SemaDeclCXX.cpp revision 558cb56caf8906e0adbe643e3febbef0b7af1b9f
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  // Create the base specifier.
373  // FIXME: Allocate via ASTContext?
374  return new CXXBaseSpecifier(SpecifierRange, Virtual,
375                              Class->getTagKind() == RecordDecl::TK_class,
376                              Access, BaseType);
377}
378
379/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
380/// one entry in the base class list of a class specifier, for
381/// example:
382///    class foo : public bar, virtual private baz {
383/// 'public bar' and 'virtual private baz' are each base-specifiers.
384Sema::BaseResult
385Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
386                         bool Virtual, AccessSpecifier Access,
387                         TypeTy *basetype, SourceLocation BaseLoc) {
388  AdjustDeclIfTemplate(classdecl);
389  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
390  QualType BaseType = QualType::getFromOpaquePtr(basetype);
391  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
392                                                      Virtual, Access,
393                                                      BaseType, BaseLoc))
394    return BaseSpec;
395
396  return true;
397}
398
399/// \brief Performs the actual work of attaching the given base class
400/// specifiers to a C++ class.
401bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
402                                unsigned NumBases) {
403 if (NumBases == 0)
404    return false;
405
406  // Used to keep track of which base types we have already seen, so
407  // that we can properly diagnose redundant direct base types. Note
408  // that the key is always the unqualified canonical type of the base
409  // class.
410  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
411
412  // Copy non-redundant base specifiers into permanent storage.
413  unsigned NumGoodBases = 0;
414  bool Invalid = false;
415  for (unsigned idx = 0; idx < NumBases; ++idx) {
416    QualType NewBaseType
417      = Context.getCanonicalType(Bases[idx]->getType());
418    NewBaseType = NewBaseType.getUnqualifiedType();
419
420    if (KnownBaseTypes[NewBaseType]) {
421      // C++ [class.mi]p3:
422      //   A class shall not be specified as a direct base class of a
423      //   derived class more than once.
424      Diag(Bases[idx]->getSourceRange().getBegin(),
425           diag::err_duplicate_base_class)
426        << KnownBaseTypes[NewBaseType]->getType()
427        << Bases[idx]->getSourceRange();
428
429      // Delete the duplicate base class specifier; we're going to
430      // overwrite its pointer later.
431      delete Bases[idx];
432
433      Invalid = true;
434    } else {
435      // Okay, add this new base class.
436      KnownBaseTypes[NewBaseType] = Bases[idx];
437      Bases[NumGoodBases++] = Bases[idx];
438    }
439  }
440
441  // Attach the remaining base class specifiers to the derived class.
442  Class->setBases(Bases, NumGoodBases);
443
444  // Delete the remaining (good) base class specifiers, since their
445  // data has been copied into the CXXRecordDecl.
446  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
447    delete Bases[idx];
448
449  return Invalid;
450}
451
452/// ActOnBaseSpecifiers - Attach the given base specifiers to the
453/// class, after checking whether there are any duplicate base
454/// classes.
455void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
456                               unsigned NumBases) {
457  if (!ClassDecl || !Bases || !NumBases)
458    return;
459
460  AdjustDeclIfTemplate(ClassDecl);
461  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
462                       (CXXBaseSpecifier**)(Bases), NumBases);
463}
464
465//===----------------------------------------------------------------------===//
466// C++ class member Handling
467//===----------------------------------------------------------------------===//
468
469/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
470/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
471/// bitfield width if there is one and 'InitExpr' specifies the initializer if
472/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
473/// declarators on it.
474Sema::DeclPtrTy
475Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
476                               ExprTy *BW, ExprTy *InitExpr) {
477  const DeclSpec &DS = D.getDeclSpec();
478  DeclarationName Name = GetNameForDeclarator(D);
479  Expr *BitWidth = static_cast<Expr*>(BW);
480  Expr *Init = static_cast<Expr*>(InitExpr);
481  SourceLocation Loc = D.getIdentifierLoc();
482
483  bool isFunc = D.isFunctionDeclarator();
484
485  // C++ 9.2p6: A member shall not be declared to have automatic storage
486  // duration (auto, register) or with the extern storage-class-specifier.
487  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
488  // data members and cannot be applied to names declared const or static,
489  // and cannot be applied to reference members.
490  switch (DS.getStorageClassSpec()) {
491    case DeclSpec::SCS_unspecified:
492    case DeclSpec::SCS_typedef:
493    case DeclSpec::SCS_static:
494      // FALL THROUGH.
495      break;
496    case DeclSpec::SCS_mutable:
497      if (isFunc) {
498        if (DS.getStorageClassSpecLoc().isValid())
499          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
500        else
501          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
502
503        // FIXME: It would be nicer if the keyword was ignored only for this
504        // declarator. Otherwise we could get follow-up errors.
505        D.getMutableDeclSpec().ClearStorageClassSpecs();
506      } else {
507        QualType T = GetTypeForDeclarator(D, S);
508        diag::kind err = static_cast<diag::kind>(0);
509        if (T->isReferenceType())
510          err = diag::err_mutable_reference;
511        else if (T.isConstQualified())
512          err = diag::err_mutable_const;
513        if (err != 0) {
514          if (DS.getStorageClassSpecLoc().isValid())
515            Diag(DS.getStorageClassSpecLoc(), err);
516          else
517            Diag(DS.getThreadSpecLoc(), err);
518          // FIXME: It would be nicer if the keyword was ignored only for this
519          // declarator. Otherwise we could get follow-up errors.
520          D.getMutableDeclSpec().ClearStorageClassSpecs();
521        }
522      }
523      break;
524    default:
525      if (DS.getStorageClassSpecLoc().isValid())
526        Diag(DS.getStorageClassSpecLoc(),
527             diag::err_storageclass_invalid_for_member);
528      else
529        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
530      D.getMutableDeclSpec().ClearStorageClassSpecs();
531  }
532
533  if (!isFunc &&
534      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
535      D.getNumTypeObjects() == 0) {
536    // Check also for this case:
537    //
538    // typedef int f();
539    // f a;
540    //
541    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
542    isFunc = TDType->isFunctionType();
543  }
544
545  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
546                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
547                      !isFunc);
548
549  Decl *Member;
550  if (isInstField) {
551    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
552                         AS);
553    assert(Member && "HandleField never returns null");
554  } else {
555    Member = ActOnDeclarator(S, D).getAs<Decl>();
556    if (!Member) {
557      if (BitWidth) DeleteExpr(BitWidth);
558      return DeclPtrTy();
559    }
560
561    // Non-instance-fields can't have a bitfield.
562    if (BitWidth) {
563      if (Member->isInvalidDecl()) {
564        // don't emit another diagnostic.
565      } else if (isa<VarDecl>(Member)) {
566        // C++ 9.6p3: A bit-field shall not be a static member.
567        // "static member 'A' cannot be a bit-field"
568        Diag(Loc, diag::err_static_not_bitfield)
569          << Name << BitWidth->getSourceRange();
570      } else if (isa<TypedefDecl>(Member)) {
571        // "typedef member 'x' cannot be a bit-field"
572        Diag(Loc, diag::err_typedef_not_bitfield)
573          << Name << BitWidth->getSourceRange();
574      } else {
575        // A function typedef ("typedef int f(); f a;").
576        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
577        Diag(Loc, diag::err_not_integral_type_bitfield)
578          << Name << cast<ValueDecl>(Member)->getType()
579          << BitWidth->getSourceRange();
580      }
581
582      DeleteExpr(BitWidth);
583      BitWidth = 0;
584      Member->setInvalidDecl();
585    }
586
587    Member->setAccess(AS);
588  }
589
590  assert((Name || isInstField) && "No identifier for non-field ?");
591
592  if (Init)
593    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
594
595  if (isInstField) {
596    FieldCollector->Add(cast<FieldDecl>(Member));
597    return DeclPtrTy();
598  }
599  return DeclPtrTy::make(Member);
600}
601
602/// ActOnMemInitializer - Handle a C++ member initializer.
603Sema::MemInitResult
604Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
605                          Scope *S,
606                          IdentifierInfo *MemberOrBase,
607                          SourceLocation IdLoc,
608                          SourceLocation LParenLoc,
609                          ExprTy **Args, unsigned NumArgs,
610                          SourceLocation *CommaLocs,
611                          SourceLocation RParenLoc) {
612  CXXConstructorDecl *Constructor
613    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
614  if (!Constructor) {
615    // The user wrote a constructor initializer on a function that is
616    // not a C++ constructor. Ignore the error for now, because we may
617    // have more member initializers coming; we'll diagnose it just
618    // once in ActOnMemInitializers.
619    return true;
620  }
621
622  CXXRecordDecl *ClassDecl = Constructor->getParent();
623
624  // C++ [class.base.init]p2:
625  //   Names in a mem-initializer-id are looked up in the scope of the
626  //   constructor’s class and, if not found in that scope, are looked
627  //   up in the scope containing the constructor’s
628  //   definition. [Note: if the constructor’s class contains a member
629  //   with the same name as a direct or virtual base class of the
630  //   class, a mem-initializer-id naming the member or base class and
631  //   composed of a single identifier refers to the class member. A
632  //   mem-initializer-id for the hidden base class may be specified
633  //   using a qualified name. ]
634  // Look for a member, first.
635  FieldDecl *Member = 0;
636  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
637  if (Result.first != Result.second)
638    Member = dyn_cast<FieldDecl>(*Result.first);
639
640  // FIXME: Handle members of an anonymous union.
641
642  if (Member) {
643    // FIXME: Perform direct initialization of the member.
644    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
645  }
646
647  // It didn't name a member, so see if it names a class.
648  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
649  if (!BaseTy)
650    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
651      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
652
653  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
654  if (!BaseType->isRecordType())
655    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
656      << BaseType << SourceRange(IdLoc, RParenLoc);
657
658  // C++ [class.base.init]p2:
659  //   [...] Unless the mem-initializer-id names a nonstatic data
660  //   member of the constructor’s class or a direct or virtual base
661  //   of that class, the mem-initializer is ill-formed. A
662  //   mem-initializer-list can initialize a base class using any
663  //   name that denotes that base class type.
664
665  // First, check for a direct base class.
666  const CXXBaseSpecifier *DirectBaseSpec = 0;
667  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
668       Base != ClassDecl->bases_end(); ++Base) {
669    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
670        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
671      // We found a direct base of this type. That's what we're
672      // initializing.
673      DirectBaseSpec = &*Base;
674      break;
675    }
676  }
677
678  // Check for a virtual base class.
679  // FIXME: We might be able to short-circuit this if we know in
680  // advance that there are no virtual bases.
681  const CXXBaseSpecifier *VirtualBaseSpec = 0;
682  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
683    // We haven't found a base yet; search the class hierarchy for a
684    // virtual base class.
685    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
686                    /*DetectVirtual=*/false);
687    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
688      for (BasePaths::paths_iterator Path = Paths.begin();
689           Path != Paths.end(); ++Path) {
690        if (Path->back().Base->isVirtual()) {
691          VirtualBaseSpec = Path->back().Base;
692          break;
693        }
694      }
695    }
696  }
697
698  // C++ [base.class.init]p2:
699  //   If a mem-initializer-id is ambiguous because it designates both
700  //   a direct non-virtual base class and an inherited virtual base
701  //   class, the mem-initializer is ill-formed.
702  if (DirectBaseSpec && VirtualBaseSpec)
703    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
704      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
705
706  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
707}
708
709void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
710                                SourceLocation ColonLoc,
711                                MemInitTy **MemInits, unsigned NumMemInits) {
712  CXXConstructorDecl *Constructor =
713  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
714
715  if (!Constructor) {
716    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
717    return;
718  }
719}
720
721namespace {
722  /// PureVirtualMethodCollector - traverses a class and its superclasses
723  /// and determines if it has any pure virtual methods.
724  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
725    ASTContext &Context;
726
727  public:
728    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
729
730  private:
731    MethodList Methods;
732
733    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
734
735  public:
736    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
737      : Context(Ctx) {
738
739      MethodList List;
740      Collect(RD, List);
741
742      // Copy the temporary list to methods, and make sure to ignore any
743      // null entries.
744      for (size_t i = 0, e = List.size(); i != e; ++i) {
745        if (List[i])
746          Methods.push_back(List[i]);
747      }
748    }
749
750    bool empty() const { return Methods.empty(); }
751
752    MethodList::const_iterator methods_begin() { return Methods.begin(); }
753    MethodList::const_iterator methods_end() { return Methods.end(); }
754  };
755
756  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
757                                           MethodList& Methods) {
758    // First, collect the pure virtual methods for the base classes.
759    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
760         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
761      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
762        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
763        if (BaseDecl && BaseDecl->isAbstract())
764          Collect(BaseDecl, Methods);
765      }
766    }
767
768    // Next, zero out any pure virtual methods that this class overrides.
769    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
770      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
771      if (!VMD)
772        continue;
773
774      DeclContext::lookup_const_iterator I, E;
775      for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) {
776        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
777          if (Context.getCanonicalType(MD->getType()) ==
778              Context.getCanonicalType(VMD->getType())) {
779            // We did find a matching method, which means that this is not a
780            // pure virtual method in the current class. Zero it out.
781            Methods[i] = 0;
782          }
783        }
784      }
785    }
786
787    // Finally, add pure virtual methods from this class.
788    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
789         i != e; ++i) {
790      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
791        if (MD->isPure())
792          Methods.push_back(MD);
793      }
794    }
795  }
796}
797
798bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
799                                  unsigned DiagID, AbstractDiagSelID SelID,
800                                  const CXXRecordDecl *CurrentRD) {
801
802  if (!getLangOptions().CPlusPlus)
803    return false;
804
805  if (const ArrayType *AT = Context.getAsArrayType(T))
806    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
807                                  CurrentRD);
808
809  if (const PointerType *PT = T->getAsPointerType()) {
810    // Find the innermost pointer type.
811    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
812      PT = T;
813
814    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
815      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
816                                    CurrentRD);
817  }
818
819  const RecordType *RT = T->getAsRecordType();
820  if (!RT)
821    return false;
822
823  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
824  if (!RD)
825    return false;
826
827  if (CurrentRD && CurrentRD != RD)
828    return false;
829
830  if (!RD->isAbstract())
831    return false;
832
833  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
834
835  // Check if we've already emitted the list of pure virtual functions for this
836  // class.
837  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
838    return true;
839
840  PureVirtualMethodCollector Collector(Context, RD);
841
842  for (PureVirtualMethodCollector::MethodList::const_iterator I =
843       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
844    const CXXMethodDecl *MD = *I;
845
846    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
847      MD->getDeclName();
848  }
849
850  if (!PureVirtualClassDiagSet)
851    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
852  PureVirtualClassDiagSet->insert(RD);
853
854  return true;
855}
856
857namespace {
858  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
859    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
860    Sema &SemaRef;
861    CXXRecordDecl *AbstractClass;
862
863    bool VisitDeclContext(const DeclContext *DC) {
864      bool Invalid = false;
865
866      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
867           E = DC->decls_end(); I != E; ++I)
868        Invalid |= Visit(*I);
869
870      return Invalid;
871    }
872
873  public:
874    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
875      : SemaRef(SemaRef), AbstractClass(ac) {
876        Visit(SemaRef.Context.getTranslationUnitDecl());
877    }
878
879    bool VisitFunctionDecl(const FunctionDecl *FD) {
880      if (FD->isThisDeclarationADefinition()) {
881        // No need to do the check if we're in a definition, because it requires
882        // that the return/param types are complete.
883        // because that requires
884        return VisitDeclContext(FD);
885      }
886
887      // Check the return type.
888      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
889      bool Invalid =
890        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
891                                       diag::err_abstract_type_in_decl,
892                                       Sema::AbstractReturnType,
893                                       AbstractClass);
894
895      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
896           E = FD->param_end(); I != E; ++I) {
897        const ParmVarDecl *VD = *I;
898        Invalid |=
899          SemaRef.RequireNonAbstractType(VD->getLocation(),
900                                         VD->getOriginalType(),
901                                         diag::err_abstract_type_in_decl,
902                                         Sema::AbstractParamType,
903                                         AbstractClass);
904      }
905
906      return Invalid;
907    }
908
909    bool VisitDecl(const Decl* D) {
910      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
911        return VisitDeclContext(DC);
912
913      return false;
914    }
915  };
916}
917
918void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
919                                             DeclPtrTy TagDecl,
920                                             SourceLocation LBrac,
921                                             SourceLocation RBrac) {
922  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
923  ActOnFields(S, RLoc, TagDecl,
924              (DeclPtrTy*)FieldCollector->getCurFields(),
925              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
926
927  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
928  if (!RD->isAbstract()) {
929    // Collect all the pure virtual methods and see if this is an abstract
930    // class after all.
931    PureVirtualMethodCollector Collector(Context, RD);
932    if (!Collector.empty())
933      RD->setAbstract(true);
934  }
935
936  if (RD->isAbstract())
937    AbstractClassUsageDiagnoser(*this, RD);
938
939  if (!Template)
940    AddImplicitlyDeclaredMembersToClass(RD);
941}
942
943/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
944/// special functions, such as the default constructor, copy
945/// constructor, or destructor, to the given C++ class (C++
946/// [special]p1).  This routine can only be executed just before the
947/// definition of the class is complete.
948void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
949  QualType ClassType = Context.getTypeDeclType(ClassDecl);
950  ClassType = Context.getCanonicalType(ClassType);
951
952  if (!ClassDecl->hasUserDeclaredConstructor()) {
953    // C++ [class.ctor]p5:
954    //   A default constructor for a class X is a constructor of class X
955    //   that can be called without an argument. If there is no
956    //   user-declared constructor for class X, a default constructor is
957    //   implicitly declared. An implicitly-declared default constructor
958    //   is an inline public member of its class.
959    DeclarationName Name
960      = Context.DeclarationNames.getCXXConstructorName(ClassType);
961    CXXConstructorDecl *DefaultCon =
962      CXXConstructorDecl::Create(Context, ClassDecl,
963                                 ClassDecl->getLocation(), Name,
964                                 Context.getFunctionType(Context.VoidTy,
965                                                         0, 0, false, 0),
966                                 /*isExplicit=*/false,
967                                 /*isInline=*/true,
968                                 /*isImplicitlyDeclared=*/true);
969    DefaultCon->setAccess(AS_public);
970    DefaultCon->setImplicit();
971    ClassDecl->addDecl(DefaultCon);
972
973    // Notify the class that we've added a constructor.
974    ClassDecl->addedConstructor(Context, DefaultCon);
975  }
976
977  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
978    // C++ [class.copy]p4:
979    //   If the class definition does not explicitly declare a copy
980    //   constructor, one is declared implicitly.
981
982    // C++ [class.copy]p5:
983    //   The implicitly-declared copy constructor for a class X will
984    //   have the form
985    //
986    //       X::X(const X&)
987    //
988    //   if
989    bool HasConstCopyConstructor = true;
990
991    //     -- each direct or virtual base class B of X has a copy
992    //        constructor whose first parameter is of type const B& or
993    //        const volatile B&, and
994    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
995         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
996      const CXXRecordDecl *BaseClassDecl
997        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
998      HasConstCopyConstructor
999        = BaseClassDecl->hasConstCopyConstructor(Context);
1000    }
1001
1002    //     -- for all the nonstatic data members of X that are of a
1003    //        class type M (or array thereof), each such class type
1004    //        has a copy constructor whose first parameter is of type
1005    //        const M& or const volatile M&.
1006    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1007         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
1008      QualType FieldType = (*Field)->getType();
1009      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1010        FieldType = Array->getElementType();
1011      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1012        const CXXRecordDecl *FieldClassDecl
1013          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1014        HasConstCopyConstructor
1015          = FieldClassDecl->hasConstCopyConstructor(Context);
1016      }
1017    }
1018
1019    //   Otherwise, the implicitly declared copy constructor will have
1020    //   the form
1021    //
1022    //       X::X(X&)
1023    QualType ArgType = ClassType;
1024    if (HasConstCopyConstructor)
1025      ArgType = ArgType.withConst();
1026    ArgType = Context.getLValueReferenceType(ArgType);
1027
1028    //   An implicitly-declared copy constructor is an inline public
1029    //   member of its class.
1030    DeclarationName Name
1031      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1032    CXXConstructorDecl *CopyConstructor
1033      = CXXConstructorDecl::Create(Context, ClassDecl,
1034                                   ClassDecl->getLocation(), Name,
1035                                   Context.getFunctionType(Context.VoidTy,
1036                                                           &ArgType, 1,
1037                                                           false, 0),
1038                                   /*isExplicit=*/false,
1039                                   /*isInline=*/true,
1040                                   /*isImplicitlyDeclared=*/true);
1041    CopyConstructor->setAccess(AS_public);
1042    CopyConstructor->setImplicit();
1043
1044    // Add the parameter to the constructor.
1045    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1046                                                 ClassDecl->getLocation(),
1047                                                 /*IdentifierInfo=*/0,
1048                                                 ArgType, VarDecl::None, 0);
1049    CopyConstructor->setParams(Context, &FromParam, 1);
1050
1051    ClassDecl->addedConstructor(Context, CopyConstructor);
1052    ClassDecl->addDecl(CopyConstructor);
1053  }
1054
1055  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1056    // Note: The following rules are largely analoguous to the copy
1057    // constructor rules. Note that virtual bases are not taken into account
1058    // for determining the argument type of the operator. Note also that
1059    // operators taking an object instead of a reference are allowed.
1060    //
1061    // C++ [class.copy]p10:
1062    //   If the class definition does not explicitly declare a copy
1063    //   assignment operator, one is declared implicitly.
1064    //   The implicitly-defined copy assignment operator for a class X
1065    //   will have the form
1066    //
1067    //       X& X::operator=(const X&)
1068    //
1069    //   if
1070    bool HasConstCopyAssignment = true;
1071
1072    //       -- each direct base class B of X has a copy assignment operator
1073    //          whose parameter is of type const B&, const volatile B& or B,
1074    //          and
1075    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1076         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1077      const CXXRecordDecl *BaseClassDecl
1078        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1079      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1080    }
1081
1082    //       -- for all the nonstatic data members of X that are of a class
1083    //          type M (or array thereof), each such class type has a copy
1084    //          assignment operator whose parameter is of type const M&,
1085    //          const volatile M& or M.
1086    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1087         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
1088      QualType FieldType = (*Field)->getType();
1089      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1090        FieldType = Array->getElementType();
1091      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1092        const CXXRecordDecl *FieldClassDecl
1093          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1094        HasConstCopyAssignment
1095          = FieldClassDecl->hasConstCopyAssignment(Context);
1096      }
1097    }
1098
1099    //   Otherwise, the implicitly declared copy assignment operator will
1100    //   have the form
1101    //
1102    //       X& X::operator=(X&)
1103    QualType ArgType = ClassType;
1104    QualType RetType = Context.getLValueReferenceType(ArgType);
1105    if (HasConstCopyAssignment)
1106      ArgType = ArgType.withConst();
1107    ArgType = Context.getLValueReferenceType(ArgType);
1108
1109    //   An implicitly-declared copy assignment operator is an inline public
1110    //   member of its class.
1111    DeclarationName Name =
1112      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1113    CXXMethodDecl *CopyAssignment =
1114      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1115                            Context.getFunctionType(RetType, &ArgType, 1,
1116                                                    false, 0),
1117                            /*isStatic=*/false, /*isInline=*/true);
1118    CopyAssignment->setAccess(AS_public);
1119    CopyAssignment->setImplicit();
1120
1121    // Add the parameter to the operator.
1122    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1123                                                 ClassDecl->getLocation(),
1124                                                 /*IdentifierInfo=*/0,
1125                                                 ArgType, VarDecl::None, 0);
1126    CopyAssignment->setParams(Context, &FromParam, 1);
1127
1128    // Don't call addedAssignmentOperator. There is no way to distinguish an
1129    // implicit from an explicit assignment operator.
1130    ClassDecl->addDecl(CopyAssignment);
1131  }
1132
1133  if (!ClassDecl->hasUserDeclaredDestructor()) {
1134    // C++ [class.dtor]p2:
1135    //   If a class has no user-declared destructor, a destructor is
1136    //   declared implicitly. An implicitly-declared destructor is an
1137    //   inline public member of its class.
1138    DeclarationName Name
1139      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1140    CXXDestructorDecl *Destructor
1141      = CXXDestructorDecl::Create(Context, ClassDecl,
1142                                  ClassDecl->getLocation(), Name,
1143                                  Context.getFunctionType(Context.VoidTy,
1144                                                          0, 0, false, 0),
1145                                  /*isInline=*/true,
1146                                  /*isImplicitlyDeclared=*/true);
1147    Destructor->setAccess(AS_public);
1148    Destructor->setImplicit();
1149    ClassDecl->addDecl(Destructor);
1150  }
1151}
1152
1153/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1154/// parsing a top-level (non-nested) C++ class, and we are now
1155/// parsing those parts of the given Method declaration that could
1156/// not be parsed earlier (C++ [class.mem]p2), such as default
1157/// arguments. This action should enter the scope of the given
1158/// Method declaration as if we had just parsed the qualified method
1159/// name. However, it should not bring the parameters into scope;
1160/// that will be performed by ActOnDelayedCXXMethodParameter.
1161void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1162  CXXScopeSpec SS;
1163  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1164  QualType ClassTy
1165    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1166  SS.setScopeRep(
1167    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1168  ActOnCXXEnterDeclaratorScope(S, SS);
1169}
1170
1171/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1172/// C++ method declaration. We're (re-)introducing the given
1173/// function parameter into scope for use in parsing later parts of
1174/// the method declaration. For example, we could see an
1175/// ActOnParamDefaultArgument event for this parameter.
1176void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1177  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1178
1179  // If this parameter has an unparsed default argument, clear it out
1180  // to make way for the parsed default argument.
1181  if (Param->hasUnparsedDefaultArg())
1182    Param->setDefaultArg(0);
1183
1184  S->AddDecl(DeclPtrTy::make(Param));
1185  if (Param->getDeclName())
1186    IdResolver.AddDecl(Param);
1187}
1188
1189/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1190/// processing the delayed method declaration for Method. The method
1191/// declaration is now considered finished. There may be a separate
1192/// ActOnStartOfFunctionDef action later (not necessarily
1193/// immediately!) for this method, if it was also defined inside the
1194/// class body.
1195void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1196  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1197  CXXScopeSpec SS;
1198  QualType ClassTy
1199    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1200  SS.setScopeRep(
1201    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1202  ActOnCXXExitDeclaratorScope(S, SS);
1203
1204  // Now that we have our default arguments, check the constructor
1205  // again. It could produce additional diagnostics or affect whether
1206  // the class has implicitly-declared destructors, among other
1207  // things.
1208  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1209    if (CheckConstructor(Constructor))
1210      Constructor->setInvalidDecl();
1211  }
1212
1213  // Check the default arguments, which we may have added.
1214  if (!Method->isInvalidDecl())
1215    CheckCXXDefaultArguments(Method);
1216}
1217
1218/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1219/// the well-formedness of the constructor declarator @p D with type @p
1220/// R. If there are any errors in the declarator, this routine will
1221/// emit diagnostics and return true. Otherwise, it will return
1222/// false. Either way, the type @p R will be updated to reflect a
1223/// well-formed type for the constructor.
1224bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1225                                      FunctionDecl::StorageClass& SC) {
1226  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1227  bool isInvalid = false;
1228
1229  // C++ [class.ctor]p3:
1230  //   A constructor shall not be virtual (10.3) or static (9.4). A
1231  //   constructor can be invoked for a const, volatile or const
1232  //   volatile object. A constructor shall not be declared const,
1233  //   volatile, or const volatile (9.3.2).
1234  if (isVirtual) {
1235    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1236      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1237      << SourceRange(D.getIdentifierLoc());
1238    isInvalid = true;
1239  }
1240  if (SC == FunctionDecl::Static) {
1241    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1242      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1243      << SourceRange(D.getIdentifierLoc());
1244    isInvalid = true;
1245    SC = FunctionDecl::None;
1246  }
1247  if (D.getDeclSpec().hasTypeSpecifier()) {
1248    // Constructors don't have return types, but the parser will
1249    // happily parse something like:
1250    //
1251    //   class X {
1252    //     float X(float);
1253    //   };
1254    //
1255    // The return type will be eliminated later.
1256    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1257      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1258      << SourceRange(D.getIdentifierLoc());
1259  }
1260  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1261    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1262    if (FTI.TypeQuals & QualType::Const)
1263      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1264        << "const" << SourceRange(D.getIdentifierLoc());
1265    if (FTI.TypeQuals & QualType::Volatile)
1266      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1267        << "volatile" << SourceRange(D.getIdentifierLoc());
1268    if (FTI.TypeQuals & QualType::Restrict)
1269      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1270        << "restrict" << SourceRange(D.getIdentifierLoc());
1271  }
1272
1273  // Rebuild the function type "R" without any type qualifiers (in
1274  // case any of the errors above fired) and with "void" as the
1275  // return type, since constructors don't have return types. We
1276  // *always* have to do this, because GetTypeForDeclarator will
1277  // put in a result type of "int" when none was specified.
1278  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1279  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1280                              Proto->getNumArgs(),
1281                              Proto->isVariadic(),
1282                              0);
1283
1284  return isInvalid;
1285}
1286
1287/// CheckConstructor - Checks a fully-formed constructor for
1288/// well-formedness, issuing any diagnostics required. Returns true if
1289/// the constructor declarator is invalid.
1290bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1291  CXXRecordDecl *ClassDecl
1292    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1293  if (!ClassDecl)
1294    return true;
1295
1296  bool Invalid = Constructor->isInvalidDecl();
1297
1298  // C++ [class.copy]p3:
1299  //   A declaration of a constructor for a class X is ill-formed if
1300  //   its first parameter is of type (optionally cv-qualified) X and
1301  //   either there are no other parameters or else all other
1302  //   parameters have default arguments.
1303  if (!Constructor->isInvalidDecl() &&
1304      ((Constructor->getNumParams() == 1) ||
1305       (Constructor->getNumParams() > 1 &&
1306        Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
1307    QualType ParamType = Constructor->getParamDecl(0)->getType();
1308    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1309    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1310      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1311      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1312        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1313      Invalid = true;
1314    }
1315  }
1316
1317  // Notify the class that we've added a constructor.
1318  ClassDecl->addedConstructor(Context, Constructor);
1319
1320  return Invalid;
1321}
1322
1323/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1324/// the well-formednes of the destructor declarator @p D with type @p
1325/// R. If there are any errors in the declarator, this routine will
1326/// emit diagnostics and return true. Otherwise, it will return
1327/// false. Either way, the type @p R will be updated to reflect a
1328/// well-formed type for the destructor.
1329bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1330                                     FunctionDecl::StorageClass& SC) {
1331  bool isInvalid = false;
1332
1333  // C++ [class.dtor]p1:
1334  //   [...] A typedef-name that names a class is a class-name
1335  //   (7.1.3); however, a typedef-name that names a class shall not
1336  //   be used as the identifier in the declarator for a destructor
1337  //   declaration.
1338  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1339  if (DeclaratorType->getAsTypedefType()) {
1340    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1341      << DeclaratorType;
1342    isInvalid = true;
1343  }
1344
1345  // C++ [class.dtor]p2:
1346  //   A destructor is used to destroy objects of its class type. A
1347  //   destructor takes no parameters, and no return type can be
1348  //   specified for it (not even void). The address of a destructor
1349  //   shall not be taken. A destructor shall not be static. A
1350  //   destructor can be invoked for a const, volatile or const
1351  //   volatile object. A destructor shall not be declared const,
1352  //   volatile or const volatile (9.3.2).
1353  if (SC == FunctionDecl::Static) {
1354    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1355      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1356      << SourceRange(D.getIdentifierLoc());
1357    isInvalid = true;
1358    SC = FunctionDecl::None;
1359  }
1360  if (D.getDeclSpec().hasTypeSpecifier()) {
1361    // Destructors don't have return types, but the parser will
1362    // happily parse something like:
1363    //
1364    //   class X {
1365    //     float ~X();
1366    //   };
1367    //
1368    // The return type will be eliminated later.
1369    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1370      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1371      << SourceRange(D.getIdentifierLoc());
1372  }
1373  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1374    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1375    if (FTI.TypeQuals & QualType::Const)
1376      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1377        << "const" << SourceRange(D.getIdentifierLoc());
1378    if (FTI.TypeQuals & QualType::Volatile)
1379      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1380        << "volatile" << SourceRange(D.getIdentifierLoc());
1381    if (FTI.TypeQuals & QualType::Restrict)
1382      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1383        << "restrict" << SourceRange(D.getIdentifierLoc());
1384  }
1385
1386  // Make sure we don't have any parameters.
1387  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1388    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1389
1390    // Delete the parameters.
1391    D.getTypeObject(0).Fun.freeArgs();
1392  }
1393
1394  // Make sure the destructor isn't variadic.
1395  if (R->getAsFunctionProtoType()->isVariadic())
1396    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1397
1398  // Rebuild the function type "R" without any type qualifiers or
1399  // parameters (in case any of the errors above fired) and with
1400  // "void" as the return type, since destructors don't have return
1401  // types. We *always* have to do this, because GetTypeForDeclarator
1402  // will put in a result type of "int" when none was specified.
1403  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1404
1405  return isInvalid;
1406}
1407
1408/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1409/// well-formednes of the conversion function declarator @p D with
1410/// type @p R. If there are any errors in the declarator, this routine
1411/// will emit diagnostics and return true. Otherwise, it will return
1412/// false. Either way, the type @p R will be updated to reflect a
1413/// well-formed type for the conversion operator.
1414bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1415                                     FunctionDecl::StorageClass& SC) {
1416  bool isInvalid = false;
1417
1418  // C++ [class.conv.fct]p1:
1419  //   Neither parameter types nor return type can be specified. The
1420  //   type of a conversion function (8.3.5) is “function taking no
1421  //   parameter returning conversion-type-id.”
1422  if (SC == FunctionDecl::Static) {
1423    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1424      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1425      << SourceRange(D.getIdentifierLoc());
1426    isInvalid = true;
1427    SC = FunctionDecl::None;
1428  }
1429  if (D.getDeclSpec().hasTypeSpecifier()) {
1430    // Conversion functions don't have return types, but the parser will
1431    // happily parse something like:
1432    //
1433    //   class X {
1434    //     float operator bool();
1435    //   };
1436    //
1437    // The return type will be changed later anyway.
1438    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1439      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1440      << SourceRange(D.getIdentifierLoc());
1441  }
1442
1443  // Make sure we don't have any parameters.
1444  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1445    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1446
1447    // Delete the parameters.
1448    D.getTypeObject(0).Fun.freeArgs();
1449  }
1450
1451  // Make sure the conversion function isn't variadic.
1452  if (R->getAsFunctionProtoType()->isVariadic())
1453    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1454
1455  // C++ [class.conv.fct]p4:
1456  //   The conversion-type-id shall not represent a function type nor
1457  //   an array type.
1458  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1459  if (ConvType->isArrayType()) {
1460    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1461    ConvType = Context.getPointerType(ConvType);
1462  } else if (ConvType->isFunctionType()) {
1463    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1464    ConvType = Context.getPointerType(ConvType);
1465  }
1466
1467  // Rebuild the function type "R" without any parameters (in case any
1468  // of the errors above fired) and with the conversion type as the
1469  // return type.
1470  R = Context.getFunctionType(ConvType, 0, 0, false,
1471                              R->getAsFunctionProtoType()->getTypeQuals());
1472
1473  // C++0x explicit conversion operators.
1474  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1475    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1476         diag::warn_explicit_conversion_functions)
1477      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1478
1479  return isInvalid;
1480}
1481
1482/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1483/// the declaration of the given C++ conversion function. This routine
1484/// is responsible for recording the conversion function in the C++
1485/// class, if possible.
1486Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1487  assert(Conversion && "Expected to receive a conversion function declaration");
1488
1489  // Set the lexical context of this conversion function
1490  Conversion->setLexicalDeclContext(CurContext);
1491
1492  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1493
1494  // Make sure we aren't redeclaring the conversion function.
1495  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1496
1497  // C++ [class.conv.fct]p1:
1498  //   [...] A conversion function is never used to convert a
1499  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1500  //   same object type (or a reference to it), to a (possibly
1501  //   cv-qualified) base class of that type (or a reference to it),
1502  //   or to (possibly cv-qualified) void.
1503  // FIXME: Suppress this warning if the conversion function ends up
1504  // being a virtual function that overrides a virtual function in a
1505  // base class.
1506  QualType ClassType
1507    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1508  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1509    ConvType = ConvTypeRef->getPointeeType();
1510  if (ConvType->isRecordType()) {
1511    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1512    if (ConvType == ClassType)
1513      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1514        << ClassType;
1515    else if (IsDerivedFrom(ClassType, ConvType))
1516      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1517        <<  ClassType << ConvType;
1518  } else if (ConvType->isVoidType()) {
1519    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1520      << ClassType << ConvType;
1521  }
1522
1523  if (Conversion->getPreviousDeclaration()) {
1524    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1525    for (OverloadedFunctionDecl::function_iterator
1526           Conv = Conversions->function_begin(),
1527           ConvEnd = Conversions->function_end();
1528         Conv != ConvEnd; ++Conv) {
1529      if (*Conv == Conversion->getPreviousDeclaration()) {
1530        *Conv = Conversion;
1531        return DeclPtrTy::make(Conversion);
1532      }
1533    }
1534    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1535  } else
1536    ClassDecl->addConversionFunction(Context, Conversion);
1537
1538  return DeclPtrTy::make(Conversion);
1539}
1540
1541//===----------------------------------------------------------------------===//
1542// Namespace Handling
1543//===----------------------------------------------------------------------===//
1544
1545/// ActOnStartNamespaceDef - This is called at the start of a namespace
1546/// definition.
1547Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1548                                             SourceLocation IdentLoc,
1549                                             IdentifierInfo *II,
1550                                             SourceLocation LBrace) {
1551  NamespaceDecl *Namespc =
1552      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1553  Namespc->setLBracLoc(LBrace);
1554
1555  Scope *DeclRegionScope = NamespcScope->getParent();
1556
1557  if (II) {
1558    // C++ [namespace.def]p2:
1559    // The identifier in an original-namespace-definition shall not have been
1560    // previously defined in the declarative region in which the
1561    // original-namespace-definition appears. The identifier in an
1562    // original-namespace-definition is the name of the namespace. Subsequently
1563    // in that declarative region, it is treated as an original-namespace-name.
1564
1565    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1566                                     true);
1567
1568    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1569      // This is an extended namespace definition.
1570      // Attach this namespace decl to the chain of extended namespace
1571      // definitions.
1572      OrigNS->setNextNamespace(Namespc);
1573      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1574
1575      // Remove the previous declaration from the scope.
1576      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1577        IdResolver.RemoveDecl(OrigNS);
1578        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1579      }
1580    } else if (PrevDecl) {
1581      // This is an invalid name redefinition.
1582      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1583       << Namespc->getDeclName();
1584      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1585      Namespc->setInvalidDecl();
1586      // Continue on to push Namespc as current DeclContext and return it.
1587    }
1588
1589    PushOnScopeChains(Namespc, DeclRegionScope);
1590  } else {
1591    // FIXME: Handle anonymous namespaces
1592  }
1593
1594  // Although we could have an invalid decl (i.e. the namespace name is a
1595  // redefinition), push it as current DeclContext and try to continue parsing.
1596  // FIXME: We should be able to push Namespc here, so that the
1597  // each DeclContext for the namespace has the declarations
1598  // that showed up in that particular namespace definition.
1599  PushDeclContext(NamespcScope, Namespc);
1600  return DeclPtrTy::make(Namespc);
1601}
1602
1603/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1604/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1605void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1606  Decl *Dcl = D.getAs<Decl>();
1607  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1608  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1609  Namespc->setRBracLoc(RBrace);
1610  PopDeclContext();
1611}
1612
1613Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1614                                          SourceLocation UsingLoc,
1615                                          SourceLocation NamespcLoc,
1616                                          const CXXScopeSpec &SS,
1617                                          SourceLocation IdentLoc,
1618                                          IdentifierInfo *NamespcName,
1619                                          AttributeList *AttrList) {
1620  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1621  assert(NamespcName && "Invalid NamespcName.");
1622  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1623  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1624
1625  UsingDirectiveDecl *UDir = 0;
1626
1627  // Lookup namespace name.
1628  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1629                                    LookupNamespaceName, false);
1630  if (R.isAmbiguous()) {
1631    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1632    return DeclPtrTy();
1633  }
1634  if (NamedDecl *NS = R) {
1635    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1636    // C++ [namespace.udir]p1:
1637    //   A using-directive specifies that the names in the nominated
1638    //   namespace can be used in the scope in which the
1639    //   using-directive appears after the using-directive. During
1640    //   unqualified name lookup (3.4.1), the names appear as if they
1641    //   were declared in the nearest enclosing namespace which
1642    //   contains both the using-directive and the nominated
1643    //   namespace. [Note: in this context, “contains” means “contains
1644    //   directly or indirectly”. ]
1645
1646    // Find enclosing context containing both using-directive and
1647    // nominated namespace.
1648    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1649    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1650      CommonAncestor = CommonAncestor->getParent();
1651
1652    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1653                                      NamespcLoc, IdentLoc,
1654                                      cast<NamespaceDecl>(NS),
1655                                      CommonAncestor);
1656    PushUsingDirective(S, UDir);
1657  } else {
1658    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1659  }
1660
1661  // FIXME: We ignore attributes for now.
1662  delete AttrList;
1663  return DeclPtrTy::make(UDir);
1664}
1665
1666void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1667  // If scope has associated entity, then using directive is at namespace
1668  // or translation unit scope. We add UsingDirectiveDecls, into
1669  // it's lookup structure.
1670  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1671    Ctx->addDecl(UDir);
1672  else
1673    // Otherwise it is block-sope. using-directives will affect lookup
1674    // only to the end of scope.
1675    S->PushUsingDirective(DeclPtrTy::make(UDir));
1676}
1677
1678/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1679/// is a namespace alias, returns the namespace it points to.
1680static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1681  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1682    return AD->getNamespace();
1683  return dyn_cast_or_null<NamespaceDecl>(D);
1684}
1685
1686Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1687                                             SourceLocation NamespaceLoc,
1688                                             SourceLocation AliasLoc,
1689                                             IdentifierInfo *Alias,
1690                                             const CXXScopeSpec &SS,
1691                                             SourceLocation IdentLoc,
1692                                             IdentifierInfo *Ident) {
1693
1694  // Lookup the namespace name.
1695  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1696
1697  // Check if we have a previous declaration with the same name.
1698  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1699    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1700      // We already have an alias with the same name that points to the same
1701      // namespace, so don't create a new one.
1702      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1703        return DeclPtrTy();
1704    }
1705
1706    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1707      diag::err_redefinition_different_kind;
1708    Diag(AliasLoc, DiagID) << Alias;
1709    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1710    return DeclPtrTy();
1711  }
1712
1713  if (R.isAmbiguous()) {
1714    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1715    return DeclPtrTy();
1716  }
1717
1718  if (!R) {
1719    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1720    return DeclPtrTy();
1721  }
1722
1723  NamespaceAliasDecl *AliasDecl =
1724    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias,
1725                               IdentLoc, R);
1726
1727  CurContext->addDecl(AliasDecl);
1728  return DeclPtrTy::make(AliasDecl);
1729}
1730
1731/// AddCXXDirectInitializerToDecl - This action is called immediately after
1732/// ActOnDeclarator, when a C++ direct initializer is present.
1733/// e.g: "int x(1);"
1734void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1735                                         SourceLocation LParenLoc,
1736                                         MultiExprArg Exprs,
1737                                         SourceLocation *CommaLocs,
1738                                         SourceLocation RParenLoc) {
1739  unsigned NumExprs = Exprs.size();
1740  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1741  Decl *RealDecl = Dcl.getAs<Decl>();
1742
1743  // If there is no declaration, there was an error parsing it.  Just ignore
1744  // the initializer.
1745  if (RealDecl == 0)
1746    return;
1747
1748  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1749  if (!VDecl) {
1750    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1751    RealDecl->setInvalidDecl();
1752    return;
1753  }
1754
1755  // FIXME: Need to handle dependent types and expressions here.
1756
1757  // We will treat direct-initialization as a copy-initialization:
1758  //    int x(1);  -as-> int x = 1;
1759  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1760  //
1761  // Clients that want to distinguish between the two forms, can check for
1762  // direct initializer using VarDecl::hasCXXDirectInitializer().
1763  // A major benefit is that clients that don't particularly care about which
1764  // exactly form was it (like the CodeGen) can handle both cases without
1765  // special case code.
1766
1767  // C++ 8.5p11:
1768  // The form of initialization (using parentheses or '=') is generally
1769  // insignificant, but does matter when the entity being initialized has a
1770  // class type.
1771  QualType DeclInitType = VDecl->getType();
1772  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1773    DeclInitType = Array->getElementType();
1774
1775  // FIXME: This isn't the right place to complete the type.
1776  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1777                          diag::err_typecheck_decl_incomplete_type)) {
1778    VDecl->setInvalidDecl();
1779    return;
1780  }
1781
1782  if (VDecl->getType()->isRecordType()) {
1783    CXXConstructorDecl *Constructor
1784      = PerformInitializationByConstructor(DeclInitType,
1785                                           (Expr **)Exprs.get(), NumExprs,
1786                                           VDecl->getLocation(),
1787                                           SourceRange(VDecl->getLocation(),
1788                                                       RParenLoc),
1789                                           VDecl->getDeclName(),
1790                                           IK_Direct);
1791    if (!Constructor)
1792      RealDecl->setInvalidDecl();
1793    else
1794      Exprs.release();
1795
1796    // Let clients know that initialization was done with a direct
1797    // initializer.
1798    VDecl->setCXXDirectInitializer(true);
1799
1800    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1801    // the initializer.
1802    return;
1803  }
1804
1805  if (NumExprs > 1) {
1806    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1807      << SourceRange(VDecl->getLocation(), RParenLoc);
1808    RealDecl->setInvalidDecl();
1809    return;
1810  }
1811
1812  // Let clients know that initialization was done with a direct initializer.
1813  VDecl->setCXXDirectInitializer(true);
1814
1815  assert(NumExprs == 1 && "Expected 1 expression");
1816  // Set the init expression, handles conversions.
1817  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1818                       /*DirectInit=*/true);
1819}
1820
1821/// PerformInitializationByConstructor - Perform initialization by
1822/// constructor (C++ [dcl.init]p14), which may occur as part of
1823/// direct-initialization or copy-initialization. We are initializing
1824/// an object of type @p ClassType with the given arguments @p
1825/// Args. @p Loc is the location in the source code where the
1826/// initializer occurs (e.g., a declaration, member initializer,
1827/// functional cast, etc.) while @p Range covers the whole
1828/// initialization. @p InitEntity is the entity being initialized,
1829/// which may by the name of a declaration or a type. @p Kind is the
1830/// kind of initialization we're performing, which affects whether
1831/// explicit constructors will be considered. When successful, returns
1832/// the constructor that will be used to perform the initialization;
1833/// when the initialization fails, emits a diagnostic and returns
1834/// null.
1835CXXConstructorDecl *
1836Sema::PerformInitializationByConstructor(QualType ClassType,
1837                                         Expr **Args, unsigned NumArgs,
1838                                         SourceLocation Loc, SourceRange Range,
1839                                         DeclarationName InitEntity,
1840                                         InitializationKind Kind) {
1841  const RecordType *ClassRec = ClassType->getAsRecordType();
1842  assert(ClassRec && "Can only initialize a class type here");
1843
1844  // C++ [dcl.init]p14:
1845  //
1846  //   If the initialization is direct-initialization, or if it is
1847  //   copy-initialization where the cv-unqualified version of the
1848  //   source type is the same class as, or a derived class of, the
1849  //   class of the destination, constructors are considered. The
1850  //   applicable constructors are enumerated (13.3.1.3), and the
1851  //   best one is chosen through overload resolution (13.3). The
1852  //   constructor so selected is called to initialize the object,
1853  //   with the initializer expression(s) as its argument(s). If no
1854  //   constructor applies, or the overload resolution is ambiguous,
1855  //   the initialization is ill-formed.
1856  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1857  OverloadCandidateSet CandidateSet;
1858
1859  // Add constructors to the overload set.
1860  DeclarationName ConstructorName
1861    = Context.DeclarationNames.getCXXConstructorName(
1862                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1863  DeclContext::lookup_const_iterator Con, ConEnd;
1864  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1865       Con != ConEnd; ++Con) {
1866    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1867    if ((Kind == IK_Direct) ||
1868        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1869        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1870      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1871  }
1872
1873  // FIXME: When we decide not to synthesize the implicitly-declared
1874  // constructors, we'll need to make them appear here.
1875
1876  OverloadCandidateSet::iterator Best;
1877  switch (BestViableFunction(CandidateSet, Best)) {
1878  case OR_Success:
1879    // We found a constructor. Return it.
1880    return cast<CXXConstructorDecl>(Best->Function);
1881
1882  case OR_No_Viable_Function:
1883    if (InitEntity)
1884      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1885        << InitEntity << Range;
1886    else
1887      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1888        << ClassType << Range;
1889    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1890    return 0;
1891
1892  case OR_Ambiguous:
1893    if (InitEntity)
1894      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1895    else
1896      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1897    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1898    return 0;
1899
1900  case OR_Deleted:
1901    if (InitEntity)
1902      Diag(Loc, diag::err_ovl_deleted_init)
1903        << Best->Function->isDeleted()
1904        << InitEntity << Range;
1905    else
1906      Diag(Loc, diag::err_ovl_deleted_init)
1907        << Best->Function->isDeleted()
1908        << InitEntity << Range;
1909    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1910    return 0;
1911  }
1912
1913  return 0;
1914}
1915
1916/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1917/// determine whether they are reference-related,
1918/// reference-compatible, reference-compatible with added
1919/// qualification, or incompatible, for use in C++ initialization by
1920/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1921/// type, and the first type (T1) is the pointee type of the reference
1922/// type being initialized.
1923Sema::ReferenceCompareResult
1924Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1925                                   bool& DerivedToBase) {
1926  assert(!T1->isReferenceType() &&
1927    "T1 must be the pointee type of the reference type");
1928  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1929
1930  T1 = Context.getCanonicalType(T1);
1931  T2 = Context.getCanonicalType(T2);
1932  QualType UnqualT1 = T1.getUnqualifiedType();
1933  QualType UnqualT2 = T2.getUnqualifiedType();
1934
1935  // C++ [dcl.init.ref]p4:
1936  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1937  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1938  //   T1 is a base class of T2.
1939  if (UnqualT1 == UnqualT2)
1940    DerivedToBase = false;
1941  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1942    DerivedToBase = true;
1943  else
1944    return Ref_Incompatible;
1945
1946  // At this point, we know that T1 and T2 are reference-related (at
1947  // least).
1948
1949  // C++ [dcl.init.ref]p4:
1950  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1951  //   reference-related to T2 and cv1 is the same cv-qualification
1952  //   as, or greater cv-qualification than, cv2. For purposes of
1953  //   overload resolution, cases for which cv1 is greater
1954  //   cv-qualification than cv2 are identified as
1955  //   reference-compatible with added qualification (see 13.3.3.2).
1956  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1957    return Ref_Compatible;
1958  else if (T1.isMoreQualifiedThan(T2))
1959    return Ref_Compatible_With_Added_Qualification;
1960  else
1961    return Ref_Related;
1962}
1963
1964/// CheckReferenceInit - Check the initialization of a reference
1965/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1966/// the initializer (either a simple initializer or an initializer
1967/// list), and DeclType is the type of the declaration. When ICS is
1968/// non-null, this routine will compute the implicit conversion
1969/// sequence according to C++ [over.ics.ref] and will not produce any
1970/// diagnostics; when ICS is null, it will emit diagnostics when any
1971/// errors are found. Either way, a return value of true indicates
1972/// that there was a failure, a return value of false indicates that
1973/// the reference initialization succeeded.
1974///
1975/// When @p SuppressUserConversions, user-defined conversions are
1976/// suppressed.
1977/// When @p AllowExplicit, we also permit explicit user-defined
1978/// conversion functions.
1979bool
1980Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1981                         ImplicitConversionSequence *ICS,
1982                         bool SuppressUserConversions,
1983                         bool AllowExplicit) {
1984  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1985
1986  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1987  QualType T2 = Init->getType();
1988
1989  // If the initializer is the address of an overloaded function, try
1990  // to resolve the overloaded function. If all goes well, T2 is the
1991  // type of the resulting function.
1992  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1993    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1994                                                          ICS != 0);
1995    if (Fn) {
1996      // Since we're performing this reference-initialization for
1997      // real, update the initializer with the resulting function.
1998      if (!ICS) {
1999        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2000          return true;
2001
2002        FixOverloadedFunctionReference(Init, Fn);
2003      }
2004
2005      T2 = Fn->getType();
2006    }
2007  }
2008
2009  // Compute some basic properties of the types and the initializer.
2010  bool isRValRef = DeclType->isRValueReferenceType();
2011  bool DerivedToBase = false;
2012  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
2013  ReferenceCompareResult RefRelationship
2014    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2015
2016  // Most paths end in a failed conversion.
2017  if (ICS)
2018    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2019
2020  // C++ [dcl.init.ref]p5:
2021  //   A reference to type “cv1 T1” is initialized by an expression
2022  //   of type “cv2 T2” as follows:
2023
2024  //     -- If the initializer expression
2025
2026  // Rvalue references cannot bind to lvalues (N2812).
2027  // There is absolutely no situation where they can. In particular, note that
2028  // this is ill-formed, even if B has a user-defined conversion to A&&:
2029  //   B b;
2030  //   A&& r = b;
2031  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2032    if (!ICS)
2033      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2034        << Init->getSourceRange();
2035    return true;
2036  }
2037
2038  bool BindsDirectly = false;
2039  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2040  //          reference-compatible with “cv2 T2,” or
2041  //
2042  // Note that the bit-field check is skipped if we are just computing
2043  // the implicit conversion sequence (C++ [over.best.ics]p2).
2044  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
2045      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2046    BindsDirectly = true;
2047
2048    if (ICS) {
2049      // C++ [over.ics.ref]p1:
2050      //   When a parameter of reference type binds directly (8.5.3)
2051      //   to an argument expression, the implicit conversion sequence
2052      //   is the identity conversion, unless the argument expression
2053      //   has a type that is a derived class of the parameter type,
2054      //   in which case the implicit conversion sequence is a
2055      //   derived-to-base Conversion (13.3.3.1).
2056      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2057      ICS->Standard.First = ICK_Identity;
2058      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2059      ICS->Standard.Third = ICK_Identity;
2060      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2061      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2062      ICS->Standard.ReferenceBinding = true;
2063      ICS->Standard.DirectBinding = true;
2064      ICS->Standard.RRefBinding = false;
2065
2066      // Nothing more to do: the inaccessibility/ambiguity check for
2067      // derived-to-base conversions is suppressed when we're
2068      // computing the implicit conversion sequence (C++
2069      // [over.best.ics]p2).
2070      return false;
2071    } else {
2072      // Perform the conversion.
2073      // FIXME: Binding to a subobject of the lvalue is going to require
2074      // more AST annotation than this.
2075      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2076    }
2077  }
2078
2079  //       -- has a class type (i.e., T2 is a class type) and can be
2080  //          implicitly converted to an lvalue of type “cv3 T3,”
2081  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2082  //          92) (this conversion is selected by enumerating the
2083  //          applicable conversion functions (13.3.1.6) and choosing
2084  //          the best one through overload resolution (13.3)),
2085  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2086    // FIXME: Look for conversions in base classes!
2087    CXXRecordDecl *T2RecordDecl
2088      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2089
2090    OverloadCandidateSet CandidateSet;
2091    OverloadedFunctionDecl *Conversions
2092      = T2RecordDecl->getConversionFunctions();
2093    for (OverloadedFunctionDecl::function_iterator Func
2094           = Conversions->function_begin();
2095         Func != Conversions->function_end(); ++Func) {
2096      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2097
2098      // If the conversion function doesn't return a reference type,
2099      // it can't be considered for this conversion.
2100      if (Conv->getConversionType()->isLValueReferenceType() &&
2101          (AllowExplicit || !Conv->isExplicit()))
2102        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2103    }
2104
2105    OverloadCandidateSet::iterator Best;
2106    switch (BestViableFunction(CandidateSet, Best)) {
2107    case OR_Success:
2108      // This is a direct binding.
2109      BindsDirectly = true;
2110
2111      if (ICS) {
2112        // C++ [over.ics.ref]p1:
2113        //
2114        //   [...] If the parameter binds directly to the result of
2115        //   applying a conversion function to the argument
2116        //   expression, the implicit conversion sequence is a
2117        //   user-defined conversion sequence (13.3.3.1.2), with the
2118        //   second standard conversion sequence either an identity
2119        //   conversion or, if the conversion function returns an
2120        //   entity of a type that is a derived class of the parameter
2121        //   type, a derived-to-base Conversion.
2122        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2123        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2124        ICS->UserDefined.After = Best->FinalConversion;
2125        ICS->UserDefined.ConversionFunction = Best->Function;
2126        assert(ICS->UserDefined.After.ReferenceBinding &&
2127               ICS->UserDefined.After.DirectBinding &&
2128               "Expected a direct reference binding!");
2129        return false;
2130      } else {
2131        // Perform the conversion.
2132        // FIXME: Binding to a subobject of the lvalue is going to require
2133        // more AST annotation than this.
2134        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2135      }
2136      break;
2137
2138    case OR_Ambiguous:
2139      assert(false && "Ambiguous reference binding conversions not implemented.");
2140      return true;
2141
2142    case OR_No_Viable_Function:
2143    case OR_Deleted:
2144      // There was no suitable conversion, or we found a deleted
2145      // conversion; continue with other checks.
2146      break;
2147    }
2148  }
2149
2150  if (BindsDirectly) {
2151    // C++ [dcl.init.ref]p4:
2152    //   [...] In all cases where the reference-related or
2153    //   reference-compatible relationship of two types is used to
2154    //   establish the validity of a reference binding, and T1 is a
2155    //   base class of T2, a program that necessitates such a binding
2156    //   is ill-formed if T1 is an inaccessible (clause 11) or
2157    //   ambiguous (10.2) base class of T2.
2158    //
2159    // Note that we only check this condition when we're allowed to
2160    // complain about errors, because we should not be checking for
2161    // ambiguity (or inaccessibility) unless the reference binding
2162    // actually happens.
2163    if (DerivedToBase)
2164      return CheckDerivedToBaseConversion(T2, T1,
2165                                          Init->getSourceRange().getBegin(),
2166                                          Init->getSourceRange());
2167    else
2168      return false;
2169  }
2170
2171  //     -- Otherwise, the reference shall be to a non-volatile const
2172  //        type (i.e., cv1 shall be const), or the reference shall be an
2173  //        rvalue reference and the initializer expression shall be an rvalue.
2174  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2175    if (!ICS)
2176      Diag(Init->getSourceRange().getBegin(),
2177           diag::err_not_reference_to_const_init)
2178        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2179        << T2 << Init->getSourceRange();
2180    return true;
2181  }
2182
2183  //       -- If the initializer expression is an rvalue, with T2 a
2184  //          class type, and “cv1 T1” is reference-compatible with
2185  //          “cv2 T2,” the reference is bound in one of the
2186  //          following ways (the choice is implementation-defined):
2187  //
2188  //          -- The reference is bound to the object represented by
2189  //             the rvalue (see 3.10) or to a sub-object within that
2190  //             object.
2191  //
2192  //          -- A temporary of type “cv1 T2” [sic] is created, and
2193  //             a constructor is called to copy the entire rvalue
2194  //             object into the temporary. The reference is bound to
2195  //             the temporary or to a sub-object within the
2196  //             temporary.
2197  //
2198  //          The constructor that would be used to make the copy
2199  //          shall be callable whether or not the copy is actually
2200  //          done.
2201  //
2202  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2203  // freedom, so we will always take the first option and never build
2204  // a temporary in this case. FIXME: We will, however, have to check
2205  // for the presence of a copy constructor in C++98/03 mode.
2206  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2207      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2208    if (ICS) {
2209      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2210      ICS->Standard.First = ICK_Identity;
2211      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2212      ICS->Standard.Third = ICK_Identity;
2213      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2214      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2215      ICS->Standard.ReferenceBinding = true;
2216      ICS->Standard.DirectBinding = false;
2217      ICS->Standard.RRefBinding = isRValRef;
2218    } else {
2219      // FIXME: Binding to a subobject of the rvalue is going to require
2220      // more AST annotation than this.
2221      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2222    }
2223    return false;
2224  }
2225
2226  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2227  //          initialized from the initializer expression using the
2228  //          rules for a non-reference copy initialization (8.5). The
2229  //          reference is then bound to the temporary. If T1 is
2230  //          reference-related to T2, cv1 must be the same
2231  //          cv-qualification as, or greater cv-qualification than,
2232  //          cv2; otherwise, the program is ill-formed.
2233  if (RefRelationship == Ref_Related) {
2234    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2235    // we would be reference-compatible or reference-compatible with
2236    // added qualification. But that wasn't the case, so the reference
2237    // initialization fails.
2238    if (!ICS)
2239      Diag(Init->getSourceRange().getBegin(),
2240           diag::err_reference_init_drops_quals)
2241        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2242        << T2 << Init->getSourceRange();
2243    return true;
2244  }
2245
2246  // If at least one of the types is a class type, the types are not
2247  // related, and we aren't allowed any user conversions, the
2248  // reference binding fails. This case is important for breaking
2249  // recursion, since TryImplicitConversion below will attempt to
2250  // create a temporary through the use of a copy constructor.
2251  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2252      (T1->isRecordType() || T2->isRecordType())) {
2253    if (!ICS)
2254      Diag(Init->getSourceRange().getBegin(),
2255           diag::err_typecheck_convert_incompatible)
2256        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2257    return true;
2258  }
2259
2260  // Actually try to convert the initializer to T1.
2261  if (ICS) {
2262    // C++ [over.ics.ref]p2:
2263    //
2264    //   When a parameter of reference type is not bound directly to
2265    //   an argument expression, the conversion sequence is the one
2266    //   required to convert the argument expression to the
2267    //   underlying type of the reference according to
2268    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2269    //   to copy-initializing a temporary of the underlying type with
2270    //   the argument expression. Any difference in top-level
2271    //   cv-qualification is subsumed by the initialization itself
2272    //   and does not constitute a conversion.
2273    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2274    // Of course, that's still a reference binding.
2275    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2276      ICS->Standard.ReferenceBinding = true;
2277      ICS->Standard.RRefBinding = isRValRef;
2278    } else if(ICS->ConversionKind ==
2279              ImplicitConversionSequence::UserDefinedConversion) {
2280      ICS->UserDefined.After.ReferenceBinding = true;
2281      ICS->UserDefined.After.RRefBinding = isRValRef;
2282    }
2283    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2284  } else {
2285    return PerformImplicitConversion(Init, T1, "initializing");
2286  }
2287}
2288
2289/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2290/// of this overloaded operator is well-formed. If so, returns false;
2291/// otherwise, emits appropriate diagnostics and returns true.
2292bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2293  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2294         "Expected an overloaded operator declaration");
2295
2296  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2297
2298  // C++ [over.oper]p5:
2299  //   The allocation and deallocation functions, operator new,
2300  //   operator new[], operator delete and operator delete[], are
2301  //   described completely in 3.7.3. The attributes and restrictions
2302  //   found in the rest of this subclause do not apply to them unless
2303  //   explicitly stated in 3.7.3.
2304  // FIXME: Write a separate routine for checking this. For now, just
2305  // allow it.
2306  if (Op == OO_New || Op == OO_Array_New ||
2307      Op == OO_Delete || Op == OO_Array_Delete)
2308    return false;
2309
2310  // C++ [over.oper]p6:
2311  //   An operator function shall either be a non-static member
2312  //   function or be a non-member function and have at least one
2313  //   parameter whose type is a class, a reference to a class, an
2314  //   enumeration, or a reference to an enumeration.
2315  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2316    if (MethodDecl->isStatic())
2317      return Diag(FnDecl->getLocation(),
2318                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2319  } else {
2320    bool ClassOrEnumParam = false;
2321    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2322                                   ParamEnd = FnDecl->param_end();
2323         Param != ParamEnd; ++Param) {
2324      QualType ParamType = (*Param)->getType().getNonReferenceType();
2325      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2326        ClassOrEnumParam = true;
2327        break;
2328      }
2329    }
2330
2331    if (!ClassOrEnumParam)
2332      return Diag(FnDecl->getLocation(),
2333                  diag::err_operator_overload_needs_class_or_enum)
2334        << FnDecl->getDeclName();
2335  }
2336
2337  // C++ [over.oper]p8:
2338  //   An operator function cannot have default arguments (8.3.6),
2339  //   except where explicitly stated below.
2340  //
2341  // Only the function-call operator allows default arguments
2342  // (C++ [over.call]p1).
2343  if (Op != OO_Call) {
2344    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2345         Param != FnDecl->param_end(); ++Param) {
2346      if ((*Param)->hasUnparsedDefaultArg())
2347        return Diag((*Param)->getLocation(),
2348                    diag::err_operator_overload_default_arg)
2349          << FnDecl->getDeclName();
2350      else if (Expr *DefArg = (*Param)->getDefaultArg())
2351        return Diag((*Param)->getLocation(),
2352                    diag::err_operator_overload_default_arg)
2353          << FnDecl->getDeclName() << DefArg->getSourceRange();
2354    }
2355  }
2356
2357  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2358    { false, false, false }
2359#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2360    , { Unary, Binary, MemberOnly }
2361#include "clang/Basic/OperatorKinds.def"
2362  };
2363
2364  bool CanBeUnaryOperator = OperatorUses[Op][0];
2365  bool CanBeBinaryOperator = OperatorUses[Op][1];
2366  bool MustBeMemberOperator = OperatorUses[Op][2];
2367
2368  // C++ [over.oper]p8:
2369  //   [...] Operator functions cannot have more or fewer parameters
2370  //   than the number required for the corresponding operator, as
2371  //   described in the rest of this subclause.
2372  unsigned NumParams = FnDecl->getNumParams()
2373                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2374  if (Op != OO_Call &&
2375      ((NumParams == 1 && !CanBeUnaryOperator) ||
2376       (NumParams == 2 && !CanBeBinaryOperator) ||
2377       (NumParams < 1) || (NumParams > 2))) {
2378    // We have the wrong number of parameters.
2379    unsigned ErrorKind;
2380    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2381      ErrorKind = 2;  // 2 -> unary or binary.
2382    } else if (CanBeUnaryOperator) {
2383      ErrorKind = 0;  // 0 -> unary
2384    } else {
2385      assert(CanBeBinaryOperator &&
2386             "All non-call overloaded operators are unary or binary!");
2387      ErrorKind = 1;  // 1 -> binary
2388    }
2389
2390    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2391      << FnDecl->getDeclName() << NumParams << ErrorKind;
2392  }
2393
2394  // Overloaded operators other than operator() cannot be variadic.
2395  if (Op != OO_Call &&
2396      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2397    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2398      << FnDecl->getDeclName();
2399  }
2400
2401  // Some operators must be non-static member functions.
2402  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2403    return Diag(FnDecl->getLocation(),
2404                diag::err_operator_overload_must_be_member)
2405      << FnDecl->getDeclName();
2406  }
2407
2408  // C++ [over.inc]p1:
2409  //   The user-defined function called operator++ implements the
2410  //   prefix and postfix ++ operator. If this function is a member
2411  //   function with no parameters, or a non-member function with one
2412  //   parameter of class or enumeration type, it defines the prefix
2413  //   increment operator ++ for objects of that type. If the function
2414  //   is a member function with one parameter (which shall be of type
2415  //   int) or a non-member function with two parameters (the second
2416  //   of which shall be of type int), it defines the postfix
2417  //   increment operator ++ for objects of that type.
2418  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2419    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2420    bool ParamIsInt = false;
2421    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2422      ParamIsInt = BT->getKind() == BuiltinType::Int;
2423
2424    if (!ParamIsInt)
2425      return Diag(LastParam->getLocation(),
2426                  diag::err_operator_overload_post_incdec_must_be_int)
2427        << LastParam->getType() << (Op == OO_MinusMinus);
2428  }
2429
2430  // Notify the class if it got an assignment operator.
2431  if (Op == OO_Equal) {
2432    // Would have returned earlier otherwise.
2433    assert(isa<CXXMethodDecl>(FnDecl) &&
2434      "Overloaded = not member, but not filtered.");
2435    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2436    Method->getParent()->addedAssignmentOperator(Context, Method);
2437  }
2438
2439  return false;
2440}
2441
2442/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2443/// linkage specification, including the language and (if present)
2444/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2445/// the location of the language string literal, which is provided
2446/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2447/// the '{' brace. Otherwise, this linkage specification does not
2448/// have any braces.
2449Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2450                                                     SourceLocation ExternLoc,
2451                                                     SourceLocation LangLoc,
2452                                                     const char *Lang,
2453                                                     unsigned StrSize,
2454                                                     SourceLocation LBraceLoc) {
2455  LinkageSpecDecl::LanguageIDs Language;
2456  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2457    Language = LinkageSpecDecl::lang_c;
2458  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2459    Language = LinkageSpecDecl::lang_cxx;
2460  else {
2461    Diag(LangLoc, diag::err_bad_language);
2462    return DeclPtrTy();
2463  }
2464
2465  // FIXME: Add all the various semantics of linkage specifications
2466
2467  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2468                                               LangLoc, Language,
2469                                               LBraceLoc.isValid());
2470  CurContext->addDecl(D);
2471  PushDeclContext(S, D);
2472  return DeclPtrTy::make(D);
2473}
2474
2475/// ActOnFinishLinkageSpecification - Completely the definition of
2476/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2477/// valid, it's the position of the closing '}' brace in a linkage
2478/// specification that uses braces.
2479Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2480                                                      DeclPtrTy LinkageSpec,
2481                                                      SourceLocation RBraceLoc) {
2482  if (LinkageSpec)
2483    PopDeclContext();
2484  return LinkageSpec;
2485}
2486
2487/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2488/// handler.
2489Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2490  QualType ExDeclType = GetTypeForDeclarator(D, S);
2491  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2492
2493  bool Invalid = false;
2494
2495  // Arrays and functions decay.
2496  if (ExDeclType->isArrayType())
2497    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2498  else if (ExDeclType->isFunctionType())
2499    ExDeclType = Context.getPointerType(ExDeclType);
2500
2501  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2502  // The exception-declaration shall not denote a pointer or reference to an
2503  // incomplete type, other than [cv] void*.
2504  // N2844 forbids rvalue references.
2505  if(ExDeclType->isRValueReferenceType()) {
2506    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2507    Invalid = true;
2508  }
2509  QualType BaseType = ExDeclType;
2510  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2511  unsigned DK = diag::err_catch_incomplete;
2512  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2513    BaseType = Ptr->getPointeeType();
2514    Mode = 1;
2515    DK = diag::err_catch_incomplete_ptr;
2516  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2517    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2518    BaseType = Ref->getPointeeType();
2519    Mode = 2;
2520    DK = diag::err_catch_incomplete_ref;
2521  }
2522  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2523      RequireCompleteType(Begin, BaseType, DK))
2524    Invalid = true;
2525
2526  // FIXME: Need to test for ability to copy-construct and destroy the
2527  // exception variable.
2528  // FIXME: Need to check for abstract classes.
2529
2530  IdentifierInfo *II = D.getIdentifier();
2531  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2532    // The scope should be freshly made just for us. There is just no way
2533    // it contains any previous declaration.
2534    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2535    if (PrevDecl->isTemplateParameter()) {
2536      // Maybe we will complain about the shadowed template parameter.
2537      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2538    }
2539  }
2540
2541  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2542                                    II, ExDeclType, VarDecl::None, Begin);
2543  if (D.getInvalidType() || Invalid)
2544    ExDecl->setInvalidDecl();
2545
2546  if (D.getCXXScopeSpec().isSet()) {
2547    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2548      << D.getCXXScopeSpec().getRange();
2549    ExDecl->setInvalidDecl();
2550  }
2551
2552  // Add the exception declaration into this scope.
2553  S->AddDecl(DeclPtrTy::make(ExDecl));
2554  if (II)
2555    IdResolver.AddDecl(ExDecl);
2556
2557  ProcessDeclAttributes(ExDecl, D);
2558  return DeclPtrTy::make(ExDecl);
2559}
2560
2561Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2562                                                   ExprArg assertexpr,
2563                                                   ExprArg assertmessageexpr) {
2564  Expr *AssertExpr = (Expr *)assertexpr.get();
2565  StringLiteral *AssertMessage =
2566    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2567
2568  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2569    llvm::APSInt Value(32);
2570    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2571      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2572        AssertExpr->getSourceRange();
2573      return DeclPtrTy();
2574    }
2575
2576    if (Value == 0) {
2577      std::string str(AssertMessage->getStrData(),
2578                      AssertMessage->getByteLength());
2579      Diag(AssertLoc, diag::err_static_assert_failed)
2580        << str << AssertExpr->getSourceRange();
2581    }
2582  }
2583
2584  assertexpr.release();
2585  assertmessageexpr.release();
2586  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2587                                        AssertExpr, AssertMessage);
2588
2589  CurContext->addDecl(Decl);
2590  return DeclPtrTy::make(Decl);
2591}
2592
2593void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2594  Decl *Dcl = dcl.getAs<Decl>();
2595  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2596  if (!Fn) {
2597    Diag(DelLoc, diag::err_deleted_non_function);
2598    return;
2599  }
2600  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2601    Diag(DelLoc, diag::err_deleted_decl_not_first);
2602    Diag(Prev->getLocation(), diag::note_previous_declaration);
2603    // If the declaration wasn't the first, we delete the function anyway for
2604    // recovery.
2605  }
2606  Fn->setDeleted();
2607}
2608