SemaDeclCXX.cpp revision 4b662a5684d41ea4ff6b52711929e00fefb00db1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  QualType FieldType = Member->getType();
1289  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1290    FieldType = Array->getElementType();
1291  if (FieldType->isDependentType() || HasDependentArg) {
1292    // Can't check initialization for a member of dependent type or when
1293    // any of the arguments are type-dependent expressions.
1294    OwningExprResult Init
1295      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1296                                          RParenLoc));
1297
1298    // Erase any temporaries within this evaluation context; we're not
1299    // going to track them in the AST, since we'll be rebuilding the
1300    // ASTs during template instantiation.
1301    ExprTemporaries.erase(
1302              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1303                          ExprTemporaries.end());
1304
1305    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1306                                                    LParenLoc,
1307                                                    Init.takeAs<Expr>(),
1308                                                    RParenLoc);
1309
1310  }
1311
1312  if (Member->isInvalidDecl())
1313    return true;
1314
1315  // Initialize the member.
1316  InitializedEntity MemberEntity =
1317    InitializedEntity::InitializeMember(Member, 0);
1318  InitializationKind Kind =
1319    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1320
1321  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1322
1323  OwningExprResult MemberInit =
1324    InitSeq.Perform(*this, MemberEntity, Kind,
1325                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1326  if (MemberInit.isInvalid())
1327    return true;
1328
1329  // C++0x [class.base.init]p7:
1330  //   The initialization of each base and member constitutes a
1331  //   full-expression.
1332  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1333  if (MemberInit.isInvalid())
1334    return true;
1335
1336  // If we are in a dependent context, template instantiation will
1337  // perform this type-checking again. Just save the arguments that we
1338  // received in a ParenListExpr.
1339  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1340  // of the information that we have about the member
1341  // initializer. However, deconstructing the ASTs is a dicey process,
1342  // and this approach is far more likely to get the corner cases right.
1343  if (CurContext->isDependentContext()) {
1344    // Bump the reference count of all of the arguments.
1345    for (unsigned I = 0; I != NumArgs; ++I)
1346      Args[I]->Retain();
1347
1348    OwningExprResult Init
1349      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1350                                          RParenLoc));
1351    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1352                                                    LParenLoc,
1353                                                    Init.takeAs<Expr>(),
1354                                                    RParenLoc);
1355  }
1356
1357  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1358                                                  LParenLoc,
1359                                                  MemberInit.takeAs<Expr>(),
1360                                                  RParenLoc);
1361}
1362
1363Sema::MemInitResult
1364Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1365                           Expr **Args, unsigned NumArgs,
1366                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1367                           CXXRecordDecl *ClassDecl) {
1368  bool HasDependentArg = false;
1369  for (unsigned i = 0; i < NumArgs; i++)
1370    HasDependentArg |= Args[i]->isTypeDependent();
1371
1372  SourceLocation BaseLoc
1373    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1374
1375  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1376    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1377             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1378
1379  // C++ [class.base.init]p2:
1380  //   [...] Unless the mem-initializer-id names a nonstatic data
1381  //   member of the constructor’s class or a direct or virtual base
1382  //   of that class, the mem-initializer is ill-formed. A
1383  //   mem-initializer-list can initialize a base class using any
1384  //   name that denotes that base class type.
1385  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1386
1387  // Check for direct and virtual base classes.
1388  const CXXBaseSpecifier *DirectBaseSpec = 0;
1389  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1390  if (!Dependent) {
1391    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1392                        VirtualBaseSpec);
1393
1394    // C++ [base.class.init]p2:
1395    // Unless the mem-initializer-id names a nonstatic data member of the
1396    // constructor's class or a direct or virtual base of that class, the
1397    // mem-initializer is ill-formed.
1398    if (!DirectBaseSpec && !VirtualBaseSpec) {
1399      // If the class has any dependent bases, then it's possible that
1400      // one of those types will resolve to the same type as
1401      // BaseType. Therefore, just treat this as a dependent base
1402      // class initialization.  FIXME: Should we try to check the
1403      // initialization anyway? It seems odd.
1404      if (ClassDecl->hasAnyDependentBases())
1405        Dependent = true;
1406      else
1407        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1408          << BaseType << Context.getTypeDeclType(ClassDecl)
1409          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1410    }
1411  }
1412
1413  if (Dependent) {
1414    // Can't check initialization for a base of dependent type or when
1415    // any of the arguments are type-dependent expressions.
1416    OwningExprResult BaseInit
1417      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                          RParenLoc));
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426
1427    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                    /*IsVirtual=*/false,
1429                                                    LParenLoc,
1430                                                    BaseInit.takeAs<Expr>(),
1431                                                    RParenLoc);
1432  }
1433
1434  // C++ [base.class.init]p2:
1435  //   If a mem-initializer-id is ambiguous because it designates both
1436  //   a direct non-virtual base class and an inherited virtual base
1437  //   class, the mem-initializer is ill-formed.
1438  if (DirectBaseSpec && VirtualBaseSpec)
1439    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1440      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1441
1442  CXXBaseSpecifier *BaseSpec
1443    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1444  if (!BaseSpec)
1445    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1446
1447  // Initialize the base.
1448  InitializedEntity BaseEntity =
1449    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1450  InitializationKind Kind =
1451    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1452
1453  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1454
1455  OwningExprResult BaseInit =
1456    InitSeq.Perform(*this, BaseEntity, Kind,
1457                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1458  if (BaseInit.isInvalid())
1459    return true;
1460
1461  // C++0x [class.base.init]p7:
1462  //   The initialization of each base and member constitutes a
1463  //   full-expression.
1464  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1465  if (BaseInit.isInvalid())
1466    return true;
1467
1468  // If we are in a dependent context, template instantiation will
1469  // perform this type-checking again. Just save the arguments that we
1470  // received in a ParenListExpr.
1471  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1472  // of the information that we have about the base
1473  // initializer. However, deconstructing the ASTs is a dicey process,
1474  // and this approach is far more likely to get the corner cases right.
1475  if (CurContext->isDependentContext()) {
1476    // Bump the reference count of all of the arguments.
1477    for (unsigned I = 0; I != NumArgs; ++I)
1478      Args[I]->Retain();
1479
1480    OwningExprResult Init
1481      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1482                                          RParenLoc));
1483    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1484                                                    BaseSpec->isVirtual(),
1485                                                    LParenLoc,
1486                                                    Init.takeAs<Expr>(),
1487                                                    RParenLoc);
1488  }
1489
1490  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1491                                                  BaseSpec->isVirtual(),
1492                                                  LParenLoc,
1493                                                  BaseInit.takeAs<Expr>(),
1494                                                  RParenLoc);
1495}
1496
1497/// ImplicitInitializerKind - How an implicit base or member initializer should
1498/// initialize its base or member.
1499enum ImplicitInitializerKind {
1500  IIK_Default,
1501  IIK_Copy,
1502  IIK_Move
1503};
1504
1505static bool
1506BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1507                             ImplicitInitializerKind ImplicitInitKind,
1508                             CXXBaseSpecifier *BaseSpec,
1509                             bool IsInheritedVirtualBase,
1510                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1511  InitializedEntity InitEntity
1512    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1513                                        IsInheritedVirtualBase);
1514
1515  Sema::OwningExprResult BaseInit(SemaRef);
1516
1517  switch (ImplicitInitKind) {
1518  case IIK_Default: {
1519    InitializationKind InitKind
1520      = InitializationKind::CreateDefault(Constructor->getLocation());
1521    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1522    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1523                               Sema::MultiExprArg(SemaRef, 0, 0));
1524    break;
1525  }
1526
1527  case IIK_Copy: {
1528    ParmVarDecl *Param = Constructor->getParamDecl(0);
1529    QualType ParamType = Param->getType().getNonReferenceType();
1530
1531    Expr *CopyCtorArg =
1532      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1533                          Constructor->getLocation(), ParamType, 0);
1534
1535    // Cast to the base class to avoid ambiguities.
1536    QualType ArgTy =
1537      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1538                                       ParamType.getQualifiers());
1539    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1540                              CastExpr::CK_UncheckedDerivedToBase,
1541                              /*isLvalue=*/true,
1542                              CXXBaseSpecifierArray(BaseSpec));
1543
1544    InitializationKind InitKind
1545      = InitializationKind::CreateDirect(Constructor->getLocation(),
1546                                         SourceLocation(), SourceLocation());
1547    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1548                                   &CopyCtorArg, 1);
1549    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1550                               Sema::MultiExprArg(SemaRef,
1551                                                  (void**)&CopyCtorArg, 1));
1552    break;
1553  }
1554
1555  case IIK_Move:
1556    assert(false && "Unhandled initializer kind!");
1557  }
1558
1559  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1560  if (BaseInit.isInvalid())
1561    return true;
1562
1563  CXXBaseInit =
1564    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1565               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1566                                                        SourceLocation()),
1567                                             BaseSpec->isVirtual(),
1568                                             SourceLocation(),
1569                                             BaseInit.takeAs<Expr>(),
1570                                             SourceLocation());
1571
1572  return false;
1573}
1574
1575static bool
1576BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1577                               ImplicitInitializerKind ImplicitInitKind,
1578                               FieldDecl *Field,
1579                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1580  if (Field->isInvalidDecl())
1581    return true;
1582
1583  SourceLocation Loc = Constructor->getLocation();
1584
1585  if (ImplicitInitKind == IIK_Copy) {
1586    ParmVarDecl *Param = Constructor->getParamDecl(0);
1587    QualType ParamType = Param->getType().getNonReferenceType();
1588
1589    Expr *MemberExprBase =
1590      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1591                          Loc, ParamType, 0);
1592
1593    // Build a reference to this field within the parameter.
1594    CXXScopeSpec SS;
1595    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1596                              Sema::LookupMemberName);
1597    MemberLookup.addDecl(Field, AS_public);
1598    MemberLookup.resolveKind();
1599    Sema::OwningExprResult CopyCtorArg
1600      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1601                                         ParamType, Loc,
1602                                         /*IsArrow=*/false,
1603                                         SS,
1604                                         /*FirstQualifierInScope=*/0,
1605                                         MemberLookup,
1606                                         /*TemplateArgs=*/0);
1607    if (CopyCtorArg.isInvalid())
1608      return true;
1609
1610    // When the field we are copying is an array, create index variables for
1611    // each dimension of the array. We use these index variables to subscript
1612    // the source array, and other clients (e.g., CodeGen) will perform the
1613    // necessary iteration with these index variables.
1614    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1615    QualType BaseType = Field->getType();
1616    QualType SizeType = SemaRef.Context.getSizeType();
1617    while (const ConstantArrayType *Array
1618                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1619      // Create the iteration variable for this array index.
1620      IdentifierInfo *IterationVarName = 0;
1621      {
1622        llvm::SmallString<8> Str;
1623        llvm::raw_svector_ostream OS(Str);
1624        OS << "__i" << IndexVariables.size();
1625        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1626      }
1627      VarDecl *IterationVar
1628        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1629                          IterationVarName, SizeType,
1630                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1631                          VarDecl::None, VarDecl::None);
1632      IndexVariables.push_back(IterationVar);
1633
1634      // Create a reference to the iteration variable.
1635      Sema::OwningExprResult IterationVarRef
1636        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1637      assert(!IterationVarRef.isInvalid() &&
1638             "Reference to invented variable cannot fail!");
1639
1640      // Subscript the array with this iteration variable.
1641      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1642                                                            Loc,
1643                                                          move(IterationVarRef),
1644                                                            Loc);
1645      if (CopyCtorArg.isInvalid())
1646        return true;
1647
1648      BaseType = Array->getElementType();
1649    }
1650
1651    // Construct the entity that we will be initializing. For an array, this
1652    // will be first element in the array, which may require several levels
1653    // of array-subscript entities.
1654    llvm::SmallVector<InitializedEntity, 4> Entities;
1655    Entities.reserve(1 + IndexVariables.size());
1656    Entities.push_back(InitializedEntity::InitializeMember(Field));
1657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1659                                                              0,
1660                                                              Entities.back()));
1661
1662    // Direct-initialize to use the copy constructor.
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1665
1666    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1668                                   &CopyCtorArgE, 1);
1669
1670    Sema::OwningExprResult MemberInit
1671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1672                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1673    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1674    if (MemberInit.isInvalid())
1675      return true;
1676
1677    CXXMemberInit
1678      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1679                                           MemberInit.takeAs<Expr>(), Loc,
1680                                           IndexVariables.data(),
1681                                           IndexVariables.size());
1682    return false;
1683  }
1684
1685  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1686
1687  QualType FieldBaseElementType =
1688    SemaRef.Context.getBaseElementType(Field->getType());
1689
1690  if (FieldBaseElementType->isRecordType()) {
1691    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1692    InitializationKind InitKind =
1693      InitializationKind::CreateDefault(Loc);
1694
1695    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1696    Sema::OwningExprResult MemberInit =
1697      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1698                      Sema::MultiExprArg(SemaRef, 0, 0));
1699    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1700    if (MemberInit.isInvalid())
1701      return true;
1702
1703    CXXMemberInit =
1704      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1705                                                       Field, Loc, Loc,
1706                                                      MemberInit.takeAs<Expr>(),
1707                                                       Loc);
1708    return false;
1709  }
1710
1711  if (FieldBaseElementType->isReferenceType()) {
1712    SemaRef.Diag(Constructor->getLocation(),
1713                 diag::err_uninitialized_member_in_ctor)
1714    << (int)Constructor->isImplicit()
1715    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1716    << 0 << Field->getDeclName();
1717    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1718    return true;
1719  }
1720
1721  if (FieldBaseElementType.isConstQualified()) {
1722    SemaRef.Diag(Constructor->getLocation(),
1723                 diag::err_uninitialized_member_in_ctor)
1724    << (int)Constructor->isImplicit()
1725    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1726    << 1 << Field->getDeclName();
1727    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1728    return true;
1729  }
1730
1731  // Nothing to initialize.
1732  CXXMemberInit = 0;
1733  return false;
1734}
1735
1736namespace {
1737struct BaseAndFieldInfo {
1738  Sema &S;
1739  CXXConstructorDecl *Ctor;
1740  bool AnyErrorsInInits;
1741  ImplicitInitializerKind IIK;
1742  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1743  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1744
1745  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1746    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1747    // FIXME: Handle implicit move constructors.
1748    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1749      IIK = IIK_Copy;
1750    else
1751      IIK = IIK_Default;
1752  }
1753};
1754}
1755
1756static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1757                                   FieldDecl *Top, FieldDecl *Field,
1758                                   CXXBaseOrMemberInitializer *Init) {
1759  // If the member doesn't need to be initialized, Init will still be null.
1760  if (!Init)
1761    return;
1762
1763  Info.AllToInit.push_back(Init);
1764  if (Field != Top) {
1765    Init->setMember(Top);
1766    Init->setAnonUnionMember(Field);
1767  }
1768}
1769
1770static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1771                                    FieldDecl *Top, FieldDecl *Field) {
1772
1773  // Overwhelmingly common case: we have a direct initializer for this field.
1774  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1775    RecordFieldInitializer(Info, Top, Field, Init);
1776    return false;
1777  }
1778
1779  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1780    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1781    assert(FieldClassType && "anonymous struct/union without record type");
1782    CXXRecordDecl *FieldClassDecl
1783      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1784
1785    // Even though union members never have non-trivial default
1786    // constructions in C++03, we still build member initializers for aggregate
1787    // record types which can be union members, and C++0x allows non-trivial
1788    // default constructors for union members, so we ensure that only one
1789    // member is initialized for these.
1790    if (FieldClassDecl->isUnion()) {
1791      // First check for an explicit initializer for one field.
1792      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1793           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1794        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1795          RecordFieldInitializer(Info, Top, *FA, Init);
1796
1797          // Once we've initialized a field of an anonymous union, the union
1798          // field in the class is also initialized, so exit immediately.
1799          return false;
1800        }
1801      }
1802
1803      // Fallthrough and construct a default initializer for the union as
1804      // a whole, which can call its default constructor if such a thing exists
1805      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1806      // behavior going forward with C++0x, when anonymous unions there are
1807      // finalized, we should revisit this.
1808    } else {
1809      // For structs, we simply descend through to initialize all members where
1810      // necessary.
1811      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1812           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1813        if (CollectFieldInitializer(Info, Top, *FA))
1814          return true;
1815      }
1816    }
1817  }
1818
1819  // Don't try to build an implicit initializer if there were semantic
1820  // errors in any of the initializers (and therefore we might be
1821  // missing some that the user actually wrote).
1822  if (Info.AnyErrorsInInits)
1823    return false;
1824
1825  CXXBaseOrMemberInitializer *Init = 0;
1826  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1827    return true;
1828
1829  RecordFieldInitializer(Info, Top, Field, Init);
1830  return false;
1831}
1832
1833bool
1834Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1835                                  CXXBaseOrMemberInitializer **Initializers,
1836                                  unsigned NumInitializers,
1837                                  bool AnyErrors) {
1838  if (Constructor->getDeclContext()->isDependentContext()) {
1839    // Just store the initializers as written, they will be checked during
1840    // instantiation.
1841    if (NumInitializers > 0) {
1842      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1843      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1844        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1845      memcpy(baseOrMemberInitializers, Initializers,
1846             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1847      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1848    }
1849
1850    return false;
1851  }
1852
1853  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1854
1855  // We need to build the initializer AST according to order of construction
1856  // and not what user specified in the Initializers list.
1857  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1858  if (!ClassDecl)
1859    return true;
1860
1861  bool HadError = false;
1862
1863  for (unsigned i = 0; i < NumInitializers; i++) {
1864    CXXBaseOrMemberInitializer *Member = Initializers[i];
1865
1866    if (Member->isBaseInitializer())
1867      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1868    else
1869      Info.AllBaseFields[Member->getMember()] = Member;
1870  }
1871
1872  // Keep track of the direct virtual bases.
1873  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1874  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); I != E; ++I) {
1876    if (I->isVirtual())
1877      DirectVBases.insert(I);
1878  }
1879
1880  // Push virtual bases before others.
1881  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1882       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1883
1884    if (CXXBaseOrMemberInitializer *Value
1885        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1886      Info.AllToInit.push_back(Value);
1887    } else if (!AnyErrors) {
1888      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1889      CXXBaseOrMemberInitializer *CXXBaseInit;
1890      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1891                                       VBase, IsInheritedVirtualBase,
1892                                       CXXBaseInit)) {
1893        HadError = true;
1894        continue;
1895      }
1896
1897      Info.AllToInit.push_back(CXXBaseInit);
1898    }
1899  }
1900
1901  // Non-virtual bases.
1902  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1903       E = ClassDecl->bases_end(); Base != E; ++Base) {
1904    // Virtuals are in the virtual base list and already constructed.
1905    if (Base->isVirtual())
1906      continue;
1907
1908    if (CXXBaseOrMemberInitializer *Value
1909          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1910      Info.AllToInit.push_back(Value);
1911    } else if (!AnyErrors) {
1912      CXXBaseOrMemberInitializer *CXXBaseInit;
1913      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1914                                       Base, /*IsInheritedVirtualBase=*/false,
1915                                       CXXBaseInit)) {
1916        HadError = true;
1917        continue;
1918      }
1919
1920      Info.AllToInit.push_back(CXXBaseInit);
1921    }
1922  }
1923
1924  // Fields.
1925  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1926       E = ClassDecl->field_end(); Field != E; ++Field) {
1927    if ((*Field)->getType()->isIncompleteArrayType()) {
1928      assert(ClassDecl->hasFlexibleArrayMember() &&
1929             "Incomplete array type is not valid");
1930      continue;
1931    }
1932    if (CollectFieldInitializer(Info, *Field, *Field))
1933      HadError = true;
1934  }
1935
1936  NumInitializers = Info.AllToInit.size();
1937  if (NumInitializers > 0) {
1938    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1939    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1940      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1941    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1942           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1943    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1944
1945    // Constructors implicitly reference the base and member
1946    // destructors.
1947    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1948                                           Constructor->getParent());
1949  }
1950
1951  return HadError;
1952}
1953
1954static void *GetKeyForTopLevelField(FieldDecl *Field) {
1955  // For anonymous unions, use the class declaration as the key.
1956  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1957    if (RT->getDecl()->isAnonymousStructOrUnion())
1958      return static_cast<void *>(RT->getDecl());
1959  }
1960  return static_cast<void *>(Field);
1961}
1962
1963static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1964  return Context.getCanonicalType(BaseType).getTypePtr();
1965}
1966
1967static void *GetKeyForMember(ASTContext &Context,
1968                             CXXBaseOrMemberInitializer *Member,
1969                             bool MemberMaybeAnon = false) {
1970  if (!Member->isMemberInitializer())
1971    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1972
1973  // For fields injected into the class via declaration of an anonymous union,
1974  // use its anonymous union class declaration as the unique key.
1975  FieldDecl *Field = Member->getMember();
1976
1977  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1978  // data member of the class. Data member used in the initializer list is
1979  // in AnonUnionMember field.
1980  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1981    Field = Member->getAnonUnionMember();
1982
1983  // If the field is a member of an anonymous struct or union, our key
1984  // is the anonymous record decl that's a direct child of the class.
1985  RecordDecl *RD = Field->getParent();
1986  if (RD->isAnonymousStructOrUnion()) {
1987    while (true) {
1988      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1989      if (Parent->isAnonymousStructOrUnion())
1990        RD = Parent;
1991      else
1992        break;
1993    }
1994
1995    return static_cast<void *>(RD);
1996  }
1997
1998  return static_cast<void *>(Field);
1999}
2000
2001static void
2002DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2003                                  const CXXConstructorDecl *Constructor,
2004                                  CXXBaseOrMemberInitializer **Inits,
2005                                  unsigned NumInits) {
2006  if (Constructor->getDeclContext()->isDependentContext())
2007    return;
2008
2009  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2010        == Diagnostic::Ignored)
2011    return;
2012
2013  // Build the list of bases and members in the order that they'll
2014  // actually be initialized.  The explicit initializers should be in
2015  // this same order but may be missing things.
2016  llvm::SmallVector<const void*, 32> IdealInitKeys;
2017
2018  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2019
2020  // 1. Virtual bases.
2021  for (CXXRecordDecl::base_class_const_iterator VBase =
2022       ClassDecl->vbases_begin(),
2023       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2024    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2025
2026  // 2. Non-virtual bases.
2027  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2028       E = ClassDecl->bases_end(); Base != E; ++Base) {
2029    if (Base->isVirtual())
2030      continue;
2031    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2032  }
2033
2034  // 3. Direct fields.
2035  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2036       E = ClassDecl->field_end(); Field != E; ++Field)
2037    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2038
2039  unsigned NumIdealInits = IdealInitKeys.size();
2040  unsigned IdealIndex = 0;
2041
2042  CXXBaseOrMemberInitializer *PrevInit = 0;
2043  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2044    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2045    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2046
2047    // Scan forward to try to find this initializer in the idealized
2048    // initializers list.
2049    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2050      if (InitKey == IdealInitKeys[IdealIndex])
2051        break;
2052
2053    // If we didn't find this initializer, it must be because we
2054    // scanned past it on a previous iteration.  That can only
2055    // happen if we're out of order;  emit a warning.
2056    if (IdealIndex == NumIdealInits && PrevInit) {
2057      Sema::SemaDiagnosticBuilder D =
2058        SemaRef.Diag(PrevInit->getSourceLocation(),
2059                     diag::warn_initializer_out_of_order);
2060
2061      if (PrevInit->isMemberInitializer())
2062        D << 0 << PrevInit->getMember()->getDeclName();
2063      else
2064        D << 1 << PrevInit->getBaseClassInfo()->getType();
2065
2066      if (Init->isMemberInitializer())
2067        D << 0 << Init->getMember()->getDeclName();
2068      else
2069        D << 1 << Init->getBaseClassInfo()->getType();
2070
2071      // Move back to the initializer's location in the ideal list.
2072      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2073        if (InitKey == IdealInitKeys[IdealIndex])
2074          break;
2075
2076      assert(IdealIndex != NumIdealInits &&
2077             "initializer not found in initializer list");
2078    }
2079
2080    PrevInit = Init;
2081  }
2082}
2083
2084namespace {
2085bool CheckRedundantInit(Sema &S,
2086                        CXXBaseOrMemberInitializer *Init,
2087                        CXXBaseOrMemberInitializer *&PrevInit) {
2088  if (!PrevInit) {
2089    PrevInit = Init;
2090    return false;
2091  }
2092
2093  if (FieldDecl *Field = Init->getMember())
2094    S.Diag(Init->getSourceLocation(),
2095           diag::err_multiple_mem_initialization)
2096      << Field->getDeclName()
2097      << Init->getSourceRange();
2098  else {
2099    Type *BaseClass = Init->getBaseClass();
2100    assert(BaseClass && "neither field nor base");
2101    S.Diag(Init->getSourceLocation(),
2102           diag::err_multiple_base_initialization)
2103      << QualType(BaseClass, 0)
2104      << Init->getSourceRange();
2105  }
2106  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2107    << 0 << PrevInit->getSourceRange();
2108
2109  return true;
2110}
2111
2112typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2113typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2114
2115bool CheckRedundantUnionInit(Sema &S,
2116                             CXXBaseOrMemberInitializer *Init,
2117                             RedundantUnionMap &Unions) {
2118  FieldDecl *Field = Init->getMember();
2119  RecordDecl *Parent = Field->getParent();
2120  if (!Parent->isAnonymousStructOrUnion())
2121    return false;
2122
2123  NamedDecl *Child = Field;
2124  do {
2125    if (Parent->isUnion()) {
2126      UnionEntry &En = Unions[Parent];
2127      if (En.first && En.first != Child) {
2128        S.Diag(Init->getSourceLocation(),
2129               diag::err_multiple_mem_union_initialization)
2130          << Field->getDeclName()
2131          << Init->getSourceRange();
2132        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2133          << 0 << En.second->getSourceRange();
2134        return true;
2135      } else if (!En.first) {
2136        En.first = Child;
2137        En.second = Init;
2138      }
2139    }
2140
2141    Child = Parent;
2142    Parent = cast<RecordDecl>(Parent->getDeclContext());
2143  } while (Parent->isAnonymousStructOrUnion());
2144
2145  return false;
2146}
2147}
2148
2149/// ActOnMemInitializers - Handle the member initializers for a constructor.
2150void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2151                                SourceLocation ColonLoc,
2152                                MemInitTy **meminits, unsigned NumMemInits,
2153                                bool AnyErrors) {
2154  if (!ConstructorDecl)
2155    return;
2156
2157  AdjustDeclIfTemplate(ConstructorDecl);
2158
2159  CXXConstructorDecl *Constructor
2160    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2161
2162  if (!Constructor) {
2163    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2164    return;
2165  }
2166
2167  CXXBaseOrMemberInitializer **MemInits =
2168    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2169
2170  // Mapping for the duplicate initializers check.
2171  // For member initializers, this is keyed with a FieldDecl*.
2172  // For base initializers, this is keyed with a Type*.
2173  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2174
2175  // Mapping for the inconsistent anonymous-union initializers check.
2176  RedundantUnionMap MemberUnions;
2177
2178  bool HadError = false;
2179  for (unsigned i = 0; i < NumMemInits; i++) {
2180    CXXBaseOrMemberInitializer *Init = MemInits[i];
2181
2182    // Set the source order index.
2183    Init->setSourceOrder(i);
2184
2185    if (Init->isMemberInitializer()) {
2186      FieldDecl *Field = Init->getMember();
2187      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2188          CheckRedundantUnionInit(*this, Init, MemberUnions))
2189        HadError = true;
2190    } else {
2191      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2192      if (CheckRedundantInit(*this, Init, Members[Key]))
2193        HadError = true;
2194    }
2195  }
2196
2197  if (HadError)
2198    return;
2199
2200  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2201
2202  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2203}
2204
2205void
2206Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2207                                             CXXRecordDecl *ClassDecl) {
2208  // Ignore dependent contexts.
2209  if (ClassDecl->isDependentContext())
2210    return;
2211
2212  // FIXME: all the access-control diagnostics are positioned on the
2213  // field/base declaration.  That's probably good; that said, the
2214  // user might reasonably want to know why the destructor is being
2215  // emitted, and we currently don't say.
2216
2217  // Non-static data members.
2218  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2219       E = ClassDecl->field_end(); I != E; ++I) {
2220    FieldDecl *Field = *I;
2221    if (Field->isInvalidDecl())
2222      continue;
2223    QualType FieldType = Context.getBaseElementType(Field->getType());
2224
2225    const RecordType* RT = FieldType->getAs<RecordType>();
2226    if (!RT)
2227      continue;
2228
2229    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2230    if (FieldClassDecl->hasTrivialDestructor())
2231      continue;
2232
2233    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2234    CheckDestructorAccess(Field->getLocation(), Dtor,
2235                          PDiag(diag::err_access_dtor_field)
2236                            << Field->getDeclName()
2237                            << FieldType);
2238
2239    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2240  }
2241
2242  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2243
2244  // Bases.
2245  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2246       E = ClassDecl->bases_end(); Base != E; ++Base) {
2247    // Bases are always records in a well-formed non-dependent class.
2248    const RecordType *RT = Base->getType()->getAs<RecordType>();
2249
2250    // Remember direct virtual bases.
2251    if (Base->isVirtual())
2252      DirectVirtualBases.insert(RT);
2253
2254    // Ignore trivial destructors.
2255    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2256    if (BaseClassDecl->hasTrivialDestructor())
2257      continue;
2258
2259    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2260
2261    // FIXME: caret should be on the start of the class name
2262    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2263                          PDiag(diag::err_access_dtor_base)
2264                            << Base->getType()
2265                            << Base->getSourceRange());
2266
2267    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2268  }
2269
2270  // Virtual bases.
2271  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2272       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2273
2274    // Bases are always records in a well-formed non-dependent class.
2275    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2276
2277    // Ignore direct virtual bases.
2278    if (DirectVirtualBases.count(RT))
2279      continue;
2280
2281    // Ignore trivial destructors.
2282    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2283    if (BaseClassDecl->hasTrivialDestructor())
2284      continue;
2285
2286    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2287    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2288                          PDiag(diag::err_access_dtor_vbase)
2289                            << VBase->getType());
2290
2291    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2292  }
2293}
2294
2295void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2296  if (!CDtorDecl)
2297    return;
2298
2299  if (CXXConstructorDecl *Constructor
2300      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2301    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2302}
2303
2304bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2305                                  unsigned DiagID, AbstractDiagSelID SelID,
2306                                  const CXXRecordDecl *CurrentRD) {
2307  if (SelID == -1)
2308    return RequireNonAbstractType(Loc, T,
2309                                  PDiag(DiagID), CurrentRD);
2310  else
2311    return RequireNonAbstractType(Loc, T,
2312                                  PDiag(DiagID) << SelID, CurrentRD);
2313}
2314
2315bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2316                                  const PartialDiagnostic &PD,
2317                                  const CXXRecordDecl *CurrentRD) {
2318  if (!getLangOptions().CPlusPlus)
2319    return false;
2320
2321  if (const ArrayType *AT = Context.getAsArrayType(T))
2322    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2323                                  CurrentRD);
2324
2325  if (const PointerType *PT = T->getAs<PointerType>()) {
2326    // Find the innermost pointer type.
2327    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2328      PT = T;
2329
2330    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2331      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2332  }
2333
2334  const RecordType *RT = T->getAs<RecordType>();
2335  if (!RT)
2336    return false;
2337
2338  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2339
2340  if (CurrentRD && CurrentRD != RD)
2341    return false;
2342
2343  // FIXME: is this reasonable?  It matches current behavior, but....
2344  if (!RD->getDefinition())
2345    return false;
2346
2347  if (!RD->isAbstract())
2348    return false;
2349
2350  Diag(Loc, PD) << RD->getDeclName();
2351
2352  // Check if we've already emitted the list of pure virtual functions for this
2353  // class.
2354  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2355    return true;
2356
2357  CXXFinalOverriderMap FinalOverriders;
2358  RD->getFinalOverriders(FinalOverriders);
2359
2360  // Keep a set of seen pure methods so we won't diagnose the same method
2361  // more than once.
2362  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2363
2364  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2365                                   MEnd = FinalOverriders.end();
2366       M != MEnd;
2367       ++M) {
2368    for (OverridingMethods::iterator SO = M->second.begin(),
2369                                  SOEnd = M->second.end();
2370         SO != SOEnd; ++SO) {
2371      // C++ [class.abstract]p4:
2372      //   A class is abstract if it contains or inherits at least one
2373      //   pure virtual function for which the final overrider is pure
2374      //   virtual.
2375
2376      //
2377      if (SO->second.size() != 1)
2378        continue;
2379
2380      if (!SO->second.front().Method->isPure())
2381        continue;
2382
2383      if (!SeenPureMethods.insert(SO->second.front().Method))
2384        continue;
2385
2386      Diag(SO->second.front().Method->getLocation(),
2387           diag::note_pure_virtual_function)
2388        << SO->second.front().Method->getDeclName();
2389    }
2390  }
2391
2392  if (!PureVirtualClassDiagSet)
2393    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2394  PureVirtualClassDiagSet->insert(RD);
2395
2396  return true;
2397}
2398
2399namespace {
2400  class AbstractClassUsageDiagnoser
2401    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2402    Sema &SemaRef;
2403    CXXRecordDecl *AbstractClass;
2404
2405    bool VisitDeclContext(const DeclContext *DC) {
2406      bool Invalid = false;
2407
2408      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2409           E = DC->decls_end(); I != E; ++I)
2410        Invalid |= Visit(*I);
2411
2412      return Invalid;
2413    }
2414
2415  public:
2416    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2417      : SemaRef(SemaRef), AbstractClass(ac) {
2418        Visit(SemaRef.Context.getTranslationUnitDecl());
2419    }
2420
2421    bool VisitFunctionDecl(const FunctionDecl *FD) {
2422      if (FD->isThisDeclarationADefinition()) {
2423        // No need to do the check if we're in a definition, because it requires
2424        // that the return/param types are complete.
2425        // because that requires
2426        return VisitDeclContext(FD);
2427      }
2428
2429      // Check the return type.
2430      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2431      bool Invalid =
2432        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2433                                       diag::err_abstract_type_in_decl,
2434                                       Sema::AbstractReturnType,
2435                                       AbstractClass);
2436
2437      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2438           E = FD->param_end(); I != E; ++I) {
2439        const ParmVarDecl *VD = *I;
2440        Invalid |=
2441          SemaRef.RequireNonAbstractType(VD->getLocation(),
2442                                         VD->getOriginalType(),
2443                                         diag::err_abstract_type_in_decl,
2444                                         Sema::AbstractParamType,
2445                                         AbstractClass);
2446      }
2447
2448      return Invalid;
2449    }
2450
2451    bool VisitDecl(const Decl* D) {
2452      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2453        return VisitDeclContext(DC);
2454
2455      return false;
2456    }
2457  };
2458}
2459
2460/// \brief Perform semantic checks on a class definition that has been
2461/// completing, introducing implicitly-declared members, checking for
2462/// abstract types, etc.
2463void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2464  if (!Record || Record->isInvalidDecl())
2465    return;
2466
2467  if (!Record->isDependentType())
2468    AddImplicitlyDeclaredMembersToClass(S, Record);
2469
2470  if (Record->isInvalidDecl())
2471    return;
2472
2473  // Set access bits correctly on the directly-declared conversions.
2474  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2475  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2476    Convs->setAccess(I, (*I)->getAccess());
2477
2478  // Determine whether we need to check for final overriders. We do
2479  // this either when there are virtual base classes (in which case we
2480  // may end up finding multiple final overriders for a given virtual
2481  // function) or any of the base classes is abstract (in which case
2482  // we might detect that this class is abstract).
2483  bool CheckFinalOverriders = false;
2484  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2485      !Record->isDependentType()) {
2486    if (Record->getNumVBases())
2487      CheckFinalOverriders = true;
2488    else if (!Record->isAbstract()) {
2489      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2490                                                 BEnd = Record->bases_end();
2491           B != BEnd; ++B) {
2492        CXXRecordDecl *BaseDecl
2493          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2494        if (BaseDecl->isAbstract()) {
2495          CheckFinalOverriders = true;
2496          break;
2497        }
2498      }
2499    }
2500  }
2501
2502  if (CheckFinalOverriders) {
2503    CXXFinalOverriderMap FinalOverriders;
2504    Record->getFinalOverriders(FinalOverriders);
2505
2506    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2507                                     MEnd = FinalOverriders.end();
2508         M != MEnd; ++M) {
2509      for (OverridingMethods::iterator SO = M->second.begin(),
2510                                    SOEnd = M->second.end();
2511           SO != SOEnd; ++SO) {
2512        assert(SO->second.size() > 0 &&
2513               "All virtual functions have overridding virtual functions");
2514        if (SO->second.size() == 1) {
2515          // C++ [class.abstract]p4:
2516          //   A class is abstract if it contains or inherits at least one
2517          //   pure virtual function for which the final overrider is pure
2518          //   virtual.
2519          if (SO->second.front().Method->isPure())
2520            Record->setAbstract(true);
2521          continue;
2522        }
2523
2524        // C++ [class.virtual]p2:
2525        //   In a derived class, if a virtual member function of a base
2526        //   class subobject has more than one final overrider the
2527        //   program is ill-formed.
2528        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2529          << (NamedDecl *)M->first << Record;
2530        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2531        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2532                                                 OMEnd = SO->second.end();
2533             OM != OMEnd; ++OM)
2534          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2535            << (NamedDecl *)M->first << OM->Method->getParent();
2536
2537        Record->setInvalidDecl();
2538      }
2539    }
2540  }
2541
2542  if (Record->isAbstract() && !Record->isInvalidDecl())
2543    (void)AbstractClassUsageDiagnoser(*this, Record);
2544
2545  // If this is not an aggregate type and has no user-declared constructor,
2546  // complain about any non-static data members of reference or const scalar
2547  // type, since they will never get initializers.
2548  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2549      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2550    bool Complained = false;
2551    for (RecordDecl::field_iterator F = Record->field_begin(),
2552                                 FEnd = Record->field_end();
2553         F != FEnd; ++F) {
2554      if (F->getType()->isReferenceType() ||
2555          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2556        if (!Complained) {
2557          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2558            << Record->getTagKind() << Record;
2559          Complained = true;
2560        }
2561
2562        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2563          << F->getType()->isReferenceType()
2564          << F->getDeclName();
2565      }
2566    }
2567  }
2568
2569  if (Record->isDynamicClass())
2570    DynamicClasses.push_back(Record);
2571}
2572
2573void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2574                                             DeclPtrTy TagDecl,
2575                                             SourceLocation LBrac,
2576                                             SourceLocation RBrac,
2577                                             AttributeList *AttrList) {
2578  if (!TagDecl)
2579    return;
2580
2581  AdjustDeclIfTemplate(TagDecl);
2582
2583  ActOnFields(S, RLoc, TagDecl,
2584              (DeclPtrTy*)FieldCollector->getCurFields(),
2585              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2586
2587  CheckCompletedCXXClass(S,
2588                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2589}
2590
2591/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2592/// special functions, such as the default constructor, copy
2593/// constructor, or destructor, to the given C++ class (C++
2594/// [special]p1).  This routine can only be executed just before the
2595/// definition of the class is complete.
2596///
2597/// The scope, if provided, is the class scope.
2598void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2599                                               CXXRecordDecl *ClassDecl) {
2600  CanQualType ClassType
2601    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2602
2603  // FIXME: Implicit declarations have exception specifications, which are
2604  // the union of the specifications of the implicitly called functions.
2605
2606  if (!ClassDecl->hasUserDeclaredConstructor()) {
2607    // C++ [class.ctor]p5:
2608    //   A default constructor for a class X is a constructor of class X
2609    //   that can be called without an argument. If there is no
2610    //   user-declared constructor for class X, a default constructor is
2611    //   implicitly declared. An implicitly-declared default constructor
2612    //   is an inline public member of its class.
2613    DeclarationName Name
2614      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2615    CXXConstructorDecl *DefaultCon =
2616      CXXConstructorDecl::Create(Context, ClassDecl,
2617                                 ClassDecl->getLocation(), Name,
2618                                 Context.getFunctionType(Context.VoidTy,
2619                                                         0, 0, false, 0,
2620                                                         /*FIXME*/false, false,
2621                                                         0, 0,
2622                                                       FunctionType::ExtInfo()),
2623                                 /*TInfo=*/0,
2624                                 /*isExplicit=*/false,
2625                                 /*isInline=*/true,
2626                                 /*isImplicitlyDeclared=*/true);
2627    DefaultCon->setAccess(AS_public);
2628    DefaultCon->setImplicit();
2629    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2630    if (S)
2631      PushOnScopeChains(DefaultCon, S, true);
2632    else
2633      ClassDecl->addDecl(DefaultCon);
2634  }
2635
2636  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2637    // C++ [class.copy]p4:
2638    //   If the class definition does not explicitly declare a copy
2639    //   constructor, one is declared implicitly.
2640
2641    // C++ [class.copy]p5:
2642    //   The implicitly-declared copy constructor for a class X will
2643    //   have the form
2644    //
2645    //       X::X(const X&)
2646    //
2647    //   if
2648    bool HasConstCopyConstructor = true;
2649
2650    //     -- each direct or virtual base class B of X has a copy
2651    //        constructor whose first parameter is of type const B& or
2652    //        const volatile B&, and
2653    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2654         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2655      const CXXRecordDecl *BaseClassDecl
2656        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2657      HasConstCopyConstructor
2658        = BaseClassDecl->hasConstCopyConstructor(Context);
2659    }
2660
2661    //     -- for all the nonstatic data members of X that are of a
2662    //        class type M (or array thereof), each such class type
2663    //        has a copy constructor whose first parameter is of type
2664    //        const M& or const volatile M&.
2665    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2666         HasConstCopyConstructor && Field != ClassDecl->field_end();
2667         ++Field) {
2668      QualType FieldType = (*Field)->getType();
2669      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2670        FieldType = Array->getElementType();
2671      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2672        const CXXRecordDecl *FieldClassDecl
2673          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2674        HasConstCopyConstructor
2675          = FieldClassDecl->hasConstCopyConstructor(Context);
2676      }
2677    }
2678
2679    //   Otherwise, the implicitly declared copy constructor will have
2680    //   the form
2681    //
2682    //       X::X(X&)
2683    QualType ArgType = ClassType;
2684    if (HasConstCopyConstructor)
2685      ArgType = ArgType.withConst();
2686    ArgType = Context.getLValueReferenceType(ArgType);
2687
2688    //   An implicitly-declared copy constructor is an inline public
2689    //   member of its class.
2690    DeclarationName Name
2691      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2692    CXXConstructorDecl *CopyConstructor
2693      = CXXConstructorDecl::Create(Context, ClassDecl,
2694                                   ClassDecl->getLocation(), Name,
2695                                   Context.getFunctionType(Context.VoidTy,
2696                                                           &ArgType, 1,
2697                                                           false, 0,
2698                                               /*FIXME: hasExceptionSpec*/false,
2699                                                           false, 0, 0,
2700                                                       FunctionType::ExtInfo()),
2701                                   /*TInfo=*/0,
2702                                   /*isExplicit=*/false,
2703                                   /*isInline=*/true,
2704                                   /*isImplicitlyDeclared=*/true);
2705    CopyConstructor->setAccess(AS_public);
2706    CopyConstructor->setImplicit();
2707    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2708
2709    // Add the parameter to the constructor.
2710    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2711                                                 ClassDecl->getLocation(),
2712                                                 /*IdentifierInfo=*/0,
2713                                                 ArgType, /*TInfo=*/0,
2714                                                 VarDecl::None,
2715                                                 VarDecl::None, 0);
2716    CopyConstructor->setParams(&FromParam, 1);
2717    if (S)
2718      PushOnScopeChains(CopyConstructor, S, true);
2719    else
2720      ClassDecl->addDecl(CopyConstructor);
2721  }
2722
2723  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2724    // Note: The following rules are largely analoguous to the copy
2725    // constructor rules. Note that virtual bases are not taken into account
2726    // for determining the argument type of the operator. Note also that
2727    // operators taking an object instead of a reference are allowed.
2728    //
2729    // C++ [class.copy]p10:
2730    //   If the class definition does not explicitly declare a copy
2731    //   assignment operator, one is declared implicitly.
2732    //   The implicitly-defined copy assignment operator for a class X
2733    //   will have the form
2734    //
2735    //       X& X::operator=(const X&)
2736    //
2737    //   if
2738    bool HasConstCopyAssignment = true;
2739
2740    //       -- each direct base class B of X has a copy assignment operator
2741    //          whose parameter is of type const B&, const volatile B& or B,
2742    //          and
2743    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2744         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2745      assert(!Base->getType()->isDependentType() &&
2746            "Cannot generate implicit members for class with dependent bases.");
2747      const CXXRecordDecl *BaseClassDecl
2748        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2749      const CXXMethodDecl *MD = 0;
2750      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2751                                                                     MD);
2752    }
2753
2754    //       -- for all the nonstatic data members of X that are of a class
2755    //          type M (or array thereof), each such class type has a copy
2756    //          assignment operator whose parameter is of type const M&,
2757    //          const volatile M& or M.
2758    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2759         HasConstCopyAssignment && Field != ClassDecl->field_end();
2760         ++Field) {
2761      QualType FieldType = (*Field)->getType();
2762      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2763        FieldType = Array->getElementType();
2764      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2765        const CXXRecordDecl *FieldClassDecl
2766          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2767        const CXXMethodDecl *MD = 0;
2768        HasConstCopyAssignment
2769          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2770      }
2771    }
2772
2773    //   Otherwise, the implicitly declared copy assignment operator will
2774    //   have the form
2775    //
2776    //       X& X::operator=(X&)
2777    QualType ArgType = ClassType;
2778    QualType RetType = Context.getLValueReferenceType(ArgType);
2779    if (HasConstCopyAssignment)
2780      ArgType = ArgType.withConst();
2781    ArgType = Context.getLValueReferenceType(ArgType);
2782
2783    //   An implicitly-declared copy assignment operator is an inline public
2784    //   member of its class.
2785    DeclarationName Name =
2786      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2787    CXXMethodDecl *CopyAssignment =
2788      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2789                            Context.getFunctionType(RetType, &ArgType, 1,
2790                                                    false, 0,
2791                                              /*FIXME: hasExceptionSpec*/false,
2792                                                    false, 0, 0,
2793                                                    FunctionType::ExtInfo()),
2794                            /*TInfo=*/0, /*isStatic=*/false,
2795                            /*StorageClassAsWritten=*/FunctionDecl::None,
2796                            /*isInline=*/true);
2797    CopyAssignment->setAccess(AS_public);
2798    CopyAssignment->setImplicit();
2799    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2800    CopyAssignment->setCopyAssignment(true);
2801
2802    // Add the parameter to the operator.
2803    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2804                                                 ClassDecl->getLocation(),
2805                                                 /*Id=*/0,
2806                                                 ArgType, /*TInfo=*/0,
2807                                                 VarDecl::None,
2808                                                 VarDecl::None, 0);
2809    CopyAssignment->setParams(&FromParam, 1);
2810
2811    // Don't call addedAssignmentOperator. There is no way to distinguish an
2812    // implicit from an explicit assignment operator.
2813    if (S)
2814      PushOnScopeChains(CopyAssignment, S, true);
2815    else
2816      ClassDecl->addDecl(CopyAssignment);
2817    AddOverriddenMethods(ClassDecl, CopyAssignment);
2818  }
2819
2820  if (!ClassDecl->hasUserDeclaredDestructor()) {
2821    // C++ [class.dtor]p2:
2822    //   If a class has no user-declared destructor, a destructor is
2823    //   declared implicitly. An implicitly-declared destructor is an
2824    //   inline public member of its class.
2825    QualType Ty = Context.getFunctionType(Context.VoidTy,
2826                                          0, 0, false, 0,
2827                                          /*FIXME: hasExceptionSpec*/false,
2828                                          false, 0, 0, FunctionType::ExtInfo());
2829
2830    DeclarationName Name
2831      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2832    CXXDestructorDecl *Destructor
2833      = CXXDestructorDecl::Create(Context, ClassDecl,
2834                                  ClassDecl->getLocation(), Name, Ty,
2835                                  /*isInline=*/true,
2836                                  /*isImplicitlyDeclared=*/true);
2837    Destructor->setAccess(AS_public);
2838    Destructor->setImplicit();
2839    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2840    if (S)
2841      PushOnScopeChains(Destructor, S, true);
2842    else
2843      ClassDecl->addDecl(Destructor);
2844
2845    // This could be uniqued if it ever proves significant.
2846    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2847
2848    AddOverriddenMethods(ClassDecl, Destructor);
2849  }
2850}
2851
2852void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2853  Decl *D = TemplateD.getAs<Decl>();
2854  if (!D)
2855    return;
2856
2857  TemplateParameterList *Params = 0;
2858  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2859    Params = Template->getTemplateParameters();
2860  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2861           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2862    Params = PartialSpec->getTemplateParameters();
2863  else
2864    return;
2865
2866  for (TemplateParameterList::iterator Param = Params->begin(),
2867                                    ParamEnd = Params->end();
2868       Param != ParamEnd; ++Param) {
2869    NamedDecl *Named = cast<NamedDecl>(*Param);
2870    if (Named->getDeclName()) {
2871      S->AddDecl(DeclPtrTy::make(Named));
2872      IdResolver.AddDecl(Named);
2873    }
2874  }
2875}
2876
2877void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2878  if (!RecordD) return;
2879  AdjustDeclIfTemplate(RecordD);
2880  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2881  PushDeclContext(S, Record);
2882}
2883
2884void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2885  if (!RecordD) return;
2886  PopDeclContext();
2887}
2888
2889/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2890/// parsing a top-level (non-nested) C++ class, and we are now
2891/// parsing those parts of the given Method declaration that could
2892/// not be parsed earlier (C++ [class.mem]p2), such as default
2893/// arguments. This action should enter the scope of the given
2894/// Method declaration as if we had just parsed the qualified method
2895/// name. However, it should not bring the parameters into scope;
2896/// that will be performed by ActOnDelayedCXXMethodParameter.
2897void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2898}
2899
2900/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2901/// C++ method declaration. We're (re-)introducing the given
2902/// function parameter into scope for use in parsing later parts of
2903/// the method declaration. For example, we could see an
2904/// ActOnParamDefaultArgument event for this parameter.
2905void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2906  if (!ParamD)
2907    return;
2908
2909  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2910
2911  // If this parameter has an unparsed default argument, clear it out
2912  // to make way for the parsed default argument.
2913  if (Param->hasUnparsedDefaultArg())
2914    Param->setDefaultArg(0);
2915
2916  S->AddDecl(DeclPtrTy::make(Param));
2917  if (Param->getDeclName())
2918    IdResolver.AddDecl(Param);
2919}
2920
2921/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2922/// processing the delayed method declaration for Method. The method
2923/// declaration is now considered finished. There may be a separate
2924/// ActOnStartOfFunctionDef action later (not necessarily
2925/// immediately!) for this method, if it was also defined inside the
2926/// class body.
2927void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2928  if (!MethodD)
2929    return;
2930
2931  AdjustDeclIfTemplate(MethodD);
2932
2933  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2934
2935  // Now that we have our default arguments, check the constructor
2936  // again. It could produce additional diagnostics or affect whether
2937  // the class has implicitly-declared destructors, among other
2938  // things.
2939  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2940    CheckConstructor(Constructor);
2941
2942  // Check the default arguments, which we may have added.
2943  if (!Method->isInvalidDecl())
2944    CheckCXXDefaultArguments(Method);
2945}
2946
2947/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2948/// the well-formedness of the constructor declarator @p D with type @p
2949/// R. If there are any errors in the declarator, this routine will
2950/// emit diagnostics and set the invalid bit to true.  In any case, the type
2951/// will be updated to reflect a well-formed type for the constructor and
2952/// returned.
2953QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2954                                          FunctionDecl::StorageClass &SC) {
2955  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2956
2957  // C++ [class.ctor]p3:
2958  //   A constructor shall not be virtual (10.3) or static (9.4). A
2959  //   constructor can be invoked for a const, volatile or const
2960  //   volatile object. A constructor shall not be declared const,
2961  //   volatile, or const volatile (9.3.2).
2962  if (isVirtual) {
2963    if (!D.isInvalidType())
2964      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2965        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2966        << SourceRange(D.getIdentifierLoc());
2967    D.setInvalidType();
2968  }
2969  if (SC == FunctionDecl::Static) {
2970    if (!D.isInvalidType())
2971      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2972        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2973        << SourceRange(D.getIdentifierLoc());
2974    D.setInvalidType();
2975    SC = FunctionDecl::None;
2976  }
2977
2978  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2979  if (FTI.TypeQuals != 0) {
2980    if (FTI.TypeQuals & Qualifiers::Const)
2981      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2982        << "const" << SourceRange(D.getIdentifierLoc());
2983    if (FTI.TypeQuals & Qualifiers::Volatile)
2984      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2985        << "volatile" << SourceRange(D.getIdentifierLoc());
2986    if (FTI.TypeQuals & Qualifiers::Restrict)
2987      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2988        << "restrict" << SourceRange(D.getIdentifierLoc());
2989  }
2990
2991  // Rebuild the function type "R" without any type qualifiers (in
2992  // case any of the errors above fired) and with "void" as the
2993  // return type, since constructors don't have return types. We
2994  // *always* have to do this, because GetTypeForDeclarator will
2995  // put in a result type of "int" when none was specified.
2996  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2997  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2998                                 Proto->getNumArgs(),
2999                                 Proto->isVariadic(), 0,
3000                                 Proto->hasExceptionSpec(),
3001                                 Proto->hasAnyExceptionSpec(),
3002                                 Proto->getNumExceptions(),
3003                                 Proto->exception_begin(),
3004                                 Proto->getExtInfo());
3005}
3006
3007/// CheckConstructor - Checks a fully-formed constructor for
3008/// well-formedness, issuing any diagnostics required. Returns true if
3009/// the constructor declarator is invalid.
3010void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3011  CXXRecordDecl *ClassDecl
3012    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3013  if (!ClassDecl)
3014    return Constructor->setInvalidDecl();
3015
3016  // C++ [class.copy]p3:
3017  //   A declaration of a constructor for a class X is ill-formed if
3018  //   its first parameter is of type (optionally cv-qualified) X and
3019  //   either there are no other parameters or else all other
3020  //   parameters have default arguments.
3021  if (!Constructor->isInvalidDecl() &&
3022      ((Constructor->getNumParams() == 1) ||
3023       (Constructor->getNumParams() > 1 &&
3024        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3025      Constructor->getTemplateSpecializationKind()
3026                                              != TSK_ImplicitInstantiation) {
3027    QualType ParamType = Constructor->getParamDecl(0)->getType();
3028    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3029    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3030      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3031      const char *ConstRef
3032        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3033                                                        : " const &";
3034      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3035        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3036
3037      // FIXME: Rather that making the constructor invalid, we should endeavor
3038      // to fix the type.
3039      Constructor->setInvalidDecl();
3040    }
3041  }
3042
3043  // Notify the class that we've added a constructor.  In principle we
3044  // don't need to do this for out-of-line declarations; in practice
3045  // we only instantiate the most recent declaration of a method, so
3046  // we have to call this for everything but friends.
3047  if (!Constructor->getFriendObjectKind())
3048    ClassDecl->addedConstructor(Context, Constructor);
3049}
3050
3051/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3052/// issuing any diagnostics required. Returns true on error.
3053bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3054  CXXRecordDecl *RD = Destructor->getParent();
3055
3056  if (Destructor->isVirtual()) {
3057    SourceLocation Loc;
3058
3059    if (!Destructor->isImplicit())
3060      Loc = Destructor->getLocation();
3061    else
3062      Loc = RD->getLocation();
3063
3064    // If we have a virtual destructor, look up the deallocation function
3065    FunctionDecl *OperatorDelete = 0;
3066    DeclarationName Name =
3067    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3068    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3069      return true;
3070
3071    Destructor->setOperatorDelete(OperatorDelete);
3072  }
3073
3074  return false;
3075}
3076
3077static inline bool
3078FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3079  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3080          FTI.ArgInfo[0].Param &&
3081          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3082}
3083
3084/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3085/// the well-formednes of the destructor declarator @p D with type @p
3086/// R. If there are any errors in the declarator, this routine will
3087/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3088/// will be updated to reflect a well-formed type for the destructor and
3089/// returned.
3090QualType Sema::CheckDestructorDeclarator(Declarator &D,
3091                                         FunctionDecl::StorageClass& SC) {
3092  // C++ [class.dtor]p1:
3093  //   [...] A typedef-name that names a class is a class-name
3094  //   (7.1.3); however, a typedef-name that names a class shall not
3095  //   be used as the identifier in the declarator for a destructor
3096  //   declaration.
3097  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3098  if (isa<TypedefType>(DeclaratorType)) {
3099    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3100      << DeclaratorType;
3101    D.setInvalidType();
3102  }
3103
3104  // C++ [class.dtor]p2:
3105  //   A destructor is used to destroy objects of its class type. A
3106  //   destructor takes no parameters, and no return type can be
3107  //   specified for it (not even void). The address of a destructor
3108  //   shall not be taken. A destructor shall not be static. A
3109  //   destructor can be invoked for a const, volatile or const
3110  //   volatile object. A destructor shall not be declared const,
3111  //   volatile or const volatile (9.3.2).
3112  if (SC == FunctionDecl::Static) {
3113    if (!D.isInvalidType())
3114      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3115        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3116        << SourceRange(D.getIdentifierLoc());
3117    SC = FunctionDecl::None;
3118    D.setInvalidType();
3119  }
3120  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3121    // Destructors don't have return types, but the parser will
3122    // happily parse something like:
3123    //
3124    //   class X {
3125    //     float ~X();
3126    //   };
3127    //
3128    // The return type will be eliminated later.
3129    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3130      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3131      << SourceRange(D.getIdentifierLoc());
3132  }
3133
3134  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3135  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3136    if (FTI.TypeQuals & Qualifiers::Const)
3137      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3138        << "const" << SourceRange(D.getIdentifierLoc());
3139    if (FTI.TypeQuals & Qualifiers::Volatile)
3140      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3141        << "volatile" << SourceRange(D.getIdentifierLoc());
3142    if (FTI.TypeQuals & Qualifiers::Restrict)
3143      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3144        << "restrict" << SourceRange(D.getIdentifierLoc());
3145    D.setInvalidType();
3146  }
3147
3148  // Make sure we don't have any parameters.
3149  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3150    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3151
3152    // Delete the parameters.
3153    FTI.freeArgs();
3154    D.setInvalidType();
3155  }
3156
3157  // Make sure the destructor isn't variadic.
3158  if (FTI.isVariadic) {
3159    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3160    D.setInvalidType();
3161  }
3162
3163  // Rebuild the function type "R" without any type qualifiers or
3164  // parameters (in case any of the errors above fired) and with
3165  // "void" as the return type, since destructors don't have return
3166  // types. We *always* have to do this, because GetTypeForDeclarator
3167  // will put in a result type of "int" when none was specified.
3168  // FIXME: Exceptions!
3169  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3170                                 false, false, 0, 0, FunctionType::ExtInfo());
3171}
3172
3173/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3174/// well-formednes of the conversion function declarator @p D with
3175/// type @p R. If there are any errors in the declarator, this routine
3176/// will emit diagnostics and return true. Otherwise, it will return
3177/// false. Either way, the type @p R will be updated to reflect a
3178/// well-formed type for the conversion operator.
3179void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3180                                     FunctionDecl::StorageClass& SC) {
3181  // C++ [class.conv.fct]p1:
3182  //   Neither parameter types nor return type can be specified. The
3183  //   type of a conversion function (8.3.5) is "function taking no
3184  //   parameter returning conversion-type-id."
3185  if (SC == FunctionDecl::Static) {
3186    if (!D.isInvalidType())
3187      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3188        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3189        << SourceRange(D.getIdentifierLoc());
3190    D.setInvalidType();
3191    SC = FunctionDecl::None;
3192  }
3193
3194  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3195
3196  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3197    // Conversion functions don't have return types, but the parser will
3198    // happily parse something like:
3199    //
3200    //   class X {
3201    //     float operator bool();
3202    //   };
3203    //
3204    // The return type will be changed later anyway.
3205    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3206      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3207      << SourceRange(D.getIdentifierLoc());
3208    D.setInvalidType();
3209  }
3210
3211  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3212
3213  // Make sure we don't have any parameters.
3214  if (Proto->getNumArgs() > 0) {
3215    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3216
3217    // Delete the parameters.
3218    D.getTypeObject(0).Fun.freeArgs();
3219    D.setInvalidType();
3220  } else if (Proto->isVariadic()) {
3221    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3222    D.setInvalidType();
3223  }
3224
3225  // Diagnose "&operator bool()" and other such nonsense.  This
3226  // is actually a gcc extension which we don't support.
3227  if (Proto->getResultType() != ConvType) {
3228    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3229      << Proto->getResultType();
3230    D.setInvalidType();
3231    ConvType = Proto->getResultType();
3232  }
3233
3234  // C++ [class.conv.fct]p4:
3235  //   The conversion-type-id shall not represent a function type nor
3236  //   an array type.
3237  if (ConvType->isArrayType()) {
3238    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3239    ConvType = Context.getPointerType(ConvType);
3240    D.setInvalidType();
3241  } else if (ConvType->isFunctionType()) {
3242    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3243    ConvType = Context.getPointerType(ConvType);
3244    D.setInvalidType();
3245  }
3246
3247  // Rebuild the function type "R" without any parameters (in case any
3248  // of the errors above fired) and with the conversion type as the
3249  // return type.
3250  if (D.isInvalidType()) {
3251    R = Context.getFunctionType(ConvType, 0, 0, false,
3252                                Proto->getTypeQuals(),
3253                                Proto->hasExceptionSpec(),
3254                                Proto->hasAnyExceptionSpec(),
3255                                Proto->getNumExceptions(),
3256                                Proto->exception_begin(),
3257                                Proto->getExtInfo());
3258  }
3259
3260  // C++0x explicit conversion operators.
3261  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3262    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3263         diag::warn_explicit_conversion_functions)
3264      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3265}
3266
3267/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3268/// the declaration of the given C++ conversion function. This routine
3269/// is responsible for recording the conversion function in the C++
3270/// class, if possible.
3271Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3272  assert(Conversion && "Expected to receive a conversion function declaration");
3273
3274  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3275
3276  // Make sure we aren't redeclaring the conversion function.
3277  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3278
3279  // C++ [class.conv.fct]p1:
3280  //   [...] A conversion function is never used to convert a
3281  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3282  //   same object type (or a reference to it), to a (possibly
3283  //   cv-qualified) base class of that type (or a reference to it),
3284  //   or to (possibly cv-qualified) void.
3285  // FIXME: Suppress this warning if the conversion function ends up being a
3286  // virtual function that overrides a virtual function in a base class.
3287  QualType ClassType
3288    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3289  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3290    ConvType = ConvTypeRef->getPointeeType();
3291  if (ConvType->isRecordType()) {
3292    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3293    if (ConvType == ClassType)
3294      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3295        << ClassType;
3296    else if (IsDerivedFrom(ClassType, ConvType))
3297      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3298        <<  ClassType << ConvType;
3299  } else if (ConvType->isVoidType()) {
3300    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3301      << ClassType << ConvType;
3302  }
3303
3304  if (Conversion->getPrimaryTemplate()) {
3305    // ignore specializations
3306  } else if (Conversion->getPreviousDeclaration()) {
3307    if (FunctionTemplateDecl *ConversionTemplate
3308                                  = Conversion->getDescribedFunctionTemplate()) {
3309      if (ClassDecl->replaceConversion(
3310                                   ConversionTemplate->getPreviousDeclaration(),
3311                                       ConversionTemplate))
3312        return DeclPtrTy::make(ConversionTemplate);
3313    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3314                                            Conversion))
3315      return DeclPtrTy::make(Conversion);
3316    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3317  } else if (FunctionTemplateDecl *ConversionTemplate
3318               = Conversion->getDescribedFunctionTemplate())
3319    ClassDecl->addConversionFunction(ConversionTemplate);
3320  else
3321    ClassDecl->addConversionFunction(Conversion);
3322
3323  return DeclPtrTy::make(Conversion);
3324}
3325
3326//===----------------------------------------------------------------------===//
3327// Namespace Handling
3328//===----------------------------------------------------------------------===//
3329
3330/// ActOnStartNamespaceDef - This is called at the start of a namespace
3331/// definition.
3332Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3333                                             SourceLocation IdentLoc,
3334                                             IdentifierInfo *II,
3335                                             SourceLocation LBrace,
3336                                             AttributeList *AttrList) {
3337  NamespaceDecl *Namespc =
3338      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3339  Namespc->setLBracLoc(LBrace);
3340
3341  Scope *DeclRegionScope = NamespcScope->getParent();
3342
3343  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3344
3345  if (II) {
3346    // C++ [namespace.def]p2:
3347    // The identifier in an original-namespace-definition shall not have been
3348    // previously defined in the declarative region in which the
3349    // original-namespace-definition appears. The identifier in an
3350    // original-namespace-definition is the name of the namespace. Subsequently
3351    // in that declarative region, it is treated as an original-namespace-name.
3352
3353    NamedDecl *PrevDecl
3354      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3355                         ForRedeclaration);
3356
3357    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3358      // This is an extended namespace definition.
3359      // Attach this namespace decl to the chain of extended namespace
3360      // definitions.
3361      OrigNS->setNextNamespace(Namespc);
3362      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3363
3364      // Remove the previous declaration from the scope.
3365      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3366        IdResolver.RemoveDecl(OrigNS);
3367        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3368      }
3369    } else if (PrevDecl) {
3370      // This is an invalid name redefinition.
3371      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3372       << Namespc->getDeclName();
3373      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3374      Namespc->setInvalidDecl();
3375      // Continue on to push Namespc as current DeclContext and return it.
3376    } else if (II->isStr("std") &&
3377               CurContext->getLookupContext()->isTranslationUnit()) {
3378      // This is the first "real" definition of the namespace "std", so update
3379      // our cache of the "std" namespace to point at this definition.
3380      if (StdNamespace) {
3381        // We had already defined a dummy namespace "std". Link this new
3382        // namespace definition to the dummy namespace "std".
3383        StdNamespace->setNextNamespace(Namespc);
3384        StdNamespace->setLocation(IdentLoc);
3385        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3386      }
3387
3388      // Make our StdNamespace cache point at the first real definition of the
3389      // "std" namespace.
3390      StdNamespace = Namespc;
3391    }
3392
3393    PushOnScopeChains(Namespc, DeclRegionScope);
3394  } else {
3395    // Anonymous namespaces.
3396    assert(Namespc->isAnonymousNamespace());
3397
3398    // Link the anonymous namespace into its parent.
3399    NamespaceDecl *PrevDecl;
3400    DeclContext *Parent = CurContext->getLookupContext();
3401    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3402      PrevDecl = TU->getAnonymousNamespace();
3403      TU->setAnonymousNamespace(Namespc);
3404    } else {
3405      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3406      PrevDecl = ND->getAnonymousNamespace();
3407      ND->setAnonymousNamespace(Namespc);
3408    }
3409
3410    // Link the anonymous namespace with its previous declaration.
3411    if (PrevDecl) {
3412      assert(PrevDecl->isAnonymousNamespace());
3413      assert(!PrevDecl->getNextNamespace());
3414      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3415      PrevDecl->setNextNamespace(Namespc);
3416    }
3417
3418    CurContext->addDecl(Namespc);
3419
3420    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3421    //   behaves as if it were replaced by
3422    //     namespace unique { /* empty body */ }
3423    //     using namespace unique;
3424    //     namespace unique { namespace-body }
3425    //   where all occurrences of 'unique' in a translation unit are
3426    //   replaced by the same identifier and this identifier differs
3427    //   from all other identifiers in the entire program.
3428
3429    // We just create the namespace with an empty name and then add an
3430    // implicit using declaration, just like the standard suggests.
3431    //
3432    // CodeGen enforces the "universally unique" aspect by giving all
3433    // declarations semantically contained within an anonymous
3434    // namespace internal linkage.
3435
3436    if (!PrevDecl) {
3437      UsingDirectiveDecl* UD
3438        = UsingDirectiveDecl::Create(Context, CurContext,
3439                                     /* 'using' */ LBrace,
3440                                     /* 'namespace' */ SourceLocation(),
3441                                     /* qualifier */ SourceRange(),
3442                                     /* NNS */ NULL,
3443                                     /* identifier */ SourceLocation(),
3444                                     Namespc,
3445                                     /* Ancestor */ CurContext);
3446      UD->setImplicit();
3447      CurContext->addDecl(UD);
3448    }
3449  }
3450
3451  // Although we could have an invalid decl (i.e. the namespace name is a
3452  // redefinition), push it as current DeclContext and try to continue parsing.
3453  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3454  // for the namespace has the declarations that showed up in that particular
3455  // namespace definition.
3456  PushDeclContext(NamespcScope, Namespc);
3457  return DeclPtrTy::make(Namespc);
3458}
3459
3460/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3461/// is a namespace alias, returns the namespace it points to.
3462static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3463  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3464    return AD->getNamespace();
3465  return dyn_cast_or_null<NamespaceDecl>(D);
3466}
3467
3468/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3469/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3470void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3471  Decl *Dcl = D.getAs<Decl>();
3472  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3473  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3474  Namespc->setRBracLoc(RBrace);
3475  PopDeclContext();
3476}
3477
3478/// \brief Retrieve the special "std" namespace, which may require us to
3479/// implicitly define the namespace.
3480NamespaceDecl *Sema::getStdNamespace() {
3481  if (!StdNamespace) {
3482    // The "std" namespace has not yet been defined, so build one implicitly.
3483    StdNamespace = NamespaceDecl::Create(Context,
3484                                         Context.getTranslationUnitDecl(),
3485                                         SourceLocation(),
3486                                         &PP.getIdentifierTable().get("std"));
3487    StdNamespace->setImplicit(true);
3488  }
3489
3490  return StdNamespace;
3491}
3492
3493Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3494                                          SourceLocation UsingLoc,
3495                                          SourceLocation NamespcLoc,
3496                                          CXXScopeSpec &SS,
3497                                          SourceLocation IdentLoc,
3498                                          IdentifierInfo *NamespcName,
3499                                          AttributeList *AttrList) {
3500  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3501  assert(NamespcName && "Invalid NamespcName.");
3502  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3503  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3504
3505  UsingDirectiveDecl *UDir = 0;
3506  NestedNameSpecifier *Qualifier = 0;
3507  if (SS.isSet())
3508    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3509
3510  // Lookup namespace name.
3511  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3512  LookupParsedName(R, S, &SS);
3513  if (R.isAmbiguous())
3514    return DeclPtrTy();
3515
3516  if (R.empty()) {
3517    // Allow "using namespace std;" or "using namespace ::std;" even if
3518    // "std" hasn't been defined yet, for GCC compatibility.
3519    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3520        NamespcName->isStr("std")) {
3521      Diag(IdentLoc, diag::ext_using_undefined_std);
3522      R.addDecl(getStdNamespace());
3523      R.resolveKind();
3524    }
3525    // Otherwise, attempt typo correction.
3526    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3527                                                       CTC_NoKeywords, 0)) {
3528      if (R.getAsSingle<NamespaceDecl>() ||
3529          R.getAsSingle<NamespaceAliasDecl>()) {
3530        if (DeclContext *DC = computeDeclContext(SS, false))
3531          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3532            << NamespcName << DC << Corrected << SS.getRange()
3533            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3534        else
3535          Diag(IdentLoc, diag::err_using_directive_suggest)
3536            << NamespcName << Corrected
3537            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3538        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3539          << Corrected;
3540
3541        NamespcName = Corrected.getAsIdentifierInfo();
3542      } else {
3543        R.clear();
3544        R.setLookupName(NamespcName);
3545      }
3546    }
3547  }
3548
3549  if (!R.empty()) {
3550    NamedDecl *Named = R.getFoundDecl();
3551    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3552        && "expected namespace decl");
3553    // C++ [namespace.udir]p1:
3554    //   A using-directive specifies that the names in the nominated
3555    //   namespace can be used in the scope in which the
3556    //   using-directive appears after the using-directive. During
3557    //   unqualified name lookup (3.4.1), the names appear as if they
3558    //   were declared in the nearest enclosing namespace which
3559    //   contains both the using-directive and the nominated
3560    //   namespace. [Note: in this context, "contains" means "contains
3561    //   directly or indirectly". ]
3562
3563    // Find enclosing context containing both using-directive and
3564    // nominated namespace.
3565    NamespaceDecl *NS = getNamespaceDecl(Named);
3566    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3567    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3568      CommonAncestor = CommonAncestor->getParent();
3569
3570    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3571                                      SS.getRange(),
3572                                      (NestedNameSpecifier *)SS.getScopeRep(),
3573                                      IdentLoc, Named, CommonAncestor);
3574    PushUsingDirective(S, UDir);
3575  } else {
3576    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3577  }
3578
3579  // FIXME: We ignore attributes for now.
3580  delete AttrList;
3581  return DeclPtrTy::make(UDir);
3582}
3583
3584void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3585  // If scope has associated entity, then using directive is at namespace
3586  // or translation unit scope. We add UsingDirectiveDecls, into
3587  // it's lookup structure.
3588  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3589    Ctx->addDecl(UDir);
3590  else
3591    // Otherwise it is block-sope. using-directives will affect lookup
3592    // only to the end of scope.
3593    S->PushUsingDirective(DeclPtrTy::make(UDir));
3594}
3595
3596
3597Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3598                                            AccessSpecifier AS,
3599                                            bool HasUsingKeyword,
3600                                            SourceLocation UsingLoc,
3601                                            CXXScopeSpec &SS,
3602                                            UnqualifiedId &Name,
3603                                            AttributeList *AttrList,
3604                                            bool IsTypeName,
3605                                            SourceLocation TypenameLoc) {
3606  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3607
3608  switch (Name.getKind()) {
3609  case UnqualifiedId::IK_Identifier:
3610  case UnqualifiedId::IK_OperatorFunctionId:
3611  case UnqualifiedId::IK_LiteralOperatorId:
3612  case UnqualifiedId::IK_ConversionFunctionId:
3613    break;
3614
3615  case UnqualifiedId::IK_ConstructorName:
3616  case UnqualifiedId::IK_ConstructorTemplateId:
3617    // C++0x inherited constructors.
3618    if (getLangOptions().CPlusPlus0x) break;
3619
3620    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3621      << SS.getRange();
3622    return DeclPtrTy();
3623
3624  case UnqualifiedId::IK_DestructorName:
3625    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3626      << SS.getRange();
3627    return DeclPtrTy();
3628
3629  case UnqualifiedId::IK_TemplateId:
3630    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3631      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3632    return DeclPtrTy();
3633  }
3634
3635  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3636  if (!TargetName)
3637    return DeclPtrTy();
3638
3639  // Warn about using declarations.
3640  // TODO: store that the declaration was written without 'using' and
3641  // talk about access decls instead of using decls in the
3642  // diagnostics.
3643  if (!HasUsingKeyword) {
3644    UsingLoc = Name.getSourceRange().getBegin();
3645
3646    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3647      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3648  }
3649
3650  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3651                                        Name.getSourceRange().getBegin(),
3652                                        TargetName, AttrList,
3653                                        /* IsInstantiation */ false,
3654                                        IsTypeName, TypenameLoc);
3655  if (UD)
3656    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3657
3658  return DeclPtrTy::make(UD);
3659}
3660
3661/// Determines whether to create a using shadow decl for a particular
3662/// decl, given the set of decls existing prior to this using lookup.
3663bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3664                                const LookupResult &Previous) {
3665  // Diagnose finding a decl which is not from a base class of the
3666  // current class.  We do this now because there are cases where this
3667  // function will silently decide not to build a shadow decl, which
3668  // will pre-empt further diagnostics.
3669  //
3670  // We don't need to do this in C++0x because we do the check once on
3671  // the qualifier.
3672  //
3673  // FIXME: diagnose the following if we care enough:
3674  //   struct A { int foo; };
3675  //   struct B : A { using A::foo; };
3676  //   template <class T> struct C : A {};
3677  //   template <class T> struct D : C<T> { using B::foo; } // <---
3678  // This is invalid (during instantiation) in C++03 because B::foo
3679  // resolves to the using decl in B, which is not a base class of D<T>.
3680  // We can't diagnose it immediately because C<T> is an unknown
3681  // specialization.  The UsingShadowDecl in D<T> then points directly
3682  // to A::foo, which will look well-formed when we instantiate.
3683  // The right solution is to not collapse the shadow-decl chain.
3684  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3685    DeclContext *OrigDC = Orig->getDeclContext();
3686
3687    // Handle enums and anonymous structs.
3688    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3689    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3690    while (OrigRec->isAnonymousStructOrUnion())
3691      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3692
3693    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3694      if (OrigDC == CurContext) {
3695        Diag(Using->getLocation(),
3696             diag::err_using_decl_nested_name_specifier_is_current_class)
3697          << Using->getNestedNameRange();
3698        Diag(Orig->getLocation(), diag::note_using_decl_target);
3699        return true;
3700      }
3701
3702      Diag(Using->getNestedNameRange().getBegin(),
3703           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3704        << Using->getTargetNestedNameDecl()
3705        << cast<CXXRecordDecl>(CurContext)
3706        << Using->getNestedNameRange();
3707      Diag(Orig->getLocation(), diag::note_using_decl_target);
3708      return true;
3709    }
3710  }
3711
3712  if (Previous.empty()) return false;
3713
3714  NamedDecl *Target = Orig;
3715  if (isa<UsingShadowDecl>(Target))
3716    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3717
3718  // If the target happens to be one of the previous declarations, we
3719  // don't have a conflict.
3720  //
3721  // FIXME: but we might be increasing its access, in which case we
3722  // should redeclare it.
3723  NamedDecl *NonTag = 0, *Tag = 0;
3724  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3725         I != E; ++I) {
3726    NamedDecl *D = (*I)->getUnderlyingDecl();
3727    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3728      return false;
3729
3730    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3731  }
3732
3733  if (Target->isFunctionOrFunctionTemplate()) {
3734    FunctionDecl *FD;
3735    if (isa<FunctionTemplateDecl>(Target))
3736      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3737    else
3738      FD = cast<FunctionDecl>(Target);
3739
3740    NamedDecl *OldDecl = 0;
3741    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3742    case Ovl_Overload:
3743      return false;
3744
3745    case Ovl_NonFunction:
3746      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3747      break;
3748
3749    // We found a decl with the exact signature.
3750    case Ovl_Match:
3751      // If we're in a record, we want to hide the target, so we
3752      // return true (without a diagnostic) to tell the caller not to
3753      // build a shadow decl.
3754      if (CurContext->isRecord())
3755        return true;
3756
3757      // If we're not in a record, this is an error.
3758      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3759      break;
3760    }
3761
3762    Diag(Target->getLocation(), diag::note_using_decl_target);
3763    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3764    return true;
3765  }
3766
3767  // Target is not a function.
3768
3769  if (isa<TagDecl>(Target)) {
3770    // No conflict between a tag and a non-tag.
3771    if (!Tag) return false;
3772
3773    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3774    Diag(Target->getLocation(), diag::note_using_decl_target);
3775    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3776    return true;
3777  }
3778
3779  // No conflict between a tag and a non-tag.
3780  if (!NonTag) return false;
3781
3782  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3783  Diag(Target->getLocation(), diag::note_using_decl_target);
3784  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3785  return true;
3786}
3787
3788/// Builds a shadow declaration corresponding to a 'using' declaration.
3789UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3790                                            UsingDecl *UD,
3791                                            NamedDecl *Orig) {
3792
3793  // If we resolved to another shadow declaration, just coalesce them.
3794  NamedDecl *Target = Orig;
3795  if (isa<UsingShadowDecl>(Target)) {
3796    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3797    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3798  }
3799
3800  UsingShadowDecl *Shadow
3801    = UsingShadowDecl::Create(Context, CurContext,
3802                              UD->getLocation(), UD, Target);
3803  UD->addShadowDecl(Shadow);
3804
3805  if (S)
3806    PushOnScopeChains(Shadow, S);
3807  else
3808    CurContext->addDecl(Shadow);
3809  Shadow->setAccess(UD->getAccess());
3810
3811  // Register it as a conversion if appropriate.
3812  if (Shadow->getDeclName().getNameKind()
3813        == DeclarationName::CXXConversionFunctionName)
3814    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3815
3816  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3817    Shadow->setInvalidDecl();
3818
3819  return Shadow;
3820}
3821
3822/// Hides a using shadow declaration.  This is required by the current
3823/// using-decl implementation when a resolvable using declaration in a
3824/// class is followed by a declaration which would hide or override
3825/// one or more of the using decl's targets; for example:
3826///
3827///   struct Base { void foo(int); };
3828///   struct Derived : Base {
3829///     using Base::foo;
3830///     void foo(int);
3831///   };
3832///
3833/// The governing language is C++03 [namespace.udecl]p12:
3834///
3835///   When a using-declaration brings names from a base class into a
3836///   derived class scope, member functions in the derived class
3837///   override and/or hide member functions with the same name and
3838///   parameter types in a base class (rather than conflicting).
3839///
3840/// There are two ways to implement this:
3841///   (1) optimistically create shadow decls when they're not hidden
3842///       by existing declarations, or
3843///   (2) don't create any shadow decls (or at least don't make them
3844///       visible) until we've fully parsed/instantiated the class.
3845/// The problem with (1) is that we might have to retroactively remove
3846/// a shadow decl, which requires several O(n) operations because the
3847/// decl structures are (very reasonably) not designed for removal.
3848/// (2) avoids this but is very fiddly and phase-dependent.
3849void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3850  if (Shadow->getDeclName().getNameKind() ==
3851        DeclarationName::CXXConversionFunctionName)
3852    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3853
3854  // Remove it from the DeclContext...
3855  Shadow->getDeclContext()->removeDecl(Shadow);
3856
3857  // ...and the scope, if applicable...
3858  if (S) {
3859    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3860    IdResolver.RemoveDecl(Shadow);
3861  }
3862
3863  // ...and the using decl.
3864  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3865
3866  // TODO: complain somehow if Shadow was used.  It shouldn't
3867  // be possible for this to happen, because...?
3868}
3869
3870/// Builds a using declaration.
3871///
3872/// \param IsInstantiation - Whether this call arises from an
3873///   instantiation of an unresolved using declaration.  We treat
3874///   the lookup differently for these declarations.
3875NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3876                                       SourceLocation UsingLoc,
3877                                       CXXScopeSpec &SS,
3878                                       SourceLocation IdentLoc,
3879                                       DeclarationName Name,
3880                                       AttributeList *AttrList,
3881                                       bool IsInstantiation,
3882                                       bool IsTypeName,
3883                                       SourceLocation TypenameLoc) {
3884  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3885  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3886
3887  // FIXME: We ignore attributes for now.
3888  delete AttrList;
3889
3890  if (SS.isEmpty()) {
3891    Diag(IdentLoc, diag::err_using_requires_qualname);
3892    return 0;
3893  }
3894
3895  // Do the redeclaration lookup in the current scope.
3896  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3897                        ForRedeclaration);
3898  Previous.setHideTags(false);
3899  if (S) {
3900    LookupName(Previous, S);
3901
3902    // It is really dumb that we have to do this.
3903    LookupResult::Filter F = Previous.makeFilter();
3904    while (F.hasNext()) {
3905      NamedDecl *D = F.next();
3906      if (!isDeclInScope(D, CurContext, S))
3907        F.erase();
3908    }
3909    F.done();
3910  } else {
3911    assert(IsInstantiation && "no scope in non-instantiation");
3912    assert(CurContext->isRecord() && "scope not record in instantiation");
3913    LookupQualifiedName(Previous, CurContext);
3914  }
3915
3916  NestedNameSpecifier *NNS =
3917    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3918
3919  // Check for invalid redeclarations.
3920  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3921    return 0;
3922
3923  // Check for bad qualifiers.
3924  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3925    return 0;
3926
3927  DeclContext *LookupContext = computeDeclContext(SS);
3928  NamedDecl *D;
3929  if (!LookupContext) {
3930    if (IsTypeName) {
3931      // FIXME: not all declaration name kinds are legal here
3932      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3933                                              UsingLoc, TypenameLoc,
3934                                              SS.getRange(), NNS,
3935                                              IdentLoc, Name);
3936    } else {
3937      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3938                                           UsingLoc, SS.getRange(), NNS,
3939                                           IdentLoc, Name);
3940    }
3941  } else {
3942    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3943                          SS.getRange(), UsingLoc, NNS, Name,
3944                          IsTypeName);
3945  }
3946  D->setAccess(AS);
3947  CurContext->addDecl(D);
3948
3949  if (!LookupContext) return D;
3950  UsingDecl *UD = cast<UsingDecl>(D);
3951
3952  if (RequireCompleteDeclContext(SS, LookupContext)) {
3953    UD->setInvalidDecl();
3954    return UD;
3955  }
3956
3957  // Look up the target name.
3958
3959  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3960
3961  // Unlike most lookups, we don't always want to hide tag
3962  // declarations: tag names are visible through the using declaration
3963  // even if hidden by ordinary names, *except* in a dependent context
3964  // where it's important for the sanity of two-phase lookup.
3965  if (!IsInstantiation)
3966    R.setHideTags(false);
3967
3968  LookupQualifiedName(R, LookupContext);
3969
3970  if (R.empty()) {
3971    Diag(IdentLoc, diag::err_no_member)
3972      << Name << LookupContext << SS.getRange();
3973    UD->setInvalidDecl();
3974    return UD;
3975  }
3976
3977  if (R.isAmbiguous()) {
3978    UD->setInvalidDecl();
3979    return UD;
3980  }
3981
3982  if (IsTypeName) {
3983    // If we asked for a typename and got a non-type decl, error out.
3984    if (!R.getAsSingle<TypeDecl>()) {
3985      Diag(IdentLoc, diag::err_using_typename_non_type);
3986      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3987        Diag((*I)->getUnderlyingDecl()->getLocation(),
3988             diag::note_using_decl_target);
3989      UD->setInvalidDecl();
3990      return UD;
3991    }
3992  } else {
3993    // If we asked for a non-typename and we got a type, error out,
3994    // but only if this is an instantiation of an unresolved using
3995    // decl.  Otherwise just silently find the type name.
3996    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3997      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3998      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3999      UD->setInvalidDecl();
4000      return UD;
4001    }
4002  }
4003
4004  // C++0x N2914 [namespace.udecl]p6:
4005  // A using-declaration shall not name a namespace.
4006  if (R.getAsSingle<NamespaceDecl>()) {
4007    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4008      << SS.getRange();
4009    UD->setInvalidDecl();
4010    return UD;
4011  }
4012
4013  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4014    if (!CheckUsingShadowDecl(UD, *I, Previous))
4015      BuildUsingShadowDecl(S, UD, *I);
4016  }
4017
4018  return UD;
4019}
4020
4021/// Checks that the given using declaration is not an invalid
4022/// redeclaration.  Note that this is checking only for the using decl
4023/// itself, not for any ill-formedness among the UsingShadowDecls.
4024bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4025                                       bool isTypeName,
4026                                       const CXXScopeSpec &SS,
4027                                       SourceLocation NameLoc,
4028                                       const LookupResult &Prev) {
4029  // C++03 [namespace.udecl]p8:
4030  // C++0x [namespace.udecl]p10:
4031  //   A using-declaration is a declaration and can therefore be used
4032  //   repeatedly where (and only where) multiple declarations are
4033  //   allowed.
4034  //
4035  // That's in non-member contexts.
4036  if (!CurContext->getLookupContext()->isRecord())
4037    return false;
4038
4039  NestedNameSpecifier *Qual
4040    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4041
4042  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4043    NamedDecl *D = *I;
4044
4045    bool DTypename;
4046    NestedNameSpecifier *DQual;
4047    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4048      DTypename = UD->isTypeName();
4049      DQual = UD->getTargetNestedNameDecl();
4050    } else if (UnresolvedUsingValueDecl *UD
4051                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4052      DTypename = false;
4053      DQual = UD->getTargetNestedNameSpecifier();
4054    } else if (UnresolvedUsingTypenameDecl *UD
4055                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4056      DTypename = true;
4057      DQual = UD->getTargetNestedNameSpecifier();
4058    } else continue;
4059
4060    // using decls differ if one says 'typename' and the other doesn't.
4061    // FIXME: non-dependent using decls?
4062    if (isTypeName != DTypename) continue;
4063
4064    // using decls differ if they name different scopes (but note that
4065    // template instantiation can cause this check to trigger when it
4066    // didn't before instantiation).
4067    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4068        Context.getCanonicalNestedNameSpecifier(DQual))
4069      continue;
4070
4071    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4072    Diag(D->getLocation(), diag::note_using_decl) << 1;
4073    return true;
4074  }
4075
4076  return false;
4077}
4078
4079
4080/// Checks that the given nested-name qualifier used in a using decl
4081/// in the current context is appropriately related to the current
4082/// scope.  If an error is found, diagnoses it and returns true.
4083bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4084                                   const CXXScopeSpec &SS,
4085                                   SourceLocation NameLoc) {
4086  DeclContext *NamedContext = computeDeclContext(SS);
4087
4088  if (!CurContext->isRecord()) {
4089    // C++03 [namespace.udecl]p3:
4090    // C++0x [namespace.udecl]p8:
4091    //   A using-declaration for a class member shall be a member-declaration.
4092
4093    // If we weren't able to compute a valid scope, it must be a
4094    // dependent class scope.
4095    if (!NamedContext || NamedContext->isRecord()) {
4096      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4097        << SS.getRange();
4098      return true;
4099    }
4100
4101    // Otherwise, everything is known to be fine.
4102    return false;
4103  }
4104
4105  // The current scope is a record.
4106
4107  // If the named context is dependent, we can't decide much.
4108  if (!NamedContext) {
4109    // FIXME: in C++0x, we can diagnose if we can prove that the
4110    // nested-name-specifier does not refer to a base class, which is
4111    // still possible in some cases.
4112
4113    // Otherwise we have to conservatively report that things might be
4114    // okay.
4115    return false;
4116  }
4117
4118  if (!NamedContext->isRecord()) {
4119    // Ideally this would point at the last name in the specifier,
4120    // but we don't have that level of source info.
4121    Diag(SS.getRange().getBegin(),
4122         diag::err_using_decl_nested_name_specifier_is_not_class)
4123      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4124    return true;
4125  }
4126
4127  if (getLangOptions().CPlusPlus0x) {
4128    // C++0x [namespace.udecl]p3:
4129    //   In a using-declaration used as a member-declaration, the
4130    //   nested-name-specifier shall name a base class of the class
4131    //   being defined.
4132
4133    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4134                                 cast<CXXRecordDecl>(NamedContext))) {
4135      if (CurContext == NamedContext) {
4136        Diag(NameLoc,
4137             diag::err_using_decl_nested_name_specifier_is_current_class)
4138          << SS.getRange();
4139        return true;
4140      }
4141
4142      Diag(SS.getRange().getBegin(),
4143           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4144        << (NestedNameSpecifier*) SS.getScopeRep()
4145        << cast<CXXRecordDecl>(CurContext)
4146        << SS.getRange();
4147      return true;
4148    }
4149
4150    return false;
4151  }
4152
4153  // C++03 [namespace.udecl]p4:
4154  //   A using-declaration used as a member-declaration shall refer
4155  //   to a member of a base class of the class being defined [etc.].
4156
4157  // Salient point: SS doesn't have to name a base class as long as
4158  // lookup only finds members from base classes.  Therefore we can
4159  // diagnose here only if we can prove that that can't happen,
4160  // i.e. if the class hierarchies provably don't intersect.
4161
4162  // TODO: it would be nice if "definitely valid" results were cached
4163  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4164  // need to be repeated.
4165
4166  struct UserData {
4167    llvm::DenseSet<const CXXRecordDecl*> Bases;
4168
4169    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4170      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4171      Data->Bases.insert(Base);
4172      return true;
4173    }
4174
4175    bool hasDependentBases(const CXXRecordDecl *Class) {
4176      return !Class->forallBases(collect, this);
4177    }
4178
4179    /// Returns true if the base is dependent or is one of the
4180    /// accumulated base classes.
4181    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4182      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4183      return !Data->Bases.count(Base);
4184    }
4185
4186    bool mightShareBases(const CXXRecordDecl *Class) {
4187      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4188    }
4189  };
4190
4191  UserData Data;
4192
4193  // Returns false if we find a dependent base.
4194  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4195    return false;
4196
4197  // Returns false if the class has a dependent base or if it or one
4198  // of its bases is present in the base set of the current context.
4199  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4200    return false;
4201
4202  Diag(SS.getRange().getBegin(),
4203       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4204    << (NestedNameSpecifier*) SS.getScopeRep()
4205    << cast<CXXRecordDecl>(CurContext)
4206    << SS.getRange();
4207
4208  return true;
4209}
4210
4211Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4212                                             SourceLocation NamespaceLoc,
4213                                             SourceLocation AliasLoc,
4214                                             IdentifierInfo *Alias,
4215                                             CXXScopeSpec &SS,
4216                                             SourceLocation IdentLoc,
4217                                             IdentifierInfo *Ident) {
4218
4219  // Lookup the namespace name.
4220  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4221  LookupParsedName(R, S, &SS);
4222
4223  // Check if we have a previous declaration with the same name.
4224  NamedDecl *PrevDecl
4225    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4226                       ForRedeclaration);
4227  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4228    PrevDecl = 0;
4229
4230  if (PrevDecl) {
4231    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4232      // We already have an alias with the same name that points to the same
4233      // namespace, so don't create a new one.
4234      // FIXME: At some point, we'll want to create the (redundant)
4235      // declaration to maintain better source information.
4236      if (!R.isAmbiguous() && !R.empty() &&
4237          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4238        return DeclPtrTy();
4239    }
4240
4241    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4242      diag::err_redefinition_different_kind;
4243    Diag(AliasLoc, DiagID) << Alias;
4244    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4245    return DeclPtrTy();
4246  }
4247
4248  if (R.isAmbiguous())
4249    return DeclPtrTy();
4250
4251  if (R.empty()) {
4252    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4253                                                CTC_NoKeywords, 0)) {
4254      if (R.getAsSingle<NamespaceDecl>() ||
4255          R.getAsSingle<NamespaceAliasDecl>()) {
4256        if (DeclContext *DC = computeDeclContext(SS, false))
4257          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4258            << Ident << DC << Corrected << SS.getRange()
4259            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4260        else
4261          Diag(IdentLoc, diag::err_using_directive_suggest)
4262            << Ident << Corrected
4263            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4264
4265        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4266          << Corrected;
4267
4268        Ident = Corrected.getAsIdentifierInfo();
4269      } else {
4270        R.clear();
4271        R.setLookupName(Ident);
4272      }
4273    }
4274
4275    if (R.empty()) {
4276      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4277      return DeclPtrTy();
4278    }
4279  }
4280
4281  NamespaceAliasDecl *AliasDecl =
4282    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4283                               Alias, SS.getRange(),
4284                               (NestedNameSpecifier *)SS.getScopeRep(),
4285                               IdentLoc, R.getFoundDecl());
4286
4287  PushOnScopeChains(AliasDecl, S);
4288  return DeclPtrTy::make(AliasDecl);
4289}
4290
4291namespace {
4292  /// \brief Scoped object used to handle the state changes required in Sema
4293  /// to implicitly define the body of a C++ member function;
4294  class ImplicitlyDefinedFunctionScope {
4295    Sema &S;
4296    DeclContext *PreviousContext;
4297
4298  public:
4299    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4300      : S(S), PreviousContext(S.CurContext)
4301    {
4302      S.CurContext = Method;
4303      S.PushFunctionScope();
4304      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4305    }
4306
4307    ~ImplicitlyDefinedFunctionScope() {
4308      S.PopExpressionEvaluationContext();
4309      S.PopFunctionOrBlockScope();
4310      S.CurContext = PreviousContext;
4311    }
4312  };
4313}
4314
4315void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4316                                            CXXConstructorDecl *Constructor) {
4317  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4318          !Constructor->isUsed(false)) &&
4319    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4320
4321  CXXRecordDecl *ClassDecl = Constructor->getParent();
4322  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4323
4324  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4325  ErrorTrap Trap(*this);
4326  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4327      Trap.hasErrorOccurred()) {
4328    Diag(CurrentLocation, diag::note_member_synthesized_at)
4329      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4330    Constructor->setInvalidDecl();
4331  } else {
4332    Constructor->setUsed();
4333    MarkVTableUsed(CurrentLocation, ClassDecl);
4334  }
4335}
4336
4337void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4338                                    CXXDestructorDecl *Destructor) {
4339  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4340         "DefineImplicitDestructor - call it for implicit default dtor");
4341  CXXRecordDecl *ClassDecl = Destructor->getParent();
4342  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4343
4344  if (Destructor->isInvalidDecl())
4345    return;
4346
4347  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4348
4349  ErrorTrap Trap(*this);
4350  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4351                                         Destructor->getParent());
4352
4353  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4354    Diag(CurrentLocation, diag::note_member_synthesized_at)
4355      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4356
4357    Destructor->setInvalidDecl();
4358    return;
4359  }
4360
4361  Destructor->setUsed();
4362  MarkVTableUsed(CurrentLocation, ClassDecl);
4363}
4364
4365/// \brief Builds a statement that copies the given entity from \p From to
4366/// \c To.
4367///
4368/// This routine is used to copy the members of a class with an
4369/// implicitly-declared copy assignment operator. When the entities being
4370/// copied are arrays, this routine builds for loops to copy them.
4371///
4372/// \param S The Sema object used for type-checking.
4373///
4374/// \param Loc The location where the implicit copy is being generated.
4375///
4376/// \param T The type of the expressions being copied. Both expressions must
4377/// have this type.
4378///
4379/// \param To The expression we are copying to.
4380///
4381/// \param From The expression we are copying from.
4382///
4383/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4384/// Otherwise, it's a non-static member subobject.
4385///
4386/// \param Depth Internal parameter recording the depth of the recursion.
4387///
4388/// \returns A statement or a loop that copies the expressions.
4389static Sema::OwningStmtResult
4390BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4391                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4392                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4393  typedef Sema::OwningStmtResult OwningStmtResult;
4394  typedef Sema::OwningExprResult OwningExprResult;
4395
4396  // C++0x [class.copy]p30:
4397  //   Each subobject is assigned in the manner appropriate to its type:
4398  //
4399  //     - if the subobject is of class type, the copy assignment operator
4400  //       for the class is used (as if by explicit qualification; that is,
4401  //       ignoring any possible virtual overriding functions in more derived
4402  //       classes);
4403  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4404    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4405
4406    // Look for operator=.
4407    DeclarationName Name
4408      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4409    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4410    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4411
4412    // Filter out any result that isn't a copy-assignment operator.
4413    LookupResult::Filter F = OpLookup.makeFilter();
4414    while (F.hasNext()) {
4415      NamedDecl *D = F.next();
4416      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4417        if (Method->isCopyAssignmentOperator())
4418          continue;
4419
4420      F.erase();
4421    }
4422    F.done();
4423
4424    // Suppress the protected check (C++ [class.protected]) for each of the
4425    // assignment operators we found. This strange dance is required when
4426    // we're assigning via a base classes's copy-assignment operator. To
4427    // ensure that we're getting the right base class subobject (without
4428    // ambiguities), we need to cast "this" to that subobject type; to
4429    // ensure that we don't go through the virtual call mechanism, we need
4430    // to qualify the operator= name with the base class (see below). However,
4431    // this means that if the base class has a protected copy assignment
4432    // operator, the protected member access check will fail. So, we
4433    // rewrite "protected" access to "public" access in this case, since we
4434    // know by construction that we're calling from a derived class.
4435    if (CopyingBaseSubobject) {
4436      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4437           L != LEnd; ++L) {
4438        if (L.getAccess() == AS_protected)
4439          L.setAccess(AS_public);
4440      }
4441    }
4442
4443    // Create the nested-name-specifier that will be used to qualify the
4444    // reference to operator=; this is required to suppress the virtual
4445    // call mechanism.
4446    CXXScopeSpec SS;
4447    SS.setRange(Loc);
4448    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4449                                               T.getTypePtr()));
4450
4451    // Create the reference to operator=.
4452    OwningExprResult OpEqualRef
4453      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4454                                   /*FirstQualifierInScope=*/0, OpLookup,
4455                                   /*TemplateArgs=*/0,
4456                                   /*SuppressQualifierCheck=*/true);
4457    if (OpEqualRef.isInvalid())
4458      return S.StmtError();
4459
4460    // Build the call to the assignment operator.
4461    Expr *FromE = From.takeAs<Expr>();
4462    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4463                                                      OpEqualRef.takeAs<Expr>(),
4464                                                        Loc, &FromE, 1, 0, Loc);
4465    if (Call.isInvalid())
4466      return S.StmtError();
4467
4468    return S.Owned(Call.takeAs<Stmt>());
4469  }
4470
4471  //     - if the subobject is of scalar type, the built-in assignment
4472  //       operator is used.
4473  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4474  if (!ArrayTy) {
4475    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4476                                                       BinaryOperator::Assign,
4477                                                       To.takeAs<Expr>(),
4478                                                       From.takeAs<Expr>());
4479    if (Assignment.isInvalid())
4480      return S.StmtError();
4481
4482    return S.Owned(Assignment.takeAs<Stmt>());
4483  }
4484
4485  //     - if the subobject is an array, each element is assigned, in the
4486  //       manner appropriate to the element type;
4487
4488  // Construct a loop over the array bounds, e.g.,
4489  //
4490  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4491  //
4492  // that will copy each of the array elements.
4493  QualType SizeType = S.Context.getSizeType();
4494
4495  // Create the iteration variable.
4496  IdentifierInfo *IterationVarName = 0;
4497  {
4498    llvm::SmallString<8> Str;
4499    llvm::raw_svector_ostream OS(Str);
4500    OS << "__i" << Depth;
4501    IterationVarName = &S.Context.Idents.get(OS.str());
4502  }
4503  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4504                                          IterationVarName, SizeType,
4505                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4506                                          VarDecl::None, VarDecl::None);
4507
4508  // Initialize the iteration variable to zero.
4509  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4510  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4511
4512  // Create a reference to the iteration variable; we'll use this several
4513  // times throughout.
4514  Expr *IterationVarRef
4515    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4516  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4517
4518  // Create the DeclStmt that holds the iteration variable.
4519  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4520
4521  // Create the comparison against the array bound.
4522  llvm::APInt Upper = ArrayTy->getSize();
4523  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4524  OwningExprResult Comparison
4525    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4526                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4527                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4528
4529  // Create the pre-increment of the iteration variable.
4530  OwningExprResult Increment
4531    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4532                                            UnaryOperator::PreInc,
4533                                            SizeType, Loc));
4534
4535  // Subscript the "from" and "to" expressions with the iteration variable.
4536  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4537                                           S.Owned(IterationVarRef->Retain()),
4538                                           Loc);
4539  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4540                                         S.Owned(IterationVarRef->Retain()),
4541                                         Loc);
4542  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4543  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4544
4545  // Build the copy for an individual element of the array.
4546  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4547                                                ArrayTy->getElementType(),
4548                                                move(To), move(From),
4549                                                CopyingBaseSubobject, Depth+1);
4550  if (Copy.isInvalid()) {
4551    InitStmt->Destroy(S.Context);
4552    return S.StmtError();
4553  }
4554
4555  // Construct the loop that copies all elements of this array.
4556  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4557                        S.MakeFullExpr(Comparison),
4558                        Sema::DeclPtrTy(),
4559                        S.MakeFullExpr(Increment),
4560                        Loc, move(Copy));
4561}
4562
4563void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4564                                        CXXMethodDecl *CopyAssignOperator) {
4565  assert((CopyAssignOperator->isImplicit() &&
4566          CopyAssignOperator->isOverloadedOperator() &&
4567          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4568          !CopyAssignOperator->isUsed(false)) &&
4569         "DefineImplicitCopyAssignment called for wrong function");
4570
4571  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4572
4573  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4574    CopyAssignOperator->setInvalidDecl();
4575    return;
4576  }
4577
4578  CopyAssignOperator->setUsed();
4579
4580  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4581  ErrorTrap Trap(*this);
4582
4583  // C++0x [class.copy]p30:
4584  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4585  //   for a non-union class X performs memberwise copy assignment of its
4586  //   subobjects. The direct base classes of X are assigned first, in the
4587  //   order of their declaration in the base-specifier-list, and then the
4588  //   immediate non-static data members of X are assigned, in the order in
4589  //   which they were declared in the class definition.
4590
4591  // The statements that form the synthesized function body.
4592  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4593
4594  // The parameter for the "other" object, which we are copying from.
4595  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4596  Qualifiers OtherQuals = Other->getType().getQualifiers();
4597  QualType OtherRefType = Other->getType();
4598  if (const LValueReferenceType *OtherRef
4599                                = OtherRefType->getAs<LValueReferenceType>()) {
4600    OtherRefType = OtherRef->getPointeeType();
4601    OtherQuals = OtherRefType.getQualifiers();
4602  }
4603
4604  // Our location for everything implicitly-generated.
4605  SourceLocation Loc = CopyAssignOperator->getLocation();
4606
4607  // Construct a reference to the "other" object. We'll be using this
4608  // throughout the generated ASTs.
4609  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4610  assert(OtherRef && "Reference to parameter cannot fail!");
4611
4612  // Construct the "this" pointer. We'll be using this throughout the generated
4613  // ASTs.
4614  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4615  assert(This && "Reference to this cannot fail!");
4616
4617  // Assign base classes.
4618  bool Invalid = false;
4619  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4620       E = ClassDecl->bases_end(); Base != E; ++Base) {
4621    // Form the assignment:
4622    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4623    QualType BaseType = Base->getType().getUnqualifiedType();
4624    CXXRecordDecl *BaseClassDecl = 0;
4625    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4626      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4627    else {
4628      Invalid = true;
4629      continue;
4630    }
4631
4632    // Construct the "from" expression, which is an implicit cast to the
4633    // appropriately-qualified base type.
4634    Expr *From = OtherRef->Retain();
4635    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4636                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4637                      CXXBaseSpecifierArray(Base));
4638
4639    // Dereference "this".
4640    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4641                                               Owned(This->Retain()));
4642
4643    // Implicitly cast "this" to the appropriately-qualified base type.
4644    Expr *ToE = To.takeAs<Expr>();
4645    ImpCastExprToType(ToE,
4646                      Context.getCVRQualifiedType(BaseType,
4647                                      CopyAssignOperator->getTypeQualifiers()),
4648                      CastExpr::CK_UncheckedDerivedToBase,
4649                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4650    To = Owned(ToE);
4651
4652    // Build the copy.
4653    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4654                                                  move(To), Owned(From),
4655                                                /*CopyingBaseSubobject=*/true);
4656    if (Copy.isInvalid()) {
4657      Diag(CurrentLocation, diag::note_member_synthesized_at)
4658        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4659      CopyAssignOperator->setInvalidDecl();
4660      return;
4661    }
4662
4663    // Success! Record the copy.
4664    Statements.push_back(Copy.takeAs<Expr>());
4665  }
4666
4667  // \brief Reference to the __builtin_memcpy function.
4668  Expr *BuiltinMemCpyRef = 0;
4669  // \brief Reference to the __builtin_objc_memmove_collectable function.
4670  Expr *CollectableMemCpyRef = 0;
4671
4672  // Assign non-static members.
4673  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4674                                  FieldEnd = ClassDecl->field_end();
4675       Field != FieldEnd; ++Field) {
4676    // Check for members of reference type; we can't copy those.
4677    if (Field->getType()->isReferenceType()) {
4678      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4679        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4680      Diag(Field->getLocation(), diag::note_declared_at);
4681      Diag(CurrentLocation, diag::note_member_synthesized_at)
4682        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4683      Invalid = true;
4684      continue;
4685    }
4686
4687    // Check for members of const-qualified, non-class type.
4688    QualType BaseType = Context.getBaseElementType(Field->getType());
4689    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4690      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4691        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4692      Diag(Field->getLocation(), diag::note_declared_at);
4693      Diag(CurrentLocation, diag::note_member_synthesized_at)
4694        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4695      Invalid = true;
4696      continue;
4697    }
4698
4699    QualType FieldType = Field->getType().getNonReferenceType();
4700    if (FieldType->isIncompleteArrayType()) {
4701      assert(ClassDecl->hasFlexibleArrayMember() &&
4702             "Incomplete array type is not valid");
4703      continue;
4704    }
4705
4706    // Build references to the field in the object we're copying from and to.
4707    CXXScopeSpec SS; // Intentionally empty
4708    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4709                              LookupMemberName);
4710    MemberLookup.addDecl(*Field);
4711    MemberLookup.resolveKind();
4712    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4713                                                     OtherRefType,
4714                                                     Loc, /*IsArrow=*/false,
4715                                                     SS, 0, MemberLookup, 0);
4716    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4717                                                   This->getType(),
4718                                                   Loc, /*IsArrow=*/true,
4719                                                   SS, 0, MemberLookup, 0);
4720    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4721    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4722
4723    // If the field should be copied with __builtin_memcpy rather than via
4724    // explicit assignments, do so. This optimization only applies for arrays
4725    // of scalars and arrays of class type with trivial copy-assignment
4726    // operators.
4727    if (FieldType->isArrayType() &&
4728        (!BaseType->isRecordType() ||
4729         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4730           ->hasTrivialCopyAssignment())) {
4731      // Compute the size of the memory buffer to be copied.
4732      QualType SizeType = Context.getSizeType();
4733      llvm::APInt Size(Context.getTypeSize(SizeType),
4734                       Context.getTypeSizeInChars(BaseType).getQuantity());
4735      for (const ConstantArrayType *Array
4736              = Context.getAsConstantArrayType(FieldType);
4737           Array;
4738           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4739        llvm::APInt ArraySize = Array->getSize();
4740        ArraySize.zextOrTrunc(Size.getBitWidth());
4741        Size *= ArraySize;
4742      }
4743
4744      // Take the address of the field references for "from" and "to".
4745      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4746      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4747
4748      bool NeedsCollectableMemCpy =
4749          (BaseType->isRecordType() &&
4750           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4751
4752      if (NeedsCollectableMemCpy) {
4753        if (!CollectableMemCpyRef) {
4754          // Create a reference to the __builtin_objc_memmove_collectable function.
4755          LookupResult R(*this,
4756                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4757                         Loc, LookupOrdinaryName);
4758          LookupName(R, TUScope, true);
4759
4760          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4761          if (!CollectableMemCpy) {
4762            // Something went horribly wrong earlier, and we will have
4763            // complained about it.
4764            Invalid = true;
4765            continue;
4766          }
4767
4768          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4769                                                  CollectableMemCpy->getType(),
4770                                                  Loc, 0).takeAs<Expr>();
4771          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4772        }
4773      }
4774      // Create a reference to the __builtin_memcpy builtin function.
4775      else if (!BuiltinMemCpyRef) {
4776        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4777                       LookupOrdinaryName);
4778        LookupName(R, TUScope, true);
4779
4780        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4781        if (!BuiltinMemCpy) {
4782          // Something went horribly wrong earlier, and we will have complained
4783          // about it.
4784          Invalid = true;
4785          continue;
4786        }
4787
4788        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4789                                            BuiltinMemCpy->getType(),
4790                                            Loc, 0).takeAs<Expr>();
4791        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4792      }
4793
4794      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4795      CallArgs.push_back(To.takeAs<Expr>());
4796      CallArgs.push_back(From.takeAs<Expr>());
4797      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4798      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4799      Commas.push_back(Loc);
4800      Commas.push_back(Loc);
4801      OwningExprResult Call = ExprError();
4802      if (NeedsCollectableMemCpy)
4803        Call = ActOnCallExpr(/*Scope=*/0,
4804                             Owned(CollectableMemCpyRef->Retain()),
4805                             Loc, move_arg(CallArgs),
4806                             Commas.data(), Loc);
4807      else
4808        Call = ActOnCallExpr(/*Scope=*/0,
4809                             Owned(BuiltinMemCpyRef->Retain()),
4810                             Loc, move_arg(CallArgs),
4811                             Commas.data(), Loc);
4812
4813      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4814      Statements.push_back(Call.takeAs<Expr>());
4815      continue;
4816    }
4817
4818    // Build the copy of this field.
4819    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4820                                                  move(To), move(From),
4821                                              /*CopyingBaseSubobject=*/false);
4822    if (Copy.isInvalid()) {
4823      Diag(CurrentLocation, diag::note_member_synthesized_at)
4824        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4825      CopyAssignOperator->setInvalidDecl();
4826      return;
4827    }
4828
4829    // Success! Record the copy.
4830    Statements.push_back(Copy.takeAs<Stmt>());
4831  }
4832
4833  if (!Invalid) {
4834    // Add a "return *this;"
4835    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4836                                                    Owned(This->Retain()));
4837
4838    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4839    if (Return.isInvalid())
4840      Invalid = true;
4841    else {
4842      Statements.push_back(Return.takeAs<Stmt>());
4843
4844      if (Trap.hasErrorOccurred()) {
4845        Diag(CurrentLocation, diag::note_member_synthesized_at)
4846          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4847        Invalid = true;
4848      }
4849    }
4850  }
4851
4852  if (Invalid) {
4853    CopyAssignOperator->setInvalidDecl();
4854    return;
4855  }
4856
4857  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4858                                            /*isStmtExpr=*/false);
4859  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4860  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4861}
4862
4863void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4864                                   CXXConstructorDecl *CopyConstructor,
4865                                   unsigned TypeQuals) {
4866  assert((CopyConstructor->isImplicit() &&
4867          CopyConstructor->isCopyConstructor(TypeQuals) &&
4868          !CopyConstructor->isUsed(false)) &&
4869         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4870
4871  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4872  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4873
4874  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4875  ErrorTrap Trap(*this);
4876
4877  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4878      Trap.hasErrorOccurred()) {
4879    Diag(CurrentLocation, diag::note_member_synthesized_at)
4880      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4881    CopyConstructor->setInvalidDecl();
4882  }  else {
4883    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4884                                               CopyConstructor->getLocation(),
4885                                               MultiStmtArg(*this, 0, 0),
4886                                               /*isStmtExpr=*/false)
4887                                                              .takeAs<Stmt>());
4888  }
4889
4890  CopyConstructor->setUsed();
4891}
4892
4893Sema::OwningExprResult
4894Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4895                            CXXConstructorDecl *Constructor,
4896                            MultiExprArg ExprArgs,
4897                            bool RequiresZeroInit,
4898                            CXXConstructExpr::ConstructionKind ConstructKind) {
4899  bool Elidable = false;
4900
4901  // C++0x [class.copy]p34:
4902  //   When certain criteria are met, an implementation is allowed to
4903  //   omit the copy/move construction of a class object, even if the
4904  //   copy/move constructor and/or destructor for the object have
4905  //   side effects. [...]
4906  //     - when a temporary class object that has not been bound to a
4907  //       reference (12.2) would be copied/moved to a class object
4908  //       with the same cv-unqualified type, the copy/move operation
4909  //       can be omitted by constructing the temporary object
4910  //       directly into the target of the omitted copy/move
4911  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4912    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4913    Elidable = SubExpr->isTemporaryObject() &&
4914      Context.hasSameUnqualifiedType(SubExpr->getType(),
4915                           Context.getTypeDeclType(Constructor->getParent()));
4916  }
4917
4918  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4919                               Elidable, move(ExprArgs), RequiresZeroInit,
4920                               ConstructKind);
4921}
4922
4923/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4924/// including handling of its default argument expressions.
4925Sema::OwningExprResult
4926Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4927                            CXXConstructorDecl *Constructor, bool Elidable,
4928                            MultiExprArg ExprArgs,
4929                            bool RequiresZeroInit,
4930                            CXXConstructExpr::ConstructionKind ConstructKind) {
4931  unsigned NumExprs = ExprArgs.size();
4932  Expr **Exprs = (Expr **)ExprArgs.release();
4933
4934  MarkDeclarationReferenced(ConstructLoc, Constructor);
4935  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4936                                        Constructor, Elidable, Exprs, NumExprs,
4937                                        RequiresZeroInit, ConstructKind));
4938}
4939
4940bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4941                                        CXXConstructorDecl *Constructor,
4942                                        MultiExprArg Exprs) {
4943  OwningExprResult TempResult =
4944    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4945                          move(Exprs));
4946  if (TempResult.isInvalid())
4947    return true;
4948
4949  Expr *Temp = TempResult.takeAs<Expr>();
4950  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4951  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4952  VD->setInit(Temp);
4953
4954  return false;
4955}
4956
4957void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4958  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4959  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4960      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4961    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4962    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4963    CheckDestructorAccess(VD->getLocation(), Destructor,
4964                          PDiag(diag::err_access_dtor_var)
4965                            << VD->getDeclName()
4966                            << VD->getType());
4967  }
4968}
4969
4970/// AddCXXDirectInitializerToDecl - This action is called immediately after
4971/// ActOnDeclarator, when a C++ direct initializer is present.
4972/// e.g: "int x(1);"
4973void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4974                                         SourceLocation LParenLoc,
4975                                         MultiExprArg Exprs,
4976                                         SourceLocation *CommaLocs,
4977                                         SourceLocation RParenLoc) {
4978  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4979  Decl *RealDecl = Dcl.getAs<Decl>();
4980
4981  // If there is no declaration, there was an error parsing it.  Just ignore
4982  // the initializer.
4983  if (RealDecl == 0)
4984    return;
4985
4986  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4987  if (!VDecl) {
4988    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4989    RealDecl->setInvalidDecl();
4990    return;
4991  }
4992
4993  // We will represent direct-initialization similarly to copy-initialization:
4994  //    int x(1);  -as-> int x = 1;
4995  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4996  //
4997  // Clients that want to distinguish between the two forms, can check for
4998  // direct initializer using VarDecl::hasCXXDirectInitializer().
4999  // A major benefit is that clients that don't particularly care about which
5000  // exactly form was it (like the CodeGen) can handle both cases without
5001  // special case code.
5002
5003  // C++ 8.5p11:
5004  // The form of initialization (using parentheses or '=') is generally
5005  // insignificant, but does matter when the entity being initialized has a
5006  // class type.
5007  QualType DeclInitType = VDecl->getType();
5008  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
5009    DeclInitType = Context.getBaseElementType(Array);
5010
5011  if (!VDecl->getType()->isDependentType() &&
5012      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5013                          diag::err_typecheck_decl_incomplete_type)) {
5014    VDecl->setInvalidDecl();
5015    return;
5016  }
5017
5018  // The variable can not have an abstract class type.
5019  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5020                             diag::err_abstract_type_in_decl,
5021                             AbstractVariableType))
5022    VDecl->setInvalidDecl();
5023
5024  const VarDecl *Def;
5025  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5026    Diag(VDecl->getLocation(), diag::err_redefinition)
5027    << VDecl->getDeclName();
5028    Diag(Def->getLocation(), diag::note_previous_definition);
5029    VDecl->setInvalidDecl();
5030    return;
5031  }
5032
5033  // If either the declaration has a dependent type or if any of the
5034  // expressions is type-dependent, we represent the initialization
5035  // via a ParenListExpr for later use during template instantiation.
5036  if (VDecl->getType()->isDependentType() ||
5037      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5038    // Let clients know that initialization was done with a direct initializer.
5039    VDecl->setCXXDirectInitializer(true);
5040
5041    // Store the initialization expressions as a ParenListExpr.
5042    unsigned NumExprs = Exprs.size();
5043    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5044                                               (Expr **)Exprs.release(),
5045                                               NumExprs, RParenLoc));
5046    return;
5047  }
5048
5049  // Capture the variable that is being initialized and the style of
5050  // initialization.
5051  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5052
5053  // FIXME: Poor source location information.
5054  InitializationKind Kind
5055    = InitializationKind::CreateDirect(VDecl->getLocation(),
5056                                       LParenLoc, RParenLoc);
5057
5058  InitializationSequence InitSeq(*this, Entity, Kind,
5059                                 (Expr**)Exprs.get(), Exprs.size());
5060  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5061  if (Result.isInvalid()) {
5062    VDecl->setInvalidDecl();
5063    return;
5064  }
5065
5066  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5067  VDecl->setInit(Result.takeAs<Expr>());
5068  VDecl->setCXXDirectInitializer(true);
5069
5070  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5071    FinalizeVarWithDestructor(VDecl, Record);
5072}
5073
5074/// \brief Given a constructor and the set of arguments provided for the
5075/// constructor, convert the arguments and add any required default arguments
5076/// to form a proper call to this constructor.
5077///
5078/// \returns true if an error occurred, false otherwise.
5079bool
5080Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5081                              MultiExprArg ArgsPtr,
5082                              SourceLocation Loc,
5083                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5084  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5085  unsigned NumArgs = ArgsPtr.size();
5086  Expr **Args = (Expr **)ArgsPtr.get();
5087
5088  const FunctionProtoType *Proto
5089    = Constructor->getType()->getAs<FunctionProtoType>();
5090  assert(Proto && "Constructor without a prototype?");
5091  unsigned NumArgsInProto = Proto->getNumArgs();
5092
5093  // If too few arguments are available, we'll fill in the rest with defaults.
5094  if (NumArgs < NumArgsInProto)
5095    ConvertedArgs.reserve(NumArgsInProto);
5096  else
5097    ConvertedArgs.reserve(NumArgs);
5098
5099  VariadicCallType CallType =
5100    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5101  llvm::SmallVector<Expr *, 8> AllArgs;
5102  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5103                                        Proto, 0, Args, NumArgs, AllArgs,
5104                                        CallType);
5105  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5106    ConvertedArgs.push_back(AllArgs[i]);
5107  return Invalid;
5108}
5109
5110static inline bool
5111CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5112                                       const FunctionDecl *FnDecl) {
5113  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5114  if (isa<NamespaceDecl>(DC)) {
5115    return SemaRef.Diag(FnDecl->getLocation(),
5116                        diag::err_operator_new_delete_declared_in_namespace)
5117      << FnDecl->getDeclName();
5118  }
5119
5120  if (isa<TranslationUnitDecl>(DC) &&
5121      FnDecl->getStorageClass() == FunctionDecl::Static) {
5122    return SemaRef.Diag(FnDecl->getLocation(),
5123                        diag::err_operator_new_delete_declared_static)
5124      << FnDecl->getDeclName();
5125  }
5126
5127  return false;
5128}
5129
5130static inline bool
5131CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5132                            CanQualType ExpectedResultType,
5133                            CanQualType ExpectedFirstParamType,
5134                            unsigned DependentParamTypeDiag,
5135                            unsigned InvalidParamTypeDiag) {
5136  QualType ResultType =
5137    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5138
5139  // Check that the result type is not dependent.
5140  if (ResultType->isDependentType())
5141    return SemaRef.Diag(FnDecl->getLocation(),
5142                        diag::err_operator_new_delete_dependent_result_type)
5143    << FnDecl->getDeclName() << ExpectedResultType;
5144
5145  // Check that the result type is what we expect.
5146  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5147    return SemaRef.Diag(FnDecl->getLocation(),
5148                        diag::err_operator_new_delete_invalid_result_type)
5149    << FnDecl->getDeclName() << ExpectedResultType;
5150
5151  // A function template must have at least 2 parameters.
5152  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5153    return SemaRef.Diag(FnDecl->getLocation(),
5154                      diag::err_operator_new_delete_template_too_few_parameters)
5155        << FnDecl->getDeclName();
5156
5157  // The function decl must have at least 1 parameter.
5158  if (FnDecl->getNumParams() == 0)
5159    return SemaRef.Diag(FnDecl->getLocation(),
5160                        diag::err_operator_new_delete_too_few_parameters)
5161      << FnDecl->getDeclName();
5162
5163  // Check the the first parameter type is not dependent.
5164  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5165  if (FirstParamType->isDependentType())
5166    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5167      << FnDecl->getDeclName() << ExpectedFirstParamType;
5168
5169  // Check that the first parameter type is what we expect.
5170  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5171      ExpectedFirstParamType)
5172    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5173    << FnDecl->getDeclName() << ExpectedFirstParamType;
5174
5175  return false;
5176}
5177
5178static bool
5179CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5180  // C++ [basic.stc.dynamic.allocation]p1:
5181  //   A program is ill-formed if an allocation function is declared in a
5182  //   namespace scope other than global scope or declared static in global
5183  //   scope.
5184  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5185    return true;
5186
5187  CanQualType SizeTy =
5188    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5189
5190  // C++ [basic.stc.dynamic.allocation]p1:
5191  //  The return type shall be void*. The first parameter shall have type
5192  //  std::size_t.
5193  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5194                                  SizeTy,
5195                                  diag::err_operator_new_dependent_param_type,
5196                                  diag::err_operator_new_param_type))
5197    return true;
5198
5199  // C++ [basic.stc.dynamic.allocation]p1:
5200  //  The first parameter shall not have an associated default argument.
5201  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5202    return SemaRef.Diag(FnDecl->getLocation(),
5203                        diag::err_operator_new_default_arg)
5204      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5205
5206  return false;
5207}
5208
5209static bool
5210CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5211  // C++ [basic.stc.dynamic.deallocation]p1:
5212  //   A program is ill-formed if deallocation functions are declared in a
5213  //   namespace scope other than global scope or declared static in global
5214  //   scope.
5215  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5216    return true;
5217
5218  // C++ [basic.stc.dynamic.deallocation]p2:
5219  //   Each deallocation function shall return void and its first parameter
5220  //   shall be void*.
5221  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5222                                  SemaRef.Context.VoidPtrTy,
5223                                 diag::err_operator_delete_dependent_param_type,
5224                                 diag::err_operator_delete_param_type))
5225    return true;
5226
5227  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5228  if (FirstParamType->isDependentType())
5229    return SemaRef.Diag(FnDecl->getLocation(),
5230                        diag::err_operator_delete_dependent_param_type)
5231    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5232
5233  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5234      SemaRef.Context.VoidPtrTy)
5235    return SemaRef.Diag(FnDecl->getLocation(),
5236                        diag::err_operator_delete_param_type)
5237      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5238
5239  return false;
5240}
5241
5242/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5243/// of this overloaded operator is well-formed. If so, returns false;
5244/// otherwise, emits appropriate diagnostics and returns true.
5245bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5246  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5247         "Expected an overloaded operator declaration");
5248
5249  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5250
5251  // C++ [over.oper]p5:
5252  //   The allocation and deallocation functions, operator new,
5253  //   operator new[], operator delete and operator delete[], are
5254  //   described completely in 3.7.3. The attributes and restrictions
5255  //   found in the rest of this subclause do not apply to them unless
5256  //   explicitly stated in 3.7.3.
5257  if (Op == OO_Delete || Op == OO_Array_Delete)
5258    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5259
5260  if (Op == OO_New || Op == OO_Array_New)
5261    return CheckOperatorNewDeclaration(*this, FnDecl);
5262
5263  // C++ [over.oper]p6:
5264  //   An operator function shall either be a non-static member
5265  //   function or be a non-member function and have at least one
5266  //   parameter whose type is a class, a reference to a class, an
5267  //   enumeration, or a reference to an enumeration.
5268  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5269    if (MethodDecl->isStatic())
5270      return Diag(FnDecl->getLocation(),
5271                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5272  } else {
5273    bool ClassOrEnumParam = false;
5274    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5275                                   ParamEnd = FnDecl->param_end();
5276         Param != ParamEnd; ++Param) {
5277      QualType ParamType = (*Param)->getType().getNonReferenceType();
5278      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5279          ParamType->isEnumeralType()) {
5280        ClassOrEnumParam = true;
5281        break;
5282      }
5283    }
5284
5285    if (!ClassOrEnumParam)
5286      return Diag(FnDecl->getLocation(),
5287                  diag::err_operator_overload_needs_class_or_enum)
5288        << FnDecl->getDeclName();
5289  }
5290
5291  // C++ [over.oper]p8:
5292  //   An operator function cannot have default arguments (8.3.6),
5293  //   except where explicitly stated below.
5294  //
5295  // Only the function-call operator allows default arguments
5296  // (C++ [over.call]p1).
5297  if (Op != OO_Call) {
5298    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5299         Param != FnDecl->param_end(); ++Param) {
5300      if ((*Param)->hasDefaultArg())
5301        return Diag((*Param)->getLocation(),
5302                    diag::err_operator_overload_default_arg)
5303          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5304    }
5305  }
5306
5307  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5308    { false, false, false }
5309#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5310    , { Unary, Binary, MemberOnly }
5311#include "clang/Basic/OperatorKinds.def"
5312  };
5313
5314  bool CanBeUnaryOperator = OperatorUses[Op][0];
5315  bool CanBeBinaryOperator = OperatorUses[Op][1];
5316  bool MustBeMemberOperator = OperatorUses[Op][2];
5317
5318  // C++ [over.oper]p8:
5319  //   [...] Operator functions cannot have more or fewer parameters
5320  //   than the number required for the corresponding operator, as
5321  //   described in the rest of this subclause.
5322  unsigned NumParams = FnDecl->getNumParams()
5323                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5324  if (Op != OO_Call &&
5325      ((NumParams == 1 && !CanBeUnaryOperator) ||
5326       (NumParams == 2 && !CanBeBinaryOperator) ||
5327       (NumParams < 1) || (NumParams > 2))) {
5328    // We have the wrong number of parameters.
5329    unsigned ErrorKind;
5330    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5331      ErrorKind = 2;  // 2 -> unary or binary.
5332    } else if (CanBeUnaryOperator) {
5333      ErrorKind = 0;  // 0 -> unary
5334    } else {
5335      assert(CanBeBinaryOperator &&
5336             "All non-call overloaded operators are unary or binary!");
5337      ErrorKind = 1;  // 1 -> binary
5338    }
5339
5340    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5341      << FnDecl->getDeclName() << NumParams << ErrorKind;
5342  }
5343
5344  // Overloaded operators other than operator() cannot be variadic.
5345  if (Op != OO_Call &&
5346      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5347    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5348      << FnDecl->getDeclName();
5349  }
5350
5351  // Some operators must be non-static member functions.
5352  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5353    return Diag(FnDecl->getLocation(),
5354                diag::err_operator_overload_must_be_member)
5355      << FnDecl->getDeclName();
5356  }
5357
5358  // C++ [over.inc]p1:
5359  //   The user-defined function called operator++ implements the
5360  //   prefix and postfix ++ operator. If this function is a member
5361  //   function with no parameters, or a non-member function with one
5362  //   parameter of class or enumeration type, it defines the prefix
5363  //   increment operator ++ for objects of that type. If the function
5364  //   is a member function with one parameter (which shall be of type
5365  //   int) or a non-member function with two parameters (the second
5366  //   of which shall be of type int), it defines the postfix
5367  //   increment operator ++ for objects of that type.
5368  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5369    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5370    bool ParamIsInt = false;
5371    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5372      ParamIsInt = BT->getKind() == BuiltinType::Int;
5373
5374    if (!ParamIsInt)
5375      return Diag(LastParam->getLocation(),
5376                  diag::err_operator_overload_post_incdec_must_be_int)
5377        << LastParam->getType() << (Op == OO_MinusMinus);
5378  }
5379
5380  // Notify the class if it got an assignment operator.
5381  if (Op == OO_Equal) {
5382    // Would have returned earlier otherwise.
5383    assert(isa<CXXMethodDecl>(FnDecl) &&
5384      "Overloaded = not member, but not filtered.");
5385    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5386    Method->getParent()->addedAssignmentOperator(Context, Method);
5387  }
5388
5389  return false;
5390}
5391
5392/// CheckLiteralOperatorDeclaration - Check whether the declaration
5393/// of this literal operator function is well-formed. If so, returns
5394/// false; otherwise, emits appropriate diagnostics and returns true.
5395bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5396  DeclContext *DC = FnDecl->getDeclContext();
5397  Decl::Kind Kind = DC->getDeclKind();
5398  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5399      Kind != Decl::LinkageSpec) {
5400    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5401      << FnDecl->getDeclName();
5402    return true;
5403  }
5404
5405  bool Valid = false;
5406
5407  // template <char...> type operator "" name() is the only valid template
5408  // signature, and the only valid signature with no parameters.
5409  if (FnDecl->param_size() == 0) {
5410    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5411      // Must have only one template parameter
5412      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5413      if (Params->size() == 1) {
5414        NonTypeTemplateParmDecl *PmDecl =
5415          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5416
5417        // The template parameter must be a char parameter pack.
5418        // FIXME: This test will always fail because non-type parameter packs
5419        //   have not been implemented.
5420        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5421            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5422          Valid = true;
5423      }
5424    }
5425  } else {
5426    // Check the first parameter
5427    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5428
5429    QualType T = (*Param)->getType();
5430
5431    // unsigned long long int, long double, and any character type are allowed
5432    // as the only parameters.
5433    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5434        Context.hasSameType(T, Context.LongDoubleTy) ||
5435        Context.hasSameType(T, Context.CharTy) ||
5436        Context.hasSameType(T, Context.WCharTy) ||
5437        Context.hasSameType(T, Context.Char16Ty) ||
5438        Context.hasSameType(T, Context.Char32Ty)) {
5439      if (++Param == FnDecl->param_end())
5440        Valid = true;
5441      goto FinishedParams;
5442    }
5443
5444    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5445    const PointerType *PT = T->getAs<PointerType>();
5446    if (!PT)
5447      goto FinishedParams;
5448    T = PT->getPointeeType();
5449    if (!T.isConstQualified())
5450      goto FinishedParams;
5451    T = T.getUnqualifiedType();
5452
5453    // Move on to the second parameter;
5454    ++Param;
5455
5456    // If there is no second parameter, the first must be a const char *
5457    if (Param == FnDecl->param_end()) {
5458      if (Context.hasSameType(T, Context.CharTy))
5459        Valid = true;
5460      goto FinishedParams;
5461    }
5462
5463    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5464    // are allowed as the first parameter to a two-parameter function
5465    if (!(Context.hasSameType(T, Context.CharTy) ||
5466          Context.hasSameType(T, Context.WCharTy) ||
5467          Context.hasSameType(T, Context.Char16Ty) ||
5468          Context.hasSameType(T, Context.Char32Ty)))
5469      goto FinishedParams;
5470
5471    // The second and final parameter must be an std::size_t
5472    T = (*Param)->getType().getUnqualifiedType();
5473    if (Context.hasSameType(T, Context.getSizeType()) &&
5474        ++Param == FnDecl->param_end())
5475      Valid = true;
5476  }
5477
5478  // FIXME: This diagnostic is absolutely terrible.
5479FinishedParams:
5480  if (!Valid) {
5481    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5482      << FnDecl->getDeclName();
5483    return true;
5484  }
5485
5486  return false;
5487}
5488
5489/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5490/// linkage specification, including the language and (if present)
5491/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5492/// the location of the language string literal, which is provided
5493/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5494/// the '{' brace. Otherwise, this linkage specification does not
5495/// have any braces.
5496Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5497                                                     SourceLocation ExternLoc,
5498                                                     SourceLocation LangLoc,
5499                                                     llvm::StringRef Lang,
5500                                                     SourceLocation LBraceLoc) {
5501  LinkageSpecDecl::LanguageIDs Language;
5502  if (Lang == "\"C\"")
5503    Language = LinkageSpecDecl::lang_c;
5504  else if (Lang == "\"C++\"")
5505    Language = LinkageSpecDecl::lang_cxx;
5506  else {
5507    Diag(LangLoc, diag::err_bad_language);
5508    return DeclPtrTy();
5509  }
5510
5511  // FIXME: Add all the various semantics of linkage specifications
5512
5513  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5514                                               LangLoc, Language,
5515                                               LBraceLoc.isValid());
5516  CurContext->addDecl(D);
5517  PushDeclContext(S, D);
5518  return DeclPtrTy::make(D);
5519}
5520
5521/// ActOnFinishLinkageSpecification - Completely the definition of
5522/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5523/// valid, it's the position of the closing '}' brace in a linkage
5524/// specification that uses braces.
5525Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5526                                                      DeclPtrTy LinkageSpec,
5527                                                      SourceLocation RBraceLoc) {
5528  if (LinkageSpec)
5529    PopDeclContext();
5530  return LinkageSpec;
5531}
5532
5533/// \brief Perform semantic analysis for the variable declaration that
5534/// occurs within a C++ catch clause, returning the newly-created
5535/// variable.
5536VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5537                                         TypeSourceInfo *TInfo,
5538                                         IdentifierInfo *Name,
5539                                         SourceLocation Loc,
5540                                         SourceRange Range) {
5541  bool Invalid = false;
5542
5543  // Arrays and functions decay.
5544  if (ExDeclType->isArrayType())
5545    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5546  else if (ExDeclType->isFunctionType())
5547    ExDeclType = Context.getPointerType(ExDeclType);
5548
5549  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5550  // The exception-declaration shall not denote a pointer or reference to an
5551  // incomplete type, other than [cv] void*.
5552  // N2844 forbids rvalue references.
5553  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5554    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5555    Invalid = true;
5556  }
5557
5558  // GCC allows catching pointers and references to incomplete types
5559  // as an extension; so do we, but we warn by default.
5560
5561  QualType BaseType = ExDeclType;
5562  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5563  unsigned DK = diag::err_catch_incomplete;
5564  bool IncompleteCatchIsInvalid = true;
5565  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5566    BaseType = Ptr->getPointeeType();
5567    Mode = 1;
5568    DK = diag::ext_catch_incomplete_ptr;
5569    IncompleteCatchIsInvalid = false;
5570  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5571    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5572    BaseType = Ref->getPointeeType();
5573    Mode = 2;
5574    DK = diag::ext_catch_incomplete_ref;
5575    IncompleteCatchIsInvalid = false;
5576  }
5577  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5578      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5579      IncompleteCatchIsInvalid)
5580    Invalid = true;
5581
5582  if (!Invalid && !ExDeclType->isDependentType() &&
5583      RequireNonAbstractType(Loc, ExDeclType,
5584                             diag::err_abstract_type_in_decl,
5585                             AbstractVariableType))
5586    Invalid = true;
5587
5588  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5589                                    Name, ExDeclType, TInfo, VarDecl::None,
5590                                    VarDecl::None);
5591  ExDecl->setExceptionVariable(true);
5592
5593  if (!Invalid) {
5594    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5595      // C++ [except.handle]p16:
5596      //   The object declared in an exception-declaration or, if the
5597      //   exception-declaration does not specify a name, a temporary (12.2) is
5598      //   copy-initialized (8.5) from the exception object. [...]
5599      //   The object is destroyed when the handler exits, after the destruction
5600      //   of any automatic objects initialized within the handler.
5601      //
5602      // We just pretend to initialize the object with itself, then make sure
5603      // it can be destroyed later.
5604      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5605      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5606                                            Loc, ExDeclType, 0);
5607      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5608                                                               SourceLocation());
5609      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5610      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5611                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5612      if (Result.isInvalid())
5613        Invalid = true;
5614      else
5615        FinalizeVarWithDestructor(ExDecl, RecordTy);
5616    }
5617  }
5618
5619  if (Invalid)
5620    ExDecl->setInvalidDecl();
5621
5622  return ExDecl;
5623}
5624
5625/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5626/// handler.
5627Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5628  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5629  QualType ExDeclType = TInfo->getType();
5630
5631  bool Invalid = D.isInvalidType();
5632  IdentifierInfo *II = D.getIdentifier();
5633  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5634                                             LookupOrdinaryName,
5635                                             ForRedeclaration)) {
5636    // The scope should be freshly made just for us. There is just no way
5637    // it contains any previous declaration.
5638    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5639    if (PrevDecl->isTemplateParameter()) {
5640      // Maybe we will complain about the shadowed template parameter.
5641      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5642    }
5643  }
5644
5645  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5646    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5647      << D.getCXXScopeSpec().getRange();
5648    Invalid = true;
5649  }
5650
5651  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5652                                              D.getIdentifier(),
5653                                              D.getIdentifierLoc(),
5654                                            D.getDeclSpec().getSourceRange());
5655
5656  if (Invalid)
5657    ExDecl->setInvalidDecl();
5658
5659  // Add the exception declaration into this scope.
5660  if (II)
5661    PushOnScopeChains(ExDecl, S);
5662  else
5663    CurContext->addDecl(ExDecl);
5664
5665  ProcessDeclAttributes(S, ExDecl, D);
5666  return DeclPtrTy::make(ExDecl);
5667}
5668
5669Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5670                                                   ExprArg assertexpr,
5671                                                   ExprArg assertmessageexpr) {
5672  Expr *AssertExpr = (Expr *)assertexpr.get();
5673  StringLiteral *AssertMessage =
5674    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5675
5676  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5677    llvm::APSInt Value(32);
5678    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5679      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5680        AssertExpr->getSourceRange();
5681      return DeclPtrTy();
5682    }
5683
5684    if (Value == 0) {
5685      Diag(AssertLoc, diag::err_static_assert_failed)
5686        << AssertMessage->getString() << AssertExpr->getSourceRange();
5687    }
5688  }
5689
5690  assertexpr.release();
5691  assertmessageexpr.release();
5692  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5693                                        AssertExpr, AssertMessage);
5694
5695  CurContext->addDecl(Decl);
5696  return DeclPtrTy::make(Decl);
5697}
5698
5699/// \brief Perform semantic analysis of the given friend type declaration.
5700///
5701/// \returns A friend declaration that.
5702FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5703                                      TypeSourceInfo *TSInfo) {
5704  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5705
5706  QualType T = TSInfo->getType();
5707  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5708
5709  if (!getLangOptions().CPlusPlus0x) {
5710    // C++03 [class.friend]p2:
5711    //   An elaborated-type-specifier shall be used in a friend declaration
5712    //   for a class.*
5713    //
5714    //   * The class-key of the elaborated-type-specifier is required.
5715    if (!ActiveTemplateInstantiations.empty()) {
5716      // Do not complain about the form of friend template types during
5717      // template instantiation; we will already have complained when the
5718      // template was declared.
5719    } else if (!T->isElaboratedTypeSpecifier()) {
5720      // If we evaluated the type to a record type, suggest putting
5721      // a tag in front.
5722      if (const RecordType *RT = T->getAs<RecordType>()) {
5723        RecordDecl *RD = RT->getDecl();
5724
5725        std::string InsertionText = std::string(" ") + RD->getKindName();
5726
5727        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5728          << (unsigned) RD->getTagKind()
5729          << T
5730          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5731                                        InsertionText);
5732      } else {
5733        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5734          << T
5735          << SourceRange(FriendLoc, TypeRange.getEnd());
5736      }
5737    } else if (T->getAs<EnumType>()) {
5738      Diag(FriendLoc, diag::ext_enum_friend)
5739        << T
5740        << SourceRange(FriendLoc, TypeRange.getEnd());
5741    }
5742  }
5743
5744  // C++0x [class.friend]p3:
5745  //   If the type specifier in a friend declaration designates a (possibly
5746  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5747  //   the friend declaration is ignored.
5748
5749  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5750  // in [class.friend]p3 that we do not implement.
5751
5752  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5753}
5754
5755/// Handle a friend type declaration.  This works in tandem with
5756/// ActOnTag.
5757///
5758/// Notes on friend class templates:
5759///
5760/// We generally treat friend class declarations as if they were
5761/// declaring a class.  So, for example, the elaborated type specifier
5762/// in a friend declaration is required to obey the restrictions of a
5763/// class-head (i.e. no typedefs in the scope chain), template
5764/// parameters are required to match up with simple template-ids, &c.
5765/// However, unlike when declaring a template specialization, it's
5766/// okay to refer to a template specialization without an empty
5767/// template parameter declaration, e.g.
5768///   friend class A<T>::B<unsigned>;
5769/// We permit this as a special case; if there are any template
5770/// parameters present at all, require proper matching, i.e.
5771///   template <> template <class T> friend class A<int>::B;
5772Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5773                                          MultiTemplateParamsArg TempParams) {
5774  SourceLocation Loc = DS.getSourceRange().getBegin();
5775
5776  assert(DS.isFriendSpecified());
5777  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5778
5779  // Try to convert the decl specifier to a type.  This works for
5780  // friend templates because ActOnTag never produces a ClassTemplateDecl
5781  // for a TUK_Friend.
5782  Declarator TheDeclarator(DS, Declarator::MemberContext);
5783  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
5784  QualType T = TSI->getType();
5785  if (TheDeclarator.isInvalidType())
5786    return DeclPtrTy();
5787
5788  // This is definitely an error in C++98.  It's probably meant to
5789  // be forbidden in C++0x, too, but the specification is just
5790  // poorly written.
5791  //
5792  // The problem is with declarations like the following:
5793  //   template <T> friend A<T>::foo;
5794  // where deciding whether a class C is a friend or not now hinges
5795  // on whether there exists an instantiation of A that causes
5796  // 'foo' to equal C.  There are restrictions on class-heads
5797  // (which we declare (by fiat) elaborated friend declarations to
5798  // be) that makes this tractable.
5799  //
5800  // FIXME: handle "template <> friend class A<T>;", which
5801  // is possibly well-formed?  Who even knows?
5802  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5803    Diag(Loc, diag::err_tagless_friend_type_template)
5804      << DS.getSourceRange();
5805    return DeclPtrTy();
5806  }
5807
5808  // C++98 [class.friend]p1: A friend of a class is a function
5809  //   or class that is not a member of the class . . .
5810  // This is fixed in DR77, which just barely didn't make the C++03
5811  // deadline.  It's also a very silly restriction that seriously
5812  // affects inner classes and which nobody else seems to implement;
5813  // thus we never diagnose it, not even in -pedantic.
5814  //
5815  // But note that we could warn about it: it's always useless to
5816  // friend one of your own members (it's not, however, worthless to
5817  // friend a member of an arbitrary specialization of your template).
5818
5819  Decl *D;
5820  if (unsigned NumTempParamLists = TempParams.size())
5821    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5822                                   NumTempParamLists,
5823                                 (TemplateParameterList**) TempParams.release(),
5824                                   TSI,
5825                                   DS.getFriendSpecLoc());
5826  else
5827    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5828
5829  if (!D)
5830    return DeclPtrTy();
5831
5832  D->setAccess(AS_public);
5833  CurContext->addDecl(D);
5834
5835  return DeclPtrTy::make(D);
5836}
5837
5838Sema::DeclPtrTy
5839Sema::ActOnFriendFunctionDecl(Scope *S,
5840                              Declarator &D,
5841                              bool IsDefinition,
5842                              MultiTemplateParamsArg TemplateParams) {
5843  const DeclSpec &DS = D.getDeclSpec();
5844
5845  assert(DS.isFriendSpecified());
5846  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5847
5848  SourceLocation Loc = D.getIdentifierLoc();
5849  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5850  QualType T = TInfo->getType();
5851
5852  // C++ [class.friend]p1
5853  //   A friend of a class is a function or class....
5854  // Note that this sees through typedefs, which is intended.
5855  // It *doesn't* see through dependent types, which is correct
5856  // according to [temp.arg.type]p3:
5857  //   If a declaration acquires a function type through a
5858  //   type dependent on a template-parameter and this causes
5859  //   a declaration that does not use the syntactic form of a
5860  //   function declarator to have a function type, the program
5861  //   is ill-formed.
5862  if (!T->isFunctionType()) {
5863    Diag(Loc, diag::err_unexpected_friend);
5864
5865    // It might be worthwhile to try to recover by creating an
5866    // appropriate declaration.
5867    return DeclPtrTy();
5868  }
5869
5870  // C++ [namespace.memdef]p3
5871  //  - If a friend declaration in a non-local class first declares a
5872  //    class or function, the friend class or function is a member
5873  //    of the innermost enclosing namespace.
5874  //  - The name of the friend is not found by simple name lookup
5875  //    until a matching declaration is provided in that namespace
5876  //    scope (either before or after the class declaration granting
5877  //    friendship).
5878  //  - If a friend function is called, its name may be found by the
5879  //    name lookup that considers functions from namespaces and
5880  //    classes associated with the types of the function arguments.
5881  //  - When looking for a prior declaration of a class or a function
5882  //    declared as a friend, scopes outside the innermost enclosing
5883  //    namespace scope are not considered.
5884
5885  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5886  DeclarationName Name = GetNameForDeclarator(D);
5887  assert(Name);
5888
5889  // The context we found the declaration in, or in which we should
5890  // create the declaration.
5891  DeclContext *DC;
5892
5893  // FIXME: handle local classes
5894
5895  // Recover from invalid scope qualifiers as if they just weren't there.
5896  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5897                        ForRedeclaration);
5898  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5899    DC = computeDeclContext(ScopeQual);
5900
5901    // FIXME: handle dependent contexts
5902    if (!DC) return DeclPtrTy();
5903    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5904
5905    LookupQualifiedName(Previous, DC);
5906
5907    // Ignore things found implicitly in the wrong scope.
5908    // TODO: better diagnostics for this case.  Suggesting the right
5909    // qualified scope would be nice...
5910    LookupResult::Filter F = Previous.makeFilter();
5911    while (F.hasNext()) {
5912      NamedDecl *D = F.next();
5913      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
5914        F.erase();
5915    }
5916    F.done();
5917
5918    if (Previous.empty()) {
5919      D.setInvalidType();
5920      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5921      return DeclPtrTy();
5922    }
5923
5924    // C++ [class.friend]p1: A friend of a class is a function or
5925    //   class that is not a member of the class . . .
5926    if (DC->Equals(CurContext))
5927      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5928
5929  // Otherwise walk out to the nearest namespace scope looking for matches.
5930  } else {
5931    // TODO: handle local class contexts.
5932
5933    DC = CurContext;
5934    while (true) {
5935      // Skip class contexts.  If someone can cite chapter and verse
5936      // for this behavior, that would be nice --- it's what GCC and
5937      // EDG do, and it seems like a reasonable intent, but the spec
5938      // really only says that checks for unqualified existing
5939      // declarations should stop at the nearest enclosing namespace,
5940      // not that they should only consider the nearest enclosing
5941      // namespace.
5942      while (DC->isRecord())
5943        DC = DC->getParent();
5944
5945      LookupQualifiedName(Previous, DC);
5946
5947      // TODO: decide what we think about using declarations.
5948      if (!Previous.empty())
5949        break;
5950
5951      if (DC->isFileContext()) break;
5952      DC = DC->getParent();
5953    }
5954
5955    // C++ [class.friend]p1: A friend of a class is a function or
5956    //   class that is not a member of the class . . .
5957    // C++0x changes this for both friend types and functions.
5958    // Most C++ 98 compilers do seem to give an error here, so
5959    // we do, too.
5960    if (!Previous.empty() && DC->Equals(CurContext)
5961        && !getLangOptions().CPlusPlus0x)
5962      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5963  }
5964
5965  if (DC->isFileContext()) {
5966    // This implies that it has to be an operator or function.
5967    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5968        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5969        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5970      Diag(Loc, diag::err_introducing_special_friend) <<
5971        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5972         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5973      return DeclPtrTy();
5974    }
5975  }
5976
5977  bool Redeclaration = false;
5978  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5979                                          move(TemplateParams),
5980                                          IsDefinition,
5981                                          Redeclaration);
5982  if (!ND) return DeclPtrTy();
5983
5984  assert(ND->getDeclContext() == DC);
5985  assert(ND->getLexicalDeclContext() == CurContext);
5986
5987  // Add the function declaration to the appropriate lookup tables,
5988  // adjusting the redeclarations list as necessary.  We don't
5989  // want to do this yet if the friending class is dependent.
5990  //
5991  // Also update the scope-based lookup if the target context's
5992  // lookup context is in lexical scope.
5993  if (!CurContext->isDependentContext()) {
5994    DC = DC->getLookupContext();
5995    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5996    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5997      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5998  }
5999
6000  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6001                                       D.getIdentifierLoc(), ND,
6002                                       DS.getFriendSpecLoc());
6003  FrD->setAccess(AS_public);
6004  CurContext->addDecl(FrD);
6005
6006  return DeclPtrTy::make(ND);
6007}
6008
6009void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6010  AdjustDeclIfTemplate(dcl);
6011
6012  Decl *Dcl = dcl.getAs<Decl>();
6013  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6014  if (!Fn) {
6015    Diag(DelLoc, diag::err_deleted_non_function);
6016    return;
6017  }
6018  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6019    Diag(DelLoc, diag::err_deleted_decl_not_first);
6020    Diag(Prev->getLocation(), diag::note_previous_declaration);
6021    // If the declaration wasn't the first, we delete the function anyway for
6022    // recovery.
6023  }
6024  Fn->setDeleted();
6025}
6026
6027static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6028  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6029       ++CI) {
6030    Stmt *SubStmt = *CI;
6031    if (!SubStmt)
6032      continue;
6033    if (isa<ReturnStmt>(SubStmt))
6034      Self.Diag(SubStmt->getSourceRange().getBegin(),
6035           diag::err_return_in_constructor_handler);
6036    if (!isa<Expr>(SubStmt))
6037      SearchForReturnInStmt(Self, SubStmt);
6038  }
6039}
6040
6041void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6042  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6043    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6044    SearchForReturnInStmt(*this, Handler);
6045  }
6046}
6047
6048bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6049                                             const CXXMethodDecl *Old) {
6050  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6051  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6052
6053  if (Context.hasSameType(NewTy, OldTy) ||
6054      NewTy->isDependentType() || OldTy->isDependentType())
6055    return false;
6056
6057  // Check if the return types are covariant
6058  QualType NewClassTy, OldClassTy;
6059
6060  /// Both types must be pointers or references to classes.
6061  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6062    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6063      NewClassTy = NewPT->getPointeeType();
6064      OldClassTy = OldPT->getPointeeType();
6065    }
6066  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6067    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6068      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6069        NewClassTy = NewRT->getPointeeType();
6070        OldClassTy = OldRT->getPointeeType();
6071      }
6072    }
6073  }
6074
6075  // The return types aren't either both pointers or references to a class type.
6076  if (NewClassTy.isNull()) {
6077    Diag(New->getLocation(),
6078         diag::err_different_return_type_for_overriding_virtual_function)
6079      << New->getDeclName() << NewTy << OldTy;
6080    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6081
6082    return true;
6083  }
6084
6085  // C++ [class.virtual]p6:
6086  //   If the return type of D::f differs from the return type of B::f, the
6087  //   class type in the return type of D::f shall be complete at the point of
6088  //   declaration of D::f or shall be the class type D.
6089  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6090    if (!RT->isBeingDefined() &&
6091        RequireCompleteType(New->getLocation(), NewClassTy,
6092                            PDiag(diag::err_covariant_return_incomplete)
6093                              << New->getDeclName()))
6094    return true;
6095  }
6096
6097  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6098    // Check if the new class derives from the old class.
6099    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6100      Diag(New->getLocation(),
6101           diag::err_covariant_return_not_derived)
6102      << New->getDeclName() << NewTy << OldTy;
6103      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6104      return true;
6105    }
6106
6107    // Check if we the conversion from derived to base is valid.
6108    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6109                    diag::err_covariant_return_inaccessible_base,
6110                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6111                    // FIXME: Should this point to the return type?
6112                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6113      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6114      return true;
6115    }
6116  }
6117
6118  // The qualifiers of the return types must be the same.
6119  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6120    Diag(New->getLocation(),
6121         diag::err_covariant_return_type_different_qualifications)
6122    << New->getDeclName() << NewTy << OldTy;
6123    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6124    return true;
6125  };
6126
6127
6128  // The new class type must have the same or less qualifiers as the old type.
6129  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6130    Diag(New->getLocation(),
6131         diag::err_covariant_return_type_class_type_more_qualified)
6132    << New->getDeclName() << NewTy << OldTy;
6133    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6134    return true;
6135  };
6136
6137  return false;
6138}
6139
6140bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6141                                             const CXXMethodDecl *Old)
6142{
6143  if (Old->hasAttr<FinalAttr>()) {
6144    Diag(New->getLocation(), diag::err_final_function_overridden)
6145      << New->getDeclName();
6146    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6147    return true;
6148  }
6149
6150  return false;
6151}
6152
6153/// \brief Mark the given method pure.
6154///
6155/// \param Method the method to be marked pure.
6156///
6157/// \param InitRange the source range that covers the "0" initializer.
6158bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6159  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6160    Method->setPure();
6161
6162    // A class is abstract if at least one function is pure virtual.
6163    Method->getParent()->setAbstract(true);
6164    return false;
6165  }
6166
6167  if (!Method->isInvalidDecl())
6168    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6169      << Method->getDeclName() << InitRange;
6170  return true;
6171}
6172
6173/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6174/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6175/// is a fresh scope pushed for just this purpose.
6176///
6177/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6178/// static data member of class X, names should be looked up in the scope of
6179/// class X.
6180void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6181  // If there is no declaration, there was an error parsing it.
6182  Decl *D = Dcl.getAs<Decl>();
6183  if (D == 0) return;
6184
6185  // We should only get called for declarations with scope specifiers, like:
6186  //   int foo::bar;
6187  assert(D->isOutOfLine());
6188  EnterDeclaratorContext(S, D->getDeclContext());
6189}
6190
6191/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6192/// initializer for the out-of-line declaration 'Dcl'.
6193void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6194  // If there is no declaration, there was an error parsing it.
6195  Decl *D = Dcl.getAs<Decl>();
6196  if (D == 0) return;
6197
6198  assert(D->isOutOfLine());
6199  ExitDeclaratorContext(S);
6200}
6201
6202/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6203/// C++ if/switch/while/for statement.
6204/// e.g: "if (int x = f()) {...}"
6205Action::DeclResult
6206Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6207  // C++ 6.4p2:
6208  // The declarator shall not specify a function or an array.
6209  // The type-specifier-seq shall not contain typedef and shall not declare a
6210  // new class or enumeration.
6211  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6212         "Parser allowed 'typedef' as storage class of condition decl.");
6213
6214  TagDecl *OwnedTag = 0;
6215  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6216  QualType Ty = TInfo->getType();
6217
6218  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6219                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6220                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6221    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6222      << D.getSourceRange();
6223    return DeclResult();
6224  } else if (OwnedTag && OwnedTag->isDefinition()) {
6225    // The type-specifier-seq shall not declare a new class or enumeration.
6226    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6227  }
6228
6229  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6230  if (!Dcl)
6231    return DeclResult();
6232
6233  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6234  VD->setDeclaredInCondition(true);
6235  return Dcl;
6236}
6237
6238void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6239                          bool DefinitionRequired) {
6240  // Ignore any vtable uses in unevaluated operands or for classes that do
6241  // not have a vtable.
6242  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6243      CurContext->isDependentContext() ||
6244      ExprEvalContexts.back().Context == Unevaluated)
6245    return;
6246
6247  // Try to insert this class into the map.
6248  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6249  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6250    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6251  if (!Pos.second) {
6252    // If we already had an entry, check to see if we are promoting this vtable
6253    // to required a definition. If so, we need to reappend to the VTableUses
6254    // list, since we may have already processed the first entry.
6255    if (DefinitionRequired && !Pos.first->second) {
6256      Pos.first->second = true;
6257    } else {
6258      // Otherwise, we can early exit.
6259      return;
6260    }
6261  }
6262
6263  // Local classes need to have their virtual members marked
6264  // immediately. For all other classes, we mark their virtual members
6265  // at the end of the translation unit.
6266  if (Class->isLocalClass())
6267    MarkVirtualMembersReferenced(Loc, Class);
6268  else
6269    VTableUses.push_back(std::make_pair(Class, Loc));
6270}
6271
6272bool Sema::DefineUsedVTables() {
6273  // If any dynamic classes have their key function defined within
6274  // this translation unit, then those vtables are considered "used" and must
6275  // be emitted.
6276  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6277    if (const CXXMethodDecl *KeyFunction
6278                             = Context.getKeyFunction(DynamicClasses[I])) {
6279      const FunctionDecl *Definition = 0;
6280      if (KeyFunction->getBody(Definition))
6281        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6282    }
6283  }
6284
6285  if (VTableUses.empty())
6286    return false;
6287
6288  // Note: The VTableUses vector could grow as a result of marking
6289  // the members of a class as "used", so we check the size each
6290  // time through the loop and prefer indices (with are stable) to
6291  // iterators (which are not).
6292  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6293    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6294    if (!Class)
6295      continue;
6296
6297    SourceLocation Loc = VTableUses[I].second;
6298
6299    // If this class has a key function, but that key function is
6300    // defined in another translation unit, we don't need to emit the
6301    // vtable even though we're using it.
6302    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6303    if (KeyFunction && !KeyFunction->getBody()) {
6304      switch (KeyFunction->getTemplateSpecializationKind()) {
6305      case TSK_Undeclared:
6306      case TSK_ExplicitSpecialization:
6307      case TSK_ExplicitInstantiationDeclaration:
6308        // The key function is in another translation unit.
6309        continue;
6310
6311      case TSK_ExplicitInstantiationDefinition:
6312      case TSK_ImplicitInstantiation:
6313        // We will be instantiating the key function.
6314        break;
6315      }
6316    } else if (!KeyFunction) {
6317      // If we have a class with no key function that is the subject
6318      // of an explicit instantiation declaration, suppress the
6319      // vtable; it will live with the explicit instantiation
6320      // definition.
6321      bool IsExplicitInstantiationDeclaration
6322        = Class->getTemplateSpecializationKind()
6323                                      == TSK_ExplicitInstantiationDeclaration;
6324      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6325                                 REnd = Class->redecls_end();
6326           R != REnd; ++R) {
6327        TemplateSpecializationKind TSK
6328          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6329        if (TSK == TSK_ExplicitInstantiationDeclaration)
6330          IsExplicitInstantiationDeclaration = true;
6331        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6332          IsExplicitInstantiationDeclaration = false;
6333          break;
6334        }
6335      }
6336
6337      if (IsExplicitInstantiationDeclaration)
6338        continue;
6339    }
6340
6341    // Mark all of the virtual members of this class as referenced, so
6342    // that we can build a vtable. Then, tell the AST consumer that a
6343    // vtable for this class is required.
6344    MarkVirtualMembersReferenced(Loc, Class);
6345    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6346    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6347
6348    // Optionally warn if we're emitting a weak vtable.
6349    if (Class->getLinkage() == ExternalLinkage &&
6350        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6351      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6352        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6353    }
6354  }
6355  VTableUses.clear();
6356
6357  return true;
6358}
6359
6360void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6361                                        const CXXRecordDecl *RD) {
6362  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6363       e = RD->method_end(); i != e; ++i) {
6364    CXXMethodDecl *MD = *i;
6365
6366    // C++ [basic.def.odr]p2:
6367    //   [...] A virtual member function is used if it is not pure. [...]
6368    if (MD->isVirtual() && !MD->isPure())
6369      MarkDeclarationReferenced(Loc, MD);
6370  }
6371
6372  // Only classes that have virtual bases need a VTT.
6373  if (RD->getNumVBases() == 0)
6374    return;
6375
6376  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6377           e = RD->bases_end(); i != e; ++i) {
6378    const CXXRecordDecl *Base =
6379        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6380    if (i->isVirtual())
6381      continue;
6382    if (Base->getNumVBases() == 0)
6383      continue;
6384    MarkVirtualMembersReferenced(Loc, Base);
6385  }
6386}
6387
6388/// SetIvarInitializers - This routine builds initialization ASTs for the
6389/// Objective-C implementation whose ivars need be initialized.
6390void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6391  if (!getLangOptions().CPlusPlus)
6392    return;
6393  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6394    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6395    CollectIvarsToConstructOrDestruct(OID, ivars);
6396    if (ivars.empty())
6397      return;
6398    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6399    for (unsigned i = 0; i < ivars.size(); i++) {
6400      FieldDecl *Field = ivars[i];
6401      if (Field->isInvalidDecl())
6402        continue;
6403
6404      CXXBaseOrMemberInitializer *Member;
6405      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6406      InitializationKind InitKind =
6407        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6408
6409      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6410      Sema::OwningExprResult MemberInit =
6411        InitSeq.Perform(*this, InitEntity, InitKind,
6412                        Sema::MultiExprArg(*this, 0, 0));
6413      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6414      // Note, MemberInit could actually come back empty if no initialization
6415      // is required (e.g., because it would call a trivial default constructor)
6416      if (!MemberInit.get() || MemberInit.isInvalid())
6417        continue;
6418
6419      Member =
6420        new (Context) CXXBaseOrMemberInitializer(Context,
6421                                                 Field, SourceLocation(),
6422                                                 SourceLocation(),
6423                                                 MemberInit.takeAs<Expr>(),
6424                                                 SourceLocation());
6425      AllToInit.push_back(Member);
6426
6427      // Be sure that the destructor is accessible and is marked as referenced.
6428      if (const RecordType *RecordTy
6429                  = Context.getBaseElementType(Field->getType())
6430                                                        ->getAs<RecordType>()) {
6431                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6432        if (CXXDestructorDecl *Destructor
6433              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6434          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6435          CheckDestructorAccess(Field->getLocation(), Destructor,
6436                            PDiag(diag::err_access_dtor_ivar)
6437                              << Context.getBaseElementType(Field->getType()));
6438        }
6439      }
6440    }
6441    ObjCImplementation->setIvarInitializers(Context,
6442                                            AllToInit.data(), AllToInit.size());
6443  }
6444}
6445