SemaDeclCXX.cpp revision 4dc41c9b766140b507980a13acccf2f05ed19cd3
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = D.isDeclarationOfFunction();
1083
1084  // C++ 9.2p6: A member shall not be declared to have automatic storage
1085  // duration (auto, register) or with the extern storage-class-specifier.
1086  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1087  // data members and cannot be applied to names declared const or static,
1088  // and cannot be applied to reference members.
1089  switch (DS.getStorageClassSpec()) {
1090    case DeclSpec::SCS_unspecified:
1091    case DeclSpec::SCS_typedef:
1092    case DeclSpec::SCS_static:
1093      // FALL THROUGH.
1094      break;
1095    case DeclSpec::SCS_mutable:
1096      if (isFunc) {
1097        if (DS.getStorageClassSpecLoc().isValid())
1098          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1099        else
1100          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1101
1102        // FIXME: It would be nicer if the keyword was ignored only for this
1103        // declarator. Otherwise we could get follow-up errors.
1104        D.getMutableDeclSpec().ClearStorageClassSpecs();
1105      }
1106      break;
1107    default:
1108      if (DS.getStorageClassSpecLoc().isValid())
1109        Diag(DS.getStorageClassSpecLoc(),
1110             diag::err_storageclass_invalid_for_member);
1111      else
1112        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1113      D.getMutableDeclSpec().ClearStorageClassSpecs();
1114  }
1115
1116  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1117                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1118                      !isFunc);
1119
1120  Decl *Member;
1121  if (isInstField) {
1122    CXXScopeSpec &SS = D.getCXXScopeSpec();
1123
1124    if (SS.isSet() && !SS.isInvalid()) {
1125      // The user provided a superfluous scope specifier inside a class
1126      // definition:
1127      //
1128      // class X {
1129      //   int X::member;
1130      // };
1131      DeclContext *DC = 0;
1132      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1133        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1134        << Name << FixItHint::CreateRemoval(SS.getRange());
1135      else
1136        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1137          << Name << SS.getRange();
1138
1139      SS.clear();
1140    }
1141
1142    // FIXME: Check for template parameters!
1143    // FIXME: Check that the name is an identifier!
1144    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1145                         HasDeferredInit, AS);
1146    assert(Member && "HandleField never returns null");
1147  } else {
1148    assert(!HasDeferredInit);
1149
1150    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1151    if (!Member) {
1152      return 0;
1153    }
1154
1155    // Non-instance-fields can't have a bitfield.
1156    if (BitWidth) {
1157      if (Member->isInvalidDecl()) {
1158        // don't emit another diagnostic.
1159      } else if (isa<VarDecl>(Member)) {
1160        // C++ 9.6p3: A bit-field shall not be a static member.
1161        // "static member 'A' cannot be a bit-field"
1162        Diag(Loc, diag::err_static_not_bitfield)
1163          << Name << BitWidth->getSourceRange();
1164      } else if (isa<TypedefDecl>(Member)) {
1165        // "typedef member 'x' cannot be a bit-field"
1166        Diag(Loc, diag::err_typedef_not_bitfield)
1167          << Name << BitWidth->getSourceRange();
1168      } else {
1169        // A function typedef ("typedef int f(); f a;").
1170        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1171        Diag(Loc, diag::err_not_integral_type_bitfield)
1172          << Name << cast<ValueDecl>(Member)->getType()
1173          << BitWidth->getSourceRange();
1174      }
1175
1176      BitWidth = 0;
1177      Member->setInvalidDecl();
1178    }
1179
1180    Member->setAccess(AS);
1181
1182    // If we have declared a member function template, set the access of the
1183    // templated declaration as well.
1184    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1185      FunTmpl->getTemplatedDecl()->setAccess(AS);
1186  }
1187
1188  if (VS.isOverrideSpecified()) {
1189    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1190    if (!MD || !MD->isVirtual()) {
1191      Diag(Member->getLocStart(),
1192           diag::override_keyword_only_allowed_on_virtual_member_functions)
1193        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1194    } else
1195      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1196  }
1197  if (VS.isFinalSpecified()) {
1198    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1199    if (!MD || !MD->isVirtual()) {
1200      Diag(Member->getLocStart(),
1201           diag::override_keyword_only_allowed_on_virtual_member_functions)
1202      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1203    } else
1204      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1205  }
1206
1207  if (VS.getLastLocation().isValid()) {
1208    // Update the end location of a method that has a virt-specifiers.
1209    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1210      MD->setRangeEnd(VS.getLastLocation());
1211  }
1212
1213  CheckOverrideControl(Member);
1214
1215  assert((Name || isInstField) && "No identifier for non-field ?");
1216
1217  if (Init)
1218    AddInitializerToDecl(Member, Init, false,
1219                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1220  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1221           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1222    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1223    // data member if a brace-or-equal-initializer is provided.
1224    Diag(Loc, diag::err_auto_var_requires_init)
1225      << Name << cast<ValueDecl>(Member)->getType();
1226    Member->setInvalidDecl();
1227  }
1228
1229  FinalizeDeclaration(Member);
1230
1231  if (isInstField)
1232    FieldCollector->Add(cast<FieldDecl>(Member));
1233  return Member;
1234}
1235
1236/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1237/// in-class initializer for a non-static C++ class member, and after
1238/// instantiating an in-class initializer in a class template. Such actions
1239/// are deferred until the class is complete.
1240void
1241Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1242                                       Expr *InitExpr) {
1243  FieldDecl *FD = cast<FieldDecl>(D);
1244
1245  if (!InitExpr) {
1246    FD->setInvalidDecl();
1247    FD->removeInClassInitializer();
1248    return;
1249  }
1250
1251  ExprResult Init = InitExpr;
1252  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1253    // FIXME: if there is no EqualLoc, this is list-initialization.
1254    Init = PerformCopyInitialization(
1255      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1256    if (Init.isInvalid()) {
1257      FD->setInvalidDecl();
1258      return;
1259    }
1260
1261    CheckImplicitConversions(Init.get(), EqualLoc);
1262  }
1263
1264  // C++0x [class.base.init]p7:
1265  //   The initialization of each base and member constitutes a
1266  //   full-expression.
1267  Init = MaybeCreateExprWithCleanups(Init);
1268  if (Init.isInvalid()) {
1269    FD->setInvalidDecl();
1270    return;
1271  }
1272
1273  InitExpr = Init.release();
1274
1275  FD->setInClassInitializer(InitExpr);
1276}
1277
1278/// \brief Find the direct and/or virtual base specifiers that
1279/// correspond to the given base type, for use in base initialization
1280/// within a constructor.
1281static bool FindBaseInitializer(Sema &SemaRef,
1282                                CXXRecordDecl *ClassDecl,
1283                                QualType BaseType,
1284                                const CXXBaseSpecifier *&DirectBaseSpec,
1285                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1286  // First, check for a direct base class.
1287  DirectBaseSpec = 0;
1288  for (CXXRecordDecl::base_class_const_iterator Base
1289         = ClassDecl->bases_begin();
1290       Base != ClassDecl->bases_end(); ++Base) {
1291    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1292      // We found a direct base of this type. That's what we're
1293      // initializing.
1294      DirectBaseSpec = &*Base;
1295      break;
1296    }
1297  }
1298
1299  // Check for a virtual base class.
1300  // FIXME: We might be able to short-circuit this if we know in advance that
1301  // there are no virtual bases.
1302  VirtualBaseSpec = 0;
1303  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1304    // We haven't found a base yet; search the class hierarchy for a
1305    // virtual base class.
1306    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1307                       /*DetectVirtual=*/false);
1308    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1309                              BaseType, Paths)) {
1310      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1311           Path != Paths.end(); ++Path) {
1312        if (Path->back().Base->isVirtual()) {
1313          VirtualBaseSpec = Path->back().Base;
1314          break;
1315        }
1316      }
1317    }
1318  }
1319
1320  return DirectBaseSpec || VirtualBaseSpec;
1321}
1322
1323/// ActOnMemInitializer - Handle a C++ member initializer.
1324MemInitResult
1325Sema::ActOnMemInitializer(Decl *ConstructorD,
1326                          Scope *S,
1327                          CXXScopeSpec &SS,
1328                          IdentifierInfo *MemberOrBase,
1329                          ParsedType TemplateTypeTy,
1330                          SourceLocation IdLoc,
1331                          SourceLocation LParenLoc,
1332                          ExprTy **Args, unsigned NumArgs,
1333                          SourceLocation RParenLoc,
1334                          SourceLocation EllipsisLoc) {
1335  if (!ConstructorD)
1336    return true;
1337
1338  AdjustDeclIfTemplate(ConstructorD);
1339
1340  CXXConstructorDecl *Constructor
1341    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1342  if (!Constructor) {
1343    // The user wrote a constructor initializer on a function that is
1344    // not a C++ constructor. Ignore the error for now, because we may
1345    // have more member initializers coming; we'll diagnose it just
1346    // once in ActOnMemInitializers.
1347    return true;
1348  }
1349
1350  CXXRecordDecl *ClassDecl = Constructor->getParent();
1351
1352  // C++ [class.base.init]p2:
1353  //   Names in a mem-initializer-id are looked up in the scope of the
1354  //   constructor's class and, if not found in that scope, are looked
1355  //   up in the scope containing the constructor's definition.
1356  //   [Note: if the constructor's class contains a member with the
1357  //   same name as a direct or virtual base class of the class, a
1358  //   mem-initializer-id naming the member or base class and composed
1359  //   of a single identifier refers to the class member. A
1360  //   mem-initializer-id for the hidden base class may be specified
1361  //   using a qualified name. ]
1362  if (!SS.getScopeRep() && !TemplateTypeTy) {
1363    // Look for a member, first.
1364    FieldDecl *Member = 0;
1365    DeclContext::lookup_result Result
1366      = ClassDecl->lookup(MemberOrBase);
1367    if (Result.first != Result.second) {
1368      Member = dyn_cast<FieldDecl>(*Result.first);
1369
1370      if (Member) {
1371        if (EllipsisLoc.isValid())
1372          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1373            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1374
1375        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1376                                    LParenLoc, RParenLoc);
1377      }
1378
1379      // Handle anonymous union case.
1380      if (IndirectFieldDecl* IndirectField
1381            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1382        if (EllipsisLoc.isValid())
1383          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1384            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1385
1386         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1387                                       NumArgs, IdLoc,
1388                                       LParenLoc, RParenLoc);
1389      }
1390    }
1391  }
1392  // It didn't name a member, so see if it names a class.
1393  QualType BaseType;
1394  TypeSourceInfo *TInfo = 0;
1395
1396  if (TemplateTypeTy) {
1397    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1398  } else {
1399    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1400    LookupParsedName(R, S, &SS);
1401
1402    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1403    if (!TyD) {
1404      if (R.isAmbiguous()) return true;
1405
1406      // We don't want access-control diagnostics here.
1407      R.suppressDiagnostics();
1408
1409      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1410        bool NotUnknownSpecialization = false;
1411        DeclContext *DC = computeDeclContext(SS, false);
1412        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1413          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1414
1415        if (!NotUnknownSpecialization) {
1416          // When the scope specifier can refer to a member of an unknown
1417          // specialization, we take it as a type name.
1418          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1419                                       SS.getWithLocInContext(Context),
1420                                       *MemberOrBase, IdLoc);
1421          if (BaseType.isNull())
1422            return true;
1423
1424          R.clear();
1425          R.setLookupName(MemberOrBase);
1426        }
1427      }
1428
1429      // If no results were found, try to correct typos.
1430      TypoCorrection Corr;
1431      if (R.empty() && BaseType.isNull() &&
1432          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1433                              ClassDecl, false, CTC_NoKeywords))) {
1434        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1435        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1436        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1437          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1438            // We have found a non-static data member with a similar
1439            // name to what was typed; complain and initialize that
1440            // member.
1441            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1442              << MemberOrBase << true << CorrectedQuotedStr
1443              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1444            Diag(Member->getLocation(), diag::note_previous_decl)
1445              << CorrectedQuotedStr;
1446
1447            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1448                                          LParenLoc, RParenLoc);
1449          }
1450        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1451          const CXXBaseSpecifier *DirectBaseSpec;
1452          const CXXBaseSpecifier *VirtualBaseSpec;
1453          if (FindBaseInitializer(*this, ClassDecl,
1454                                  Context.getTypeDeclType(Type),
1455                                  DirectBaseSpec, VirtualBaseSpec)) {
1456            // We have found a direct or virtual base class with a
1457            // similar name to what was typed; complain and initialize
1458            // that base class.
1459            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1460              << MemberOrBase << false << CorrectedQuotedStr
1461              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1462
1463            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1464                                                             : VirtualBaseSpec;
1465            Diag(BaseSpec->getSourceRange().getBegin(),
1466                 diag::note_base_class_specified_here)
1467              << BaseSpec->getType()
1468              << BaseSpec->getSourceRange();
1469
1470            TyD = Type;
1471          }
1472        }
1473      }
1474
1475      if (!TyD && BaseType.isNull()) {
1476        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1477          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1478        return true;
1479      }
1480    }
1481
1482    if (BaseType.isNull()) {
1483      BaseType = Context.getTypeDeclType(TyD);
1484      if (SS.isSet()) {
1485        NestedNameSpecifier *Qualifier =
1486          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1487
1488        // FIXME: preserve source range information
1489        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1490      }
1491    }
1492  }
1493
1494  if (!TInfo)
1495    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1496
1497  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1498                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1499}
1500
1501/// Checks an initializer expression for use of uninitialized fields, such as
1502/// containing the field that is being initialized. Returns true if there is an
1503/// uninitialized field was used an updates the SourceLocation parameter; false
1504/// otherwise.
1505static bool InitExprContainsUninitializedFields(const Stmt *S,
1506                                                const ValueDecl *LhsField,
1507                                                SourceLocation *L) {
1508  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1509
1510  if (isa<CallExpr>(S)) {
1511    // Do not descend into function calls or constructors, as the use
1512    // of an uninitialized field may be valid. One would have to inspect
1513    // the contents of the function/ctor to determine if it is safe or not.
1514    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1515    // may be safe, depending on what the function/ctor does.
1516    return false;
1517  }
1518  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1519    const NamedDecl *RhsField = ME->getMemberDecl();
1520
1521    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1522      // The member expression points to a static data member.
1523      assert(VD->isStaticDataMember() &&
1524             "Member points to non-static data member!");
1525      (void)VD;
1526      return false;
1527    }
1528
1529    if (isa<EnumConstantDecl>(RhsField)) {
1530      // The member expression points to an enum.
1531      return false;
1532    }
1533
1534    if (RhsField == LhsField) {
1535      // Initializing a field with itself. Throw a warning.
1536      // But wait; there are exceptions!
1537      // Exception #1:  The field may not belong to this record.
1538      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1539      const Expr *base = ME->getBase();
1540      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1541        // Even though the field matches, it does not belong to this record.
1542        return false;
1543      }
1544      // None of the exceptions triggered; return true to indicate an
1545      // uninitialized field was used.
1546      *L = ME->getMemberLoc();
1547      return true;
1548    }
1549  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1550    // sizeof/alignof doesn't reference contents, do not warn.
1551    return false;
1552  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1553    // address-of doesn't reference contents (the pointer may be dereferenced
1554    // in the same expression but it would be rare; and weird).
1555    if (UOE->getOpcode() == UO_AddrOf)
1556      return false;
1557  }
1558  for (Stmt::const_child_range it = S->children(); it; ++it) {
1559    if (!*it) {
1560      // An expression such as 'member(arg ?: "")' may trigger this.
1561      continue;
1562    }
1563    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1564      return true;
1565  }
1566  return false;
1567}
1568
1569MemInitResult
1570Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1571                             unsigned NumArgs, SourceLocation IdLoc,
1572                             SourceLocation LParenLoc,
1573                             SourceLocation RParenLoc) {
1574  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1575  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1576  assert((DirectMember || IndirectMember) &&
1577         "Member must be a FieldDecl or IndirectFieldDecl");
1578
1579  if (Member->isInvalidDecl())
1580    return true;
1581
1582  // Diagnose value-uses of fields to initialize themselves, e.g.
1583  //   foo(foo)
1584  // where foo is not also a parameter to the constructor.
1585  // TODO: implement -Wuninitialized and fold this into that framework.
1586  for (unsigned i = 0; i < NumArgs; ++i) {
1587    SourceLocation L;
1588    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1589      // FIXME: Return true in the case when other fields are used before being
1590      // uninitialized. For example, let this field be the i'th field. When
1591      // initializing the i'th field, throw a warning if any of the >= i'th
1592      // fields are used, as they are not yet initialized.
1593      // Right now we are only handling the case where the i'th field uses
1594      // itself in its initializer.
1595      Diag(L, diag::warn_field_is_uninit);
1596    }
1597  }
1598
1599  bool HasDependentArg = false;
1600  for (unsigned i = 0; i < NumArgs; i++)
1601    HasDependentArg |= Args[i]->isTypeDependent();
1602
1603  Expr *Init;
1604  if (Member->getType()->isDependentType() || HasDependentArg) {
1605    // Can't check initialization for a member of dependent type or when
1606    // any of the arguments are type-dependent expressions.
1607    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1608                                       RParenLoc,
1609                                       Member->getType().getNonReferenceType());
1610
1611    DiscardCleanupsInEvaluationContext();
1612  } else {
1613    // Initialize the member.
1614    InitializedEntity MemberEntity =
1615      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1616                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1617    InitializationKind Kind =
1618      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1619
1620    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1621
1622    ExprResult MemberInit =
1623      InitSeq.Perform(*this, MemberEntity, Kind,
1624                      MultiExprArg(*this, Args, NumArgs), 0);
1625    if (MemberInit.isInvalid())
1626      return true;
1627
1628    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1629
1630    // C++0x [class.base.init]p7:
1631    //   The initialization of each base and member constitutes a
1632    //   full-expression.
1633    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1634    if (MemberInit.isInvalid())
1635      return true;
1636
1637    // If we are in a dependent context, template instantiation will
1638    // perform this type-checking again. Just save the arguments that we
1639    // received in a ParenListExpr.
1640    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1641    // of the information that we have about the member
1642    // initializer. However, deconstructing the ASTs is a dicey process,
1643    // and this approach is far more likely to get the corner cases right.
1644    if (CurContext->isDependentContext())
1645      Init = new (Context) ParenListExpr(
1646          Context, LParenLoc, Args, NumArgs, RParenLoc,
1647          Member->getType().getNonReferenceType());
1648    else
1649      Init = MemberInit.get();
1650  }
1651
1652  if (DirectMember) {
1653    return new (Context) CXXCtorInitializer(Context, DirectMember,
1654                                                    IdLoc, LParenLoc, Init,
1655                                                    RParenLoc);
1656  } else {
1657    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1658                                                    IdLoc, LParenLoc, Init,
1659                                                    RParenLoc);
1660  }
1661}
1662
1663MemInitResult
1664Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1665                                 Expr **Args, unsigned NumArgs,
1666                                 SourceLocation NameLoc,
1667                                 SourceLocation LParenLoc,
1668                                 SourceLocation RParenLoc,
1669                                 CXXRecordDecl *ClassDecl) {
1670  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1671  if (!LangOpts.CPlusPlus0x)
1672    return Diag(Loc, diag::err_delegation_0x_only)
1673      << TInfo->getTypeLoc().getLocalSourceRange();
1674
1675  // Initialize the object.
1676  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1677                                     QualType(ClassDecl->getTypeForDecl(), 0));
1678  InitializationKind Kind =
1679    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1680
1681  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1682
1683  ExprResult DelegationInit =
1684    InitSeq.Perform(*this, DelegationEntity, Kind,
1685                    MultiExprArg(*this, Args, NumArgs), 0);
1686  if (DelegationInit.isInvalid())
1687    return true;
1688
1689  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1690  CXXConstructorDecl *Constructor
1691    = ConExpr->getConstructor();
1692  assert(Constructor && "Delegating constructor with no target?");
1693
1694  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1695
1696  // C++0x [class.base.init]p7:
1697  //   The initialization of each base and member constitutes a
1698  //   full-expression.
1699  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1700  if (DelegationInit.isInvalid())
1701    return true;
1702
1703  assert(!CurContext->isDependentContext());
1704  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1705                                          DelegationInit.takeAs<Expr>(),
1706                                          RParenLoc);
1707}
1708
1709MemInitResult
1710Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1711                           Expr **Args, unsigned NumArgs,
1712                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1713                           CXXRecordDecl *ClassDecl,
1714                           SourceLocation EllipsisLoc) {
1715  bool HasDependentArg = false;
1716  for (unsigned i = 0; i < NumArgs; i++)
1717    HasDependentArg |= Args[i]->isTypeDependent();
1718
1719  SourceLocation BaseLoc
1720    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1721
1722  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1723    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1724             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1725
1726  // C++ [class.base.init]p2:
1727  //   [...] Unless the mem-initializer-id names a nonstatic data
1728  //   member of the constructor's class or a direct or virtual base
1729  //   of that class, the mem-initializer is ill-formed. A
1730  //   mem-initializer-list can initialize a base class using any
1731  //   name that denotes that base class type.
1732  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1733
1734  if (EllipsisLoc.isValid()) {
1735    // This is a pack expansion.
1736    if (!BaseType->containsUnexpandedParameterPack())  {
1737      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1738        << SourceRange(BaseLoc, RParenLoc);
1739
1740      EllipsisLoc = SourceLocation();
1741    }
1742  } else {
1743    // Check for any unexpanded parameter packs.
1744    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1745      return true;
1746
1747    for (unsigned I = 0; I != NumArgs; ++I)
1748      if (DiagnoseUnexpandedParameterPack(Args[I]))
1749        return true;
1750  }
1751
1752  // Check for direct and virtual base classes.
1753  const CXXBaseSpecifier *DirectBaseSpec = 0;
1754  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1755  if (!Dependent) {
1756    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1757                                       BaseType))
1758      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1759                                        LParenLoc, RParenLoc, ClassDecl);
1760
1761    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1762                        VirtualBaseSpec);
1763
1764    // C++ [base.class.init]p2:
1765    // Unless the mem-initializer-id names a nonstatic data member of the
1766    // constructor's class or a direct or virtual base of that class, the
1767    // mem-initializer is ill-formed.
1768    if (!DirectBaseSpec && !VirtualBaseSpec) {
1769      // If the class has any dependent bases, then it's possible that
1770      // one of those types will resolve to the same type as
1771      // BaseType. Therefore, just treat this as a dependent base
1772      // class initialization.  FIXME: Should we try to check the
1773      // initialization anyway? It seems odd.
1774      if (ClassDecl->hasAnyDependentBases())
1775        Dependent = true;
1776      else
1777        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1778          << BaseType << Context.getTypeDeclType(ClassDecl)
1779          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1780    }
1781  }
1782
1783  if (Dependent) {
1784    // Can't check initialization for a base of dependent type or when
1785    // any of the arguments are type-dependent expressions.
1786    ExprResult BaseInit
1787      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1788                                          RParenLoc, BaseType));
1789
1790    DiscardCleanupsInEvaluationContext();
1791
1792    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1793                                                    /*IsVirtual=*/false,
1794                                                    LParenLoc,
1795                                                    BaseInit.takeAs<Expr>(),
1796                                                    RParenLoc,
1797                                                    EllipsisLoc);
1798  }
1799
1800  // C++ [base.class.init]p2:
1801  //   If a mem-initializer-id is ambiguous because it designates both
1802  //   a direct non-virtual base class and an inherited virtual base
1803  //   class, the mem-initializer is ill-formed.
1804  if (DirectBaseSpec && VirtualBaseSpec)
1805    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1806      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1807
1808  CXXBaseSpecifier *BaseSpec
1809    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1810  if (!BaseSpec)
1811    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1812
1813  // Initialize the base.
1814  InitializedEntity BaseEntity =
1815    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1816  InitializationKind Kind =
1817    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1818
1819  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1820
1821  ExprResult BaseInit =
1822    InitSeq.Perform(*this, BaseEntity, Kind,
1823                    MultiExprArg(*this, Args, NumArgs), 0);
1824  if (BaseInit.isInvalid())
1825    return true;
1826
1827  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1828
1829  // C++0x [class.base.init]p7:
1830  //   The initialization of each base and member constitutes a
1831  //   full-expression.
1832  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1833  if (BaseInit.isInvalid())
1834    return true;
1835
1836  // If we are in a dependent context, template instantiation will
1837  // perform this type-checking again. Just save the arguments that we
1838  // received in a ParenListExpr.
1839  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1840  // of the information that we have about the base
1841  // initializer. However, deconstructing the ASTs is a dicey process,
1842  // and this approach is far more likely to get the corner cases right.
1843  if (CurContext->isDependentContext()) {
1844    ExprResult Init
1845      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1846                                          RParenLoc, BaseType));
1847    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1848                                                    BaseSpec->isVirtual(),
1849                                                    LParenLoc,
1850                                                    Init.takeAs<Expr>(),
1851                                                    RParenLoc,
1852                                                    EllipsisLoc);
1853  }
1854
1855  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1856                                                  BaseSpec->isVirtual(),
1857                                                  LParenLoc,
1858                                                  BaseInit.takeAs<Expr>(),
1859                                                  RParenLoc,
1860                                                  EllipsisLoc);
1861}
1862
1863/// ImplicitInitializerKind - How an implicit base or member initializer should
1864/// initialize its base or member.
1865enum ImplicitInitializerKind {
1866  IIK_Default,
1867  IIK_Copy,
1868  IIK_Move
1869};
1870
1871static bool
1872BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1873                             ImplicitInitializerKind ImplicitInitKind,
1874                             CXXBaseSpecifier *BaseSpec,
1875                             bool IsInheritedVirtualBase,
1876                             CXXCtorInitializer *&CXXBaseInit) {
1877  InitializedEntity InitEntity
1878    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1879                                        IsInheritedVirtualBase);
1880
1881  ExprResult BaseInit;
1882
1883  switch (ImplicitInitKind) {
1884  case IIK_Default: {
1885    InitializationKind InitKind
1886      = InitializationKind::CreateDefault(Constructor->getLocation());
1887    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1888    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1889                               MultiExprArg(SemaRef, 0, 0));
1890    break;
1891  }
1892
1893  case IIK_Copy: {
1894    ParmVarDecl *Param = Constructor->getParamDecl(0);
1895    QualType ParamType = Param->getType().getNonReferenceType();
1896
1897    Expr *CopyCtorArg =
1898      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1899                          Constructor->getLocation(), ParamType,
1900                          VK_LValue, 0);
1901
1902    // Cast to the base class to avoid ambiguities.
1903    QualType ArgTy =
1904      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1905                                       ParamType.getQualifiers());
1906
1907    CXXCastPath BasePath;
1908    BasePath.push_back(BaseSpec);
1909    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1910                                            CK_UncheckedDerivedToBase,
1911                                            VK_LValue, &BasePath).take();
1912
1913    InitializationKind InitKind
1914      = InitializationKind::CreateDirect(Constructor->getLocation(),
1915                                         SourceLocation(), SourceLocation());
1916    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1917                                   &CopyCtorArg, 1);
1918    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1919                               MultiExprArg(&CopyCtorArg, 1));
1920    break;
1921  }
1922
1923  case IIK_Move:
1924    assert(false && "Unhandled initializer kind!");
1925  }
1926
1927  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1928  if (BaseInit.isInvalid())
1929    return true;
1930
1931  CXXBaseInit =
1932    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1933               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1934                                                        SourceLocation()),
1935                                             BaseSpec->isVirtual(),
1936                                             SourceLocation(),
1937                                             BaseInit.takeAs<Expr>(),
1938                                             SourceLocation(),
1939                                             SourceLocation());
1940
1941  return false;
1942}
1943
1944static bool
1945BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1946                               ImplicitInitializerKind ImplicitInitKind,
1947                               FieldDecl *Field, IndirectFieldDecl *Indirect,
1948                               CXXCtorInitializer *&CXXMemberInit) {
1949  if (Field->isInvalidDecl())
1950    return true;
1951
1952  SourceLocation Loc = Constructor->getLocation();
1953
1954  if (ImplicitInitKind == IIK_Copy) {
1955    ParmVarDecl *Param = Constructor->getParamDecl(0);
1956    QualType ParamType = Param->getType().getNonReferenceType();
1957
1958    // Suppress copying zero-width bitfields.
1959    if (const Expr *Width = Field->getBitWidth())
1960      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1961        return false;
1962
1963    Expr *MemberExprBase =
1964      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1965                          Loc, ParamType, VK_LValue, 0);
1966
1967    // Build a reference to this field within the parameter.
1968    CXXScopeSpec SS;
1969    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1970                              Sema::LookupMemberName);
1971    MemberLookup.addDecl(Indirect? cast<ValueDecl>(Indirect) : cast<ValueDecl>(Field), AS_public);
1972    MemberLookup.resolveKind();
1973    ExprResult CopyCtorArg
1974      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1975                                         ParamType, Loc,
1976                                         /*IsArrow=*/false,
1977                                         SS,
1978                                         /*FirstQualifierInScope=*/0,
1979                                         MemberLookup,
1980                                         /*TemplateArgs=*/0);
1981    if (CopyCtorArg.isInvalid())
1982      return true;
1983
1984    // When the field we are copying is an array, create index variables for
1985    // each dimension of the array. We use these index variables to subscript
1986    // the source array, and other clients (e.g., CodeGen) will perform the
1987    // necessary iteration with these index variables.
1988    SmallVector<VarDecl *, 4> IndexVariables;
1989    QualType BaseType = Field->getType();
1990    QualType SizeType = SemaRef.Context.getSizeType();
1991    while (const ConstantArrayType *Array
1992                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1993      // Create the iteration variable for this array index.
1994      IdentifierInfo *IterationVarName = 0;
1995      {
1996        llvm::SmallString<8> Str;
1997        llvm::raw_svector_ostream OS(Str);
1998        OS << "__i" << IndexVariables.size();
1999        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2000      }
2001      VarDecl *IterationVar
2002        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2003                          IterationVarName, SizeType,
2004                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2005                          SC_None, SC_None);
2006      IndexVariables.push_back(IterationVar);
2007
2008      // Create a reference to the iteration variable.
2009      ExprResult IterationVarRef
2010        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2011      assert(!IterationVarRef.isInvalid() &&
2012             "Reference to invented variable cannot fail!");
2013
2014      // Subscript the array with this iteration variable.
2015      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2016                                                            Loc,
2017                                                        IterationVarRef.take(),
2018                                                            Loc);
2019      if (CopyCtorArg.isInvalid())
2020        return true;
2021
2022      BaseType = Array->getElementType();
2023    }
2024
2025    // Construct the entity that we will be initializing. For an array, this
2026    // will be first element in the array, which may require several levels
2027    // of array-subscript entities.
2028    SmallVector<InitializedEntity, 4> Entities;
2029    Entities.reserve(1 + IndexVariables.size());
2030    if (Indirect)
2031      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2032    else
2033      Entities.push_back(InitializedEntity::InitializeMember(Field));
2034    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2035      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2036                                                              0,
2037                                                              Entities.back()));
2038
2039    // Direct-initialize to use the copy constructor.
2040    InitializationKind InitKind =
2041      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2042
2043    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2044    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2045                                   &CopyCtorArgE, 1);
2046
2047    ExprResult MemberInit
2048      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2049                        MultiExprArg(&CopyCtorArgE, 1));
2050    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2051    if (MemberInit.isInvalid())
2052      return true;
2053
2054    if (Indirect) {
2055      assert(IndexVariables.size() == 0 &&
2056             "Indirect field improperly initialized");
2057      CXXMemberInit
2058        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2059                                                   Loc, Loc,
2060                                                   MemberInit.takeAs<Expr>(),
2061                                                   Loc);
2062    } else
2063      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2064                                                 Loc, MemberInit.takeAs<Expr>(),
2065                                                 Loc,
2066                                                 IndexVariables.data(),
2067                                                 IndexVariables.size());
2068    return false;
2069  }
2070
2071  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2072
2073  QualType FieldBaseElementType =
2074    SemaRef.Context.getBaseElementType(Field->getType());
2075
2076  if (FieldBaseElementType->isRecordType()) {
2077    InitializedEntity InitEntity
2078      = Indirect? InitializedEntity::InitializeMember(Indirect)
2079                : InitializedEntity::InitializeMember(Field);
2080    InitializationKind InitKind =
2081      InitializationKind::CreateDefault(Loc);
2082
2083    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2084    ExprResult MemberInit =
2085      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2086
2087    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2088    if (MemberInit.isInvalid())
2089      return true;
2090
2091    if (Indirect)
2092      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2093                                                               Indirect, Loc,
2094                                                               Loc,
2095                                                               MemberInit.get(),
2096                                                               Loc);
2097    else
2098      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2099                                                               Field, Loc, Loc,
2100                                                               MemberInit.get(),
2101                                                               Loc);
2102    return false;
2103  }
2104
2105  if (!Field->getParent()->isUnion()) {
2106    if (FieldBaseElementType->isReferenceType()) {
2107      SemaRef.Diag(Constructor->getLocation(),
2108                   diag::err_uninitialized_member_in_ctor)
2109      << (int)Constructor->isImplicit()
2110      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2111      << 0 << Field->getDeclName();
2112      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2113      return true;
2114    }
2115
2116    if (FieldBaseElementType.isConstQualified()) {
2117      SemaRef.Diag(Constructor->getLocation(),
2118                   diag::err_uninitialized_member_in_ctor)
2119      << (int)Constructor->isImplicit()
2120      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2121      << 1 << Field->getDeclName();
2122      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2123      return true;
2124    }
2125  }
2126
2127  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2128      FieldBaseElementType->isObjCRetainableType() &&
2129      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2130      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2131    // Instant objects:
2132    //   Default-initialize Objective-C pointers to NULL.
2133    CXXMemberInit
2134      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2135                                                 Loc, Loc,
2136                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2137                                                 Loc);
2138    return false;
2139  }
2140
2141  // Nothing to initialize.
2142  CXXMemberInit = 0;
2143  return false;
2144}
2145
2146namespace {
2147struct BaseAndFieldInfo {
2148  Sema &S;
2149  CXXConstructorDecl *Ctor;
2150  bool AnyErrorsInInits;
2151  ImplicitInitializerKind IIK;
2152  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2153  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2154
2155  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2156    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2157    // FIXME: Handle implicit move constructors.
2158    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2159      IIK = IIK_Copy;
2160    else
2161      IIK = IIK_Default;
2162  }
2163};
2164}
2165
2166static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2167                                    FieldDecl *Field,
2168                                    IndirectFieldDecl *Indirect = 0) {
2169
2170  // Overwhelmingly common case: we have a direct initializer for this field.
2171  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2172    Info.AllToInit.push_back(Init);
2173    return false;
2174  }
2175
2176  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2177  // has a brace-or-equal-initializer, the entity is initialized as specified
2178  // in [dcl.init].
2179  if (Field->hasInClassInitializer()) {
2180    CXXCtorInitializer *Init;
2181    if (Indirect)
2182      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2183                                                      SourceLocation(),
2184                                                      SourceLocation(), 0,
2185                                                      SourceLocation());
2186    else
2187      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2188                                                      SourceLocation(),
2189                                                      SourceLocation(), 0,
2190                                                      SourceLocation());
2191    Info.AllToInit.push_back(Init);
2192    return false;
2193  }
2194
2195  // Don't try to build an implicit initializer if there were semantic
2196  // errors in any of the initializers (and therefore we might be
2197  // missing some that the user actually wrote).
2198  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2199    return false;
2200
2201  CXXCtorInitializer *Init = 0;
2202  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2203                                     Indirect, Init))
2204    return true;
2205
2206  if (Init)
2207    Info.AllToInit.push_back(Init);
2208
2209  return false;
2210}
2211
2212bool
2213Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2214                               CXXCtorInitializer *Initializer) {
2215  assert(Initializer->isDelegatingInitializer());
2216  Constructor->setNumCtorInitializers(1);
2217  CXXCtorInitializer **initializer =
2218    new (Context) CXXCtorInitializer*[1];
2219  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2220  Constructor->setCtorInitializers(initializer);
2221
2222  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2223    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2224    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2225  }
2226
2227  DelegatingCtorDecls.push_back(Constructor);
2228
2229  return false;
2230}
2231
2232/// \brief Determine whether the given indirect field declaration is somewhere
2233/// within an anonymous union.
2234static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2235  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2236                                      CEnd = F->chain_end();
2237       C != CEnd; ++C)
2238    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2239      if (Record->isUnion())
2240        return true;
2241
2242  return false;
2243}
2244
2245bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2246                               CXXCtorInitializer **Initializers,
2247                               unsigned NumInitializers,
2248                               bool AnyErrors) {
2249  if (Constructor->getDeclContext()->isDependentContext()) {
2250    // Just store the initializers as written, they will be checked during
2251    // instantiation.
2252    if (NumInitializers > 0) {
2253      Constructor->setNumCtorInitializers(NumInitializers);
2254      CXXCtorInitializer **baseOrMemberInitializers =
2255        new (Context) CXXCtorInitializer*[NumInitializers];
2256      memcpy(baseOrMemberInitializers, Initializers,
2257             NumInitializers * sizeof(CXXCtorInitializer*));
2258      Constructor->setCtorInitializers(baseOrMemberInitializers);
2259    }
2260
2261    return false;
2262  }
2263
2264  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2265
2266  // We need to build the initializer AST according to order of construction
2267  // and not what user specified in the Initializers list.
2268  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2269  if (!ClassDecl)
2270    return true;
2271
2272  bool HadError = false;
2273
2274  for (unsigned i = 0; i < NumInitializers; i++) {
2275    CXXCtorInitializer *Member = Initializers[i];
2276
2277    if (Member->isBaseInitializer())
2278      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2279    else
2280      Info.AllBaseFields[Member->getAnyMember()] = Member;
2281  }
2282
2283  // Keep track of the direct virtual bases.
2284  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2285  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2286       E = ClassDecl->bases_end(); I != E; ++I) {
2287    if (I->isVirtual())
2288      DirectVBases.insert(I);
2289  }
2290
2291  // Push virtual bases before others.
2292  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2293       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2294
2295    if (CXXCtorInitializer *Value
2296        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2297      Info.AllToInit.push_back(Value);
2298    } else if (!AnyErrors) {
2299      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2300      CXXCtorInitializer *CXXBaseInit;
2301      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2302                                       VBase, IsInheritedVirtualBase,
2303                                       CXXBaseInit)) {
2304        HadError = true;
2305        continue;
2306      }
2307
2308      Info.AllToInit.push_back(CXXBaseInit);
2309    }
2310  }
2311
2312  // Non-virtual bases.
2313  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2314       E = ClassDecl->bases_end(); Base != E; ++Base) {
2315    // Virtuals are in the virtual base list and already constructed.
2316    if (Base->isVirtual())
2317      continue;
2318
2319    if (CXXCtorInitializer *Value
2320          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2321      Info.AllToInit.push_back(Value);
2322    } else if (!AnyErrors) {
2323      CXXCtorInitializer *CXXBaseInit;
2324      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2325                                       Base, /*IsInheritedVirtualBase=*/false,
2326                                       CXXBaseInit)) {
2327        HadError = true;
2328        continue;
2329      }
2330
2331      Info.AllToInit.push_back(CXXBaseInit);
2332    }
2333  }
2334
2335  // Fields.
2336  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2337                               MemEnd = ClassDecl->decls_end();
2338       Mem != MemEnd; ++Mem) {
2339    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2340      if (F->getType()->isIncompleteArrayType()) {
2341        assert(ClassDecl->hasFlexibleArrayMember() &&
2342               "Incomplete array type is not valid");
2343        continue;
2344      }
2345
2346      // If we're not generating the implicit copy constructor, then we'll
2347      // handle anonymous struct/union fields based on their individual
2348      // indirect fields.
2349      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2350        continue;
2351
2352      if (CollectFieldInitializer(*this, Info, F))
2353        HadError = true;
2354      continue;
2355    }
2356
2357    // Beyond this point, we only consider default initialization.
2358    if (Info.IIK != IIK_Default)
2359      continue;
2360
2361    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2362      if (F->getType()->isIncompleteArrayType()) {
2363        assert(ClassDecl->hasFlexibleArrayMember() &&
2364               "Incomplete array type is not valid");
2365        continue;
2366      }
2367
2368      // If this field is somewhere within an anonymous union, we only
2369      // initialize it if there's an explicit initializer.
2370      if (isWithinAnonymousUnion(F)) {
2371        if (CXXCtorInitializer *Init
2372              = Info.AllBaseFields.lookup(F->getAnonField())) {
2373          Info.AllToInit.push_back(Init);
2374        }
2375
2376        continue;
2377      }
2378
2379      // Initialize each field of an anonymous struct individually.
2380      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2381        HadError = true;
2382
2383      continue;
2384    }
2385  }
2386
2387  NumInitializers = Info.AllToInit.size();
2388  if (NumInitializers > 0) {
2389    Constructor->setNumCtorInitializers(NumInitializers);
2390    CXXCtorInitializer **baseOrMemberInitializers =
2391      new (Context) CXXCtorInitializer*[NumInitializers];
2392    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2393           NumInitializers * sizeof(CXXCtorInitializer*));
2394    Constructor->setCtorInitializers(baseOrMemberInitializers);
2395
2396    // Constructors implicitly reference the base and member
2397    // destructors.
2398    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2399                                           Constructor->getParent());
2400  }
2401
2402  return HadError;
2403}
2404
2405static void *GetKeyForTopLevelField(FieldDecl *Field) {
2406  // For anonymous unions, use the class declaration as the key.
2407  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2408    if (RT->getDecl()->isAnonymousStructOrUnion())
2409      return static_cast<void *>(RT->getDecl());
2410  }
2411  return static_cast<void *>(Field);
2412}
2413
2414static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2415  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2416}
2417
2418static void *GetKeyForMember(ASTContext &Context,
2419                             CXXCtorInitializer *Member) {
2420  if (!Member->isAnyMemberInitializer())
2421    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2422
2423  // For fields injected into the class via declaration of an anonymous union,
2424  // use its anonymous union class declaration as the unique key.
2425  FieldDecl *Field = Member->getAnyMember();
2426
2427  // If the field is a member of an anonymous struct or union, our key
2428  // is the anonymous record decl that's a direct child of the class.
2429  RecordDecl *RD = Field->getParent();
2430  if (RD->isAnonymousStructOrUnion()) {
2431    while (true) {
2432      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2433      if (Parent->isAnonymousStructOrUnion())
2434        RD = Parent;
2435      else
2436        break;
2437    }
2438
2439    return static_cast<void *>(RD);
2440  }
2441
2442  return static_cast<void *>(Field);
2443}
2444
2445static void
2446DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2447                                  const CXXConstructorDecl *Constructor,
2448                                  CXXCtorInitializer **Inits,
2449                                  unsigned NumInits) {
2450  if (Constructor->getDeclContext()->isDependentContext())
2451    return;
2452
2453  // Don't check initializers order unless the warning is enabled at the
2454  // location of at least one initializer.
2455  bool ShouldCheckOrder = false;
2456  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2457    CXXCtorInitializer *Init = Inits[InitIndex];
2458    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2459                                         Init->getSourceLocation())
2460          != Diagnostic::Ignored) {
2461      ShouldCheckOrder = true;
2462      break;
2463    }
2464  }
2465  if (!ShouldCheckOrder)
2466    return;
2467
2468  // Build the list of bases and members in the order that they'll
2469  // actually be initialized.  The explicit initializers should be in
2470  // this same order but may be missing things.
2471  SmallVector<const void*, 32> IdealInitKeys;
2472
2473  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2474
2475  // 1. Virtual bases.
2476  for (CXXRecordDecl::base_class_const_iterator VBase =
2477       ClassDecl->vbases_begin(),
2478       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2479    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2480
2481  // 2. Non-virtual bases.
2482  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2483       E = ClassDecl->bases_end(); Base != E; ++Base) {
2484    if (Base->isVirtual())
2485      continue;
2486    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2487  }
2488
2489  // 3. Direct fields.
2490  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2491       E = ClassDecl->field_end(); Field != E; ++Field)
2492    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2493
2494  unsigned NumIdealInits = IdealInitKeys.size();
2495  unsigned IdealIndex = 0;
2496
2497  CXXCtorInitializer *PrevInit = 0;
2498  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2499    CXXCtorInitializer *Init = Inits[InitIndex];
2500    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2501
2502    // Scan forward to try to find this initializer in the idealized
2503    // initializers list.
2504    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2505      if (InitKey == IdealInitKeys[IdealIndex])
2506        break;
2507
2508    // If we didn't find this initializer, it must be because we
2509    // scanned past it on a previous iteration.  That can only
2510    // happen if we're out of order;  emit a warning.
2511    if (IdealIndex == NumIdealInits && PrevInit) {
2512      Sema::SemaDiagnosticBuilder D =
2513        SemaRef.Diag(PrevInit->getSourceLocation(),
2514                     diag::warn_initializer_out_of_order);
2515
2516      if (PrevInit->isAnyMemberInitializer())
2517        D << 0 << PrevInit->getAnyMember()->getDeclName();
2518      else
2519        D << 1 << PrevInit->getBaseClassInfo()->getType();
2520
2521      if (Init->isAnyMemberInitializer())
2522        D << 0 << Init->getAnyMember()->getDeclName();
2523      else
2524        D << 1 << Init->getBaseClassInfo()->getType();
2525
2526      // Move back to the initializer's location in the ideal list.
2527      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2528        if (InitKey == IdealInitKeys[IdealIndex])
2529          break;
2530
2531      assert(IdealIndex != NumIdealInits &&
2532             "initializer not found in initializer list");
2533    }
2534
2535    PrevInit = Init;
2536  }
2537}
2538
2539namespace {
2540bool CheckRedundantInit(Sema &S,
2541                        CXXCtorInitializer *Init,
2542                        CXXCtorInitializer *&PrevInit) {
2543  if (!PrevInit) {
2544    PrevInit = Init;
2545    return false;
2546  }
2547
2548  if (FieldDecl *Field = Init->getMember())
2549    S.Diag(Init->getSourceLocation(),
2550           diag::err_multiple_mem_initialization)
2551      << Field->getDeclName()
2552      << Init->getSourceRange();
2553  else {
2554    const Type *BaseClass = Init->getBaseClass();
2555    assert(BaseClass && "neither field nor base");
2556    S.Diag(Init->getSourceLocation(),
2557           diag::err_multiple_base_initialization)
2558      << QualType(BaseClass, 0)
2559      << Init->getSourceRange();
2560  }
2561  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2562    << 0 << PrevInit->getSourceRange();
2563
2564  return true;
2565}
2566
2567typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2568typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2569
2570bool CheckRedundantUnionInit(Sema &S,
2571                             CXXCtorInitializer *Init,
2572                             RedundantUnionMap &Unions) {
2573  FieldDecl *Field = Init->getAnyMember();
2574  RecordDecl *Parent = Field->getParent();
2575  if (!Parent->isAnonymousStructOrUnion())
2576    return false;
2577
2578  NamedDecl *Child = Field;
2579  do {
2580    if (Parent->isUnion()) {
2581      UnionEntry &En = Unions[Parent];
2582      if (En.first && En.first != Child) {
2583        S.Diag(Init->getSourceLocation(),
2584               diag::err_multiple_mem_union_initialization)
2585          << Field->getDeclName()
2586          << Init->getSourceRange();
2587        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2588          << 0 << En.second->getSourceRange();
2589        return true;
2590      } else if (!En.first) {
2591        En.first = Child;
2592        En.second = Init;
2593      }
2594    }
2595
2596    Child = Parent;
2597    Parent = cast<RecordDecl>(Parent->getDeclContext());
2598  } while (Parent->isAnonymousStructOrUnion());
2599
2600  return false;
2601}
2602}
2603
2604/// ActOnMemInitializers - Handle the member initializers for a constructor.
2605void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2606                                SourceLocation ColonLoc,
2607                                MemInitTy **meminits, unsigned NumMemInits,
2608                                bool AnyErrors) {
2609  if (!ConstructorDecl)
2610    return;
2611
2612  AdjustDeclIfTemplate(ConstructorDecl);
2613
2614  CXXConstructorDecl *Constructor
2615    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2616
2617  if (!Constructor) {
2618    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2619    return;
2620  }
2621
2622  CXXCtorInitializer **MemInits =
2623    reinterpret_cast<CXXCtorInitializer **>(meminits);
2624
2625  // Mapping for the duplicate initializers check.
2626  // For member initializers, this is keyed with a FieldDecl*.
2627  // For base initializers, this is keyed with a Type*.
2628  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2629
2630  // Mapping for the inconsistent anonymous-union initializers check.
2631  RedundantUnionMap MemberUnions;
2632
2633  bool HadError = false;
2634  for (unsigned i = 0; i < NumMemInits; i++) {
2635    CXXCtorInitializer *Init = MemInits[i];
2636
2637    // Set the source order index.
2638    Init->setSourceOrder(i);
2639
2640    if (Init->isAnyMemberInitializer()) {
2641      FieldDecl *Field = Init->getAnyMember();
2642      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2643          CheckRedundantUnionInit(*this, Init, MemberUnions))
2644        HadError = true;
2645    } else if (Init->isBaseInitializer()) {
2646      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2647      if (CheckRedundantInit(*this, Init, Members[Key]))
2648        HadError = true;
2649    } else {
2650      assert(Init->isDelegatingInitializer());
2651      // This must be the only initializer
2652      if (i != 0 || NumMemInits > 1) {
2653        Diag(MemInits[0]->getSourceLocation(),
2654             diag::err_delegating_initializer_alone)
2655          << MemInits[0]->getSourceRange();
2656        HadError = true;
2657        // We will treat this as being the only initializer.
2658      }
2659      SetDelegatingInitializer(Constructor, MemInits[i]);
2660      // Return immediately as the initializer is set.
2661      return;
2662    }
2663  }
2664
2665  if (HadError)
2666    return;
2667
2668  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2669
2670  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2671}
2672
2673void
2674Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2675                                             CXXRecordDecl *ClassDecl) {
2676  // Ignore dependent contexts.
2677  if (ClassDecl->isDependentContext())
2678    return;
2679
2680  // FIXME: all the access-control diagnostics are positioned on the
2681  // field/base declaration.  That's probably good; that said, the
2682  // user might reasonably want to know why the destructor is being
2683  // emitted, and we currently don't say.
2684
2685  // Non-static data members.
2686  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2687       E = ClassDecl->field_end(); I != E; ++I) {
2688    FieldDecl *Field = *I;
2689    if (Field->isInvalidDecl())
2690      continue;
2691    QualType FieldType = Context.getBaseElementType(Field->getType());
2692
2693    const RecordType* RT = FieldType->getAs<RecordType>();
2694    if (!RT)
2695      continue;
2696
2697    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2698    if (FieldClassDecl->isInvalidDecl())
2699      continue;
2700    if (FieldClassDecl->hasTrivialDestructor())
2701      continue;
2702
2703    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2704    assert(Dtor && "No dtor found for FieldClassDecl!");
2705    CheckDestructorAccess(Field->getLocation(), Dtor,
2706                          PDiag(diag::err_access_dtor_field)
2707                            << Field->getDeclName()
2708                            << FieldType);
2709
2710    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2711  }
2712
2713  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2714
2715  // Bases.
2716  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2717       E = ClassDecl->bases_end(); Base != E; ++Base) {
2718    // Bases are always records in a well-formed non-dependent class.
2719    const RecordType *RT = Base->getType()->getAs<RecordType>();
2720
2721    // Remember direct virtual bases.
2722    if (Base->isVirtual())
2723      DirectVirtualBases.insert(RT);
2724
2725    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2726    // If our base class is invalid, we probably can't get its dtor anyway.
2727    if (BaseClassDecl->isInvalidDecl())
2728      continue;
2729    // Ignore trivial destructors.
2730    if (BaseClassDecl->hasTrivialDestructor())
2731      continue;
2732
2733    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2734    assert(Dtor && "No dtor found for BaseClassDecl!");
2735
2736    // FIXME: caret should be on the start of the class name
2737    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2738                          PDiag(diag::err_access_dtor_base)
2739                            << Base->getType()
2740                            << Base->getSourceRange());
2741
2742    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2743  }
2744
2745  // Virtual bases.
2746  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2747       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2748
2749    // Bases are always records in a well-formed non-dependent class.
2750    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2751
2752    // Ignore direct virtual bases.
2753    if (DirectVirtualBases.count(RT))
2754      continue;
2755
2756    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2757    // If our base class is invalid, we probably can't get its dtor anyway.
2758    if (BaseClassDecl->isInvalidDecl())
2759      continue;
2760    // Ignore trivial destructors.
2761    if (BaseClassDecl->hasTrivialDestructor())
2762      continue;
2763
2764    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2765    assert(Dtor && "No dtor found for BaseClassDecl!");
2766    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2767                          PDiag(diag::err_access_dtor_vbase)
2768                            << VBase->getType());
2769
2770    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2771  }
2772}
2773
2774void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2775  if (!CDtorDecl)
2776    return;
2777
2778  if (CXXConstructorDecl *Constructor
2779      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2780    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2781}
2782
2783bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2784                                  unsigned DiagID, AbstractDiagSelID SelID) {
2785  if (SelID == -1)
2786    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2787  else
2788    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2789}
2790
2791bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2792                                  const PartialDiagnostic &PD) {
2793  if (!getLangOptions().CPlusPlus)
2794    return false;
2795
2796  if (const ArrayType *AT = Context.getAsArrayType(T))
2797    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2798
2799  if (const PointerType *PT = T->getAs<PointerType>()) {
2800    // Find the innermost pointer type.
2801    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2802      PT = T;
2803
2804    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2805      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2806  }
2807
2808  const RecordType *RT = T->getAs<RecordType>();
2809  if (!RT)
2810    return false;
2811
2812  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2813
2814  // We can't answer whether something is abstract until it has a
2815  // definition.  If it's currently being defined, we'll walk back
2816  // over all the declarations when we have a full definition.
2817  const CXXRecordDecl *Def = RD->getDefinition();
2818  if (!Def || Def->isBeingDefined())
2819    return false;
2820
2821  if (!RD->isAbstract())
2822    return false;
2823
2824  Diag(Loc, PD) << RD->getDeclName();
2825  DiagnoseAbstractType(RD);
2826
2827  return true;
2828}
2829
2830void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2831  // Check if we've already emitted the list of pure virtual functions
2832  // for this class.
2833  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2834    return;
2835
2836  CXXFinalOverriderMap FinalOverriders;
2837  RD->getFinalOverriders(FinalOverriders);
2838
2839  // Keep a set of seen pure methods so we won't diagnose the same method
2840  // more than once.
2841  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2842
2843  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2844                                   MEnd = FinalOverriders.end();
2845       M != MEnd;
2846       ++M) {
2847    for (OverridingMethods::iterator SO = M->second.begin(),
2848                                  SOEnd = M->second.end();
2849         SO != SOEnd; ++SO) {
2850      // C++ [class.abstract]p4:
2851      //   A class is abstract if it contains or inherits at least one
2852      //   pure virtual function for which the final overrider is pure
2853      //   virtual.
2854
2855      //
2856      if (SO->second.size() != 1)
2857        continue;
2858
2859      if (!SO->second.front().Method->isPure())
2860        continue;
2861
2862      if (!SeenPureMethods.insert(SO->second.front().Method))
2863        continue;
2864
2865      Diag(SO->second.front().Method->getLocation(),
2866           diag::note_pure_virtual_function)
2867        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2868    }
2869  }
2870
2871  if (!PureVirtualClassDiagSet)
2872    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2873  PureVirtualClassDiagSet->insert(RD);
2874}
2875
2876namespace {
2877struct AbstractUsageInfo {
2878  Sema &S;
2879  CXXRecordDecl *Record;
2880  CanQualType AbstractType;
2881  bool Invalid;
2882
2883  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2884    : S(S), Record(Record),
2885      AbstractType(S.Context.getCanonicalType(
2886                   S.Context.getTypeDeclType(Record))),
2887      Invalid(false) {}
2888
2889  void DiagnoseAbstractType() {
2890    if (Invalid) return;
2891    S.DiagnoseAbstractType(Record);
2892    Invalid = true;
2893  }
2894
2895  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2896};
2897
2898struct CheckAbstractUsage {
2899  AbstractUsageInfo &Info;
2900  const NamedDecl *Ctx;
2901
2902  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2903    : Info(Info), Ctx(Ctx) {}
2904
2905  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2906    switch (TL.getTypeLocClass()) {
2907#define ABSTRACT_TYPELOC(CLASS, PARENT)
2908#define TYPELOC(CLASS, PARENT) \
2909    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2910#include "clang/AST/TypeLocNodes.def"
2911    }
2912  }
2913
2914  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2915    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2916    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2917      if (!TL.getArg(I))
2918        continue;
2919
2920      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2921      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2922    }
2923  }
2924
2925  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2926    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2927  }
2928
2929  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2930    // Visit the type parameters from a permissive context.
2931    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2932      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2933      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2934        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2935          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2936      // TODO: other template argument types?
2937    }
2938  }
2939
2940  // Visit pointee types from a permissive context.
2941#define CheckPolymorphic(Type) \
2942  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2943    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2944  }
2945  CheckPolymorphic(PointerTypeLoc)
2946  CheckPolymorphic(ReferenceTypeLoc)
2947  CheckPolymorphic(MemberPointerTypeLoc)
2948  CheckPolymorphic(BlockPointerTypeLoc)
2949
2950  /// Handle all the types we haven't given a more specific
2951  /// implementation for above.
2952  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2953    // Every other kind of type that we haven't called out already
2954    // that has an inner type is either (1) sugar or (2) contains that
2955    // inner type in some way as a subobject.
2956    if (TypeLoc Next = TL.getNextTypeLoc())
2957      return Visit(Next, Sel);
2958
2959    // If there's no inner type and we're in a permissive context,
2960    // don't diagnose.
2961    if (Sel == Sema::AbstractNone) return;
2962
2963    // Check whether the type matches the abstract type.
2964    QualType T = TL.getType();
2965    if (T->isArrayType()) {
2966      Sel = Sema::AbstractArrayType;
2967      T = Info.S.Context.getBaseElementType(T);
2968    }
2969    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2970    if (CT != Info.AbstractType) return;
2971
2972    // It matched; do some magic.
2973    if (Sel == Sema::AbstractArrayType) {
2974      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2975        << T << TL.getSourceRange();
2976    } else {
2977      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2978        << Sel << T << TL.getSourceRange();
2979    }
2980    Info.DiagnoseAbstractType();
2981  }
2982};
2983
2984void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2985                                  Sema::AbstractDiagSelID Sel) {
2986  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2987}
2988
2989}
2990
2991/// Check for invalid uses of an abstract type in a method declaration.
2992static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2993                                    CXXMethodDecl *MD) {
2994  // No need to do the check on definitions, which require that
2995  // the return/param types be complete.
2996  if (MD->doesThisDeclarationHaveABody())
2997    return;
2998
2999  // For safety's sake, just ignore it if we don't have type source
3000  // information.  This should never happen for non-implicit methods,
3001  // but...
3002  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3003    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3004}
3005
3006/// Check for invalid uses of an abstract type within a class definition.
3007static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3008                                    CXXRecordDecl *RD) {
3009  for (CXXRecordDecl::decl_iterator
3010         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3011    Decl *D = *I;
3012    if (D->isImplicit()) continue;
3013
3014    // Methods and method templates.
3015    if (isa<CXXMethodDecl>(D)) {
3016      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3017    } else if (isa<FunctionTemplateDecl>(D)) {
3018      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3019      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3020
3021    // Fields and static variables.
3022    } else if (isa<FieldDecl>(D)) {
3023      FieldDecl *FD = cast<FieldDecl>(D);
3024      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3025        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3026    } else if (isa<VarDecl>(D)) {
3027      VarDecl *VD = cast<VarDecl>(D);
3028      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3029        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3030
3031    // Nested classes and class templates.
3032    } else if (isa<CXXRecordDecl>(D)) {
3033      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3034    } else if (isa<ClassTemplateDecl>(D)) {
3035      CheckAbstractClassUsage(Info,
3036                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3037    }
3038  }
3039}
3040
3041/// \brief Perform semantic checks on a class definition that has been
3042/// completing, introducing implicitly-declared members, checking for
3043/// abstract types, etc.
3044void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3045  if (!Record)
3046    return;
3047
3048  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3049    AbstractUsageInfo Info(*this, Record);
3050    CheckAbstractClassUsage(Info, Record);
3051  }
3052
3053  // If this is not an aggregate type and has no user-declared constructor,
3054  // complain about any non-static data members of reference or const scalar
3055  // type, since they will never get initializers.
3056  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3057      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3058    bool Complained = false;
3059    for (RecordDecl::field_iterator F = Record->field_begin(),
3060                                 FEnd = Record->field_end();
3061         F != FEnd; ++F) {
3062      if (F->hasInClassInitializer())
3063        continue;
3064
3065      if (F->getType()->isReferenceType() ||
3066          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3067        if (!Complained) {
3068          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3069            << Record->getTagKind() << Record;
3070          Complained = true;
3071        }
3072
3073        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3074          << F->getType()->isReferenceType()
3075          << F->getDeclName();
3076      }
3077    }
3078  }
3079
3080  if (Record->isDynamicClass() && !Record->isDependentType())
3081    DynamicClasses.push_back(Record);
3082
3083  if (Record->getIdentifier()) {
3084    // C++ [class.mem]p13:
3085    //   If T is the name of a class, then each of the following shall have a
3086    //   name different from T:
3087    //     - every member of every anonymous union that is a member of class T.
3088    //
3089    // C++ [class.mem]p14:
3090    //   In addition, if class T has a user-declared constructor (12.1), every
3091    //   non-static data member of class T shall have a name different from T.
3092    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3093         R.first != R.second; ++R.first) {
3094      NamedDecl *D = *R.first;
3095      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3096          isa<IndirectFieldDecl>(D)) {
3097        Diag(D->getLocation(), diag::err_member_name_of_class)
3098          << D->getDeclName();
3099        break;
3100      }
3101    }
3102  }
3103
3104  // Warn if the class has virtual methods but non-virtual public destructor.
3105  if (Record->isPolymorphic() && !Record->isDependentType()) {
3106    CXXDestructorDecl *dtor = Record->getDestructor();
3107    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3108      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3109           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3110  }
3111
3112  // See if a method overloads virtual methods in a base
3113  /// class without overriding any.
3114  if (!Record->isDependentType()) {
3115    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3116                                     MEnd = Record->method_end();
3117         M != MEnd; ++M) {
3118      if (!(*M)->isStatic())
3119        DiagnoseHiddenVirtualMethods(Record, *M);
3120    }
3121  }
3122
3123  // Declare inherited constructors. We do this eagerly here because:
3124  // - The standard requires an eager diagnostic for conflicting inherited
3125  //   constructors from different classes.
3126  // - The lazy declaration of the other implicit constructors is so as to not
3127  //   waste space and performance on classes that are not meant to be
3128  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3129  //   have inherited constructors.
3130  DeclareInheritedConstructors(Record);
3131
3132  if (!Record->isDependentType())
3133    CheckExplicitlyDefaultedMethods(Record);
3134}
3135
3136void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3137  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3138                                      ME = Record->method_end();
3139       MI != ME; ++MI) {
3140    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3141      switch (getSpecialMember(*MI)) {
3142      case CXXDefaultConstructor:
3143        CheckExplicitlyDefaultedDefaultConstructor(
3144                                                  cast<CXXConstructorDecl>(*MI));
3145        break;
3146
3147      case CXXDestructor:
3148        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3149        break;
3150
3151      case CXXCopyConstructor:
3152        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3153        break;
3154
3155      case CXXCopyAssignment:
3156        CheckExplicitlyDefaultedCopyAssignment(*MI);
3157        break;
3158
3159      case CXXMoveConstructor:
3160      case CXXMoveAssignment:
3161        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3162        break;
3163
3164      default:
3165        // FIXME: Do moves once they exist
3166        llvm_unreachable("non-special member explicitly defaulted!");
3167      }
3168    }
3169  }
3170
3171}
3172
3173void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3174  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3175
3176  // Whether this was the first-declared instance of the constructor.
3177  // This affects whether we implicitly add an exception spec (and, eventually,
3178  // constexpr). It is also ill-formed to explicitly default a constructor such
3179  // that it would be deleted. (C++0x [decl.fct.def.default])
3180  bool First = CD == CD->getCanonicalDecl();
3181
3182  bool HadError = false;
3183  if (CD->getNumParams() != 0) {
3184    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3185      << CD->getSourceRange();
3186    HadError = true;
3187  }
3188
3189  ImplicitExceptionSpecification Spec
3190    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3191  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3192  if (EPI.ExceptionSpecType == EST_Delayed) {
3193    // Exception specification depends on some deferred part of the class. We'll
3194    // try again when the class's definition has been fully processed.
3195    return;
3196  }
3197  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3198                          *ExceptionType = Context.getFunctionType(
3199                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3200
3201  if (CtorType->hasExceptionSpec()) {
3202    if (CheckEquivalentExceptionSpec(
3203          PDiag(diag::err_incorrect_defaulted_exception_spec)
3204            << CXXDefaultConstructor,
3205          PDiag(),
3206          ExceptionType, SourceLocation(),
3207          CtorType, CD->getLocation())) {
3208      HadError = true;
3209    }
3210  } else if (First) {
3211    // We set the declaration to have the computed exception spec here.
3212    // We know there are no parameters.
3213    EPI.ExtInfo = CtorType->getExtInfo();
3214    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3215  }
3216
3217  if (HadError) {
3218    CD->setInvalidDecl();
3219    return;
3220  }
3221
3222  if (ShouldDeleteDefaultConstructor(CD)) {
3223    if (First) {
3224      CD->setDeletedAsWritten();
3225    } else {
3226      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3227        << CXXDefaultConstructor;
3228      CD->setInvalidDecl();
3229    }
3230  }
3231}
3232
3233void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3234  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3235
3236  // Whether this was the first-declared instance of the constructor.
3237  bool First = CD == CD->getCanonicalDecl();
3238
3239  bool HadError = false;
3240  if (CD->getNumParams() != 1) {
3241    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3242      << CD->getSourceRange();
3243    HadError = true;
3244  }
3245
3246  ImplicitExceptionSpecification Spec(Context);
3247  bool Const;
3248  llvm::tie(Spec, Const) =
3249    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3250
3251  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3252  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3253                          *ExceptionType = Context.getFunctionType(
3254                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3255
3256  // Check for parameter type matching.
3257  // This is a copy ctor so we know it's a cv-qualified reference to T.
3258  QualType ArgType = CtorType->getArgType(0);
3259  if (ArgType->getPointeeType().isVolatileQualified()) {
3260    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3261    HadError = true;
3262  }
3263  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3264    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3265    HadError = true;
3266  }
3267
3268  if (CtorType->hasExceptionSpec()) {
3269    if (CheckEquivalentExceptionSpec(
3270          PDiag(diag::err_incorrect_defaulted_exception_spec)
3271            << CXXCopyConstructor,
3272          PDiag(),
3273          ExceptionType, SourceLocation(),
3274          CtorType, CD->getLocation())) {
3275      HadError = true;
3276    }
3277  } else if (First) {
3278    // We set the declaration to have the computed exception spec here.
3279    // We duplicate the one parameter type.
3280    EPI.ExtInfo = CtorType->getExtInfo();
3281    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3282  }
3283
3284  if (HadError) {
3285    CD->setInvalidDecl();
3286    return;
3287  }
3288
3289  if (ShouldDeleteCopyConstructor(CD)) {
3290    if (First) {
3291      CD->setDeletedAsWritten();
3292    } else {
3293      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3294        << CXXCopyConstructor;
3295      CD->setInvalidDecl();
3296    }
3297  }
3298}
3299
3300void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3301  assert(MD->isExplicitlyDefaulted());
3302
3303  // Whether this was the first-declared instance of the operator
3304  bool First = MD == MD->getCanonicalDecl();
3305
3306  bool HadError = false;
3307  if (MD->getNumParams() != 1) {
3308    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3309      << MD->getSourceRange();
3310    HadError = true;
3311  }
3312
3313  QualType ReturnType =
3314    MD->getType()->getAs<FunctionType>()->getResultType();
3315  if (!ReturnType->isLValueReferenceType() ||
3316      !Context.hasSameType(
3317        Context.getCanonicalType(ReturnType->getPointeeType()),
3318        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3319    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3320    HadError = true;
3321  }
3322
3323  ImplicitExceptionSpecification Spec(Context);
3324  bool Const;
3325  llvm::tie(Spec, Const) =
3326    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3327
3328  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3329  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3330                          *ExceptionType = Context.getFunctionType(
3331                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3332
3333  QualType ArgType = OperType->getArgType(0);
3334  if (!ArgType->isReferenceType()) {
3335    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3336    HadError = true;
3337  } else {
3338    if (ArgType->getPointeeType().isVolatileQualified()) {
3339      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3340      HadError = true;
3341    }
3342    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3343      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3344      HadError = true;
3345    }
3346  }
3347
3348  if (OperType->getTypeQuals()) {
3349    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3350    HadError = true;
3351  }
3352
3353  if (OperType->hasExceptionSpec()) {
3354    if (CheckEquivalentExceptionSpec(
3355          PDiag(diag::err_incorrect_defaulted_exception_spec)
3356            << CXXCopyAssignment,
3357          PDiag(),
3358          ExceptionType, SourceLocation(),
3359          OperType, MD->getLocation())) {
3360      HadError = true;
3361    }
3362  } else if (First) {
3363    // We set the declaration to have the computed exception spec here.
3364    // We duplicate the one parameter type.
3365    EPI.RefQualifier = OperType->getRefQualifier();
3366    EPI.ExtInfo = OperType->getExtInfo();
3367    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3368  }
3369
3370  if (HadError) {
3371    MD->setInvalidDecl();
3372    return;
3373  }
3374
3375  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3376    if (First) {
3377      MD->setDeletedAsWritten();
3378    } else {
3379      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3380        << CXXCopyAssignment;
3381      MD->setInvalidDecl();
3382    }
3383  }
3384}
3385
3386void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3387  assert(DD->isExplicitlyDefaulted());
3388
3389  // Whether this was the first-declared instance of the destructor.
3390  bool First = DD == DD->getCanonicalDecl();
3391
3392  ImplicitExceptionSpecification Spec
3393    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3394  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3395  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3396                          *ExceptionType = Context.getFunctionType(
3397                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3398
3399  if (DtorType->hasExceptionSpec()) {
3400    if (CheckEquivalentExceptionSpec(
3401          PDiag(diag::err_incorrect_defaulted_exception_spec)
3402            << CXXDestructor,
3403          PDiag(),
3404          ExceptionType, SourceLocation(),
3405          DtorType, DD->getLocation())) {
3406      DD->setInvalidDecl();
3407      return;
3408    }
3409  } else if (First) {
3410    // We set the declaration to have the computed exception spec here.
3411    // There are no parameters.
3412    EPI.ExtInfo = DtorType->getExtInfo();
3413    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3414  }
3415
3416  if (ShouldDeleteDestructor(DD)) {
3417    if (First) {
3418      DD->setDeletedAsWritten();
3419    } else {
3420      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3421        << CXXDestructor;
3422      DD->setInvalidDecl();
3423    }
3424  }
3425}
3426
3427bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3428  CXXRecordDecl *RD = CD->getParent();
3429  assert(!RD->isDependentType() && "do deletion after instantiation");
3430  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3431    return false;
3432
3433  SourceLocation Loc = CD->getLocation();
3434
3435  // Do access control from the constructor
3436  ContextRAII CtorContext(*this, CD);
3437
3438  bool Union = RD->isUnion();
3439  bool AllConst = true;
3440
3441  // We do this because we should never actually use an anonymous
3442  // union's constructor.
3443  if (Union && RD->isAnonymousStructOrUnion())
3444    return false;
3445
3446  // FIXME: We should put some diagnostic logic right into this function.
3447
3448  // C++0x [class.ctor]/5
3449  //    A defaulted default constructor for class X is defined as deleted if:
3450
3451  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3452                                          BE = RD->bases_end();
3453       BI != BE; ++BI) {
3454    // We'll handle this one later
3455    if (BI->isVirtual())
3456      continue;
3457
3458    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3459    assert(BaseDecl && "base isn't a CXXRecordDecl");
3460
3461    // -- any [direct base class] has a type with a destructor that is
3462    //    deleted or inaccessible from the defaulted default constructor
3463    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3464    if (BaseDtor->isDeleted())
3465      return true;
3466    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3467        AR_accessible)
3468      return true;
3469
3470    // -- any [direct base class either] has no default constructor or
3471    //    overload resolution as applied to [its] default constructor
3472    //    results in an ambiguity or in a function that is deleted or
3473    //    inaccessible from the defaulted default constructor
3474    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3475    if (!BaseDefault || BaseDefault->isDeleted())
3476      return true;
3477
3478    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3479                               PDiag()) != AR_accessible)
3480      return true;
3481  }
3482
3483  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3484                                          BE = RD->vbases_end();
3485       BI != BE; ++BI) {
3486    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3487    assert(BaseDecl && "base isn't a CXXRecordDecl");
3488
3489    // -- any [virtual base class] has a type with a destructor that is
3490    //    delete or inaccessible from the defaulted default constructor
3491    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3492    if (BaseDtor->isDeleted())
3493      return true;
3494    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3495        AR_accessible)
3496      return true;
3497
3498    // -- any [virtual base class either] has no default constructor or
3499    //    overload resolution as applied to [its] default constructor
3500    //    results in an ambiguity or in a function that is deleted or
3501    //    inaccessible from the defaulted default constructor
3502    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3503    if (!BaseDefault || BaseDefault->isDeleted())
3504      return true;
3505
3506    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3507                               PDiag()) != AR_accessible)
3508      return true;
3509  }
3510
3511  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3512                                     FE = RD->field_end();
3513       FI != FE; ++FI) {
3514    if (FI->isInvalidDecl())
3515      continue;
3516
3517    QualType FieldType = Context.getBaseElementType(FI->getType());
3518    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3519
3520    // -- any non-static data member with no brace-or-equal-initializer is of
3521    //    reference type
3522    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3523      return true;
3524
3525    // -- X is a union and all its variant members are of const-qualified type
3526    //    (or array thereof)
3527    if (Union && !FieldType.isConstQualified())
3528      AllConst = false;
3529
3530    if (FieldRecord) {
3531      // -- X is a union-like class that has a variant member with a non-trivial
3532      //    default constructor
3533      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3534        return true;
3535
3536      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3537      if (FieldDtor->isDeleted())
3538        return true;
3539      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3540          AR_accessible)
3541        return true;
3542
3543      // -- any non-variant non-static data member of const-qualified type (or
3544      //    array thereof) with no brace-or-equal-initializer does not have a
3545      //    user-provided default constructor
3546      if (FieldType.isConstQualified() &&
3547          !FI->hasInClassInitializer() &&
3548          !FieldRecord->hasUserProvidedDefaultConstructor())
3549        return true;
3550
3551      if (!Union && FieldRecord->isUnion() &&
3552          FieldRecord->isAnonymousStructOrUnion()) {
3553        // We're okay to reuse AllConst here since we only care about the
3554        // value otherwise if we're in a union.
3555        AllConst = true;
3556
3557        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3558                                           UE = FieldRecord->field_end();
3559             UI != UE; ++UI) {
3560          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3561          CXXRecordDecl *UnionFieldRecord =
3562            UnionFieldType->getAsCXXRecordDecl();
3563
3564          if (!UnionFieldType.isConstQualified())
3565            AllConst = false;
3566
3567          if (UnionFieldRecord &&
3568              !UnionFieldRecord->hasTrivialDefaultConstructor())
3569            return true;
3570        }
3571
3572        if (AllConst)
3573          return true;
3574
3575        // Don't try to initialize the anonymous union
3576        // This is technically non-conformant, but sanity demands it.
3577        continue;
3578      }
3579
3580      // -- any non-static data member with no brace-or-equal-initializer has
3581      //    class type M (or array thereof) and either M has no default
3582      //    constructor or overload resolution as applied to M's default
3583      //    constructor results in an ambiguity or in a function that is deleted
3584      //    or inaccessible from the defaulted default constructor.
3585      if (!FI->hasInClassInitializer()) {
3586        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3587        if (!FieldDefault || FieldDefault->isDeleted())
3588          return true;
3589        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3590                                   PDiag()) != AR_accessible)
3591          return true;
3592      }
3593    } else if (!Union && FieldType.isConstQualified() &&
3594               !FI->hasInClassInitializer()) {
3595      // -- any non-variant non-static data member of const-qualified type (or
3596      //    array thereof) with no brace-or-equal-initializer does not have a
3597      //    user-provided default constructor
3598      return true;
3599    }
3600  }
3601
3602  if (Union && AllConst)
3603    return true;
3604
3605  return false;
3606}
3607
3608bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3609  CXXRecordDecl *RD = CD->getParent();
3610  assert(!RD->isDependentType() && "do deletion after instantiation");
3611  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3612    return false;
3613
3614  SourceLocation Loc = CD->getLocation();
3615
3616  // Do access control from the constructor
3617  ContextRAII CtorContext(*this, CD);
3618
3619  bool Union = RD->isUnion();
3620
3621  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3622         "copy assignment arg has no pointee type");
3623  unsigned ArgQuals =
3624    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3625      Qualifiers::Const : 0;
3626
3627  // We do this because we should never actually use an anonymous
3628  // union's constructor.
3629  if (Union && RD->isAnonymousStructOrUnion())
3630    return false;
3631
3632  // FIXME: We should put some diagnostic logic right into this function.
3633
3634  // C++0x [class.copy]/11
3635  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3636
3637  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3638                                          BE = RD->bases_end();
3639       BI != BE; ++BI) {
3640    // We'll handle this one later
3641    if (BI->isVirtual())
3642      continue;
3643
3644    QualType BaseType = BI->getType();
3645    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3646    assert(BaseDecl && "base isn't a CXXRecordDecl");
3647
3648    // -- any [direct base class] of a type with a destructor that is deleted or
3649    //    inaccessible from the defaulted constructor
3650    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3651    if (BaseDtor->isDeleted())
3652      return true;
3653    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3654        AR_accessible)
3655      return true;
3656
3657    // -- a [direct base class] B that cannot be [copied] because overload
3658    //    resolution, as applied to B's [copy] constructor, results in an
3659    //    ambiguity or a function that is deleted or inaccessible from the
3660    //    defaulted constructor
3661    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3662    if (!BaseCtor || BaseCtor->isDeleted())
3663      return true;
3664    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3665        AR_accessible)
3666      return true;
3667  }
3668
3669  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3670                                          BE = RD->vbases_end();
3671       BI != BE; ++BI) {
3672    QualType BaseType = BI->getType();
3673    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3674    assert(BaseDecl && "base isn't a CXXRecordDecl");
3675
3676    // -- any [virtual base class] of a type with a destructor that is deleted or
3677    //    inaccessible from the defaulted constructor
3678    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3679    if (BaseDtor->isDeleted())
3680      return true;
3681    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3682        AR_accessible)
3683      return true;
3684
3685    // -- a [virtual base class] B that cannot be [copied] because overload
3686    //    resolution, as applied to B's [copy] constructor, results in an
3687    //    ambiguity or a function that is deleted or inaccessible from the
3688    //    defaulted constructor
3689    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3690    if (!BaseCtor || BaseCtor->isDeleted())
3691      return true;
3692    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3693        AR_accessible)
3694      return true;
3695  }
3696
3697  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3698                                     FE = RD->field_end();
3699       FI != FE; ++FI) {
3700    QualType FieldType = Context.getBaseElementType(FI->getType());
3701
3702    // -- for a copy constructor, a non-static data member of rvalue reference
3703    //    type
3704    if (FieldType->isRValueReferenceType())
3705      return true;
3706
3707    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3708
3709    if (FieldRecord) {
3710      // This is an anonymous union
3711      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3712        // Anonymous unions inside unions do not variant members create
3713        if (!Union) {
3714          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3715                                             UE = FieldRecord->field_end();
3716               UI != UE; ++UI) {
3717            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3718            CXXRecordDecl *UnionFieldRecord =
3719              UnionFieldType->getAsCXXRecordDecl();
3720
3721            // -- a variant member with a non-trivial [copy] constructor and X
3722            //    is a union-like class
3723            if (UnionFieldRecord &&
3724                !UnionFieldRecord->hasTrivialCopyConstructor())
3725              return true;
3726          }
3727        }
3728
3729        // Don't try to initalize an anonymous union
3730        continue;
3731      } else {
3732         // -- a variant member with a non-trivial [copy] constructor and X is a
3733         //    union-like class
3734        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3735          return true;
3736
3737        // -- any [non-static data member] of a type with a destructor that is
3738        //    deleted or inaccessible from the defaulted constructor
3739        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3740        if (FieldDtor->isDeleted())
3741          return true;
3742        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3743            AR_accessible)
3744          return true;
3745      }
3746
3747    // -- a [non-static data member of class type (or array thereof)] B that
3748    //    cannot be [copied] because overload resolution, as applied to B's
3749    //    [copy] constructor, results in an ambiguity or a function that is
3750    //    deleted or inaccessible from the defaulted constructor
3751      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
3752                                                               ArgQuals);
3753      if (!FieldCtor || FieldCtor->isDeleted())
3754        return true;
3755      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3756                                 PDiag()) != AR_accessible)
3757        return true;
3758    }
3759  }
3760
3761  return false;
3762}
3763
3764bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3765  CXXRecordDecl *RD = MD->getParent();
3766  assert(!RD->isDependentType() && "do deletion after instantiation");
3767  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3768    return false;
3769
3770  SourceLocation Loc = MD->getLocation();
3771
3772  // Do access control from the constructor
3773  ContextRAII MethodContext(*this, MD);
3774
3775  bool Union = RD->isUnion();
3776
3777  unsigned ArgQuals =
3778    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3779      Qualifiers::Const : 0;
3780
3781  // We do this because we should never actually use an anonymous
3782  // union's constructor.
3783  if (Union && RD->isAnonymousStructOrUnion())
3784    return false;
3785
3786  // FIXME: We should put some diagnostic logic right into this function.
3787
3788  // C++0x [class.copy]/11
3789  //    A defaulted [copy] assignment operator for class X is defined as deleted
3790  //    if X has:
3791
3792  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3793                                          BE = RD->bases_end();
3794       BI != BE; ++BI) {
3795    // We'll handle this one later
3796    if (BI->isVirtual())
3797      continue;
3798
3799    QualType BaseType = BI->getType();
3800    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3801    assert(BaseDecl && "base isn't a CXXRecordDecl");
3802
3803    // -- a [direct base class] B that cannot be [copied] because overload
3804    //    resolution, as applied to B's [copy] assignment operator, results in
3805    //    an ambiguity or a function that is deleted or inaccessible from the
3806    //    assignment operator
3807    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3808                                                      0);
3809    if (!CopyOper || CopyOper->isDeleted())
3810      return true;
3811    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3812      return true;
3813  }
3814
3815  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3816                                          BE = RD->vbases_end();
3817       BI != BE; ++BI) {
3818    QualType BaseType = BI->getType();
3819    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3820    assert(BaseDecl && "base isn't a CXXRecordDecl");
3821
3822    // -- a [virtual base class] B that cannot be [copied] because overload
3823    //    resolution, as applied to B's [copy] assignment operator, results in
3824    //    an ambiguity or a function that is deleted or inaccessible from the
3825    //    assignment operator
3826    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3827                                                      0);
3828    if (!CopyOper || CopyOper->isDeleted())
3829      return true;
3830    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3831      return true;
3832  }
3833
3834  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3835                                     FE = RD->field_end();
3836       FI != FE; ++FI) {
3837    QualType FieldType = Context.getBaseElementType(FI->getType());
3838
3839    // -- a non-static data member of reference type
3840    if (FieldType->isReferenceType())
3841      return true;
3842
3843    // -- a non-static data member of const non-class type (or array thereof)
3844    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3845      return true;
3846
3847    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3848
3849    if (FieldRecord) {
3850      // This is an anonymous union
3851      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3852        // Anonymous unions inside unions do not variant members create
3853        if (!Union) {
3854          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3855                                             UE = FieldRecord->field_end();
3856               UI != UE; ++UI) {
3857            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3858            CXXRecordDecl *UnionFieldRecord =
3859              UnionFieldType->getAsCXXRecordDecl();
3860
3861            // -- a variant member with a non-trivial [copy] assignment operator
3862            //    and X is a union-like class
3863            if (UnionFieldRecord &&
3864                !UnionFieldRecord->hasTrivialCopyAssignment())
3865              return true;
3866          }
3867        }
3868
3869        // Don't try to initalize an anonymous union
3870        continue;
3871      // -- a variant member with a non-trivial [copy] assignment operator
3872      //    and X is a union-like class
3873      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3874          return true;
3875      }
3876
3877      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
3878                                                        false, 0);
3879      if (!CopyOper || CopyOper->isDeleted())
3880        return false;
3881      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3882        return false;
3883    }
3884  }
3885
3886  return false;
3887}
3888
3889bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3890  CXXRecordDecl *RD = DD->getParent();
3891  assert(!RD->isDependentType() && "do deletion after instantiation");
3892  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3893    return false;
3894
3895  SourceLocation Loc = DD->getLocation();
3896
3897  // Do access control from the destructor
3898  ContextRAII CtorContext(*this, DD);
3899
3900  bool Union = RD->isUnion();
3901
3902  // We do this because we should never actually use an anonymous
3903  // union's destructor.
3904  if (Union && RD->isAnonymousStructOrUnion())
3905    return false;
3906
3907  // C++0x [class.dtor]p5
3908  //    A defaulted destructor for a class X is defined as deleted if:
3909  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3910                                          BE = RD->bases_end();
3911       BI != BE; ++BI) {
3912    // We'll handle this one later
3913    if (BI->isVirtual())
3914      continue;
3915
3916    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3917    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3918    assert(BaseDtor && "base has no destructor");
3919
3920    // -- any direct or virtual base class has a deleted destructor or
3921    //    a destructor that is inaccessible from the defaulted destructor
3922    if (BaseDtor->isDeleted())
3923      return true;
3924    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3925        AR_accessible)
3926      return true;
3927  }
3928
3929  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3930                                          BE = RD->vbases_end();
3931       BI != BE; ++BI) {
3932    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3933    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3934    assert(BaseDtor && "base has no destructor");
3935
3936    // -- any direct or virtual base class has a deleted destructor or
3937    //    a destructor that is inaccessible from the defaulted destructor
3938    if (BaseDtor->isDeleted())
3939      return true;
3940    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3941        AR_accessible)
3942      return true;
3943  }
3944
3945  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3946                                     FE = RD->field_end();
3947       FI != FE; ++FI) {
3948    QualType FieldType = Context.getBaseElementType(FI->getType());
3949    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3950    if (FieldRecord) {
3951      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3952         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3953                                            UE = FieldRecord->field_end();
3954              UI != UE; ++UI) {
3955           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3956           CXXRecordDecl *UnionFieldRecord =
3957             UnionFieldType->getAsCXXRecordDecl();
3958
3959           // -- X is a union-like class that has a variant member with a non-
3960           //    trivial destructor.
3961           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3962             return true;
3963         }
3964      // Technically we are supposed to do this next check unconditionally.
3965      // But that makes absolutely no sense.
3966      } else {
3967        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3968
3969        // -- any of the non-static data members has class type M (or array
3970        //    thereof) and M has a deleted destructor or a destructor that is
3971        //    inaccessible from the defaulted destructor
3972        if (FieldDtor->isDeleted())
3973          return true;
3974        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3975          AR_accessible)
3976        return true;
3977
3978        // -- X is a union-like class that has a variant member with a non-
3979        //    trivial destructor.
3980        if (Union && !FieldDtor->isTrivial())
3981          return true;
3982      }
3983    }
3984  }
3985
3986  if (DD->isVirtual()) {
3987    FunctionDecl *OperatorDelete = 0;
3988    DeclarationName Name =
3989      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3990    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3991          false))
3992      return true;
3993  }
3994
3995
3996  return false;
3997}
3998
3999/// \brief Data used with FindHiddenVirtualMethod
4000namespace {
4001  struct FindHiddenVirtualMethodData {
4002    Sema *S;
4003    CXXMethodDecl *Method;
4004    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4005    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4006  };
4007}
4008
4009/// \brief Member lookup function that determines whether a given C++
4010/// method overloads virtual methods in a base class without overriding any,
4011/// to be used with CXXRecordDecl::lookupInBases().
4012static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4013                                    CXXBasePath &Path,
4014                                    void *UserData) {
4015  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4016
4017  FindHiddenVirtualMethodData &Data
4018    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4019
4020  DeclarationName Name = Data.Method->getDeclName();
4021  assert(Name.getNameKind() == DeclarationName::Identifier);
4022
4023  bool foundSameNameMethod = false;
4024  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4025  for (Path.Decls = BaseRecord->lookup(Name);
4026       Path.Decls.first != Path.Decls.second;
4027       ++Path.Decls.first) {
4028    NamedDecl *D = *Path.Decls.first;
4029    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4030      MD = MD->getCanonicalDecl();
4031      foundSameNameMethod = true;
4032      // Interested only in hidden virtual methods.
4033      if (!MD->isVirtual())
4034        continue;
4035      // If the method we are checking overrides a method from its base
4036      // don't warn about the other overloaded methods.
4037      if (!Data.S->IsOverload(Data.Method, MD, false))
4038        return true;
4039      // Collect the overload only if its hidden.
4040      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4041        overloadedMethods.push_back(MD);
4042    }
4043  }
4044
4045  if (foundSameNameMethod)
4046    Data.OverloadedMethods.append(overloadedMethods.begin(),
4047                                   overloadedMethods.end());
4048  return foundSameNameMethod;
4049}
4050
4051/// \brief See if a method overloads virtual methods in a base class without
4052/// overriding any.
4053void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4054  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4055                               MD->getLocation()) == Diagnostic::Ignored)
4056    return;
4057  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4058    return;
4059
4060  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4061                     /*bool RecordPaths=*/false,
4062                     /*bool DetectVirtual=*/false);
4063  FindHiddenVirtualMethodData Data;
4064  Data.Method = MD;
4065  Data.S = this;
4066
4067  // Keep the base methods that were overriden or introduced in the subclass
4068  // by 'using' in a set. A base method not in this set is hidden.
4069  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4070       res.first != res.second; ++res.first) {
4071    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4072      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4073                                          E = MD->end_overridden_methods();
4074           I != E; ++I)
4075        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4076    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4077      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4078        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4079  }
4080
4081  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4082      !Data.OverloadedMethods.empty()) {
4083    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4084      << MD << (Data.OverloadedMethods.size() > 1);
4085
4086    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4087      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4088      Diag(overloadedMD->getLocation(),
4089           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4090    }
4091  }
4092}
4093
4094void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4095                                             Decl *TagDecl,
4096                                             SourceLocation LBrac,
4097                                             SourceLocation RBrac,
4098                                             AttributeList *AttrList) {
4099  if (!TagDecl)
4100    return;
4101
4102  AdjustDeclIfTemplate(TagDecl);
4103
4104  ActOnFields(S, RLoc, TagDecl,
4105              // strict aliasing violation!
4106              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4107              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4108
4109  CheckCompletedCXXClass(
4110                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4111}
4112
4113/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4114/// special functions, such as the default constructor, copy
4115/// constructor, or destructor, to the given C++ class (C++
4116/// [special]p1).  This routine can only be executed just before the
4117/// definition of the class is complete.
4118void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4119  if (!ClassDecl->hasUserDeclaredConstructor())
4120    ++ASTContext::NumImplicitDefaultConstructors;
4121
4122  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4123    ++ASTContext::NumImplicitCopyConstructors;
4124
4125  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4126    ++ASTContext::NumImplicitCopyAssignmentOperators;
4127
4128    // If we have a dynamic class, then the copy assignment operator may be
4129    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4130    // it shows up in the right place in the vtable and that we diagnose
4131    // problems with the implicit exception specification.
4132    if (ClassDecl->isDynamicClass())
4133      DeclareImplicitCopyAssignment(ClassDecl);
4134  }
4135
4136  if (!ClassDecl->hasUserDeclaredDestructor()) {
4137    ++ASTContext::NumImplicitDestructors;
4138
4139    // If we have a dynamic class, then the destructor may be virtual, so we
4140    // have to declare the destructor immediately. This ensures that, e.g., it
4141    // shows up in the right place in the vtable and that we diagnose problems
4142    // with the implicit exception specification.
4143    if (ClassDecl->isDynamicClass())
4144      DeclareImplicitDestructor(ClassDecl);
4145  }
4146}
4147
4148void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4149  if (!D)
4150    return;
4151
4152  int NumParamList = D->getNumTemplateParameterLists();
4153  for (int i = 0; i < NumParamList; i++) {
4154    TemplateParameterList* Params = D->getTemplateParameterList(i);
4155    for (TemplateParameterList::iterator Param = Params->begin(),
4156                                      ParamEnd = Params->end();
4157          Param != ParamEnd; ++Param) {
4158      NamedDecl *Named = cast<NamedDecl>(*Param);
4159      if (Named->getDeclName()) {
4160        S->AddDecl(Named);
4161        IdResolver.AddDecl(Named);
4162      }
4163    }
4164  }
4165}
4166
4167void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4168  if (!D)
4169    return;
4170
4171  TemplateParameterList *Params = 0;
4172  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4173    Params = Template->getTemplateParameters();
4174  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4175           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4176    Params = PartialSpec->getTemplateParameters();
4177  else
4178    return;
4179
4180  for (TemplateParameterList::iterator Param = Params->begin(),
4181                                    ParamEnd = Params->end();
4182       Param != ParamEnd; ++Param) {
4183    NamedDecl *Named = cast<NamedDecl>(*Param);
4184    if (Named->getDeclName()) {
4185      S->AddDecl(Named);
4186      IdResolver.AddDecl(Named);
4187    }
4188  }
4189}
4190
4191void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4192  if (!RecordD) return;
4193  AdjustDeclIfTemplate(RecordD);
4194  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4195  PushDeclContext(S, Record);
4196}
4197
4198void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4199  if (!RecordD) return;
4200  PopDeclContext();
4201}
4202
4203/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4204/// parsing a top-level (non-nested) C++ class, and we are now
4205/// parsing those parts of the given Method declaration that could
4206/// not be parsed earlier (C++ [class.mem]p2), such as default
4207/// arguments. This action should enter the scope of the given
4208/// Method declaration as if we had just parsed the qualified method
4209/// name. However, it should not bring the parameters into scope;
4210/// that will be performed by ActOnDelayedCXXMethodParameter.
4211void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4212}
4213
4214/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4215/// C++ method declaration. We're (re-)introducing the given
4216/// function parameter into scope for use in parsing later parts of
4217/// the method declaration. For example, we could see an
4218/// ActOnParamDefaultArgument event for this parameter.
4219void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4220  if (!ParamD)
4221    return;
4222
4223  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4224
4225  // If this parameter has an unparsed default argument, clear it out
4226  // to make way for the parsed default argument.
4227  if (Param->hasUnparsedDefaultArg())
4228    Param->setDefaultArg(0);
4229
4230  S->AddDecl(Param);
4231  if (Param->getDeclName())
4232    IdResolver.AddDecl(Param);
4233}
4234
4235/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4236/// processing the delayed method declaration for Method. The method
4237/// declaration is now considered finished. There may be a separate
4238/// ActOnStartOfFunctionDef action later (not necessarily
4239/// immediately!) for this method, if it was also defined inside the
4240/// class body.
4241void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4242  if (!MethodD)
4243    return;
4244
4245  AdjustDeclIfTemplate(MethodD);
4246
4247  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4248
4249  // Now that we have our default arguments, check the constructor
4250  // again. It could produce additional diagnostics or affect whether
4251  // the class has implicitly-declared destructors, among other
4252  // things.
4253  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4254    CheckConstructor(Constructor);
4255
4256  // Check the default arguments, which we may have added.
4257  if (!Method->isInvalidDecl())
4258    CheckCXXDefaultArguments(Method);
4259}
4260
4261/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4262/// the well-formedness of the constructor declarator @p D with type @p
4263/// R. If there are any errors in the declarator, this routine will
4264/// emit diagnostics and set the invalid bit to true.  In any case, the type
4265/// will be updated to reflect a well-formed type for the constructor and
4266/// returned.
4267QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4268                                          StorageClass &SC) {
4269  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4270
4271  // C++ [class.ctor]p3:
4272  //   A constructor shall not be virtual (10.3) or static (9.4). A
4273  //   constructor can be invoked for a const, volatile or const
4274  //   volatile object. A constructor shall not be declared const,
4275  //   volatile, or const volatile (9.3.2).
4276  if (isVirtual) {
4277    if (!D.isInvalidType())
4278      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4279        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4280        << SourceRange(D.getIdentifierLoc());
4281    D.setInvalidType();
4282  }
4283  if (SC == SC_Static) {
4284    if (!D.isInvalidType())
4285      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4286        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4287        << SourceRange(D.getIdentifierLoc());
4288    D.setInvalidType();
4289    SC = SC_None;
4290  }
4291
4292  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4293  if (FTI.TypeQuals != 0) {
4294    if (FTI.TypeQuals & Qualifiers::Const)
4295      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4296        << "const" << SourceRange(D.getIdentifierLoc());
4297    if (FTI.TypeQuals & Qualifiers::Volatile)
4298      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4299        << "volatile" << SourceRange(D.getIdentifierLoc());
4300    if (FTI.TypeQuals & Qualifiers::Restrict)
4301      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4302        << "restrict" << SourceRange(D.getIdentifierLoc());
4303    D.setInvalidType();
4304  }
4305
4306  // C++0x [class.ctor]p4:
4307  //   A constructor shall not be declared with a ref-qualifier.
4308  if (FTI.hasRefQualifier()) {
4309    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4310      << FTI.RefQualifierIsLValueRef
4311      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4312    D.setInvalidType();
4313  }
4314
4315  // Rebuild the function type "R" without any type qualifiers (in
4316  // case any of the errors above fired) and with "void" as the
4317  // return type, since constructors don't have return types.
4318  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4319  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4320    return R;
4321
4322  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4323  EPI.TypeQuals = 0;
4324  EPI.RefQualifier = RQ_None;
4325
4326  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4327                                 Proto->getNumArgs(), EPI);
4328}
4329
4330/// CheckConstructor - Checks a fully-formed constructor for
4331/// well-formedness, issuing any diagnostics required. Returns true if
4332/// the constructor declarator is invalid.
4333void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4334  CXXRecordDecl *ClassDecl
4335    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4336  if (!ClassDecl)
4337    return Constructor->setInvalidDecl();
4338
4339  // C++ [class.copy]p3:
4340  //   A declaration of a constructor for a class X is ill-formed if
4341  //   its first parameter is of type (optionally cv-qualified) X and
4342  //   either there are no other parameters or else all other
4343  //   parameters have default arguments.
4344  if (!Constructor->isInvalidDecl() &&
4345      ((Constructor->getNumParams() == 1) ||
4346       (Constructor->getNumParams() > 1 &&
4347        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4348      Constructor->getTemplateSpecializationKind()
4349                                              != TSK_ImplicitInstantiation) {
4350    QualType ParamType = Constructor->getParamDecl(0)->getType();
4351    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4352    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4353      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4354      const char *ConstRef
4355        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4356                                                        : " const &";
4357      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4358        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4359
4360      // FIXME: Rather that making the constructor invalid, we should endeavor
4361      // to fix the type.
4362      Constructor->setInvalidDecl();
4363    }
4364  }
4365}
4366
4367/// CheckDestructor - Checks a fully-formed destructor definition for
4368/// well-formedness, issuing any diagnostics required.  Returns true
4369/// on error.
4370bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4371  CXXRecordDecl *RD = Destructor->getParent();
4372
4373  if (Destructor->isVirtual()) {
4374    SourceLocation Loc;
4375
4376    if (!Destructor->isImplicit())
4377      Loc = Destructor->getLocation();
4378    else
4379      Loc = RD->getLocation();
4380
4381    // If we have a virtual destructor, look up the deallocation function
4382    FunctionDecl *OperatorDelete = 0;
4383    DeclarationName Name =
4384    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4385    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4386      return true;
4387
4388    MarkDeclarationReferenced(Loc, OperatorDelete);
4389
4390    Destructor->setOperatorDelete(OperatorDelete);
4391  }
4392
4393  return false;
4394}
4395
4396static inline bool
4397FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4398  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4399          FTI.ArgInfo[0].Param &&
4400          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4401}
4402
4403/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4404/// the well-formednes of the destructor declarator @p D with type @p
4405/// R. If there are any errors in the declarator, this routine will
4406/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4407/// will be updated to reflect a well-formed type for the destructor and
4408/// returned.
4409QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4410                                         StorageClass& SC) {
4411  // C++ [class.dtor]p1:
4412  //   [...] A typedef-name that names a class is a class-name
4413  //   (7.1.3); however, a typedef-name that names a class shall not
4414  //   be used as the identifier in the declarator for a destructor
4415  //   declaration.
4416  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4417  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4418    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4419      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4420  else if (const TemplateSpecializationType *TST =
4421             DeclaratorType->getAs<TemplateSpecializationType>())
4422    if (TST->isTypeAlias())
4423      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4424        << DeclaratorType << 1;
4425
4426  // C++ [class.dtor]p2:
4427  //   A destructor is used to destroy objects of its class type. A
4428  //   destructor takes no parameters, and no return type can be
4429  //   specified for it (not even void). The address of a destructor
4430  //   shall not be taken. A destructor shall not be static. A
4431  //   destructor can be invoked for a const, volatile or const
4432  //   volatile object. A destructor shall not be declared const,
4433  //   volatile or const volatile (9.3.2).
4434  if (SC == SC_Static) {
4435    if (!D.isInvalidType())
4436      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4437        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4438        << SourceRange(D.getIdentifierLoc())
4439        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4440
4441    SC = SC_None;
4442  }
4443  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4444    // Destructors don't have return types, but the parser will
4445    // happily parse something like:
4446    //
4447    //   class X {
4448    //     float ~X();
4449    //   };
4450    //
4451    // The return type will be eliminated later.
4452    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4453      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4454      << SourceRange(D.getIdentifierLoc());
4455  }
4456
4457  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4458  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4459    if (FTI.TypeQuals & Qualifiers::Const)
4460      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4461        << "const" << SourceRange(D.getIdentifierLoc());
4462    if (FTI.TypeQuals & Qualifiers::Volatile)
4463      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4464        << "volatile" << SourceRange(D.getIdentifierLoc());
4465    if (FTI.TypeQuals & Qualifiers::Restrict)
4466      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4467        << "restrict" << SourceRange(D.getIdentifierLoc());
4468    D.setInvalidType();
4469  }
4470
4471  // C++0x [class.dtor]p2:
4472  //   A destructor shall not be declared with a ref-qualifier.
4473  if (FTI.hasRefQualifier()) {
4474    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4475      << FTI.RefQualifierIsLValueRef
4476      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4477    D.setInvalidType();
4478  }
4479
4480  // Make sure we don't have any parameters.
4481  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4482    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4483
4484    // Delete the parameters.
4485    FTI.freeArgs();
4486    D.setInvalidType();
4487  }
4488
4489  // Make sure the destructor isn't variadic.
4490  if (FTI.isVariadic) {
4491    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4492    D.setInvalidType();
4493  }
4494
4495  // Rebuild the function type "R" without any type qualifiers or
4496  // parameters (in case any of the errors above fired) and with
4497  // "void" as the return type, since destructors don't have return
4498  // types.
4499  if (!D.isInvalidType())
4500    return R;
4501
4502  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4503  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4504  EPI.Variadic = false;
4505  EPI.TypeQuals = 0;
4506  EPI.RefQualifier = RQ_None;
4507  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4508}
4509
4510/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4511/// well-formednes of the conversion function declarator @p D with
4512/// type @p R. If there are any errors in the declarator, this routine
4513/// will emit diagnostics and return true. Otherwise, it will return
4514/// false. Either way, the type @p R will be updated to reflect a
4515/// well-formed type for the conversion operator.
4516void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4517                                     StorageClass& SC) {
4518  // C++ [class.conv.fct]p1:
4519  //   Neither parameter types nor return type can be specified. The
4520  //   type of a conversion function (8.3.5) is "function taking no
4521  //   parameter returning conversion-type-id."
4522  if (SC == SC_Static) {
4523    if (!D.isInvalidType())
4524      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4525        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4526        << SourceRange(D.getIdentifierLoc());
4527    D.setInvalidType();
4528    SC = SC_None;
4529  }
4530
4531  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4532
4533  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4534    // Conversion functions don't have return types, but the parser will
4535    // happily parse something like:
4536    //
4537    //   class X {
4538    //     float operator bool();
4539    //   };
4540    //
4541    // The return type will be changed later anyway.
4542    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4543      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4544      << SourceRange(D.getIdentifierLoc());
4545    D.setInvalidType();
4546  }
4547
4548  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4549
4550  // Make sure we don't have any parameters.
4551  if (Proto->getNumArgs() > 0) {
4552    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4553
4554    // Delete the parameters.
4555    D.getFunctionTypeInfo().freeArgs();
4556    D.setInvalidType();
4557  } else if (Proto->isVariadic()) {
4558    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4559    D.setInvalidType();
4560  }
4561
4562  // Diagnose "&operator bool()" and other such nonsense.  This
4563  // is actually a gcc extension which we don't support.
4564  if (Proto->getResultType() != ConvType) {
4565    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4566      << Proto->getResultType();
4567    D.setInvalidType();
4568    ConvType = Proto->getResultType();
4569  }
4570
4571  // C++ [class.conv.fct]p4:
4572  //   The conversion-type-id shall not represent a function type nor
4573  //   an array type.
4574  if (ConvType->isArrayType()) {
4575    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4576    ConvType = Context.getPointerType(ConvType);
4577    D.setInvalidType();
4578  } else if (ConvType->isFunctionType()) {
4579    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4580    ConvType = Context.getPointerType(ConvType);
4581    D.setInvalidType();
4582  }
4583
4584  // Rebuild the function type "R" without any parameters (in case any
4585  // of the errors above fired) and with the conversion type as the
4586  // return type.
4587  if (D.isInvalidType())
4588    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4589
4590  // C++0x explicit conversion operators.
4591  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4592    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4593         diag::warn_explicit_conversion_functions)
4594      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4595}
4596
4597/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4598/// the declaration of the given C++ conversion function. This routine
4599/// is responsible for recording the conversion function in the C++
4600/// class, if possible.
4601Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4602  assert(Conversion && "Expected to receive a conversion function declaration");
4603
4604  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4605
4606  // Make sure we aren't redeclaring the conversion function.
4607  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4608
4609  // C++ [class.conv.fct]p1:
4610  //   [...] A conversion function is never used to convert a
4611  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4612  //   same object type (or a reference to it), to a (possibly
4613  //   cv-qualified) base class of that type (or a reference to it),
4614  //   or to (possibly cv-qualified) void.
4615  // FIXME: Suppress this warning if the conversion function ends up being a
4616  // virtual function that overrides a virtual function in a base class.
4617  QualType ClassType
4618    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4619  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4620    ConvType = ConvTypeRef->getPointeeType();
4621  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4622      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4623    /* Suppress diagnostics for instantiations. */;
4624  else if (ConvType->isRecordType()) {
4625    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4626    if (ConvType == ClassType)
4627      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4628        << ClassType;
4629    else if (IsDerivedFrom(ClassType, ConvType))
4630      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4631        <<  ClassType << ConvType;
4632  } else if (ConvType->isVoidType()) {
4633    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4634      << ClassType << ConvType;
4635  }
4636
4637  if (FunctionTemplateDecl *ConversionTemplate
4638                                = Conversion->getDescribedFunctionTemplate())
4639    return ConversionTemplate;
4640
4641  return Conversion;
4642}
4643
4644//===----------------------------------------------------------------------===//
4645// Namespace Handling
4646//===----------------------------------------------------------------------===//
4647
4648
4649
4650/// ActOnStartNamespaceDef - This is called at the start of a namespace
4651/// definition.
4652Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4653                                   SourceLocation InlineLoc,
4654                                   SourceLocation NamespaceLoc,
4655                                   SourceLocation IdentLoc,
4656                                   IdentifierInfo *II,
4657                                   SourceLocation LBrace,
4658                                   AttributeList *AttrList) {
4659  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4660  // For anonymous namespace, take the location of the left brace.
4661  SourceLocation Loc = II ? IdentLoc : LBrace;
4662  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4663                                                 StartLoc, Loc, II);
4664  Namespc->setInline(InlineLoc.isValid());
4665
4666  Scope *DeclRegionScope = NamespcScope->getParent();
4667
4668  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4669
4670  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4671    PushNamespaceVisibilityAttr(Attr);
4672
4673  if (II) {
4674    // C++ [namespace.def]p2:
4675    //   The identifier in an original-namespace-definition shall not
4676    //   have been previously defined in the declarative region in
4677    //   which the original-namespace-definition appears. The
4678    //   identifier in an original-namespace-definition is the name of
4679    //   the namespace. Subsequently in that declarative region, it is
4680    //   treated as an original-namespace-name.
4681    //
4682    // Since namespace names are unique in their scope, and we don't
4683    // look through using directives, just look for any ordinary names.
4684
4685    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4686      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4687      Decl::IDNS_Namespace;
4688    NamedDecl *PrevDecl = 0;
4689    for (DeclContext::lookup_result R
4690            = CurContext->getRedeclContext()->lookup(II);
4691         R.first != R.second; ++R.first) {
4692      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4693        PrevDecl = *R.first;
4694        break;
4695      }
4696    }
4697
4698    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4699      // This is an extended namespace definition.
4700      if (Namespc->isInline() != OrigNS->isInline()) {
4701        // inline-ness must match
4702        if (OrigNS->isInline()) {
4703          // The user probably just forgot the 'inline', so suggest that it
4704          // be added back.
4705          Diag(Namespc->getLocation(),
4706               diag::warn_inline_namespace_reopened_noninline)
4707            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4708        } else {
4709          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4710            << Namespc->isInline();
4711        }
4712        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4713
4714        // Recover by ignoring the new namespace's inline status.
4715        Namespc->setInline(OrigNS->isInline());
4716      }
4717
4718      // Attach this namespace decl to the chain of extended namespace
4719      // definitions.
4720      OrigNS->setNextNamespace(Namespc);
4721      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4722
4723      // Remove the previous declaration from the scope.
4724      if (DeclRegionScope->isDeclScope(OrigNS)) {
4725        IdResolver.RemoveDecl(OrigNS);
4726        DeclRegionScope->RemoveDecl(OrigNS);
4727      }
4728    } else if (PrevDecl) {
4729      // This is an invalid name redefinition.
4730      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4731       << Namespc->getDeclName();
4732      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4733      Namespc->setInvalidDecl();
4734      // Continue on to push Namespc as current DeclContext and return it.
4735    } else if (II->isStr("std") &&
4736               CurContext->getRedeclContext()->isTranslationUnit()) {
4737      // This is the first "real" definition of the namespace "std", so update
4738      // our cache of the "std" namespace to point at this definition.
4739      if (NamespaceDecl *StdNS = getStdNamespace()) {
4740        // We had already defined a dummy namespace "std". Link this new
4741        // namespace definition to the dummy namespace "std".
4742        StdNS->setNextNamespace(Namespc);
4743        StdNS->setLocation(IdentLoc);
4744        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4745      }
4746
4747      // Make our StdNamespace cache point at the first real definition of the
4748      // "std" namespace.
4749      StdNamespace = Namespc;
4750
4751      // Add this instance of "std" to the set of known namespaces
4752      KnownNamespaces[Namespc] = false;
4753    } else if (!Namespc->isInline()) {
4754      // Since this is an "original" namespace, add it to the known set of
4755      // namespaces if it is not an inline namespace.
4756      KnownNamespaces[Namespc] = false;
4757    }
4758
4759    PushOnScopeChains(Namespc, DeclRegionScope);
4760  } else {
4761    // Anonymous namespaces.
4762    assert(Namespc->isAnonymousNamespace());
4763
4764    // Link the anonymous namespace into its parent.
4765    NamespaceDecl *PrevDecl;
4766    DeclContext *Parent = CurContext->getRedeclContext();
4767    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4768      PrevDecl = TU->getAnonymousNamespace();
4769      TU->setAnonymousNamespace(Namespc);
4770    } else {
4771      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4772      PrevDecl = ND->getAnonymousNamespace();
4773      ND->setAnonymousNamespace(Namespc);
4774    }
4775
4776    // Link the anonymous namespace with its previous declaration.
4777    if (PrevDecl) {
4778      assert(PrevDecl->isAnonymousNamespace());
4779      assert(!PrevDecl->getNextNamespace());
4780      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4781      PrevDecl->setNextNamespace(Namespc);
4782
4783      if (Namespc->isInline() != PrevDecl->isInline()) {
4784        // inline-ness must match
4785        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4786          << Namespc->isInline();
4787        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4788        Namespc->setInvalidDecl();
4789        // Recover by ignoring the new namespace's inline status.
4790        Namespc->setInline(PrevDecl->isInline());
4791      }
4792    }
4793
4794    CurContext->addDecl(Namespc);
4795
4796    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4797    //   behaves as if it were replaced by
4798    //     namespace unique { /* empty body */ }
4799    //     using namespace unique;
4800    //     namespace unique { namespace-body }
4801    //   where all occurrences of 'unique' in a translation unit are
4802    //   replaced by the same identifier and this identifier differs
4803    //   from all other identifiers in the entire program.
4804
4805    // We just create the namespace with an empty name and then add an
4806    // implicit using declaration, just like the standard suggests.
4807    //
4808    // CodeGen enforces the "universally unique" aspect by giving all
4809    // declarations semantically contained within an anonymous
4810    // namespace internal linkage.
4811
4812    if (!PrevDecl) {
4813      UsingDirectiveDecl* UD
4814        = UsingDirectiveDecl::Create(Context, CurContext,
4815                                     /* 'using' */ LBrace,
4816                                     /* 'namespace' */ SourceLocation(),
4817                                     /* qualifier */ NestedNameSpecifierLoc(),
4818                                     /* identifier */ SourceLocation(),
4819                                     Namespc,
4820                                     /* Ancestor */ CurContext);
4821      UD->setImplicit();
4822      CurContext->addDecl(UD);
4823    }
4824  }
4825
4826  // Although we could have an invalid decl (i.e. the namespace name is a
4827  // redefinition), push it as current DeclContext and try to continue parsing.
4828  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4829  // for the namespace has the declarations that showed up in that particular
4830  // namespace definition.
4831  PushDeclContext(NamespcScope, Namespc);
4832  return Namespc;
4833}
4834
4835/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4836/// is a namespace alias, returns the namespace it points to.
4837static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4838  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4839    return AD->getNamespace();
4840  return dyn_cast_or_null<NamespaceDecl>(D);
4841}
4842
4843/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4844/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4845void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4846  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4847  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4848  Namespc->setRBraceLoc(RBrace);
4849  PopDeclContext();
4850  if (Namespc->hasAttr<VisibilityAttr>())
4851    PopPragmaVisibility();
4852}
4853
4854CXXRecordDecl *Sema::getStdBadAlloc() const {
4855  return cast_or_null<CXXRecordDecl>(
4856                                  StdBadAlloc.get(Context.getExternalSource()));
4857}
4858
4859NamespaceDecl *Sema::getStdNamespace() const {
4860  return cast_or_null<NamespaceDecl>(
4861                                 StdNamespace.get(Context.getExternalSource()));
4862}
4863
4864/// \brief Retrieve the special "std" namespace, which may require us to
4865/// implicitly define the namespace.
4866NamespaceDecl *Sema::getOrCreateStdNamespace() {
4867  if (!StdNamespace) {
4868    // The "std" namespace has not yet been defined, so build one implicitly.
4869    StdNamespace = NamespaceDecl::Create(Context,
4870                                         Context.getTranslationUnitDecl(),
4871                                         SourceLocation(), SourceLocation(),
4872                                         &PP.getIdentifierTable().get("std"));
4873    getStdNamespace()->setImplicit(true);
4874  }
4875
4876  return getStdNamespace();
4877}
4878
4879/// \brief Determine whether a using statement is in a context where it will be
4880/// apply in all contexts.
4881static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4882  switch (CurContext->getDeclKind()) {
4883    case Decl::TranslationUnit:
4884      return true;
4885    case Decl::LinkageSpec:
4886      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4887    default:
4888      return false;
4889  }
4890}
4891
4892static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
4893                                       CXXScopeSpec &SS,
4894                                       SourceLocation IdentLoc,
4895                                       IdentifierInfo *Ident) {
4896  R.clear();
4897  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
4898                                               R.getLookupKind(), Sc, &SS, NULL,
4899                                               false, S.CTC_NoKeywords, NULL)) {
4900    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
4901        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
4902      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
4903      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
4904      if (DeclContext *DC = S.computeDeclContext(SS, false))
4905        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
4906          << Ident << DC << CorrectedQuotedStr << SS.getRange()
4907          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4908      else
4909        S.Diag(IdentLoc, diag::err_using_directive_suggest)
4910          << Ident << CorrectedQuotedStr
4911          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4912
4913      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
4914           diag::note_namespace_defined_here) << CorrectedQuotedStr;
4915
4916      Ident = Corrected.getCorrectionAsIdentifierInfo();
4917      R.addDecl(Corrected.getCorrectionDecl());
4918      return true;
4919    }
4920    R.setLookupName(Ident);
4921  }
4922  return false;
4923}
4924
4925Decl *Sema::ActOnUsingDirective(Scope *S,
4926                                          SourceLocation UsingLoc,
4927                                          SourceLocation NamespcLoc,
4928                                          CXXScopeSpec &SS,
4929                                          SourceLocation IdentLoc,
4930                                          IdentifierInfo *NamespcName,
4931                                          AttributeList *AttrList) {
4932  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4933  assert(NamespcName && "Invalid NamespcName.");
4934  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4935
4936  // This can only happen along a recovery path.
4937  while (S->getFlags() & Scope::TemplateParamScope)
4938    S = S->getParent();
4939  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4940
4941  UsingDirectiveDecl *UDir = 0;
4942  NestedNameSpecifier *Qualifier = 0;
4943  if (SS.isSet())
4944    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4945
4946  // Lookup namespace name.
4947  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4948  LookupParsedName(R, S, &SS);
4949  if (R.isAmbiguous())
4950    return 0;
4951
4952  if (R.empty()) {
4953    R.clear();
4954    // Allow "using namespace std;" or "using namespace ::std;" even if
4955    // "std" hasn't been defined yet, for GCC compatibility.
4956    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4957        NamespcName->isStr("std")) {
4958      Diag(IdentLoc, diag::ext_using_undefined_std);
4959      R.addDecl(getOrCreateStdNamespace());
4960      R.resolveKind();
4961    }
4962    // Otherwise, attempt typo correction.
4963    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
4964  }
4965
4966  if (!R.empty()) {
4967    NamedDecl *Named = R.getFoundDecl();
4968    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4969        && "expected namespace decl");
4970    // C++ [namespace.udir]p1:
4971    //   A using-directive specifies that the names in the nominated
4972    //   namespace can be used in the scope in which the
4973    //   using-directive appears after the using-directive. During
4974    //   unqualified name lookup (3.4.1), the names appear as if they
4975    //   were declared in the nearest enclosing namespace which
4976    //   contains both the using-directive and the nominated
4977    //   namespace. [Note: in this context, "contains" means "contains
4978    //   directly or indirectly". ]
4979
4980    // Find enclosing context containing both using-directive and
4981    // nominated namespace.
4982    NamespaceDecl *NS = getNamespaceDecl(Named);
4983    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4984    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4985      CommonAncestor = CommonAncestor->getParent();
4986
4987    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4988                                      SS.getWithLocInContext(Context),
4989                                      IdentLoc, Named, CommonAncestor);
4990
4991    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4992        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
4993      Diag(IdentLoc, diag::warn_using_directive_in_header);
4994    }
4995
4996    PushUsingDirective(S, UDir);
4997  } else {
4998    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4999  }
5000
5001  // FIXME: We ignore attributes for now.
5002  return UDir;
5003}
5004
5005void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5006  // If scope has associated entity, then using directive is at namespace
5007  // or translation unit scope. We add UsingDirectiveDecls, into
5008  // it's lookup structure.
5009  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5010    Ctx->addDecl(UDir);
5011  else
5012    // Otherwise it is block-sope. using-directives will affect lookup
5013    // only to the end of scope.
5014    S->PushUsingDirective(UDir);
5015}
5016
5017
5018Decl *Sema::ActOnUsingDeclaration(Scope *S,
5019                                  AccessSpecifier AS,
5020                                  bool HasUsingKeyword,
5021                                  SourceLocation UsingLoc,
5022                                  CXXScopeSpec &SS,
5023                                  UnqualifiedId &Name,
5024                                  AttributeList *AttrList,
5025                                  bool IsTypeName,
5026                                  SourceLocation TypenameLoc) {
5027  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5028
5029  switch (Name.getKind()) {
5030  case UnqualifiedId::IK_ImplicitSelfParam:
5031  case UnqualifiedId::IK_Identifier:
5032  case UnqualifiedId::IK_OperatorFunctionId:
5033  case UnqualifiedId::IK_LiteralOperatorId:
5034  case UnqualifiedId::IK_ConversionFunctionId:
5035    break;
5036
5037  case UnqualifiedId::IK_ConstructorName:
5038  case UnqualifiedId::IK_ConstructorTemplateId:
5039    // C++0x inherited constructors.
5040    if (getLangOptions().CPlusPlus0x) break;
5041
5042    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5043      << SS.getRange();
5044    return 0;
5045
5046  case UnqualifiedId::IK_DestructorName:
5047    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5048      << SS.getRange();
5049    return 0;
5050
5051  case UnqualifiedId::IK_TemplateId:
5052    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5053      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5054    return 0;
5055  }
5056
5057  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5058  DeclarationName TargetName = TargetNameInfo.getName();
5059  if (!TargetName)
5060    return 0;
5061
5062  // Warn about using declarations.
5063  // TODO: store that the declaration was written without 'using' and
5064  // talk about access decls instead of using decls in the
5065  // diagnostics.
5066  if (!HasUsingKeyword) {
5067    UsingLoc = Name.getSourceRange().getBegin();
5068
5069    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5070      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5071  }
5072
5073  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5074      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5075    return 0;
5076
5077  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5078                                        TargetNameInfo, AttrList,
5079                                        /* IsInstantiation */ false,
5080                                        IsTypeName, TypenameLoc);
5081  if (UD)
5082    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5083
5084  return UD;
5085}
5086
5087/// \brief Determine whether a using declaration considers the given
5088/// declarations as "equivalent", e.g., if they are redeclarations of
5089/// the same entity or are both typedefs of the same type.
5090static bool
5091IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5092                         bool &SuppressRedeclaration) {
5093  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5094    SuppressRedeclaration = false;
5095    return true;
5096  }
5097
5098  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5099    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5100      SuppressRedeclaration = true;
5101      return Context.hasSameType(TD1->getUnderlyingType(),
5102                                 TD2->getUnderlyingType());
5103    }
5104
5105  return false;
5106}
5107
5108
5109/// Determines whether to create a using shadow decl for a particular
5110/// decl, given the set of decls existing prior to this using lookup.
5111bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5112                                const LookupResult &Previous) {
5113  // Diagnose finding a decl which is not from a base class of the
5114  // current class.  We do this now because there are cases where this
5115  // function will silently decide not to build a shadow decl, which
5116  // will pre-empt further diagnostics.
5117  //
5118  // We don't need to do this in C++0x because we do the check once on
5119  // the qualifier.
5120  //
5121  // FIXME: diagnose the following if we care enough:
5122  //   struct A { int foo; };
5123  //   struct B : A { using A::foo; };
5124  //   template <class T> struct C : A {};
5125  //   template <class T> struct D : C<T> { using B::foo; } // <---
5126  // This is invalid (during instantiation) in C++03 because B::foo
5127  // resolves to the using decl in B, which is not a base class of D<T>.
5128  // We can't diagnose it immediately because C<T> is an unknown
5129  // specialization.  The UsingShadowDecl in D<T> then points directly
5130  // to A::foo, which will look well-formed when we instantiate.
5131  // The right solution is to not collapse the shadow-decl chain.
5132  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5133    DeclContext *OrigDC = Orig->getDeclContext();
5134
5135    // Handle enums and anonymous structs.
5136    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5137    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5138    while (OrigRec->isAnonymousStructOrUnion())
5139      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5140
5141    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5142      if (OrigDC == CurContext) {
5143        Diag(Using->getLocation(),
5144             diag::err_using_decl_nested_name_specifier_is_current_class)
5145          << Using->getQualifierLoc().getSourceRange();
5146        Diag(Orig->getLocation(), diag::note_using_decl_target);
5147        return true;
5148      }
5149
5150      Diag(Using->getQualifierLoc().getBeginLoc(),
5151           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5152        << Using->getQualifier()
5153        << cast<CXXRecordDecl>(CurContext)
5154        << Using->getQualifierLoc().getSourceRange();
5155      Diag(Orig->getLocation(), diag::note_using_decl_target);
5156      return true;
5157    }
5158  }
5159
5160  if (Previous.empty()) return false;
5161
5162  NamedDecl *Target = Orig;
5163  if (isa<UsingShadowDecl>(Target))
5164    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5165
5166  // If the target happens to be one of the previous declarations, we
5167  // don't have a conflict.
5168  //
5169  // FIXME: but we might be increasing its access, in which case we
5170  // should redeclare it.
5171  NamedDecl *NonTag = 0, *Tag = 0;
5172  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5173         I != E; ++I) {
5174    NamedDecl *D = (*I)->getUnderlyingDecl();
5175    bool Result;
5176    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5177      return Result;
5178
5179    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5180  }
5181
5182  if (Target->isFunctionOrFunctionTemplate()) {
5183    FunctionDecl *FD;
5184    if (isa<FunctionTemplateDecl>(Target))
5185      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5186    else
5187      FD = cast<FunctionDecl>(Target);
5188
5189    NamedDecl *OldDecl = 0;
5190    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5191    case Ovl_Overload:
5192      return false;
5193
5194    case Ovl_NonFunction:
5195      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5196      break;
5197
5198    // We found a decl with the exact signature.
5199    case Ovl_Match:
5200      // If we're in a record, we want to hide the target, so we
5201      // return true (without a diagnostic) to tell the caller not to
5202      // build a shadow decl.
5203      if (CurContext->isRecord())
5204        return true;
5205
5206      // If we're not in a record, this is an error.
5207      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5208      break;
5209    }
5210
5211    Diag(Target->getLocation(), diag::note_using_decl_target);
5212    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5213    return true;
5214  }
5215
5216  // Target is not a function.
5217
5218  if (isa<TagDecl>(Target)) {
5219    // No conflict between a tag and a non-tag.
5220    if (!Tag) return false;
5221
5222    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5223    Diag(Target->getLocation(), diag::note_using_decl_target);
5224    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5225    return true;
5226  }
5227
5228  // No conflict between a tag and a non-tag.
5229  if (!NonTag) return false;
5230
5231  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5232  Diag(Target->getLocation(), diag::note_using_decl_target);
5233  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5234  return true;
5235}
5236
5237/// Builds a shadow declaration corresponding to a 'using' declaration.
5238UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5239                                            UsingDecl *UD,
5240                                            NamedDecl *Orig) {
5241
5242  // If we resolved to another shadow declaration, just coalesce them.
5243  NamedDecl *Target = Orig;
5244  if (isa<UsingShadowDecl>(Target)) {
5245    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5246    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5247  }
5248
5249  UsingShadowDecl *Shadow
5250    = UsingShadowDecl::Create(Context, CurContext,
5251                              UD->getLocation(), UD, Target);
5252  UD->addShadowDecl(Shadow);
5253
5254  Shadow->setAccess(UD->getAccess());
5255  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5256    Shadow->setInvalidDecl();
5257
5258  if (S)
5259    PushOnScopeChains(Shadow, S);
5260  else
5261    CurContext->addDecl(Shadow);
5262
5263
5264  return Shadow;
5265}
5266
5267/// Hides a using shadow declaration.  This is required by the current
5268/// using-decl implementation when a resolvable using declaration in a
5269/// class is followed by a declaration which would hide or override
5270/// one or more of the using decl's targets; for example:
5271///
5272///   struct Base { void foo(int); };
5273///   struct Derived : Base {
5274///     using Base::foo;
5275///     void foo(int);
5276///   };
5277///
5278/// The governing language is C++03 [namespace.udecl]p12:
5279///
5280///   When a using-declaration brings names from a base class into a
5281///   derived class scope, member functions in the derived class
5282///   override and/or hide member functions with the same name and
5283///   parameter types in a base class (rather than conflicting).
5284///
5285/// There are two ways to implement this:
5286///   (1) optimistically create shadow decls when they're not hidden
5287///       by existing declarations, or
5288///   (2) don't create any shadow decls (or at least don't make them
5289///       visible) until we've fully parsed/instantiated the class.
5290/// The problem with (1) is that we might have to retroactively remove
5291/// a shadow decl, which requires several O(n) operations because the
5292/// decl structures are (very reasonably) not designed for removal.
5293/// (2) avoids this but is very fiddly and phase-dependent.
5294void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5295  if (Shadow->getDeclName().getNameKind() ==
5296        DeclarationName::CXXConversionFunctionName)
5297    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5298
5299  // Remove it from the DeclContext...
5300  Shadow->getDeclContext()->removeDecl(Shadow);
5301
5302  // ...and the scope, if applicable...
5303  if (S) {
5304    S->RemoveDecl(Shadow);
5305    IdResolver.RemoveDecl(Shadow);
5306  }
5307
5308  // ...and the using decl.
5309  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5310
5311  // TODO: complain somehow if Shadow was used.  It shouldn't
5312  // be possible for this to happen, because...?
5313}
5314
5315/// Builds a using declaration.
5316///
5317/// \param IsInstantiation - Whether this call arises from an
5318///   instantiation of an unresolved using declaration.  We treat
5319///   the lookup differently for these declarations.
5320NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5321                                       SourceLocation UsingLoc,
5322                                       CXXScopeSpec &SS,
5323                                       const DeclarationNameInfo &NameInfo,
5324                                       AttributeList *AttrList,
5325                                       bool IsInstantiation,
5326                                       bool IsTypeName,
5327                                       SourceLocation TypenameLoc) {
5328  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5329  SourceLocation IdentLoc = NameInfo.getLoc();
5330  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5331
5332  // FIXME: We ignore attributes for now.
5333
5334  if (SS.isEmpty()) {
5335    Diag(IdentLoc, diag::err_using_requires_qualname);
5336    return 0;
5337  }
5338
5339  // Do the redeclaration lookup in the current scope.
5340  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5341                        ForRedeclaration);
5342  Previous.setHideTags(false);
5343  if (S) {
5344    LookupName(Previous, S);
5345
5346    // It is really dumb that we have to do this.
5347    LookupResult::Filter F = Previous.makeFilter();
5348    while (F.hasNext()) {
5349      NamedDecl *D = F.next();
5350      if (!isDeclInScope(D, CurContext, S))
5351        F.erase();
5352    }
5353    F.done();
5354  } else {
5355    assert(IsInstantiation && "no scope in non-instantiation");
5356    assert(CurContext->isRecord() && "scope not record in instantiation");
5357    LookupQualifiedName(Previous, CurContext);
5358  }
5359
5360  // Check for invalid redeclarations.
5361  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5362    return 0;
5363
5364  // Check for bad qualifiers.
5365  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5366    return 0;
5367
5368  DeclContext *LookupContext = computeDeclContext(SS);
5369  NamedDecl *D;
5370  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5371  if (!LookupContext) {
5372    if (IsTypeName) {
5373      // FIXME: not all declaration name kinds are legal here
5374      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5375                                              UsingLoc, TypenameLoc,
5376                                              QualifierLoc,
5377                                              IdentLoc, NameInfo.getName());
5378    } else {
5379      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5380                                           QualifierLoc, NameInfo);
5381    }
5382  } else {
5383    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5384                          NameInfo, IsTypeName);
5385  }
5386  D->setAccess(AS);
5387  CurContext->addDecl(D);
5388
5389  if (!LookupContext) return D;
5390  UsingDecl *UD = cast<UsingDecl>(D);
5391
5392  if (RequireCompleteDeclContext(SS, LookupContext)) {
5393    UD->setInvalidDecl();
5394    return UD;
5395  }
5396
5397  // Constructor inheriting using decls get special treatment.
5398  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5399    if (CheckInheritedConstructorUsingDecl(UD))
5400      UD->setInvalidDecl();
5401    return UD;
5402  }
5403
5404  // Otherwise, look up the target name.
5405
5406  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5407  R.setUsingDeclaration(true);
5408
5409  // Unlike most lookups, we don't always want to hide tag
5410  // declarations: tag names are visible through the using declaration
5411  // even if hidden by ordinary names, *except* in a dependent context
5412  // where it's important for the sanity of two-phase lookup.
5413  if (!IsInstantiation)
5414    R.setHideTags(false);
5415
5416  LookupQualifiedName(R, LookupContext);
5417
5418  if (R.empty()) {
5419    Diag(IdentLoc, diag::err_no_member)
5420      << NameInfo.getName() << LookupContext << SS.getRange();
5421    UD->setInvalidDecl();
5422    return UD;
5423  }
5424
5425  if (R.isAmbiguous()) {
5426    UD->setInvalidDecl();
5427    return UD;
5428  }
5429
5430  if (IsTypeName) {
5431    // If we asked for a typename and got a non-type decl, error out.
5432    if (!R.getAsSingle<TypeDecl>()) {
5433      Diag(IdentLoc, diag::err_using_typename_non_type);
5434      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5435        Diag((*I)->getUnderlyingDecl()->getLocation(),
5436             diag::note_using_decl_target);
5437      UD->setInvalidDecl();
5438      return UD;
5439    }
5440  } else {
5441    // If we asked for a non-typename and we got a type, error out,
5442    // but only if this is an instantiation of an unresolved using
5443    // decl.  Otherwise just silently find the type name.
5444    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5445      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5446      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5447      UD->setInvalidDecl();
5448      return UD;
5449    }
5450  }
5451
5452  // C++0x N2914 [namespace.udecl]p6:
5453  // A using-declaration shall not name a namespace.
5454  if (R.getAsSingle<NamespaceDecl>()) {
5455    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5456      << SS.getRange();
5457    UD->setInvalidDecl();
5458    return UD;
5459  }
5460
5461  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5462    if (!CheckUsingShadowDecl(UD, *I, Previous))
5463      BuildUsingShadowDecl(S, UD, *I);
5464  }
5465
5466  return UD;
5467}
5468
5469/// Additional checks for a using declaration referring to a constructor name.
5470bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5471  if (UD->isTypeName()) {
5472    // FIXME: Cannot specify typename when specifying constructor
5473    return true;
5474  }
5475
5476  const Type *SourceType = UD->getQualifier()->getAsType();
5477  assert(SourceType &&
5478         "Using decl naming constructor doesn't have type in scope spec.");
5479  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5480
5481  // Check whether the named type is a direct base class.
5482  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5483  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5484  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5485       BaseIt != BaseE; ++BaseIt) {
5486    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5487    if (CanonicalSourceType == BaseType)
5488      break;
5489  }
5490
5491  if (BaseIt == BaseE) {
5492    // Did not find SourceType in the bases.
5493    Diag(UD->getUsingLocation(),
5494         diag::err_using_decl_constructor_not_in_direct_base)
5495      << UD->getNameInfo().getSourceRange()
5496      << QualType(SourceType, 0) << TargetClass;
5497    return true;
5498  }
5499
5500  BaseIt->setInheritConstructors();
5501
5502  return false;
5503}
5504
5505/// Checks that the given using declaration is not an invalid
5506/// redeclaration.  Note that this is checking only for the using decl
5507/// itself, not for any ill-formedness among the UsingShadowDecls.
5508bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5509                                       bool isTypeName,
5510                                       const CXXScopeSpec &SS,
5511                                       SourceLocation NameLoc,
5512                                       const LookupResult &Prev) {
5513  // C++03 [namespace.udecl]p8:
5514  // C++0x [namespace.udecl]p10:
5515  //   A using-declaration is a declaration and can therefore be used
5516  //   repeatedly where (and only where) multiple declarations are
5517  //   allowed.
5518  //
5519  // That's in non-member contexts.
5520  if (!CurContext->getRedeclContext()->isRecord())
5521    return false;
5522
5523  NestedNameSpecifier *Qual
5524    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5525
5526  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5527    NamedDecl *D = *I;
5528
5529    bool DTypename;
5530    NestedNameSpecifier *DQual;
5531    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5532      DTypename = UD->isTypeName();
5533      DQual = UD->getQualifier();
5534    } else if (UnresolvedUsingValueDecl *UD
5535                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5536      DTypename = false;
5537      DQual = UD->getQualifier();
5538    } else if (UnresolvedUsingTypenameDecl *UD
5539                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5540      DTypename = true;
5541      DQual = UD->getQualifier();
5542    } else continue;
5543
5544    // using decls differ if one says 'typename' and the other doesn't.
5545    // FIXME: non-dependent using decls?
5546    if (isTypeName != DTypename) continue;
5547
5548    // using decls differ if they name different scopes (but note that
5549    // template instantiation can cause this check to trigger when it
5550    // didn't before instantiation).
5551    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5552        Context.getCanonicalNestedNameSpecifier(DQual))
5553      continue;
5554
5555    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5556    Diag(D->getLocation(), diag::note_using_decl) << 1;
5557    return true;
5558  }
5559
5560  return false;
5561}
5562
5563
5564/// Checks that the given nested-name qualifier used in a using decl
5565/// in the current context is appropriately related to the current
5566/// scope.  If an error is found, diagnoses it and returns true.
5567bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5568                                   const CXXScopeSpec &SS,
5569                                   SourceLocation NameLoc) {
5570  DeclContext *NamedContext = computeDeclContext(SS);
5571
5572  if (!CurContext->isRecord()) {
5573    // C++03 [namespace.udecl]p3:
5574    // C++0x [namespace.udecl]p8:
5575    //   A using-declaration for a class member shall be a member-declaration.
5576
5577    // If we weren't able to compute a valid scope, it must be a
5578    // dependent class scope.
5579    if (!NamedContext || NamedContext->isRecord()) {
5580      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5581        << SS.getRange();
5582      return true;
5583    }
5584
5585    // Otherwise, everything is known to be fine.
5586    return false;
5587  }
5588
5589  // The current scope is a record.
5590
5591  // If the named context is dependent, we can't decide much.
5592  if (!NamedContext) {
5593    // FIXME: in C++0x, we can diagnose if we can prove that the
5594    // nested-name-specifier does not refer to a base class, which is
5595    // still possible in some cases.
5596
5597    // Otherwise we have to conservatively report that things might be
5598    // okay.
5599    return false;
5600  }
5601
5602  if (!NamedContext->isRecord()) {
5603    // Ideally this would point at the last name in the specifier,
5604    // but we don't have that level of source info.
5605    Diag(SS.getRange().getBegin(),
5606         diag::err_using_decl_nested_name_specifier_is_not_class)
5607      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5608    return true;
5609  }
5610
5611  if (!NamedContext->isDependentContext() &&
5612      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5613    return true;
5614
5615  if (getLangOptions().CPlusPlus0x) {
5616    // C++0x [namespace.udecl]p3:
5617    //   In a using-declaration used as a member-declaration, the
5618    //   nested-name-specifier shall name a base class of the class
5619    //   being defined.
5620
5621    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5622                                 cast<CXXRecordDecl>(NamedContext))) {
5623      if (CurContext == NamedContext) {
5624        Diag(NameLoc,
5625             diag::err_using_decl_nested_name_specifier_is_current_class)
5626          << SS.getRange();
5627        return true;
5628      }
5629
5630      Diag(SS.getRange().getBegin(),
5631           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5632        << (NestedNameSpecifier*) SS.getScopeRep()
5633        << cast<CXXRecordDecl>(CurContext)
5634        << SS.getRange();
5635      return true;
5636    }
5637
5638    return false;
5639  }
5640
5641  // C++03 [namespace.udecl]p4:
5642  //   A using-declaration used as a member-declaration shall refer
5643  //   to a member of a base class of the class being defined [etc.].
5644
5645  // Salient point: SS doesn't have to name a base class as long as
5646  // lookup only finds members from base classes.  Therefore we can
5647  // diagnose here only if we can prove that that can't happen,
5648  // i.e. if the class hierarchies provably don't intersect.
5649
5650  // TODO: it would be nice if "definitely valid" results were cached
5651  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5652  // need to be repeated.
5653
5654  struct UserData {
5655    llvm::DenseSet<const CXXRecordDecl*> Bases;
5656
5657    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5658      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5659      Data->Bases.insert(Base);
5660      return true;
5661    }
5662
5663    bool hasDependentBases(const CXXRecordDecl *Class) {
5664      return !Class->forallBases(collect, this);
5665    }
5666
5667    /// Returns true if the base is dependent or is one of the
5668    /// accumulated base classes.
5669    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5670      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5671      return !Data->Bases.count(Base);
5672    }
5673
5674    bool mightShareBases(const CXXRecordDecl *Class) {
5675      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5676    }
5677  };
5678
5679  UserData Data;
5680
5681  // Returns false if we find a dependent base.
5682  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5683    return false;
5684
5685  // Returns false if the class has a dependent base or if it or one
5686  // of its bases is present in the base set of the current context.
5687  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5688    return false;
5689
5690  Diag(SS.getRange().getBegin(),
5691       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5692    << (NestedNameSpecifier*) SS.getScopeRep()
5693    << cast<CXXRecordDecl>(CurContext)
5694    << SS.getRange();
5695
5696  return true;
5697}
5698
5699Decl *Sema::ActOnAliasDeclaration(Scope *S,
5700                                  AccessSpecifier AS,
5701                                  MultiTemplateParamsArg TemplateParamLists,
5702                                  SourceLocation UsingLoc,
5703                                  UnqualifiedId &Name,
5704                                  TypeResult Type) {
5705  // Skip up to the relevant declaration scope.
5706  while (S->getFlags() & Scope::TemplateParamScope)
5707    S = S->getParent();
5708  assert((S->getFlags() & Scope::DeclScope) &&
5709         "got alias-declaration outside of declaration scope");
5710
5711  if (Type.isInvalid())
5712    return 0;
5713
5714  bool Invalid = false;
5715  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5716  TypeSourceInfo *TInfo = 0;
5717  GetTypeFromParser(Type.get(), &TInfo);
5718
5719  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5720    return 0;
5721
5722  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5723                                      UPPC_DeclarationType)) {
5724    Invalid = true;
5725    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5726                                             TInfo->getTypeLoc().getBeginLoc());
5727  }
5728
5729  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5730  LookupName(Previous, S);
5731
5732  // Warn about shadowing the name of a template parameter.
5733  if (Previous.isSingleResult() &&
5734      Previous.getFoundDecl()->isTemplateParameter()) {
5735    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5736                                        Previous.getFoundDecl()))
5737      Invalid = true;
5738    Previous.clear();
5739  }
5740
5741  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5742         "name in alias declaration must be an identifier");
5743  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5744                                               Name.StartLocation,
5745                                               Name.Identifier, TInfo);
5746
5747  NewTD->setAccess(AS);
5748
5749  if (Invalid)
5750    NewTD->setInvalidDecl();
5751
5752  CheckTypedefForVariablyModifiedType(S, NewTD);
5753  Invalid |= NewTD->isInvalidDecl();
5754
5755  bool Redeclaration = false;
5756
5757  NamedDecl *NewND;
5758  if (TemplateParamLists.size()) {
5759    TypeAliasTemplateDecl *OldDecl = 0;
5760    TemplateParameterList *OldTemplateParams = 0;
5761
5762    if (TemplateParamLists.size() != 1) {
5763      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5764        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5765         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5766    }
5767    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5768
5769    // Only consider previous declarations in the same scope.
5770    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5771                         /*ExplicitInstantiationOrSpecialization*/false);
5772    if (!Previous.empty()) {
5773      Redeclaration = true;
5774
5775      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5776      if (!OldDecl && !Invalid) {
5777        Diag(UsingLoc, diag::err_redefinition_different_kind)
5778          << Name.Identifier;
5779
5780        NamedDecl *OldD = Previous.getRepresentativeDecl();
5781        if (OldD->getLocation().isValid())
5782          Diag(OldD->getLocation(), diag::note_previous_definition);
5783
5784        Invalid = true;
5785      }
5786
5787      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5788        if (TemplateParameterListsAreEqual(TemplateParams,
5789                                           OldDecl->getTemplateParameters(),
5790                                           /*Complain=*/true,
5791                                           TPL_TemplateMatch))
5792          OldTemplateParams = OldDecl->getTemplateParameters();
5793        else
5794          Invalid = true;
5795
5796        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5797        if (!Invalid &&
5798            !Context.hasSameType(OldTD->getUnderlyingType(),
5799                                 NewTD->getUnderlyingType())) {
5800          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5801          // but we can't reasonably accept it.
5802          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5803            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5804          if (OldTD->getLocation().isValid())
5805            Diag(OldTD->getLocation(), diag::note_previous_definition);
5806          Invalid = true;
5807        }
5808      }
5809    }
5810
5811    // Merge any previous default template arguments into our parameters,
5812    // and check the parameter list.
5813    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5814                                   TPC_TypeAliasTemplate))
5815      return 0;
5816
5817    TypeAliasTemplateDecl *NewDecl =
5818      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5819                                    Name.Identifier, TemplateParams,
5820                                    NewTD);
5821
5822    NewDecl->setAccess(AS);
5823
5824    if (Invalid)
5825      NewDecl->setInvalidDecl();
5826    else if (OldDecl)
5827      NewDecl->setPreviousDeclaration(OldDecl);
5828
5829    NewND = NewDecl;
5830  } else {
5831    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5832    NewND = NewTD;
5833  }
5834
5835  if (!Redeclaration)
5836    PushOnScopeChains(NewND, S);
5837
5838  return NewND;
5839}
5840
5841Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5842                                             SourceLocation NamespaceLoc,
5843                                             SourceLocation AliasLoc,
5844                                             IdentifierInfo *Alias,
5845                                             CXXScopeSpec &SS,
5846                                             SourceLocation IdentLoc,
5847                                             IdentifierInfo *Ident) {
5848
5849  // Lookup the namespace name.
5850  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5851  LookupParsedName(R, S, &SS);
5852
5853  // Check if we have a previous declaration with the same name.
5854  NamedDecl *PrevDecl
5855    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5856                       ForRedeclaration);
5857  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5858    PrevDecl = 0;
5859
5860  if (PrevDecl) {
5861    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5862      // We already have an alias with the same name that points to the same
5863      // namespace, so don't create a new one.
5864      // FIXME: At some point, we'll want to create the (redundant)
5865      // declaration to maintain better source information.
5866      if (!R.isAmbiguous() && !R.empty() &&
5867          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5868        return 0;
5869    }
5870
5871    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5872      diag::err_redefinition_different_kind;
5873    Diag(AliasLoc, DiagID) << Alias;
5874    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5875    return 0;
5876  }
5877
5878  if (R.isAmbiguous())
5879    return 0;
5880
5881  if (R.empty()) {
5882    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
5883      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5884      return 0;
5885    }
5886  }
5887
5888  NamespaceAliasDecl *AliasDecl =
5889    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5890                               Alias, SS.getWithLocInContext(Context),
5891                               IdentLoc, R.getFoundDecl());
5892
5893  PushOnScopeChains(AliasDecl, S);
5894  return AliasDecl;
5895}
5896
5897namespace {
5898  /// \brief Scoped object used to handle the state changes required in Sema
5899  /// to implicitly define the body of a C++ member function;
5900  class ImplicitlyDefinedFunctionScope {
5901    Sema &S;
5902    Sema::ContextRAII SavedContext;
5903
5904  public:
5905    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5906      : S(S), SavedContext(S, Method)
5907    {
5908      S.PushFunctionScope();
5909      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5910    }
5911
5912    ~ImplicitlyDefinedFunctionScope() {
5913      S.PopExpressionEvaluationContext();
5914      S.PopFunctionOrBlockScope();
5915    }
5916  };
5917}
5918
5919Sema::ImplicitExceptionSpecification
5920Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5921  // C++ [except.spec]p14:
5922  //   An implicitly declared special member function (Clause 12) shall have an
5923  //   exception-specification. [...]
5924  ImplicitExceptionSpecification ExceptSpec(Context);
5925  if (ClassDecl->isInvalidDecl())
5926    return ExceptSpec;
5927
5928  // Direct base-class constructors.
5929  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5930                                       BEnd = ClassDecl->bases_end();
5931       B != BEnd; ++B) {
5932    if (B->isVirtual()) // Handled below.
5933      continue;
5934
5935    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5936      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5937      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5938      // If this is a deleted function, add it anyway. This might be conformant
5939      // with the standard. This might not. I'm not sure. It might not matter.
5940      if (Constructor)
5941        ExceptSpec.CalledDecl(Constructor);
5942    }
5943  }
5944
5945  // Virtual base-class constructors.
5946  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5947                                       BEnd = ClassDecl->vbases_end();
5948       B != BEnd; ++B) {
5949    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5950      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5951      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5952      // If this is a deleted function, add it anyway. This might be conformant
5953      // with the standard. This might not. I'm not sure. It might not matter.
5954      if (Constructor)
5955        ExceptSpec.CalledDecl(Constructor);
5956    }
5957  }
5958
5959  // Field constructors.
5960  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5961                               FEnd = ClassDecl->field_end();
5962       F != FEnd; ++F) {
5963    if (F->hasInClassInitializer()) {
5964      if (Expr *E = F->getInClassInitializer())
5965        ExceptSpec.CalledExpr(E);
5966      else if (!F->isInvalidDecl())
5967        ExceptSpec.SetDelayed();
5968    } else if (const RecordType *RecordTy
5969              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5970      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5971      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5972      // If this is a deleted function, add it anyway. This might be conformant
5973      // with the standard. This might not. I'm not sure. It might not matter.
5974      // In particular, the problem is that this function never gets called. It
5975      // might just be ill-formed because this function attempts to refer to
5976      // a deleted function here.
5977      if (Constructor)
5978        ExceptSpec.CalledDecl(Constructor);
5979    }
5980  }
5981
5982  return ExceptSpec;
5983}
5984
5985CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5986                                                     CXXRecordDecl *ClassDecl) {
5987  // C++ [class.ctor]p5:
5988  //   A default constructor for a class X is a constructor of class X
5989  //   that can be called without an argument. If there is no
5990  //   user-declared constructor for class X, a default constructor is
5991  //   implicitly declared. An implicitly-declared default constructor
5992  //   is an inline public member of its class.
5993  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5994         "Should not build implicit default constructor!");
5995
5996  ImplicitExceptionSpecification Spec =
5997    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5998  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5999
6000  // Create the actual constructor declaration.
6001  CanQualType ClassType
6002    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6003  SourceLocation ClassLoc = ClassDecl->getLocation();
6004  DeclarationName Name
6005    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6006  DeclarationNameInfo NameInfo(Name, ClassLoc);
6007  CXXConstructorDecl *DefaultCon
6008    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6009                                 Context.getFunctionType(Context.VoidTy,
6010                                                         0, 0, EPI),
6011                                 /*TInfo=*/0,
6012                                 /*isExplicit=*/false,
6013                                 /*isInline=*/true,
6014                                 /*isImplicitlyDeclared=*/true);
6015  DefaultCon->setAccess(AS_public);
6016  DefaultCon->setDefaulted();
6017  DefaultCon->setImplicit();
6018  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6019
6020  // Note that we have declared this constructor.
6021  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6022
6023  if (Scope *S = getScopeForContext(ClassDecl))
6024    PushOnScopeChains(DefaultCon, S, false);
6025  ClassDecl->addDecl(DefaultCon);
6026
6027  if (ShouldDeleteDefaultConstructor(DefaultCon))
6028    DefaultCon->setDeletedAsWritten();
6029
6030  return DefaultCon;
6031}
6032
6033void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6034                                            CXXConstructorDecl *Constructor) {
6035  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6036          !Constructor->doesThisDeclarationHaveABody() &&
6037          !Constructor->isDeleted()) &&
6038    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6039
6040  CXXRecordDecl *ClassDecl = Constructor->getParent();
6041  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6042
6043  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6044  DiagnosticErrorTrap Trap(Diags);
6045  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6046      Trap.hasErrorOccurred()) {
6047    Diag(CurrentLocation, diag::note_member_synthesized_at)
6048      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6049    Constructor->setInvalidDecl();
6050    return;
6051  }
6052
6053  SourceLocation Loc = Constructor->getLocation();
6054  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6055
6056  Constructor->setUsed();
6057  MarkVTableUsed(CurrentLocation, ClassDecl);
6058
6059  if (ASTMutationListener *L = getASTMutationListener()) {
6060    L->CompletedImplicitDefinition(Constructor);
6061  }
6062}
6063
6064/// Get any existing defaulted default constructor for the given class. Do not
6065/// implicitly define one if it does not exist.
6066static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6067                                                             CXXRecordDecl *D) {
6068  ASTContext &Context = Self.Context;
6069  QualType ClassType = Context.getTypeDeclType(D);
6070  DeclarationName ConstructorName
6071    = Context.DeclarationNames.getCXXConstructorName(
6072                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6073
6074  DeclContext::lookup_const_iterator Con, ConEnd;
6075  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6076       Con != ConEnd; ++Con) {
6077    // A function template cannot be defaulted.
6078    if (isa<FunctionTemplateDecl>(*Con))
6079      continue;
6080
6081    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6082    if (Constructor->isDefaultConstructor())
6083      return Constructor->isDefaulted() ? Constructor : 0;
6084  }
6085  return 0;
6086}
6087
6088void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6089  if (!D) return;
6090  AdjustDeclIfTemplate(D);
6091
6092  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6093  CXXConstructorDecl *CtorDecl
6094    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6095
6096  if (!CtorDecl) return;
6097
6098  // Compute the exception specification for the default constructor.
6099  const FunctionProtoType *CtorTy =
6100    CtorDecl->getType()->castAs<FunctionProtoType>();
6101  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6102    ImplicitExceptionSpecification Spec =
6103      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6104    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6105    assert(EPI.ExceptionSpecType != EST_Delayed);
6106
6107    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6108  }
6109
6110  // If the default constructor is explicitly defaulted, checking the exception
6111  // specification is deferred until now.
6112  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6113      !ClassDecl->isDependentType())
6114    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6115}
6116
6117void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6118  // We start with an initial pass over the base classes to collect those that
6119  // inherit constructors from. If there are none, we can forgo all further
6120  // processing.
6121  typedef SmallVector<const RecordType *, 4> BasesVector;
6122  BasesVector BasesToInheritFrom;
6123  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6124                                          BaseE = ClassDecl->bases_end();
6125         BaseIt != BaseE; ++BaseIt) {
6126    if (BaseIt->getInheritConstructors()) {
6127      QualType Base = BaseIt->getType();
6128      if (Base->isDependentType()) {
6129        // If we inherit constructors from anything that is dependent, just
6130        // abort processing altogether. We'll get another chance for the
6131        // instantiations.
6132        return;
6133      }
6134      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6135    }
6136  }
6137  if (BasesToInheritFrom.empty())
6138    return;
6139
6140  // Now collect the constructors that we already have in the current class.
6141  // Those take precedence over inherited constructors.
6142  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6143  //   unless there is a user-declared constructor with the same signature in
6144  //   the class where the using-declaration appears.
6145  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6146  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6147                                    CtorE = ClassDecl->ctor_end();
6148       CtorIt != CtorE; ++CtorIt) {
6149    ExistingConstructors.insert(
6150        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6151  }
6152
6153  Scope *S = getScopeForContext(ClassDecl);
6154  DeclarationName CreatedCtorName =
6155      Context.DeclarationNames.getCXXConstructorName(
6156          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6157
6158  // Now comes the true work.
6159  // First, we keep a map from constructor types to the base that introduced
6160  // them. Needed for finding conflicting constructors. We also keep the
6161  // actually inserted declarations in there, for pretty diagnostics.
6162  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6163  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6164  ConstructorToSourceMap InheritedConstructors;
6165  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6166                             BaseE = BasesToInheritFrom.end();
6167       BaseIt != BaseE; ++BaseIt) {
6168    const RecordType *Base = *BaseIt;
6169    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6170    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6171    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6172                                      CtorE = BaseDecl->ctor_end();
6173         CtorIt != CtorE; ++CtorIt) {
6174      // Find the using declaration for inheriting this base's constructors.
6175      DeclarationName Name =
6176          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6177      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6178          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6179      SourceLocation UsingLoc = UD ? UD->getLocation() :
6180                                     ClassDecl->getLocation();
6181
6182      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6183      //   from the class X named in the using-declaration consists of actual
6184      //   constructors and notional constructors that result from the
6185      //   transformation of defaulted parameters as follows:
6186      //   - all non-template default constructors of X, and
6187      //   - for each non-template constructor of X that has at least one
6188      //     parameter with a default argument, the set of constructors that
6189      //     results from omitting any ellipsis parameter specification and
6190      //     successively omitting parameters with a default argument from the
6191      //     end of the parameter-type-list.
6192      CXXConstructorDecl *BaseCtor = *CtorIt;
6193      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6194      const FunctionProtoType *BaseCtorType =
6195          BaseCtor->getType()->getAs<FunctionProtoType>();
6196
6197      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6198                    maxParams = BaseCtor->getNumParams();
6199           params <= maxParams; ++params) {
6200        // Skip default constructors. They're never inherited.
6201        if (params == 0)
6202          continue;
6203        // Skip copy and move constructors for the same reason.
6204        if (CanBeCopyOrMove && params == 1)
6205          continue;
6206
6207        // Build up a function type for this particular constructor.
6208        // FIXME: The working paper does not consider that the exception spec
6209        // for the inheriting constructor might be larger than that of the
6210        // source. This code doesn't yet, either. When it does, this code will
6211        // need to be delayed until after exception specifications and in-class
6212        // member initializers are attached.
6213        const Type *NewCtorType;
6214        if (params == maxParams)
6215          NewCtorType = BaseCtorType;
6216        else {
6217          SmallVector<QualType, 16> Args;
6218          for (unsigned i = 0; i < params; ++i) {
6219            Args.push_back(BaseCtorType->getArgType(i));
6220          }
6221          FunctionProtoType::ExtProtoInfo ExtInfo =
6222              BaseCtorType->getExtProtoInfo();
6223          ExtInfo.Variadic = false;
6224          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6225                                                Args.data(), params, ExtInfo)
6226                       .getTypePtr();
6227        }
6228        const Type *CanonicalNewCtorType =
6229            Context.getCanonicalType(NewCtorType);
6230
6231        // Now that we have the type, first check if the class already has a
6232        // constructor with this signature.
6233        if (ExistingConstructors.count(CanonicalNewCtorType))
6234          continue;
6235
6236        // Then we check if we have already declared an inherited constructor
6237        // with this signature.
6238        std::pair<ConstructorToSourceMap::iterator, bool> result =
6239            InheritedConstructors.insert(std::make_pair(
6240                CanonicalNewCtorType,
6241                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6242        if (!result.second) {
6243          // Already in the map. If it came from a different class, that's an
6244          // error. Not if it's from the same.
6245          CanQualType PreviousBase = result.first->second.first;
6246          if (CanonicalBase != PreviousBase) {
6247            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6248            const CXXConstructorDecl *PrevBaseCtor =
6249                PrevCtor->getInheritedConstructor();
6250            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6251
6252            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6253            Diag(BaseCtor->getLocation(),
6254                 diag::note_using_decl_constructor_conflict_current_ctor);
6255            Diag(PrevBaseCtor->getLocation(),
6256                 diag::note_using_decl_constructor_conflict_previous_ctor);
6257            Diag(PrevCtor->getLocation(),
6258                 diag::note_using_decl_constructor_conflict_previous_using);
6259          }
6260          continue;
6261        }
6262
6263        // OK, we're there, now add the constructor.
6264        // C++0x [class.inhctor]p8: [...] that would be performed by a
6265        //   user-writtern inline constructor [...]
6266        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6267        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6268            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6269            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6270            /*ImplicitlyDeclared=*/true);
6271        NewCtor->setAccess(BaseCtor->getAccess());
6272
6273        // Build up the parameter decls and add them.
6274        SmallVector<ParmVarDecl *, 16> ParamDecls;
6275        for (unsigned i = 0; i < params; ++i) {
6276          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6277                                                   UsingLoc, UsingLoc,
6278                                                   /*IdentifierInfo=*/0,
6279                                                   BaseCtorType->getArgType(i),
6280                                                   /*TInfo=*/0, SC_None,
6281                                                   SC_None, /*DefaultArg=*/0));
6282        }
6283        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6284        NewCtor->setInheritedConstructor(BaseCtor);
6285
6286        PushOnScopeChains(NewCtor, S, false);
6287        ClassDecl->addDecl(NewCtor);
6288        result.first->second.second = NewCtor;
6289      }
6290    }
6291  }
6292}
6293
6294Sema::ImplicitExceptionSpecification
6295Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6296  // C++ [except.spec]p14:
6297  //   An implicitly declared special member function (Clause 12) shall have
6298  //   an exception-specification.
6299  ImplicitExceptionSpecification ExceptSpec(Context);
6300  if (ClassDecl->isInvalidDecl())
6301    return ExceptSpec;
6302
6303  // Direct base-class destructors.
6304  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6305                                       BEnd = ClassDecl->bases_end();
6306       B != BEnd; ++B) {
6307    if (B->isVirtual()) // Handled below.
6308      continue;
6309
6310    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6311      ExceptSpec.CalledDecl(
6312                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6313  }
6314
6315  // Virtual base-class destructors.
6316  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6317                                       BEnd = ClassDecl->vbases_end();
6318       B != BEnd; ++B) {
6319    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6320      ExceptSpec.CalledDecl(
6321                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6322  }
6323
6324  // Field destructors.
6325  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6326                               FEnd = ClassDecl->field_end();
6327       F != FEnd; ++F) {
6328    if (const RecordType *RecordTy
6329        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6330      ExceptSpec.CalledDecl(
6331                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6332  }
6333
6334  return ExceptSpec;
6335}
6336
6337CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6338  // C++ [class.dtor]p2:
6339  //   If a class has no user-declared destructor, a destructor is
6340  //   declared implicitly. An implicitly-declared destructor is an
6341  //   inline public member of its class.
6342
6343  ImplicitExceptionSpecification Spec =
6344      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6345  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6346
6347  // Create the actual destructor declaration.
6348  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6349
6350  CanQualType ClassType
6351    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6352  SourceLocation ClassLoc = ClassDecl->getLocation();
6353  DeclarationName Name
6354    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6355  DeclarationNameInfo NameInfo(Name, ClassLoc);
6356  CXXDestructorDecl *Destructor
6357      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6358                                  /*isInline=*/true,
6359                                  /*isImplicitlyDeclared=*/true);
6360  Destructor->setAccess(AS_public);
6361  Destructor->setDefaulted();
6362  Destructor->setImplicit();
6363  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6364
6365  // Note that we have declared this destructor.
6366  ++ASTContext::NumImplicitDestructorsDeclared;
6367
6368  // Introduce this destructor into its scope.
6369  if (Scope *S = getScopeForContext(ClassDecl))
6370    PushOnScopeChains(Destructor, S, false);
6371  ClassDecl->addDecl(Destructor);
6372
6373  // This could be uniqued if it ever proves significant.
6374  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6375
6376  if (ShouldDeleteDestructor(Destructor))
6377    Destructor->setDeletedAsWritten();
6378
6379  AddOverriddenMethods(ClassDecl, Destructor);
6380
6381  return Destructor;
6382}
6383
6384void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6385                                    CXXDestructorDecl *Destructor) {
6386  assert((Destructor->isDefaulted() &&
6387          !Destructor->doesThisDeclarationHaveABody()) &&
6388         "DefineImplicitDestructor - call it for implicit default dtor");
6389  CXXRecordDecl *ClassDecl = Destructor->getParent();
6390  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6391
6392  if (Destructor->isInvalidDecl())
6393    return;
6394
6395  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6396
6397  DiagnosticErrorTrap Trap(Diags);
6398  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6399                                         Destructor->getParent());
6400
6401  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6402    Diag(CurrentLocation, diag::note_member_synthesized_at)
6403      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6404
6405    Destructor->setInvalidDecl();
6406    return;
6407  }
6408
6409  SourceLocation Loc = Destructor->getLocation();
6410  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6411
6412  Destructor->setUsed();
6413  MarkVTableUsed(CurrentLocation, ClassDecl);
6414
6415  if (ASTMutationListener *L = getASTMutationListener()) {
6416    L->CompletedImplicitDefinition(Destructor);
6417  }
6418}
6419
6420void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6421                                         CXXDestructorDecl *destructor) {
6422  // C++11 [class.dtor]p3:
6423  //   A declaration of a destructor that does not have an exception-
6424  //   specification is implicitly considered to have the same exception-
6425  //   specification as an implicit declaration.
6426  const FunctionProtoType *dtorType = destructor->getType()->
6427                                        getAs<FunctionProtoType>();
6428  if (dtorType->hasExceptionSpec())
6429    return;
6430
6431  ImplicitExceptionSpecification exceptSpec =
6432      ComputeDefaultedDtorExceptionSpec(classDecl);
6433
6434  // Replace the destructor's type.
6435  FunctionProtoType::ExtProtoInfo epi;
6436  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6437  epi.NumExceptions = exceptSpec.size();
6438  epi.Exceptions = exceptSpec.data();
6439  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6440
6441  destructor->setType(ty);
6442
6443  // FIXME: If the destructor has a body that could throw, and the newly created
6444  // spec doesn't allow exceptions, we should emit a warning, because this
6445  // change in behavior can break conforming C++03 programs at runtime.
6446  // However, we don't have a body yet, so it needs to be done somewhere else.
6447}
6448
6449/// \brief Builds a statement that copies the given entity from \p From to
6450/// \c To.
6451///
6452/// This routine is used to copy the members of a class with an
6453/// implicitly-declared copy assignment operator. When the entities being
6454/// copied are arrays, this routine builds for loops to copy them.
6455///
6456/// \param S The Sema object used for type-checking.
6457///
6458/// \param Loc The location where the implicit copy is being generated.
6459///
6460/// \param T The type of the expressions being copied. Both expressions must
6461/// have this type.
6462///
6463/// \param To The expression we are copying to.
6464///
6465/// \param From The expression we are copying from.
6466///
6467/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6468/// Otherwise, it's a non-static member subobject.
6469///
6470/// \param Depth Internal parameter recording the depth of the recursion.
6471///
6472/// \returns A statement or a loop that copies the expressions.
6473static StmtResult
6474BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6475                      Expr *To, Expr *From,
6476                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6477  // C++0x [class.copy]p30:
6478  //   Each subobject is assigned in the manner appropriate to its type:
6479  //
6480  //     - if the subobject is of class type, the copy assignment operator
6481  //       for the class is used (as if by explicit qualification; that is,
6482  //       ignoring any possible virtual overriding functions in more derived
6483  //       classes);
6484  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6485    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6486
6487    // Look for operator=.
6488    DeclarationName Name
6489      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6490    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6491    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6492
6493    // Filter out any result that isn't a copy-assignment operator.
6494    LookupResult::Filter F = OpLookup.makeFilter();
6495    while (F.hasNext()) {
6496      NamedDecl *D = F.next();
6497      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6498        if (Method->isCopyAssignmentOperator())
6499          continue;
6500
6501      F.erase();
6502    }
6503    F.done();
6504
6505    // Suppress the protected check (C++ [class.protected]) for each of the
6506    // assignment operators we found. This strange dance is required when
6507    // we're assigning via a base classes's copy-assignment operator. To
6508    // ensure that we're getting the right base class subobject (without
6509    // ambiguities), we need to cast "this" to that subobject type; to
6510    // ensure that we don't go through the virtual call mechanism, we need
6511    // to qualify the operator= name with the base class (see below). However,
6512    // this means that if the base class has a protected copy assignment
6513    // operator, the protected member access check will fail. So, we
6514    // rewrite "protected" access to "public" access in this case, since we
6515    // know by construction that we're calling from a derived class.
6516    if (CopyingBaseSubobject) {
6517      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6518           L != LEnd; ++L) {
6519        if (L.getAccess() == AS_protected)
6520          L.setAccess(AS_public);
6521      }
6522    }
6523
6524    // Create the nested-name-specifier that will be used to qualify the
6525    // reference to operator=; this is required to suppress the virtual
6526    // call mechanism.
6527    CXXScopeSpec SS;
6528    SS.MakeTrivial(S.Context,
6529                   NestedNameSpecifier::Create(S.Context, 0, false,
6530                                               T.getTypePtr()),
6531                   Loc);
6532
6533    // Create the reference to operator=.
6534    ExprResult OpEqualRef
6535      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6536                                   /*FirstQualifierInScope=*/0, OpLookup,
6537                                   /*TemplateArgs=*/0,
6538                                   /*SuppressQualifierCheck=*/true);
6539    if (OpEqualRef.isInvalid())
6540      return StmtError();
6541
6542    // Build the call to the assignment operator.
6543
6544    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6545                                                  OpEqualRef.takeAs<Expr>(),
6546                                                  Loc, &From, 1, Loc);
6547    if (Call.isInvalid())
6548      return StmtError();
6549
6550    return S.Owned(Call.takeAs<Stmt>());
6551  }
6552
6553  //     - if the subobject is of scalar type, the built-in assignment
6554  //       operator is used.
6555  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6556  if (!ArrayTy) {
6557    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6558    if (Assignment.isInvalid())
6559      return StmtError();
6560
6561    return S.Owned(Assignment.takeAs<Stmt>());
6562  }
6563
6564  //     - if the subobject is an array, each element is assigned, in the
6565  //       manner appropriate to the element type;
6566
6567  // Construct a loop over the array bounds, e.g.,
6568  //
6569  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6570  //
6571  // that will copy each of the array elements.
6572  QualType SizeType = S.Context.getSizeType();
6573
6574  // Create the iteration variable.
6575  IdentifierInfo *IterationVarName = 0;
6576  {
6577    llvm::SmallString<8> Str;
6578    llvm::raw_svector_ostream OS(Str);
6579    OS << "__i" << Depth;
6580    IterationVarName = &S.Context.Idents.get(OS.str());
6581  }
6582  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6583                                          IterationVarName, SizeType,
6584                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6585                                          SC_None, SC_None);
6586
6587  // Initialize the iteration variable to zero.
6588  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6589  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6590
6591  // Create a reference to the iteration variable; we'll use this several
6592  // times throughout.
6593  Expr *IterationVarRef
6594    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6595  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6596
6597  // Create the DeclStmt that holds the iteration variable.
6598  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6599
6600  // Create the comparison against the array bound.
6601  llvm::APInt Upper
6602    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6603  Expr *Comparison
6604    = new (S.Context) BinaryOperator(IterationVarRef,
6605                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6606                                     BO_NE, S.Context.BoolTy,
6607                                     VK_RValue, OK_Ordinary, Loc);
6608
6609  // Create the pre-increment of the iteration variable.
6610  Expr *Increment
6611    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6612                                    VK_LValue, OK_Ordinary, Loc);
6613
6614  // Subscript the "from" and "to" expressions with the iteration variable.
6615  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6616                                                         IterationVarRef, Loc));
6617  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6618                                                       IterationVarRef, Loc));
6619
6620  // Build the copy for an individual element of the array.
6621  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6622                                          To, From, CopyingBaseSubobject,
6623                                          Depth + 1);
6624  if (Copy.isInvalid())
6625    return StmtError();
6626
6627  // Construct the loop that copies all elements of this array.
6628  return S.ActOnForStmt(Loc, Loc, InitStmt,
6629                        S.MakeFullExpr(Comparison),
6630                        0, S.MakeFullExpr(Increment),
6631                        Loc, Copy.take());
6632}
6633
6634std::pair<Sema::ImplicitExceptionSpecification, bool>
6635Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6636                                                   CXXRecordDecl *ClassDecl) {
6637  if (ClassDecl->isInvalidDecl())
6638    return std::make_pair(ImplicitExceptionSpecification(Context), false);
6639
6640  // C++ [class.copy]p10:
6641  //   If the class definition does not explicitly declare a copy
6642  //   assignment operator, one is declared implicitly.
6643  //   The implicitly-defined copy assignment operator for a class X
6644  //   will have the form
6645  //
6646  //       X& X::operator=(const X&)
6647  //
6648  //   if
6649  bool HasConstCopyAssignment = true;
6650
6651  //       -- each direct base class B of X has a copy assignment operator
6652  //          whose parameter is of type const B&, const volatile B& or B,
6653  //          and
6654  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6655                                       BaseEnd = ClassDecl->bases_end();
6656       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6657    // We'll handle this below
6658    if (LangOpts.CPlusPlus0x && Base->isVirtual())
6659      continue;
6660
6661    assert(!Base->getType()->isDependentType() &&
6662           "Cannot generate implicit members for class with dependent bases.");
6663    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6664    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6665                            &HasConstCopyAssignment);
6666  }
6667
6668  // In C++0x, the above citation has "or virtual added"
6669  if (LangOpts.CPlusPlus0x) {
6670    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6671                                         BaseEnd = ClassDecl->vbases_end();
6672         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6673      assert(!Base->getType()->isDependentType() &&
6674             "Cannot generate implicit members for class with dependent bases.");
6675      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6676      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6677                              &HasConstCopyAssignment);
6678    }
6679  }
6680
6681  //       -- for all the nonstatic data members of X that are of a class
6682  //          type M (or array thereof), each such class type has a copy
6683  //          assignment operator whose parameter is of type const M&,
6684  //          const volatile M& or M.
6685  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6686                                  FieldEnd = ClassDecl->field_end();
6687       HasConstCopyAssignment && Field != FieldEnd;
6688       ++Field) {
6689    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6690    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6691      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
6692                              &HasConstCopyAssignment);
6693    }
6694  }
6695
6696  //   Otherwise, the implicitly declared copy assignment operator will
6697  //   have the form
6698  //
6699  //       X& X::operator=(X&)
6700
6701  // C++ [except.spec]p14:
6702  //   An implicitly declared special member function (Clause 12) shall have an
6703  //   exception-specification. [...]
6704
6705  // It is unspecified whether or not an implicit copy assignment operator
6706  // attempts to deduplicate calls to assignment operators of virtual bases are
6707  // made. As such, this exception specification is effectively unspecified.
6708  // Based on a similar decision made for constness in C++0x, we're erring on
6709  // the side of assuming such calls to be made regardless of whether they
6710  // actually happen.
6711  ImplicitExceptionSpecification ExceptSpec(Context);
6712  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
6713  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6714                                       BaseEnd = ClassDecl->bases_end();
6715       Base != BaseEnd; ++Base) {
6716    if (Base->isVirtual())
6717      continue;
6718
6719    CXXRecordDecl *BaseClassDecl
6720      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6721    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6722                                                            ArgQuals, false, 0))
6723      ExceptSpec.CalledDecl(CopyAssign);
6724  }
6725
6726  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6727                                       BaseEnd = ClassDecl->vbases_end();
6728       Base != BaseEnd; ++Base) {
6729    CXXRecordDecl *BaseClassDecl
6730      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6731    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6732                                                            ArgQuals, false, 0))
6733      ExceptSpec.CalledDecl(CopyAssign);
6734  }
6735
6736  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6737                                  FieldEnd = ClassDecl->field_end();
6738       Field != FieldEnd;
6739       ++Field) {
6740    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6741    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6742      if (CXXMethodDecl *CopyAssign =
6743          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
6744        ExceptSpec.CalledDecl(CopyAssign);
6745    }
6746  }
6747
6748  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6749}
6750
6751CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6752  // Note: The following rules are largely analoguous to the copy
6753  // constructor rules. Note that virtual bases are not taken into account
6754  // for determining the argument type of the operator. Note also that
6755  // operators taking an object instead of a reference are allowed.
6756
6757  ImplicitExceptionSpecification Spec(Context);
6758  bool Const;
6759  llvm::tie(Spec, Const) =
6760    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6761
6762  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6763  QualType RetType = Context.getLValueReferenceType(ArgType);
6764  if (Const)
6765    ArgType = ArgType.withConst();
6766  ArgType = Context.getLValueReferenceType(ArgType);
6767
6768  //   An implicitly-declared copy assignment operator is an inline public
6769  //   member of its class.
6770  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6771  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6772  SourceLocation ClassLoc = ClassDecl->getLocation();
6773  DeclarationNameInfo NameInfo(Name, ClassLoc);
6774  CXXMethodDecl *CopyAssignment
6775    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6776                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6777                            /*TInfo=*/0, /*isStatic=*/false,
6778                            /*StorageClassAsWritten=*/SC_None,
6779                            /*isInline=*/true,
6780                            SourceLocation());
6781  CopyAssignment->setAccess(AS_public);
6782  CopyAssignment->setDefaulted();
6783  CopyAssignment->setImplicit();
6784  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6785
6786  // Add the parameter to the operator.
6787  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6788                                               ClassLoc, ClassLoc, /*Id=*/0,
6789                                               ArgType, /*TInfo=*/0,
6790                                               SC_None,
6791                                               SC_None, 0);
6792  CopyAssignment->setParams(&FromParam, 1);
6793
6794  // Note that we have added this copy-assignment operator.
6795  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6796
6797  if (Scope *S = getScopeForContext(ClassDecl))
6798    PushOnScopeChains(CopyAssignment, S, false);
6799  ClassDecl->addDecl(CopyAssignment);
6800
6801  // C++0x [class.copy]p18:
6802  //   ... If the class definition declares a move constructor or move
6803  //   assignment operator, the implicitly declared copy assignment operator is
6804  //   defined as deleted; ...
6805  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
6806      ClassDecl->hasUserDeclaredMoveAssignment() ||
6807      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6808    CopyAssignment->setDeletedAsWritten();
6809
6810  AddOverriddenMethods(ClassDecl, CopyAssignment);
6811  return CopyAssignment;
6812}
6813
6814void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6815                                        CXXMethodDecl *CopyAssignOperator) {
6816  assert((CopyAssignOperator->isDefaulted() &&
6817          CopyAssignOperator->isOverloadedOperator() &&
6818          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6819          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6820         "DefineImplicitCopyAssignment called for wrong function");
6821
6822  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6823
6824  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6825    CopyAssignOperator->setInvalidDecl();
6826    return;
6827  }
6828
6829  CopyAssignOperator->setUsed();
6830
6831  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6832  DiagnosticErrorTrap Trap(Diags);
6833
6834  // C++0x [class.copy]p30:
6835  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6836  //   for a non-union class X performs memberwise copy assignment of its
6837  //   subobjects. The direct base classes of X are assigned first, in the
6838  //   order of their declaration in the base-specifier-list, and then the
6839  //   immediate non-static data members of X are assigned, in the order in
6840  //   which they were declared in the class definition.
6841
6842  // The statements that form the synthesized function body.
6843  ASTOwningVector<Stmt*> Statements(*this);
6844
6845  // The parameter for the "other" object, which we are copying from.
6846  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6847  Qualifiers OtherQuals = Other->getType().getQualifiers();
6848  QualType OtherRefType = Other->getType();
6849  if (const LValueReferenceType *OtherRef
6850                                = OtherRefType->getAs<LValueReferenceType>()) {
6851    OtherRefType = OtherRef->getPointeeType();
6852    OtherQuals = OtherRefType.getQualifiers();
6853  }
6854
6855  // Our location for everything implicitly-generated.
6856  SourceLocation Loc = CopyAssignOperator->getLocation();
6857
6858  // Construct a reference to the "other" object. We'll be using this
6859  // throughout the generated ASTs.
6860  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6861  assert(OtherRef && "Reference to parameter cannot fail!");
6862
6863  // Construct the "this" pointer. We'll be using this throughout the generated
6864  // ASTs.
6865  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6866  assert(This && "Reference to this cannot fail!");
6867
6868  // Assign base classes.
6869  bool Invalid = false;
6870  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6871       E = ClassDecl->bases_end(); Base != E; ++Base) {
6872    // Form the assignment:
6873    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6874    QualType BaseType = Base->getType().getUnqualifiedType();
6875    if (!BaseType->isRecordType()) {
6876      Invalid = true;
6877      continue;
6878    }
6879
6880    CXXCastPath BasePath;
6881    BasePath.push_back(Base);
6882
6883    // Construct the "from" expression, which is an implicit cast to the
6884    // appropriately-qualified base type.
6885    Expr *From = OtherRef;
6886    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6887                             CK_UncheckedDerivedToBase,
6888                             VK_LValue, &BasePath).take();
6889
6890    // Dereference "this".
6891    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6892
6893    // Implicitly cast "this" to the appropriately-qualified base type.
6894    To = ImpCastExprToType(To.take(),
6895                           Context.getCVRQualifiedType(BaseType,
6896                                     CopyAssignOperator->getTypeQualifiers()),
6897                           CK_UncheckedDerivedToBase,
6898                           VK_LValue, &BasePath);
6899
6900    // Build the copy.
6901    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6902                                            To.get(), From,
6903                                            /*CopyingBaseSubobject=*/true);
6904    if (Copy.isInvalid()) {
6905      Diag(CurrentLocation, diag::note_member_synthesized_at)
6906        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6907      CopyAssignOperator->setInvalidDecl();
6908      return;
6909    }
6910
6911    // Success! Record the copy.
6912    Statements.push_back(Copy.takeAs<Expr>());
6913  }
6914
6915  // \brief Reference to the __builtin_memcpy function.
6916  Expr *BuiltinMemCpyRef = 0;
6917  // \brief Reference to the __builtin_objc_memmove_collectable function.
6918  Expr *CollectableMemCpyRef = 0;
6919
6920  // Assign non-static members.
6921  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6922                                  FieldEnd = ClassDecl->field_end();
6923       Field != FieldEnd; ++Field) {
6924    // Check for members of reference type; we can't copy those.
6925    if (Field->getType()->isReferenceType()) {
6926      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6927        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6928      Diag(Field->getLocation(), diag::note_declared_at);
6929      Diag(CurrentLocation, diag::note_member_synthesized_at)
6930        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6931      Invalid = true;
6932      continue;
6933    }
6934
6935    // Check for members of const-qualified, non-class type.
6936    QualType BaseType = Context.getBaseElementType(Field->getType());
6937    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6938      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6939        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6940      Diag(Field->getLocation(), diag::note_declared_at);
6941      Diag(CurrentLocation, diag::note_member_synthesized_at)
6942        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6943      Invalid = true;
6944      continue;
6945    }
6946
6947    // Suppress assigning zero-width bitfields.
6948    if (const Expr *Width = Field->getBitWidth())
6949      if (Width->EvaluateAsInt(Context) == 0)
6950        continue;
6951
6952    QualType FieldType = Field->getType().getNonReferenceType();
6953    if (FieldType->isIncompleteArrayType()) {
6954      assert(ClassDecl->hasFlexibleArrayMember() &&
6955             "Incomplete array type is not valid");
6956      continue;
6957    }
6958
6959    // Build references to the field in the object we're copying from and to.
6960    CXXScopeSpec SS; // Intentionally empty
6961    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6962                              LookupMemberName);
6963    MemberLookup.addDecl(*Field);
6964    MemberLookup.resolveKind();
6965    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6966                                               Loc, /*IsArrow=*/false,
6967                                               SS, 0, MemberLookup, 0);
6968    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6969                                             Loc, /*IsArrow=*/true,
6970                                             SS, 0, MemberLookup, 0);
6971    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6972    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6973
6974    // If the field should be copied with __builtin_memcpy rather than via
6975    // explicit assignments, do so. This optimization only applies for arrays
6976    // of scalars and arrays of class type with trivial copy-assignment
6977    // operators.
6978    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
6979        && BaseType.hasTrivialCopyAssignment(Context)) {
6980      // Compute the size of the memory buffer to be copied.
6981      QualType SizeType = Context.getSizeType();
6982      llvm::APInt Size(Context.getTypeSize(SizeType),
6983                       Context.getTypeSizeInChars(BaseType).getQuantity());
6984      for (const ConstantArrayType *Array
6985              = Context.getAsConstantArrayType(FieldType);
6986           Array;
6987           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6988        llvm::APInt ArraySize
6989          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6990        Size *= ArraySize;
6991      }
6992
6993      // Take the address of the field references for "from" and "to".
6994      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6995      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6996
6997      bool NeedsCollectableMemCpy =
6998          (BaseType->isRecordType() &&
6999           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7000
7001      if (NeedsCollectableMemCpy) {
7002        if (!CollectableMemCpyRef) {
7003          // Create a reference to the __builtin_objc_memmove_collectable function.
7004          LookupResult R(*this,
7005                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7006                         Loc, LookupOrdinaryName);
7007          LookupName(R, TUScope, true);
7008
7009          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7010          if (!CollectableMemCpy) {
7011            // Something went horribly wrong earlier, and we will have
7012            // complained about it.
7013            Invalid = true;
7014            continue;
7015          }
7016
7017          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7018                                                  CollectableMemCpy->getType(),
7019                                                  VK_LValue, Loc, 0).take();
7020          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7021        }
7022      }
7023      // Create a reference to the __builtin_memcpy builtin function.
7024      else if (!BuiltinMemCpyRef) {
7025        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7026                       LookupOrdinaryName);
7027        LookupName(R, TUScope, true);
7028
7029        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7030        if (!BuiltinMemCpy) {
7031          // Something went horribly wrong earlier, and we will have complained
7032          // about it.
7033          Invalid = true;
7034          continue;
7035        }
7036
7037        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7038                                            BuiltinMemCpy->getType(),
7039                                            VK_LValue, Loc, 0).take();
7040        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7041      }
7042
7043      ASTOwningVector<Expr*> CallArgs(*this);
7044      CallArgs.push_back(To.takeAs<Expr>());
7045      CallArgs.push_back(From.takeAs<Expr>());
7046      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7047      ExprResult Call = ExprError();
7048      if (NeedsCollectableMemCpy)
7049        Call = ActOnCallExpr(/*Scope=*/0,
7050                             CollectableMemCpyRef,
7051                             Loc, move_arg(CallArgs),
7052                             Loc);
7053      else
7054        Call = ActOnCallExpr(/*Scope=*/0,
7055                             BuiltinMemCpyRef,
7056                             Loc, move_arg(CallArgs),
7057                             Loc);
7058
7059      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7060      Statements.push_back(Call.takeAs<Expr>());
7061      continue;
7062    }
7063
7064    // Build the copy of this field.
7065    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7066                                                  To.get(), From.get(),
7067                                              /*CopyingBaseSubobject=*/false);
7068    if (Copy.isInvalid()) {
7069      Diag(CurrentLocation, diag::note_member_synthesized_at)
7070        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7071      CopyAssignOperator->setInvalidDecl();
7072      return;
7073    }
7074
7075    // Success! Record the copy.
7076    Statements.push_back(Copy.takeAs<Stmt>());
7077  }
7078
7079  if (!Invalid) {
7080    // Add a "return *this;"
7081    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7082
7083    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7084    if (Return.isInvalid())
7085      Invalid = true;
7086    else {
7087      Statements.push_back(Return.takeAs<Stmt>());
7088
7089      if (Trap.hasErrorOccurred()) {
7090        Diag(CurrentLocation, diag::note_member_synthesized_at)
7091          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7092        Invalid = true;
7093      }
7094    }
7095  }
7096
7097  if (Invalid) {
7098    CopyAssignOperator->setInvalidDecl();
7099    return;
7100  }
7101
7102  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7103                                            /*isStmtExpr=*/false);
7104  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7105  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7106
7107  if (ASTMutationListener *L = getASTMutationListener()) {
7108    L->CompletedImplicitDefinition(CopyAssignOperator);
7109  }
7110}
7111
7112std::pair<Sema::ImplicitExceptionSpecification, bool>
7113Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7114  if (ClassDecl->isInvalidDecl())
7115    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7116
7117  // C++ [class.copy]p5:
7118  //   The implicitly-declared copy constructor for a class X will
7119  //   have the form
7120  //
7121  //       X::X(const X&)
7122  //
7123  //   if
7124  // FIXME: It ought to be possible to store this on the record.
7125  bool HasConstCopyConstructor = true;
7126
7127  //     -- each direct or virtual base class B of X has a copy
7128  //        constructor whose first parameter is of type const B& or
7129  //        const volatile B&, and
7130  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7131                                       BaseEnd = ClassDecl->bases_end();
7132       HasConstCopyConstructor && Base != BaseEnd;
7133       ++Base) {
7134    // Virtual bases are handled below.
7135    if (Base->isVirtual())
7136      continue;
7137
7138    CXXRecordDecl *BaseClassDecl
7139      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7140    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7141                             &HasConstCopyConstructor);
7142  }
7143
7144  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7145                                       BaseEnd = ClassDecl->vbases_end();
7146       HasConstCopyConstructor && Base != BaseEnd;
7147       ++Base) {
7148    CXXRecordDecl *BaseClassDecl
7149      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7150    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7151                             &HasConstCopyConstructor);
7152  }
7153
7154  //     -- for all the nonstatic data members of X that are of a
7155  //        class type M (or array thereof), each such class type
7156  //        has a copy constructor whose first parameter is of type
7157  //        const M& or const volatile M&.
7158  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7159                                  FieldEnd = ClassDecl->field_end();
7160       HasConstCopyConstructor && Field != FieldEnd;
7161       ++Field) {
7162    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7163    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7164      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
7165                               &HasConstCopyConstructor);
7166    }
7167  }
7168  //   Otherwise, the implicitly declared copy constructor will have
7169  //   the form
7170  //
7171  //       X::X(X&)
7172
7173  // C++ [except.spec]p14:
7174  //   An implicitly declared special member function (Clause 12) shall have an
7175  //   exception-specification. [...]
7176  ImplicitExceptionSpecification ExceptSpec(Context);
7177  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7178  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7179                                       BaseEnd = ClassDecl->bases_end();
7180       Base != BaseEnd;
7181       ++Base) {
7182    // Virtual bases are handled below.
7183    if (Base->isVirtual())
7184      continue;
7185
7186    CXXRecordDecl *BaseClassDecl
7187      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7188    if (CXXConstructorDecl *CopyConstructor =
7189          LookupCopyingConstructor(BaseClassDecl, Quals))
7190      ExceptSpec.CalledDecl(CopyConstructor);
7191  }
7192  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7193                                       BaseEnd = ClassDecl->vbases_end();
7194       Base != BaseEnd;
7195       ++Base) {
7196    CXXRecordDecl *BaseClassDecl
7197      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7198    if (CXXConstructorDecl *CopyConstructor =
7199          LookupCopyingConstructor(BaseClassDecl, Quals))
7200      ExceptSpec.CalledDecl(CopyConstructor);
7201  }
7202  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7203                                  FieldEnd = ClassDecl->field_end();
7204       Field != FieldEnd;
7205       ++Field) {
7206    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7207    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7208      if (CXXConstructorDecl *CopyConstructor =
7209        LookupCopyingConstructor(FieldClassDecl, Quals))
7210      ExceptSpec.CalledDecl(CopyConstructor);
7211    }
7212  }
7213
7214  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7215}
7216
7217CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7218                                                    CXXRecordDecl *ClassDecl) {
7219  // C++ [class.copy]p4:
7220  //   If the class definition does not explicitly declare a copy
7221  //   constructor, one is declared implicitly.
7222
7223  ImplicitExceptionSpecification Spec(Context);
7224  bool Const;
7225  llvm::tie(Spec, Const) =
7226    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7227
7228  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7229  QualType ArgType = ClassType;
7230  if (Const)
7231    ArgType = ArgType.withConst();
7232  ArgType = Context.getLValueReferenceType(ArgType);
7233
7234  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7235
7236  DeclarationName Name
7237    = Context.DeclarationNames.getCXXConstructorName(
7238                                           Context.getCanonicalType(ClassType));
7239  SourceLocation ClassLoc = ClassDecl->getLocation();
7240  DeclarationNameInfo NameInfo(Name, ClassLoc);
7241
7242  //   An implicitly-declared copy constructor is an inline public
7243  //   member of its class.
7244  CXXConstructorDecl *CopyConstructor
7245    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7246                                 Context.getFunctionType(Context.VoidTy,
7247                                                         &ArgType, 1, EPI),
7248                                 /*TInfo=*/0,
7249                                 /*isExplicit=*/false,
7250                                 /*isInline=*/true,
7251                                 /*isImplicitlyDeclared=*/true);
7252  CopyConstructor->setAccess(AS_public);
7253  CopyConstructor->setDefaulted();
7254  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7255
7256  // Note that we have declared this constructor.
7257  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7258
7259  // Add the parameter to the constructor.
7260  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7261                                               ClassLoc, ClassLoc,
7262                                               /*IdentifierInfo=*/0,
7263                                               ArgType, /*TInfo=*/0,
7264                                               SC_None,
7265                                               SC_None, 0);
7266  CopyConstructor->setParams(&FromParam, 1);
7267
7268  if (Scope *S = getScopeForContext(ClassDecl))
7269    PushOnScopeChains(CopyConstructor, S, false);
7270  ClassDecl->addDecl(CopyConstructor);
7271
7272  // C++0x [class.copy]p7:
7273  //   ... If the class definition declares a move constructor or move
7274  //   assignment operator, the implicitly declared constructor is defined as
7275  //   deleted; ...
7276  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7277      ClassDecl->hasUserDeclaredMoveAssignment() ||
7278      ShouldDeleteCopyConstructor(CopyConstructor))
7279    CopyConstructor->setDeletedAsWritten();
7280
7281  return CopyConstructor;
7282}
7283
7284void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7285                                   CXXConstructorDecl *CopyConstructor) {
7286  assert((CopyConstructor->isDefaulted() &&
7287          CopyConstructor->isCopyConstructor() &&
7288          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7289         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7290
7291  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7292  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7293
7294  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7295  DiagnosticErrorTrap Trap(Diags);
7296
7297  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7298      Trap.hasErrorOccurred()) {
7299    Diag(CurrentLocation, diag::note_member_synthesized_at)
7300      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7301    CopyConstructor->setInvalidDecl();
7302  }  else {
7303    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7304                                               CopyConstructor->getLocation(),
7305                                               MultiStmtArg(*this, 0, 0),
7306                                               /*isStmtExpr=*/false)
7307                                                              .takeAs<Stmt>());
7308  }
7309
7310  CopyConstructor->setUsed();
7311
7312  if (ASTMutationListener *L = getASTMutationListener()) {
7313    L->CompletedImplicitDefinition(CopyConstructor);
7314  }
7315}
7316
7317ExprResult
7318Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7319                            CXXConstructorDecl *Constructor,
7320                            MultiExprArg ExprArgs,
7321                            bool RequiresZeroInit,
7322                            unsigned ConstructKind,
7323                            SourceRange ParenRange) {
7324  bool Elidable = false;
7325
7326  // C++0x [class.copy]p34:
7327  //   When certain criteria are met, an implementation is allowed to
7328  //   omit the copy/move construction of a class object, even if the
7329  //   copy/move constructor and/or destructor for the object have
7330  //   side effects. [...]
7331  //     - when a temporary class object that has not been bound to a
7332  //       reference (12.2) would be copied/moved to a class object
7333  //       with the same cv-unqualified type, the copy/move operation
7334  //       can be omitted by constructing the temporary object
7335  //       directly into the target of the omitted copy/move
7336  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7337      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7338    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7339    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7340  }
7341
7342  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7343                               Elidable, move(ExprArgs), RequiresZeroInit,
7344                               ConstructKind, ParenRange);
7345}
7346
7347/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7348/// including handling of its default argument expressions.
7349ExprResult
7350Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7351                            CXXConstructorDecl *Constructor, bool Elidable,
7352                            MultiExprArg ExprArgs,
7353                            bool RequiresZeroInit,
7354                            unsigned ConstructKind,
7355                            SourceRange ParenRange) {
7356  unsigned NumExprs = ExprArgs.size();
7357  Expr **Exprs = (Expr **)ExprArgs.release();
7358
7359  for (specific_attr_iterator<NonNullAttr>
7360           i = Constructor->specific_attr_begin<NonNullAttr>(),
7361           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7362    const NonNullAttr *NonNull = *i;
7363    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7364  }
7365
7366  MarkDeclarationReferenced(ConstructLoc, Constructor);
7367  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7368                                        Constructor, Elidable, Exprs, NumExprs,
7369                                        RequiresZeroInit,
7370              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7371                                        ParenRange));
7372}
7373
7374bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7375                                        CXXConstructorDecl *Constructor,
7376                                        MultiExprArg Exprs) {
7377  // FIXME: Provide the correct paren SourceRange when available.
7378  ExprResult TempResult =
7379    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7380                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7381                          SourceRange());
7382  if (TempResult.isInvalid())
7383    return true;
7384
7385  Expr *Temp = TempResult.takeAs<Expr>();
7386  CheckImplicitConversions(Temp, VD->getLocation());
7387  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7388  Temp = MaybeCreateExprWithCleanups(Temp);
7389  VD->setInit(Temp);
7390
7391  return false;
7392}
7393
7394void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7395  if (VD->isInvalidDecl()) return;
7396
7397  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7398  if (ClassDecl->isInvalidDecl()) return;
7399  if (ClassDecl->hasTrivialDestructor()) return;
7400  if (ClassDecl->isDependentContext()) return;
7401
7402  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7403  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7404  CheckDestructorAccess(VD->getLocation(), Destructor,
7405                        PDiag(diag::err_access_dtor_var)
7406                        << VD->getDeclName()
7407                        << VD->getType());
7408
7409  if (!VD->hasGlobalStorage()) return;
7410
7411  // Emit warning for non-trivial dtor in global scope (a real global,
7412  // class-static, function-static).
7413  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7414
7415  // TODO: this should be re-enabled for static locals by !CXAAtExit
7416  if (!VD->isStaticLocal())
7417    Diag(VD->getLocation(), diag::warn_global_destructor);
7418}
7419
7420/// AddCXXDirectInitializerToDecl - This action is called immediately after
7421/// ActOnDeclarator, when a C++ direct initializer is present.
7422/// e.g: "int x(1);"
7423void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7424                                         SourceLocation LParenLoc,
7425                                         MultiExprArg Exprs,
7426                                         SourceLocation RParenLoc,
7427                                         bool TypeMayContainAuto) {
7428  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7429
7430  // If there is no declaration, there was an error parsing it.  Just ignore
7431  // the initializer.
7432  if (RealDecl == 0)
7433    return;
7434
7435  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7436  if (!VDecl) {
7437    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7438    RealDecl->setInvalidDecl();
7439    return;
7440  }
7441
7442  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7443  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7444    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7445    if (Exprs.size() > 1) {
7446      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7447           diag::err_auto_var_init_multiple_expressions)
7448        << VDecl->getDeclName() << VDecl->getType()
7449        << VDecl->getSourceRange();
7450      RealDecl->setInvalidDecl();
7451      return;
7452    }
7453
7454    Expr *Init = Exprs.get()[0];
7455    TypeSourceInfo *DeducedType = 0;
7456    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7457      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7458        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7459        << Init->getSourceRange();
7460    if (!DeducedType) {
7461      RealDecl->setInvalidDecl();
7462      return;
7463    }
7464    VDecl->setTypeSourceInfo(DeducedType);
7465    VDecl->setType(DeducedType->getType());
7466
7467    // In ARC, infer lifetime.
7468    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7469      VDecl->setInvalidDecl();
7470
7471    // If this is a redeclaration, check that the type we just deduced matches
7472    // the previously declared type.
7473    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7474      MergeVarDeclTypes(VDecl, Old);
7475  }
7476
7477  // We will represent direct-initialization similarly to copy-initialization:
7478  //    int x(1);  -as-> int x = 1;
7479  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7480  //
7481  // Clients that want to distinguish between the two forms, can check for
7482  // direct initializer using VarDecl::hasCXXDirectInitializer().
7483  // A major benefit is that clients that don't particularly care about which
7484  // exactly form was it (like the CodeGen) can handle both cases without
7485  // special case code.
7486
7487  // C++ 8.5p11:
7488  // The form of initialization (using parentheses or '=') is generally
7489  // insignificant, but does matter when the entity being initialized has a
7490  // class type.
7491
7492  if (!VDecl->getType()->isDependentType() &&
7493      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7494                          diag::err_typecheck_decl_incomplete_type)) {
7495    VDecl->setInvalidDecl();
7496    return;
7497  }
7498
7499  // The variable can not have an abstract class type.
7500  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7501                             diag::err_abstract_type_in_decl,
7502                             AbstractVariableType))
7503    VDecl->setInvalidDecl();
7504
7505  const VarDecl *Def;
7506  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7507    Diag(VDecl->getLocation(), diag::err_redefinition)
7508    << VDecl->getDeclName();
7509    Diag(Def->getLocation(), diag::note_previous_definition);
7510    VDecl->setInvalidDecl();
7511    return;
7512  }
7513
7514  // C++ [class.static.data]p4
7515  //   If a static data member is of const integral or const
7516  //   enumeration type, its declaration in the class definition can
7517  //   specify a constant-initializer which shall be an integral
7518  //   constant expression (5.19). In that case, the member can appear
7519  //   in integral constant expressions. The member shall still be
7520  //   defined in a namespace scope if it is used in the program and the
7521  //   namespace scope definition shall not contain an initializer.
7522  //
7523  // We already performed a redefinition check above, but for static
7524  // data members we also need to check whether there was an in-class
7525  // declaration with an initializer.
7526  const VarDecl* PrevInit = 0;
7527  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7528    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7529    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7530    return;
7531  }
7532
7533  bool IsDependent = false;
7534  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7535    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7536      VDecl->setInvalidDecl();
7537      return;
7538    }
7539
7540    if (Exprs.get()[I]->isTypeDependent())
7541      IsDependent = true;
7542  }
7543
7544  // If either the declaration has a dependent type or if any of the
7545  // expressions is type-dependent, we represent the initialization
7546  // via a ParenListExpr for later use during template instantiation.
7547  if (VDecl->getType()->isDependentType() || IsDependent) {
7548    // Let clients know that initialization was done with a direct initializer.
7549    VDecl->setCXXDirectInitializer(true);
7550
7551    // Store the initialization expressions as a ParenListExpr.
7552    unsigned NumExprs = Exprs.size();
7553    VDecl->setInit(new (Context) ParenListExpr(
7554        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
7555        VDecl->getType().getNonReferenceType()));
7556    return;
7557  }
7558
7559  // Capture the variable that is being initialized and the style of
7560  // initialization.
7561  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7562
7563  // FIXME: Poor source location information.
7564  InitializationKind Kind
7565    = InitializationKind::CreateDirect(VDecl->getLocation(),
7566                                       LParenLoc, RParenLoc);
7567
7568  InitializationSequence InitSeq(*this, Entity, Kind,
7569                                 Exprs.get(), Exprs.size());
7570  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7571  if (Result.isInvalid()) {
7572    VDecl->setInvalidDecl();
7573    return;
7574  }
7575
7576  CheckImplicitConversions(Result.get(), LParenLoc);
7577
7578  Result = MaybeCreateExprWithCleanups(Result);
7579  VDecl->setInit(Result.takeAs<Expr>());
7580  VDecl->setCXXDirectInitializer(true);
7581
7582  CheckCompleteVariableDeclaration(VDecl);
7583}
7584
7585/// \brief Given a constructor and the set of arguments provided for the
7586/// constructor, convert the arguments and add any required default arguments
7587/// to form a proper call to this constructor.
7588///
7589/// \returns true if an error occurred, false otherwise.
7590bool
7591Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7592                              MultiExprArg ArgsPtr,
7593                              SourceLocation Loc,
7594                              ASTOwningVector<Expr*> &ConvertedArgs) {
7595  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7596  unsigned NumArgs = ArgsPtr.size();
7597  Expr **Args = (Expr **)ArgsPtr.get();
7598
7599  const FunctionProtoType *Proto
7600    = Constructor->getType()->getAs<FunctionProtoType>();
7601  assert(Proto && "Constructor without a prototype?");
7602  unsigned NumArgsInProto = Proto->getNumArgs();
7603
7604  // If too few arguments are available, we'll fill in the rest with defaults.
7605  if (NumArgs < NumArgsInProto)
7606    ConvertedArgs.reserve(NumArgsInProto);
7607  else
7608    ConvertedArgs.reserve(NumArgs);
7609
7610  VariadicCallType CallType =
7611    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7612  SmallVector<Expr *, 8> AllArgs;
7613  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7614                                        Proto, 0, Args, NumArgs, AllArgs,
7615                                        CallType);
7616  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7617    ConvertedArgs.push_back(AllArgs[i]);
7618  return Invalid;
7619}
7620
7621static inline bool
7622CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7623                                       const FunctionDecl *FnDecl) {
7624  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7625  if (isa<NamespaceDecl>(DC)) {
7626    return SemaRef.Diag(FnDecl->getLocation(),
7627                        diag::err_operator_new_delete_declared_in_namespace)
7628      << FnDecl->getDeclName();
7629  }
7630
7631  if (isa<TranslationUnitDecl>(DC) &&
7632      FnDecl->getStorageClass() == SC_Static) {
7633    return SemaRef.Diag(FnDecl->getLocation(),
7634                        diag::err_operator_new_delete_declared_static)
7635      << FnDecl->getDeclName();
7636  }
7637
7638  return false;
7639}
7640
7641static inline bool
7642CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7643                            CanQualType ExpectedResultType,
7644                            CanQualType ExpectedFirstParamType,
7645                            unsigned DependentParamTypeDiag,
7646                            unsigned InvalidParamTypeDiag) {
7647  QualType ResultType =
7648    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7649
7650  // Check that the result type is not dependent.
7651  if (ResultType->isDependentType())
7652    return SemaRef.Diag(FnDecl->getLocation(),
7653                        diag::err_operator_new_delete_dependent_result_type)
7654    << FnDecl->getDeclName() << ExpectedResultType;
7655
7656  // Check that the result type is what we expect.
7657  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7658    return SemaRef.Diag(FnDecl->getLocation(),
7659                        diag::err_operator_new_delete_invalid_result_type)
7660    << FnDecl->getDeclName() << ExpectedResultType;
7661
7662  // A function template must have at least 2 parameters.
7663  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7664    return SemaRef.Diag(FnDecl->getLocation(),
7665                      diag::err_operator_new_delete_template_too_few_parameters)
7666        << FnDecl->getDeclName();
7667
7668  // The function decl must have at least 1 parameter.
7669  if (FnDecl->getNumParams() == 0)
7670    return SemaRef.Diag(FnDecl->getLocation(),
7671                        diag::err_operator_new_delete_too_few_parameters)
7672      << FnDecl->getDeclName();
7673
7674  // Check the the first parameter type is not dependent.
7675  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7676  if (FirstParamType->isDependentType())
7677    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7678      << FnDecl->getDeclName() << ExpectedFirstParamType;
7679
7680  // Check that the first parameter type is what we expect.
7681  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7682      ExpectedFirstParamType)
7683    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7684    << FnDecl->getDeclName() << ExpectedFirstParamType;
7685
7686  return false;
7687}
7688
7689static bool
7690CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7691  // C++ [basic.stc.dynamic.allocation]p1:
7692  //   A program is ill-formed if an allocation function is declared in a
7693  //   namespace scope other than global scope or declared static in global
7694  //   scope.
7695  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7696    return true;
7697
7698  CanQualType SizeTy =
7699    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7700
7701  // C++ [basic.stc.dynamic.allocation]p1:
7702  //  The return type shall be void*. The first parameter shall have type
7703  //  std::size_t.
7704  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7705                                  SizeTy,
7706                                  diag::err_operator_new_dependent_param_type,
7707                                  diag::err_operator_new_param_type))
7708    return true;
7709
7710  // C++ [basic.stc.dynamic.allocation]p1:
7711  //  The first parameter shall not have an associated default argument.
7712  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7713    return SemaRef.Diag(FnDecl->getLocation(),
7714                        diag::err_operator_new_default_arg)
7715      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7716
7717  return false;
7718}
7719
7720static bool
7721CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7722  // C++ [basic.stc.dynamic.deallocation]p1:
7723  //   A program is ill-formed if deallocation functions are declared in a
7724  //   namespace scope other than global scope or declared static in global
7725  //   scope.
7726  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7727    return true;
7728
7729  // C++ [basic.stc.dynamic.deallocation]p2:
7730  //   Each deallocation function shall return void and its first parameter
7731  //   shall be void*.
7732  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7733                                  SemaRef.Context.VoidPtrTy,
7734                                 diag::err_operator_delete_dependent_param_type,
7735                                 diag::err_operator_delete_param_type))
7736    return true;
7737
7738  return false;
7739}
7740
7741/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7742/// of this overloaded operator is well-formed. If so, returns false;
7743/// otherwise, emits appropriate diagnostics and returns true.
7744bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7745  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7746         "Expected an overloaded operator declaration");
7747
7748  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7749
7750  // C++ [over.oper]p5:
7751  //   The allocation and deallocation functions, operator new,
7752  //   operator new[], operator delete and operator delete[], are
7753  //   described completely in 3.7.3. The attributes and restrictions
7754  //   found in the rest of this subclause do not apply to them unless
7755  //   explicitly stated in 3.7.3.
7756  if (Op == OO_Delete || Op == OO_Array_Delete)
7757    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7758
7759  if (Op == OO_New || Op == OO_Array_New)
7760    return CheckOperatorNewDeclaration(*this, FnDecl);
7761
7762  // C++ [over.oper]p6:
7763  //   An operator function shall either be a non-static member
7764  //   function or be a non-member function and have at least one
7765  //   parameter whose type is a class, a reference to a class, an
7766  //   enumeration, or a reference to an enumeration.
7767  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7768    if (MethodDecl->isStatic())
7769      return Diag(FnDecl->getLocation(),
7770                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7771  } else {
7772    bool ClassOrEnumParam = false;
7773    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7774                                   ParamEnd = FnDecl->param_end();
7775         Param != ParamEnd; ++Param) {
7776      QualType ParamType = (*Param)->getType().getNonReferenceType();
7777      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7778          ParamType->isEnumeralType()) {
7779        ClassOrEnumParam = true;
7780        break;
7781      }
7782    }
7783
7784    if (!ClassOrEnumParam)
7785      return Diag(FnDecl->getLocation(),
7786                  diag::err_operator_overload_needs_class_or_enum)
7787        << FnDecl->getDeclName();
7788  }
7789
7790  // C++ [over.oper]p8:
7791  //   An operator function cannot have default arguments (8.3.6),
7792  //   except where explicitly stated below.
7793  //
7794  // Only the function-call operator allows default arguments
7795  // (C++ [over.call]p1).
7796  if (Op != OO_Call) {
7797    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7798         Param != FnDecl->param_end(); ++Param) {
7799      if ((*Param)->hasDefaultArg())
7800        return Diag((*Param)->getLocation(),
7801                    diag::err_operator_overload_default_arg)
7802          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7803    }
7804  }
7805
7806  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7807    { false, false, false }
7808#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7809    , { Unary, Binary, MemberOnly }
7810#include "clang/Basic/OperatorKinds.def"
7811  };
7812
7813  bool CanBeUnaryOperator = OperatorUses[Op][0];
7814  bool CanBeBinaryOperator = OperatorUses[Op][1];
7815  bool MustBeMemberOperator = OperatorUses[Op][2];
7816
7817  // C++ [over.oper]p8:
7818  //   [...] Operator functions cannot have more or fewer parameters
7819  //   than the number required for the corresponding operator, as
7820  //   described in the rest of this subclause.
7821  unsigned NumParams = FnDecl->getNumParams()
7822                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7823  if (Op != OO_Call &&
7824      ((NumParams == 1 && !CanBeUnaryOperator) ||
7825       (NumParams == 2 && !CanBeBinaryOperator) ||
7826       (NumParams < 1) || (NumParams > 2))) {
7827    // We have the wrong number of parameters.
7828    unsigned ErrorKind;
7829    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7830      ErrorKind = 2;  // 2 -> unary or binary.
7831    } else if (CanBeUnaryOperator) {
7832      ErrorKind = 0;  // 0 -> unary
7833    } else {
7834      assert(CanBeBinaryOperator &&
7835             "All non-call overloaded operators are unary or binary!");
7836      ErrorKind = 1;  // 1 -> binary
7837    }
7838
7839    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7840      << FnDecl->getDeclName() << NumParams << ErrorKind;
7841  }
7842
7843  // Overloaded operators other than operator() cannot be variadic.
7844  if (Op != OO_Call &&
7845      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7846    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7847      << FnDecl->getDeclName();
7848  }
7849
7850  // Some operators must be non-static member functions.
7851  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7852    return Diag(FnDecl->getLocation(),
7853                diag::err_operator_overload_must_be_member)
7854      << FnDecl->getDeclName();
7855  }
7856
7857  // C++ [over.inc]p1:
7858  //   The user-defined function called operator++ implements the
7859  //   prefix and postfix ++ operator. If this function is a member
7860  //   function with no parameters, or a non-member function with one
7861  //   parameter of class or enumeration type, it defines the prefix
7862  //   increment operator ++ for objects of that type. If the function
7863  //   is a member function with one parameter (which shall be of type
7864  //   int) or a non-member function with two parameters (the second
7865  //   of which shall be of type int), it defines the postfix
7866  //   increment operator ++ for objects of that type.
7867  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7868    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7869    bool ParamIsInt = false;
7870    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7871      ParamIsInt = BT->getKind() == BuiltinType::Int;
7872
7873    if (!ParamIsInt)
7874      return Diag(LastParam->getLocation(),
7875                  diag::err_operator_overload_post_incdec_must_be_int)
7876        << LastParam->getType() << (Op == OO_MinusMinus);
7877  }
7878
7879  return false;
7880}
7881
7882/// CheckLiteralOperatorDeclaration - Check whether the declaration
7883/// of this literal operator function is well-formed. If so, returns
7884/// false; otherwise, emits appropriate diagnostics and returns true.
7885bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7886  DeclContext *DC = FnDecl->getDeclContext();
7887  Decl::Kind Kind = DC->getDeclKind();
7888  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7889      Kind != Decl::LinkageSpec) {
7890    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7891      << FnDecl->getDeclName();
7892    return true;
7893  }
7894
7895  bool Valid = false;
7896
7897  // template <char...> type operator "" name() is the only valid template
7898  // signature, and the only valid signature with no parameters.
7899  if (FnDecl->param_size() == 0) {
7900    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7901      // Must have only one template parameter
7902      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7903      if (Params->size() == 1) {
7904        NonTypeTemplateParmDecl *PmDecl =
7905          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7906
7907        // The template parameter must be a char parameter pack.
7908        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7909            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7910          Valid = true;
7911      }
7912    }
7913  } else {
7914    // Check the first parameter
7915    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7916
7917    QualType T = (*Param)->getType();
7918
7919    // unsigned long long int, long double, and any character type are allowed
7920    // as the only parameters.
7921    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7922        Context.hasSameType(T, Context.LongDoubleTy) ||
7923        Context.hasSameType(T, Context.CharTy) ||
7924        Context.hasSameType(T, Context.WCharTy) ||
7925        Context.hasSameType(T, Context.Char16Ty) ||
7926        Context.hasSameType(T, Context.Char32Ty)) {
7927      if (++Param == FnDecl->param_end())
7928        Valid = true;
7929      goto FinishedParams;
7930    }
7931
7932    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7933    const PointerType *PT = T->getAs<PointerType>();
7934    if (!PT)
7935      goto FinishedParams;
7936    T = PT->getPointeeType();
7937    if (!T.isConstQualified())
7938      goto FinishedParams;
7939    T = T.getUnqualifiedType();
7940
7941    // Move on to the second parameter;
7942    ++Param;
7943
7944    // If there is no second parameter, the first must be a const char *
7945    if (Param == FnDecl->param_end()) {
7946      if (Context.hasSameType(T, Context.CharTy))
7947        Valid = true;
7948      goto FinishedParams;
7949    }
7950
7951    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7952    // are allowed as the first parameter to a two-parameter function
7953    if (!(Context.hasSameType(T, Context.CharTy) ||
7954          Context.hasSameType(T, Context.WCharTy) ||
7955          Context.hasSameType(T, Context.Char16Ty) ||
7956          Context.hasSameType(T, Context.Char32Ty)))
7957      goto FinishedParams;
7958
7959    // The second and final parameter must be an std::size_t
7960    T = (*Param)->getType().getUnqualifiedType();
7961    if (Context.hasSameType(T, Context.getSizeType()) &&
7962        ++Param == FnDecl->param_end())
7963      Valid = true;
7964  }
7965
7966  // FIXME: This diagnostic is absolutely terrible.
7967FinishedParams:
7968  if (!Valid) {
7969    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7970      << FnDecl->getDeclName();
7971    return true;
7972  }
7973
7974  return false;
7975}
7976
7977/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7978/// linkage specification, including the language and (if present)
7979/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7980/// the location of the language string literal, which is provided
7981/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7982/// the '{' brace. Otherwise, this linkage specification does not
7983/// have any braces.
7984Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7985                                           SourceLocation LangLoc,
7986                                           StringRef Lang,
7987                                           SourceLocation LBraceLoc) {
7988  LinkageSpecDecl::LanguageIDs Language;
7989  if (Lang == "\"C\"")
7990    Language = LinkageSpecDecl::lang_c;
7991  else if (Lang == "\"C++\"")
7992    Language = LinkageSpecDecl::lang_cxx;
7993  else {
7994    Diag(LangLoc, diag::err_bad_language);
7995    return 0;
7996  }
7997
7998  // FIXME: Add all the various semantics of linkage specifications
7999
8000  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
8001                                               ExternLoc, LangLoc, Language);
8002  CurContext->addDecl(D);
8003  PushDeclContext(S, D);
8004  return D;
8005}
8006
8007/// ActOnFinishLinkageSpecification - Complete the definition of
8008/// the C++ linkage specification LinkageSpec. If RBraceLoc is
8009/// valid, it's the position of the closing '}' brace in a linkage
8010/// specification that uses braces.
8011Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
8012                                            Decl *LinkageSpec,
8013                                            SourceLocation RBraceLoc) {
8014  if (LinkageSpec) {
8015    if (RBraceLoc.isValid()) {
8016      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
8017      LSDecl->setRBraceLoc(RBraceLoc);
8018    }
8019    PopDeclContext();
8020  }
8021  return LinkageSpec;
8022}
8023
8024/// \brief Perform semantic analysis for the variable declaration that
8025/// occurs within a C++ catch clause, returning the newly-created
8026/// variable.
8027VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
8028                                         TypeSourceInfo *TInfo,
8029                                         SourceLocation StartLoc,
8030                                         SourceLocation Loc,
8031                                         IdentifierInfo *Name) {
8032  bool Invalid = false;
8033  QualType ExDeclType = TInfo->getType();
8034
8035  // Arrays and functions decay.
8036  if (ExDeclType->isArrayType())
8037    ExDeclType = Context.getArrayDecayedType(ExDeclType);
8038  else if (ExDeclType->isFunctionType())
8039    ExDeclType = Context.getPointerType(ExDeclType);
8040
8041  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
8042  // The exception-declaration shall not denote a pointer or reference to an
8043  // incomplete type, other than [cv] void*.
8044  // N2844 forbids rvalue references.
8045  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8046    Diag(Loc, diag::err_catch_rvalue_ref);
8047    Invalid = true;
8048  }
8049
8050  // GCC allows catching pointers and references to incomplete types
8051  // as an extension; so do we, but we warn by default.
8052
8053  QualType BaseType = ExDeclType;
8054  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8055  unsigned DK = diag::err_catch_incomplete;
8056  bool IncompleteCatchIsInvalid = true;
8057  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8058    BaseType = Ptr->getPointeeType();
8059    Mode = 1;
8060    DK = diag::ext_catch_incomplete_ptr;
8061    IncompleteCatchIsInvalid = false;
8062  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8063    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8064    BaseType = Ref->getPointeeType();
8065    Mode = 2;
8066    DK = diag::ext_catch_incomplete_ref;
8067    IncompleteCatchIsInvalid = false;
8068  }
8069  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8070      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8071      IncompleteCatchIsInvalid)
8072    Invalid = true;
8073
8074  if (!Invalid && !ExDeclType->isDependentType() &&
8075      RequireNonAbstractType(Loc, ExDeclType,
8076                             diag::err_abstract_type_in_decl,
8077                             AbstractVariableType))
8078    Invalid = true;
8079
8080  // Only the non-fragile NeXT runtime currently supports C++ catches
8081  // of ObjC types, and no runtime supports catching ObjC types by value.
8082  if (!Invalid && getLangOptions().ObjC1) {
8083    QualType T = ExDeclType;
8084    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8085      T = RT->getPointeeType();
8086
8087    if (T->isObjCObjectType()) {
8088      Diag(Loc, diag::err_objc_object_catch);
8089      Invalid = true;
8090    } else if (T->isObjCObjectPointerType()) {
8091      if (!getLangOptions().ObjCNonFragileABI)
8092        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
8093    }
8094  }
8095
8096  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8097                                    ExDeclType, TInfo, SC_None, SC_None);
8098  ExDecl->setExceptionVariable(true);
8099
8100  if (!Invalid && !ExDeclType->isDependentType()) {
8101    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8102      // C++ [except.handle]p16:
8103      //   The object declared in an exception-declaration or, if the
8104      //   exception-declaration does not specify a name, a temporary (12.2) is
8105      //   copy-initialized (8.5) from the exception object. [...]
8106      //   The object is destroyed when the handler exits, after the destruction
8107      //   of any automatic objects initialized within the handler.
8108      //
8109      // We just pretend to initialize the object with itself, then make sure
8110      // it can be destroyed later.
8111      QualType initType = ExDeclType;
8112
8113      InitializedEntity entity =
8114        InitializedEntity::InitializeVariable(ExDecl);
8115      InitializationKind initKind =
8116        InitializationKind::CreateCopy(Loc, SourceLocation());
8117
8118      Expr *opaqueValue =
8119        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8120      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8121      ExprResult result = sequence.Perform(*this, entity, initKind,
8122                                           MultiExprArg(&opaqueValue, 1));
8123      if (result.isInvalid())
8124        Invalid = true;
8125      else {
8126        // If the constructor used was non-trivial, set this as the
8127        // "initializer".
8128        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8129        if (!construct->getConstructor()->isTrivial()) {
8130          Expr *init = MaybeCreateExprWithCleanups(construct);
8131          ExDecl->setInit(init);
8132        }
8133
8134        // And make sure it's destructable.
8135        FinalizeVarWithDestructor(ExDecl, recordType);
8136      }
8137    }
8138  }
8139
8140  if (Invalid)
8141    ExDecl->setInvalidDecl();
8142
8143  return ExDecl;
8144}
8145
8146/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8147/// handler.
8148Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8149  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8150  bool Invalid = D.isInvalidType();
8151
8152  // Check for unexpanded parameter packs.
8153  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8154                                               UPPC_ExceptionType)) {
8155    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8156                                             D.getIdentifierLoc());
8157    Invalid = true;
8158  }
8159
8160  IdentifierInfo *II = D.getIdentifier();
8161  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8162                                             LookupOrdinaryName,
8163                                             ForRedeclaration)) {
8164    // The scope should be freshly made just for us. There is just no way
8165    // it contains any previous declaration.
8166    assert(!S->isDeclScope(PrevDecl));
8167    if (PrevDecl->isTemplateParameter()) {
8168      // Maybe we will complain about the shadowed template parameter.
8169      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8170    }
8171  }
8172
8173  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8174    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8175      << D.getCXXScopeSpec().getRange();
8176    Invalid = true;
8177  }
8178
8179  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8180                                              D.getSourceRange().getBegin(),
8181                                              D.getIdentifierLoc(),
8182                                              D.getIdentifier());
8183  if (Invalid)
8184    ExDecl->setInvalidDecl();
8185
8186  // Add the exception declaration into this scope.
8187  if (II)
8188    PushOnScopeChains(ExDecl, S);
8189  else
8190    CurContext->addDecl(ExDecl);
8191
8192  ProcessDeclAttributes(S, ExDecl, D);
8193  return ExDecl;
8194}
8195
8196Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8197                                         Expr *AssertExpr,
8198                                         Expr *AssertMessageExpr_,
8199                                         SourceLocation RParenLoc) {
8200  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8201
8202  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8203    llvm::APSInt Value(32);
8204    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8205      Diag(StaticAssertLoc,
8206           diag::err_static_assert_expression_is_not_constant) <<
8207        AssertExpr->getSourceRange();
8208      return 0;
8209    }
8210
8211    if (Value == 0) {
8212      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8213        << AssertMessage->getString() << AssertExpr->getSourceRange();
8214    }
8215  }
8216
8217  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8218    return 0;
8219
8220  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8221                                        AssertExpr, AssertMessage, RParenLoc);
8222
8223  CurContext->addDecl(Decl);
8224  return Decl;
8225}
8226
8227/// \brief Perform semantic analysis of the given friend type declaration.
8228///
8229/// \returns A friend declaration that.
8230FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8231                                      TypeSourceInfo *TSInfo) {
8232  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8233
8234  QualType T = TSInfo->getType();
8235  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8236
8237  if (!getLangOptions().CPlusPlus0x) {
8238    // C++03 [class.friend]p2:
8239    //   An elaborated-type-specifier shall be used in a friend declaration
8240    //   for a class.*
8241    //
8242    //   * The class-key of the elaborated-type-specifier is required.
8243    if (!ActiveTemplateInstantiations.empty()) {
8244      // Do not complain about the form of friend template types during
8245      // template instantiation; we will already have complained when the
8246      // template was declared.
8247    } else if (!T->isElaboratedTypeSpecifier()) {
8248      // If we evaluated the type to a record type, suggest putting
8249      // a tag in front.
8250      if (const RecordType *RT = T->getAs<RecordType>()) {
8251        RecordDecl *RD = RT->getDecl();
8252
8253        std::string InsertionText = std::string(" ") + RD->getKindName();
8254
8255        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8256          << (unsigned) RD->getTagKind()
8257          << T
8258          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8259                                        InsertionText);
8260      } else {
8261        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8262          << T
8263          << SourceRange(FriendLoc, TypeRange.getEnd());
8264      }
8265    } else if (T->getAs<EnumType>()) {
8266      Diag(FriendLoc, diag::ext_enum_friend)
8267        << T
8268        << SourceRange(FriendLoc, TypeRange.getEnd());
8269    }
8270  }
8271
8272  // C++0x [class.friend]p3:
8273  //   If the type specifier in a friend declaration designates a (possibly
8274  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8275  //   the friend declaration is ignored.
8276
8277  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8278  // in [class.friend]p3 that we do not implement.
8279
8280  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8281}
8282
8283/// Handle a friend tag declaration where the scope specifier was
8284/// templated.
8285Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8286                                    unsigned TagSpec, SourceLocation TagLoc,
8287                                    CXXScopeSpec &SS,
8288                                    IdentifierInfo *Name, SourceLocation NameLoc,
8289                                    AttributeList *Attr,
8290                                    MultiTemplateParamsArg TempParamLists) {
8291  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8292
8293  bool isExplicitSpecialization = false;
8294  bool Invalid = false;
8295
8296  if (TemplateParameterList *TemplateParams
8297        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8298                                                  TempParamLists.get(),
8299                                                  TempParamLists.size(),
8300                                                  /*friend*/ true,
8301                                                  isExplicitSpecialization,
8302                                                  Invalid)) {
8303    if (TemplateParams->size() > 0) {
8304      // This is a declaration of a class template.
8305      if (Invalid)
8306        return 0;
8307
8308      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8309                                SS, Name, NameLoc, Attr,
8310                                TemplateParams, AS_public,
8311                                TempParamLists.size() - 1,
8312                   (TemplateParameterList**) TempParamLists.release()).take();
8313    } else {
8314      // The "template<>" header is extraneous.
8315      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8316        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8317      isExplicitSpecialization = true;
8318    }
8319  }
8320
8321  if (Invalid) return 0;
8322
8323  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8324
8325  bool isAllExplicitSpecializations = true;
8326  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8327    if (TempParamLists.get()[I]->size()) {
8328      isAllExplicitSpecializations = false;
8329      break;
8330    }
8331  }
8332
8333  // FIXME: don't ignore attributes.
8334
8335  // If it's explicit specializations all the way down, just forget
8336  // about the template header and build an appropriate non-templated
8337  // friend.  TODO: for source fidelity, remember the headers.
8338  if (isAllExplicitSpecializations) {
8339    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8340    ElaboratedTypeKeyword Keyword
8341      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8342    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8343                                   *Name, NameLoc);
8344    if (T.isNull())
8345      return 0;
8346
8347    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8348    if (isa<DependentNameType>(T)) {
8349      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8350      TL.setKeywordLoc(TagLoc);
8351      TL.setQualifierLoc(QualifierLoc);
8352      TL.setNameLoc(NameLoc);
8353    } else {
8354      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8355      TL.setKeywordLoc(TagLoc);
8356      TL.setQualifierLoc(QualifierLoc);
8357      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8358    }
8359
8360    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8361                                            TSI, FriendLoc);
8362    Friend->setAccess(AS_public);
8363    CurContext->addDecl(Friend);
8364    return Friend;
8365  }
8366
8367  // Handle the case of a templated-scope friend class.  e.g.
8368  //   template <class T> class A<T>::B;
8369  // FIXME: we don't support these right now.
8370  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8371  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8372  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8373  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8374  TL.setKeywordLoc(TagLoc);
8375  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8376  TL.setNameLoc(NameLoc);
8377
8378  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8379                                          TSI, FriendLoc);
8380  Friend->setAccess(AS_public);
8381  Friend->setUnsupportedFriend(true);
8382  CurContext->addDecl(Friend);
8383  return Friend;
8384}
8385
8386
8387/// Handle a friend type declaration.  This works in tandem with
8388/// ActOnTag.
8389///
8390/// Notes on friend class templates:
8391///
8392/// We generally treat friend class declarations as if they were
8393/// declaring a class.  So, for example, the elaborated type specifier
8394/// in a friend declaration is required to obey the restrictions of a
8395/// class-head (i.e. no typedefs in the scope chain), template
8396/// parameters are required to match up with simple template-ids, &c.
8397/// However, unlike when declaring a template specialization, it's
8398/// okay to refer to a template specialization without an empty
8399/// template parameter declaration, e.g.
8400///   friend class A<T>::B<unsigned>;
8401/// We permit this as a special case; if there are any template
8402/// parameters present at all, require proper matching, i.e.
8403///   template <> template <class T> friend class A<int>::B;
8404Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8405                                MultiTemplateParamsArg TempParams) {
8406  SourceLocation Loc = DS.getSourceRange().getBegin();
8407
8408  assert(DS.isFriendSpecified());
8409  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8410
8411  // Try to convert the decl specifier to a type.  This works for
8412  // friend templates because ActOnTag never produces a ClassTemplateDecl
8413  // for a TUK_Friend.
8414  Declarator TheDeclarator(DS, Declarator::MemberContext);
8415  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8416  QualType T = TSI->getType();
8417  if (TheDeclarator.isInvalidType())
8418    return 0;
8419
8420  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8421    return 0;
8422
8423  // This is definitely an error in C++98.  It's probably meant to
8424  // be forbidden in C++0x, too, but the specification is just
8425  // poorly written.
8426  //
8427  // The problem is with declarations like the following:
8428  //   template <T> friend A<T>::foo;
8429  // where deciding whether a class C is a friend or not now hinges
8430  // on whether there exists an instantiation of A that causes
8431  // 'foo' to equal C.  There are restrictions on class-heads
8432  // (which we declare (by fiat) elaborated friend declarations to
8433  // be) that makes this tractable.
8434  //
8435  // FIXME: handle "template <> friend class A<T>;", which
8436  // is possibly well-formed?  Who even knows?
8437  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8438    Diag(Loc, diag::err_tagless_friend_type_template)
8439      << DS.getSourceRange();
8440    return 0;
8441  }
8442
8443  // C++98 [class.friend]p1: A friend of a class is a function
8444  //   or class that is not a member of the class . . .
8445  // This is fixed in DR77, which just barely didn't make the C++03
8446  // deadline.  It's also a very silly restriction that seriously
8447  // affects inner classes and which nobody else seems to implement;
8448  // thus we never diagnose it, not even in -pedantic.
8449  //
8450  // But note that we could warn about it: it's always useless to
8451  // friend one of your own members (it's not, however, worthless to
8452  // friend a member of an arbitrary specialization of your template).
8453
8454  Decl *D;
8455  if (unsigned NumTempParamLists = TempParams.size())
8456    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8457                                   NumTempParamLists,
8458                                   TempParams.release(),
8459                                   TSI,
8460                                   DS.getFriendSpecLoc());
8461  else
8462    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8463
8464  if (!D)
8465    return 0;
8466
8467  D->setAccess(AS_public);
8468  CurContext->addDecl(D);
8469
8470  return D;
8471}
8472
8473Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8474                                    MultiTemplateParamsArg TemplateParams) {
8475  const DeclSpec &DS = D.getDeclSpec();
8476
8477  assert(DS.isFriendSpecified());
8478  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8479
8480  SourceLocation Loc = D.getIdentifierLoc();
8481  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8482  QualType T = TInfo->getType();
8483
8484  // C++ [class.friend]p1
8485  //   A friend of a class is a function or class....
8486  // Note that this sees through typedefs, which is intended.
8487  // It *doesn't* see through dependent types, which is correct
8488  // according to [temp.arg.type]p3:
8489  //   If a declaration acquires a function type through a
8490  //   type dependent on a template-parameter and this causes
8491  //   a declaration that does not use the syntactic form of a
8492  //   function declarator to have a function type, the program
8493  //   is ill-formed.
8494  if (!T->isFunctionType()) {
8495    Diag(Loc, diag::err_unexpected_friend);
8496
8497    // It might be worthwhile to try to recover by creating an
8498    // appropriate declaration.
8499    return 0;
8500  }
8501
8502  // C++ [namespace.memdef]p3
8503  //  - If a friend declaration in a non-local class first declares a
8504  //    class or function, the friend class or function is a member
8505  //    of the innermost enclosing namespace.
8506  //  - The name of the friend is not found by simple name lookup
8507  //    until a matching declaration is provided in that namespace
8508  //    scope (either before or after the class declaration granting
8509  //    friendship).
8510  //  - If a friend function is called, its name may be found by the
8511  //    name lookup that considers functions from namespaces and
8512  //    classes associated with the types of the function arguments.
8513  //  - When looking for a prior declaration of a class or a function
8514  //    declared as a friend, scopes outside the innermost enclosing
8515  //    namespace scope are not considered.
8516
8517  CXXScopeSpec &SS = D.getCXXScopeSpec();
8518  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8519  DeclarationName Name = NameInfo.getName();
8520  assert(Name);
8521
8522  // Check for unexpanded parameter packs.
8523  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8524      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8525      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8526    return 0;
8527
8528  // The context we found the declaration in, or in which we should
8529  // create the declaration.
8530  DeclContext *DC;
8531  Scope *DCScope = S;
8532  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8533                        ForRedeclaration);
8534
8535  // FIXME: there are different rules in local classes
8536
8537  // There are four cases here.
8538  //   - There's no scope specifier, in which case we just go to the
8539  //     appropriate scope and look for a function or function template
8540  //     there as appropriate.
8541  // Recover from invalid scope qualifiers as if they just weren't there.
8542  if (SS.isInvalid() || !SS.isSet()) {
8543    // C++0x [namespace.memdef]p3:
8544    //   If the name in a friend declaration is neither qualified nor
8545    //   a template-id and the declaration is a function or an
8546    //   elaborated-type-specifier, the lookup to determine whether
8547    //   the entity has been previously declared shall not consider
8548    //   any scopes outside the innermost enclosing namespace.
8549    // C++0x [class.friend]p11:
8550    //   If a friend declaration appears in a local class and the name
8551    //   specified is an unqualified name, a prior declaration is
8552    //   looked up without considering scopes that are outside the
8553    //   innermost enclosing non-class scope. For a friend function
8554    //   declaration, if there is no prior declaration, the program is
8555    //   ill-formed.
8556    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8557    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8558
8559    // Find the appropriate context according to the above.
8560    DC = CurContext;
8561    while (true) {
8562      // Skip class contexts.  If someone can cite chapter and verse
8563      // for this behavior, that would be nice --- it's what GCC and
8564      // EDG do, and it seems like a reasonable intent, but the spec
8565      // really only says that checks for unqualified existing
8566      // declarations should stop at the nearest enclosing namespace,
8567      // not that they should only consider the nearest enclosing
8568      // namespace.
8569      while (DC->isRecord())
8570        DC = DC->getParent();
8571
8572      LookupQualifiedName(Previous, DC);
8573
8574      // TODO: decide what we think about using declarations.
8575      if (isLocal || !Previous.empty())
8576        break;
8577
8578      if (isTemplateId) {
8579        if (isa<TranslationUnitDecl>(DC)) break;
8580      } else {
8581        if (DC->isFileContext()) break;
8582      }
8583      DC = DC->getParent();
8584    }
8585
8586    // C++ [class.friend]p1: A friend of a class is a function or
8587    //   class that is not a member of the class . . .
8588    // C++0x changes this for both friend types and functions.
8589    // Most C++ 98 compilers do seem to give an error here, so
8590    // we do, too.
8591    if (!Previous.empty() && DC->Equals(CurContext)
8592        && !getLangOptions().CPlusPlus0x)
8593      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8594
8595    DCScope = getScopeForDeclContext(S, DC);
8596
8597  //   - There's a non-dependent scope specifier, in which case we
8598  //     compute it and do a previous lookup there for a function
8599  //     or function template.
8600  } else if (!SS.getScopeRep()->isDependent()) {
8601    DC = computeDeclContext(SS);
8602    if (!DC) return 0;
8603
8604    if (RequireCompleteDeclContext(SS, DC)) return 0;
8605
8606    LookupQualifiedName(Previous, DC);
8607
8608    // Ignore things found implicitly in the wrong scope.
8609    // TODO: better diagnostics for this case.  Suggesting the right
8610    // qualified scope would be nice...
8611    LookupResult::Filter F = Previous.makeFilter();
8612    while (F.hasNext()) {
8613      NamedDecl *D = F.next();
8614      if (!DC->InEnclosingNamespaceSetOf(
8615              D->getDeclContext()->getRedeclContext()))
8616        F.erase();
8617    }
8618    F.done();
8619
8620    if (Previous.empty()) {
8621      D.setInvalidType();
8622      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8623      return 0;
8624    }
8625
8626    // C++ [class.friend]p1: A friend of a class is a function or
8627    //   class that is not a member of the class . . .
8628    if (DC->Equals(CurContext))
8629      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8630
8631  //   - There's a scope specifier that does not match any template
8632  //     parameter lists, in which case we use some arbitrary context,
8633  //     create a method or method template, and wait for instantiation.
8634  //   - There's a scope specifier that does match some template
8635  //     parameter lists, which we don't handle right now.
8636  } else {
8637    DC = CurContext;
8638    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8639  }
8640
8641  if (!DC->isRecord()) {
8642    // This implies that it has to be an operator or function.
8643    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8644        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8645        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8646      Diag(Loc, diag::err_introducing_special_friend) <<
8647        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8648         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8649      return 0;
8650    }
8651  }
8652
8653  bool Redeclaration = false;
8654  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8655                                          move(TemplateParams),
8656                                          IsDefinition,
8657                                          Redeclaration);
8658  if (!ND) return 0;
8659
8660  assert(ND->getDeclContext() == DC);
8661  assert(ND->getLexicalDeclContext() == CurContext);
8662
8663  // Add the function declaration to the appropriate lookup tables,
8664  // adjusting the redeclarations list as necessary.  We don't
8665  // want to do this yet if the friending class is dependent.
8666  //
8667  // Also update the scope-based lookup if the target context's
8668  // lookup context is in lexical scope.
8669  if (!CurContext->isDependentContext()) {
8670    DC = DC->getRedeclContext();
8671    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8672    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8673      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8674  }
8675
8676  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8677                                       D.getIdentifierLoc(), ND,
8678                                       DS.getFriendSpecLoc());
8679  FrD->setAccess(AS_public);
8680  CurContext->addDecl(FrD);
8681
8682  if (ND->isInvalidDecl())
8683    FrD->setInvalidDecl();
8684  else {
8685    FunctionDecl *FD;
8686    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8687      FD = FTD->getTemplatedDecl();
8688    else
8689      FD = cast<FunctionDecl>(ND);
8690
8691    // Mark templated-scope function declarations as unsupported.
8692    if (FD->getNumTemplateParameterLists())
8693      FrD->setUnsupportedFriend(true);
8694  }
8695
8696  return ND;
8697}
8698
8699void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8700  AdjustDeclIfTemplate(Dcl);
8701
8702  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8703  if (!Fn) {
8704    Diag(DelLoc, diag::err_deleted_non_function);
8705    return;
8706  }
8707  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8708    Diag(DelLoc, diag::err_deleted_decl_not_first);
8709    Diag(Prev->getLocation(), diag::note_previous_declaration);
8710    // If the declaration wasn't the first, we delete the function anyway for
8711    // recovery.
8712  }
8713  Fn->setDeletedAsWritten();
8714}
8715
8716void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8717  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8718
8719  if (MD) {
8720    if (MD->getParent()->isDependentType()) {
8721      MD->setDefaulted();
8722      MD->setExplicitlyDefaulted();
8723      return;
8724    }
8725
8726    CXXSpecialMember Member = getSpecialMember(MD);
8727    if (Member == CXXInvalid) {
8728      Diag(DefaultLoc, diag::err_default_special_members);
8729      return;
8730    }
8731
8732    MD->setDefaulted();
8733    MD->setExplicitlyDefaulted();
8734
8735    // If this definition appears within the record, do the checking when
8736    // the record is complete.
8737    const FunctionDecl *Primary = MD;
8738    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8739      // Find the uninstantiated declaration that actually had the '= default'
8740      // on it.
8741      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8742
8743    if (Primary == Primary->getCanonicalDecl())
8744      return;
8745
8746    switch (Member) {
8747    case CXXDefaultConstructor: {
8748      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8749      CheckExplicitlyDefaultedDefaultConstructor(CD);
8750      if (!CD->isInvalidDecl())
8751        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8752      break;
8753    }
8754
8755    case CXXCopyConstructor: {
8756      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8757      CheckExplicitlyDefaultedCopyConstructor(CD);
8758      if (!CD->isInvalidDecl())
8759        DefineImplicitCopyConstructor(DefaultLoc, CD);
8760      break;
8761    }
8762
8763    case CXXCopyAssignment: {
8764      CheckExplicitlyDefaultedCopyAssignment(MD);
8765      if (!MD->isInvalidDecl())
8766        DefineImplicitCopyAssignment(DefaultLoc, MD);
8767      break;
8768    }
8769
8770    case CXXDestructor: {
8771      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8772      CheckExplicitlyDefaultedDestructor(DD);
8773      if (!DD->isInvalidDecl())
8774        DefineImplicitDestructor(DefaultLoc, DD);
8775      break;
8776    }
8777
8778    case CXXMoveConstructor:
8779    case CXXMoveAssignment:
8780      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8781      break;
8782
8783    default:
8784      // FIXME: Do the rest once we have move functions
8785      break;
8786    }
8787  } else {
8788    Diag(DefaultLoc, diag::err_default_special_members);
8789  }
8790}
8791
8792static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8793  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8794    Stmt *SubStmt = *CI;
8795    if (!SubStmt)
8796      continue;
8797    if (isa<ReturnStmt>(SubStmt))
8798      Self.Diag(SubStmt->getSourceRange().getBegin(),
8799           diag::err_return_in_constructor_handler);
8800    if (!isa<Expr>(SubStmt))
8801      SearchForReturnInStmt(Self, SubStmt);
8802  }
8803}
8804
8805void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8806  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8807    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8808    SearchForReturnInStmt(*this, Handler);
8809  }
8810}
8811
8812bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8813                                             const CXXMethodDecl *Old) {
8814  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8815  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8816
8817  if (Context.hasSameType(NewTy, OldTy) ||
8818      NewTy->isDependentType() || OldTy->isDependentType())
8819    return false;
8820
8821  // Check if the return types are covariant
8822  QualType NewClassTy, OldClassTy;
8823
8824  /// Both types must be pointers or references to classes.
8825  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8826    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8827      NewClassTy = NewPT->getPointeeType();
8828      OldClassTy = OldPT->getPointeeType();
8829    }
8830  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8831    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8832      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8833        NewClassTy = NewRT->getPointeeType();
8834        OldClassTy = OldRT->getPointeeType();
8835      }
8836    }
8837  }
8838
8839  // The return types aren't either both pointers or references to a class type.
8840  if (NewClassTy.isNull()) {
8841    Diag(New->getLocation(),
8842         diag::err_different_return_type_for_overriding_virtual_function)
8843      << New->getDeclName() << NewTy << OldTy;
8844    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8845
8846    return true;
8847  }
8848
8849  // C++ [class.virtual]p6:
8850  //   If the return type of D::f differs from the return type of B::f, the
8851  //   class type in the return type of D::f shall be complete at the point of
8852  //   declaration of D::f or shall be the class type D.
8853  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8854    if (!RT->isBeingDefined() &&
8855        RequireCompleteType(New->getLocation(), NewClassTy,
8856                            PDiag(diag::err_covariant_return_incomplete)
8857                              << New->getDeclName()))
8858    return true;
8859  }
8860
8861  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8862    // Check if the new class derives from the old class.
8863    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8864      Diag(New->getLocation(),
8865           diag::err_covariant_return_not_derived)
8866      << New->getDeclName() << NewTy << OldTy;
8867      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8868      return true;
8869    }
8870
8871    // Check if we the conversion from derived to base is valid.
8872    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8873                    diag::err_covariant_return_inaccessible_base,
8874                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8875                    // FIXME: Should this point to the return type?
8876                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8877      // FIXME: this note won't trigger for delayed access control
8878      // diagnostics, and it's impossible to get an undelayed error
8879      // here from access control during the original parse because
8880      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8881      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8882      return true;
8883    }
8884  }
8885
8886  // The qualifiers of the return types must be the same.
8887  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8888    Diag(New->getLocation(),
8889         diag::err_covariant_return_type_different_qualifications)
8890    << New->getDeclName() << NewTy << OldTy;
8891    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8892    return true;
8893  };
8894
8895
8896  // The new class type must have the same or less qualifiers as the old type.
8897  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8898    Diag(New->getLocation(),
8899         diag::err_covariant_return_type_class_type_more_qualified)
8900    << New->getDeclName() << NewTy << OldTy;
8901    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8902    return true;
8903  };
8904
8905  return false;
8906}
8907
8908/// \brief Mark the given method pure.
8909///
8910/// \param Method the method to be marked pure.
8911///
8912/// \param InitRange the source range that covers the "0" initializer.
8913bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8914  SourceLocation EndLoc = InitRange.getEnd();
8915  if (EndLoc.isValid())
8916    Method->setRangeEnd(EndLoc);
8917
8918  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8919    Method->setPure();
8920    return false;
8921  }
8922
8923  if (!Method->isInvalidDecl())
8924    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8925      << Method->getDeclName() << InitRange;
8926  return true;
8927}
8928
8929/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8930/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8931/// is a fresh scope pushed for just this purpose.
8932///
8933/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8934/// static data member of class X, names should be looked up in the scope of
8935/// class X.
8936void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8937  // If there is no declaration, there was an error parsing it.
8938  if (D == 0 || D->isInvalidDecl()) return;
8939
8940  // We should only get called for declarations with scope specifiers, like:
8941  //   int foo::bar;
8942  assert(D->isOutOfLine());
8943  EnterDeclaratorContext(S, D->getDeclContext());
8944}
8945
8946/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8947/// initializer for the out-of-line declaration 'D'.
8948void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8949  // If there is no declaration, there was an error parsing it.
8950  if (D == 0 || D->isInvalidDecl()) return;
8951
8952  assert(D->isOutOfLine());
8953  ExitDeclaratorContext(S);
8954}
8955
8956/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8957/// C++ if/switch/while/for statement.
8958/// e.g: "if (int x = f()) {...}"
8959DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8960  // C++ 6.4p2:
8961  // The declarator shall not specify a function or an array.
8962  // The type-specifier-seq shall not contain typedef and shall not declare a
8963  // new class or enumeration.
8964  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8965         "Parser allowed 'typedef' as storage class of condition decl.");
8966
8967  Decl *Dcl = ActOnDeclarator(S, D);
8968  if (!Dcl)
8969    return true;
8970
8971  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
8972    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
8973      << D.getSourceRange();
8974    return true;
8975  }
8976
8977  return Dcl;
8978}
8979
8980void Sema::LoadExternalVTableUses() {
8981  if (!ExternalSource)
8982    return;
8983
8984  SmallVector<ExternalVTableUse, 4> VTables;
8985  ExternalSource->ReadUsedVTables(VTables);
8986  SmallVector<VTableUse, 4> NewUses;
8987  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
8988    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
8989      = VTablesUsed.find(VTables[I].Record);
8990    // Even if a definition wasn't required before, it may be required now.
8991    if (Pos != VTablesUsed.end()) {
8992      if (!Pos->second && VTables[I].DefinitionRequired)
8993        Pos->second = true;
8994      continue;
8995    }
8996
8997    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
8998    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
8999  }
9000
9001  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
9002}
9003
9004void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
9005                          bool DefinitionRequired) {
9006  // Ignore any vtable uses in unevaluated operands or for classes that do
9007  // not have a vtable.
9008  if (!Class->isDynamicClass() || Class->isDependentContext() ||
9009      CurContext->isDependentContext() ||
9010      ExprEvalContexts.back().Context == Unevaluated)
9011    return;
9012
9013  // Try to insert this class into the map.
9014  LoadExternalVTableUses();
9015  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9016  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
9017    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
9018  if (!Pos.second) {
9019    // If we already had an entry, check to see if we are promoting this vtable
9020    // to required a definition. If so, we need to reappend to the VTableUses
9021    // list, since we may have already processed the first entry.
9022    if (DefinitionRequired && !Pos.first->second) {
9023      Pos.first->second = true;
9024    } else {
9025      // Otherwise, we can early exit.
9026      return;
9027    }
9028  }
9029
9030  // Local classes need to have their virtual members marked
9031  // immediately. For all other classes, we mark their virtual members
9032  // at the end of the translation unit.
9033  if (Class->isLocalClass())
9034    MarkVirtualMembersReferenced(Loc, Class);
9035  else
9036    VTableUses.push_back(std::make_pair(Class, Loc));
9037}
9038
9039bool Sema::DefineUsedVTables() {
9040  LoadExternalVTableUses();
9041  if (VTableUses.empty())
9042    return false;
9043
9044  // Note: The VTableUses vector could grow as a result of marking
9045  // the members of a class as "used", so we check the size each
9046  // time through the loop and prefer indices (with are stable) to
9047  // iterators (which are not).
9048  bool DefinedAnything = false;
9049  for (unsigned I = 0; I != VTableUses.size(); ++I) {
9050    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
9051    if (!Class)
9052      continue;
9053
9054    SourceLocation Loc = VTableUses[I].second;
9055
9056    // If this class has a key function, but that key function is
9057    // defined in another translation unit, we don't need to emit the
9058    // vtable even though we're using it.
9059    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
9060    if (KeyFunction && !KeyFunction->hasBody()) {
9061      switch (KeyFunction->getTemplateSpecializationKind()) {
9062      case TSK_Undeclared:
9063      case TSK_ExplicitSpecialization:
9064      case TSK_ExplicitInstantiationDeclaration:
9065        // The key function is in another translation unit.
9066        continue;
9067
9068      case TSK_ExplicitInstantiationDefinition:
9069      case TSK_ImplicitInstantiation:
9070        // We will be instantiating the key function.
9071        break;
9072      }
9073    } else if (!KeyFunction) {
9074      // If we have a class with no key function that is the subject
9075      // of an explicit instantiation declaration, suppress the
9076      // vtable; it will live with the explicit instantiation
9077      // definition.
9078      bool IsExplicitInstantiationDeclaration
9079        = Class->getTemplateSpecializationKind()
9080                                      == TSK_ExplicitInstantiationDeclaration;
9081      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9082                                 REnd = Class->redecls_end();
9083           R != REnd; ++R) {
9084        TemplateSpecializationKind TSK
9085          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9086        if (TSK == TSK_ExplicitInstantiationDeclaration)
9087          IsExplicitInstantiationDeclaration = true;
9088        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9089          IsExplicitInstantiationDeclaration = false;
9090          break;
9091        }
9092      }
9093
9094      if (IsExplicitInstantiationDeclaration)
9095        continue;
9096    }
9097
9098    // Mark all of the virtual members of this class as referenced, so
9099    // that we can build a vtable. Then, tell the AST consumer that a
9100    // vtable for this class is required.
9101    DefinedAnything = true;
9102    MarkVirtualMembersReferenced(Loc, Class);
9103    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9104    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9105
9106    // Optionally warn if we're emitting a weak vtable.
9107    if (Class->getLinkage() == ExternalLinkage &&
9108        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9109      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9110        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9111    }
9112  }
9113  VTableUses.clear();
9114
9115  return DefinedAnything;
9116}
9117
9118void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9119                                        const CXXRecordDecl *RD) {
9120  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9121       e = RD->method_end(); i != e; ++i) {
9122    CXXMethodDecl *MD = *i;
9123
9124    // C++ [basic.def.odr]p2:
9125    //   [...] A virtual member function is used if it is not pure. [...]
9126    if (MD->isVirtual() && !MD->isPure())
9127      MarkDeclarationReferenced(Loc, MD);
9128  }
9129
9130  // Only classes that have virtual bases need a VTT.
9131  if (RD->getNumVBases() == 0)
9132    return;
9133
9134  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9135           e = RD->bases_end(); i != e; ++i) {
9136    const CXXRecordDecl *Base =
9137        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9138    if (Base->getNumVBases() == 0)
9139      continue;
9140    MarkVirtualMembersReferenced(Loc, Base);
9141  }
9142}
9143
9144/// SetIvarInitializers - This routine builds initialization ASTs for the
9145/// Objective-C implementation whose ivars need be initialized.
9146void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9147  if (!getLangOptions().CPlusPlus)
9148    return;
9149  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9150    SmallVector<ObjCIvarDecl*, 8> ivars;
9151    CollectIvarsToConstructOrDestruct(OID, ivars);
9152    if (ivars.empty())
9153      return;
9154    SmallVector<CXXCtorInitializer*, 32> AllToInit;
9155    for (unsigned i = 0; i < ivars.size(); i++) {
9156      FieldDecl *Field = ivars[i];
9157      if (Field->isInvalidDecl())
9158        continue;
9159
9160      CXXCtorInitializer *Member;
9161      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9162      InitializationKind InitKind =
9163        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9164
9165      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9166      ExprResult MemberInit =
9167        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9168      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9169      // Note, MemberInit could actually come back empty if no initialization
9170      // is required (e.g., because it would call a trivial default constructor)
9171      if (!MemberInit.get() || MemberInit.isInvalid())
9172        continue;
9173
9174      Member =
9175        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9176                                         SourceLocation(),
9177                                         MemberInit.takeAs<Expr>(),
9178                                         SourceLocation());
9179      AllToInit.push_back(Member);
9180
9181      // Be sure that the destructor is accessible and is marked as referenced.
9182      if (const RecordType *RecordTy
9183                  = Context.getBaseElementType(Field->getType())
9184                                                        ->getAs<RecordType>()) {
9185                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9186        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9187          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9188          CheckDestructorAccess(Field->getLocation(), Destructor,
9189                            PDiag(diag::err_access_dtor_ivar)
9190                              << Context.getBaseElementType(Field->getType()));
9191        }
9192      }
9193    }
9194    ObjCImplementation->setIvarInitializers(Context,
9195                                            AllToInit.data(), AllToInit.size());
9196  }
9197}
9198
9199static
9200void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9201                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9202                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9203                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9204                           Sema &S) {
9205  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9206                                                   CE = Current.end();
9207  if (Ctor->isInvalidDecl())
9208    return;
9209
9210  const FunctionDecl *FNTarget = 0;
9211  CXXConstructorDecl *Target;
9212
9213  // We ignore the result here since if we don't have a body, Target will be
9214  // null below.
9215  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9216  Target
9217= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9218
9219  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9220                     // Avoid dereferencing a null pointer here.
9221                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9222
9223  if (!Current.insert(Canonical))
9224    return;
9225
9226  // We know that beyond here, we aren't chaining into a cycle.
9227  if (!Target || !Target->isDelegatingConstructor() ||
9228      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9229    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9230      Valid.insert(*CI);
9231    Current.clear();
9232  // We've hit a cycle.
9233  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9234             Current.count(TCanonical)) {
9235    // If we haven't diagnosed this cycle yet, do so now.
9236    if (!Invalid.count(TCanonical)) {
9237      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9238             diag::warn_delegating_ctor_cycle)
9239        << Ctor;
9240
9241      // Don't add a note for a function delegating directo to itself.
9242      if (TCanonical != Canonical)
9243        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9244
9245      CXXConstructorDecl *C = Target;
9246      while (C->getCanonicalDecl() != Canonical) {
9247        (void)C->getTargetConstructor()->hasBody(FNTarget);
9248        assert(FNTarget && "Ctor cycle through bodiless function");
9249
9250        C
9251       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9252        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9253      }
9254    }
9255
9256    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9257      Invalid.insert(*CI);
9258    Current.clear();
9259  } else {
9260    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9261  }
9262}
9263
9264
9265void Sema::CheckDelegatingCtorCycles() {
9266  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9267
9268  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9269                                                   CE = Current.end();
9270
9271  for (DelegatingCtorDeclsType::iterator
9272         I = DelegatingCtorDecls.begin(ExternalSource),
9273         E = DelegatingCtorDecls.end();
9274       I != E; ++I) {
9275   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9276  }
9277
9278  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9279    (*CI)->setInvalidDecl();
9280}
9281