),
1585                                                    RParenLoc,
1586                                                    EllipsisLoc);
1587  }
1588
1589  // C++ [base.class.init]p2:
1590  //   If a mem-initializer-id is ambiguous because it designates both
1591  //   a direct non-virtual base class and an inherited virtual base
1592  //   class, the mem-initializer is ill-formed.
1593  if (DirectBaseSpec && VirtualBaseSpec)
1594    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1595      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1596
1597  CXXBaseSpecifier *BaseSpec
1598    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1599  if (!BaseSpec)
1600    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1601
1602  // Initialize the base.
1603  InitializedEntity BaseEntity =
1604    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1605  InitializationKind Kind =
1606    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1607
1608  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1609
1610  ExprResult BaseInit =
1611    InitSeq.Perform(*this, BaseEntity, Kind,
1612                    MultiExprArg(*this, Args, NumArgs), 0);
1613  if (BaseInit.isInvalid())
1614    return true;
1615
1616  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1617
1618  // C++0x [class.base.init]p7:
1619  //   The initialization of each base and member constitutes a
1620  //   full-expression.
1621  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1622  if (BaseInit.isInvalid())
1623    return true;
1624
1625  // If we are in a dependent context, template instantiation will
1626  // perform this type-checking again. Just save the arguments that we
1627  // received in a ParenListExpr.
1628  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1629  // of the information that we have about the base
1630  // initializer. However, deconstructing the ASTs is a dicey process,
1631  // and this approach is far more likely to get the corner cases right.
1632  if (CurContext->isDependentContext()) {
1633    ExprResult Init
1634      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1635                                          RParenLoc));
1636    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1637                                                    BaseSpec->isVirtual(),
1638                                                    LParenLoc,
1639                                                    Init.takeAs<Expr>(),
1640                                                    RParenLoc,
1641                                                    EllipsisLoc);
1642  }
1643
1644  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1645                                                  BaseSpec->isVirtual(),
1646                                                  LParenLoc,
1647                                                  BaseInit.takeAs<Expr>(),
1648                                                  RParenLoc,
1649                                                  EllipsisLoc);
1650}
1651
1652/// ImplicitInitializerKind - How an implicit base or member initializer should
1653/// initialize its base or member.
1654enum ImplicitInitializerKind {
1655  IIK_Default,
1656  IIK_Copy,
1657  IIK_Move
1658};
1659
1660static bool
1661BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1662                             ImplicitInitializerKind ImplicitInitKind,
1663                             CXXBaseSpecifier *BaseSpec,
1664                             bool IsInheritedVirtualBase,
1665                             CXXCtorInitializer *&CXXBaseInit) {
1666  InitializedEntity InitEntity
1667    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1668                                        IsInheritedVirtualBase);
1669
1670  ExprResult BaseInit;
1671
1672  switch (ImplicitInitKind) {
1673  case IIK_Default: {
1674    InitializationKind InitKind
1675      = InitializationKind::CreateDefault(Constructor->getLocation());
1676    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1677    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1678                               MultiExprArg(SemaRef, 0, 0));
1679    break;
1680  }
1681
1682  case IIK_Copy: {
1683    ParmVarDecl *Param = Constructor->getParamDecl(0);
1684    QualType ParamType = Param->getType().getNonReferenceType();
1685
1686    Expr *CopyCtorArg =
1687      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1688                          Constructor->getLocation(), ParamType,
1689                          VK_LValue, 0);
1690
1691    // Cast to the base class to avoid ambiguities.
1692    QualType ArgTy =
1693      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1694                                       ParamType.getQualifiers());
1695
1696    CXXCastPath BasePath;
1697    BasePath.push_back(BaseSpec);
1698    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1699                              CK_UncheckedDerivedToBase,
1700                              VK_LValue, &BasePath);
1701
1702    InitializationKind InitKind
1703      = InitializationKind::CreateDirect(Constructor->getLocation(),
1704                                         SourceLocation(), SourceLocation());
1705    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1706                                   &CopyCtorArg, 1);
1707    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1708                               MultiExprArg(&CopyCtorArg, 1));
1709    break;
1710  }
1711
1712  case IIK_Move:
1713    assert(false && "Unhandled initializer kind!");
1714  }
1715
1716  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1717  if (BaseInit.isInvalid())
1718    return true;
1719
1720  CXXBaseInit =
1721    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1722               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1723                                                        SourceLocation()),
1724                                             BaseSpec->isVirtual(),
1725                                             SourceLocation(),
1726                                             BaseInit.takeAs<Expr>(),
1727                                             SourceLocation(),
1728                                             SourceLocation());
1729
1730  return false;
1731}
1732
1733static bool
1734BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1735                               ImplicitInitializerKind ImplicitInitKind,
1736                               FieldDecl *Field,
1737                               CXXCtorInitializer *&CXXMemberInit) {
1738  if (Field->isInvalidDecl())
1739    return true;
1740
1741  SourceLocation Loc = Constructor->getLocation();
1742
1743  if (ImplicitInitKind == IIK_Copy) {
1744    ParmVarDecl *Param = Constructor->getParamDecl(0);
1745    QualType ParamType = Param->getType().getNonReferenceType();
1746
1747    Expr *MemberExprBase =
1748      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1749                          Loc, ParamType, VK_LValue, 0);
1750
1751    // Build a reference to this field within the parameter.
1752    CXXScopeSpec SS;
1753    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1754                              Sema::LookupMemberName);
1755    MemberLookup.addDecl(Field, AS_public);
1756    MemberLookup.resolveKind();
1757    ExprResult CopyCtorArg
1758      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1759                                         ParamType, Loc,
1760                                         /*IsArrow=*/false,
1761                                         SS,
1762                                         /*FirstQualifierInScope=*/0,
1763                                         MemberLookup,
1764                                         /*TemplateArgs=*/0);
1765    if (CopyCtorArg.isInvalid())
1766      return true;
1767
1768    // When the field we are copying is an array, create index variables for
1769    // each dimension of the array. We use these index variables to subscript
1770    // the source array, and other clients (e.g., CodeGen) will perform the
1771    // necessary iteration with these index variables.
1772    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1773    QualType BaseType = Field->getType();
1774    QualType SizeType = SemaRef.Context.getSizeType();
1775    while (const ConstantArrayType *Array
1776                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1777      // Create the iteration variable for this array index.
1778      IdentifierInfo *IterationVarName = 0;
1779      {
1780        llvm::SmallString<8> Str;
1781        llvm::raw_svector_ostream OS(Str);
1782        OS << "__i" << IndexVariables.size();
1783        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1784      }
1785      VarDecl *IterationVar
1786        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1787                          IterationVarName, SizeType,
1788                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1789                          SC_None, SC_None);
1790      IndexVariables.push_back(IterationVar);
1791
1792      // Create a reference to the iteration variable.
1793      ExprResult IterationVarRef
1794        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1795      assert(!IterationVarRef.isInvalid() &&
1796             "Reference to invented variable cannot fail!");
1797
1798      // Subscript the array with this iteration variable.
1799      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1800                                                            Loc,
1801                                                        IterationVarRef.take(),
1802                                                            Loc);
1803      if (CopyCtorArg.isInvalid())
1804        return true;
1805
1806      BaseType = Array->getElementType();
1807    }
1808
1809    // Construct the entity that we will be initializing. For an array, this
1810    // will be first element in the array, which may require several levels
1811    // of array-subscript entities.
1812    llvm::SmallVector<InitializedEntity, 4> Entities;
1813    Entities.reserve(1 + IndexVariables.size());
1814    Entities.push_back(InitializedEntity::InitializeMember(Field));
1815    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1816      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1817                                                              0,
1818                                                              Entities.back()));
1819
1820    // Direct-initialize to use the copy constructor.
1821    InitializationKind InitKind =
1822      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1823
1824    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1825    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1826                                   &CopyCtorArgE, 1);
1827
1828    ExprResult MemberInit
1829      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1830                        MultiExprArg(&CopyCtorArgE, 1));
1831    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1832    if (MemberInit.isInvalid())
1833      return true;
1834
1835    CXXMemberInit
1836      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1837                                           MemberInit.takeAs<Expr>(), Loc,
1838                                           IndexVariables.data(),
1839                                           IndexVariables.size());
1840    return false;
1841  }
1842
1843  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1844
1845  QualType FieldBaseElementType =
1846    SemaRef.Context.getBaseElementType(Field->getType());
1847
1848  if (FieldBaseElementType->isRecordType()) {
1849    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1850    InitializationKind InitKind =
1851      InitializationKind::CreateDefault(Loc);
1852
1853    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1854    ExprResult MemberInit =
1855      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1856
1857    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1858    if (MemberInit.isInvalid())
1859      return true;
1860
1861    CXXMemberInit =
1862      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1863                                                       Field, Loc, Loc,
1864                                                       MemberInit.get(),
1865                                                       Loc);
1866    return false;
1867  }
1868
1869  if (FieldBaseElementType->isReferenceType()) {
1870    SemaRef.Diag(Constructor->getLocation(),
1871                 diag::err_uninitialized_member_in_ctor)
1872    << (int)Constructor->isImplicit()
1873    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1874    << 0 << Field->getDeclName();
1875    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1876    return true;
1877  }
1878
1879  if (FieldBaseElementType.isConstQualified()) {
1880    SemaRef.Diag(Constructor->getLocation(),
1881                 diag::err_uninitialized_member_in_ctor)
1882    << (int)Constructor->isImplicit()
1883    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1884    << 1 << Field->getDeclName();
1885    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1886    return true;
1887  }
1888
1889  // Nothing to initialize.
1890  CXXMemberInit = 0;
1891  return false;
1892}
1893
1894namespace {
1895struct BaseAndFieldInfo {
1896  Sema &S;
1897  CXXConstructorDecl *Ctor;
1898  bool AnyErrorsInInits;
1899  ImplicitInitializerKind IIK;
1900  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1901  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1902
1903  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1904    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1905    // FIXME: Handle implicit move constructors.
1906    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1907      IIK = IIK_Copy;
1908    else
1909      IIK = IIK_Default;
1910  }
1911};
1912}
1913
1914static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1915                                    FieldDecl *Top, FieldDecl *Field) {
1916
1917  // Overwhelmingly common case: we have a direct initializer for this field.
1918  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1919    Info.AllToInit.push_back(Init);
1920    return false;
1921  }
1922
1923  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1924    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1925    assert(FieldClassType && "anonymous struct/union without record type");
1926    CXXRecordDecl *FieldClassDecl
1927      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1928
1929    // Even though union members never have non-trivial default
1930    // constructions in C++03, we still build member initializers for aggregate
1931    // record types which can be union members, and C++0x allows non-trivial
1932    // default constructors for union members, so we ensure that only one
1933    // member is initialized for these.
1934    if (FieldClassDecl->isUnion()) {
1935      // First check for an explicit initializer for one field.
1936      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1937           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1938        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1939          Info.AllToInit.push_back(Init);
1940
1941          // Once we've initialized a field of an anonymous union, the union
1942          // field in the class is also initialized, so exit immediately.
1943          return false;
1944        } else if ((*FA)->isAnonymousStructOrUnion()) {
1945          if (CollectFieldInitializer(Info, Top, *FA))
1946            return true;
1947        }
1948      }
1949
1950      // Fallthrough and construct a default initializer for the union as
1951      // a whole, which can call its default constructor if such a thing exists
1952      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1953      // behavior going forward with C++0x, when anonymous unions there are
1954      // finalized, we should revisit this.
1955    } else {
1956      // For structs, we simply descend through to initialize all members where
1957      // necessary.
1958      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1959           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1960        if (CollectFieldInitializer(Info, Top, *FA))
1961          return true;
1962      }
1963    }
1964  }
1965
1966  // Don't try to build an implicit initializer if there were semantic
1967  // errors in any of the initializers (and therefore we might be
1968  // missing some that the user actually wrote).
1969  if (Info.AnyErrorsInInits)
1970    return false;
1971
1972  CXXCtorInitializer *Init = 0;
1973  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1974    return true;
1975
1976  if (Init)
1977    Info.AllToInit.push_back(Init);
1978
1979  return false;
1980}
1981
1982bool
1983Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1984                                  CXXCtorInitializer **Initializers,
1985                                  unsigned NumInitializers,
1986                                  bool AnyErrors) {
1987  if (Constructor->getDeclContext()->isDependentContext()) {
1988    // Just store the initializers as written, they will be checked during
1989    // instantiation.
1990    if (NumInitializers > 0) {
1991      Constructor->setNumCtorInitializers(NumInitializers);
1992      CXXCtorInitializer **baseOrMemberInitializers =
1993        new (Context) CXXCtorInitializer*[NumInitializers];
1994      memcpy(baseOrMemberInitializers, Initializers,
1995             NumInitializers * sizeof(CXXCtorInitializer*));
1996      Constructor->setCtorInitializers(baseOrMemberInitializers);
1997    }
1998
1999    return false;
2000  }
2001
2002  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2003
2004  // We need to build the initializer AST according to order of construction
2005  // and not what user specified in the Initializers list.
2006  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2007  if (!ClassDecl)
2008    return true;
2009
2010  bool HadError = false;
2011
2012  for (unsigned i = 0; i < NumInitializers; i++) {
2013    CXXCtorInitializer *Member = Initializers[i];
2014
2015    if (Member->isBaseInitializer())
2016      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2017    else
2018      Info.AllBaseFields[Member->getAnyMember()] = Member;
2019  }
2020
2021  // Keep track of the direct virtual bases.
2022  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2023  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2024       E = ClassDecl->bases_end(); I != E; ++I) {
2025    if (I->isVirtual())
2026      DirectVBases.insert(I);
2027  }
2028
2029  // Push virtual bases before others.
2030  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2031       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2032
2033    if (CXXCtorInitializer *Value
2034        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2035      Info.AllToInit.push_back(Value);
2036    } else if (!AnyErrors) {
2037      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2038      CXXCtorInitializer *CXXBaseInit;
2039      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2040                                       VBase, IsInheritedVirtualBase,
2041                                       CXXBaseInit)) {
2042        HadError = true;
2043        continue;
2044      }
2045
2046      Info.AllToInit.push_back(CXXBaseInit);
2047    }
2048  }
2049
2050  // Non-virtual bases.
2051  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2052       E = ClassDecl->bases_end(); Base != E; ++Base) {
2053    // Virtuals are in the virtual base list and already constructed.
2054    if (Base->isVirtual())
2055      continue;
2056
2057    if (CXXCtorInitializer *Value
2058          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2059      Info.AllToInit.push_back(Value);
2060    } else if (!AnyErrors) {
2061      CXXCtorInitializer *CXXBaseInit;
2062      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2063                                       Base, /*IsInheritedVirtualBase=*/false,
2064                                       CXXBaseInit)) {
2065        HadError = true;
2066        continue;
2067      }
2068
2069      Info.AllToInit.push_back(CXXBaseInit);
2070    }
2071  }
2072
2073  // Fields.
2074  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2075       E = ClassDecl->field_end(); Field != E; ++Field) {
2076    if ((*Field)->getType()->isIncompleteArrayType()) {
2077      assert(ClassDecl->hasFlexibleArrayMember() &&
2078             "Incomplete array type is not valid");
2079      continue;
2080    }
2081    if (CollectFieldInitializer(Info, *Field, *Field))
2082      HadError = true;
2083  }
2084
2085  NumInitializers = Info.AllToInit.size();
2086  if (NumInitializers > 0) {
2087    Constructor->setNumCtorInitializers(NumInitializers);
2088    CXXCtorInitializer **baseOrMemberInitializers =
2089      new (Context) CXXCtorInitializer*[NumInitializers];
2090    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2091           NumInitializers * sizeof(CXXCtorInitializer*));
2092    Constructor->setCtorInitializers(baseOrMemberInitializers);
2093
2094    // Constructors implicitly reference the base and member
2095    // destructors.
2096    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2097                                           Constructor->getParent());
2098  }
2099
2100  return HadError;
2101}
2102
2103static void *GetKeyForTopLevelField(FieldDecl *Field) {
2104  // For anonymous unions, use the class declaration as the key.
2105  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2106    if (RT->getDecl()->isAnonymousStructOrUnion())
2107      return static_cast<void *>(RT->getDecl());
2108  }
2109  return static_cast<void *>(Field);
2110}
2111
2112static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2113  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2114}
2115
2116static void *GetKeyForMember(ASTContext &Context,
2117                             CXXCtorInitializer *Member) {
2118  if (!Member->isAnyMemberInitializer())
2119    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2120
2121  // For fields injected into the class via declaration of an anonymous union,
2122  // use its anonymous union class declaration as the unique key.
2123  FieldDecl *Field = Member->getAnyMember();
2124
2125  // If the field is a member of an anonymous struct or union, our key
2126  // is the anonymous record decl that's a direct child of the class.
2127  RecordDecl *RD = Field->getParent();
2128  if (RD->isAnonymousStructOrUnion()) {
2129    while (true) {
2130      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2131      if (Parent->isAnonymousStructOrUnion())
2132        RD = Parent;
2133      else
2134        break;
2135    }
2136
2137    return static_cast<void *>(RD);
2138  }
2139
2140  return static_cast<void *>(Field);
2141}
2142
2143static void
2144DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2145                                  const CXXConstructorDecl *Constructor,
2146                                  CXXCtorInitializer **Inits,
2147                                  unsigned NumInits) {
2148  if (Constructor->getDeclContext()->isDependentContext())
2149    return;
2150
2151  // Don't check initializers order unless the warning is enabled at the
2152  // location of at least one initializer.
2153  bool ShouldCheckOrder = false;
2154  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2155    CXXCtorInitializer *Init = Inits[InitIndex];
2156    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2157                                         Init->getSourceLocation())
2158          != Diagnostic::Ignored) {
2159      ShouldCheckOrder = true;
2160      break;
2161    }
2162  }
2163  if (!ShouldCheckOrder)
2164    return;
2165
2166  // Build the list of bases and members in the order that they'll
2167  // actually be initialized.  The explicit initializers should be in
2168  // this same order but may be missing things.
2169  llvm::SmallVector<const void*, 32> IdealInitKeys;
2170
2171  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2172
2173  // 1. Virtual bases.
2174  for (CXXRecordDecl::base_class_const_iterator VBase =
2175       ClassDecl->vbases_begin(),
2176       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2177    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2178
2179  // 2. Non-virtual bases.
2180  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2181       E = ClassDecl->bases_end(); Base != E; ++Base) {
2182    if (Base->isVirtual())
2183      continue;
2184    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2185  }
2186
2187  // 3. Direct fields.
2188  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2189       E = ClassDecl->field_end(); Field != E; ++Field)
2190    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2191
2192  unsigned NumIdealInits = IdealInitKeys.size();
2193  unsigned IdealIndex = 0;
2194
2195  CXXCtorInitializer *PrevInit = 0;
2196  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2197    CXXCtorInitializer *Init = Inits[InitIndex];
2198    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2199
2200    // Scan forward to try to find this initializer in the idealized
2201    // initializers list.
2202    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2203      if (InitKey == IdealInitKeys[IdealIndex])
2204        break;
2205
2206    // If we didn't find this initializer, it must be because we
2207    // scanned past it on a previous iteration.  That can only
2208    // happen if we're out of order;  emit a warning.
2209    if (IdealIndex == NumIdealInits && PrevInit) {
2210      Sema::SemaDiagnosticBuilder D =
2211        SemaRef.Diag(PrevInit->getSourceLocation(),
2212                     diag::warn_initializer_out_of_order);
2213
2214      if (PrevInit->isAnyMemberInitializer())
2215        D << 0 << PrevInit->getAnyMember()->getDeclName();
2216      else
2217        D << 1 << PrevInit->getBaseClassInfo()->getType();
2218
2219      if (Init->isAnyMemberInitializer())
2220        D << 0 << Init->getAnyMember()->getDeclName();
2221      else
2222        D << 1 << Init->getBaseClassInfo()->getType();
2223
2224      // Move back to the initializer's location in the ideal list.
2225      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2226        if (InitKey == IdealInitKeys[IdealIndex])
2227          break;
2228
2229      assert(IdealIndex != NumIdealInits &&
2230             "initializer not found in initializer list");
2231    }
2232
2233    PrevInit = Init;
2234  }
2235}
2236
2237namespace {
2238bool CheckRedundantInit(Sema &S,
2239                        CXXCtorInitializer *Init,
2240                        CXXCtorInitializer *&PrevInit) {
2241  if (!PrevInit) {
2242    PrevInit = Init;
2243    return false;
2244  }
2245
2246  if (FieldDecl *Field = Init->getMember())
2247    S.Diag(Init->getSourceLocation(),
2248           diag::err_multiple_mem_initialization)
2249      << Field->getDeclName()
2250      << Init->getSourceRange();
2251  else {
2252    const Type *BaseClass = Init->getBaseClass();
2253    assert(BaseClass && "neither field nor base");
2254    S.Diag(Init->getSourceLocation(),
2255           diag::err_multiple_base_initialization)
2256      << QualType(BaseClass, 0)
2257      << Init->getSourceRange();
2258  }
2259  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2260    << 0 << PrevInit->getSourceRange();
2261
2262  return true;
2263}
2264
2265typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2266typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2267
2268bool CheckRedundantUnionInit(Sema &S,
2269                             CXXCtorInitializer *Init,
2270                             RedundantUnionMap &Unions) {
2271  FieldDecl *Field = Init->getAnyMember();
2272  RecordDecl *Parent = Field->getParent();
2273  if (!Parent->isAnonymousStructOrUnion())
2274    return false;
2275
2276  NamedDecl *Child = Field;
2277  do {
2278    if (Parent->isUnion()) {
2279      UnionEntry &En = Unions[Parent];
2280      if (En.first && En.first != Child) {
2281        S.Diag(Init->getSourceLocation(),
2282               diag::err_multiple_mem_union_initialization)
2283          << Field->getDeclName()
2284          << Init->getSourceRange();
2285        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2286          << 0 << En.second->getSourceRange();
2287        return true;
2288      } else if (!En.first) {
2289        En.first = Child;
2290        En.second = Init;
2291      }
2292    }
2293
2294    Child = Parent;
2295    Parent = cast<RecordDecl>(Parent->getDeclContext());
2296  } while (Parent->isAnonymousStructOrUnion());
2297
2298  return false;
2299}
2300}
2301
2302/// ActOnMemInitializers - Handle the member initializers for a constructor.
2303void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2304                                SourceLocation ColonLoc,
2305                                MemInitTy **meminits, unsigned NumMemInits,
2306                                bool AnyErrors) {
2307  if (!ConstructorDecl)
2308    return;
2309
2310  AdjustDeclIfTemplate(ConstructorDecl);
2311
2312  CXXConstructorDecl *Constructor
2313    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2314
2315  if (!Constructor) {
2316    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2317    return;
2318  }
2319
2320  CXXCtorInitializer **MemInits =
2321    reinterpret_cast<CXXCtorInitializer **>(meminits);
2322
2323  // Mapping for the duplicate initializers check.
2324  // For member initializers, this is keyed with a FieldDecl*.
2325  // For base initializers, this is keyed with a Type*.
2326  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2327
2328  // Mapping for the inconsistent anonymous-union initializers check.
2329  RedundantUnionMap MemberUnions;
2330
2331  bool HadError = false;
2332  for (unsigned i = 0; i < NumMemInits; i++) {
2333    CXXCtorInitializer *Init = MemInits[i];
2334
2335    // Set the source order index.
2336    Init->setSourceOrder(i);
2337
2338    if (Init->isAnyMemberInitializer()) {
2339      FieldDecl *Field = Init->getAnyMember();
2340      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2341          CheckRedundantUnionInit(*this, Init, MemberUnions))
2342        HadError = true;
2343    } else {
2344      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2345      if (CheckRedundantInit(*this, Init, Members[Key]))
2346        HadError = true;
2347    }
2348  }
2349
2350  if (HadError)
2351    return;
2352
2353  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2354
2355  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2356}
2357
2358void
2359Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2360                                             CXXRecordDecl *ClassDecl) {
2361  // Ignore dependent contexts.
2362  if (ClassDecl->isDependentContext())
2363    return;
2364
2365  // FIXME: all the access-control diagnostics are positioned on the
2366  // field/base declaration.  That's probably good; that said, the
2367  // user might reasonably want to know why the destructor is being
2368  // emitted, and we currently don't say.
2369
2370  // Non-static data members.
2371  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2372       E = ClassDecl->field_end(); I != E; ++I) {
2373    FieldDecl *Field = *I;
2374    if (Field->isInvalidDecl())
2375      continue;
2376    QualType FieldType = Context.getBaseElementType(Field->getType());
2377
2378    const RecordType* RT = FieldType->getAs<RecordType>();
2379    if (!RT)
2380      continue;
2381
2382    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2383    if (FieldClassDecl->hasTrivialDestructor())
2384      continue;
2385
2386    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2387    CheckDestructorAccess(Field->getLocation(), Dtor,
2388                          PDiag(diag::err_access_dtor_field)
2389                            << Field->getDeclName()
2390                            << FieldType);
2391
2392    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2393  }
2394
2395  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2396
2397  // Bases.
2398  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2399       E = ClassDecl->bases_end(); Base != E; ++Base) {
2400    // Bases are always records in a well-formed non-dependent class.
2401    const RecordType *RT = Base->getType()->getAs<RecordType>();
2402
2403    // Remember direct virtual bases.
2404    if (Base->isVirtual())
2405      DirectVirtualBases.insert(RT);
2406
2407    // Ignore trivial destructors.
2408    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2409    if (BaseClassDecl->hasTrivialDestructor())
2410      continue;
2411
2412    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2413
2414    // FIXME: caret should be on the start of the class name
2415    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2416                          PDiag(diag::err_access_dtor_base)
2417                            << Base->getType()
2418                            << Base->getSourceRange());
2419
2420    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2421  }
2422
2423  // Virtual bases.
2424  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2425       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2426
2427    // Bases are always records in a well-formed non-dependent class.
2428    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2429
2430    // Ignore direct virtual bases.
2431    if (DirectVirtualBases.count(RT))
2432      continue;
2433
2434    // Ignore trivial destructors.
2435    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2436    if (BaseClassDecl->hasTrivialDestructor())
2437      continue;
2438
2439    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2440    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2441                          PDiag(diag::err_access_dtor_vbase)
2442                            << VBase->getType());
2443
2444    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2445  }
2446}
2447
2448void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2449  if (!CDtorDecl)
2450    return;
2451
2452  if (CXXConstructorDecl *Constructor
2453      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2454    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2455}
2456
2457bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2458                                  unsigned DiagID, AbstractDiagSelID SelID) {
2459  if (SelID == -1)
2460    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2461  else
2462    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2463}
2464
2465bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2466                                  const PartialDiagnostic &PD) {
2467  if (!getLangOptions().CPlusPlus)
2468    return false;
2469
2470  if (const ArrayType *AT = Context.getAsArrayType(T))
2471    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2472
2473  if (const PointerType *PT = T->getAs<PointerType>()) {
2474    // Find the innermost pointer type.
2475    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2476      PT = T;
2477
2478    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2479      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2480  }
2481
2482  const RecordType *RT = T->getAs<RecordType>();
2483  if (!RT)
2484    return false;
2485
2486  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2487
2488  // We can't answer whether something is abstract until it has a
2489  // definition.  If it's currently being defined, we'll walk back
2490  // over all the declarations when we have a full definition.
2491  const CXXRecordDecl *Def = RD->getDefinition();
2492  if (!Def || Def->isBeingDefined())
2493    return false;
2494
2495  if (!RD->isAbstract())
2496    return false;
2497
2498  Diag(Loc, PD) << RD->getDeclName();
2499  DiagnoseAbstractType(RD);
2500
2501  return true;
2502}
2503
2504void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2505  // Check if we've already emitted the list of pure virtual functions
2506  // for this class.
2507  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2508    return;
2509
2510  CXXFinalOverriderMap FinalOverriders;
2511  RD->getFinalOverriders(FinalOverriders);
2512
2513  // Keep a set of seen pure methods so we won't diagnose the same method
2514  // more than once.
2515  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2516
2517  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2518                                   MEnd = FinalOverriders.end();
2519       M != MEnd;
2520       ++M) {
2521    for (OverridingMethods::iterator SO = M->second.begin(),
2522                                  SOEnd = M->second.end();
2523         SO != SOEnd; ++SO) {
2524      // C++ [class.abstract]p4:
2525      //   A class is abstract if it contains or inherits at least one
2526      //   pure virtual function for which the final overrider is pure
2527      //   virtual.
2528
2529      //
2530      if (SO->second.size() != 1)
2531        continue;
2532
2533      if (!SO->second.front().Method->isPure())
2534        continue;
2535
2536      if (!SeenPureMethods.insert(SO->second.front().Method))
2537        continue;
2538
2539      Diag(SO->second.front().Method->getLocation(),
2540           diag::note_pure_virtual_function)
2541        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2542    }
2543  }
2544
2545  if (!PureVirtualClassDiagSet)
2546    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2547  PureVirtualClassDiagSet->insert(RD);
2548}
2549
2550namespace {
2551struct AbstractUsageInfo {
2552  Sema &S;
2553  CXXRecordDecl *Record;
2554  CanQualType AbstractType;
2555  bool Invalid;
2556
2557  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2558    : S(S), Record(Record),
2559      AbstractType(S.Context.getCanonicalType(
2560                   S.Context.getTypeDeclType(Record))),
2561      Invalid(false) {}
2562
2563  void DiagnoseAbstractType() {
2564    if (Invalid) return;
2565    S.DiagnoseAbstractType(Record);
2566    Invalid = true;
2567  }
2568
2569  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2570};
2571
2572struct CheckAbstractUsage {
2573  AbstractUsageInfo &Info;
2574  const NamedDecl *Ctx;
2575
2576  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2577    : Info(Info), Ctx(Ctx) {}
2578
2579  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2580    switch (TL.getTypeLocClass()) {
2581#define ABSTRACT_TYPELOC(CLASS, PARENT)
2582#define TYPELOC(CLASS, PARENT) \
2583    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2584#include "clang/AST/TypeLocNodes.def"
2585    }
2586  }
2587
2588  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2589    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2590    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2591      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2592      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2593    }
2594  }
2595
2596  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2597    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2598  }
2599
2600  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2601    // Visit the type parameters from a permissive context.
2602    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2603      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2604      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2605        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2606          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2607      // TODO: other template argument types?
2608    }
2609  }
2610
2611  // Visit pointee types from a permissive context.
2612#define CheckPolymorphic(Type) \
2613  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2614    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2615  }
2616  CheckPolymorphic(PointerTypeLoc)
2617  CheckPolymorphic(ReferenceTypeLoc)
2618  CheckPolymorphic(MemberPointerTypeLoc)
2619  CheckPolymorphic(BlockPointerTypeLoc)
2620
2621  /// Handle all the types we haven't given a more specific
2622  /// implementation for above.
2623  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2624    // Every other kind of type that we haven't called out already
2625    // that has an inner type is either (1) sugar or (2) contains that
2626    // inner type in some way as a subobject.
2627    if (TypeLoc Next = TL.getNextTypeLoc())
2628      return Visit(Next, Sel);
2629
2630    // If there's no inner type and we're in a permissive context,
2631    // don't diagnose.
2632    if (Sel == Sema::AbstractNone) return;
2633
2634    // Check whether the type matches the abstract type.
2635    QualType T = TL.getType();
2636    if (T->isArrayType()) {
2637      Sel = Sema::AbstractArrayType;
2638      T = Info.S.Context.getBaseElementType(T);
2639    }
2640    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2641    if (CT != Info.AbstractType) return;
2642
2643    // It matched; do some magic.
2644    if (Sel == Sema::AbstractArrayType) {
2645      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2646        << T << TL.getSourceRange();
2647    } else {
2648      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2649        << Sel << T << TL.getSourceRange();
2650    }
2651    Info.DiagnoseAbstractType();
2652  }
2653};
2654
2655void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2656                                  Sema::AbstractDiagSelID Sel) {
2657  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2658}
2659
2660}
2661
2662/// Check for invalid uses of an abstract type in a method declaration.
2663static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2664                                    CXXMethodDecl *MD) {
2665  // No need to do the check on definitions, which require that
2666  // the return/param types be complete.
2667  if (MD->isThisDeclarationADefinition())
2668    return;
2669
2670  // For safety's sake, just ignore it if we don't have type source
2671  // information.  This should never happen for non-implicit methods,
2672  // but...
2673  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2674    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2675}
2676
2677/// Check for invalid uses of an abstract type within a class definition.
2678static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2679                                    CXXRecordDecl *RD) {
2680  for (CXXRecordDecl::decl_iterator
2681         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2682    Decl *D = *I;
2683    if (D->isImplicit()) continue;
2684
2685    // Methods and method templates.
2686    if (isa<CXXMethodDecl>(D)) {
2687      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2688    } else if (isa<FunctionTemplateDecl>(D)) {
2689      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2690      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2691
2692    // Fields and static variables.
2693    } else if (isa<FieldDecl>(D)) {
2694      FieldDecl *FD = cast<FieldDecl>(D);
2695      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2696        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2697    } else if (isa<VarDecl>(D)) {
2698      VarDecl *VD = cast<VarDecl>(D);
2699      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2700        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2701
2702    // Nested classes and class templates.
2703    } else if (isa<CXXRecordDecl>(D)) {
2704      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2705    } else if (isa<ClassTemplateDecl>(D)) {
2706      CheckAbstractClassUsage(Info,
2707                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2708    }
2709  }
2710}
2711
2712/// \brief Perform semantic checks on a class definition that has been
2713/// completing, introducing implicitly-declared members, checking for
2714/// abstract types, etc.
2715void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2716  if (!Record)
2717    return;
2718
2719  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2720    AbstractUsageInfo Info(*this, Record);
2721    CheckAbstractClassUsage(Info, Record);
2722  }
2723
2724  // If this is not an aggregate type and has no user-declared constructor,
2725  // complain about any non-static data members of reference or const scalar
2726  // type, since they will never get initializers.
2727  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2728      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2729    bool Complained = false;
2730    for (RecordDecl::field_iterator F = Record->field_begin(),
2731                                 FEnd = Record->field_end();
2732         F != FEnd; ++F) {
2733      if (F->getType()->isReferenceType() ||
2734          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2735        if (!Complained) {
2736          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2737            << Record->getTagKind() << Record;
2738          Complained = true;
2739        }
2740
2741        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2742          << F->getType()->isReferenceType()
2743          << F->getDeclName();
2744      }
2745    }
2746  }
2747
2748  if (Record->isDynamicClass() && !Record->isDependentType())
2749    DynamicClasses.push_back(Record);
2750
2751  if (Record->getIdentifier()) {
2752    // C++ [class.mem]p13:
2753    //   If T is the name of a class, then each of the following shall have a
2754    //   name different from T:
2755    //     - every member of every anonymous union that is a member of class T.
2756    //
2757    // C++ [class.mem]p14:
2758    //   In addition, if class T has a user-declared constructor (12.1), every
2759    //   non-static data member of class T shall have a name different from T.
2760    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2761         R.first != R.second; ++R.first) {
2762      NamedDecl *D = *R.first;
2763      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2764          isa<IndirectFieldDecl>(D)) {
2765        Diag(D->getLocation(), diag::err_member_name_of_class)
2766          << D->getDeclName();
2767        break;
2768      }
2769    }
2770  }
2771
2772  // Warn if the class has virtual methods but non-virtual public destructor.
2773  if (Record->isPolymorphic() && !Record->isDependentType()) {
2774    CXXDestructorDecl *dtor = Record->getDestructor();
2775    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2776      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2777           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2778  }
2779
2780  // See if a method overloads virtual methods in a base
2781  /// class without overriding any.
2782  if (!Record->isDependentType()) {
2783    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2784                                     MEnd = Record->method_end();
2785         M != MEnd; ++M) {
2786      DiagnoseHiddenVirtualMethods(Record, *M);
2787    }
2788  }
2789
2790  // Declare inherited constructors. We do this eagerly here because:
2791  // - The standard requires an eager diagnostic for conflicting inherited
2792  //   constructors from different classes.
2793  // - The lazy declaration of the other implicit constructors is so as to not
2794  //   waste space and performance on classes that are not meant to be
2795  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2796  //   have inherited constructors.
2797  DeclareInheritedConstructors(Record);
2798}
2799
2800/// \brief Data used with FindHiddenVirtualMethod
2801struct FindHiddenVirtualMethodData {
2802  Sema *S;
2803  CXXMethodDecl *Method;
2804  llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2805  llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2806};
2807
2808/// \brief Member lookup function that determines whether a given C++
2809/// method overloads virtual methods in a base class without overriding any,
2810/// to be used with CXXRecordDecl::lookupInBases().
2811static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2812                                    CXXBasePath &Path,
2813                                    void *UserData) {
2814  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2815
2816  FindHiddenVirtualMethodData &Data
2817    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2818
2819  DeclarationName Name = Data.Method->getDeclName();
2820  assert(Name.getNameKind() == DeclarationName::Identifier);
2821
2822  bool foundSameNameMethod = false;
2823  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2824  for (Path.Decls = BaseRecord->lookup(Name);
2825       Path.Decls.first != Path.Decls.second;
2826       ++Path.Decls.first) {
2827    NamedDecl *D = *Path.Decls.first;
2828    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2829      MD = MD->getCanonicalDecl();
2830      foundSameNameMethod = true;
2831      // Interested only in hidden virtual methods.
2832      if (!MD->isVirtual())
2833        continue;
2834      // If the method we are checking overrides a method from its base
2835      // don't warn about the other overloaded methods.
2836      if (!Data.S->IsOverload(Data.Method, MD, false))
2837        return true;
2838      // Collect the overload only if its hidden.
2839      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2840        overloadedMethods.push_back(MD);
2841    }
2842  }
2843
2844  if (foundSameNameMethod)
2845    Data.OverloadedMethods.append(overloadedMethods.begin(),
2846                                   overloadedMethods.end());
2847  return foundSameNameMethod;
2848}
2849
2850/// \brief See if a method overloads virtual methods in a base class without
2851/// overriding any.
2852void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2853  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2854                               MD->getLocation()) == Diagnostic::Ignored)
2855    return;
2856  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2857    return;
2858
2859  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2860                     /*bool RecordPaths=*/false,
2861                     /*bool DetectVirtual=*/false);
2862  FindHiddenVirtualMethodData Data;
2863  Data.Method = MD;
2864  Data.S = this;
2865
2866  // Keep the base methods that were overriden or introduced in the subclass
2867  // by 'using' in a set. A base method not in this set is hidden.
2868  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2869       res.first != res.second; ++res.first) {
2870    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2871      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2872                                          E = MD->end_overridden_methods();
2873           I != E; ++I)
2874        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2875    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2876      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2877        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2878  }
2879
2880  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2881      !Data.OverloadedMethods.empty()) {
2882    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2883      << MD << (Data.OverloadedMethods.size() > 1);
2884
2885    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2886      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2887      Diag(overloadedMD->getLocation(),
2888           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2889    }
2890  }
2891}
2892
2893void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2894                                             Decl *TagDecl,
2895                                             SourceLocation LBrac,
2896                                             SourceLocation RBrac,
2897                                             AttributeList *AttrList) {
2898  if (!TagDecl)
2899    return;
2900
2901  AdjustDeclIfTemplate(TagDecl);
2902
2903  ActOnFields(S, RLoc, TagDecl,
2904              // strict aliasing violation!
2905              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2906              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2907
2908  CheckCompletedCXXClass(
2909                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2910}
2911
2912namespace {
2913  /// \brief Helper class that collects exception specifications for
2914  /// implicitly-declared special member functions.
2915  class ImplicitExceptionSpecification {
2916    ASTContext &Context;
2917    bool AllowsAllExceptions;
2918    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2919    llvm::SmallVector<QualType, 4> Exceptions;
2920
2921  public:
2922    explicit ImplicitExceptionSpecification(ASTContext &Context)
2923      : Context(Context), AllowsAllExceptions(false) { }
2924
2925    /// \brief Whether the special member function should have any
2926    /// exception specification at all.
2927    bool hasExceptionSpecification() const {
2928      return !AllowsAllExceptions;
2929    }
2930
2931    /// \brief Whether the special member function should have a
2932    /// throw(...) exception specification (a Microsoft extension).
2933    bool hasAnyExceptionSpecification() const {
2934      return false;
2935    }
2936
2937    /// \brief The number of exceptions in the exception specification.
2938    unsigned size() const { return Exceptions.size(); }
2939
2940    /// \brief The set of exceptions in the exception specification.
2941    const QualType *data() const { return Exceptions.data(); }
2942
2943    /// \brief Note that
2944    void CalledDecl(CXXMethodDecl *Method) {
2945      // If we already know that we allow all exceptions, do nothing.
2946      if (AllowsAllExceptions || !Method)
2947        return;
2948
2949      const FunctionProtoType *Proto
2950        = Method->getType()->getAs<FunctionProtoType>();
2951
2952      // If this function can throw any exceptions, make a note of that.
2953      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2954        AllowsAllExceptions = true;
2955        ExceptionsSeen.clear();
2956        Exceptions.clear();
2957        return;
2958      }
2959
2960      // Record the exceptions in this function's exception specification.
2961      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2962                                              EEnd = Proto->exception_end();
2963           E != EEnd; ++E)
2964        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2965          Exceptions.push_back(*E);
2966    }
2967  };
2968}
2969
2970
2971/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2972/// special functions, such as the default constructor, copy
2973/// constructor, or destructor, to the given C++ class (C++
2974/// [special]p1).  This routine can only be executed just before the
2975/// definition of the class is complete.
2976void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2977  if (!ClassDecl->hasUserDeclaredConstructor())
2978    ++ASTContext::NumImplicitDefaultConstructors;
2979
2980  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2981    ++ASTContext::NumImplicitCopyConstructors;
2982
2983  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2984    ++ASTContext::NumImplicitCopyAssignmentOperators;
2985
2986    // If we have a dynamic class, then the copy assignment operator may be
2987    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2988    // it shows up in the right place in the vtable and that we diagnose
2989    // problems with the implicit exception specification.
2990    if (ClassDecl->isDynamicClass())
2991      DeclareImplicitCopyAssignment(ClassDecl);
2992  }
2993
2994  if (!ClassDecl->hasUserDeclaredDestructor()) {
2995    ++ASTContext::NumImplicitDestructors;
2996
2997    // If we have a dynamic class, then the destructor may be virtual, so we
2998    // have to declare the destructor immediately. This ensures that, e.g., it
2999    // shows up in the right place in the vtable and that we diagnose problems
3000    // with the implicit exception specification.
3001    if (ClassDecl->isDynamicClass())
3002      DeclareImplicitDestructor(ClassDecl);
3003  }
3004}
3005
3006void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3007  if (!D)
3008    return;
3009
3010  TemplateParameterList *Params = 0;
3011  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3012    Params = Template->getTemplateParameters();
3013  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3014           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3015    Params = PartialSpec->getTemplateParameters();
3016  else
3017    return;
3018
3019  for (TemplateParameterList::iterator Param = Params->begin(),
3020                                    ParamEnd = Params->end();
3021       Param != ParamEnd; ++Param) {
3022    NamedDecl *Named = cast<NamedDecl>(*Param);
3023    if (Named->getDeclName()) {
3024      S->AddDecl(Named);
3025      IdResolver.AddDecl(Named);
3026    }
3027  }
3028}
3029
3030void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3031  if (!RecordD) return;
3032  AdjustDeclIfTemplate(RecordD);
3033  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3034  PushDeclContext(S, Record);
3035}
3036
3037void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3038  if (!RecordD) return;
3039  PopDeclContext();
3040}
3041
3042/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3043/// parsing a top-level (non-nested) C++ class, and we are now
3044/// parsing those parts of the given Method declaration that could
3045/// not be parsed earlier (C++ [class.mem]p2), such as default
3046/// arguments. This action should enter the scope of the given
3047/// Method declaration as if we had just parsed the qualified method
3048/// name. However, it should not bring the parameters into scope;
3049/// that will be performed by ActOnDelayedCXXMethodParameter.
3050void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3051}
3052
3053/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3054/// C++ method declaration. We're (re-)introducing the given
3055/// function parameter into scope for use in parsing later parts of
3056/// the method declaration. For example, we could see an
3057/// ActOnParamDefaultArgument event for this parameter.
3058void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3059  if (!ParamD)
3060    return;
3061
3062  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3063
3064  // If this parameter has an unparsed default argument, clear it out
3065  // to make way for the parsed default argument.
3066  if (Param->hasUnparsedDefaultArg())
3067    Param->setDefaultArg(0);
3068
3069  S->AddDecl(Param);
3070  if (Param->getDeclName())
3071    IdResolver.AddDecl(Param);
3072}
3073
3074/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3075/// processing the delayed method declaration for Method. The method
3076/// declaration is now considered finished. There may be a separate
3077/// ActOnStartOfFunctionDef action later (not necessarily
3078/// immediately!) for this method, if it was also defined inside the
3079/// class body.
3080void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3081  if (!MethodD)
3082    return;
3083
3084  AdjustDeclIfTemplate(MethodD);
3085
3086  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3087
3088  // Now that we have our default arguments, check the constructor
3089  // again. It could produce additional diagnostics or affect whether
3090  // the class has implicitly-declared destructors, among other
3091  // things.
3092  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3093    CheckConstructor(Constructor);
3094
3095  // Check the default arguments, which we may have added.
3096  if (!Method->isInvalidDecl())
3097    CheckCXXDefaultArguments(Method);
3098}
3099
3100/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3101/// the well-formedness of the constructor declarator @p D with type @p
3102/// R. If there are any errors in the declarator, this routine will
3103/// emit diagnostics and set the invalid bit to true.  In any case, the type
3104/// will be updated to reflect a well-formed type for the constructor and
3105/// returned.
3106QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3107                                          StorageClass &SC) {
3108  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3109
3110  // C++ [class.ctor]p3:
3111  //   A constructor shall not be virtual (10.3) or static (9.4). A
3112  //   constructor can be invoked for a const, volatile or const
3113  //   volatile object. A constructor shall not be declared const,
3114  //   volatile, or const volatile (9.3.2).
3115  if (isVirtual) {
3116    if (!D.isInvalidType())
3117      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3118        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3119        << SourceRange(D.getIdentifierLoc());
3120    D.setInvalidType();
3121  }
3122  if (SC == SC_Static) {
3123    if (!D.isInvalidType())
3124      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3125        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3126        << SourceRange(D.getIdentifierLoc());
3127    D.setInvalidType();
3128    SC = SC_None;
3129  }
3130
3131  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3132  if (FTI.TypeQuals != 0) {
3133    if (FTI.TypeQuals & Qualifiers::Const)
3134      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3135        << "const" << SourceRange(D.getIdentifierLoc());
3136    if (FTI.TypeQuals & Qualifiers::Volatile)
3137      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3138        << "volatile" << SourceRange(D.getIdentifierLoc());
3139    if (FTI.TypeQuals & Qualifiers::Restrict)
3140      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3141        << "restrict" << SourceRange(D.getIdentifierLoc());
3142    D.setInvalidType();
3143  }
3144
3145  // C++0x [class.ctor]p4:
3146  //   A constructor shall not be declared with a ref-qualifier.
3147  if (FTI.hasRefQualifier()) {
3148    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3149      << FTI.RefQualifierIsLValueRef
3150      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3151    D.setInvalidType();
3152  }
3153
3154  // Rebuild the function type "R" without any type qualifiers (in
3155  // case any of the errors above fired) and with "void" as the
3156  // return type, since constructors don't have return types.
3157  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3158  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3159    return R;
3160
3161  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3162  EPI.TypeQuals = 0;
3163  EPI.RefQualifier = RQ_None;
3164
3165  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3166                                 Proto->getNumArgs(), EPI);
3167}
3168
3169/// CheckConstructor - Checks a fully-formed constructor for
3170/// well-formedness, issuing any diagnostics required. Returns true if
3171/// the constructor declarator is invalid.
3172void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3173  CXXRecordDecl *ClassDecl
3174    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3175  if (!ClassDecl)
3176    return Constructor->setInvalidDecl();
3177
3178  // C++ [class.copy]p3:
3179  //   A declaration of a constructor for a class X is ill-formed if
3180  //   its first parameter is of type (optionally cv-qualified) X and
3181  //   either there are no other parameters or else all other
3182  //   parameters have default arguments.
3183  if (!Constructor->isInvalidDecl() &&
3184      ((Constructor->getNumParams() == 1) ||
3185       (Constructor->getNumParams() > 1 &&
3186        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3187      Constructor->getTemplateSpecializationKind()
3188                                              != TSK_ImplicitInstantiation) {
3189    QualType ParamType = Constructor->getParamDecl(0)->getType();
3190    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3191    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3192      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3193      const char *ConstRef
3194        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3195                                                        : " const &";
3196      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3197        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3198
3199      // FIXME: Rather that making the constructor invalid, we should endeavor
3200      // to fix the type.
3201      Constructor->setInvalidDecl();
3202    }
3203  }
3204}
3205
3206/// CheckDestructor - Checks a fully-formed destructor definition for
3207/// well-formedness, issuing any diagnostics required.  Returns true
3208/// on error.
3209bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3210  CXXRecordDecl *RD = Destructor->getParent();
3211
3212  if (Destructor->isVirtual()) {
3213    SourceLocation Loc;
3214
3215    if (!Destructor->isImplicit())
3216      Loc = Destructor->getLocation();
3217    else
3218      Loc = RD->getLocation();
3219
3220    // If we have a virtual destructor, look up the deallocation function
3221    FunctionDecl *OperatorDelete = 0;
3222    DeclarationName Name =
3223    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3224    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3225      return true;
3226
3227    MarkDeclarationReferenced(Loc, OperatorDelete);
3228
3229    Destructor->setOperatorDelete(OperatorDelete);
3230  }
3231
3232  return false;
3233}
3234
3235static inline bool
3236FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3237  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3238          FTI.ArgInfo[0].Param &&
3239          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3240}
3241
3242/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3243/// the well-formednes of the destructor declarator @p D with type @p
3244/// R. If there are any errors in the declarator, this routine will
3245/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3246/// will be updated to reflect a well-formed type for the destructor and
3247/// returned.
3248QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3249                                         StorageClass& SC) {
3250  // C++ [class.dtor]p1:
3251  //   [...] A typedef-name that names a class is a class-name
3252  //   (7.1.3); however, a typedef-name that names a class shall not
3253  //   be used as the identifier in the declarator for a destructor
3254  //   declaration.
3255  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3256  if (isa<TypedefType>(DeclaratorType))
3257    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3258      << DeclaratorType;
3259
3260  // C++ [class.dtor]p2:
3261  //   A destructor is used to destroy objects of its class type. A
3262  //   destructor takes no parameters, and no return type can be
3263  //   specified for it (not even void). The address of a destructor
3264  //   shall not be taken. A destructor shall not be static. A
3265  //   destructor can be invoked for a const, volatile or const
3266  //   volatile object. A destructor shall not be declared const,
3267  //   volatile or const volatile (9.3.2).
3268  if (SC == SC_Static) {
3269    if (!D.isInvalidType())
3270      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3271        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3272        << SourceRange(D.getIdentifierLoc())
3273        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3274
3275    SC = SC_None;
3276  }
3277  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3278    // Destructors don't have return types, but the parser will
3279    // happily parse something like:
3280    //
3281    //   class X {
3282    //     float ~X();
3283    //   };
3284    //
3285    // The return type will be eliminated later.
3286    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3287      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3288      << SourceRange(D.getIdentifierLoc());
3289  }
3290
3291  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3292  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3293    if (FTI.TypeQuals & Qualifiers::Const)
3294      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3295        << "const" << SourceRange(D.getIdentifierLoc());
3296    if (FTI.TypeQuals & Qualifiers::Volatile)
3297      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3298        << "volatile" << SourceRange(D.getIdentifierLoc());
3299    if (FTI.TypeQuals & Qualifiers::Restrict)
3300      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3301        << "restrict" << SourceRange(D.getIdentifierLoc());
3302    D.setInvalidType();
3303  }
3304
3305  // C++0x [class.dtor]p2:
3306  //   A destructor shall not be declared with a ref-qualifier.
3307  if (FTI.hasRefQualifier()) {
3308    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3309      << FTI.RefQualifierIsLValueRef
3310      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3311    D.setInvalidType();
3312  }
3313
3314  // Make sure we don't have any parameters.
3315  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3316    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3317
3318    // Delete the parameters.
3319    FTI.freeArgs();
3320    D.setInvalidType();
3321  }
3322
3323  // Make sure the destructor isn't variadic.
3324  if (FTI.isVariadic) {
3325    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3326    D.setInvalidType();
3327  }
3328
3329  // Rebuild the function type "R" without any type qualifiers or
3330  // parameters (in case any of the errors above fired) and with
3331  // "void" as the return type, since destructors don't have return
3332  // types.
3333  if (!D.isInvalidType())
3334    return R;
3335
3336  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3337  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3338  EPI.Variadic = false;
3339  EPI.TypeQuals = 0;
3340  EPI.RefQualifier = RQ_None;
3341  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3342}
3343
3344/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3345/// well-formednes of the conversion function declarator @p D with
3346/// type @p R. If there are any errors in the declarator, this routine
3347/// will emit diagnostics and return true. Otherwise, it will return
3348/// false. Either way, the type @p R will be updated to reflect a
3349/// well-formed type for the conversion operator.
3350void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3351                                     StorageClass& SC) {
3352  // C++ [class.conv.fct]p1:
3353  //   Neither parameter types nor return type can be specified. The
3354  //   type of a conversion function (8.3.5) is "function taking no
3355  //   parameter returning conversion-type-id."
3356  if (SC == SC_Static) {
3357    if (!D.isInvalidType())
3358      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3359        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3360        << SourceRange(D.getIdentifierLoc());
3361    D.setInvalidType();
3362    SC = SC_None;
3363  }
3364
3365  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3366
3367  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3368    // Conversion functions don't have return types, but the parser will
3369    // happily parse something like:
3370    //
3371    //   class X {
3372    //     float operator bool();
3373    //   };
3374    //
3375    // The return type will be changed later anyway.
3376    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3377      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3378      << SourceRange(D.getIdentifierLoc());
3379    D.setInvalidType();
3380  }
3381
3382  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3383
3384  // Make sure we don't have any parameters.
3385  if (Proto->getNumArgs() > 0) {
3386    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3387
3388    // Delete the parameters.
3389    D.getFunctionTypeInfo().freeArgs();
3390    D.setInvalidType();
3391  } else if (Proto->isVariadic()) {
3392    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3393    D.setInvalidType();
3394  }
3395
3396  // Diagnose "&operator bool()" and other such nonsense.  This
3397  // is actually a gcc extension which we don't support.
3398  if (Proto->getResultType() != ConvType) {
3399    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3400      << Proto->getResultType();
3401    D.setInvalidType();
3402    ConvType = Proto->getResultType();
3403  }
3404
3405  // C++ [class.conv.fct]p4:
3406  //   The conversion-type-id shall not represent a function type nor
3407  //   an array type.
3408  if (ConvType->isArrayType()) {
3409    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3410    ConvType = Context.getPointerType(ConvType);
3411    D.setInvalidType();
3412  } else if (ConvType->isFunctionType()) {
3413    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3414    ConvType = Context.getPointerType(ConvType);
3415    D.setInvalidType();
3416  }
3417
3418  // Rebuild the function type "R" without any parameters (in case any
3419  // of the errors above fired) and with the conversion type as the
3420  // return type.
3421  if (D.isInvalidType())
3422    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3423
3424  // C++0x explicit conversion operators.
3425  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3426    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3427         diag::warn_explicit_conversion_functions)
3428      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3429}
3430
3431/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3432/// the declaration of the given C++ conversion function. This routine
3433/// is responsible for recording the conversion function in the C++
3434/// class, if possible.
3435Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3436  assert(Conversion && "Expected to receive a conversion function declaration");
3437
3438  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3439
3440  // Make sure we aren't redeclaring the conversion function.
3441  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3442
3443  // C++ [class.conv.fct]p1:
3444  //   [...] A conversion function is never used to convert a
3445  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3446  //   same object type (or a reference to it), to a (possibly
3447  //   cv-qualified) base class of that type (or a reference to it),
3448  //   or to (possibly cv-qualified) void.
3449  // FIXME: Suppress this warning if the conversion function ends up being a
3450  // virtual function that overrides a virtual function in a base class.
3451  QualType ClassType
3452    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3453  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3454    ConvType = ConvTypeRef->getPointeeType();
3455  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3456      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3457    /* Suppress diagnostics for instantiations. */;
3458  else if (ConvType->isRecordType()) {
3459    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3460    if (ConvType == ClassType)
3461      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3462        << ClassType;
3463    else if (IsDerivedFrom(ClassType, ConvType))
3464      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3465        <<  ClassType << ConvType;
3466  } else if (ConvType->isVoidType()) {
3467    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3468      << ClassType << ConvType;
3469  }
3470
3471  if (FunctionTemplateDecl *ConversionTemplate
3472                                = Conversion->getDescribedFunctionTemplate())
3473    return ConversionTemplate;
3474
3475  return Conversion;
3476}
3477
3478//===----------------------------------------------------------------------===//
3479// Namespace Handling
3480//===----------------------------------------------------------------------===//
3481
3482
3483
3484/// ActOnStartNamespaceDef - This is called at the start of a namespace
3485/// definition.
3486Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3487                                   SourceLocation InlineLoc,
3488                                   SourceLocation IdentLoc,
3489                                   IdentifierInfo *II,
3490                                   SourceLocation LBrace,
3491                                   AttributeList *AttrList) {
3492  // anonymous namespace starts at its left brace
3493  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3494    (II ? IdentLoc : LBrace) , II);
3495  Namespc->setLBracLoc(LBrace);
3496  Namespc->setInline(InlineLoc.isValid());
3497
3498  Scope *DeclRegionScope = NamespcScope->getParent();
3499
3500  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3501
3502  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3503    PushNamespaceVisibilityAttr(Attr);
3504
3505  if (II) {
3506    // C++ [namespace.def]p2:
3507    //   The identifier in an original-namespace-definition shall not
3508    //   have been previously defined in the declarative region in
3509    //   which the original-namespace-definition appears. The
3510    //   identifier in an original-namespace-definition is the name of
3511    //   the namespace. Subsequently in that declarative region, it is
3512    //   treated as an original-namespace-name.
3513    //
3514    // Since namespace names are unique in their scope, and we don't
3515    // look through using directives, just
3516    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3517    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3518
3519    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3520      // This is an extended namespace definition.
3521      if (Namespc->isInline() != OrigNS->isInline()) {
3522        // inline-ness must match
3523        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3524          << Namespc->isInline();
3525        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3526        Namespc->setInvalidDecl();
3527        // Recover by ignoring the new namespace's inline status.
3528        Namespc->setInline(OrigNS->isInline());
3529      }
3530
3531      // Attach this namespace decl to the chain of extended namespace
3532      // definitions.
3533      OrigNS->setNextNamespace(Namespc);
3534      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3535
3536      // Remove the previous declaration from the scope.
3537      if (DeclRegionScope->isDeclScope(OrigNS)) {
3538        IdResolver.RemoveDecl(OrigNS);
3539        DeclRegionScope->RemoveDecl(OrigNS);
3540      }
3541    } else if (PrevDecl) {
3542      // This is an invalid name redefinition.
3543      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3544       << Namespc->getDeclName();
3545      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3546      Namespc->setInvalidDecl();
3547      // Continue on to push Namespc as current DeclContext and return it.
3548    } else if (II->isStr("std") &&
3549               CurContext->getRedeclContext()->isTranslationUnit()) {
3550      // This is the first "real" definition of the namespace "std", so update
3551      // our cache of the "std" namespace to point at this definition.
3552      if (NamespaceDecl *StdNS = getStdNamespace()) {
3553        // We had already defined a dummy namespace "std". Link this new
3554        // namespace definition to the dummy namespace "std".
3555        StdNS->setNextNamespace(Namespc);
3556        StdNS->setLocation(IdentLoc);
3557        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3558      }
3559
3560      // Make our StdNamespace cache point at the first real definition of the
3561      // "std" namespace.
3562      StdNamespace = Namespc;
3563    }
3564
3565    PushOnScopeChains(Namespc, DeclRegionScope);
3566  } else {
3567    // Anonymous namespaces.
3568    assert(Namespc->isAnonymousNamespace());
3569
3570    // Link the anonymous namespace into its parent.
3571    NamespaceDecl *PrevDecl;
3572    DeclContext *Parent = CurContext->getRedeclContext();
3573    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3574      PrevDecl = TU->getAnonymousNamespace();
3575      TU->setAnonymousNamespace(Namespc);
3576    } else {
3577      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3578      PrevDecl = ND->getAnonymousNamespace();
3579      ND->setAnonymousNamespace(Namespc);
3580    }
3581
3582    // Link the anonymous namespace with its previous declaration.
3583    if (PrevDecl) {
3584      assert(PrevDecl->isAnonymousNamespace());
3585      assert(!PrevDecl->getNextNamespace());
3586      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3587      PrevDecl->setNextNamespace(Namespc);
3588
3589      if (Namespc->isInline() != PrevDecl->isInline()) {
3590        // inline-ness must match
3591        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3592          << Namespc->isInline();
3593        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3594        Namespc->setInvalidDecl();
3595        // Recover by ignoring the new namespace's inline status.
3596        Namespc->setInline(PrevDecl->isInline());
3597      }
3598    }
3599
3600    CurContext->addDecl(Namespc);
3601
3602    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3603    //   behaves as if it were replaced by
3604    //     namespace unique { /* empty body */ }
3605    //     using namespace unique;
3606    //     namespace unique { namespace-body }
3607    //   where all occurrences of 'unique' in a translation unit are
3608    //   replaced by the same identifier and this identifier differs
3609    //   from all other identifiers in the entire program.
3610
3611    // We just create the namespace with an empty name and then add an
3612    // implicit using declaration, just like the standard suggests.
3613    //
3614    // CodeGen enforces the "universally unique" aspect by giving all
3615    // declarations semantically contained within an anonymous
3616    // namespace internal linkage.
3617
3618    if (!PrevDecl) {
3619      UsingDirectiveDecl* UD
3620        = UsingDirectiveDecl::Create(Context, CurContext,
3621                                     /* 'using' */ LBrace,
3622                                     /* 'namespace' */ SourceLocation(),
3623                                     /* qualifier */ SourceRange(),
3624                                     /* NNS */ NULL,
3625                                     /* identifier */ SourceLocation(),
3626                                     Namespc,
3627                                     /* Ancestor */ CurContext);
3628      UD->setImplicit();
3629      CurContext->addDecl(UD);
3630    }
3631  }
3632
3633  // Although we could have an invalid decl (i.e. the namespace name is a
3634  // redefinition), push it as current DeclContext and try to continue parsing.
3635  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3636  // for the namespace has the declarations that showed up in that particular
3637  // namespace definition.
3638  PushDeclContext(NamespcScope, Namespc);
3639  return Namespc;
3640}
3641
3642/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3643/// is a namespace alias, returns the namespace it points to.
3644static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3645  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3646    return AD->getNamespace();
3647  return dyn_cast_or_null<NamespaceDecl>(D);
3648}
3649
3650/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3651/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3652void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3653  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3654  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3655  Namespc->setRBracLoc(RBrace);
3656  PopDeclContext();
3657  if (Namespc->hasAttr<VisibilityAttr>())
3658    PopPragmaVisibility();
3659}
3660
3661CXXRecordDecl *Sema::getStdBadAlloc() const {
3662  return cast_or_null<CXXRecordDecl>(
3663                                  StdBadAlloc.get(Context.getExternalSource()));
3664}
3665
3666NamespaceDecl *Sema::getStdNamespace() const {
3667  return cast_or_null<NamespaceDecl>(
3668                                 StdNamespace.get(Context.getExternalSource()));
3669}
3670
3671/// \brief Retrieve the special "std" namespace, which may require us to
3672/// implicitly define the namespace.
3673NamespaceDecl *Sema::getOrCreateStdNamespace() {
3674  if (!StdNamespace) {
3675    // The "std" namespace has not yet been defined, so build one implicitly.
3676    StdNamespace = NamespaceDecl::Create(Context,
3677                                         Context.getTranslationUnitDecl(),
3678                                         SourceLocation(),
3679                                         &PP.getIdentifierTable().get("std"));
3680    getStdNamespace()->setImplicit(true);
3681  }
3682
3683  return getStdNamespace();
3684}
3685
3686Decl *Sema::ActOnUsingDirective(Scope *S,
3687                                          SourceLocation UsingLoc,
3688                                          SourceLocation NamespcLoc,
3689                                          CXXScopeSpec &SS,
3690                                          SourceLocation IdentLoc,
3691                                          IdentifierInfo *NamespcName,
3692                                          AttributeList *AttrList) {
3693  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3694  assert(NamespcName && "Invalid NamespcName.");
3695  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3696
3697  // This can only happen along a recovery path.
3698  while (S->getFlags() & Scope::TemplateParamScope)
3699    S = S->getParent();
3700  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3701
3702  UsingDirectiveDecl *UDir = 0;
3703  NestedNameSpecifier *Qualifier = 0;
3704  if (SS.isSet())
3705    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3706
3707  // Lookup namespace name.
3708  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3709  LookupParsedName(R, S, &SS);
3710  if (R.isAmbiguous())
3711    return 0;
3712
3713  if (R.empty()) {
3714    // Allow "using namespace std;" or "using namespace ::std;" even if
3715    // "std" hasn't been defined yet, for GCC compatibility.
3716    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3717        NamespcName->isStr("std")) {
3718      Diag(IdentLoc, diag::ext_using_undefined_std);
3719      R.addDecl(getOrCreateStdNamespace());
3720      R.resolveKind();
3721    }
3722    // Otherwise, attempt typo correction.
3723    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3724                                                       CTC_NoKeywords, 0)) {
3725      if (R.getAsSingle<NamespaceDecl>() ||
3726          R.getAsSingle<NamespaceAliasDecl>()) {
3727        if (DeclContext *DC = computeDeclContext(SS, false))
3728          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3729            << NamespcName << DC << Corrected << SS.getRange()
3730            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3731        else
3732          Diag(IdentLoc, diag::err_using_directive_suggest)
3733            << NamespcName << Corrected
3734            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3735        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3736          << Corrected;
3737
3738        NamespcName = Corrected.getAsIdentifierInfo();
3739      } else {
3740        R.clear();
3741        R.setLookupName(NamespcName);
3742      }
3743    }
3744  }
3745
3746  if (!R.empty()) {
3747    NamedDecl *Named = R.getFoundDecl();
3748    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3749        && "expected namespace decl");
3750    // C++ [namespace.udir]p1:
3751    //   A using-directive specifies that the names in the nominated
3752    //   namespace can be used in the scope in which the
3753    //   using-directive appears after the using-directive. During
3754    //   unqualified name lookup (3.4.1), the names appear as if they
3755    //   were declared in the nearest enclosing namespace which
3756    //   contains both the using-directive and the nominated
3757    //   namespace. [Note: in this context, "contains" means "contains
3758    //   directly or indirectly". ]
3759
3760    // Find enclosing context containing both using-directive and
3761    // nominated namespace.
3762    NamespaceDecl *NS = getNamespaceDecl(Named);
3763    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3764    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3765      CommonAncestor = CommonAncestor->getParent();
3766
3767    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3768                                      SS.getRange(),
3769                                      (NestedNameSpecifier *)SS.getScopeRep(),
3770                                      IdentLoc, Named, CommonAncestor);
3771    PushUsingDirective(S, UDir);
3772  } else {
3773    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3774  }
3775
3776  // FIXME: We ignore attributes for now.
3777  return UDir;
3778}
3779
3780void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3781  // If scope has associated entity, then using directive is at namespace
3782  // or translation unit scope. We add UsingDirectiveDecls, into
3783  // it's lookup structure.
3784  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3785    Ctx->addDecl(UDir);
3786  else
3787    // Otherwise it is block-sope. using-directives will affect lookup
3788    // only to the end of scope.
3789    S->PushUsingDirective(UDir);
3790}
3791
3792
3793Decl *Sema::ActOnUsingDeclaration(Scope *S,
3794                                  AccessSpecifier AS,
3795                                  bool HasUsingKeyword,
3796                                  SourceLocation UsingLoc,
3797                                  CXXScopeSpec &SS,
3798                                  UnqualifiedId &Name,
3799                                  AttributeList *AttrList,
3800                                  bool IsTypeName,
3801                                  SourceLocation TypenameLoc) {
3802  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3803
3804  switch (Name.getKind()) {
3805  case UnqualifiedId::IK_Identifier:
3806  case UnqualifiedId::IK_OperatorFunctionId:
3807  case UnqualifiedId::IK_LiteralOperatorId:
3808  case UnqualifiedId::IK_ConversionFunctionId:
3809    break;
3810
3811  case UnqualifiedId::IK_ConstructorName:
3812  case UnqualifiedId::IK_ConstructorTemplateId:
3813    // C++0x inherited constructors.
3814    if (getLangOptions().CPlusPlus0x) break;
3815
3816    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3817      << SS.getRange();
3818    return 0;
3819
3820  case UnqualifiedId::IK_DestructorName:
3821    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3822      << SS.getRange();
3823    return 0;
3824
3825  case UnqualifiedId::IK_TemplateId:
3826    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3827      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3828    return 0;
3829  }
3830
3831  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3832  DeclarationName TargetName = TargetNameInfo.getName();
3833  if (!TargetName)
3834    return 0;
3835
3836  // Warn about using declarations.
3837  // TODO: store that the declaration was written without 'using' and
3838  // talk about access decls instead of using decls in the
3839  // diagnostics.
3840  if (!HasUsingKeyword) {
3841    UsingLoc = Name.getSourceRange().getBegin();
3842
3843    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3844      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3845  }
3846
3847  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3848      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3849    return 0;
3850
3851  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3852                                        TargetNameInfo, AttrList,
3853                                        /* IsInstantiation */ false,
3854                                        IsTypeName, TypenameLoc);
3855  if (UD)
3856    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3857
3858  return UD;
3859}
3860
3861/// \brief Determine whether a using declaration considers the given
3862/// declarations as "equivalent", e.g., if they are redeclarations of
3863/// the same entity or are both typedefs of the same type.
3864static bool
3865IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3866                         bool &SuppressRedeclaration) {
3867  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3868    SuppressRedeclaration = false;
3869    return true;
3870  }
3871
3872  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3873    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3874      SuppressRedeclaration = true;
3875      return Context.hasSameType(TD1->getUnderlyingType(),
3876                                 TD2->getUnderlyingType());
3877    }
3878
3879  return false;
3880}
3881
3882
3883/// Determines whether to create a using shadow decl for a particular
3884/// decl, given the set of decls existing prior to this using lookup.
3885bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3886                                const LookupResult &Previous) {
3887  // Diagnose finding a decl which is not from a base class of the
3888  // current class.  We do this now because there are cases where this
3889  // function will silently decide not to build a shadow decl, which
3890  // will pre-empt further diagnostics.
3891  //
3892  // We don't need to do this in C++0x because we do the check once on
3893  // the qualifier.
3894  //
3895  // FIXME: diagnose the following if we care enough:
3896  //   struct A { int foo; };
3897  //   struct B : A { using A::foo; };
3898  //   template <class T> struct C : A {};
3899  //   template <class T> struct D : C<T> { using B::foo; } // <---
3900  // This is invalid (during instantiation) in C++03 because B::foo
3901  // resolves to the using decl in B, which is not a base class of D<T>.
3902  // We can't diagnose it immediately because C<T> is an unknown
3903  // specialization.  The UsingShadowDecl in D<T> then points directly
3904  // to A::foo, which will look well-formed when we instantiate.
3905  // The right solution is to not collapse the shadow-decl chain.
3906  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3907    DeclContext *OrigDC = Orig->getDeclContext();
3908
3909    // Handle enums and anonymous structs.
3910    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3911    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3912    while (OrigRec->isAnonymousStructOrUnion())
3913      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3914
3915    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3916      if (OrigDC == CurContext) {
3917        Diag(Using->getLocation(),
3918             diag::err_using_decl_nested_name_specifier_is_current_class)
3919          << Using->getNestedNameRange();
3920        Diag(Orig->getLocation(), diag::note_using_decl_target);
3921        return true;
3922      }
3923
3924      Diag(Using->getNestedNameRange().getBegin(),
3925           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3926        << Using->getTargetNestedNameDecl()
3927        << cast<CXXRecordDecl>(CurContext)
3928        << Using->getNestedNameRange();
3929      Diag(Orig->getLocation(), diag::note_using_decl_target);
3930      return true;
3931    }
3932  }
3933
3934  if (Previous.empty()) return false;
3935
3936  NamedDecl *Target = Orig;
3937  if (isa<UsingShadowDecl>(Target))
3938    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3939
3940  // If the target happens to be one of the previous declarations, we
3941  // don't have a conflict.
3942  //
3943  // FIXME: but we might be increasing its access, in which case we
3944  // should redeclare it.
3945  NamedDecl *NonTag = 0, *Tag = 0;
3946  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3947         I != E; ++I) {
3948    NamedDecl *D = (*I)->getUnderlyingDecl();
3949    bool Result;
3950    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3951      return Result;
3952
3953    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3954  }
3955
3956  if (Target->isFunctionOrFunctionTemplate()) {
3957    FunctionDecl *FD;
3958    if (isa<FunctionTemplateDecl>(Target))
3959      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3960    else
3961      FD = cast<FunctionDecl>(Target);
3962
3963    NamedDecl *OldDecl = 0;
3964    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3965    case Ovl_Overload:
3966      return false;
3967
3968    case Ovl_NonFunction:
3969      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3970      break;
3971
3972    // We found a decl with the exact signature.
3973    case Ovl_Match:
3974      // If we're in a record, we want to hide the target, so we
3975      // return true (without a diagnostic) to tell the caller not to
3976      // build a shadow decl.
3977      if (CurContext->isRecord())
3978        return true;
3979
3980      // If we're not in a record, this is an error.
3981      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3982      break;
3983    }
3984
3985    Diag(Target->getLocation(), diag::note_using_decl_target);
3986    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3987    return true;
3988  }
3989
3990  // Target is not a function.
3991
3992  if (isa<TagDecl>(Target)) {
3993    // No conflict between a tag and a non-tag.
3994    if (!Tag) return false;
3995
3996    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3997    Diag(Target->getLocation(), diag::note_using_decl_target);
3998    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3999    return true;
4000  }
4001
4002  // No conflict between a tag and a non-tag.
4003  if (!NonTag) return false;
4004
4005  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4006  Diag(Target->getLocation(), diag::note_using_decl_target);
4007  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4008  return true;
4009}
4010
4011/// Builds a shadow declaration corresponding to a 'using' declaration.
4012UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4013                                            UsingDecl *UD,
4014                                            NamedDecl *Orig) {
4015
4016  // If we resolved to another shadow declaration, just coalesce them.
4017  NamedDecl *Target = Orig;
4018  if (isa<UsingShadowDecl>(Target)) {
4019    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4020    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4021  }
4022
4023  UsingShadowDecl *Shadow
4024    = UsingShadowDecl::Create(Context, CurContext,
4025                              UD->getLocation(), UD, Target);
4026  UD->addShadowDecl(Shadow);
4027
4028  Shadow->setAccess(UD->getAccess());
4029  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4030    Shadow->setInvalidDecl();
4031
4032  if (S)
4033    PushOnScopeChains(Shadow, S);
4034  else
4035    CurContext->addDecl(Shadow);
4036
4037
4038  return Shadow;
4039}
4040
4041/// Hides a using shadow declaration.  This is required by the current
4042/// using-decl implementation when a resolvable using declaration in a
4043/// class is followed by a declaration which would hide or override
4044/// one or more of the using decl's targets; for example:
4045///
4046///   struct Base { void foo(int); };
4047///   struct Derived : Base {
4048///     using Base::foo;
4049///     void foo(int);
4050///   };
4051///
4052/// The governing language is C++03 [namespace.udecl]p12:
4053///
4054///   When a using-declaration brings names from a base class into a
4055///   derived class scope, member functions in the derived class
4056///   override and/or hide member functions with the same name and
4057///   parameter types in a base class (rather than conflicting).
4058///
4059/// There are two ways to implement this:
4060///   (1) optimistically create shadow decls when they're not hidden
4061///       by existing declarations, or
4062///   (2) don't create any shadow decls (or at least don't make them
4063///       visible) until we've fully parsed/instantiated the class.
4064/// The problem with (1) is that we might have to retroactively remove
4065/// a shadow decl, which requires several O(n) operations because the
4066/// decl structures are (very reasonably) not designed for removal.
4067/// (2) avoids this but is very fiddly and phase-dependent.
4068void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4069  if (Shadow->getDeclName().getNameKind() ==
4070        DeclarationName::CXXConversionFunctionName)
4071    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4072
4073  // Remove it from the DeclContext...
4074  Shadow->getDeclContext()->removeDecl(Shadow);
4075
4076  // ...and the scope, if applicable...
4077  if (S) {
4078    S->RemoveDecl(Shadow);
4079    IdResolver.RemoveDecl(Shadow);
4080  }
4081
4082  // ...and the using decl.
4083  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4084
4085  // TODO: complain somehow if Shadow was used.  It shouldn't
4086  // be possible for this to happen, because...?
4087}
4088
4089/// Builds a using declaration.
4090///
4091/// \param IsInstantiation - Whether this call arises from an
4092///   instantiation of an unresolved using declaration.  We treat
4093///   the lookup differently for these declarations.
4094NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4095                                       SourceLocation UsingLoc,
4096                                       CXXScopeSpec &SS,
4097                                       const DeclarationNameInfo &NameInfo,
4098                                       AttributeList *AttrList,
4099                                       bool IsInstantiation,
4100                                       bool IsTypeName,
4101                                       SourceLocation TypenameLoc) {
4102  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4103  SourceLocation IdentLoc = NameInfo.getLoc();
4104  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4105
4106  // FIXME: We ignore attributes for now.
4107
4108  if (SS.isEmpty()) {
4109    Diag(IdentLoc, diag::err_using_requires_qualname);
4110    return 0;
4111  }
4112
4113  // Do the redeclaration lookup in the current scope.
4114  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4115                        ForRedeclaration);
4116  Previous.setHideTags(false);
4117  if (S) {
4118    LookupName(Previous, S);
4119
4120    // It is really dumb that we have to do this.
4121    LookupResult::Filter F = Previous.makeFilter();
4122    while (F.hasNext()) {
4123      NamedDecl *D = F.next();
4124      if (!isDeclInScope(D, CurContext, S))
4125        F.erase();
4126    }
4127    F.done();
4128  } else {
4129    assert(IsInstantiation && "no scope in non-instantiation");
4130    assert(CurContext->isRecord() && "scope not record in instantiation");
4131    LookupQualifiedName(Previous, CurContext);
4132  }
4133
4134  NestedNameSpecifier *NNS = SS.getScopeRep();
4135
4136  // Check for invalid redeclarations.
4137  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4138    return 0;
4139
4140  // Check for bad qualifiers.
4141  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4142    return 0;
4143
4144  DeclContext *LookupContext = computeDeclContext(SS);
4145  NamedDecl *D;
4146  if (!LookupContext) {
4147    if (IsTypeName) {
4148      // FIXME: not all declaration name kinds are legal here
4149      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4150                                              UsingLoc, TypenameLoc,
4151                                              SS.getRange(), NNS,
4152                                              IdentLoc, NameInfo.getName());
4153    } else {
4154      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4155                                           UsingLoc, SS.getRange(),
4156                                           NNS, NameInfo);
4157    }
4158  } else {
4159    D = UsingDecl::Create(Context, CurContext,
4160                          SS.getRange(), UsingLoc, NNS, NameInfo,
4161                          IsTypeName);
4162  }
4163  D->setAccess(AS);
4164  CurContext->addDecl(D);
4165
4166  if (!LookupContext) return D;
4167  UsingDecl *UD = cast<UsingDecl>(D);
4168
4169  if (RequireCompleteDeclContext(SS, LookupContext)) {
4170    UD->setInvalidDecl();
4171    return UD;
4172  }
4173
4174  // Constructor inheriting using decls get special treatment.
4175  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4176    if (CheckInheritedConstructorUsingDecl(UD))
4177      UD->setInvalidDecl();
4178    return UD;
4179  }
4180
4181  // Otherwise, look up the target name.
4182
4183  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4184
4185  // Unlike most lookups, we don't always want to hide tag
4186  // declarations: tag names are visible through the using declaration
4187  // even if hidden by ordinary names, *except* in a dependent context
4188  // where it's important for the sanity of two-phase lookup.
4189  if (!IsInstantiation)
4190    R.setHideTags(false);
4191
4192  LookupQualifiedName(R, LookupContext);
4193
4194  if (R.empty()) {
4195    Diag(IdentLoc, diag::err_no_member)
4196      << NameInfo.getName() << LookupContext << SS.getRange();
4197    UD->setInvalidDecl();
4198    return UD;
4199  }
4200
4201  if (R.isAmbiguous()) {
4202    UD->setInvalidDecl();
4203    return UD;
4204  }
4205
4206  if (IsTypeName) {
4207    // If we asked for a typename and got a non-type decl, error out.
4208    if (!R.getAsSingle<TypeDecl>()) {
4209      Diag(IdentLoc, diag::err_using_typename_non_type);
4210      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4211        Diag((*I)->getUnderlyingDecl()->getLocation(),
4212             diag::note_using_decl_target);
4213      UD->setInvalidDecl();
4214      return UD;
4215    }
4216  } else {
4217    // If we asked for a non-typename and we got a type, error out,
4218    // but only if this is an instantiation of an unresolved using
4219    // decl.  Otherwise just silently find the type name.
4220    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4221      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4222      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4223      UD->setInvalidDecl();
4224      return UD;
4225    }
4226  }
4227
4228  // C++0x N2914 [namespace.udecl]p6:
4229  // A using-declaration shall not name a namespace.
4230  if (R.getAsSingle<NamespaceDecl>()) {
4231    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4232      << SS.getRange();
4233    UD->setInvalidDecl();
4234    return UD;
4235  }
4236
4237  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4238    if (!CheckUsingShadowDecl(UD, *I, Previous))
4239      BuildUsingShadowDecl(S, UD, *I);
4240  }
4241
4242  return UD;
4243}
4244
4245/// Additional checks for a using declaration referring to a constructor name.
4246bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4247  if (UD->isTypeName()) {
4248    // FIXME: Cannot specify typename when specifying constructor
4249    return true;
4250  }
4251
4252  const Type *SourceType = UD->getTargetNestedNameDecl()->getAsType();
4253  assert(SourceType &&
4254         "Using decl naming constructor doesn't have type in scope spec.");
4255  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4256
4257  // Check whether the named type is a direct base class.
4258  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4259  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4260  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4261       BaseIt != BaseE; ++BaseIt) {
4262    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4263    if (CanonicalSourceType == BaseType)
4264      break;
4265  }
4266
4267  if (BaseIt == BaseE) {
4268    // Did not find SourceType in the bases.
4269    Diag(UD->getUsingLocation(),
4270         diag::err_using_decl_constructor_not_in_direct_base)
4271      << UD->getNameInfo().getSourceRange()
4272      << QualType(SourceType, 0) << TargetClass;
4273    return true;
4274  }
4275
4276  BaseIt->setInheritConstructors();
4277
4278  return false;
4279}
4280
4281/// Checks that the given using declaration is not an invalid
4282/// redeclaration.  Note that this is checking only for the using decl
4283/// itself, not for any ill-formedness among the UsingShadowDecls.
4284bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4285                                       bool isTypeName,
4286                                       const CXXScopeSpec &SS,
4287                                       SourceLocation NameLoc,
4288                                       const LookupResult &Prev) {
4289  // C++03 [namespace.udecl]p8:
4290  // C++0x [namespace.udecl]p10:
4291  //   A using-declaration is a declaration and can therefore be used
4292  //   repeatedly where (and only where) multiple declarations are
4293  //   allowed.
4294  //
4295  // That's in non-member contexts.
4296  if (!CurContext->getRedeclContext()->isRecord())
4297    return false;
4298
4299  NestedNameSpecifier *Qual
4300    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4301
4302  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4303    NamedDecl *D = *I;
4304
4305    bool DTypename;
4306    NestedNameSpecifier *DQual;
4307    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4308      DTypename = UD->isTypeName();
4309      DQual = UD->getTargetNestedNameDecl();
4310    } else if (UnresolvedUsingValueDecl *UD
4311                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4312      DTypename = false;
4313      DQual = UD->getTargetNestedNameSpecifier();
4314    } else if (UnresolvedUsingTypenameDecl *UD
4315                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4316      DTypename = true;
4317      DQual = UD->getTargetNestedNameSpecifier();
4318    } else continue;
4319
4320    // using decls differ if one says 'typename' and the other doesn't.
4321    // FIXME: non-dependent using decls?
4322    if (isTypeName != DTypename) continue;
4323
4324    // using decls differ if they name different scopes (but note that
4325    // template instantiation can cause this check to trigger when it
4326    // didn't before instantiation).
4327    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4328        Context.getCanonicalNestedNameSpecifier(DQual))
4329      continue;
4330
4331    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4332    Diag(D->getLocation(), diag::note_using_decl) << 1;
4333    return true;
4334  }
4335
4336  return false;
4337}
4338
4339
4340/// Checks that the given nested-name qualifier used in a using decl
4341/// in the current context is appropriately related to the current
4342/// scope.  If an error is found, diagnoses it and returns true.
4343bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4344                                   const CXXScopeSpec &SS,
4345                                   SourceLocation NameLoc) {
4346  DeclContext *NamedContext = computeDeclContext(SS);
4347
4348  if (!CurContext->isRecord()) {
4349    // C++03 [namespace.udecl]p3:
4350    // C++0x [namespace.udecl]p8:
4351    //   A using-declaration for a class member shall be a member-declaration.
4352
4353    // If we weren't able to compute a valid scope, it must be a
4354    // dependent class scope.
4355    if (!NamedContext || NamedContext->isRecord()) {
4356      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4357        << SS.getRange();
4358      return true;
4359    }
4360
4361    // Otherwise, everything is known to be fine.
4362    return false;
4363  }
4364
4365  // The current scope is a record.
4366
4367  // If the named context is dependent, we can't decide much.
4368  if (!NamedContext) {
4369    // FIXME: in C++0x, we can diagnose if we can prove that the
4370    // nested-name-specifier does not refer to a base class, which is
4371    // still possible in some cases.
4372
4373    // Otherwise we have to conservatively report that things might be
4374    // okay.
4375    return false;
4376  }
4377
4378  if (!NamedContext->isRecord()) {
4379    // Ideally this would point at the last name in the specifier,
4380    // but we don't have that level of source info.
4381    Diag(SS.getRange().getBegin(),
4382         diag::err_using_decl_nested_name_specifier_is_not_class)
4383      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4384    return true;
4385  }
4386
4387  if (!NamedContext->isDependentContext() &&
4388      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4389    return true;
4390
4391  if (getLangOptions().CPlusPlus0x) {
4392    // C++0x [namespace.udecl]p3:
4393    //   In a using-declaration used as a member-declaration, the
4394    //   nested-name-specifier shall name a base class of the class
4395    //   being defined.
4396
4397    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4398                                 cast<CXXRecordDecl>(NamedContext))) {
4399      if (CurContext == NamedContext) {
4400        Diag(NameLoc,
4401             diag::err_using_decl_nested_name_specifier_is_current_class)
4402          << SS.getRange();
4403        return true;
4404      }
4405
4406      Diag(SS.getRange().getBegin(),
4407           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4408        << (NestedNameSpecifier*) SS.getScopeRep()
4409        << cast<CXXRecordDecl>(CurContext)
4410        << SS.getRange();
4411      return true;
4412    }
4413
4414    return false;
4415  }
4416
4417  // C++03 [namespace.udecl]p4:
4418  //   A using-declaration used as a member-declaration shall refer
4419  //   to a member of a base class of the class being defined [etc.].
4420
4421  // Salient point: SS doesn't have to name a base class as long as
4422  // lookup only finds members from base classes.  Therefore we can
4423  // diagnose here only if we can prove that that can't happen,
4424  // i.e. if the class hierarchies provably don't intersect.
4425
4426  // TODO: it would be nice if "definitely valid" results were cached
4427  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4428  // need to be repeated.
4429
4430  struct UserData {
4431    llvm::DenseSet<const CXXRecordDecl*> Bases;
4432
4433    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4434      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4435      Data->Bases.insert(Base);
4436      return true;
4437    }
4438
4439    bool hasDependentBases(const CXXRecordDecl *Class) {
4440      return !Class->forallBases(collect, this);
4441    }
4442
4443    /// Returns true if the base is dependent or is one of the
4444    /// accumulated base classes.
4445    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4446      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4447      return !Data->Bases.count(Base);
4448    }
4449
4450    bool mightShareBases(const CXXRecordDecl *Class) {
4451      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4452    }
4453  };
4454
4455  UserData Data;
4456
4457  // Returns false if we find a dependent base.
4458  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4459    return false;
4460
4461  // Returns false if the class has a dependent base or if it or one
4462  // of its bases is present in the base set of the current context.
4463  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4464    return false;
4465
4466  Diag(SS.getRange().getBegin(),
4467       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4468    << (NestedNameSpecifier*) SS.getScopeRep()
4469    << cast<CXXRecordDecl>(CurContext)
4470    << SS.getRange();
4471
4472  return true;
4473}
4474
4475Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4476                                             SourceLocation NamespaceLoc,
4477                                             SourceLocation AliasLoc,
4478                                             IdentifierInfo *Alias,
4479                                             CXXScopeSpec &SS,
4480                                             SourceLocation IdentLoc,
4481                                             IdentifierInfo *Ident) {
4482
4483  // Lookup the namespace name.
4484  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4485  LookupParsedName(R, S, &SS);
4486
4487  // Check if we have a previous declaration with the same name.
4488  NamedDecl *PrevDecl
4489    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4490                       ForRedeclaration);
4491  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4492    PrevDecl = 0;
4493
4494  if (PrevDecl) {
4495    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4496      // We already have an alias with the same name that points to the same
4497      // namespace, so don't create a new one.
4498      // FIXME: At some point, we'll want to create the (redundant)
4499      // declaration to maintain better source information.
4500      if (!R.isAmbiguous() && !R.empty() &&
4501          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4502        return 0;
4503    }
4504
4505    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4506      diag::err_redefinition_different_kind;
4507    Diag(AliasLoc, DiagID) << Alias;
4508    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4509    return 0;
4510  }
4511
4512  if (R.isAmbiguous())
4513    return 0;
4514
4515  if (R.empty()) {
4516    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4517                                                CTC_NoKeywords, 0)) {
4518      if (R.getAsSingle<NamespaceDecl>() ||
4519          R.getAsSingle<NamespaceAliasDecl>()) {
4520        if (DeclContext *DC = computeDeclContext(SS, false))
4521          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4522            << Ident << DC << Corrected << SS.getRange()
4523            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4524        else
4525          Diag(IdentLoc, diag::err_using_directive_suggest)
4526            << Ident << Corrected
4527            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4528
4529        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4530          << Corrected;
4531
4532        Ident = Corrected.getAsIdentifierInfo();
4533      } else {
4534        R.clear();
4535        R.setLookupName(Ident);
4536      }
4537    }
4538
4539    if (R.empty()) {
4540      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4541      return 0;
4542    }
4543  }
4544
4545  NamespaceAliasDecl *AliasDecl =
4546    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4547                               Alias, SS.getRange(),
4548                               (NestedNameSpecifier *)SS.getScopeRep(),
4549                               IdentLoc, R.getFoundDecl());
4550
4551  PushOnScopeChains(AliasDecl, S);
4552  return AliasDecl;
4553}
4554
4555namespace {
4556  /// \brief Scoped object used to handle the state changes required in Sema
4557  /// to implicitly define the body of a C++ member function;
4558  class ImplicitlyDefinedFunctionScope {
4559    Sema &S;
4560    Sema::ContextRAII SavedContext;
4561
4562  public:
4563    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4564      : S(S), SavedContext(S, Method)
4565    {
4566      S.PushFunctionScope();
4567      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4568    }
4569
4570    ~ImplicitlyDefinedFunctionScope() {
4571      S.PopExpressionEvaluationContext();
4572      S.PopFunctionOrBlockScope();
4573    }
4574  };
4575}
4576
4577static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4578                                                       CXXRecordDecl *D) {
4579  ASTContext &Context = Self.Context;
4580  QualType ClassType = Context.getTypeDeclType(D);
4581  DeclarationName ConstructorName
4582    = Context.DeclarationNames.getCXXConstructorName(
4583                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4584
4585  DeclContext::lookup_const_iterator Con, ConEnd;
4586  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4587       Con != ConEnd; ++Con) {
4588    // FIXME: In C++0x, a constructor template can be a default constructor.
4589    if (isa<FunctionTemplateDecl>(*Con))
4590      continue;
4591
4592    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4593    if (Constructor->isDefaultConstructor())
4594      return Constructor;
4595  }
4596  return 0;
4597}
4598
4599CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4600                                                     CXXRecordDecl *ClassDecl) {
4601  // C++ [class.ctor]p5:
4602  //   A default constructor for a class X is a constructor of class X
4603  //   that can be called without an argument. If there is no
4604  //   user-declared constructor for class X, a default constructor is
4605  //   implicitly declared. An implicitly-declared default constructor
4606  //   is an inline public member of its class.
4607  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4608         "Should not build implicit default constructor!");
4609
4610  // C++ [except.spec]p14:
4611  //   An implicitly declared special member function (Clause 12) shall have an
4612  //   exception-specification. [...]
4613  ImplicitExceptionSpecification ExceptSpec(Context);
4614
4615  // Direct base-class destructors.
4616  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4617                                       BEnd = ClassDecl->bases_end();
4618       B != BEnd; ++B) {
4619    if (B->isVirtual()) // Handled below.
4620      continue;
4621
4622    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4623      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4624      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4625        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4626      else if (CXXConstructorDecl *Constructor
4627                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4628        ExceptSpec.CalledDecl(Constructor);
4629    }
4630  }
4631
4632  // Virtual base-class destructors.
4633  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4634                                       BEnd = ClassDecl->vbases_end();
4635       B != BEnd; ++B) {
4636    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4637      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4638      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4639        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4640      else if (CXXConstructorDecl *Constructor
4641                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4642        ExceptSpec.CalledDecl(Constructor);
4643    }
4644  }
4645
4646  // Field destructors.
4647  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4648                               FEnd = ClassDecl->field_end();
4649       F != FEnd; ++F) {
4650    if (const RecordType *RecordTy
4651              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4652      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4653      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4654        ExceptSpec.CalledDecl(
4655                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4656      else if (CXXConstructorDecl *Constructor
4657                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4658        ExceptSpec.CalledDecl(Constructor);
4659    }
4660  }
4661
4662  FunctionProtoType::ExtProtoInfo EPI;
4663  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4664  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4665  EPI.NumExceptions = ExceptSpec.size();
4666  EPI.Exceptions = ExceptSpec.data();
4667
4668  // Create the actual constructor declaration.
4669  CanQualType ClassType
4670    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4671  DeclarationName Name
4672    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4673  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4674  CXXConstructorDecl *DefaultCon
4675    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4676                                 Context.getFunctionType(Context.VoidTy,
4677                                                         0, 0, EPI),
4678                                 /*TInfo=*/0,
4679                                 /*isExplicit=*/false,
4680                                 /*isInline=*/true,
4681                                 /*isImplicitlyDeclared=*/true);
4682  DefaultCon->setAccess(AS_public);
4683  DefaultCon->setImplicit();
4684  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4685
4686  // Note that we have declared this constructor.
4687  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4688
4689  if (Scope *S = getScopeForContext(ClassDecl))
4690    PushOnScopeChains(DefaultCon, S, false);
4691  ClassDecl->addDecl(DefaultCon);
4692
4693  return DefaultCon;
4694}
4695
4696void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4697                                            CXXConstructorDecl *Constructor) {
4698  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4699          !Constructor->isUsed(false)) &&
4700    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4701
4702  CXXRecordDecl *ClassDecl = Constructor->getParent();
4703  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4704
4705  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4706  DiagnosticErrorTrap Trap(Diags);
4707  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4708      Trap.hasErrorOccurred()) {
4709    Diag(CurrentLocation, diag::note_member_synthesized_at)
4710      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4711    Constructor->setInvalidDecl();
4712    return;
4713  }
4714
4715  SourceLocation Loc = Constructor->getLocation();
4716  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4717
4718  Constructor->setUsed();
4719  MarkVTableUsed(CurrentLocation, ClassDecl);
4720}
4721
4722void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4723  // We start with an initial pass over the base classes to collect those that
4724  // inherit constructors from. If there are none, we can forgo all further
4725  // processing.
4726  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4727  BasesVector BasesToInheritFrom;
4728  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4729                                          BaseE = ClassDecl->bases_end();
4730         BaseIt != BaseE; ++BaseIt) {
4731    if (BaseIt->getInheritConstructors()) {
4732      QualType Base = BaseIt->getType();
4733      if (Base->isDependentType()) {
4734        // If we inherit constructors from anything that is dependent, just
4735        // abort processing altogether. We'll get another chance for the
4736        // instantiations.
4737        return;
4738      }
4739      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4740    }
4741  }
4742  if (BasesToInheritFrom.empty())
4743    return;
4744
4745  // Now collect the constructors that we already have in the current class.
4746  // Those take precedence over inherited constructors.
4747  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4748  //   unless there is a user-declared constructor with the same signature in
4749  //   the class where the using-declaration appears.
4750  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4751  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4752                                    CtorE = ClassDecl->ctor_end();
4753       CtorIt != CtorE; ++CtorIt) {
4754    ExistingConstructors.insert(
4755        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4756  }
4757
4758  Scope *S = getScopeForContext(ClassDecl);
4759  DeclarationName CreatedCtorName =
4760      Context.DeclarationNames.getCXXConstructorName(
4761          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4762
4763  // Now comes the true work.
4764  // First, we keep a map from constructor types to the base that introduced
4765  // them. Needed for finding conflicting constructors. We also keep the
4766  // actually inserted declarations in there, for pretty diagnostics.
4767  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4768  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4769  ConstructorToSourceMap InheritedConstructors;
4770  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4771                             BaseE = BasesToInheritFrom.end();
4772       BaseIt != BaseE; ++BaseIt) {
4773    const RecordType *Base = *BaseIt;
4774    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4775    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4776    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4777                                      CtorE = BaseDecl->ctor_end();
4778         CtorIt != CtorE; ++CtorIt) {
4779      // Find the using declaration for inheriting this base's constructors.
4780      DeclarationName Name =
4781          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4782      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4783          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4784      SourceLocation UsingLoc = UD ? UD->getLocation() :
4785                                     ClassDecl->getLocation();
4786
4787      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4788      //   from the class X named in the using-declaration consists of actual
4789      //   constructors and notional constructors that result from the
4790      //   transformation of defaulted parameters as follows:
4791      //   - all non-template default constructors of X, and
4792      //   - for each non-template constructor of X that has at least one
4793      //     parameter with a default argument, the set of constructors that
4794      //     results from omitting any ellipsis parameter specification and
4795      //     successively omitting parameters with a default argument from the
4796      //     end of the parameter-type-list.
4797      CXXConstructorDecl *BaseCtor = *CtorIt;
4798      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4799      const FunctionProtoType *BaseCtorType =
4800          BaseCtor->getType()->getAs<FunctionProtoType>();
4801
4802      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4803                    maxParams = BaseCtor->getNumParams();
4804           params <= maxParams; ++params) {
4805        // Skip default constructors. They're never inherited.
4806        if (params == 0)
4807          continue;
4808        // Skip copy and move constructors for the same reason.
4809        if (CanBeCopyOrMove && params == 1)
4810          continue;
4811
4812        // Build up a function type for this particular constructor.
4813        // FIXME: The working paper does not consider that the exception spec
4814        // for the inheriting constructor might be larger than that of the
4815        // source. This code doesn't yet, either.
4816        const Type *NewCtorType;
4817        if (params == maxParams)
4818          NewCtorType = BaseCtorType;
4819        else {
4820          llvm::SmallVector<QualType, 16> Args;
4821          for (unsigned i = 0; i < params; ++i) {
4822            Args.push_back(BaseCtorType->getArgType(i));
4823          }
4824          FunctionProtoType::ExtProtoInfo ExtInfo =
4825              BaseCtorType->getExtProtoInfo();
4826          ExtInfo.Variadic = false;
4827          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4828                                                Args.data(), params, ExtInfo)
4829                       .getTypePtr();
4830        }
4831        const Type *CanonicalNewCtorType =
4832            Context.getCanonicalType(NewCtorType);
4833
4834        // Now that we have the type, first check if the class already has a
4835        // constructor with this signature.
4836        if (ExistingConstructors.count(CanonicalNewCtorType))
4837          continue;
4838
4839        // Then we check if we have already declared an inherited constructor
4840        // with this signature.
4841        std::pair<ConstructorToSourceMap::iterator, bool> result =
4842            InheritedConstructors.insert(std::make_pair(
4843                CanonicalNewCtorType,
4844                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
4845        if (!result.second) {
4846          // Already in the map. If it came from a different class, that's an
4847          // error. Not if it's from the same.
4848          CanQualType PreviousBase = result.first->second.first;
4849          if (CanonicalBase != PreviousBase) {
4850            const CXXConstructorDecl *PrevCtor = result.first->second.second;
4851            const CXXConstructorDecl *PrevBaseCtor =
4852                PrevCtor->getInheritedConstructor();
4853            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
4854
4855            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
4856            Diag(BaseCtor->getLocation(),
4857                 diag::note_using_decl_constructor_conflict_current_ctor);
4858            Diag(PrevBaseCtor->getLocation(),
4859                 diag::note_using_decl_constructor_conflict_previous_ctor);
4860            Diag(PrevCtor->getLocation(),
4861                 diag::note_using_decl_constructor_conflict_previous_using);
4862          }
4863          continue;
4864        }
4865
4866        // OK, we're there, now add the constructor.
4867        // C++0x [class.inhctor]p8: [...] that would be performed by a
4868        //   user-writtern inline constructor [...]
4869        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
4870        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
4871            Context, ClassDecl, DNI, QualType(NewCtorType, 0), /*TInfo=*/0,
4872            BaseCtor->isExplicit(), /*Inline=*/true,
4873            /*ImplicitlyDeclared=*/true);
4874        NewCtor->setAccess(BaseCtor->getAccess());
4875
4876        // Build up the parameter decls and add them.
4877        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
4878        for (unsigned i = 0; i < params; ++i) {
4879          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, UsingLoc,
4880                                                   /*IdentifierInfo=*/0,
4881                                                   BaseCtorType->getArgType(i),
4882                                                   /*TInfo=*/0, SC_None,
4883                                                   SC_None, /*DefaultArg=*/0));
4884        }
4885        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
4886        NewCtor->setInheritedConstructor(BaseCtor);
4887
4888        PushOnScopeChains(NewCtor, S, false);
4889        ClassDecl->addDecl(NewCtor);
4890        result.first->second.second = NewCtor;
4891      }
4892    }
4893  }
4894}
4895
4896CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4897  // C++ [class.dtor]p2:
4898  //   If a class has no user-declared destructor, a destructor is
4899  //   declared implicitly. An implicitly-declared destructor is an
4900  //   inline public member of its class.
4901
4902  // C++ [except.spec]p14:
4903  //   An implicitly declared special member function (Clause 12) shall have
4904  //   an exception-specification.
4905  ImplicitExceptionSpecification ExceptSpec(Context);
4906
4907  // Direct base-class destructors.
4908  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4909                                       BEnd = ClassDecl->bases_end();
4910       B != BEnd; ++B) {
4911    if (B->isVirtual()) // Handled below.
4912      continue;
4913
4914    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4915      ExceptSpec.CalledDecl(
4916                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4917  }
4918
4919  // Virtual base-class destructors.
4920  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4921                                       BEnd = ClassDecl->vbases_end();
4922       B != BEnd; ++B) {
4923    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4924      ExceptSpec.CalledDecl(
4925                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4926  }
4927
4928  // Field destructors.
4929  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4930                               FEnd = ClassDecl->field_end();
4931       F != FEnd; ++F) {
4932    if (const RecordType *RecordTy
4933        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4934      ExceptSpec.CalledDecl(
4935                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4936  }
4937
4938  // Create the actual destructor declaration.
4939  FunctionProtoType::ExtProtoInfo EPI;
4940  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4941  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4942  EPI.NumExceptions = ExceptSpec.size();
4943  EPI.Exceptions = ExceptSpec.data();
4944  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4945
4946  CanQualType ClassType
4947    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4948  DeclarationName Name
4949    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4950  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4951  CXXDestructorDecl *Destructor
4952      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4953                                /*isInline=*/true,
4954                                /*isImplicitlyDeclared=*/true);
4955  Destructor->setAccess(AS_public);
4956  Destructor->setImplicit();
4957  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4958
4959  // Note that we have declared this destructor.
4960  ++ASTContext::NumImplicitDestructorsDeclared;
4961
4962  // Introduce this destructor into its scope.
4963  if (Scope *S = getScopeForContext(ClassDecl))
4964    PushOnScopeChains(Destructor, S, false);
4965  ClassDecl->addDecl(Destructor);
4966
4967  // This could be uniqued if it ever proves significant.
4968  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4969
4970  AddOverriddenMethods(ClassDecl, Destructor);
4971
4972  return Destructor;
4973}
4974
4975void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4976                                    CXXDestructorDecl *Destructor) {
4977  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4978         "DefineImplicitDestructor - call it for implicit default dtor");
4979  CXXRecordDecl *ClassDecl = Destructor->getParent();
4980  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4981
4982  if (Destructor->isInvalidDecl())
4983    return;
4984
4985  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4986
4987  DiagnosticErrorTrap Trap(Diags);
4988  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4989                                         Destructor->getParent());
4990
4991  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4992    Diag(CurrentLocation, diag::note_member_synthesized_at)
4993      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4994
4995    Destructor->setInvalidDecl();
4996    return;
4997  }
4998
4999  SourceLocation Loc = Destructor->getLocation();
5000  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5001
5002  Destructor->setUsed();
5003  MarkVTableUsed(CurrentLocation, ClassDecl);
5004}
5005
5006/// \brief Builds a statement that copies the given entity from \p From to
5007/// \c To.
5008///
5009/// This routine is used to copy the members of a class with an
5010/// implicitly-declared copy assignment operator. When the entities being
5011/// copied are arrays, this routine builds for loops to copy them.
5012///
5013/// \param S The Sema object used for type-checking.
5014///
5015/// \param Loc The location where the implicit copy is being generated.
5016///
5017/// \param T The type of the expressions being copied. Both expressions must
5018/// have this type.
5019///
5020/// \param To The expression we are copying to.
5021///
5022/// \param From The expression we are copying from.
5023///
5024/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5025/// Otherwise, it's a non-static member subobject.
5026///
5027/// \param Depth Internal parameter recording the depth of the recursion.
5028///
5029/// \returns A statement or a loop that copies the expressions.
5030static StmtResult
5031BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5032                      Expr *To, Expr *From,
5033                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5034  // C++0x [class.copy]p30:
5035  //   Each subobject is assigned in the manner appropriate to its type:
5036  //
5037  //     - if the subobject is of class type, the copy assignment operator
5038  //       for the class is used (as if by explicit qualification; that is,
5039  //       ignoring any possible virtual overriding functions in more derived
5040  //       classes);
5041  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5042    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5043
5044    // Look for operator=.
5045    DeclarationName Name
5046      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5047    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5048    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5049
5050    // Filter out any result that isn't a copy-assignment operator.
5051    LookupResult::Filter F = OpLookup.makeFilter();
5052    while (F.hasNext()) {
5053      NamedDecl *D = F.next();
5054      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5055        if (Method->isCopyAssignmentOperator())
5056          continue;
5057
5058      F.erase();
5059    }
5060    F.done();
5061
5062    // Suppress the protected check (C++ [class.protected]) for each of the
5063    // assignment operators we found. This strange dance is required when
5064    // we're assigning via a base classes's copy-assignment operator. To
5065    // ensure that we're getting the right base class subobject (without
5066    // ambiguities), we need to cast "this" to that subobject type; to
5067    // ensure that we don't go through the virtual call mechanism, we need
5068    // to qualify the operator= name with the base class (see below). However,
5069    // this means that if the base class has a protected copy assignment
5070    // operator, the protected member access check will fail. So, we
5071    // rewrite "protected" access to "public" access in this case, since we
5072    // know by construction that we're calling from a derived class.
5073    if (CopyingBaseSubobject) {
5074      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5075           L != LEnd; ++L) {
5076        if (L.getAccess() == AS_protected)
5077          L.setAccess(AS_public);
5078      }
5079    }
5080
5081    // Create the nested-name-specifier that will be used to qualify the
5082    // reference to operator=; this is required to suppress the virtual
5083    // call mechanism.
5084    CXXScopeSpec SS;
5085    SS.setRange(Loc);
5086    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
5087                                               T.getTypePtr()));
5088
5089    // Create the reference to operator=.
5090    ExprResult OpEqualRef
5091      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5092                                   /*FirstQualifierInScope=*/0, OpLookup,
5093                                   /*TemplateArgs=*/0,
5094                                   /*SuppressQualifierCheck=*/true);
5095    if (OpEqualRef.isInvalid())
5096      return StmtError();
5097
5098    // Build the call to the assignment operator.
5099
5100    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5101                                                  OpEqualRef.takeAs<Expr>(),
5102                                                  Loc, &From, 1, Loc);
5103    if (Call.isInvalid())
5104      return StmtError();
5105
5106    return S.Owned(Call.takeAs<Stmt>());
5107  }
5108
5109  //     - if the subobject is of scalar type, the built-in assignment
5110  //       operator is used.
5111  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5112  if (!ArrayTy) {
5113    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5114    if (Assignment.isInvalid())
5115      return StmtError();
5116
5117    return S.Owned(Assignment.takeAs<Stmt>());
5118  }
5119
5120  //     - if the subobject is an array, each element is assigned, in the
5121  //       manner appropriate to the element type;
5122
5123  // Construct a loop over the array bounds, e.g.,
5124  //
5125  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5126  //
5127  // that will copy each of the array elements.
5128  QualType SizeType = S.Context.getSizeType();
5129
5130  // Create the iteration variable.
5131  IdentifierInfo *IterationVarName = 0;
5132  {
5133    llvm::SmallString<8> Str;
5134    llvm::raw_svector_ostream OS(Str);
5135    OS << "__i" << Depth;
5136    IterationVarName = &S.Context.Idents.get(OS.str());
5137  }
5138  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
5139                                          IterationVarName, SizeType,
5140                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5141                                          SC_None, SC_None);
5142
5143  // Initialize the iteration variable to zero.
5144  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5145  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5146
5147  // Create a reference to the iteration variable; we'll use this several
5148  // times throughout.
5149  Expr *IterationVarRef
5150    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5151  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5152
5153  // Create the DeclStmt that holds the iteration variable.
5154  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5155
5156  // Create the comparison against the array bound.
5157  llvm::APInt Upper
5158    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5159  Expr *Comparison
5160    = new (S.Context) BinaryOperator(IterationVarRef,
5161                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5162                                     BO_NE, S.Context.BoolTy,
5163                                     VK_RValue, OK_Ordinary, Loc);
5164
5165  // Create the pre-increment of the iteration variable.
5166  Expr *Increment
5167    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5168                                    VK_LValue, OK_Ordinary, Loc);
5169
5170  // Subscript the "from" and "to" expressions with the iteration variable.
5171  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5172                                                         IterationVarRef, Loc));
5173  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5174                                                       IterationVarRef, Loc));
5175
5176  // Build the copy for an individual element of the array.
5177  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5178                                          To, From, CopyingBaseSubobject,
5179                                          Depth + 1);
5180  if (Copy.isInvalid())
5181    return StmtError();
5182
5183  // Construct the loop that copies all elements of this array.
5184  return S.ActOnForStmt(Loc, Loc, InitStmt,
5185                        S.MakeFullExpr(Comparison),
5186                        0, S.MakeFullExpr(Increment),
5187                        Loc, Copy.take());
5188}
5189
5190/// \brief Determine whether the given class has a copy assignment operator
5191/// that accepts a const-qualified argument.
5192static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5193  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5194
5195  if (!Class->hasDeclaredCopyAssignment())
5196    S.DeclareImplicitCopyAssignment(Class);
5197
5198  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5199  DeclarationName OpName
5200    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5201
5202  DeclContext::lookup_const_iterator Op, OpEnd;
5203  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5204    // C++ [class.copy]p9:
5205    //   A user-declared copy assignment operator is a non-static non-template
5206    //   member function of class X with exactly one parameter of type X, X&,
5207    //   const X&, volatile X& or const volatile X&.
5208    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5209    if (!Method)
5210      continue;
5211
5212    if (Method->isStatic())
5213      continue;
5214    if (Method->getPrimaryTemplate())
5215      continue;
5216    const FunctionProtoType *FnType =
5217    Method->getType()->getAs<FunctionProtoType>();
5218    assert(FnType && "Overloaded operator has no prototype.");
5219    // Don't assert on this; an invalid decl might have been left in the AST.
5220    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5221      continue;
5222    bool AcceptsConst = true;
5223    QualType ArgType = FnType->getArgType(0);
5224    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5225      ArgType = Ref->getPointeeType();
5226      // Is it a non-const lvalue reference?
5227      if (!ArgType.isConstQualified())
5228        AcceptsConst = false;
5229    }
5230    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5231      continue;
5232
5233    // We have a single argument of type cv X or cv X&, i.e. we've found the
5234    // copy assignment operator. Return whether it accepts const arguments.
5235    return AcceptsConst;
5236  }
5237  assert(Class->isInvalidDecl() &&
5238         "No copy assignment operator declared in valid code.");
5239  return false;
5240}
5241
5242CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5243  // Note: The following rules are largely analoguous to the copy
5244  // constructor rules. Note that virtual bases are not taken into account
5245  // for determining the argument type of the operator. Note also that
5246  // operators taking an object instead of a reference are allowed.
5247
5248
5249  // C++ [class.copy]p10:
5250  //   If the class definition does not explicitly declare a copy
5251  //   assignment operator, one is declared implicitly.
5252  //   The implicitly-defined copy assignment operator for a class X
5253  //   will have the form
5254  //
5255  //       X& X::operator=(const X&)
5256  //
5257  //   if
5258  bool HasConstCopyAssignment = true;
5259
5260  //       -- each direct base class B of X has a copy assignment operator
5261  //          whose parameter is of type const B&, const volatile B& or B,
5262  //          and
5263  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5264                                       BaseEnd = ClassDecl->bases_end();
5265       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5266    assert(!Base->getType()->isDependentType() &&
5267           "Cannot generate implicit members for class with dependent bases.");
5268    const CXXRecordDecl *BaseClassDecl
5269      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5270    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5271  }
5272
5273  //       -- for all the nonstatic data members of X that are of a class
5274  //          type M (or array thereof), each such class type has a copy
5275  //          assignment operator whose parameter is of type const M&,
5276  //          const volatile M& or M.
5277  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5278                                  FieldEnd = ClassDecl->field_end();
5279       HasConstCopyAssignment && Field != FieldEnd;
5280       ++Field) {
5281    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5282    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5283      const CXXRecordDecl *FieldClassDecl
5284        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5285      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5286    }
5287  }
5288
5289  //   Otherwise, the implicitly declared copy assignment operator will
5290  //   have the form
5291  //
5292  //       X& X::operator=(X&)
5293  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5294  QualType RetType = Context.getLValueReferenceType(ArgType);
5295  if (HasConstCopyAssignment)
5296    ArgType = ArgType.withConst();
5297  ArgType = Context.getLValueReferenceType(ArgType);
5298
5299  // C++ [except.spec]p14:
5300  //   An implicitly declared special member function (Clause 12) shall have an
5301  //   exception-specification. [...]
5302  ImplicitExceptionSpecification ExceptSpec(Context);
5303  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5304                                       BaseEnd = ClassDecl->bases_end();
5305       Base != BaseEnd; ++Base) {
5306    CXXRecordDecl *BaseClassDecl
5307      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5308
5309    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5310      DeclareImplicitCopyAssignment(BaseClassDecl);
5311
5312    if (CXXMethodDecl *CopyAssign
5313           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5314      ExceptSpec.CalledDecl(CopyAssign);
5315  }
5316  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5317                                  FieldEnd = ClassDecl->field_end();
5318       Field != FieldEnd;
5319       ++Field) {
5320    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5321    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5322      CXXRecordDecl *FieldClassDecl
5323        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5324
5325      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5326        DeclareImplicitCopyAssignment(FieldClassDecl);
5327
5328      if (CXXMethodDecl *CopyAssign
5329            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5330        ExceptSpec.CalledDecl(CopyAssign);
5331    }
5332  }
5333
5334  //   An implicitly-declared copy assignment operator is an inline public
5335  //   member of its class.
5336  FunctionProtoType::ExtProtoInfo EPI;
5337  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5338  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5339  EPI.NumExceptions = ExceptSpec.size();
5340  EPI.Exceptions = ExceptSpec.data();
5341  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5342  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5343  CXXMethodDecl *CopyAssignment
5344    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5345                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5346                            /*TInfo=*/0, /*isStatic=*/false,
5347                            /*StorageClassAsWritten=*/SC_None,
5348                            /*isInline=*/true);
5349  CopyAssignment->setAccess(AS_public);
5350  CopyAssignment->setImplicit();
5351  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5352
5353  // Add the parameter to the operator.
5354  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5355                                               ClassDecl->getLocation(),
5356                                               /*Id=*/0,
5357                                               ArgType, /*TInfo=*/0,
5358                                               SC_None,
5359                                               SC_None, 0);
5360  CopyAssignment->setParams(&FromParam, 1);
5361
5362  // Note that we have added this copy-assignment operator.
5363  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5364
5365  if (Scope *S = getScopeForContext(ClassDecl))
5366    PushOnScopeChains(CopyAssignment, S, false);
5367  ClassDecl->addDecl(CopyAssignment);
5368
5369  AddOverriddenMethods(ClassDecl, CopyAssignment);
5370  return CopyAssignment;
5371}
5372
5373void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5374                                        CXXMethodDecl *CopyAssignOperator) {
5375  assert((CopyAssignOperator->isImplicit() &&
5376          CopyAssignOperator->isOverloadedOperator() &&
5377          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5378          !CopyAssignOperator->isUsed(false)) &&
5379         "DefineImplicitCopyAssignment called for wrong function");
5380
5381  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5382
5383  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5384    CopyAssignOperator->setInvalidDecl();
5385    return;
5386  }
5387
5388  CopyAssignOperator->setUsed();
5389
5390  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5391  DiagnosticErrorTrap Trap(Diags);
5392
5393  // C++0x [class.copy]p30:
5394  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5395  //   for a non-union class X performs memberwise copy assignment of its
5396  //   subobjects. The direct base classes of X are assigned first, in the
5397  //   order of their declaration in the base-specifier-list, and then the
5398  //   immediate non-static data members of X are assigned, in the order in
5399  //   which they were declared in the class definition.
5400
5401  // The statements that form the synthesized function body.
5402  ASTOwningVector<Stmt*> Statements(*this);
5403
5404  // The parameter for the "other" object, which we are copying from.
5405  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5406  Qualifiers OtherQuals = Other->getType().getQualifiers();
5407  QualType OtherRefType = Other->getType();
5408  if (const LValueReferenceType *OtherRef
5409                                = OtherRefType->getAs<LValueReferenceType>()) {
5410    OtherRefType = OtherRef->getPointeeType();
5411    OtherQuals = OtherRefType.getQualifiers();
5412  }
5413
5414  // Our location for everything implicitly-generated.
5415  SourceLocation Loc = CopyAssignOperator->getLocation();
5416
5417  // Construct a reference to the "other" object. We'll be using this
5418  // throughout the generated ASTs.
5419  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5420  assert(OtherRef && "Reference to parameter cannot fail!");
5421
5422  // Construct the "this" pointer. We'll be using this throughout the generated
5423  // ASTs.
5424  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5425  assert(This && "Reference to this cannot fail!");
5426
5427  // Assign base classes.
5428  bool Invalid = false;
5429  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5430       E = ClassDecl->bases_end(); Base != E; ++Base) {
5431    // Form the assignment:
5432    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5433    QualType BaseType = Base->getType().getUnqualifiedType();
5434    if (!BaseType->isRecordType()) {
5435      Invalid = true;
5436      continue;
5437    }
5438
5439    CXXCastPath BasePath;
5440    BasePath.push_back(Base);
5441
5442    // Construct the "from" expression, which is an implicit cast to the
5443    // appropriately-qualified base type.
5444    Expr *From = OtherRef;
5445    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5446                      CK_UncheckedDerivedToBase,
5447                      VK_LValue, &BasePath);
5448
5449    // Dereference "this".
5450    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5451
5452    // Implicitly cast "this" to the appropriately-qualified base type.
5453    Expr *ToE = To.takeAs<Expr>();
5454    ImpCastExprToType(ToE,
5455                      Context.getCVRQualifiedType(BaseType,
5456                                      CopyAssignOperator->getTypeQualifiers()),
5457                      CK_UncheckedDerivedToBase,
5458                      VK_LValue, &BasePath);
5459    To = Owned(ToE);
5460
5461    // Build the copy.
5462    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5463                                            To.get(), From,
5464                                            /*CopyingBaseSubobject=*/true);
5465    if (Copy.isInvalid()) {
5466      Diag(CurrentLocation, diag::note_member_synthesized_at)
5467        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5468      CopyAssignOperator->setInvalidDecl();
5469      return;
5470    }
5471
5472    // Success! Record the copy.
5473    Statements.push_back(Copy.takeAs<Expr>());
5474  }
5475
5476  // \brief Reference to the __builtin_memcpy function.
5477  Expr *BuiltinMemCpyRef = 0;
5478  // \brief Reference to the __builtin_objc_memmove_collectable function.
5479  Expr *CollectableMemCpyRef = 0;
5480
5481  // Assign non-static members.
5482  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5483                                  FieldEnd = ClassDecl->field_end();
5484       Field != FieldEnd; ++Field) {
5485    // Check for members of reference type; we can't copy those.
5486    if (Field->getType()->isReferenceType()) {
5487      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5488        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5489      Diag(Field->getLocation(), diag::note_declared_at);
5490      Diag(CurrentLocation, diag::note_member_synthesized_at)
5491        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5492      Invalid = true;
5493      continue;
5494    }
5495
5496    // Check for members of const-qualified, non-class type.
5497    QualType BaseType = Context.getBaseElementType(Field->getType());
5498    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5499      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5500        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5501      Diag(Field->getLocation(), diag::note_declared_at);
5502      Diag(CurrentLocation, diag::note_member_synthesized_at)
5503        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5504      Invalid = true;
5505      continue;
5506    }
5507
5508    QualType FieldType = Field->getType().getNonReferenceType();
5509    if (FieldType->isIncompleteArrayType()) {
5510      assert(ClassDecl->hasFlexibleArrayMember() &&
5511             "Incomplete array type is not valid");
5512      continue;
5513    }
5514
5515    // Build references to the field in the object we're copying from and to.
5516    CXXScopeSpec SS; // Intentionally empty
5517    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5518                              LookupMemberName);
5519    MemberLookup.addDecl(*Field);
5520    MemberLookup.resolveKind();
5521    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5522                                               Loc, /*IsArrow=*/false,
5523                                               SS, 0, MemberLookup, 0);
5524    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5525                                             Loc, /*IsArrow=*/true,
5526                                             SS, 0, MemberLookup, 0);
5527    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5528    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5529
5530    // If the field should be copied with __builtin_memcpy rather than via
5531    // explicit assignments, do so. This optimization only applies for arrays
5532    // of scalars and arrays of class type with trivial copy-assignment
5533    // operators.
5534    if (FieldType->isArrayType() &&
5535        (!BaseType->isRecordType() ||
5536         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5537           ->hasTrivialCopyAssignment())) {
5538      // Compute the size of the memory buffer to be copied.
5539      QualType SizeType = Context.getSizeType();
5540      llvm::APInt Size(Context.getTypeSize(SizeType),
5541                       Context.getTypeSizeInChars(BaseType).getQuantity());
5542      for (const ConstantArrayType *Array
5543              = Context.getAsConstantArrayType(FieldType);
5544           Array;
5545           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5546        llvm::APInt ArraySize
5547          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5548        Size *= ArraySize;
5549      }
5550
5551      // Take the address of the field references for "from" and "to".
5552      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5553      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5554
5555      bool NeedsCollectableMemCpy =
5556          (BaseType->isRecordType() &&
5557           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5558
5559      if (NeedsCollectableMemCpy) {
5560        if (!CollectableMemCpyRef) {
5561          // Create a reference to the __builtin_objc_memmove_collectable function.
5562          LookupResult R(*this,
5563                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5564                         Loc, LookupOrdinaryName);
5565          LookupName(R, TUScope, true);
5566
5567          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5568          if (!CollectableMemCpy) {
5569            // Something went horribly wrong earlier, and we will have
5570            // complained about it.
5571            Invalid = true;
5572            continue;
5573          }
5574
5575          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5576                                                  CollectableMemCpy->getType(),
5577                                                  VK_LValue, Loc, 0).take();
5578          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5579        }
5580      }
5581      // Create a reference to the __builtin_memcpy builtin function.
5582      else if (!BuiltinMemCpyRef) {
5583        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5584                       LookupOrdinaryName);
5585        LookupName(R, TUScope, true);
5586
5587        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5588        if (!BuiltinMemCpy) {
5589          // Something went horribly wrong earlier, and we will have complained
5590          // about it.
5591          Invalid = true;
5592          continue;
5593        }
5594
5595        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5596                                            BuiltinMemCpy->getType(),
5597                                            VK_LValue, Loc, 0).take();
5598        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5599      }
5600
5601      ASTOwningVector<Expr*> CallArgs(*this);
5602      CallArgs.push_back(To.takeAs<Expr>());
5603      CallArgs.push_back(From.takeAs<Expr>());
5604      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5605      ExprResult Call = ExprError();
5606      if (NeedsCollectableMemCpy)
5607        Call = ActOnCallExpr(/*Scope=*/0,
5608                             CollectableMemCpyRef,
5609                             Loc, move_arg(CallArgs),
5610                             Loc);
5611      else
5612        Call = ActOnCallExpr(/*Scope=*/0,
5613                             BuiltinMemCpyRef,
5614                             Loc, move_arg(CallArgs),
5615                             Loc);
5616
5617      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5618      Statements.push_back(Call.takeAs<Expr>());
5619      continue;
5620    }
5621
5622    // Build the copy of this field.
5623    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5624                                                  To.get(), From.get(),
5625                                              /*CopyingBaseSubobject=*/false);
5626    if (Copy.isInvalid()) {
5627      Diag(CurrentLocation, diag::note_member_synthesized_at)
5628        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5629      CopyAssignOperator->setInvalidDecl();
5630      return;
5631    }
5632
5633    // Success! Record the copy.
5634    Statements.push_back(Copy.takeAs<Stmt>());
5635  }
5636
5637  if (!Invalid) {
5638    // Add a "return *this;"
5639    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5640
5641    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5642    if (Return.isInvalid())
5643      Invalid = true;
5644    else {
5645      Statements.push_back(Return.takeAs<Stmt>());
5646
5647      if (Trap.hasErrorOccurred()) {
5648        Diag(CurrentLocation, diag::note_member_synthesized_at)
5649          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5650        Invalid = true;
5651      }
5652    }
5653  }
5654
5655  if (Invalid) {
5656    CopyAssignOperator->setInvalidDecl();
5657    return;
5658  }
5659
5660  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5661                                            /*isStmtExpr=*/false);
5662  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5663  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5664}
5665
5666CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5667                                                    CXXRecordDecl *ClassDecl) {
5668  // C++ [class.copy]p4:
5669  //   If the class definition does not explicitly declare a copy
5670  //   constructor, one is declared implicitly.
5671
5672  // C++ [class.copy]p5:
5673  //   The implicitly-declared copy constructor for a class X will
5674  //   have the form
5675  //
5676  //       X::X(const X&)
5677  //
5678  //   if
5679  bool HasConstCopyConstructor = true;
5680
5681  //     -- each direct or virtual base class B of X has a copy
5682  //        constructor whose first parameter is of type const B& or
5683  //        const volatile B&, and
5684  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5685                                       BaseEnd = ClassDecl->bases_end();
5686       HasConstCopyConstructor && Base != BaseEnd;
5687       ++Base) {
5688    // Virtual bases are handled below.
5689    if (Base->isVirtual())
5690      continue;
5691
5692    CXXRecordDecl *BaseClassDecl
5693      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5694    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5695      DeclareImplicitCopyConstructor(BaseClassDecl);
5696
5697    HasConstCopyConstructor
5698      = BaseClassDecl->hasConstCopyConstructor(Context);
5699  }
5700
5701  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5702                                       BaseEnd = ClassDecl->vbases_end();
5703       HasConstCopyConstructor && Base != BaseEnd;
5704       ++Base) {
5705    CXXRecordDecl *BaseClassDecl
5706      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5707    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5708      DeclareImplicitCopyConstructor(BaseClassDecl);
5709
5710    HasConstCopyConstructor
5711      = BaseClassDecl->hasConstCopyConstructor(Context);
5712  }
5713
5714  //     -- for all the nonstatic data members of X that are of a
5715  //        class type M (or array thereof), each such class type
5716  //        has a copy constructor whose first parameter is of type
5717  //        const M& or const volatile M&.
5718  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5719                                  FieldEnd = ClassDecl->field_end();
5720       HasConstCopyConstructor && Field != FieldEnd;
5721       ++Field) {
5722    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5723    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5724      CXXRecordDecl *FieldClassDecl
5725        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5726      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5727        DeclareImplicitCopyConstructor(FieldClassDecl);
5728
5729      HasConstCopyConstructor
5730        = FieldClassDecl->hasConstCopyConstructor(Context);
5731    }
5732  }
5733
5734  //   Otherwise, the implicitly declared copy constructor will have
5735  //   the form
5736  //
5737  //       X::X(X&)
5738  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5739  QualType ArgType = ClassType;
5740  if (HasConstCopyConstructor)
5741    ArgType = ArgType.withConst();
5742  ArgType = Context.getLValueReferenceType(ArgType);
5743
5744  // C++ [except.spec]p14:
5745  //   An implicitly declared special member function (Clause 12) shall have an
5746  //   exception-specification. [...]
5747  ImplicitExceptionSpecification ExceptSpec(Context);
5748  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5749  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5750                                       BaseEnd = ClassDecl->bases_end();
5751       Base != BaseEnd;
5752       ++Base) {
5753    // Virtual bases are handled below.
5754    if (Base->isVirtual())
5755      continue;
5756
5757    CXXRecordDecl *BaseClassDecl
5758      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5759    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5760      DeclareImplicitCopyConstructor(BaseClassDecl);
5761
5762    if (CXXConstructorDecl *CopyConstructor
5763                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5764      ExceptSpec.CalledDecl(CopyConstructor);
5765  }
5766  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5767                                       BaseEnd = ClassDecl->vbases_end();
5768       Base != BaseEnd;
5769       ++Base) {
5770    CXXRecordDecl *BaseClassDecl
5771      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5772    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5773      DeclareImplicitCopyConstructor(BaseClassDecl);
5774
5775    if (CXXConstructorDecl *CopyConstructor
5776                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5777      ExceptSpec.CalledDecl(CopyConstructor);
5778  }
5779  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5780                                  FieldEnd = ClassDecl->field_end();
5781       Field != FieldEnd;
5782       ++Field) {
5783    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5784    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5785      CXXRecordDecl *FieldClassDecl
5786        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5787      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5788        DeclareImplicitCopyConstructor(FieldClassDecl);
5789
5790      if (CXXConstructorDecl *CopyConstructor
5791                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5792        ExceptSpec.CalledDecl(CopyConstructor);
5793    }
5794  }
5795
5796  //   An implicitly-declared copy constructor is an inline public
5797  //   member of its class.
5798  FunctionProtoType::ExtProtoInfo EPI;
5799  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5800  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5801  EPI.NumExceptions = ExceptSpec.size();
5802  EPI.Exceptions = ExceptSpec.data();
5803  DeclarationName Name
5804    = Context.DeclarationNames.getCXXConstructorName(
5805                                           Context.getCanonicalType(ClassType));
5806  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5807  CXXConstructorDecl *CopyConstructor
5808    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5809                                 Context.getFunctionType(Context.VoidTy,
5810                                                         &ArgType, 1, EPI),
5811                                 /*TInfo=*/0,
5812                                 /*isExplicit=*/false,
5813                                 /*isInline=*/true,
5814                                 /*isImplicitlyDeclared=*/true);
5815  CopyConstructor->setAccess(AS_public);
5816  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5817
5818  // Note that we have declared this constructor.
5819  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5820
5821  // Add the parameter to the constructor.
5822  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5823                                               ClassDecl->getLocation(),
5824                                               /*IdentifierInfo=*/0,
5825                                               ArgType, /*TInfo=*/0,
5826                                               SC_None,
5827                                               SC_None, 0);
5828  CopyConstructor->setParams(&FromParam, 1);
5829  if (Scope *S = getScopeForContext(ClassDecl))
5830    PushOnScopeChains(CopyConstructor, S, false);
5831  ClassDecl->addDecl(CopyConstructor);
5832
5833  return CopyConstructor;
5834}
5835
5836void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5837                                   CXXConstructorDecl *CopyConstructor,
5838                                   unsigned TypeQuals) {
5839  assert((CopyConstructor->isImplicit() &&
5840          CopyConstructor->isCopyConstructor(TypeQuals) &&
5841          !CopyConstructor->isUsed(false)) &&
5842         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5843
5844  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5845  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5846
5847  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5848  DiagnosticErrorTrap Trap(Diags);
5849
5850  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5851      Trap.hasErrorOccurred()) {
5852    Diag(CurrentLocation, diag::note_member_synthesized_at)
5853      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5854    CopyConstructor->setInvalidDecl();
5855  }  else {
5856    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5857                                               CopyConstructor->getLocation(),
5858                                               MultiStmtArg(*this, 0, 0),
5859                                               /*isStmtExpr=*/false)
5860                                                              .takeAs<Stmt>());
5861  }
5862
5863  CopyConstructor->setUsed();
5864}
5865
5866ExprResult
5867Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5868                            CXXConstructorDecl *Constructor,
5869                            MultiExprArg ExprArgs,
5870                            bool RequiresZeroInit,
5871                            unsigned ConstructKind,
5872                            SourceRange ParenRange) {
5873  bool Elidable = false;
5874
5875  // C++0x [class.copy]p34:
5876  //   When certain criteria are met, an implementation is allowed to
5877  //   omit the copy/move construction of a class object, even if the
5878  //   copy/move constructor and/or destructor for the object have
5879  //   side effects. [...]
5880  //     - when a temporary class object that has not been bound to a
5881  //       reference (12.2) would be copied/moved to a class object
5882  //       with the same cv-unqualified type, the copy/move operation
5883  //       can be omitted by constructing the temporary object
5884  //       directly into the target of the omitted copy/move
5885  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5886      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5887    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5888    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5889  }
5890
5891  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5892                               Elidable, move(ExprArgs), RequiresZeroInit,
5893                               ConstructKind, ParenRange);
5894}
5895
5896/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5897/// including handling of its default argument expressions.
5898ExprResult
5899Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5900                            CXXConstructorDecl *Constructor, bool Elidable,
5901                            MultiExprArg ExprArgs,
5902                            bool RequiresZeroInit,
5903                            unsigned ConstructKind,
5904                            SourceRange ParenRange) {
5905  unsigned NumExprs = ExprArgs.size();
5906  Expr **Exprs = (Expr **)ExprArgs.release();
5907
5908  MarkDeclarationReferenced(ConstructLoc, Constructor);
5909  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5910                                        Constructor, Elidable, Exprs, NumExprs,
5911                                        RequiresZeroInit,
5912              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5913                                        ParenRange));
5914}
5915
5916bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5917                                        CXXConstructorDecl *Constructor,
5918                                        MultiExprArg Exprs) {
5919  // FIXME: Provide the correct paren SourceRange when available.
5920  ExprResult TempResult =
5921    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5922                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5923                          SourceRange());
5924  if (TempResult.isInvalid())
5925    return true;
5926
5927  Expr *Temp = TempResult.takeAs<Expr>();
5928  CheckImplicitConversions(Temp, VD->getLocation());
5929  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5930  Temp = MaybeCreateExprWithCleanups(Temp);
5931  VD->setInit(Temp);
5932
5933  return false;
5934}
5935
5936void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5937  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5938  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5939      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5940    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5941    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5942    CheckDestructorAccess(VD->getLocation(), Destructor,
5943                          PDiag(diag::err_access_dtor_var)
5944                            << VD->getDeclName()
5945                            << VD->getType());
5946
5947    // TODO: this should be re-enabled for static locals by !CXAAtExit
5948    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5949      Diag(VD->getLocation(), diag::warn_global_destructor);
5950  }
5951}
5952
5953/// AddCXXDirectInitializerToDecl - This action is called immediately after
5954/// ActOnDeclarator, when a C++ direct initializer is present.
5955/// e.g: "int x(1);"
5956void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5957                                         SourceLocation LParenLoc,
5958                                         MultiExprArg Exprs,
5959                                         SourceLocation RParenLoc,
5960                                         bool TypeMayContainAuto) {
5961  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5962
5963  // If there is no declaration, there was an error parsing it.  Just ignore
5964  // the initializer.
5965  if (RealDecl == 0)
5966    return;
5967
5968  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5969  if (!VDecl) {
5970    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5971    RealDecl->setInvalidDecl();
5972    return;
5973  }
5974
5975  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5976  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5977    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
5978    if (Exprs.size() > 1) {
5979      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
5980           diag::err_auto_var_init_multiple_expressions)
5981        << VDecl->getDeclName() << VDecl->getType()
5982        << VDecl->getSourceRange();
5983      RealDecl->setInvalidDecl();
5984      return;
5985    }
5986
5987    Expr *Init = Exprs.get()[0];
5988    QualType DeducedType;
5989    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
5990      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5991        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5992        << Init->getSourceRange();
5993      RealDecl->setInvalidDecl();
5994      return;
5995    }
5996    VDecl->setType(DeducedType);
5997
5998    // If this is a redeclaration, check that the type we just deduced matches
5999    // the previously declared type.
6000    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6001      MergeVarDeclTypes(VDecl, Old);
6002  }
6003
6004  // We will represent direct-initialization similarly to copy-initialization:
6005  //    int x(1);  -as-> int x = 1;
6006  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6007  //
6008  // Clients that want to distinguish between the two forms, can check for
6009  // direct initializer using VarDecl::hasCXXDirectInitializer().
6010  // A major benefit is that clients that don't particularly care about which
6011  // exactly form was it (like the CodeGen) can handle both cases without
6012  // special case code.
6013
6014  // C++ 8.5p11:
6015  // The form of initialization (using parentheses or '=') is generally
6016  // insignificant, but does matter when the entity being initialized has a
6017  // class type.
6018
6019  if (!VDecl->getType()->isDependentType() &&
6020      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6021                          diag::err_typecheck_decl_incomplete_type)) {
6022    VDecl->setInvalidDecl();
6023    return;
6024  }
6025
6026  // The variable can not have an abstract class type.
6027  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6028                             diag::err_abstract_type_in_decl,
6029                             AbstractVariableType))
6030    VDecl->setInvalidDecl();
6031
6032  const VarDecl *Def;
6033  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6034    Diag(VDecl->getLocation(), diag::err_redefinition)
6035    << VDecl->getDeclName();
6036    Diag(Def->getLocation(), diag::note_previous_definition);
6037    VDecl->setInvalidDecl();
6038    return;
6039  }
6040
6041  // C++ [class.static.data]p4
6042  //   If a static data member is of const integral or const
6043  //   enumeration type, its declaration in the class definition can
6044  //   specify a constant-initializer which shall be an integral
6045  //   constant expression (5.19). In that case, the member can appear
6046  //   in integral constant expressions. The member shall still be
6047  //   defined in a namespace scope if it is used in the program and the
6048  //   namespace scope definition shall not contain an initializer.
6049  //
6050  // We already performed a redefinition check above, but for static
6051  // data members we also need to check whether there was an in-class
6052  // declaration with an initializer.
6053  const VarDecl* PrevInit = 0;
6054  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6055    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6056    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6057    return;
6058  }
6059
6060  bool IsDependent = false;
6061  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6062    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6063      VDecl->setInvalidDecl();
6064      return;
6065    }
6066
6067    if (Exprs.get()[I]->isTypeDependent())
6068      IsDependent = true;
6069  }
6070
6071  // If either the declaration has a dependent type or if any of the
6072  // expressions is type-dependent, we represent the initialization
6073  // via a ParenListExpr for later use during template instantiation.
6074  if (VDecl->getType()->isDependentType() || IsDependent) {
6075    // Let clients know that initialization was done with a direct initializer.
6076    VDecl->setCXXDirectInitializer(true);
6077
6078    // Store the initialization expressions as a ParenListExpr.
6079    unsigned NumExprs = Exprs.size();
6080    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6081                                               (Expr **)Exprs.release(),
6082                                               NumExprs, RParenLoc));
6083    return;
6084  }
6085
6086  // Capture the variable that is being initialized and the style of
6087  // initialization.
6088  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6089
6090  // FIXME: Poor source location information.
6091  InitializationKind Kind
6092    = InitializationKind::CreateDirect(VDecl->getLocation(),
6093                                       LParenLoc, RParenLoc);
6094
6095  InitializationSequence InitSeq(*this, Entity, Kind,
6096                                 Exprs.get(), Exprs.size());
6097  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6098  if (Result.isInvalid()) {
6099    VDecl->setInvalidDecl();
6100    return;
6101  }
6102
6103  CheckImplicitConversions(Result.get(), LParenLoc);
6104
6105  Result = MaybeCreateExprWithCleanups(Result);
6106  VDecl->setInit(Result.takeAs<Expr>());
6107  VDecl->setCXXDirectInitializer(true);
6108
6109  CheckCompleteVariableDeclaration(VDecl);
6110}
6111
6112/// \brief Given a constructor and the set of arguments provided for the
6113/// constructor, convert the arguments and add any required default arguments
6114/// to form a proper call to this constructor.
6115///
6116/// \returns true if an error occurred, false otherwise.
6117bool
6118Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6119                              MultiExprArg ArgsPtr,
6120                              SourceLocation Loc,
6121                              ASTOwningVector<Expr*> &ConvertedArgs) {
6122  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6123  unsigned NumArgs = ArgsPtr.size();
6124  Expr **Args = (Expr **)ArgsPtr.get();
6125
6126  const FunctionProtoType *Proto
6127    = Constructor->getType()->getAs<FunctionProtoType>();
6128  assert(Proto && "Constructor without a prototype?");
6129  unsigned NumArgsInProto = Proto->getNumArgs();
6130
6131  // If too few arguments are available, we'll fill in the rest with defaults.
6132  if (NumArgs < NumArgsInProto)
6133    ConvertedArgs.reserve(NumArgsInProto);
6134  else
6135    ConvertedArgs.reserve(NumArgs);
6136
6137  VariadicCallType CallType =
6138    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6139  llvm::SmallVector<Expr *, 8> AllArgs;
6140  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6141                                        Proto, 0, Args, NumArgs, AllArgs,
6142                                        CallType);
6143  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6144    ConvertedArgs.push_back(AllArgs[i]);
6145  return Invalid;
6146}
6147
6148static inline bool
6149CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6150                                       const FunctionDecl *FnDecl) {
6151  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6152  if (isa<NamespaceDecl>(DC)) {
6153    return SemaRef.Diag(FnDecl->getLocation(),
6154                        diag::err_operator_new_delete_declared_in_namespace)
6155      << FnDecl->getDeclName();
6156  }
6157
6158  if (isa<TranslationUnitDecl>(DC) &&
6159      FnDecl->getStorageClass() == SC_Static) {
6160    return SemaRef.Diag(FnDecl->getLocation(),
6161                        diag::err_operator_new_delete_declared_static)
6162      << FnDecl->getDeclName();
6163  }
6164
6165  return false;
6166}
6167
6168static inline bool
6169CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6170                            CanQualType ExpectedResultType,
6171                            CanQualType ExpectedFirstParamType,
6172                            unsigned DependentParamTypeDiag,
6173                            unsigned InvalidParamTypeDiag) {
6174  QualType ResultType =
6175    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6176
6177  // Check that the result type is not dependent.
6178  if (ResultType->isDependentType())
6179    return SemaRef.Diag(FnDecl->getLocation(),
6180                        diag::err_operator_new_delete_dependent_result_type)
6181    << FnDecl->getDeclName() << ExpectedResultType;
6182
6183  // Check that the result type is what we expect.
6184  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6185    return SemaRef.Diag(FnDecl->getLocation(),
6186                        diag::err_operator_new_delete_invalid_result_type)
6187    << FnDecl->getDeclName() << ExpectedResultType;
6188
6189  // A function template must have at least 2 parameters.
6190  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6191    return SemaRef.Diag(FnDecl->getLocation(),
6192                      diag::err_operator_new_delete_template_too_few_parameters)
6193        << FnDecl->getDeclName();
6194
6195  // The function decl must have at least 1 parameter.
6196  if (FnDecl->getNumParams() == 0)
6197    return SemaRef.Diag(FnDecl->getLocation(),
6198                        diag::err_operator_new_delete_too_few_parameters)
6199      << FnDecl->getDeclName();
6200
6201  // Check the the first parameter type is not dependent.
6202  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6203  if (FirstParamType->isDependentType())
6204    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6205      << FnDecl->getDeclName() << ExpectedFirstParamType;
6206
6207  // Check that the first parameter type is what we expect.
6208  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6209      ExpectedFirstParamType)
6210    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6211    << FnDecl->getDeclName() << ExpectedFirstParamType;
6212
6213  return false;
6214}
6215
6216static bool
6217CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6218  // C++ [basic.stc.dynamic.allocation]p1:
6219  //   A program is ill-formed if an allocation function is declared in a
6220  //   namespace scope other than global scope or declared static in global
6221  //   scope.
6222  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6223    return true;
6224
6225  CanQualType SizeTy =
6226    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6227
6228  // C++ [basic.stc.dynamic.allocation]p1:
6229  //  The return type shall be void*. The first parameter shall have type
6230  //  std::size_t.
6231  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6232                                  SizeTy,
6233                                  diag::err_operator_new_dependent_param_type,
6234                                  diag::err_operator_new_param_type))
6235    return true;
6236
6237  // C++ [basic.stc.dynamic.allocation]p1:
6238  //  The first parameter shall not have an associated default argument.
6239  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6240    return SemaRef.Diag(FnDecl->getLocation(),
6241                        diag::err_operator_new_default_arg)
6242      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6243
6244  return false;
6245}
6246
6247static bool
6248CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6249  // C++ [basic.stc.dynamic.deallocation]p1:
6250  //   A program is ill-formed if deallocation functions are declared in a
6251  //   namespace scope other than global scope or declared static in global
6252  //   scope.
6253  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6254    return true;
6255
6256  // C++ [basic.stc.dynamic.deallocation]p2:
6257  //   Each deallocation function shall return void and its first parameter
6258  //   shall be void*.
6259  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6260                                  SemaRef.Context.VoidPtrTy,
6261                                 diag::err_operator_delete_dependent_param_type,
6262                                 diag::err_operator_delete_param_type))
6263    return true;
6264
6265  return false;
6266}
6267
6268/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6269/// of this overloaded operator is well-formed. If so, returns false;
6270/// otherwise, emits appropriate diagnostics and returns true.
6271bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6272  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6273         "Expected an overloaded operator declaration");
6274
6275  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6276
6277  // C++ [over.oper]p5:
6278  //   The allocation and deallocation functions, operator new,
6279  //   operator new[], operator delete and operator delete[], are
6280  //   described completely in 3.7.3. The attributes and restrictions
6281  //   found in the rest of this subclause do not apply to them unless
6282  //   explicitly stated in 3.7.3.
6283  if (Op == OO_Delete || Op == OO_Array_Delete)
6284    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6285
6286  if (Op == OO_New || Op == OO_Array_New)
6287    return CheckOperatorNewDeclaration(*this, FnDecl);
6288
6289  // C++ [over.oper]p6:
6290  //   An operator function shall either be a non-static member
6291  //   function or be a non-member function and have at least one
6292  //   parameter whose type is a class, a reference to a class, an
6293  //   enumeration, or a reference to an enumeration.
6294  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6295    if (MethodDecl->isStatic())
6296      return Diag(FnDecl->getLocation(),
6297                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6298  } else {
6299    bool ClassOrEnumParam = false;
6300    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6301                                   ParamEnd = FnDecl->param_end();
6302         Param != ParamEnd; ++Param) {
6303      QualType ParamType = (*Param)->getType().getNonReferenceType();
6304      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6305          ParamType->isEnumeralType()) {
6306        ClassOrEnumParam = true;
6307        break;
6308      }
6309    }
6310
6311    if (!ClassOrEnumParam)
6312      return Diag(FnDecl->getLocation(),
6313                  diag::err_operator_overload_needs_class_or_enum)
6314        << FnDecl->getDeclName();
6315  }
6316
6317  // C++ [over.oper]p8:
6318  //   An operator function cannot have default arguments (8.3.6),
6319  //   except where explicitly stated below.
6320  //
6321  // Only the function-call operator allows default arguments
6322  // (C++ [over.call]p1).
6323  if (Op != OO_Call) {
6324    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6325         Param != FnDecl->param_end(); ++Param) {
6326      if ((*Param)->hasDefaultArg())
6327        return Diag((*Param)->getLocation(),
6328                    diag::err_operator_overload_default_arg)
6329          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6330    }
6331  }
6332
6333  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6334    { false, false, false }
6335#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6336    , { Unary, Binary, MemberOnly }
6337#include "clang/Basic/OperatorKinds.def"
6338  };
6339
6340  bool CanBeUnaryOperator = OperatorUses[Op][0];
6341  bool CanBeBinaryOperator = OperatorUses[Op][1];
6342  bool MustBeMemberOperator = OperatorUses[Op][2];
6343
6344  // C++ [over.oper]p8:
6345  //   [...] Operator functions cannot have more or fewer parameters
6346  //   than the number required for the corresponding operator, as
6347  //   described in the rest of this subclause.
6348  unsigned NumParams = FnDecl->getNumParams()
6349                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6350  if (Op != OO_Call &&
6351      ((NumParams == 1 && !CanBeUnaryOperator) ||
6352       (NumParams == 2 && !CanBeBinaryOperator) ||
6353       (NumParams < 1) || (NumParams > 2))) {
6354    // We have the wrong number of parameters.
6355    unsigned ErrorKind;
6356    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6357      ErrorKind = 2;  // 2 -> unary or binary.
6358    } else if (CanBeUnaryOperator) {
6359      ErrorKind = 0;  // 0 -> unary
6360    } else {
6361      assert(CanBeBinaryOperator &&
6362             "All non-call overloaded operators are unary or binary!");
6363      ErrorKind = 1;  // 1 -> binary
6364    }
6365
6366    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6367      << FnDecl->getDeclName() << NumParams << ErrorKind;
6368  }
6369
6370  // Overloaded operators other than operator() cannot be variadic.
6371  if (Op != OO_Call &&
6372      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6373    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6374      << FnDecl->getDeclName();
6375  }
6376
6377  // Some operators must be non-static member functions.
6378  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6379    return Diag(FnDecl->getLocation(),
6380                diag::err_operator_overload_must_be_member)
6381      << FnDecl->getDeclName();
6382  }
6383
6384  // C++ [over.inc]p1:
6385  //   The user-defined function called operator++ implements the
6386  //   prefix and postfix ++ operator. If this function is a member
6387  //   function with no parameters, or a non-member function with one
6388  //   parameter of class or enumeration type, it defines the prefix
6389  //   increment operator ++ for objects of that type. If the function
6390  //   is a member function with one parameter (which shall be of type
6391  //   int) or a non-member function with two parameters (the second
6392  //   of which shall be of type int), it defines the postfix
6393  //   increment operator ++ for objects of that type.
6394  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6395    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6396    bool ParamIsInt = false;
6397    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6398      ParamIsInt = BT->getKind() == BuiltinType::Int;
6399
6400    if (!ParamIsInt)
6401      return Diag(LastParam->getLocation(),
6402                  diag::err_operator_overload_post_incdec_must_be_int)
6403        << LastParam->getType() << (Op == OO_MinusMinus);
6404  }
6405
6406  return false;
6407}
6408
6409/// CheckLiteralOperatorDeclaration - Check whether the declaration
6410/// of this literal operator function is well-formed. If so, returns
6411/// false; otherwise, emits appropriate diagnostics and returns true.
6412bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6413  DeclContext *DC = FnDecl->getDeclContext();
6414  Decl::Kind Kind = DC->getDeclKind();
6415  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6416      Kind != Decl::LinkageSpec) {
6417    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6418      << FnDecl->getDeclName();
6419    return true;
6420  }
6421
6422  bool Valid = false;
6423
6424  // template <char...> type operator "" name() is the only valid template
6425  // signature, and the only valid signature with no parameters.
6426  if (FnDecl->param_size() == 0) {
6427    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6428      // Must have only one template parameter
6429      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6430      if (Params->size() == 1) {
6431        NonTypeTemplateParmDecl *PmDecl =
6432          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6433
6434        // The template parameter must be a char parameter pack.
6435        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6436            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6437          Valid = true;
6438      }
6439    }
6440  } else {
6441    // Check the first parameter
6442    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6443
6444    QualType T = (*Param)->getType();
6445
6446    // unsigned long long int, long double, and any character type are allowed
6447    // as the only parameters.
6448    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6449        Context.hasSameType(T, Context.LongDoubleTy) ||
6450        Context.hasSameType(T, Context.CharTy) ||
6451        Context.hasSameType(T, Context.WCharTy) ||
6452        Context.hasSameType(T, Context.Char16Ty) ||
6453        Context.hasSameType(T, Context.Char32Ty)) {
6454      if (++Param == FnDecl->param_end())
6455        Valid = true;
6456      goto FinishedParams;
6457    }
6458
6459    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6460    const PointerType *PT = T->getAs<PointerType>();
6461    if (!PT)
6462      goto FinishedParams;
6463    T = PT->getPointeeType();
6464    if (!T.isConstQualified())
6465      goto FinishedParams;
6466    T = T.getUnqualifiedType();
6467
6468    // Move on to the second parameter;
6469    ++Param;
6470
6471    // If there is no second parameter, the first must be a const char *
6472    if (Param == FnDecl->param_end()) {
6473      if (Context.hasSameType(T, Context.CharTy))
6474        Valid = true;
6475      goto FinishedParams;
6476    }
6477
6478    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6479    // are allowed as the first parameter to a two-parameter function
6480    if (!(Context.hasSameType(T, Context.CharTy) ||
6481          Context.hasSameType(T, Context.WCharTy) ||
6482          Context.hasSameType(T, Context.Char16Ty) ||
6483          Context.hasSameType(T, Context.Char32Ty)))
6484      goto FinishedParams;
6485
6486    // The second and final parameter must be an std::size_t
6487    T = (*Param)->getType().getUnqualifiedType();
6488    if (Context.hasSameType(T, Context.getSizeType()) &&
6489        ++Param == FnDecl->param_end())
6490      Valid = true;
6491  }
6492
6493  // FIXME: This diagnostic is absolutely terrible.
6494FinishedParams:
6495  if (!Valid) {
6496    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6497      << FnDecl->getDeclName();
6498    return true;
6499  }
6500
6501  return false;
6502}
6503
6504/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6505/// linkage specification, including the language and (if present)
6506/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6507/// the location of the language string literal, which is provided
6508/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6509/// the '{' brace. Otherwise, this linkage specification does not
6510/// have any braces.
6511Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6512                                           SourceLocation LangLoc,
6513                                           llvm::StringRef Lang,
6514                                           SourceLocation LBraceLoc) {
6515  LinkageSpecDecl::LanguageIDs Language;
6516  if (Lang == "\"C\"")
6517    Language = LinkageSpecDecl::lang_c;
6518  else if (Lang == "\"C++\"")
6519    Language = LinkageSpecDecl::lang_cxx;
6520  else {
6521    Diag(LangLoc, diag::err_bad_language);
6522    return 0;
6523  }
6524
6525  // FIXME: Add all the various semantics of linkage specifications
6526
6527  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6528                                               LangLoc, Language,
6529                                               LBraceLoc.isValid());
6530  CurContext->addDecl(D);
6531  PushDeclContext(S, D);
6532  return D;
6533}
6534
6535/// ActOnFinishLinkageSpecification - Complete the definition of
6536/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6537/// valid, it's the position of the closing '}' brace in a linkage
6538/// specification that uses braces.
6539Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6540                                                      Decl *LinkageSpec,
6541                                                      SourceLocation RBraceLoc) {
6542  if (LinkageSpec)
6543    PopDeclContext();
6544  return LinkageSpec;
6545}
6546
6547/// \brief Perform semantic analysis for the variable declaration that
6548/// occurs within a C++ catch clause, returning the newly-created
6549/// variable.
6550VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6551                                         TypeSourceInfo *TInfo,
6552                                         IdentifierInfo *Name,
6553                                         SourceLocation Loc) {
6554  bool Invalid = false;
6555  QualType ExDeclType = TInfo->getType();
6556
6557  // Arrays and functions decay.
6558  if (ExDeclType->isArrayType())
6559    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6560  else if (ExDeclType->isFunctionType())
6561    ExDeclType = Context.getPointerType(ExDeclType);
6562
6563  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6564  // The exception-declaration shall not denote a pointer or reference to an
6565  // incomplete type, other than [cv] void*.
6566  // N2844 forbids rvalue references.
6567  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6568    Diag(Loc, diag::err_catch_rvalue_ref);
6569    Invalid = true;
6570  }
6571
6572  // GCC allows catching pointers and references to incomplete types
6573  // as an extension; so do we, but we warn by default.
6574
6575  QualType BaseType = ExDeclType;
6576  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6577  unsigned DK = diag::err_catch_incomplete;
6578  bool IncompleteCatchIsInvalid = true;
6579  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6580    BaseType = Ptr->getPointeeType();
6581    Mode = 1;
6582    DK = diag::ext_catch_incomplete_ptr;
6583    IncompleteCatchIsInvalid = false;
6584  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6585    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6586    BaseType = Ref->getPointeeType();
6587    Mode = 2;
6588    DK = diag::ext_catch_incomplete_ref;
6589    IncompleteCatchIsInvalid = false;
6590  }
6591  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6592      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6593      IncompleteCatchIsInvalid)
6594    Invalid = true;
6595
6596  if (!Invalid && !ExDeclType->isDependentType() &&
6597      RequireNonAbstractType(Loc, ExDeclType,
6598                             diag::err_abstract_type_in_decl,
6599                             AbstractVariableType))
6600    Invalid = true;
6601
6602  // Only the non-fragile NeXT runtime currently supports C++ catches
6603  // of ObjC types, and no runtime supports catching ObjC types by value.
6604  if (!Invalid && getLangOptions().ObjC1) {
6605    QualType T = ExDeclType;
6606    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6607      T = RT->getPointeeType();
6608
6609    if (T->isObjCObjectType()) {
6610      Diag(Loc, diag::err_objc_object_catch);
6611      Invalid = true;
6612    } else if (T->isObjCObjectPointerType()) {
6613      if (!getLangOptions().NeXTRuntime) {
6614        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6615        Invalid = true;
6616      } else if (!getLangOptions().ObjCNonFragileABI) {
6617        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6618        Invalid = true;
6619      }
6620    }
6621  }
6622
6623  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6624                                    Name, ExDeclType, TInfo, SC_None,
6625                                    SC_None);
6626  ExDecl->setExceptionVariable(true);
6627
6628  if (!Invalid) {
6629    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6630      // C++ [except.handle]p16:
6631      //   The object declared in an exception-declaration or, if the
6632      //   exception-declaration does not specify a name, a temporary (12.2) is
6633      //   copy-initialized (8.5) from the exception object. [...]
6634      //   The object is destroyed when the handler exits, after the destruction
6635      //   of any automatic objects initialized within the handler.
6636      //
6637      // We just pretend to initialize the object with itself, then make sure
6638      // it can be destroyed later.
6639      QualType initType = ExDeclType;
6640
6641      InitializedEntity entity =
6642        InitializedEntity::InitializeVariable(ExDecl);
6643      InitializationKind initKind =
6644        InitializationKind::CreateCopy(Loc, SourceLocation());
6645
6646      Expr *opaqueValue =
6647        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6648      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6649      ExprResult result = sequence.Perform(*this, entity, initKind,
6650                                           MultiExprArg(&opaqueValue, 1));
6651      if (result.isInvalid())
6652        Invalid = true;
6653      else {
6654        // If the constructor used was non-trivial, set this as the
6655        // "initializer".
6656        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6657        if (!construct->getConstructor()->isTrivial()) {
6658          Expr *init = MaybeCreateExprWithCleanups(construct);
6659          ExDecl->setInit(init);
6660        }
6661
6662        // And make sure it's destructable.
6663        FinalizeVarWithDestructor(ExDecl, recordType);
6664      }
6665    }
6666  }
6667
6668  if (Invalid)
6669    ExDecl->setInvalidDecl();
6670
6671  return ExDecl;
6672}
6673
6674/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6675/// handler.
6676Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6677  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6678  bool Invalid = D.isInvalidType();
6679
6680  // Check for unexpanded parameter packs.
6681  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6682                                               UPPC_ExceptionType)) {
6683    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6684                                             D.getIdentifierLoc());
6685    Invalid = true;
6686  }
6687
6688  IdentifierInfo *II = D.getIdentifier();
6689  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6690                                             LookupOrdinaryName,
6691                                             ForRedeclaration)) {
6692    // The scope should be freshly made just for us. There is just no way
6693    // it contains any previous declaration.
6694    assert(!S->isDeclScope(PrevDecl));
6695    if (PrevDecl->isTemplateParameter()) {
6696      // Maybe we will complain about the shadowed template parameter.
6697      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6698    }
6699  }
6700
6701  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6702    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6703      << D.getCXXScopeSpec().getRange();
6704    Invalid = true;
6705  }
6706
6707  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6708                                              D.getIdentifier(),
6709                                              D.getIdentifierLoc());
6710
6711  if (Invalid)
6712    ExDecl->setInvalidDecl();
6713
6714  // Add the exception declaration into this scope.
6715  if (II)
6716    PushOnScopeChains(ExDecl, S);
6717  else
6718    CurContext->addDecl(ExDecl);
6719
6720  ProcessDeclAttributes(S, ExDecl, D);
6721  return ExDecl;
6722}
6723
6724Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6725                                         Expr *AssertExpr,
6726                                         Expr *AssertMessageExpr_) {
6727  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6728
6729  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6730    llvm::APSInt Value(32);
6731    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6732      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6733        AssertExpr->getSourceRange();
6734      return 0;
6735    }
6736
6737    if (Value == 0) {
6738      Diag(AssertLoc, diag::err_static_assert_failed)
6739        << AssertMessage->getString() << AssertExpr->getSourceRange();
6740    }
6741  }
6742
6743  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6744    return 0;
6745
6746  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6747                                        AssertExpr, AssertMessage);
6748
6749  CurContext->addDecl(Decl);
6750  return Decl;
6751}
6752
6753/// \brief Perform semantic analysis of the given friend type declaration.
6754///
6755/// \returns A friend declaration that.
6756FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6757                                      TypeSourceInfo *TSInfo) {
6758  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6759
6760  QualType T = TSInfo->getType();
6761  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6762
6763  if (!getLangOptions().CPlusPlus0x) {
6764    // C++03 [class.friend]p2:
6765    //   An elaborated-type-specifier shall be used in a friend declaration
6766    //   for a class.*
6767    //
6768    //   * The class-key of the elaborated-type-specifier is required.
6769    if (!ActiveTemplateInstantiations.empty()) {
6770      // Do not complain about the form of friend template types during
6771      // template instantiation; we will already have complained when the
6772      // template was declared.
6773    } else if (!T->isElaboratedTypeSpecifier()) {
6774      // If we evaluated the type to a record type, suggest putting
6775      // a tag in front.
6776      if (const RecordType *RT = T->getAs<RecordType>()) {
6777        RecordDecl *RD = RT->getDecl();
6778
6779        std::string InsertionText = std::string(" ") + RD->getKindName();
6780
6781        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6782          << (unsigned) RD->getTagKind()
6783          << T
6784          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6785                                        InsertionText);
6786      } else {
6787        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6788          << T
6789          << SourceRange(FriendLoc, TypeRange.getEnd());
6790      }
6791    } else if (T->getAs<EnumType>()) {
6792      Diag(FriendLoc, diag::ext_enum_friend)
6793        << T
6794        << SourceRange(FriendLoc, TypeRange.getEnd());
6795    }
6796  }
6797
6798  // C++0x [class.friend]p3:
6799  //   If the type specifier in a friend declaration designates a (possibly
6800  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6801  //   the friend declaration is ignored.
6802
6803  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6804  // in [class.friend]p3 that we do not implement.
6805
6806  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6807}
6808
6809/// Handle a friend tag declaration where the scope specifier was
6810/// templated.
6811Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6812                                    unsigned TagSpec, SourceLocation TagLoc,
6813                                    CXXScopeSpec &SS,
6814                                    IdentifierInfo *Name, SourceLocation NameLoc,
6815                                    AttributeList *Attr,
6816                                    MultiTemplateParamsArg TempParamLists) {
6817  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6818
6819  bool isExplicitSpecialization = false;
6820  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6821  bool Invalid = false;
6822
6823  if (TemplateParameterList *TemplateParams
6824        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6825                                                  TempParamLists.get(),
6826                                                  TempParamLists.size(),
6827                                                  /*friend*/ true,
6828                                                  isExplicitSpecialization,
6829                                                  Invalid)) {
6830    --NumMatchedTemplateParamLists;
6831
6832    if (TemplateParams->size() > 0) {
6833      // This is a declaration of a class template.
6834      if (Invalid)
6835        return 0;
6836
6837      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6838                                SS, Name, NameLoc, Attr,
6839                                TemplateParams, AS_public).take();
6840    } else {
6841      // The "template<>" header is extraneous.
6842      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6843        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6844      isExplicitSpecialization = true;
6845    }
6846  }
6847
6848  if (Invalid) return 0;
6849
6850  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6851
6852  bool isAllExplicitSpecializations = true;
6853  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6854    if (TempParamLists.get()[I]->size()) {
6855      isAllExplicitSpecializations = false;
6856      break;
6857    }
6858  }
6859
6860  // FIXME: don't ignore attributes.
6861
6862  // If it's explicit specializations all the way down, just forget
6863  // about the template header and build an appropriate non-templated
6864  // friend.  TODO: for source fidelity, remember the headers.
6865  if (isAllExplicitSpecializations) {
6866    ElaboratedTypeKeyword Keyword
6867      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6868    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6869                                   TagLoc, SS.getRange(), NameLoc);
6870    if (T.isNull())
6871      return 0;
6872
6873    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6874    if (isa<DependentNameType>(T)) {
6875      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6876      TL.setKeywordLoc(TagLoc);
6877      TL.setQualifierRange(SS.getRange());
6878      TL.setNameLoc(NameLoc);
6879    } else {
6880      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6881      TL.setKeywordLoc(TagLoc);
6882      TL.setQualifierRange(SS.getRange());
6883      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6884    }
6885
6886    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6887                                            TSI, FriendLoc);
6888    Friend->setAccess(AS_public);
6889    CurContext->addDecl(Friend);
6890    return Friend;
6891  }
6892
6893  // Handle the case of a templated-scope friend class.  e.g.
6894  //   template <class T> class A<T>::B;
6895  // FIXME: we don't support these right now.
6896  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6897  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6898  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6899  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6900  TL.setKeywordLoc(TagLoc);
6901  TL.setQualifierRange(SS.getRange());
6902  TL.setNameLoc(NameLoc);
6903
6904  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6905                                          TSI, FriendLoc);
6906  Friend->setAccess(AS_public);
6907  Friend->setUnsupportedFriend(true);
6908  CurContext->addDecl(Friend);
6909  return Friend;
6910}
6911
6912
6913/// Handle a friend type declaration.  This works in tandem with
6914/// ActOnTag.
6915///
6916/// Notes on friend class templates:
6917///
6918/// We generally treat friend class declarations as if they were
6919/// declaring a class.  So, for example, the elaborated type specifier
6920/// in a friend declaration is required to obey the restrictions of a
6921/// class-head (i.e. no typedefs in the scope chain), template
6922/// parameters are required to match up with simple template-ids, &c.
6923/// However, unlike when declaring a template specialization, it's
6924/// okay to refer to a template specialization without an empty
6925/// template parameter declaration, e.g.
6926///   friend class A<T>::B<unsigned>;
6927/// We permit this as a special case; if there are any template
6928/// parameters present at all, require proper matching, i.e.
6929///   template <> template <class T> friend class A<int>::B;
6930Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6931                                MultiTemplateParamsArg TempParams) {
6932  SourceLocation Loc = DS.getSourceRange().getBegin();
6933
6934  assert(DS.isFriendSpecified());
6935  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6936
6937  // Try to convert the decl specifier to a type.  This works for
6938  // friend templates because ActOnTag never produces a ClassTemplateDecl
6939  // for a TUK_Friend.
6940  Declarator TheDeclarator(DS, Declarator::MemberContext);
6941  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6942  QualType T = TSI->getType();
6943  if (TheDeclarator.isInvalidType())
6944    return 0;
6945
6946  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6947    return 0;
6948
6949  // This is definitely an error in C++98.  It's probably meant to
6950  // be forbidden in C++0x, too, but the specification is just
6951  // poorly written.
6952  //
6953  // The problem is with declarations like the following:
6954  //   template <T> friend A<T>::foo;
6955  // where deciding whether a class C is a friend or not now hinges
6956  // on whether there exists an instantiation of A that causes
6957  // 'foo' to equal C.  There are restrictions on class-heads
6958  // (which we declare (by fiat) elaborated friend declarations to
6959  // be) that makes this tractable.
6960  //
6961  // FIXME: handle "template <> friend class A<T>;", which
6962  // is possibly well-formed?  Who even knows?
6963  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6964    Diag(Loc, diag::err_tagless_friend_type_template)
6965      << DS.getSourceRange();
6966    return 0;
6967  }
6968
6969  // C++98 [class.friend]p1: A friend of a class is a function
6970  //   or class that is not a member of the class . . .
6971  // This is fixed in DR77, which just barely didn't make the C++03
6972  // deadline.  It's also a very silly restriction that seriously
6973  // affects inner classes and which nobody else seems to implement;
6974  // thus we never diagnose it, not even in -pedantic.
6975  //
6976  // But note that we could warn about it: it's always useless to
6977  // friend one of your own members (it's not, however, worthless to
6978  // friend a member of an arbitrary specialization of your template).
6979
6980  Decl *D;
6981  if (unsigned NumTempParamLists = TempParams.size())
6982    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6983                                   NumTempParamLists,
6984                                   TempParams.release(),
6985                                   TSI,
6986                                   DS.getFriendSpecLoc());
6987  else
6988    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6989
6990  if (!D)
6991    return 0;
6992
6993  D->setAccess(AS_public);
6994  CurContext->addDecl(D);
6995
6996  return D;
6997}
6998
6999Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7000                                    MultiTemplateParamsArg TemplateParams) {
7001  const DeclSpec &DS = D.getDeclSpec();
7002
7003  assert(DS.isFriendSpecified());
7004  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7005
7006  SourceLocation Loc = D.getIdentifierLoc();
7007  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7008  QualType T = TInfo->getType();
7009
7010  // C++ [class.friend]p1
7011  //   A friend of a class is a function or class....
7012  // Note that this sees through typedefs, which is intended.
7013  // It *doesn't* see through dependent types, which is correct
7014  // according to [temp.arg.type]p3:
7015  //   If a declaration acquires a function type through a
7016  //   type dependent on a template-parameter and this causes
7017  //   a declaration that does not use the syntactic form of a
7018  //   function declarator to have a function type, the program
7019  //   is ill-formed.
7020  if (!T->isFunctionType()) {
7021    Diag(Loc, diag::err_unexpected_friend);
7022
7023    // It might be worthwhile to try to recover by creating an
7024    // appropriate declaration.
7025    return 0;
7026  }
7027
7028  // C++ [namespace.memdef]p3
7029  //  - If a friend declaration in a non-local class first declares a
7030  //    class or function, the friend class or function is a member
7031  //    of the innermost enclosing namespace.
7032  //  - The name of the friend is not found by simple name lookup
7033  //    until a matching declaration is provided in that namespace
7034  //    scope (either before or after the class declaration granting
7035  //    friendship).
7036  //  - If a friend function is called, its name may be found by the
7037  //    name lookup that considers functions from namespaces and
7038  //    classes associated with the types of the function arguments.
7039  //  - When looking for a prior declaration of a class or a function
7040  //    declared as a friend, scopes outside the innermost enclosing
7041  //    namespace scope are not considered.
7042
7043  CXXScopeSpec &SS = D.getCXXScopeSpec();
7044  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7045  DeclarationName Name = NameInfo.getName();
7046  assert(Name);
7047
7048  // Check for unexpanded parameter packs.
7049  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7050      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7051      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7052    return 0;
7053
7054  // The context we found the declaration in, or in which we should
7055  // create the declaration.
7056  DeclContext *DC;
7057  Scope *DCScope = S;
7058  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7059                        ForRedeclaration);
7060
7061  // FIXME: there are different rules in local classes
7062
7063  // There are four cases here.
7064  //   - There's no scope specifier, in which case we just go to the
7065  //     appropriate scope and look for a function or function template
7066  //     there as appropriate.
7067  // Recover from invalid scope qualifiers as if they just weren't there.
7068  if (SS.isInvalid() || !SS.isSet()) {
7069    // C++0x [namespace.memdef]p3:
7070    //   If the name in a friend declaration is neither qualified nor
7071    //   a template-id and the declaration is a function or an
7072    //   elaborated-type-specifier, the lookup to determine whether
7073    //   the entity has been previously declared shall not consider
7074    //   any scopes outside the innermost enclosing namespace.
7075    // C++0x [class.friend]p11:
7076    //   If a friend declaration appears in a local class and the name
7077    //   specified is an unqualified name, a prior declaration is
7078    //   looked up without considering scopes that are outside the
7079    //   innermost enclosing non-class scope. For a friend function
7080    //   declaration, if there is no prior declaration, the program is
7081    //   ill-formed.
7082    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7083    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7084
7085    // Find the appropriate context according to the above.
7086    DC = CurContext;
7087    while (true) {
7088      // Skip class contexts.  If someone can cite chapter and verse
7089      // for this behavior, that would be nice --- it's what GCC and
7090      // EDG do, and it seems like a reasonable intent, but the spec
7091      // really only says that checks for unqualified existing
7092      // declarations should stop at the nearest enclosing namespace,
7093      // not that they should only consider the nearest enclosing
7094      // namespace.
7095      while (DC->isRecord())
7096        DC = DC->getParent();
7097
7098      LookupQualifiedName(Previous, DC);
7099
7100      // TODO: decide what we think about using declarations.
7101      if (isLocal || !Previous.empty())
7102        break;
7103
7104      if (isTemplateId) {
7105        if (isa<TranslationUnitDecl>(DC)) break;
7106      } else {
7107        if (DC->isFileContext()) break;
7108      }
7109      DC = DC->getParent();
7110    }
7111
7112    // C++ [class.friend]p1: A friend of a class is a function or
7113    //   class that is not a member of the class . . .
7114    // C++0x changes this for both friend types and functions.
7115    // Most C++ 98 compilers do seem to give an error here, so
7116    // we do, too.
7117    if (!Previous.empty() && DC->Equals(CurContext)
7118        && !getLangOptions().CPlusPlus0x)
7119      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7120
7121    DCScope = getScopeForDeclContext(S, DC);
7122
7123  //   - There's a non-dependent scope specifier, in which case we
7124  //     compute it and do a previous lookup there for a function
7125  //     or function template.
7126  } else if (!SS.getScopeRep()->isDependent()) {
7127    DC = computeDeclContext(SS);
7128    if (!DC) return 0;
7129
7130    if (RequireCompleteDeclContext(SS, DC)) return 0;
7131
7132    LookupQualifiedName(Previous, DC);
7133
7134    // Ignore things found implicitly in the wrong scope.
7135    // TODO: better diagnostics for this case.  Suggesting the right
7136    // qualified scope would be nice...
7137    LookupResult::Filter F = Previous.makeFilter();
7138    while (F.hasNext()) {
7139      NamedDecl *D = F.next();
7140      if (!DC->InEnclosingNamespaceSetOf(
7141              D->getDeclContext()->getRedeclContext()))
7142        F.erase();
7143    }
7144    F.done();
7145
7146    if (Previous.empty()) {
7147      D.setInvalidType();
7148      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7149      return 0;
7150    }
7151
7152    // C++ [class.friend]p1: A friend of a class is a function or
7153    //   class that is not a member of the class . . .
7154    if (DC->Equals(CurContext))
7155      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7156
7157  //   - There's a scope specifier that does not match any template
7158  //     parameter lists, in which case we use some arbitrary context,
7159  //     create a method or method template, and wait for instantiation.
7160  //   - There's a scope specifier that does match some template
7161  //     parameter lists, which we don't handle right now.
7162  } else {
7163    DC = CurContext;
7164    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7165  }
7166
7167  if (!DC->isRecord()) {
7168    // This implies that it has to be an operator or function.
7169    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7170        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7171        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7172      Diag(Loc, diag::err_introducing_special_friend) <<
7173        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7174         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7175      return 0;
7176    }
7177  }
7178
7179  bool Redeclaration = false;
7180  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7181                                          move(TemplateParams),
7182                                          IsDefinition,
7183                                          Redeclaration);
7184  if (!ND) return 0;
7185
7186  assert(ND->getDeclContext() == DC);
7187  assert(ND->getLexicalDeclContext() == CurContext);
7188
7189  // Add the function declaration to the appropriate lookup tables,
7190  // adjusting the redeclarations list as necessary.  We don't
7191  // want to do this yet if the friending class is dependent.
7192  //
7193  // Also update the scope-based lookup if the target context's
7194  // lookup context is in lexical scope.
7195  if (!CurContext->isDependentContext()) {
7196    DC = DC->getRedeclContext();
7197    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7198    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7199      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7200  }
7201
7202  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7203                                       D.getIdentifierLoc(), ND,
7204                                       DS.getFriendSpecLoc());
7205  FrD->setAccess(AS_public);
7206  CurContext->addDecl(FrD);
7207
7208  if (ND->isInvalidDecl())
7209    FrD->setInvalidDecl();
7210  else {
7211    FunctionDecl *FD;
7212    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7213      FD = FTD->getTemplatedDecl();
7214    else
7215      FD = cast<FunctionDecl>(ND);
7216
7217    // Mark templated-scope function declarations as unsupported.
7218    if (FD->getNumTemplateParameterLists())
7219      FrD->setUnsupportedFriend(true);
7220  }
7221
7222  return ND;
7223}
7224
7225void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7226  AdjustDeclIfTemplate(Dcl);
7227
7228  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7229  if (!Fn) {
7230    Diag(DelLoc, diag::err_deleted_non_function);
7231    return;
7232  }
7233  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7234    Diag(DelLoc, diag::err_deleted_decl_not_first);
7235    Diag(Prev->getLocation(), diag::note_previous_declaration);
7236    // If the declaration wasn't the first, we delete the function anyway for
7237    // recovery.
7238  }
7239  Fn->setDeleted();
7240}
7241
7242static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7243  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7244    Stmt *SubStmt = *CI;
7245    if (!SubStmt)
7246      continue;
7247    if (isa<ReturnStmt>(SubStmt))
7248      Self.Diag(SubStmt->getSourceRange().getBegin(),
7249           diag::err_return_in_constructor_handler);
7250    if (!isa<Expr>(SubStmt))
7251      SearchForReturnInStmt(Self, SubStmt);
7252  }
7253}
7254
7255void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7256  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7257    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7258    SearchForReturnInStmt(*this, Handler);
7259  }
7260}
7261
7262bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7263                                             const CXXMethodDecl *Old) {
7264  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7265  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7266
7267  if (Context.hasSameType(NewTy, OldTy) ||
7268      NewTy->isDependentType() || OldTy->isDependentType())
7269    return false;
7270
7271  // Check if the return types are covariant
7272  QualType NewClassTy, OldClassTy;
7273
7274  /// Both types must be pointers or references to classes.
7275  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7276    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7277      NewClassTy = NewPT->getPointeeType();
7278      OldClassTy = OldPT->getPointeeType();
7279    }
7280  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7281    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7282      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7283        NewClassTy = NewRT->getPointeeType();
7284        OldClassTy = OldRT->getPointeeType();
7285      }
7286    }
7287  }
7288
7289  // The return types aren't either both pointers or references to a class type.
7290  if (NewClassTy.isNull()) {
7291    Diag(New->getLocation(),
7292         diag::err_different_return_type_for_overriding_virtual_function)
7293      << New->getDeclName() << NewTy << OldTy;
7294    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7295
7296    return true;
7297  }
7298
7299  // C++ [class.virtual]p6:
7300  //   If the return type of D::f differs from the return type of B::f, the
7301  //   class type in the return type of D::f shall be complete at the point of
7302  //   declaration of D::f or shall be the class type D.
7303  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7304    if (!RT->isBeingDefined() &&
7305        RequireCompleteType(New->getLocation(), NewClassTy,
7306                            PDiag(diag::err_covariant_return_incomplete)
7307                              << New->getDeclName()))
7308    return true;
7309  }
7310
7311  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7312    // Check if the new class derives from the old class.
7313    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7314      Diag(New->getLocation(),
7315           diag::err_covariant_return_not_derived)
7316      << New->getDeclName() << NewTy << OldTy;
7317      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7318      return true;
7319    }
7320
7321    // Check if we the conversion from derived to base is valid.
7322    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7323                    diag::err_covariant_return_inaccessible_base,
7324                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7325                    // FIXME: Should this point to the return type?
7326                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7327      // FIXME: this note won't trigger for delayed access control
7328      // diagnostics, and it's impossible to get an undelayed error
7329      // here from access control during the original parse because
7330      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7331      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7332      return true;
7333    }
7334  }
7335
7336  // The qualifiers of the return types must be the same.
7337  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7338    Diag(New->getLocation(),
7339         diag::err_covariant_return_type_different_qualifications)
7340    << New->getDeclName() << NewTy << OldTy;
7341    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7342    return true;
7343  };
7344
7345
7346  // The new class type must have the same or less qualifiers as the old type.
7347  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7348    Diag(New->getLocation(),
7349         diag::err_covariant_return_type_class_type_more_qualified)
7350    << New->getDeclName() << NewTy << OldTy;
7351    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7352    return true;
7353  };
7354
7355  return false;
7356}
7357
7358/// \brief Mark the given method pure.
7359///
7360/// \param Method the method to be marked pure.
7361///
7362/// \param InitRange the source range that covers the "0" initializer.
7363bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7364  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7365    Method->setPure();
7366    return false;
7367  }
7368
7369  if (!Method->isInvalidDecl())
7370    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7371      << Method->getDeclName() << InitRange;
7372  return true;
7373}
7374
7375/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7376/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7377/// is a fresh scope pushed for just this purpose.
7378///
7379/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7380/// static data member of class X, names should be looked up in the scope of
7381/// class X.
7382void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7383  // If there is no declaration, there was an error parsing it.
7384  if (D == 0) return;
7385
7386  // We should only get called for declarations with scope specifiers, like:
7387  //   int foo::bar;
7388  assert(D->isOutOfLine());
7389  EnterDeclaratorContext(S, D->getDeclContext());
7390}
7391
7392/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7393/// initializer for the out-of-line declaration 'D'.
7394void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7395  // If there is no declaration, there was an error parsing it.
7396  if (D == 0) return;
7397
7398  assert(D->isOutOfLine());
7399  ExitDeclaratorContext(S);
7400}
7401
7402/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7403/// C++ if/switch/while/for statement.
7404/// e.g: "if (int x = f()) {...}"
7405DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7406  // C++ 6.4p2:
7407  // The declarator shall not specify a function or an array.
7408  // The type-specifier-seq shall not contain typedef and shall not declare a
7409  // new class or enumeration.
7410  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7411         "Parser allowed 'typedef' as storage class of condition decl.");
7412
7413  TagDecl *OwnedTag = 0;
7414  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7415  QualType Ty = TInfo->getType();
7416
7417  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7418                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7419                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7420    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7421      << D.getSourceRange();
7422    return DeclResult();
7423  } else if (OwnedTag && OwnedTag->isDefinition()) {
7424    // The type-specifier-seq shall not declare a new class or enumeration.
7425    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7426  }
7427
7428  Decl *Dcl = ActOnDeclarator(S, D);
7429  if (!Dcl)
7430    return DeclResult();
7431
7432  return Dcl;
7433}
7434
7435void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7436                          bool DefinitionRequired) {
7437  // Ignore any vtable uses in unevaluated operands or for classes that do
7438  // not have a vtable.
7439  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7440      CurContext->isDependentContext() ||
7441      ExprEvalContexts.back().Context == Unevaluated)
7442    return;
7443
7444  // Try to insert this class into the map.
7445  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7446  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7447    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7448  if (!Pos.second) {
7449    // If we already had an entry, check to see if we are promoting this vtable
7450    // to required a definition. If so, we need to reappend to the VTableUses
7451    // list, since we may have already processed the first entry.
7452    if (DefinitionRequired && !Pos.first->second) {
7453      Pos.first->second = true;
7454    } else {
7455      // Otherwise, we can early exit.
7456      return;
7457    }
7458  }
7459
7460  // Local classes need to have their virtual members marked
7461  // immediately. For all other classes, we mark their virtual members
7462  // at the end of the translation unit.
7463  if (Class->isLocalClass())
7464    MarkVirtualMembersReferenced(Loc, Class);
7465  else
7466    VTableUses.push_back(std::make_pair(Class, Loc));
7467}
7468
7469bool Sema::DefineUsedVTables() {
7470  if (VTableUses.empty())
7471    return false;
7472
7473  // Note: The VTableUses vector could grow as a result of marking
7474  // the members of a class as "used", so we check the size each
7475  // time through the loop and prefer indices (with are stable) to
7476  // iterators (which are not).
7477  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7478    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7479    if (!Class)
7480      continue;
7481
7482    SourceLocation Loc = VTableUses[I].second;
7483
7484    // If this class has a key function, but that key function is
7485    // defined in another translation unit, we don't need to emit the
7486    // vtable even though we're using it.
7487    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7488    if (KeyFunction && !KeyFunction->hasBody()) {
7489      switch (KeyFunction->getTemplateSpecializationKind()) {
7490      case TSK_Undeclared:
7491      case TSK_ExplicitSpecialization:
7492      case TSK_ExplicitInstantiationDeclaration:
7493        // The key function is in another translation unit.
7494        continue;
7495
7496      case TSK_ExplicitInstantiationDefinition:
7497      case TSK_ImplicitInstantiation:
7498        // We will be instantiating the key function.
7499        break;
7500      }
7501    } else if (!KeyFunction) {
7502      // If we have a class with no key function that is the subject
7503      // of an explicit instantiation declaration, suppress the
7504      // vtable; it will live with the explicit instantiation
7505      // definition.
7506      bool IsExplicitInstantiationDeclaration
7507        = Class->getTemplateSpecializationKind()
7508                                      == TSK_ExplicitInstantiationDeclaration;
7509      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7510                                 REnd = Class->redecls_end();
7511           R != REnd; ++R) {
7512        TemplateSpecializationKind TSK
7513          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7514        if (TSK == TSK_ExplicitInstantiationDeclaration)
7515          IsExplicitInstantiationDeclaration = true;
7516        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7517          IsExplicitInstantiationDeclaration = false;
7518          break;
7519        }
7520      }
7521
7522      if (IsExplicitInstantiationDeclaration)
7523        continue;
7524    }
7525
7526    // Mark all of the virtual members of this class as referenced, so
7527    // that we can build a vtable. Then, tell the AST consumer that a
7528    // vtable for this class is required.
7529    MarkVirtualMembersReferenced(Loc, Class);
7530    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7531    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7532
7533    // Optionally warn if we're emitting a weak vtable.
7534    if (Class->getLinkage() == ExternalLinkage &&
7535        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7536      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7537        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7538    }
7539  }
7540  VTableUses.clear();
7541
7542  return true;
7543}
7544
7545void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7546                                        const CXXRecordDecl *RD) {
7547  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7548       e = RD->method_end(); i != e; ++i) {
7549    CXXMethodDecl *MD = *i;
7550
7551    // C++ [basic.def.odr]p2:
7552    //   [...] A virtual member function is used if it is not pure. [...]
7553    if (MD->isVirtual() && !MD->isPure())
7554      MarkDeclarationReferenced(Loc, MD);
7555  }
7556
7557  // Only classes that have virtual bases need a VTT.
7558  if (RD->getNumVBases() == 0)
7559    return;
7560
7561  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7562           e = RD->bases_end(); i != e; ++i) {
7563    const CXXRecordDecl *Base =
7564        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7565    if (Base->getNumVBases() == 0)
7566      continue;
7567    MarkVirtualMembersReferenced(Loc, Base);
7568  }
7569}
7570
7571/// SetIvarInitializers - This routine builds initialization ASTs for the
7572/// Objective-C implementation whose ivars need be initialized.
7573void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7574  if (!getLangOptions().CPlusPlus)
7575    return;
7576  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7577    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7578    CollectIvarsToConstructOrDestruct(OID, ivars);
7579    if (ivars.empty())
7580      return;
7581    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7582    for (unsigned i = 0; i < ivars.size(); i++) {
7583      FieldDecl *Field = ivars[i];
7584      if (Field->isInvalidDecl())
7585        continue;
7586
7587      CXXCtorInitializer *Member;
7588      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7589      InitializationKind InitKind =
7590        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7591
7592      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7593      ExprResult MemberInit =
7594        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7595      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7596      // Note, MemberInit could actually come back empty if no initialization
7597      // is required (e.g., because it would call a trivial default constructor)
7598      if (!MemberInit.get() || MemberInit.isInvalid())
7599        continue;
7600
7601      Member =
7602        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7603                                         SourceLocation(),
7604                                         MemberInit.takeAs<Expr>(),
7605                                         SourceLocation());
7606      AllToInit.push_back(Member);
7607
7608      // Be sure that the destructor is accessible and is marked as referenced.
7609      if (const RecordType *RecordTy
7610                  = Context.getBaseElementType(Field->getType())
7611                                                        ->getAs<RecordType>()) {
7612                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7613        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7614          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7615          CheckDestructorAccess(Field->getLocation(), Destructor,
7616                            PDiag(diag::err_access_dtor_ivar)
7617                              << Context.getBaseElementType(Field->getType()));
7618        }
7619      }
7620    }
7621    ObjCImplementation->setIvarInitializers(Context,
7622                                            AllToInit.data(), AllToInit.size());
7623  }
7624}
7625