SemaDeclCXX.cpp revision 55bcace250e1ff366e4482714b344b8cbc8be5f3
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142        }
1143      }
1144
1145      // If no results were found, try to correct typos.
1146      if (R.empty() && BaseType.isNull() &&
1147          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1148          R.isSingleResult()) {
1149        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1150          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1151            // We have found a non-static data member with a similar
1152            // name to what was typed; complain and initialize that
1153            // member.
1154            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1155              << MemberOrBase << true << R.getLookupName()
1156              << FixItHint::CreateReplacement(R.getNameLoc(),
1157                                              R.getLookupName().getAsString());
1158            Diag(Member->getLocation(), diag::note_previous_decl)
1159              << Member->getDeclName();
1160
1161            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1162                                          LParenLoc, RParenLoc);
1163          }
1164        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1165          const CXXBaseSpecifier *DirectBaseSpec;
1166          const CXXBaseSpecifier *VirtualBaseSpec;
1167          if (FindBaseInitializer(*this, ClassDecl,
1168                                  Context.getTypeDeclType(Type),
1169                                  DirectBaseSpec, VirtualBaseSpec)) {
1170            // We have found a direct or virtual base class with a
1171            // similar name to what was typed; complain and initialize
1172            // that base class.
1173            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1174              << MemberOrBase << false << R.getLookupName()
1175              << FixItHint::CreateReplacement(R.getNameLoc(),
1176                                              R.getLookupName().getAsString());
1177
1178            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1179                                                             : VirtualBaseSpec;
1180            Diag(BaseSpec->getSourceRange().getBegin(),
1181                 diag::note_base_class_specified_here)
1182              << BaseSpec->getType()
1183              << BaseSpec->getSourceRange();
1184
1185            TyD = Type;
1186          }
1187        }
1188      }
1189
1190      if (!TyD && BaseType.isNull()) {
1191        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1192          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1193        return true;
1194      }
1195    }
1196
1197    if (BaseType.isNull()) {
1198      BaseType = Context.getTypeDeclType(TyD);
1199      if (SS.isSet()) {
1200        NestedNameSpecifier *Qualifier =
1201          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1202
1203        // FIXME: preserve source range information
1204        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1205      }
1206    }
1207  }
1208
1209  if (!TInfo)
1210    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1211
1212  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1213                              LParenLoc, RParenLoc, ClassDecl);
1214}
1215
1216/// Checks an initializer expression for use of uninitialized fields, such as
1217/// containing the field that is being initialized. Returns true if there is an
1218/// uninitialized field was used an updates the SourceLocation parameter; false
1219/// otherwise.
1220static bool InitExprContainsUninitializedFields(const Stmt *S,
1221                                                const FieldDecl *LhsField,
1222                                                SourceLocation *L) {
1223  if (isa<CallExpr>(S)) {
1224    // Do not descend into function calls or constructors, as the use
1225    // of an uninitialized field may be valid. One would have to inspect
1226    // the contents of the function/ctor to determine if it is safe or not.
1227    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1228    // may be safe, depending on what the function/ctor does.
1229    return false;
1230  }
1231  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1232    const NamedDecl *RhsField = ME->getMemberDecl();
1233    if (RhsField == LhsField) {
1234      // Initializing a field with itself. Throw a warning.
1235      // But wait; there are exceptions!
1236      // Exception #1:  The field may not belong to this record.
1237      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1238      const Expr *base = ME->getBase();
1239      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1240        // Even though the field matches, it does not belong to this record.
1241        return false;
1242      }
1243      // None of the exceptions triggered; return true to indicate an
1244      // uninitialized field was used.
1245      *L = ME->getMemberLoc();
1246      return true;
1247    }
1248  }
1249  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1250       it != e; ++it) {
1251    if (!*it) {
1252      // An expression such as 'member(arg ?: "")' may trigger this.
1253      continue;
1254    }
1255    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1256      return true;
1257  }
1258  return false;
1259}
1260
1261Sema::MemInitResult
1262Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1263                             unsigned NumArgs, SourceLocation IdLoc,
1264                             SourceLocation LParenLoc,
1265                             SourceLocation RParenLoc) {
1266  // Diagnose value-uses of fields to initialize themselves, e.g.
1267  //   foo(foo)
1268  // where foo is not also a parameter to the constructor.
1269  // TODO: implement -Wuninitialized and fold this into that framework.
1270  for (unsigned i = 0; i < NumArgs; ++i) {
1271    SourceLocation L;
1272    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1273      // FIXME: Return true in the case when other fields are used before being
1274      // uninitialized. For example, let this field be the i'th field. When
1275      // initializing the i'th field, throw a warning if any of the >= i'th
1276      // fields are used, as they are not yet initialized.
1277      // Right now we are only handling the case where the i'th field uses
1278      // itself in its initializer.
1279      Diag(L, diag::warn_field_is_uninit);
1280    }
1281  }
1282
1283  bool HasDependentArg = false;
1284  for (unsigned i = 0; i < NumArgs; i++)
1285    HasDependentArg |= Args[i]->isTypeDependent();
1286
1287  QualType FieldType = Member->getType();
1288  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1289    FieldType = Array->getElementType();
1290  if (FieldType->isDependentType() || HasDependentArg) {
1291    // Can't check initialization for a member of dependent type or when
1292    // any of the arguments are type-dependent expressions.
1293    OwningExprResult Init
1294      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1295                                          RParenLoc));
1296
1297    // Erase any temporaries within this evaluation context; we're not
1298    // going to track them in the AST, since we'll be rebuilding the
1299    // ASTs during template instantiation.
1300    ExprTemporaries.erase(
1301              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1302                          ExprTemporaries.end());
1303
1304    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1305                                                    LParenLoc,
1306                                                    Init.takeAs<Expr>(),
1307                                                    RParenLoc);
1308
1309  }
1310
1311  if (Member->isInvalidDecl())
1312    return true;
1313
1314  // Initialize the member.
1315  InitializedEntity MemberEntity =
1316    InitializedEntity::InitializeMember(Member, 0);
1317  InitializationKind Kind =
1318    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1319
1320  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1321
1322  OwningExprResult MemberInit =
1323    InitSeq.Perform(*this, MemberEntity, Kind,
1324                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1325  if (MemberInit.isInvalid())
1326    return true;
1327
1328  // C++0x [class.base.init]p7:
1329  //   The initialization of each base and member constitutes a
1330  //   full-expression.
1331  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1332  if (MemberInit.isInvalid())
1333    return true;
1334
1335  // If we are in a dependent context, template instantiation will
1336  // perform this type-checking again. Just save the arguments that we
1337  // received in a ParenListExpr.
1338  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1339  // of the information that we have about the member
1340  // initializer. However, deconstructing the ASTs is a dicey process,
1341  // and this approach is far more likely to get the corner cases right.
1342  if (CurContext->isDependentContext()) {
1343    // Bump the reference count of all of the arguments.
1344    for (unsigned I = 0; I != NumArgs; ++I)
1345      Args[I]->Retain();
1346
1347    OwningExprResult Init
1348      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1349                                          RParenLoc));
1350    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1351                                                    LParenLoc,
1352                                                    Init.takeAs<Expr>(),
1353                                                    RParenLoc);
1354  }
1355
1356  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1357                                                  LParenLoc,
1358                                                  MemberInit.takeAs<Expr>(),
1359                                                  RParenLoc);
1360}
1361
1362Sema::MemInitResult
1363Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1364                           Expr **Args, unsigned NumArgs,
1365                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1366                           CXXRecordDecl *ClassDecl) {
1367  bool HasDependentArg = false;
1368  for (unsigned i = 0; i < NumArgs; i++)
1369    HasDependentArg |= Args[i]->isTypeDependent();
1370
1371  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1372  if (BaseType->isDependentType() || HasDependentArg) {
1373    // Can't check initialization for a base of dependent type or when
1374    // any of the arguments are type-dependent expressions.
1375    OwningExprResult BaseInit
1376      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1377                                          RParenLoc));
1378
1379    // Erase any temporaries within this evaluation context; we're not
1380    // going to track them in the AST, since we'll be rebuilding the
1381    // ASTs during template instantiation.
1382    ExprTemporaries.erase(
1383              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1384                          ExprTemporaries.end());
1385
1386    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1387                                                    /*IsVirtual=*/false,
1388                                                    LParenLoc,
1389                                                    BaseInit.takeAs<Expr>(),
1390                                                    RParenLoc);
1391  }
1392
1393  if (!BaseType->isRecordType())
1394    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1395             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1396
1397  // C++ [class.base.init]p2:
1398  //   [...] Unless the mem-initializer-id names a nonstatic data
1399  //   member of the constructor’s class or a direct or virtual base
1400  //   of that class, the mem-initializer is ill-formed. A
1401  //   mem-initializer-list can initialize a base class using any
1402  //   name that denotes that base class type.
1403
1404  // Check for direct and virtual base classes.
1405  const CXXBaseSpecifier *DirectBaseSpec = 0;
1406  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1407  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1408                      VirtualBaseSpec);
1409
1410  // C++ [base.class.init]p2:
1411  //   If a mem-initializer-id is ambiguous because it designates both
1412  //   a direct non-virtual base class and an inherited virtual base
1413  //   class, the mem-initializer is ill-formed.
1414  if (DirectBaseSpec && VirtualBaseSpec)
1415    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1416      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1417  // C++ [base.class.init]p2:
1418  // Unless the mem-initializer-id names a nonstatic data membeer of the
1419  // constructor's class ot a direst or virtual base of that class, the
1420  // mem-initializer is ill-formed.
1421  if (!DirectBaseSpec && !VirtualBaseSpec)
1422    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1423      << BaseType << Context.getTypeDeclType(ClassDecl)
1424      << BaseTInfo->getTypeLoc().getLocalSourceRange();
1425
1426  CXXBaseSpecifier *BaseSpec
1427    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1428  if (!BaseSpec)
1429    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1430
1431  // Initialize the base.
1432  InitializedEntity BaseEntity =
1433    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1434  InitializationKind Kind =
1435    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1436
1437  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1438
1439  OwningExprResult BaseInit =
1440    InitSeq.Perform(*this, BaseEntity, Kind,
1441                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1442  if (BaseInit.isInvalid())
1443    return true;
1444
1445  // C++0x [class.base.init]p7:
1446  //   The initialization of each base and member constitutes a
1447  //   full-expression.
1448  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1449  if (BaseInit.isInvalid())
1450    return true;
1451
1452  // If we are in a dependent context, template instantiation will
1453  // perform this type-checking again. Just save the arguments that we
1454  // received in a ParenListExpr.
1455  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1456  // of the information that we have about the base
1457  // initializer. However, deconstructing the ASTs is a dicey process,
1458  // and this approach is far more likely to get the corner cases right.
1459  if (CurContext->isDependentContext()) {
1460    // Bump the reference count of all of the arguments.
1461    for (unsigned I = 0; I != NumArgs; ++I)
1462      Args[I]->Retain();
1463
1464    OwningExprResult Init
1465      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1466                                          RParenLoc));
1467    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1468                                                    BaseSpec->isVirtual(),
1469                                                    LParenLoc,
1470                                                    Init.takeAs<Expr>(),
1471                                                    RParenLoc);
1472  }
1473
1474  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1475                                                  BaseSpec->isVirtual(),
1476                                                  LParenLoc,
1477                                                  BaseInit.takeAs<Expr>(),
1478                                                  RParenLoc);
1479}
1480
1481/// ImplicitInitializerKind - How an implicit base or member initializer should
1482/// initialize its base or member.
1483enum ImplicitInitializerKind {
1484  IIK_Default,
1485  IIK_Copy,
1486  IIK_Move
1487};
1488
1489static bool
1490BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1491                             ImplicitInitializerKind ImplicitInitKind,
1492                             CXXBaseSpecifier *BaseSpec,
1493                             bool IsInheritedVirtualBase,
1494                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1495  InitializedEntity InitEntity
1496    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1497                                        IsInheritedVirtualBase);
1498
1499  Sema::OwningExprResult BaseInit(SemaRef);
1500
1501  switch (ImplicitInitKind) {
1502  case IIK_Default: {
1503    InitializationKind InitKind
1504      = InitializationKind::CreateDefault(Constructor->getLocation());
1505    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1506    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1507                               Sema::MultiExprArg(SemaRef, 0, 0));
1508    break;
1509  }
1510
1511  case IIK_Copy: {
1512    ParmVarDecl *Param = Constructor->getParamDecl(0);
1513    QualType ParamType = Param->getType().getNonReferenceType();
1514
1515    Expr *CopyCtorArg =
1516      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1517                          Constructor->getLocation(), ParamType, 0);
1518
1519    // Cast to the base class to avoid ambiguities.
1520    QualType ArgTy =
1521      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1522                                       ParamType.getQualifiers());
1523    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1524                              CastExpr::CK_UncheckedDerivedToBase,
1525                              /*isLvalue=*/true,
1526                              CXXBaseSpecifierArray(BaseSpec));
1527
1528    InitializationKind InitKind
1529      = InitializationKind::CreateDirect(Constructor->getLocation(),
1530                                         SourceLocation(), SourceLocation());
1531    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1532                                   &CopyCtorArg, 1);
1533    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1534                               Sema::MultiExprArg(SemaRef,
1535                                                  (void**)&CopyCtorArg, 1));
1536    break;
1537  }
1538
1539  case IIK_Move:
1540    assert(false && "Unhandled initializer kind!");
1541  }
1542
1543  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1544  if (BaseInit.isInvalid())
1545    return true;
1546
1547  CXXBaseInit =
1548    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1549               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1550                                                        SourceLocation()),
1551                                             BaseSpec->isVirtual(),
1552                                             SourceLocation(),
1553                                             BaseInit.takeAs<Expr>(),
1554                                             SourceLocation());
1555
1556  return false;
1557}
1558
1559static bool
1560BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1561                               ImplicitInitializerKind ImplicitInitKind,
1562                               FieldDecl *Field,
1563                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1564  if (Field->isInvalidDecl())
1565    return true;
1566
1567  if (ImplicitInitKind == IIK_Copy) {
1568    SourceLocation Loc = Constructor->getLocation();
1569    ParmVarDecl *Param = Constructor->getParamDecl(0);
1570    QualType ParamType = Param->getType().getNonReferenceType();
1571
1572    Expr *MemberExprBase =
1573      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1574                          Loc, ParamType, 0);
1575
1576    // Build a reference to this field within the parameter.
1577    CXXScopeSpec SS;
1578    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1579                              Sema::LookupMemberName);
1580    MemberLookup.addDecl(Field, AS_public);
1581    MemberLookup.resolveKind();
1582    Sema::OwningExprResult CopyCtorArg
1583      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1584                                         ParamType, Loc,
1585                                         /*IsArrow=*/false,
1586                                         SS,
1587                                         /*FirstQualifierInScope=*/0,
1588                                         MemberLookup,
1589                                         /*TemplateArgs=*/0);
1590    if (CopyCtorArg.isInvalid())
1591      return true;
1592
1593    // When the field we are copying is an array, create index variables for
1594    // each dimension of the array. We use these index variables to subscript
1595    // the source array, and other clients (e.g., CodeGen) will perform the
1596    // necessary iteration with these index variables.
1597    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1598    QualType BaseType = Field->getType();
1599    QualType SizeType = SemaRef.Context.getSizeType();
1600    while (const ConstantArrayType *Array
1601                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1602      // Create the iteration variable for this array index.
1603      IdentifierInfo *IterationVarName = 0;
1604      {
1605        llvm::SmallString<8> Str;
1606        llvm::raw_svector_ostream OS(Str);
1607        OS << "__i" << IndexVariables.size();
1608        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1609      }
1610      VarDecl *IterationVar
1611        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1612                          IterationVarName, SizeType,
1613                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1614                          VarDecl::None, VarDecl::None);
1615      IndexVariables.push_back(IterationVar);
1616
1617      // Create a reference to the iteration variable.
1618      Sema::OwningExprResult IterationVarRef
1619        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1620      assert(!IterationVarRef.isInvalid() &&
1621             "Reference to invented variable cannot fail!");
1622
1623      // Subscript the array with this iteration variable.
1624      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1625                                                            Loc,
1626                                                          move(IterationVarRef),
1627                                                            Loc);
1628      if (CopyCtorArg.isInvalid())
1629        return true;
1630
1631      BaseType = Array->getElementType();
1632    }
1633
1634    // Construct the entity that we will be initializing. For an array, this
1635    // will be first element in the array, which may require several levels
1636    // of array-subscript entities.
1637    llvm::SmallVector<InitializedEntity, 4> Entities;
1638    Entities.reserve(1 + IndexVariables.size());
1639    Entities.push_back(InitializedEntity::InitializeMember(Field));
1640    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1641      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1642                                                              0,
1643                                                              Entities.back()));
1644
1645    // Direct-initialize to use the copy constructor.
1646    InitializationKind InitKind =
1647      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1648
1649    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1650    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1651                                   &CopyCtorArgE, 1);
1652
1653    Sema::OwningExprResult MemberInit
1654      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1655                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1656    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1657    if (MemberInit.isInvalid())
1658      return true;
1659
1660    CXXMemberInit
1661      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1662                                           MemberInit.takeAs<Expr>(), Loc,
1663                                           IndexVariables.data(),
1664                                           IndexVariables.size());
1665    return false;
1666  }
1667
1668  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1669
1670  QualType FieldBaseElementType =
1671    SemaRef.Context.getBaseElementType(Field->getType());
1672
1673  if (FieldBaseElementType->isRecordType()) {
1674    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1675    InitializationKind InitKind =
1676      InitializationKind::CreateDefault(Constructor->getLocation());
1677
1678    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1679    Sema::OwningExprResult MemberInit =
1680      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1681                      Sema::MultiExprArg(SemaRef, 0, 0));
1682    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1683    if (MemberInit.isInvalid())
1684      return true;
1685
1686    CXXMemberInit =
1687      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1688                                                       Field, SourceLocation(),
1689                                                       SourceLocation(),
1690                                                      MemberInit.takeAs<Expr>(),
1691                                                       SourceLocation());
1692    return false;
1693  }
1694
1695  if (FieldBaseElementType->isReferenceType()) {
1696    SemaRef.Diag(Constructor->getLocation(),
1697                 diag::err_uninitialized_member_in_ctor)
1698    << (int)Constructor->isImplicit()
1699    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1700    << 0 << Field->getDeclName();
1701    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1702    return true;
1703  }
1704
1705  if (FieldBaseElementType.isConstQualified()) {
1706    SemaRef.Diag(Constructor->getLocation(),
1707                 diag::err_uninitialized_member_in_ctor)
1708    << (int)Constructor->isImplicit()
1709    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1710    << 1 << Field->getDeclName();
1711    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1712    return true;
1713  }
1714
1715  // Nothing to initialize.
1716  CXXMemberInit = 0;
1717  return false;
1718}
1719
1720namespace {
1721struct BaseAndFieldInfo {
1722  Sema &S;
1723  CXXConstructorDecl *Ctor;
1724  bool AnyErrorsInInits;
1725  ImplicitInitializerKind IIK;
1726  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1727  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1728
1729  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1730    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1731    // FIXME: Handle implicit move constructors.
1732    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1733      IIK = IIK_Copy;
1734    else
1735      IIK = IIK_Default;
1736  }
1737};
1738}
1739
1740static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1741                                    FieldDecl *Top, FieldDecl *Field) {
1742
1743  // Overwhelmingly common case:  we have a direct initializer for this field.
1744  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1745    Info.AllToInit.push_back(Init);
1746
1747    if (Field != Top) {
1748      Init->setMember(Top);
1749      Init->setAnonUnionMember(Field);
1750    }
1751    return false;
1752  }
1753
1754  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1755    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1756    assert(FieldClassType && "anonymous struct/union without record type");
1757
1758    // Walk through the members, tying in any initializers for fields
1759    // we find.  The earlier semantic checks should prevent redundant
1760    // initialization of union members, given the requirement that
1761    // union members never have non-trivial default constructors.
1762
1763    // TODO: in C++0x, it might be legal to have union members with
1764    // non-trivial default constructors in unions.  Revise this
1765    // implementation then with the appropriate semantics.
1766    CXXRecordDecl *FieldClassDecl
1767      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1768    for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1769           EA = FieldClassDecl->field_end(); FA != EA; FA++)
1770      if (CollectFieldInitializer(Info, Top, *FA))
1771        return true;
1772  }
1773
1774  // Don't try to build an implicit initializer if there were semantic
1775  // errors in any of the initializers (and therefore we might be
1776  // missing some that the user actually wrote).
1777  if (Info.AnyErrorsInInits)
1778    return false;
1779
1780  CXXBaseOrMemberInitializer *Init = 0;
1781  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1782    return true;
1783
1784  // If the member doesn't need to be initialized, Init will still be null.
1785  if (!Init) return false;
1786
1787  Info.AllToInit.push_back(Init);
1788  if (Top != Field) {
1789    Init->setMember(Top);
1790    Init->setAnonUnionMember(Field);
1791  }
1792  return false;
1793}
1794
1795bool
1796Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1797                                  CXXBaseOrMemberInitializer **Initializers,
1798                                  unsigned NumInitializers,
1799                                  bool AnyErrors) {
1800  if (Constructor->getDeclContext()->isDependentContext()) {
1801    // Just store the initializers as written, they will be checked during
1802    // instantiation.
1803    if (NumInitializers > 0) {
1804      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1805      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1806        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1807      memcpy(baseOrMemberInitializers, Initializers,
1808             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1809      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1810    }
1811
1812    return false;
1813  }
1814
1815  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1816
1817  // We need to build the initializer AST according to order of construction
1818  // and not what user specified in the Initializers list.
1819  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1820  if (!ClassDecl)
1821    return true;
1822
1823  bool HadError = false;
1824
1825  for (unsigned i = 0; i < NumInitializers; i++) {
1826    CXXBaseOrMemberInitializer *Member = Initializers[i];
1827
1828    if (Member->isBaseInitializer())
1829      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1830    else
1831      Info.AllBaseFields[Member->getMember()] = Member;
1832  }
1833
1834  // Keep track of the direct virtual bases.
1835  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1836  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1837       E = ClassDecl->bases_end(); I != E; ++I) {
1838    if (I->isVirtual())
1839      DirectVBases.insert(I);
1840  }
1841
1842  // Push virtual bases before others.
1843  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1844       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1845
1846    if (CXXBaseOrMemberInitializer *Value
1847        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1848      Info.AllToInit.push_back(Value);
1849    } else if (!AnyErrors) {
1850      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1851      CXXBaseOrMemberInitializer *CXXBaseInit;
1852      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1853                                       VBase, IsInheritedVirtualBase,
1854                                       CXXBaseInit)) {
1855        HadError = true;
1856        continue;
1857      }
1858
1859      Info.AllToInit.push_back(CXXBaseInit);
1860    }
1861  }
1862
1863  // Non-virtual bases.
1864  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1865       E = ClassDecl->bases_end(); Base != E; ++Base) {
1866    // Virtuals are in the virtual base list and already constructed.
1867    if (Base->isVirtual())
1868      continue;
1869
1870    if (CXXBaseOrMemberInitializer *Value
1871          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1872      Info.AllToInit.push_back(Value);
1873    } else if (!AnyErrors) {
1874      CXXBaseOrMemberInitializer *CXXBaseInit;
1875      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1876                                       Base, /*IsInheritedVirtualBase=*/false,
1877                                       CXXBaseInit)) {
1878        HadError = true;
1879        continue;
1880      }
1881
1882      Info.AllToInit.push_back(CXXBaseInit);
1883    }
1884  }
1885
1886  // Fields.
1887  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1888       E = ClassDecl->field_end(); Field != E; ++Field) {
1889    if ((*Field)->getType()->isIncompleteArrayType()) {
1890      assert(ClassDecl->hasFlexibleArrayMember() &&
1891             "Incomplete array type is not valid");
1892      continue;
1893    }
1894    if (CollectFieldInitializer(Info, *Field, *Field))
1895      HadError = true;
1896  }
1897
1898  NumInitializers = Info.AllToInit.size();
1899  if (NumInitializers > 0) {
1900    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1901    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1902      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1903    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1904           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1905    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1906
1907    // Constructors implicitly reference the base and member
1908    // destructors.
1909    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1910                                           Constructor->getParent());
1911  }
1912
1913  return HadError;
1914}
1915
1916static void *GetKeyForTopLevelField(FieldDecl *Field) {
1917  // For anonymous unions, use the class declaration as the key.
1918  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1919    if (RT->getDecl()->isAnonymousStructOrUnion())
1920      return static_cast<void *>(RT->getDecl());
1921  }
1922  return static_cast<void *>(Field);
1923}
1924
1925static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1926  return Context.getCanonicalType(BaseType).getTypePtr();
1927}
1928
1929static void *GetKeyForMember(ASTContext &Context,
1930                             CXXBaseOrMemberInitializer *Member,
1931                             bool MemberMaybeAnon = false) {
1932  if (!Member->isMemberInitializer())
1933    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1934
1935  // For fields injected into the class via declaration of an anonymous union,
1936  // use its anonymous union class declaration as the unique key.
1937  FieldDecl *Field = Member->getMember();
1938
1939  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1940  // data member of the class. Data member used in the initializer list is
1941  // in AnonUnionMember field.
1942  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1943    Field = Member->getAnonUnionMember();
1944
1945  // If the field is a member of an anonymous struct or union, our key
1946  // is the anonymous record decl that's a direct child of the class.
1947  RecordDecl *RD = Field->getParent();
1948  if (RD->isAnonymousStructOrUnion()) {
1949    while (true) {
1950      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1951      if (Parent->isAnonymousStructOrUnion())
1952        RD = Parent;
1953      else
1954        break;
1955    }
1956
1957    return static_cast<void *>(RD);
1958  }
1959
1960  return static_cast<void *>(Field);
1961}
1962
1963static void
1964DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1965                                  const CXXConstructorDecl *Constructor,
1966                                  CXXBaseOrMemberInitializer **Inits,
1967                                  unsigned NumInits) {
1968  if (Constructor->getDeclContext()->isDependentContext())
1969    return;
1970
1971  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1972        == Diagnostic::Ignored)
1973    return;
1974
1975  // Build the list of bases and members in the order that they'll
1976  // actually be initialized.  The explicit initializers should be in
1977  // this same order but may be missing things.
1978  llvm::SmallVector<const void*, 32> IdealInitKeys;
1979
1980  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1981
1982  // 1. Virtual bases.
1983  for (CXXRecordDecl::base_class_const_iterator VBase =
1984       ClassDecl->vbases_begin(),
1985       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1986    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1987
1988  // 2. Non-virtual bases.
1989  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1990       E = ClassDecl->bases_end(); Base != E; ++Base) {
1991    if (Base->isVirtual())
1992      continue;
1993    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1994  }
1995
1996  // 3. Direct fields.
1997  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1998       E = ClassDecl->field_end(); Field != E; ++Field)
1999    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2000
2001  unsigned NumIdealInits = IdealInitKeys.size();
2002  unsigned IdealIndex = 0;
2003
2004  CXXBaseOrMemberInitializer *PrevInit = 0;
2005  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2006    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2007    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2008
2009    // Scan forward to try to find this initializer in the idealized
2010    // initializers list.
2011    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2012      if (InitKey == IdealInitKeys[IdealIndex])
2013        break;
2014
2015    // If we didn't find this initializer, it must be because we
2016    // scanned past it on a previous iteration.  That can only
2017    // happen if we're out of order;  emit a warning.
2018    if (IdealIndex == NumIdealInits && PrevInit) {
2019      Sema::SemaDiagnosticBuilder D =
2020        SemaRef.Diag(PrevInit->getSourceLocation(),
2021                     diag::warn_initializer_out_of_order);
2022
2023      if (PrevInit->isMemberInitializer())
2024        D << 0 << PrevInit->getMember()->getDeclName();
2025      else
2026        D << 1 << PrevInit->getBaseClassInfo()->getType();
2027
2028      if (Init->isMemberInitializer())
2029        D << 0 << Init->getMember()->getDeclName();
2030      else
2031        D << 1 << Init->getBaseClassInfo()->getType();
2032
2033      // Move back to the initializer's location in the ideal list.
2034      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2035        if (InitKey == IdealInitKeys[IdealIndex])
2036          break;
2037
2038      assert(IdealIndex != NumIdealInits &&
2039             "initializer not found in initializer list");
2040    }
2041
2042    PrevInit = Init;
2043  }
2044}
2045
2046namespace {
2047bool CheckRedundantInit(Sema &S,
2048                        CXXBaseOrMemberInitializer *Init,
2049                        CXXBaseOrMemberInitializer *&PrevInit) {
2050  if (!PrevInit) {
2051    PrevInit = Init;
2052    return false;
2053  }
2054
2055  if (FieldDecl *Field = Init->getMember())
2056    S.Diag(Init->getSourceLocation(),
2057           diag::err_multiple_mem_initialization)
2058      << Field->getDeclName()
2059      << Init->getSourceRange();
2060  else {
2061    Type *BaseClass = Init->getBaseClass();
2062    assert(BaseClass && "neither field nor base");
2063    S.Diag(Init->getSourceLocation(),
2064           diag::err_multiple_base_initialization)
2065      << QualType(BaseClass, 0)
2066      << Init->getSourceRange();
2067  }
2068  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2069    << 0 << PrevInit->getSourceRange();
2070
2071  return true;
2072}
2073
2074typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2075typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2076
2077bool CheckRedundantUnionInit(Sema &S,
2078                             CXXBaseOrMemberInitializer *Init,
2079                             RedundantUnionMap &Unions) {
2080  FieldDecl *Field = Init->getMember();
2081  RecordDecl *Parent = Field->getParent();
2082  if (!Parent->isAnonymousStructOrUnion())
2083    return false;
2084
2085  NamedDecl *Child = Field;
2086  do {
2087    if (Parent->isUnion()) {
2088      UnionEntry &En = Unions[Parent];
2089      if (En.first && En.first != Child) {
2090        S.Diag(Init->getSourceLocation(),
2091               diag::err_multiple_mem_union_initialization)
2092          << Field->getDeclName()
2093          << Init->getSourceRange();
2094        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2095          << 0 << En.second->getSourceRange();
2096        return true;
2097      } else if (!En.first) {
2098        En.first = Child;
2099        En.second = Init;
2100      }
2101    }
2102
2103    Child = Parent;
2104    Parent = cast<RecordDecl>(Parent->getDeclContext());
2105  } while (Parent->isAnonymousStructOrUnion());
2106
2107  return false;
2108}
2109}
2110
2111/// ActOnMemInitializers - Handle the member initializers for a constructor.
2112void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2113                                SourceLocation ColonLoc,
2114                                MemInitTy **meminits, unsigned NumMemInits,
2115                                bool AnyErrors) {
2116  if (!ConstructorDecl)
2117    return;
2118
2119  AdjustDeclIfTemplate(ConstructorDecl);
2120
2121  CXXConstructorDecl *Constructor
2122    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2123
2124  if (!Constructor) {
2125    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2126    return;
2127  }
2128
2129  CXXBaseOrMemberInitializer **MemInits =
2130    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2131
2132  // Mapping for the duplicate initializers check.
2133  // For member initializers, this is keyed with a FieldDecl*.
2134  // For base initializers, this is keyed with a Type*.
2135  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2136
2137  // Mapping for the inconsistent anonymous-union initializers check.
2138  RedundantUnionMap MemberUnions;
2139
2140  bool HadError = false;
2141  for (unsigned i = 0; i < NumMemInits; i++) {
2142    CXXBaseOrMemberInitializer *Init = MemInits[i];
2143
2144    // Set the source order index.
2145    Init->setSourceOrder(i);
2146
2147    if (Init->isMemberInitializer()) {
2148      FieldDecl *Field = Init->getMember();
2149      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2150          CheckRedundantUnionInit(*this, Init, MemberUnions))
2151        HadError = true;
2152    } else {
2153      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2154      if (CheckRedundantInit(*this, Init, Members[Key]))
2155        HadError = true;
2156    }
2157  }
2158
2159  if (HadError)
2160    return;
2161
2162  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2163
2164  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2165}
2166
2167void
2168Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2169                                             CXXRecordDecl *ClassDecl) {
2170  // Ignore dependent contexts.
2171  if (ClassDecl->isDependentContext())
2172    return;
2173
2174  // FIXME: all the access-control diagnostics are positioned on the
2175  // field/base declaration.  That's probably good; that said, the
2176  // user might reasonably want to know why the destructor is being
2177  // emitted, and we currently don't say.
2178
2179  // Non-static data members.
2180  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2181       E = ClassDecl->field_end(); I != E; ++I) {
2182    FieldDecl *Field = *I;
2183    if (Field->isInvalidDecl())
2184      continue;
2185    QualType FieldType = Context.getBaseElementType(Field->getType());
2186
2187    const RecordType* RT = FieldType->getAs<RecordType>();
2188    if (!RT)
2189      continue;
2190
2191    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2192    if (FieldClassDecl->hasTrivialDestructor())
2193      continue;
2194
2195    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2196    CheckDestructorAccess(Field->getLocation(), Dtor,
2197                          PDiag(diag::err_access_dtor_field)
2198                            << Field->getDeclName()
2199                            << FieldType);
2200
2201    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2202  }
2203
2204  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2205
2206  // Bases.
2207  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2208       E = ClassDecl->bases_end(); Base != E; ++Base) {
2209    // Bases are always records in a well-formed non-dependent class.
2210    const RecordType *RT = Base->getType()->getAs<RecordType>();
2211
2212    // Remember direct virtual bases.
2213    if (Base->isVirtual())
2214      DirectVirtualBases.insert(RT);
2215
2216    // Ignore trivial destructors.
2217    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2218    if (BaseClassDecl->hasTrivialDestructor())
2219      continue;
2220
2221    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2222
2223    // FIXME: caret should be on the start of the class name
2224    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2225                          PDiag(diag::err_access_dtor_base)
2226                            << Base->getType()
2227                            << Base->getSourceRange());
2228
2229    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2230  }
2231
2232  // Virtual bases.
2233  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2234       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2235
2236    // Bases are always records in a well-formed non-dependent class.
2237    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2238
2239    // Ignore direct virtual bases.
2240    if (DirectVirtualBases.count(RT))
2241      continue;
2242
2243    // Ignore trivial destructors.
2244    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2245    if (BaseClassDecl->hasTrivialDestructor())
2246      continue;
2247
2248    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2249    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2250                          PDiag(diag::err_access_dtor_vbase)
2251                            << VBase->getType());
2252
2253    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2254  }
2255}
2256
2257void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2258  if (!CDtorDecl)
2259    return;
2260
2261  if (CXXConstructorDecl *Constructor
2262      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2263    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2264}
2265
2266bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2267                                  unsigned DiagID, AbstractDiagSelID SelID,
2268                                  const CXXRecordDecl *CurrentRD) {
2269  if (SelID == -1)
2270    return RequireNonAbstractType(Loc, T,
2271                                  PDiag(DiagID), CurrentRD);
2272  else
2273    return RequireNonAbstractType(Loc, T,
2274                                  PDiag(DiagID) << SelID, CurrentRD);
2275}
2276
2277bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2278                                  const PartialDiagnostic &PD,
2279                                  const CXXRecordDecl *CurrentRD) {
2280  if (!getLangOptions().CPlusPlus)
2281    return false;
2282
2283  if (const ArrayType *AT = Context.getAsArrayType(T))
2284    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2285                                  CurrentRD);
2286
2287  if (const PointerType *PT = T->getAs<PointerType>()) {
2288    // Find the innermost pointer type.
2289    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2290      PT = T;
2291
2292    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2293      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2294  }
2295
2296  const RecordType *RT = T->getAs<RecordType>();
2297  if (!RT)
2298    return false;
2299
2300  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2301
2302  if (CurrentRD && CurrentRD != RD)
2303    return false;
2304
2305  // FIXME: is this reasonable?  It matches current behavior, but....
2306  if (!RD->getDefinition())
2307    return false;
2308
2309  if (!RD->isAbstract())
2310    return false;
2311
2312  Diag(Loc, PD) << RD->getDeclName();
2313
2314  // Check if we've already emitted the list of pure virtual functions for this
2315  // class.
2316  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2317    return true;
2318
2319  CXXFinalOverriderMap FinalOverriders;
2320  RD->getFinalOverriders(FinalOverriders);
2321
2322  // Keep a set of seen pure methods so we won't diagnose the same method
2323  // more than once.
2324  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2325
2326  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2327                                   MEnd = FinalOverriders.end();
2328       M != MEnd;
2329       ++M) {
2330    for (OverridingMethods::iterator SO = M->second.begin(),
2331                                  SOEnd = M->second.end();
2332         SO != SOEnd; ++SO) {
2333      // C++ [class.abstract]p4:
2334      //   A class is abstract if it contains or inherits at least one
2335      //   pure virtual function for which the final overrider is pure
2336      //   virtual.
2337
2338      //
2339      if (SO->second.size() != 1)
2340        continue;
2341
2342      if (!SO->second.front().Method->isPure())
2343        continue;
2344
2345      if (!SeenPureMethods.insert(SO->second.front().Method))
2346        continue;
2347
2348      Diag(SO->second.front().Method->getLocation(),
2349           diag::note_pure_virtual_function)
2350        << SO->second.front().Method->getDeclName();
2351    }
2352  }
2353
2354  if (!PureVirtualClassDiagSet)
2355    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2356  PureVirtualClassDiagSet->insert(RD);
2357
2358  return true;
2359}
2360
2361namespace {
2362  class AbstractClassUsageDiagnoser
2363    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2364    Sema &SemaRef;
2365    CXXRecordDecl *AbstractClass;
2366
2367    bool VisitDeclContext(const DeclContext *DC) {
2368      bool Invalid = false;
2369
2370      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2371           E = DC->decls_end(); I != E; ++I)
2372        Invalid |= Visit(*I);
2373
2374      return Invalid;
2375    }
2376
2377  public:
2378    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2379      : SemaRef(SemaRef), AbstractClass(ac) {
2380        Visit(SemaRef.Context.getTranslationUnitDecl());
2381    }
2382
2383    bool VisitFunctionDecl(const FunctionDecl *FD) {
2384      if (FD->isThisDeclarationADefinition()) {
2385        // No need to do the check if we're in a definition, because it requires
2386        // that the return/param types are complete.
2387        // because that requires
2388        return VisitDeclContext(FD);
2389      }
2390
2391      // Check the return type.
2392      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2393      bool Invalid =
2394        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2395                                       diag::err_abstract_type_in_decl,
2396                                       Sema::AbstractReturnType,
2397                                       AbstractClass);
2398
2399      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2400           E = FD->param_end(); I != E; ++I) {
2401        const ParmVarDecl *VD = *I;
2402        Invalid |=
2403          SemaRef.RequireNonAbstractType(VD->getLocation(),
2404                                         VD->getOriginalType(),
2405                                         diag::err_abstract_type_in_decl,
2406                                         Sema::AbstractParamType,
2407                                         AbstractClass);
2408      }
2409
2410      return Invalid;
2411    }
2412
2413    bool VisitDecl(const Decl* D) {
2414      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2415        return VisitDeclContext(DC);
2416
2417      return false;
2418    }
2419  };
2420}
2421
2422/// \brief Perform semantic checks on a class definition that has been
2423/// completing, introducing implicitly-declared members, checking for
2424/// abstract types, etc.
2425void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2426  if (!Record || Record->isInvalidDecl())
2427    return;
2428
2429  if (!Record->isDependentType())
2430    AddImplicitlyDeclaredMembersToClass(S, Record);
2431
2432  if (Record->isInvalidDecl())
2433    return;
2434
2435  // Set access bits correctly on the directly-declared conversions.
2436  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2437  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2438    Convs->setAccess(I, (*I)->getAccess());
2439
2440  // Determine whether we need to check for final overriders. We do
2441  // this either when there are virtual base classes (in which case we
2442  // may end up finding multiple final overriders for a given virtual
2443  // function) or any of the base classes is abstract (in which case
2444  // we might detect that this class is abstract).
2445  bool CheckFinalOverriders = false;
2446  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2447      !Record->isDependentType()) {
2448    if (Record->getNumVBases())
2449      CheckFinalOverriders = true;
2450    else if (!Record->isAbstract()) {
2451      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2452                                                 BEnd = Record->bases_end();
2453           B != BEnd; ++B) {
2454        CXXRecordDecl *BaseDecl
2455          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2456        if (BaseDecl->isAbstract()) {
2457          CheckFinalOverriders = true;
2458          break;
2459        }
2460      }
2461    }
2462  }
2463
2464  if (CheckFinalOverriders) {
2465    CXXFinalOverriderMap FinalOverriders;
2466    Record->getFinalOverriders(FinalOverriders);
2467
2468    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2469                                     MEnd = FinalOverriders.end();
2470         M != MEnd; ++M) {
2471      for (OverridingMethods::iterator SO = M->second.begin(),
2472                                    SOEnd = M->second.end();
2473           SO != SOEnd; ++SO) {
2474        assert(SO->second.size() > 0 &&
2475               "All virtual functions have overridding virtual functions");
2476        if (SO->second.size() == 1) {
2477          // C++ [class.abstract]p4:
2478          //   A class is abstract if it contains or inherits at least one
2479          //   pure virtual function for which the final overrider is pure
2480          //   virtual.
2481          if (SO->second.front().Method->isPure())
2482            Record->setAbstract(true);
2483          continue;
2484        }
2485
2486        // C++ [class.virtual]p2:
2487        //   In a derived class, if a virtual member function of a base
2488        //   class subobject has more than one final overrider the
2489        //   program is ill-formed.
2490        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2491          << (NamedDecl *)M->first << Record;
2492        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2493        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2494                                                 OMEnd = SO->second.end();
2495             OM != OMEnd; ++OM)
2496          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2497            << (NamedDecl *)M->first << OM->Method->getParent();
2498
2499        Record->setInvalidDecl();
2500      }
2501    }
2502  }
2503
2504  if (Record->isAbstract() && !Record->isInvalidDecl())
2505    (void)AbstractClassUsageDiagnoser(*this, Record);
2506
2507  // If this is not an aggregate type and has no user-declared constructor,
2508  // complain about any non-static data members of reference or const scalar
2509  // type, since they will never get initializers.
2510  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2511      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2512    bool Complained = false;
2513    for (RecordDecl::field_iterator F = Record->field_begin(),
2514                                 FEnd = Record->field_end();
2515         F != FEnd; ++F) {
2516      if (F->getType()->isReferenceType() ||
2517          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2518        if (!Complained) {
2519          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2520            << Record->getTagKind() << Record;
2521          Complained = true;
2522        }
2523
2524        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2525          << F->getType()->isReferenceType()
2526          << F->getDeclName();
2527      }
2528    }
2529  }
2530
2531  if (Record->isDynamicClass())
2532    DynamicClasses.push_back(Record);
2533}
2534
2535void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2536                                             DeclPtrTy TagDecl,
2537                                             SourceLocation LBrac,
2538                                             SourceLocation RBrac,
2539                                             AttributeList *AttrList) {
2540  if (!TagDecl)
2541    return;
2542
2543  AdjustDeclIfTemplate(TagDecl);
2544
2545  ActOnFields(S, RLoc, TagDecl,
2546              (DeclPtrTy*)FieldCollector->getCurFields(),
2547              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2548
2549  CheckCompletedCXXClass(S,
2550                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2551}
2552
2553/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2554/// special functions, such as the default constructor, copy
2555/// constructor, or destructor, to the given C++ class (C++
2556/// [special]p1).  This routine can only be executed just before the
2557/// definition of the class is complete.
2558///
2559/// The scope, if provided, is the class scope.
2560void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2561                                               CXXRecordDecl *ClassDecl) {
2562  CanQualType ClassType
2563    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2564
2565  // FIXME: Implicit declarations have exception specifications, which are
2566  // the union of the specifications of the implicitly called functions.
2567
2568  if (!ClassDecl->hasUserDeclaredConstructor()) {
2569    // C++ [class.ctor]p5:
2570    //   A default constructor for a class X is a constructor of class X
2571    //   that can be called without an argument. If there is no
2572    //   user-declared constructor for class X, a default constructor is
2573    //   implicitly declared. An implicitly-declared default constructor
2574    //   is an inline public member of its class.
2575    DeclarationName Name
2576      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2577    CXXConstructorDecl *DefaultCon =
2578      CXXConstructorDecl::Create(Context, ClassDecl,
2579                                 ClassDecl->getLocation(), Name,
2580                                 Context.getFunctionType(Context.VoidTy,
2581                                                         0, 0, false, 0,
2582                                                         /*FIXME*/false, false,
2583                                                         0, 0,
2584                                                       FunctionType::ExtInfo()),
2585                                 /*TInfo=*/0,
2586                                 /*isExplicit=*/false,
2587                                 /*isInline=*/true,
2588                                 /*isImplicitlyDeclared=*/true);
2589    DefaultCon->setAccess(AS_public);
2590    DefaultCon->setImplicit();
2591    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2592    if (S)
2593      PushOnScopeChains(DefaultCon, S, true);
2594    else
2595      ClassDecl->addDecl(DefaultCon);
2596  }
2597
2598  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2599    // C++ [class.copy]p4:
2600    //   If the class definition does not explicitly declare a copy
2601    //   constructor, one is declared implicitly.
2602
2603    // C++ [class.copy]p5:
2604    //   The implicitly-declared copy constructor for a class X will
2605    //   have the form
2606    //
2607    //       X::X(const X&)
2608    //
2609    //   if
2610    bool HasConstCopyConstructor = true;
2611
2612    //     -- each direct or virtual base class B of X has a copy
2613    //        constructor whose first parameter is of type const B& or
2614    //        const volatile B&, and
2615    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2616         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2617      const CXXRecordDecl *BaseClassDecl
2618        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2619      HasConstCopyConstructor
2620        = BaseClassDecl->hasConstCopyConstructor(Context);
2621    }
2622
2623    //     -- for all the nonstatic data members of X that are of a
2624    //        class type M (or array thereof), each such class type
2625    //        has a copy constructor whose first parameter is of type
2626    //        const M& or const volatile M&.
2627    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2628         HasConstCopyConstructor && Field != ClassDecl->field_end();
2629         ++Field) {
2630      QualType FieldType = (*Field)->getType();
2631      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2632        FieldType = Array->getElementType();
2633      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2634        const CXXRecordDecl *FieldClassDecl
2635          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2636        HasConstCopyConstructor
2637          = FieldClassDecl->hasConstCopyConstructor(Context);
2638      }
2639    }
2640
2641    //   Otherwise, the implicitly declared copy constructor will have
2642    //   the form
2643    //
2644    //       X::X(X&)
2645    QualType ArgType = ClassType;
2646    if (HasConstCopyConstructor)
2647      ArgType = ArgType.withConst();
2648    ArgType = Context.getLValueReferenceType(ArgType);
2649
2650    //   An implicitly-declared copy constructor is an inline public
2651    //   member of its class.
2652    DeclarationName Name
2653      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2654    CXXConstructorDecl *CopyConstructor
2655      = CXXConstructorDecl::Create(Context, ClassDecl,
2656                                   ClassDecl->getLocation(), Name,
2657                                   Context.getFunctionType(Context.VoidTy,
2658                                                           &ArgType, 1,
2659                                                           false, 0,
2660                                               /*FIXME: hasExceptionSpec*/false,
2661                                                           false, 0, 0,
2662                                                       FunctionType::ExtInfo()),
2663                                   /*TInfo=*/0,
2664                                   /*isExplicit=*/false,
2665                                   /*isInline=*/true,
2666                                   /*isImplicitlyDeclared=*/true);
2667    CopyConstructor->setAccess(AS_public);
2668    CopyConstructor->setImplicit();
2669    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2670
2671    // Add the parameter to the constructor.
2672    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2673                                                 ClassDecl->getLocation(),
2674                                                 /*IdentifierInfo=*/0,
2675                                                 ArgType, /*TInfo=*/0,
2676                                                 VarDecl::None,
2677                                                 VarDecl::None, 0);
2678    CopyConstructor->setParams(&FromParam, 1);
2679    if (S)
2680      PushOnScopeChains(CopyConstructor, S, true);
2681    else
2682      ClassDecl->addDecl(CopyConstructor);
2683  }
2684
2685  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2686    // Note: The following rules are largely analoguous to the copy
2687    // constructor rules. Note that virtual bases are not taken into account
2688    // for determining the argument type of the operator. Note also that
2689    // operators taking an object instead of a reference are allowed.
2690    //
2691    // C++ [class.copy]p10:
2692    //   If the class definition does not explicitly declare a copy
2693    //   assignment operator, one is declared implicitly.
2694    //   The implicitly-defined copy assignment operator for a class X
2695    //   will have the form
2696    //
2697    //       X& X::operator=(const X&)
2698    //
2699    //   if
2700    bool HasConstCopyAssignment = true;
2701
2702    //       -- each direct base class B of X has a copy assignment operator
2703    //          whose parameter is of type const B&, const volatile B& or B,
2704    //          and
2705    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2706         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2707      assert(!Base->getType()->isDependentType() &&
2708            "Cannot generate implicit members for class with dependent bases.");
2709      const CXXRecordDecl *BaseClassDecl
2710        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2711      const CXXMethodDecl *MD = 0;
2712      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2713                                                                     MD);
2714    }
2715
2716    //       -- for all the nonstatic data members of X that are of a class
2717    //          type M (or array thereof), each such class type has a copy
2718    //          assignment operator whose parameter is of type const M&,
2719    //          const volatile M& or M.
2720    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2721         HasConstCopyAssignment && Field != ClassDecl->field_end();
2722         ++Field) {
2723      QualType FieldType = (*Field)->getType();
2724      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2725        FieldType = Array->getElementType();
2726      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2727        const CXXRecordDecl *FieldClassDecl
2728          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2729        const CXXMethodDecl *MD = 0;
2730        HasConstCopyAssignment
2731          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2732      }
2733    }
2734
2735    //   Otherwise, the implicitly declared copy assignment operator will
2736    //   have the form
2737    //
2738    //       X& X::operator=(X&)
2739    QualType ArgType = ClassType;
2740    QualType RetType = Context.getLValueReferenceType(ArgType);
2741    if (HasConstCopyAssignment)
2742      ArgType = ArgType.withConst();
2743    ArgType = Context.getLValueReferenceType(ArgType);
2744
2745    //   An implicitly-declared copy assignment operator is an inline public
2746    //   member of its class.
2747    DeclarationName Name =
2748      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2749    CXXMethodDecl *CopyAssignment =
2750      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2751                            Context.getFunctionType(RetType, &ArgType, 1,
2752                                                    false, 0,
2753                                              /*FIXME: hasExceptionSpec*/false,
2754                                                    false, 0, 0,
2755                                                    FunctionType::ExtInfo()),
2756                            /*TInfo=*/0, /*isStatic=*/false,
2757                            /*StorageClassAsWritten=*/FunctionDecl::None,
2758                            /*isInline=*/true);
2759    CopyAssignment->setAccess(AS_public);
2760    CopyAssignment->setImplicit();
2761    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2762    CopyAssignment->setCopyAssignment(true);
2763
2764    // Add the parameter to the operator.
2765    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2766                                                 ClassDecl->getLocation(),
2767                                                 /*Id=*/0,
2768                                                 ArgType, /*TInfo=*/0,
2769                                                 VarDecl::None,
2770                                                 VarDecl::None, 0);
2771    CopyAssignment->setParams(&FromParam, 1);
2772
2773    // Don't call addedAssignmentOperator. There is no way to distinguish an
2774    // implicit from an explicit assignment operator.
2775    if (S)
2776      PushOnScopeChains(CopyAssignment, S, true);
2777    else
2778      ClassDecl->addDecl(CopyAssignment);
2779    AddOverriddenMethods(ClassDecl, CopyAssignment);
2780  }
2781
2782  if (!ClassDecl->hasUserDeclaredDestructor()) {
2783    // C++ [class.dtor]p2:
2784    //   If a class has no user-declared destructor, a destructor is
2785    //   declared implicitly. An implicitly-declared destructor is an
2786    //   inline public member of its class.
2787    QualType Ty = Context.getFunctionType(Context.VoidTy,
2788                                          0, 0, false, 0,
2789                                          /*FIXME: hasExceptionSpec*/false,
2790                                          false, 0, 0, FunctionType::ExtInfo());
2791
2792    DeclarationName Name
2793      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2794    CXXDestructorDecl *Destructor
2795      = CXXDestructorDecl::Create(Context, ClassDecl,
2796                                  ClassDecl->getLocation(), Name, Ty,
2797                                  /*isInline=*/true,
2798                                  /*isImplicitlyDeclared=*/true);
2799    Destructor->setAccess(AS_public);
2800    Destructor->setImplicit();
2801    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2802    if (S)
2803      PushOnScopeChains(Destructor, S, true);
2804    else
2805      ClassDecl->addDecl(Destructor);
2806
2807    // This could be uniqued if it ever proves significant.
2808    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2809
2810    AddOverriddenMethods(ClassDecl, Destructor);
2811  }
2812}
2813
2814void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2815  Decl *D = TemplateD.getAs<Decl>();
2816  if (!D)
2817    return;
2818
2819  TemplateParameterList *Params = 0;
2820  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2821    Params = Template->getTemplateParameters();
2822  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2823           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2824    Params = PartialSpec->getTemplateParameters();
2825  else
2826    return;
2827
2828  for (TemplateParameterList::iterator Param = Params->begin(),
2829                                    ParamEnd = Params->end();
2830       Param != ParamEnd; ++Param) {
2831    NamedDecl *Named = cast<NamedDecl>(*Param);
2832    if (Named->getDeclName()) {
2833      S->AddDecl(DeclPtrTy::make(Named));
2834      IdResolver.AddDecl(Named);
2835    }
2836  }
2837}
2838
2839void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2840  if (!RecordD) return;
2841  AdjustDeclIfTemplate(RecordD);
2842  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2843  PushDeclContext(S, Record);
2844}
2845
2846void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2847  if (!RecordD) return;
2848  PopDeclContext();
2849}
2850
2851/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2852/// parsing a top-level (non-nested) C++ class, and we are now
2853/// parsing those parts of the given Method declaration that could
2854/// not be parsed earlier (C++ [class.mem]p2), such as default
2855/// arguments. This action should enter the scope of the given
2856/// Method declaration as if we had just parsed the qualified method
2857/// name. However, it should not bring the parameters into scope;
2858/// that will be performed by ActOnDelayedCXXMethodParameter.
2859void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2860}
2861
2862/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2863/// C++ method declaration. We're (re-)introducing the given
2864/// function parameter into scope for use in parsing later parts of
2865/// the method declaration. For example, we could see an
2866/// ActOnParamDefaultArgument event for this parameter.
2867void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2868  if (!ParamD)
2869    return;
2870
2871  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2872
2873  // If this parameter has an unparsed default argument, clear it out
2874  // to make way for the parsed default argument.
2875  if (Param->hasUnparsedDefaultArg())
2876    Param->setDefaultArg(0);
2877
2878  S->AddDecl(DeclPtrTy::make(Param));
2879  if (Param->getDeclName())
2880    IdResolver.AddDecl(Param);
2881}
2882
2883/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2884/// processing the delayed method declaration for Method. The method
2885/// declaration is now considered finished. There may be a separate
2886/// ActOnStartOfFunctionDef action later (not necessarily
2887/// immediately!) for this method, if it was also defined inside the
2888/// class body.
2889void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2890  if (!MethodD)
2891    return;
2892
2893  AdjustDeclIfTemplate(MethodD);
2894
2895  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2896
2897  // Now that we have our default arguments, check the constructor
2898  // again. It could produce additional diagnostics or affect whether
2899  // the class has implicitly-declared destructors, among other
2900  // things.
2901  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2902    CheckConstructor(Constructor);
2903
2904  // Check the default arguments, which we may have added.
2905  if (!Method->isInvalidDecl())
2906    CheckCXXDefaultArguments(Method);
2907}
2908
2909/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2910/// the well-formedness of the constructor declarator @p D with type @p
2911/// R. If there are any errors in the declarator, this routine will
2912/// emit diagnostics and set the invalid bit to true.  In any case, the type
2913/// will be updated to reflect a well-formed type for the constructor and
2914/// returned.
2915QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2916                                          FunctionDecl::StorageClass &SC) {
2917  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2918
2919  // C++ [class.ctor]p3:
2920  //   A constructor shall not be virtual (10.3) or static (9.4). A
2921  //   constructor can be invoked for a const, volatile or const
2922  //   volatile object. A constructor shall not be declared const,
2923  //   volatile, or const volatile (9.3.2).
2924  if (isVirtual) {
2925    if (!D.isInvalidType())
2926      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2927        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2928        << SourceRange(D.getIdentifierLoc());
2929    D.setInvalidType();
2930  }
2931  if (SC == FunctionDecl::Static) {
2932    if (!D.isInvalidType())
2933      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2934        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2935        << SourceRange(D.getIdentifierLoc());
2936    D.setInvalidType();
2937    SC = FunctionDecl::None;
2938  }
2939
2940  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2941  if (FTI.TypeQuals != 0) {
2942    if (FTI.TypeQuals & Qualifiers::Const)
2943      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2944        << "const" << SourceRange(D.getIdentifierLoc());
2945    if (FTI.TypeQuals & Qualifiers::Volatile)
2946      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2947        << "volatile" << SourceRange(D.getIdentifierLoc());
2948    if (FTI.TypeQuals & Qualifiers::Restrict)
2949      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2950        << "restrict" << SourceRange(D.getIdentifierLoc());
2951  }
2952
2953  // Rebuild the function type "R" without any type qualifiers (in
2954  // case any of the errors above fired) and with "void" as the
2955  // return type, since constructors don't have return types. We
2956  // *always* have to do this, because GetTypeForDeclarator will
2957  // put in a result type of "int" when none was specified.
2958  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2959  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2960                                 Proto->getNumArgs(),
2961                                 Proto->isVariadic(), 0,
2962                                 Proto->hasExceptionSpec(),
2963                                 Proto->hasAnyExceptionSpec(),
2964                                 Proto->getNumExceptions(),
2965                                 Proto->exception_begin(),
2966                                 Proto->getExtInfo());
2967}
2968
2969/// CheckConstructor - Checks a fully-formed constructor for
2970/// well-formedness, issuing any diagnostics required. Returns true if
2971/// the constructor declarator is invalid.
2972void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2973  CXXRecordDecl *ClassDecl
2974    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2975  if (!ClassDecl)
2976    return Constructor->setInvalidDecl();
2977
2978  // C++ [class.copy]p3:
2979  //   A declaration of a constructor for a class X is ill-formed if
2980  //   its first parameter is of type (optionally cv-qualified) X and
2981  //   either there are no other parameters or else all other
2982  //   parameters have default arguments.
2983  if (!Constructor->isInvalidDecl() &&
2984      ((Constructor->getNumParams() == 1) ||
2985       (Constructor->getNumParams() > 1 &&
2986        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2987      Constructor->getTemplateSpecializationKind()
2988                                              != TSK_ImplicitInstantiation) {
2989    QualType ParamType = Constructor->getParamDecl(0)->getType();
2990    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2991    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2992      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2993      const char *ConstRef
2994        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2995                                                        : " const &";
2996      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2997        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2998
2999      // FIXME: Rather that making the constructor invalid, we should endeavor
3000      // to fix the type.
3001      Constructor->setInvalidDecl();
3002    }
3003  }
3004
3005  // Notify the class that we've added a constructor.  In principle we
3006  // don't need to do this for out-of-line declarations; in practice
3007  // we only instantiate the most recent declaration of a method, so
3008  // we have to call this for everything but friends.
3009  if (!Constructor->getFriendObjectKind())
3010    ClassDecl->addedConstructor(Context, Constructor);
3011}
3012
3013/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3014/// issuing any diagnostics required. Returns true on error.
3015bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3016  CXXRecordDecl *RD = Destructor->getParent();
3017
3018  if (Destructor->isVirtual()) {
3019    SourceLocation Loc;
3020
3021    if (!Destructor->isImplicit())
3022      Loc = Destructor->getLocation();
3023    else
3024      Loc = RD->getLocation();
3025
3026    // If we have a virtual destructor, look up the deallocation function
3027    FunctionDecl *OperatorDelete = 0;
3028    DeclarationName Name =
3029    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3030    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3031      return true;
3032
3033    Destructor->setOperatorDelete(OperatorDelete);
3034  }
3035
3036  return false;
3037}
3038
3039static inline bool
3040FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3041  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3042          FTI.ArgInfo[0].Param &&
3043          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3044}
3045
3046/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3047/// the well-formednes of the destructor declarator @p D with type @p
3048/// R. If there are any errors in the declarator, this routine will
3049/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3050/// will be updated to reflect a well-formed type for the destructor and
3051/// returned.
3052QualType Sema::CheckDestructorDeclarator(Declarator &D,
3053                                         FunctionDecl::StorageClass& SC) {
3054  // C++ [class.dtor]p1:
3055  //   [...] A typedef-name that names a class is a class-name
3056  //   (7.1.3); however, a typedef-name that names a class shall not
3057  //   be used as the identifier in the declarator for a destructor
3058  //   declaration.
3059  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3060  if (isa<TypedefType>(DeclaratorType)) {
3061    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3062      << DeclaratorType;
3063    D.setInvalidType();
3064  }
3065
3066  // C++ [class.dtor]p2:
3067  //   A destructor is used to destroy objects of its class type. A
3068  //   destructor takes no parameters, and no return type can be
3069  //   specified for it (not even void). The address of a destructor
3070  //   shall not be taken. A destructor shall not be static. A
3071  //   destructor can be invoked for a const, volatile or const
3072  //   volatile object. A destructor shall not be declared const,
3073  //   volatile or const volatile (9.3.2).
3074  if (SC == FunctionDecl::Static) {
3075    if (!D.isInvalidType())
3076      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3077        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3078        << SourceRange(D.getIdentifierLoc());
3079    SC = FunctionDecl::None;
3080    D.setInvalidType();
3081  }
3082  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3083    // Destructors don't have return types, but the parser will
3084    // happily parse something like:
3085    //
3086    //   class X {
3087    //     float ~X();
3088    //   };
3089    //
3090    // The return type will be eliminated later.
3091    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3092      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3093      << SourceRange(D.getIdentifierLoc());
3094  }
3095
3096  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3097  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3098    if (FTI.TypeQuals & Qualifiers::Const)
3099      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3100        << "const" << SourceRange(D.getIdentifierLoc());
3101    if (FTI.TypeQuals & Qualifiers::Volatile)
3102      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3103        << "volatile" << SourceRange(D.getIdentifierLoc());
3104    if (FTI.TypeQuals & Qualifiers::Restrict)
3105      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3106        << "restrict" << SourceRange(D.getIdentifierLoc());
3107    D.setInvalidType();
3108  }
3109
3110  // Make sure we don't have any parameters.
3111  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3112    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3113
3114    // Delete the parameters.
3115    FTI.freeArgs();
3116    D.setInvalidType();
3117  }
3118
3119  // Make sure the destructor isn't variadic.
3120  if (FTI.isVariadic) {
3121    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3122    D.setInvalidType();
3123  }
3124
3125  // Rebuild the function type "R" without any type qualifiers or
3126  // parameters (in case any of the errors above fired) and with
3127  // "void" as the return type, since destructors don't have return
3128  // types. We *always* have to do this, because GetTypeForDeclarator
3129  // will put in a result type of "int" when none was specified.
3130  // FIXME: Exceptions!
3131  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3132                                 false, false, 0, 0, FunctionType::ExtInfo());
3133}
3134
3135/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3136/// well-formednes of the conversion function declarator @p D with
3137/// type @p R. If there are any errors in the declarator, this routine
3138/// will emit diagnostics and return true. Otherwise, it will return
3139/// false. Either way, the type @p R will be updated to reflect a
3140/// well-formed type for the conversion operator.
3141void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3142                                     FunctionDecl::StorageClass& SC) {
3143  // C++ [class.conv.fct]p1:
3144  //   Neither parameter types nor return type can be specified. The
3145  //   type of a conversion function (8.3.5) is "function taking no
3146  //   parameter returning conversion-type-id."
3147  if (SC == FunctionDecl::Static) {
3148    if (!D.isInvalidType())
3149      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3150        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3151        << SourceRange(D.getIdentifierLoc());
3152    D.setInvalidType();
3153    SC = FunctionDecl::None;
3154  }
3155
3156  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3157
3158  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3159    // Conversion functions don't have return types, but the parser will
3160    // happily parse something like:
3161    //
3162    //   class X {
3163    //     float operator bool();
3164    //   };
3165    //
3166    // The return type will be changed later anyway.
3167    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3168      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3169      << SourceRange(D.getIdentifierLoc());
3170    D.setInvalidType();
3171  }
3172
3173  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3174
3175  // Make sure we don't have any parameters.
3176  if (Proto->getNumArgs() > 0) {
3177    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3178
3179    // Delete the parameters.
3180    D.getTypeObject(0).Fun.freeArgs();
3181    D.setInvalidType();
3182  } else if (Proto->isVariadic()) {
3183    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3184    D.setInvalidType();
3185  }
3186
3187  // Diagnose "&operator bool()" and other such nonsense.  This
3188  // is actually a gcc extension which we don't support.
3189  if (Proto->getResultType() != ConvType) {
3190    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3191      << Proto->getResultType();
3192    D.setInvalidType();
3193    ConvType = Proto->getResultType();
3194  }
3195
3196  // C++ [class.conv.fct]p4:
3197  //   The conversion-type-id shall not represent a function type nor
3198  //   an array type.
3199  if (ConvType->isArrayType()) {
3200    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3201    ConvType = Context.getPointerType(ConvType);
3202    D.setInvalidType();
3203  } else if (ConvType->isFunctionType()) {
3204    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3205    ConvType = Context.getPointerType(ConvType);
3206    D.setInvalidType();
3207  }
3208
3209  // Rebuild the function type "R" without any parameters (in case any
3210  // of the errors above fired) and with the conversion type as the
3211  // return type.
3212  if (D.isInvalidType()) {
3213    R = Context.getFunctionType(ConvType, 0, 0, false,
3214                                Proto->getTypeQuals(),
3215                                Proto->hasExceptionSpec(),
3216                                Proto->hasAnyExceptionSpec(),
3217                                Proto->getNumExceptions(),
3218                                Proto->exception_begin(),
3219                                Proto->getExtInfo());
3220  }
3221
3222  // C++0x explicit conversion operators.
3223  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3224    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3225         diag::warn_explicit_conversion_functions)
3226      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3227}
3228
3229/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3230/// the declaration of the given C++ conversion function. This routine
3231/// is responsible for recording the conversion function in the C++
3232/// class, if possible.
3233Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3234  assert(Conversion && "Expected to receive a conversion function declaration");
3235
3236  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3237
3238  // Make sure we aren't redeclaring the conversion function.
3239  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3240
3241  // C++ [class.conv.fct]p1:
3242  //   [...] A conversion function is never used to convert a
3243  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3244  //   same object type (or a reference to it), to a (possibly
3245  //   cv-qualified) base class of that type (or a reference to it),
3246  //   or to (possibly cv-qualified) void.
3247  // FIXME: Suppress this warning if the conversion function ends up being a
3248  // virtual function that overrides a virtual function in a base class.
3249  QualType ClassType
3250    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3251  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3252    ConvType = ConvTypeRef->getPointeeType();
3253  if (ConvType->isRecordType()) {
3254    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3255    if (ConvType == ClassType)
3256      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3257        << ClassType;
3258    else if (IsDerivedFrom(ClassType, ConvType))
3259      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3260        <<  ClassType << ConvType;
3261  } else if (ConvType->isVoidType()) {
3262    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3263      << ClassType << ConvType;
3264  }
3265
3266  if (Conversion->getPrimaryTemplate()) {
3267    // ignore specializations
3268  } else if (Conversion->getPreviousDeclaration()) {
3269    if (FunctionTemplateDecl *ConversionTemplate
3270                                  = Conversion->getDescribedFunctionTemplate()) {
3271      if (ClassDecl->replaceConversion(
3272                                   ConversionTemplate->getPreviousDeclaration(),
3273                                       ConversionTemplate))
3274        return DeclPtrTy::make(ConversionTemplate);
3275    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3276                                            Conversion))
3277      return DeclPtrTy::make(Conversion);
3278    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3279  } else if (FunctionTemplateDecl *ConversionTemplate
3280               = Conversion->getDescribedFunctionTemplate())
3281    ClassDecl->addConversionFunction(ConversionTemplate);
3282  else
3283    ClassDecl->addConversionFunction(Conversion);
3284
3285  return DeclPtrTy::make(Conversion);
3286}
3287
3288//===----------------------------------------------------------------------===//
3289// Namespace Handling
3290//===----------------------------------------------------------------------===//
3291
3292/// ActOnStartNamespaceDef - This is called at the start of a namespace
3293/// definition.
3294Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3295                                             SourceLocation IdentLoc,
3296                                             IdentifierInfo *II,
3297                                             SourceLocation LBrace,
3298                                             AttributeList *AttrList) {
3299  NamespaceDecl *Namespc =
3300      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3301  Namespc->setLBracLoc(LBrace);
3302
3303  Scope *DeclRegionScope = NamespcScope->getParent();
3304
3305  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3306
3307  if (II) {
3308    // C++ [namespace.def]p2:
3309    // The identifier in an original-namespace-definition shall not have been
3310    // previously defined in the declarative region in which the
3311    // original-namespace-definition appears. The identifier in an
3312    // original-namespace-definition is the name of the namespace. Subsequently
3313    // in that declarative region, it is treated as an original-namespace-name.
3314
3315    NamedDecl *PrevDecl
3316      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3317                         ForRedeclaration);
3318
3319    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3320      // This is an extended namespace definition.
3321      // Attach this namespace decl to the chain of extended namespace
3322      // definitions.
3323      OrigNS->setNextNamespace(Namespc);
3324      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3325
3326      // Remove the previous declaration from the scope.
3327      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3328        IdResolver.RemoveDecl(OrigNS);
3329        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3330      }
3331    } else if (PrevDecl) {
3332      // This is an invalid name redefinition.
3333      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3334       << Namespc->getDeclName();
3335      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3336      Namespc->setInvalidDecl();
3337      // Continue on to push Namespc as current DeclContext and return it.
3338    } else if (II->isStr("std") &&
3339               CurContext->getLookupContext()->isTranslationUnit()) {
3340      // This is the first "real" definition of the namespace "std", so update
3341      // our cache of the "std" namespace to point at this definition.
3342      if (StdNamespace) {
3343        // We had already defined a dummy namespace "std". Link this new
3344        // namespace definition to the dummy namespace "std".
3345        StdNamespace->setNextNamespace(Namespc);
3346        StdNamespace->setLocation(IdentLoc);
3347        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3348      }
3349
3350      // Make our StdNamespace cache point at the first real definition of the
3351      // "std" namespace.
3352      StdNamespace = Namespc;
3353    }
3354
3355    PushOnScopeChains(Namespc, DeclRegionScope);
3356  } else {
3357    // Anonymous namespaces.
3358    assert(Namespc->isAnonymousNamespace());
3359
3360    // Link the anonymous namespace into its parent.
3361    NamespaceDecl *PrevDecl;
3362    DeclContext *Parent = CurContext->getLookupContext();
3363    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3364      PrevDecl = TU->getAnonymousNamespace();
3365      TU->setAnonymousNamespace(Namespc);
3366    } else {
3367      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3368      PrevDecl = ND->getAnonymousNamespace();
3369      ND->setAnonymousNamespace(Namespc);
3370    }
3371
3372    // Link the anonymous namespace with its previous declaration.
3373    if (PrevDecl) {
3374      assert(PrevDecl->isAnonymousNamespace());
3375      assert(!PrevDecl->getNextNamespace());
3376      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3377      PrevDecl->setNextNamespace(Namespc);
3378    }
3379
3380    CurContext->addDecl(Namespc);
3381
3382    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3383    //   behaves as if it were replaced by
3384    //     namespace unique { /* empty body */ }
3385    //     using namespace unique;
3386    //     namespace unique { namespace-body }
3387    //   where all occurrences of 'unique' in a translation unit are
3388    //   replaced by the same identifier and this identifier differs
3389    //   from all other identifiers in the entire program.
3390
3391    // We just create the namespace with an empty name and then add an
3392    // implicit using declaration, just like the standard suggests.
3393    //
3394    // CodeGen enforces the "universally unique" aspect by giving all
3395    // declarations semantically contained within an anonymous
3396    // namespace internal linkage.
3397
3398    if (!PrevDecl) {
3399      UsingDirectiveDecl* UD
3400        = UsingDirectiveDecl::Create(Context, CurContext,
3401                                     /* 'using' */ LBrace,
3402                                     /* 'namespace' */ SourceLocation(),
3403                                     /* qualifier */ SourceRange(),
3404                                     /* NNS */ NULL,
3405                                     /* identifier */ SourceLocation(),
3406                                     Namespc,
3407                                     /* Ancestor */ CurContext);
3408      UD->setImplicit();
3409      CurContext->addDecl(UD);
3410    }
3411  }
3412
3413  // Although we could have an invalid decl (i.e. the namespace name is a
3414  // redefinition), push it as current DeclContext and try to continue parsing.
3415  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3416  // for the namespace has the declarations that showed up in that particular
3417  // namespace definition.
3418  PushDeclContext(NamespcScope, Namespc);
3419  return DeclPtrTy::make(Namespc);
3420}
3421
3422/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3423/// is a namespace alias, returns the namespace it points to.
3424static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3425  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3426    return AD->getNamespace();
3427  return dyn_cast_or_null<NamespaceDecl>(D);
3428}
3429
3430/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3431/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3432void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3433  Decl *Dcl = D.getAs<Decl>();
3434  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3435  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3436  Namespc->setRBracLoc(RBrace);
3437  PopDeclContext();
3438}
3439
3440Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3441                                          SourceLocation UsingLoc,
3442                                          SourceLocation NamespcLoc,
3443                                          CXXScopeSpec &SS,
3444                                          SourceLocation IdentLoc,
3445                                          IdentifierInfo *NamespcName,
3446                                          AttributeList *AttrList) {
3447  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3448  assert(NamespcName && "Invalid NamespcName.");
3449  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3450  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3451
3452  UsingDirectiveDecl *UDir = 0;
3453
3454  // Lookup namespace name.
3455  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3456  LookupParsedName(R, S, &SS);
3457  if (R.isAmbiguous())
3458    return DeclPtrTy();
3459
3460  if (!R.empty()) {
3461    NamedDecl *Named = R.getFoundDecl();
3462    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3463        && "expected namespace decl");
3464    // C++ [namespace.udir]p1:
3465    //   A using-directive specifies that the names in the nominated
3466    //   namespace can be used in the scope in which the
3467    //   using-directive appears after the using-directive. During
3468    //   unqualified name lookup (3.4.1), the names appear as if they
3469    //   were declared in the nearest enclosing namespace which
3470    //   contains both the using-directive and the nominated
3471    //   namespace. [Note: in this context, "contains" means "contains
3472    //   directly or indirectly". ]
3473
3474    // Find enclosing context containing both using-directive and
3475    // nominated namespace.
3476    NamespaceDecl *NS = getNamespaceDecl(Named);
3477    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3478    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3479      CommonAncestor = CommonAncestor->getParent();
3480
3481    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3482                                      SS.getRange(),
3483                                      (NestedNameSpecifier *)SS.getScopeRep(),
3484                                      IdentLoc, Named, CommonAncestor);
3485    PushUsingDirective(S, UDir);
3486  } else {
3487    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3488  }
3489
3490  // FIXME: We ignore attributes for now.
3491  delete AttrList;
3492  return DeclPtrTy::make(UDir);
3493}
3494
3495void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3496  // If scope has associated entity, then using directive is at namespace
3497  // or translation unit scope. We add UsingDirectiveDecls, into
3498  // it's lookup structure.
3499  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3500    Ctx->addDecl(UDir);
3501  else
3502    // Otherwise it is block-sope. using-directives will affect lookup
3503    // only to the end of scope.
3504    S->PushUsingDirective(DeclPtrTy::make(UDir));
3505}
3506
3507
3508Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3509                                            AccessSpecifier AS,
3510                                            bool HasUsingKeyword,
3511                                            SourceLocation UsingLoc,
3512                                            CXXScopeSpec &SS,
3513                                            UnqualifiedId &Name,
3514                                            AttributeList *AttrList,
3515                                            bool IsTypeName,
3516                                            SourceLocation TypenameLoc) {
3517  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3518
3519  switch (Name.getKind()) {
3520  case UnqualifiedId::IK_Identifier:
3521  case UnqualifiedId::IK_OperatorFunctionId:
3522  case UnqualifiedId::IK_LiteralOperatorId:
3523  case UnqualifiedId::IK_ConversionFunctionId:
3524    break;
3525
3526  case UnqualifiedId::IK_ConstructorName:
3527  case UnqualifiedId::IK_ConstructorTemplateId:
3528    // C++0x inherited constructors.
3529    if (getLangOptions().CPlusPlus0x) break;
3530
3531    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3532      << SS.getRange();
3533    return DeclPtrTy();
3534
3535  case UnqualifiedId::IK_DestructorName:
3536    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3537      << SS.getRange();
3538    return DeclPtrTy();
3539
3540  case UnqualifiedId::IK_TemplateId:
3541    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3542      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3543    return DeclPtrTy();
3544  }
3545
3546  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3547  if (!TargetName)
3548    return DeclPtrTy();
3549
3550  // Warn about using declarations.
3551  // TODO: store that the declaration was written without 'using' and
3552  // talk about access decls instead of using decls in the
3553  // diagnostics.
3554  if (!HasUsingKeyword) {
3555    UsingLoc = Name.getSourceRange().getBegin();
3556
3557    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3558      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3559  }
3560
3561  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3562                                        Name.getSourceRange().getBegin(),
3563                                        TargetName, AttrList,
3564                                        /* IsInstantiation */ false,
3565                                        IsTypeName, TypenameLoc);
3566  if (UD)
3567    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3568
3569  return DeclPtrTy::make(UD);
3570}
3571
3572/// Determines whether to create a using shadow decl for a particular
3573/// decl, given the set of decls existing prior to this using lookup.
3574bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3575                                const LookupResult &Previous) {
3576  // Diagnose finding a decl which is not from a base class of the
3577  // current class.  We do this now because there are cases where this
3578  // function will silently decide not to build a shadow decl, which
3579  // will pre-empt further diagnostics.
3580  //
3581  // We don't need to do this in C++0x because we do the check once on
3582  // the qualifier.
3583  //
3584  // FIXME: diagnose the following if we care enough:
3585  //   struct A { int foo; };
3586  //   struct B : A { using A::foo; };
3587  //   template <class T> struct C : A {};
3588  //   template <class T> struct D : C<T> { using B::foo; } // <---
3589  // This is invalid (during instantiation) in C++03 because B::foo
3590  // resolves to the using decl in B, which is not a base class of D<T>.
3591  // We can't diagnose it immediately because C<T> is an unknown
3592  // specialization.  The UsingShadowDecl in D<T> then points directly
3593  // to A::foo, which will look well-formed when we instantiate.
3594  // The right solution is to not collapse the shadow-decl chain.
3595  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3596    DeclContext *OrigDC = Orig->getDeclContext();
3597
3598    // Handle enums and anonymous structs.
3599    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3600    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3601    while (OrigRec->isAnonymousStructOrUnion())
3602      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3603
3604    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3605      if (OrigDC == CurContext) {
3606        Diag(Using->getLocation(),
3607             diag::err_using_decl_nested_name_specifier_is_current_class)
3608          << Using->getNestedNameRange();
3609        Diag(Orig->getLocation(), diag::note_using_decl_target);
3610        return true;
3611      }
3612
3613      Diag(Using->getNestedNameRange().getBegin(),
3614           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3615        << Using->getTargetNestedNameDecl()
3616        << cast<CXXRecordDecl>(CurContext)
3617        << Using->getNestedNameRange();
3618      Diag(Orig->getLocation(), diag::note_using_decl_target);
3619      return true;
3620    }
3621  }
3622
3623  if (Previous.empty()) return false;
3624
3625  NamedDecl *Target = Orig;
3626  if (isa<UsingShadowDecl>(Target))
3627    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3628
3629  // If the target happens to be one of the previous declarations, we
3630  // don't have a conflict.
3631  //
3632  // FIXME: but we might be increasing its access, in which case we
3633  // should redeclare it.
3634  NamedDecl *NonTag = 0, *Tag = 0;
3635  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3636         I != E; ++I) {
3637    NamedDecl *D = (*I)->getUnderlyingDecl();
3638    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3639      return false;
3640
3641    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3642  }
3643
3644  if (Target->isFunctionOrFunctionTemplate()) {
3645    FunctionDecl *FD;
3646    if (isa<FunctionTemplateDecl>(Target))
3647      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3648    else
3649      FD = cast<FunctionDecl>(Target);
3650
3651    NamedDecl *OldDecl = 0;
3652    switch (CheckOverload(FD, Previous, OldDecl)) {
3653    case Ovl_Overload:
3654      return false;
3655
3656    case Ovl_NonFunction:
3657      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3658      break;
3659
3660    // We found a decl with the exact signature.
3661    case Ovl_Match:
3662      if (isa<UsingShadowDecl>(OldDecl)) {
3663        // Silently ignore the possible conflict.
3664        return false;
3665      }
3666
3667      // If we're in a record, we want to hide the target, so we
3668      // return true (without a diagnostic) to tell the caller not to
3669      // build a shadow decl.
3670      if (CurContext->isRecord())
3671        return true;
3672
3673      // If we're not in a record, this is an error.
3674      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3675      break;
3676    }
3677
3678    Diag(Target->getLocation(), diag::note_using_decl_target);
3679    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3680    return true;
3681  }
3682
3683  // Target is not a function.
3684
3685  if (isa<TagDecl>(Target)) {
3686    // No conflict between a tag and a non-tag.
3687    if (!Tag) return false;
3688
3689    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3690    Diag(Target->getLocation(), diag::note_using_decl_target);
3691    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3692    return true;
3693  }
3694
3695  // No conflict between a tag and a non-tag.
3696  if (!NonTag) return false;
3697
3698  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3699  Diag(Target->getLocation(), diag::note_using_decl_target);
3700  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3701  return true;
3702}
3703
3704/// Builds a shadow declaration corresponding to a 'using' declaration.
3705UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3706                                            UsingDecl *UD,
3707                                            NamedDecl *Orig) {
3708
3709  // If we resolved to another shadow declaration, just coalesce them.
3710  NamedDecl *Target = Orig;
3711  if (isa<UsingShadowDecl>(Target)) {
3712    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3713    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3714  }
3715
3716  UsingShadowDecl *Shadow
3717    = UsingShadowDecl::Create(Context, CurContext,
3718                              UD->getLocation(), UD, Target);
3719  UD->addShadowDecl(Shadow);
3720
3721  if (S)
3722    PushOnScopeChains(Shadow, S);
3723  else
3724    CurContext->addDecl(Shadow);
3725  Shadow->setAccess(UD->getAccess());
3726
3727  // Register it as a conversion if appropriate.
3728  if (Shadow->getDeclName().getNameKind()
3729        == DeclarationName::CXXConversionFunctionName)
3730    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3731
3732  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3733    Shadow->setInvalidDecl();
3734
3735  return Shadow;
3736}
3737
3738/// Hides a using shadow declaration.  This is required by the current
3739/// using-decl implementation when a resolvable using declaration in a
3740/// class is followed by a declaration which would hide or override
3741/// one or more of the using decl's targets; for example:
3742///
3743///   struct Base { void foo(int); };
3744///   struct Derived : Base {
3745///     using Base::foo;
3746///     void foo(int);
3747///   };
3748///
3749/// The governing language is C++03 [namespace.udecl]p12:
3750///
3751///   When a using-declaration brings names from a base class into a
3752///   derived class scope, member functions in the derived class
3753///   override and/or hide member functions with the same name and
3754///   parameter types in a base class (rather than conflicting).
3755///
3756/// There are two ways to implement this:
3757///   (1) optimistically create shadow decls when they're not hidden
3758///       by existing declarations, or
3759///   (2) don't create any shadow decls (or at least don't make them
3760///       visible) until we've fully parsed/instantiated the class.
3761/// The problem with (1) is that we might have to retroactively remove
3762/// a shadow decl, which requires several O(n) operations because the
3763/// decl structures are (very reasonably) not designed for removal.
3764/// (2) avoids this but is very fiddly and phase-dependent.
3765void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3766  if (Shadow->getDeclName().getNameKind() ==
3767        DeclarationName::CXXConversionFunctionName)
3768    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3769
3770  // Remove it from the DeclContext...
3771  Shadow->getDeclContext()->removeDecl(Shadow);
3772
3773  // ...and the scope, if applicable...
3774  if (S) {
3775    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3776    IdResolver.RemoveDecl(Shadow);
3777  }
3778
3779  // ...and the using decl.
3780  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3781
3782  // TODO: complain somehow if Shadow was used.  It shouldn't
3783  // be possible for this to happen, because...?
3784}
3785
3786/// Builds a using declaration.
3787///
3788/// \param IsInstantiation - Whether this call arises from an
3789///   instantiation of an unresolved using declaration.  We treat
3790///   the lookup differently for these declarations.
3791NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3792                                       SourceLocation UsingLoc,
3793                                       CXXScopeSpec &SS,
3794                                       SourceLocation IdentLoc,
3795                                       DeclarationName Name,
3796                                       AttributeList *AttrList,
3797                                       bool IsInstantiation,
3798                                       bool IsTypeName,
3799                                       SourceLocation TypenameLoc) {
3800  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3801  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3802
3803  // FIXME: We ignore attributes for now.
3804  delete AttrList;
3805
3806  if (SS.isEmpty()) {
3807    Diag(IdentLoc, diag::err_using_requires_qualname);
3808    return 0;
3809  }
3810
3811  // Do the redeclaration lookup in the current scope.
3812  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3813                        ForRedeclaration);
3814  Previous.setHideTags(false);
3815  if (S) {
3816    LookupName(Previous, S);
3817
3818    // It is really dumb that we have to do this.
3819    LookupResult::Filter F = Previous.makeFilter();
3820    while (F.hasNext()) {
3821      NamedDecl *D = F.next();
3822      if (!isDeclInScope(D, CurContext, S))
3823        F.erase();
3824    }
3825    F.done();
3826  } else {
3827    assert(IsInstantiation && "no scope in non-instantiation");
3828    assert(CurContext->isRecord() && "scope not record in instantiation");
3829    LookupQualifiedName(Previous, CurContext);
3830  }
3831
3832  NestedNameSpecifier *NNS =
3833    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3834
3835  // Check for invalid redeclarations.
3836  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3837    return 0;
3838
3839  // Check for bad qualifiers.
3840  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3841    return 0;
3842
3843  DeclContext *LookupContext = computeDeclContext(SS);
3844  NamedDecl *D;
3845  if (!LookupContext) {
3846    if (IsTypeName) {
3847      // FIXME: not all declaration name kinds are legal here
3848      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3849                                              UsingLoc, TypenameLoc,
3850                                              SS.getRange(), NNS,
3851                                              IdentLoc, Name);
3852    } else {
3853      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3854                                           UsingLoc, SS.getRange(), NNS,
3855                                           IdentLoc, Name);
3856    }
3857  } else {
3858    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3859                          SS.getRange(), UsingLoc, NNS, Name,
3860                          IsTypeName);
3861  }
3862  D->setAccess(AS);
3863  CurContext->addDecl(D);
3864
3865  if (!LookupContext) return D;
3866  UsingDecl *UD = cast<UsingDecl>(D);
3867
3868  if (RequireCompleteDeclContext(SS, LookupContext)) {
3869    UD->setInvalidDecl();
3870    return UD;
3871  }
3872
3873  // Look up the target name.
3874
3875  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3876
3877  // Unlike most lookups, we don't always want to hide tag
3878  // declarations: tag names are visible through the using declaration
3879  // even if hidden by ordinary names, *except* in a dependent context
3880  // where it's important for the sanity of two-phase lookup.
3881  if (!IsInstantiation)
3882    R.setHideTags(false);
3883
3884  LookupQualifiedName(R, LookupContext);
3885
3886  if (R.empty()) {
3887    Diag(IdentLoc, diag::err_no_member)
3888      << Name << LookupContext << SS.getRange();
3889    UD->setInvalidDecl();
3890    return UD;
3891  }
3892
3893  if (R.isAmbiguous()) {
3894    UD->setInvalidDecl();
3895    return UD;
3896  }
3897
3898  if (IsTypeName) {
3899    // If we asked for a typename and got a non-type decl, error out.
3900    if (!R.getAsSingle<TypeDecl>()) {
3901      Diag(IdentLoc, diag::err_using_typename_non_type);
3902      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3903        Diag((*I)->getUnderlyingDecl()->getLocation(),
3904             diag::note_using_decl_target);
3905      UD->setInvalidDecl();
3906      return UD;
3907    }
3908  } else {
3909    // If we asked for a non-typename and we got a type, error out,
3910    // but only if this is an instantiation of an unresolved using
3911    // decl.  Otherwise just silently find the type name.
3912    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3913      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3914      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3915      UD->setInvalidDecl();
3916      return UD;
3917    }
3918  }
3919
3920  // C++0x N2914 [namespace.udecl]p6:
3921  // A using-declaration shall not name a namespace.
3922  if (R.getAsSingle<NamespaceDecl>()) {
3923    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3924      << SS.getRange();
3925    UD->setInvalidDecl();
3926    return UD;
3927  }
3928
3929  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3930    if (!CheckUsingShadowDecl(UD, *I, Previous))
3931      BuildUsingShadowDecl(S, UD, *I);
3932  }
3933
3934  return UD;
3935}
3936
3937/// Checks that the given using declaration is not an invalid
3938/// redeclaration.  Note that this is checking only for the using decl
3939/// itself, not for any ill-formedness among the UsingShadowDecls.
3940bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3941                                       bool isTypeName,
3942                                       const CXXScopeSpec &SS,
3943                                       SourceLocation NameLoc,
3944                                       const LookupResult &Prev) {
3945  // C++03 [namespace.udecl]p8:
3946  // C++0x [namespace.udecl]p10:
3947  //   A using-declaration is a declaration and can therefore be used
3948  //   repeatedly where (and only where) multiple declarations are
3949  //   allowed.
3950  //
3951  // That's in non-member contexts.
3952  if (!CurContext->getLookupContext()->isRecord())
3953    return false;
3954
3955  NestedNameSpecifier *Qual
3956    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3957
3958  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3959    NamedDecl *D = *I;
3960
3961    bool DTypename;
3962    NestedNameSpecifier *DQual;
3963    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3964      DTypename = UD->isTypeName();
3965      DQual = UD->getTargetNestedNameDecl();
3966    } else if (UnresolvedUsingValueDecl *UD
3967                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3968      DTypename = false;
3969      DQual = UD->getTargetNestedNameSpecifier();
3970    } else if (UnresolvedUsingTypenameDecl *UD
3971                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3972      DTypename = true;
3973      DQual = UD->getTargetNestedNameSpecifier();
3974    } else continue;
3975
3976    // using decls differ if one says 'typename' and the other doesn't.
3977    // FIXME: non-dependent using decls?
3978    if (isTypeName != DTypename) continue;
3979
3980    // using decls differ if they name different scopes (but note that
3981    // template instantiation can cause this check to trigger when it
3982    // didn't before instantiation).
3983    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3984        Context.getCanonicalNestedNameSpecifier(DQual))
3985      continue;
3986
3987    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3988    Diag(D->getLocation(), diag::note_using_decl) << 1;
3989    return true;
3990  }
3991
3992  return false;
3993}
3994
3995
3996/// Checks that the given nested-name qualifier used in a using decl
3997/// in the current context is appropriately related to the current
3998/// scope.  If an error is found, diagnoses it and returns true.
3999bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4000                                   const CXXScopeSpec &SS,
4001                                   SourceLocation NameLoc) {
4002  DeclContext *NamedContext = computeDeclContext(SS);
4003
4004  if (!CurContext->isRecord()) {
4005    // C++03 [namespace.udecl]p3:
4006    // C++0x [namespace.udecl]p8:
4007    //   A using-declaration for a class member shall be a member-declaration.
4008
4009    // If we weren't able to compute a valid scope, it must be a
4010    // dependent class scope.
4011    if (!NamedContext || NamedContext->isRecord()) {
4012      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4013        << SS.getRange();
4014      return true;
4015    }
4016
4017    // Otherwise, everything is known to be fine.
4018    return false;
4019  }
4020
4021  // The current scope is a record.
4022
4023  // If the named context is dependent, we can't decide much.
4024  if (!NamedContext) {
4025    // FIXME: in C++0x, we can diagnose if we can prove that the
4026    // nested-name-specifier does not refer to a base class, which is
4027    // still possible in some cases.
4028
4029    // Otherwise we have to conservatively report that things might be
4030    // okay.
4031    return false;
4032  }
4033
4034  if (!NamedContext->isRecord()) {
4035    // Ideally this would point at the last name in the specifier,
4036    // but we don't have that level of source info.
4037    Diag(SS.getRange().getBegin(),
4038         diag::err_using_decl_nested_name_specifier_is_not_class)
4039      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4040    return true;
4041  }
4042
4043  if (getLangOptions().CPlusPlus0x) {
4044    // C++0x [namespace.udecl]p3:
4045    //   In a using-declaration used as a member-declaration, the
4046    //   nested-name-specifier shall name a base class of the class
4047    //   being defined.
4048
4049    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4050                                 cast<CXXRecordDecl>(NamedContext))) {
4051      if (CurContext == NamedContext) {
4052        Diag(NameLoc,
4053             diag::err_using_decl_nested_name_specifier_is_current_class)
4054          << SS.getRange();
4055        return true;
4056      }
4057
4058      Diag(SS.getRange().getBegin(),
4059           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4060        << (NestedNameSpecifier*) SS.getScopeRep()
4061        << cast<CXXRecordDecl>(CurContext)
4062        << SS.getRange();
4063      return true;
4064    }
4065
4066    return false;
4067  }
4068
4069  // C++03 [namespace.udecl]p4:
4070  //   A using-declaration used as a member-declaration shall refer
4071  //   to a member of a base class of the class being defined [etc.].
4072
4073  // Salient point: SS doesn't have to name a base class as long as
4074  // lookup only finds members from base classes.  Therefore we can
4075  // diagnose here only if we can prove that that can't happen,
4076  // i.e. if the class hierarchies provably don't intersect.
4077
4078  // TODO: it would be nice if "definitely valid" results were cached
4079  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4080  // need to be repeated.
4081
4082  struct UserData {
4083    llvm::DenseSet<const CXXRecordDecl*> Bases;
4084
4085    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4086      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4087      Data->Bases.insert(Base);
4088      return true;
4089    }
4090
4091    bool hasDependentBases(const CXXRecordDecl *Class) {
4092      return !Class->forallBases(collect, this);
4093    }
4094
4095    /// Returns true if the base is dependent or is one of the
4096    /// accumulated base classes.
4097    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4098      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4099      return !Data->Bases.count(Base);
4100    }
4101
4102    bool mightShareBases(const CXXRecordDecl *Class) {
4103      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4104    }
4105  };
4106
4107  UserData Data;
4108
4109  // Returns false if we find a dependent base.
4110  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4111    return false;
4112
4113  // Returns false if the class has a dependent base or if it or one
4114  // of its bases is present in the base set of the current context.
4115  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4116    return false;
4117
4118  Diag(SS.getRange().getBegin(),
4119       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4120    << (NestedNameSpecifier*) SS.getScopeRep()
4121    << cast<CXXRecordDecl>(CurContext)
4122    << SS.getRange();
4123
4124  return true;
4125}
4126
4127Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4128                                             SourceLocation NamespaceLoc,
4129                                             SourceLocation AliasLoc,
4130                                             IdentifierInfo *Alias,
4131                                             CXXScopeSpec &SS,
4132                                             SourceLocation IdentLoc,
4133                                             IdentifierInfo *Ident) {
4134
4135  // Lookup the namespace name.
4136  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4137  LookupParsedName(R, S, &SS);
4138
4139  // Check if we have a previous declaration with the same name.
4140  NamedDecl *PrevDecl
4141    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4142                       ForRedeclaration);
4143  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4144    PrevDecl = 0;
4145
4146  if (PrevDecl) {
4147    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4148      // We already have an alias with the same name that points to the same
4149      // namespace, so don't create a new one.
4150      // FIXME: At some point, we'll want to create the (redundant)
4151      // declaration to maintain better source information.
4152      if (!R.isAmbiguous() && !R.empty() &&
4153          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4154        return DeclPtrTy();
4155    }
4156
4157    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4158      diag::err_redefinition_different_kind;
4159    Diag(AliasLoc, DiagID) << Alias;
4160    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4161    return DeclPtrTy();
4162  }
4163
4164  if (R.isAmbiguous())
4165    return DeclPtrTy();
4166
4167  if (R.empty()) {
4168    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4169    return DeclPtrTy();
4170  }
4171
4172  NamespaceAliasDecl *AliasDecl =
4173    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4174                               Alias, SS.getRange(),
4175                               (NestedNameSpecifier *)SS.getScopeRep(),
4176                               IdentLoc, R.getFoundDecl());
4177
4178  PushOnScopeChains(AliasDecl, S);
4179  return DeclPtrTy::make(AliasDecl);
4180}
4181
4182namespace {
4183  /// \brief Scoped object used to handle the state changes required in Sema
4184  /// to implicitly define the body of a C++ member function;
4185  class ImplicitlyDefinedFunctionScope {
4186    Sema &S;
4187    DeclContext *PreviousContext;
4188
4189  public:
4190    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4191      : S(S), PreviousContext(S.CurContext)
4192    {
4193      S.CurContext = Method;
4194      S.PushFunctionScope();
4195      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4196    }
4197
4198    ~ImplicitlyDefinedFunctionScope() {
4199      S.PopExpressionEvaluationContext();
4200      S.PopFunctionOrBlockScope();
4201      S.CurContext = PreviousContext;
4202    }
4203  };
4204}
4205
4206void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4207                                            CXXConstructorDecl *Constructor) {
4208  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4209          !Constructor->isUsed()) &&
4210    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4211
4212  CXXRecordDecl *ClassDecl = Constructor->getParent();
4213  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4214
4215  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4216  ErrorTrap Trap(*this);
4217  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4218      Trap.hasErrorOccurred()) {
4219    Diag(CurrentLocation, diag::note_member_synthesized_at)
4220      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4221    Constructor->setInvalidDecl();
4222  } else {
4223    Constructor->setUsed();
4224    MarkVTableUsed(CurrentLocation, ClassDecl);
4225  }
4226}
4227
4228void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4229                                    CXXDestructorDecl *Destructor) {
4230  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4231         "DefineImplicitDestructor - call it for implicit default dtor");
4232  CXXRecordDecl *ClassDecl = Destructor->getParent();
4233  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4234
4235  if (Destructor->isInvalidDecl())
4236    return;
4237
4238  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4239
4240  ErrorTrap Trap(*this);
4241  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4242                                         Destructor->getParent());
4243
4244  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4245    Diag(CurrentLocation, diag::note_member_synthesized_at)
4246      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4247
4248    Destructor->setInvalidDecl();
4249    return;
4250  }
4251
4252  Destructor->setUsed();
4253  MarkVTableUsed(CurrentLocation, ClassDecl);
4254}
4255
4256/// \brief Builds a statement that copies the given entity from \p From to
4257/// \c To.
4258///
4259/// This routine is used to copy the members of a class with an
4260/// implicitly-declared copy assignment operator. When the entities being
4261/// copied are arrays, this routine builds for loops to copy them.
4262///
4263/// \param S The Sema object used for type-checking.
4264///
4265/// \param Loc The location where the implicit copy is being generated.
4266///
4267/// \param T The type of the expressions being copied. Both expressions must
4268/// have this type.
4269///
4270/// \param To The expression we are copying to.
4271///
4272/// \param From The expression we are copying from.
4273///
4274/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4275/// Otherwise, it's a non-static member subobject.
4276///
4277/// \param Depth Internal parameter recording the depth of the recursion.
4278///
4279/// \returns A statement or a loop that copies the expressions.
4280static Sema::OwningStmtResult
4281BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4282                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4283                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4284  typedef Sema::OwningStmtResult OwningStmtResult;
4285  typedef Sema::OwningExprResult OwningExprResult;
4286
4287  // C++0x [class.copy]p30:
4288  //   Each subobject is assigned in the manner appropriate to its type:
4289  //
4290  //     - if the subobject is of class type, the copy assignment operator
4291  //       for the class is used (as if by explicit qualification; that is,
4292  //       ignoring any possible virtual overriding functions in more derived
4293  //       classes);
4294  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4295    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4296
4297    // Look for operator=.
4298    DeclarationName Name
4299      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4300    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4301    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4302
4303    // Filter out any result that isn't a copy-assignment operator.
4304    LookupResult::Filter F = OpLookup.makeFilter();
4305    while (F.hasNext()) {
4306      NamedDecl *D = F.next();
4307      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4308        if (Method->isCopyAssignmentOperator())
4309          continue;
4310
4311      F.erase();
4312    }
4313    F.done();
4314
4315    // Suppress the protected check (C++ [class.protected]) for each of the
4316    // assignment operators we found. This strange dance is required when
4317    // we're assigning via a base classes's copy-assignment operator. To
4318    // ensure that we're getting the right base class subobject (without
4319    // ambiguities), we need to cast "this" to that subobject type; to
4320    // ensure that we don't go through the virtual call mechanism, we need
4321    // to qualify the operator= name with the base class (see below). However,
4322    // this means that if the base class has a protected copy assignment
4323    // operator, the protected member access check will fail. So, we
4324    // rewrite "protected" access to "public" access in this case, since we
4325    // know by construction that we're calling from a derived class.
4326    if (CopyingBaseSubobject) {
4327      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4328           L != LEnd; ++L) {
4329        if (L.getAccess() == AS_protected)
4330          L.setAccess(AS_public);
4331      }
4332    }
4333
4334    // Create the nested-name-specifier that will be used to qualify the
4335    // reference to operator=; this is required to suppress the virtual
4336    // call mechanism.
4337    CXXScopeSpec SS;
4338    SS.setRange(Loc);
4339    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4340                                               T.getTypePtr()));
4341
4342    // Create the reference to operator=.
4343    OwningExprResult OpEqualRef
4344      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4345                                   /*FirstQualifierInScope=*/0, OpLookup,
4346                                   /*TemplateArgs=*/0,
4347                                   /*SuppressQualifierCheck=*/true);
4348    if (OpEqualRef.isInvalid())
4349      return S.StmtError();
4350
4351    // Build the call to the assignment operator.
4352    Expr *FromE = From.takeAs<Expr>();
4353    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4354                                                      OpEqualRef.takeAs<Expr>(),
4355                                                        Loc, &FromE, 1, 0, Loc);
4356    if (Call.isInvalid())
4357      return S.StmtError();
4358
4359    return S.Owned(Call.takeAs<Stmt>());
4360  }
4361
4362  //     - if the subobject is of scalar type, the built-in assignment
4363  //       operator is used.
4364  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4365  if (!ArrayTy) {
4366    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4367                                                       BinaryOperator::Assign,
4368                                                       To.takeAs<Expr>(),
4369                                                       From.takeAs<Expr>());
4370    if (Assignment.isInvalid())
4371      return S.StmtError();
4372
4373    return S.Owned(Assignment.takeAs<Stmt>());
4374  }
4375
4376  //     - if the subobject is an array, each element is assigned, in the
4377  //       manner appropriate to the element type;
4378
4379  // Construct a loop over the array bounds, e.g.,
4380  //
4381  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4382  //
4383  // that will copy each of the array elements.
4384  QualType SizeType = S.Context.getSizeType();
4385
4386  // Create the iteration variable.
4387  IdentifierInfo *IterationVarName = 0;
4388  {
4389    llvm::SmallString<8> Str;
4390    llvm::raw_svector_ostream OS(Str);
4391    OS << "__i" << Depth;
4392    IterationVarName = &S.Context.Idents.get(OS.str());
4393  }
4394  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4395                                          IterationVarName, SizeType,
4396                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4397                                          VarDecl::None, VarDecl::None);
4398
4399  // Initialize the iteration variable to zero.
4400  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4401  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4402
4403  // Create a reference to the iteration variable; we'll use this several
4404  // times throughout.
4405  Expr *IterationVarRef
4406    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4407  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4408
4409  // Create the DeclStmt that holds the iteration variable.
4410  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4411
4412  // Create the comparison against the array bound.
4413  llvm::APInt Upper = ArrayTy->getSize();
4414  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4415  OwningExprResult Comparison
4416    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4417                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4418                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4419
4420  // Create the pre-increment of the iteration variable.
4421  OwningExprResult Increment
4422    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4423                                            UnaryOperator::PreInc,
4424                                            SizeType, Loc));
4425
4426  // Subscript the "from" and "to" expressions with the iteration variable.
4427  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4428                                           S.Owned(IterationVarRef->Retain()),
4429                                           Loc);
4430  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4431                                         S.Owned(IterationVarRef->Retain()),
4432                                         Loc);
4433  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4434  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4435
4436  // Build the copy for an individual element of the array.
4437  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4438                                                ArrayTy->getElementType(),
4439                                                move(To), move(From),
4440                                                CopyingBaseSubobject, Depth+1);
4441  if (Copy.isInvalid()) {
4442    InitStmt->Destroy(S.Context);
4443    return S.StmtError();
4444  }
4445
4446  // Construct the loop that copies all elements of this array.
4447  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4448                        S.MakeFullExpr(Comparison),
4449                        Sema::DeclPtrTy(),
4450                        S.MakeFullExpr(Increment),
4451                        Loc, move(Copy));
4452}
4453
4454void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4455                                        CXXMethodDecl *CopyAssignOperator) {
4456  assert((CopyAssignOperator->isImplicit() &&
4457          CopyAssignOperator->isOverloadedOperator() &&
4458          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4459          !CopyAssignOperator->isUsed()) &&
4460         "DefineImplicitCopyAssignment called for wrong function");
4461
4462  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4463
4464  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4465    CopyAssignOperator->setInvalidDecl();
4466    return;
4467  }
4468
4469  CopyAssignOperator->setUsed();
4470
4471  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4472  ErrorTrap Trap(*this);
4473
4474  // C++0x [class.copy]p30:
4475  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4476  //   for a non-union class X performs memberwise copy assignment of its
4477  //   subobjects. The direct base classes of X are assigned first, in the
4478  //   order of their declaration in the base-specifier-list, and then the
4479  //   immediate non-static data members of X are assigned, in the order in
4480  //   which they were declared in the class definition.
4481
4482  // The statements that form the synthesized function body.
4483  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4484
4485  // The parameter for the "other" object, which we are copying from.
4486  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4487  Qualifiers OtherQuals = Other->getType().getQualifiers();
4488  QualType OtherRefType = Other->getType();
4489  if (const LValueReferenceType *OtherRef
4490                                = OtherRefType->getAs<LValueReferenceType>()) {
4491    OtherRefType = OtherRef->getPointeeType();
4492    OtherQuals = OtherRefType.getQualifiers();
4493  }
4494
4495  // Our location for everything implicitly-generated.
4496  SourceLocation Loc = CopyAssignOperator->getLocation();
4497
4498  // Construct a reference to the "other" object. We'll be using this
4499  // throughout the generated ASTs.
4500  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4501  assert(OtherRef && "Reference to parameter cannot fail!");
4502
4503  // Construct the "this" pointer. We'll be using this throughout the generated
4504  // ASTs.
4505  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4506  assert(This && "Reference to this cannot fail!");
4507
4508  // Assign base classes.
4509  bool Invalid = false;
4510  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4511       E = ClassDecl->bases_end(); Base != E; ++Base) {
4512    // Form the assignment:
4513    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4514    QualType BaseType = Base->getType().getUnqualifiedType();
4515    CXXRecordDecl *BaseClassDecl = 0;
4516    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4517      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4518    else {
4519      Invalid = true;
4520      continue;
4521    }
4522
4523    // Construct the "from" expression, which is an implicit cast to the
4524    // appropriately-qualified base type.
4525    Expr *From = OtherRef->Retain();
4526    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4527                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4528                      CXXBaseSpecifierArray(Base));
4529
4530    // Dereference "this".
4531    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4532                                               Owned(This->Retain()));
4533
4534    // Implicitly cast "this" to the appropriately-qualified base type.
4535    Expr *ToE = To.takeAs<Expr>();
4536    ImpCastExprToType(ToE,
4537                      Context.getCVRQualifiedType(BaseType,
4538                                      CopyAssignOperator->getTypeQualifiers()),
4539                      CastExpr::CK_UncheckedDerivedToBase,
4540                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4541    To = Owned(ToE);
4542
4543    // Build the copy.
4544    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4545                                                  move(To), Owned(From),
4546                                                /*CopyingBaseSubobject=*/true);
4547    if (Copy.isInvalid()) {
4548      Diag(CurrentLocation, diag::note_member_synthesized_at)
4549        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4550      CopyAssignOperator->setInvalidDecl();
4551      return;
4552    }
4553
4554    // Success! Record the copy.
4555    Statements.push_back(Copy.takeAs<Expr>());
4556  }
4557
4558  // \brief Reference to the __builtin_memcpy function.
4559  Expr *BuiltinMemCpyRef = 0;
4560  // \brief Reference to the objc_memmove_collectable function.
4561  Expr *CollectableMemCpyRef = 0;
4562
4563  // Assign non-static members.
4564  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4565                                  FieldEnd = ClassDecl->field_end();
4566       Field != FieldEnd; ++Field) {
4567    // Check for members of reference type; we can't copy those.
4568    if (Field->getType()->isReferenceType()) {
4569      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4570        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4571      Diag(Field->getLocation(), diag::note_declared_at);
4572      Diag(CurrentLocation, diag::note_member_synthesized_at)
4573        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4574      Invalid = true;
4575      continue;
4576    }
4577
4578    // Check for members of const-qualified, non-class type.
4579    QualType BaseType = Context.getBaseElementType(Field->getType());
4580    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4581      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4582        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4583      Diag(Field->getLocation(), diag::note_declared_at);
4584      Diag(CurrentLocation, diag::note_member_synthesized_at)
4585        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4586      Invalid = true;
4587      continue;
4588    }
4589
4590    QualType FieldType = Field->getType().getNonReferenceType();
4591    if (FieldType->isIncompleteArrayType()) {
4592      assert(ClassDecl->hasFlexibleArrayMember() &&
4593             "Incomplete array type is not valid");
4594      continue;
4595    }
4596
4597    // Build references to the field in the object we're copying from and to.
4598    CXXScopeSpec SS; // Intentionally empty
4599    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4600                              LookupMemberName);
4601    MemberLookup.addDecl(*Field);
4602    MemberLookup.resolveKind();
4603    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4604                                                     OtherRefType,
4605                                                     Loc, /*IsArrow=*/false,
4606                                                     SS, 0, MemberLookup, 0);
4607    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4608                                                   This->getType(),
4609                                                   Loc, /*IsArrow=*/true,
4610                                                   SS, 0, MemberLookup, 0);
4611    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4612    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4613
4614    // If the field should be copied with __builtin_memcpy rather than via
4615    // explicit assignments, do so. This optimization only applies for arrays
4616    // of scalars and arrays of class type with trivial copy-assignment
4617    // operators.
4618    if (FieldType->isArrayType() &&
4619        (!BaseType->isRecordType() ||
4620         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4621           ->hasTrivialCopyAssignment())) {
4622      // Compute the size of the memory buffer to be copied.
4623      QualType SizeType = Context.getSizeType();
4624      llvm::APInt Size(Context.getTypeSize(SizeType),
4625                       Context.getTypeSizeInChars(BaseType).getQuantity());
4626      for (const ConstantArrayType *Array
4627              = Context.getAsConstantArrayType(FieldType);
4628           Array;
4629           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4630        llvm::APInt ArraySize = Array->getSize();
4631        ArraySize.zextOrTrunc(Size.getBitWidth());
4632        Size *= ArraySize;
4633      }
4634
4635      // Take the address of the field references for "from" and "to".
4636      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4637      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4638
4639      bool NeedsCollectableMemCpy =
4640          (BaseType->isRecordType() &&
4641           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4642
4643      if (NeedsCollectableMemCpy) {
4644        if (!CollectableMemCpyRef) {
4645          // Create a reference to the objc_memmove_collectable function.
4646          LookupResult R(*this, &Context.Idents.get("objc_memmove_collectable"),
4647                         Loc, LookupOrdinaryName);
4648          LookupName(R, TUScope, true);
4649
4650          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4651          if (!CollectableMemCpy) {
4652            // Something went horribly wrong earlier, and we will have
4653            // complained about it.
4654            Invalid = true;
4655            continue;
4656          }
4657
4658          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4659                                                  CollectableMemCpy->getType(),
4660                                                  Loc, 0).takeAs<Expr>();
4661          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4662        }
4663      }
4664      // Create a reference to the __builtin_memcpy builtin function.
4665      else if (!BuiltinMemCpyRef) {
4666        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4667                       LookupOrdinaryName);
4668        LookupName(R, TUScope, true);
4669
4670        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4671        if (!BuiltinMemCpy) {
4672          // Something went horribly wrong earlier, and we will have complained
4673          // about it.
4674          Invalid = true;
4675          continue;
4676        }
4677
4678        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4679                                            BuiltinMemCpy->getType(),
4680                                            Loc, 0).takeAs<Expr>();
4681        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4682      }
4683
4684      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4685      CallArgs.push_back(To.takeAs<Expr>());
4686      CallArgs.push_back(From.takeAs<Expr>());
4687      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4688      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4689      Commas.push_back(Loc);
4690      Commas.push_back(Loc);
4691      OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
4692                                  NeedsCollectableMemCpy ?
4693                                    Owned(CollectableMemCpyRef->Retain()) :
4694                                    Owned(BuiltinMemCpyRef->Retain()),
4695                                  Loc, move_arg(CallArgs),
4696                                  Commas.data(), Loc);
4697      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4698      Statements.push_back(Call.takeAs<Expr>());
4699      continue;
4700    }
4701
4702    // Build the copy of this field.
4703    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4704                                                  move(To), move(From),
4705                                              /*CopyingBaseSubobject=*/false);
4706    if (Copy.isInvalid()) {
4707      Diag(CurrentLocation, diag::note_member_synthesized_at)
4708        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4709      CopyAssignOperator->setInvalidDecl();
4710      return;
4711    }
4712
4713    // Success! Record the copy.
4714    Statements.push_back(Copy.takeAs<Stmt>());
4715  }
4716
4717  if (!Invalid) {
4718    // Add a "return *this;"
4719    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4720                                                    Owned(This->Retain()));
4721
4722    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4723    if (Return.isInvalid())
4724      Invalid = true;
4725    else {
4726      Statements.push_back(Return.takeAs<Stmt>());
4727
4728      if (Trap.hasErrorOccurred()) {
4729        Diag(CurrentLocation, diag::note_member_synthesized_at)
4730          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4731        Invalid = true;
4732      }
4733    }
4734  }
4735
4736  if (Invalid) {
4737    CopyAssignOperator->setInvalidDecl();
4738    return;
4739  }
4740
4741  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4742                                            /*isStmtExpr=*/false);
4743  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4744  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4745}
4746
4747void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4748                                   CXXConstructorDecl *CopyConstructor,
4749                                   unsigned TypeQuals) {
4750  assert((CopyConstructor->isImplicit() &&
4751          CopyConstructor->isCopyConstructor(TypeQuals) &&
4752          !CopyConstructor->isUsed()) &&
4753         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4754
4755  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4756  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4757
4758  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4759  ErrorTrap Trap(*this);
4760
4761  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4762      Trap.hasErrorOccurred()) {
4763    Diag(CurrentLocation, diag::note_member_synthesized_at)
4764      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4765    CopyConstructor->setInvalidDecl();
4766  }  else {
4767    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4768                                               CopyConstructor->getLocation(),
4769                                               MultiStmtArg(*this, 0, 0),
4770                                               /*isStmtExpr=*/false)
4771                                                              .takeAs<Stmt>());
4772  }
4773
4774  CopyConstructor->setUsed();
4775}
4776
4777Sema::OwningExprResult
4778Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4779                            CXXConstructorDecl *Constructor,
4780                            MultiExprArg ExprArgs,
4781                            bool RequiresZeroInit,
4782                            CXXConstructExpr::ConstructionKind ConstructKind) {
4783  bool Elidable = false;
4784
4785  // C++0x [class.copy]p34:
4786  //   When certain criteria are met, an implementation is allowed to
4787  //   omit the copy/move construction of a class object, even if the
4788  //   copy/move constructor and/or destructor for the object have
4789  //   side effects. [...]
4790  //     - when a temporary class object that has not been bound to a
4791  //       reference (12.2) would be copied/moved to a class object
4792  //       with the same cv-unqualified type, the copy/move operation
4793  //       can be omitted by constructing the temporary object
4794  //       directly into the target of the omitted copy/move
4795  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4796    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4797    Elidable = SubExpr->isTemporaryObject() &&
4798      Context.hasSameUnqualifiedType(SubExpr->getType(),
4799                           Context.getTypeDeclType(Constructor->getParent()));
4800  }
4801
4802  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4803                               Elidable, move(ExprArgs), RequiresZeroInit,
4804                               ConstructKind);
4805}
4806
4807/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4808/// including handling of its default argument expressions.
4809Sema::OwningExprResult
4810Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4811                            CXXConstructorDecl *Constructor, bool Elidable,
4812                            MultiExprArg ExprArgs,
4813                            bool RequiresZeroInit,
4814                            CXXConstructExpr::ConstructionKind ConstructKind) {
4815  unsigned NumExprs = ExprArgs.size();
4816  Expr **Exprs = (Expr **)ExprArgs.release();
4817
4818  MarkDeclarationReferenced(ConstructLoc, Constructor);
4819  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4820                                        Constructor, Elidable, Exprs, NumExprs,
4821                                        RequiresZeroInit, ConstructKind));
4822}
4823
4824bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4825                                        CXXConstructorDecl *Constructor,
4826                                        MultiExprArg Exprs) {
4827  OwningExprResult TempResult =
4828    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4829                          move(Exprs));
4830  if (TempResult.isInvalid())
4831    return true;
4832
4833  Expr *Temp = TempResult.takeAs<Expr>();
4834  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4835  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4836  VD->setInit(Temp);
4837
4838  return false;
4839}
4840
4841void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4842  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4843  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4844      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4845    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4846    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4847    CheckDestructorAccess(VD->getLocation(), Destructor,
4848                          PDiag(diag::err_access_dtor_var)
4849                            << VD->getDeclName()
4850                            << VD->getType());
4851  }
4852}
4853
4854/// AddCXXDirectInitializerToDecl - This action is called immediately after
4855/// ActOnDeclarator, when a C++ direct initializer is present.
4856/// e.g: "int x(1);"
4857void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4858                                         SourceLocation LParenLoc,
4859                                         MultiExprArg Exprs,
4860                                         SourceLocation *CommaLocs,
4861                                         SourceLocation RParenLoc) {
4862  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4863  Decl *RealDecl = Dcl.getAs<Decl>();
4864
4865  // If there is no declaration, there was an error parsing it.  Just ignore
4866  // the initializer.
4867  if (RealDecl == 0)
4868    return;
4869
4870  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4871  if (!VDecl) {
4872    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4873    RealDecl->setInvalidDecl();
4874    return;
4875  }
4876
4877  // We will represent direct-initialization similarly to copy-initialization:
4878  //    int x(1);  -as-> int x = 1;
4879  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4880  //
4881  // Clients that want to distinguish between the two forms, can check for
4882  // direct initializer using VarDecl::hasCXXDirectInitializer().
4883  // A major benefit is that clients that don't particularly care about which
4884  // exactly form was it (like the CodeGen) can handle both cases without
4885  // special case code.
4886
4887  // C++ 8.5p11:
4888  // The form of initialization (using parentheses or '=') is generally
4889  // insignificant, but does matter when the entity being initialized has a
4890  // class type.
4891  QualType DeclInitType = VDecl->getType();
4892  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4893    DeclInitType = Context.getBaseElementType(Array);
4894
4895  if (!VDecl->getType()->isDependentType() &&
4896      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4897                          diag::err_typecheck_decl_incomplete_type)) {
4898    VDecl->setInvalidDecl();
4899    return;
4900  }
4901
4902  // The variable can not have an abstract class type.
4903  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4904                             diag::err_abstract_type_in_decl,
4905                             AbstractVariableType))
4906    VDecl->setInvalidDecl();
4907
4908  const VarDecl *Def;
4909  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4910    Diag(VDecl->getLocation(), diag::err_redefinition)
4911    << VDecl->getDeclName();
4912    Diag(Def->getLocation(), diag::note_previous_definition);
4913    VDecl->setInvalidDecl();
4914    return;
4915  }
4916
4917  // If either the declaration has a dependent type or if any of the
4918  // expressions is type-dependent, we represent the initialization
4919  // via a ParenListExpr for later use during template instantiation.
4920  if (VDecl->getType()->isDependentType() ||
4921      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4922    // Let clients know that initialization was done with a direct initializer.
4923    VDecl->setCXXDirectInitializer(true);
4924
4925    // Store the initialization expressions as a ParenListExpr.
4926    unsigned NumExprs = Exprs.size();
4927    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4928                                               (Expr **)Exprs.release(),
4929                                               NumExprs, RParenLoc));
4930    return;
4931  }
4932
4933  // Capture the variable that is being initialized and the style of
4934  // initialization.
4935  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4936
4937  // FIXME: Poor source location information.
4938  InitializationKind Kind
4939    = InitializationKind::CreateDirect(VDecl->getLocation(),
4940                                       LParenLoc, RParenLoc);
4941
4942  InitializationSequence InitSeq(*this, Entity, Kind,
4943                                 (Expr**)Exprs.get(), Exprs.size());
4944  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4945  if (Result.isInvalid()) {
4946    VDecl->setInvalidDecl();
4947    return;
4948  }
4949
4950  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4951  VDecl->setInit(Result.takeAs<Expr>());
4952  VDecl->setCXXDirectInitializer(true);
4953
4954  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4955    FinalizeVarWithDestructor(VDecl, Record);
4956}
4957
4958/// \brief Given a constructor and the set of arguments provided for the
4959/// constructor, convert the arguments and add any required default arguments
4960/// to form a proper call to this constructor.
4961///
4962/// \returns true if an error occurred, false otherwise.
4963bool
4964Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4965                              MultiExprArg ArgsPtr,
4966                              SourceLocation Loc,
4967                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4968  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4969  unsigned NumArgs = ArgsPtr.size();
4970  Expr **Args = (Expr **)ArgsPtr.get();
4971
4972  const FunctionProtoType *Proto
4973    = Constructor->getType()->getAs<FunctionProtoType>();
4974  assert(Proto && "Constructor without a prototype?");
4975  unsigned NumArgsInProto = Proto->getNumArgs();
4976
4977  // If too few arguments are available, we'll fill in the rest with defaults.
4978  if (NumArgs < NumArgsInProto)
4979    ConvertedArgs.reserve(NumArgsInProto);
4980  else
4981    ConvertedArgs.reserve(NumArgs);
4982
4983  VariadicCallType CallType =
4984    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4985  llvm::SmallVector<Expr *, 8> AllArgs;
4986  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4987                                        Proto, 0, Args, NumArgs, AllArgs,
4988                                        CallType);
4989  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4990    ConvertedArgs.push_back(AllArgs[i]);
4991  return Invalid;
4992}
4993
4994static inline bool
4995CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4996                                       const FunctionDecl *FnDecl) {
4997  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4998  if (isa<NamespaceDecl>(DC)) {
4999    return SemaRef.Diag(FnDecl->getLocation(),
5000                        diag::err_operator_new_delete_declared_in_namespace)
5001      << FnDecl->getDeclName();
5002  }
5003
5004  if (isa<TranslationUnitDecl>(DC) &&
5005      FnDecl->getStorageClass() == FunctionDecl::Static) {
5006    return SemaRef.Diag(FnDecl->getLocation(),
5007                        diag::err_operator_new_delete_declared_static)
5008      << FnDecl->getDeclName();
5009  }
5010
5011  return false;
5012}
5013
5014static inline bool
5015CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5016                            CanQualType ExpectedResultType,
5017                            CanQualType ExpectedFirstParamType,
5018                            unsigned DependentParamTypeDiag,
5019                            unsigned InvalidParamTypeDiag) {
5020  QualType ResultType =
5021    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5022
5023  // Check that the result type is not dependent.
5024  if (ResultType->isDependentType())
5025    return SemaRef.Diag(FnDecl->getLocation(),
5026                        diag::err_operator_new_delete_dependent_result_type)
5027    << FnDecl->getDeclName() << ExpectedResultType;
5028
5029  // Check that the result type is what we expect.
5030  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5031    return SemaRef.Diag(FnDecl->getLocation(),
5032                        diag::err_operator_new_delete_invalid_result_type)
5033    << FnDecl->getDeclName() << ExpectedResultType;
5034
5035  // A function template must have at least 2 parameters.
5036  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5037    return SemaRef.Diag(FnDecl->getLocation(),
5038                      diag::err_operator_new_delete_template_too_few_parameters)
5039        << FnDecl->getDeclName();
5040
5041  // The function decl must have at least 1 parameter.
5042  if (FnDecl->getNumParams() == 0)
5043    return SemaRef.Diag(FnDecl->getLocation(),
5044                        diag::err_operator_new_delete_too_few_parameters)
5045      << FnDecl->getDeclName();
5046
5047  // Check the the first parameter type is not dependent.
5048  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5049  if (FirstParamType->isDependentType())
5050    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5051      << FnDecl->getDeclName() << ExpectedFirstParamType;
5052
5053  // Check that the first parameter type is what we expect.
5054  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5055      ExpectedFirstParamType)
5056    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5057    << FnDecl->getDeclName() << ExpectedFirstParamType;
5058
5059  return false;
5060}
5061
5062static bool
5063CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5064  // C++ [basic.stc.dynamic.allocation]p1:
5065  //   A program is ill-formed if an allocation function is declared in a
5066  //   namespace scope other than global scope or declared static in global
5067  //   scope.
5068  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5069    return true;
5070
5071  CanQualType SizeTy =
5072    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5073
5074  // C++ [basic.stc.dynamic.allocation]p1:
5075  //  The return type shall be void*. The first parameter shall have type
5076  //  std::size_t.
5077  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5078                                  SizeTy,
5079                                  diag::err_operator_new_dependent_param_type,
5080                                  diag::err_operator_new_param_type))
5081    return true;
5082
5083  // C++ [basic.stc.dynamic.allocation]p1:
5084  //  The first parameter shall not have an associated default argument.
5085  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5086    return SemaRef.Diag(FnDecl->getLocation(),
5087                        diag::err_operator_new_default_arg)
5088      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5089
5090  return false;
5091}
5092
5093static bool
5094CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5095  // C++ [basic.stc.dynamic.deallocation]p1:
5096  //   A program is ill-formed if deallocation functions are declared in a
5097  //   namespace scope other than global scope or declared static in global
5098  //   scope.
5099  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5100    return true;
5101
5102  // C++ [basic.stc.dynamic.deallocation]p2:
5103  //   Each deallocation function shall return void and its first parameter
5104  //   shall be void*.
5105  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5106                                  SemaRef.Context.VoidPtrTy,
5107                                 diag::err_operator_delete_dependent_param_type,
5108                                 diag::err_operator_delete_param_type))
5109    return true;
5110
5111  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5112  if (FirstParamType->isDependentType())
5113    return SemaRef.Diag(FnDecl->getLocation(),
5114                        diag::err_operator_delete_dependent_param_type)
5115    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5116
5117  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5118      SemaRef.Context.VoidPtrTy)
5119    return SemaRef.Diag(FnDecl->getLocation(),
5120                        diag::err_operator_delete_param_type)
5121      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5122
5123  return false;
5124}
5125
5126/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5127/// of this overloaded operator is well-formed. If so, returns false;
5128/// otherwise, emits appropriate diagnostics and returns true.
5129bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5130  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5131         "Expected an overloaded operator declaration");
5132
5133  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5134
5135  // C++ [over.oper]p5:
5136  //   The allocation and deallocation functions, operator new,
5137  //   operator new[], operator delete and operator delete[], are
5138  //   described completely in 3.7.3. The attributes and restrictions
5139  //   found in the rest of this subclause do not apply to them unless
5140  //   explicitly stated in 3.7.3.
5141  if (Op == OO_Delete || Op == OO_Array_Delete)
5142    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5143
5144  if (Op == OO_New || Op == OO_Array_New)
5145    return CheckOperatorNewDeclaration(*this, FnDecl);
5146
5147  // C++ [over.oper]p6:
5148  //   An operator function shall either be a non-static member
5149  //   function or be a non-member function and have at least one
5150  //   parameter whose type is a class, a reference to a class, an
5151  //   enumeration, or a reference to an enumeration.
5152  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5153    if (MethodDecl->isStatic())
5154      return Diag(FnDecl->getLocation(),
5155                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5156  } else {
5157    bool ClassOrEnumParam = false;
5158    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5159                                   ParamEnd = FnDecl->param_end();
5160         Param != ParamEnd; ++Param) {
5161      QualType ParamType = (*Param)->getType().getNonReferenceType();
5162      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5163          ParamType->isEnumeralType()) {
5164        ClassOrEnumParam = true;
5165        break;
5166      }
5167    }
5168
5169    if (!ClassOrEnumParam)
5170      return Diag(FnDecl->getLocation(),
5171                  diag::err_operator_overload_needs_class_or_enum)
5172        << FnDecl->getDeclName();
5173  }
5174
5175  // C++ [over.oper]p8:
5176  //   An operator function cannot have default arguments (8.3.6),
5177  //   except where explicitly stated below.
5178  //
5179  // Only the function-call operator allows default arguments
5180  // (C++ [over.call]p1).
5181  if (Op != OO_Call) {
5182    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5183         Param != FnDecl->param_end(); ++Param) {
5184      if ((*Param)->hasDefaultArg())
5185        return Diag((*Param)->getLocation(),
5186                    diag::err_operator_overload_default_arg)
5187          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5188    }
5189  }
5190
5191  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5192    { false, false, false }
5193#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5194    , { Unary, Binary, MemberOnly }
5195#include "clang/Basic/OperatorKinds.def"
5196  };
5197
5198  bool CanBeUnaryOperator = OperatorUses[Op][0];
5199  bool CanBeBinaryOperator = OperatorUses[Op][1];
5200  bool MustBeMemberOperator = OperatorUses[Op][2];
5201
5202  // C++ [over.oper]p8:
5203  //   [...] Operator functions cannot have more or fewer parameters
5204  //   than the number required for the corresponding operator, as
5205  //   described in the rest of this subclause.
5206  unsigned NumParams = FnDecl->getNumParams()
5207                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5208  if (Op != OO_Call &&
5209      ((NumParams == 1 && !CanBeUnaryOperator) ||
5210       (NumParams == 2 && !CanBeBinaryOperator) ||
5211       (NumParams < 1) || (NumParams > 2))) {
5212    // We have the wrong number of parameters.
5213    unsigned ErrorKind;
5214    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5215      ErrorKind = 2;  // 2 -> unary or binary.
5216    } else if (CanBeUnaryOperator) {
5217      ErrorKind = 0;  // 0 -> unary
5218    } else {
5219      assert(CanBeBinaryOperator &&
5220             "All non-call overloaded operators are unary or binary!");
5221      ErrorKind = 1;  // 1 -> binary
5222    }
5223
5224    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5225      << FnDecl->getDeclName() << NumParams << ErrorKind;
5226  }
5227
5228  // Overloaded operators other than operator() cannot be variadic.
5229  if (Op != OO_Call &&
5230      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5231    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5232      << FnDecl->getDeclName();
5233  }
5234
5235  // Some operators must be non-static member functions.
5236  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5237    return Diag(FnDecl->getLocation(),
5238                diag::err_operator_overload_must_be_member)
5239      << FnDecl->getDeclName();
5240  }
5241
5242  // C++ [over.inc]p1:
5243  //   The user-defined function called operator++ implements the
5244  //   prefix and postfix ++ operator. If this function is a member
5245  //   function with no parameters, or a non-member function with one
5246  //   parameter of class or enumeration type, it defines the prefix
5247  //   increment operator ++ for objects of that type. If the function
5248  //   is a member function with one parameter (which shall be of type
5249  //   int) or a non-member function with two parameters (the second
5250  //   of which shall be of type int), it defines the postfix
5251  //   increment operator ++ for objects of that type.
5252  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5253    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5254    bool ParamIsInt = false;
5255    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5256      ParamIsInt = BT->getKind() == BuiltinType::Int;
5257
5258    if (!ParamIsInt)
5259      return Diag(LastParam->getLocation(),
5260                  diag::err_operator_overload_post_incdec_must_be_int)
5261        << LastParam->getType() << (Op == OO_MinusMinus);
5262  }
5263
5264  // Notify the class if it got an assignment operator.
5265  if (Op == OO_Equal) {
5266    // Would have returned earlier otherwise.
5267    assert(isa<CXXMethodDecl>(FnDecl) &&
5268      "Overloaded = not member, but not filtered.");
5269    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5270    Method->getParent()->addedAssignmentOperator(Context, Method);
5271  }
5272
5273  return false;
5274}
5275
5276/// CheckLiteralOperatorDeclaration - Check whether the declaration
5277/// of this literal operator function is well-formed. If so, returns
5278/// false; otherwise, emits appropriate diagnostics and returns true.
5279bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5280  DeclContext *DC = FnDecl->getDeclContext();
5281  Decl::Kind Kind = DC->getDeclKind();
5282  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5283      Kind != Decl::LinkageSpec) {
5284    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5285      << FnDecl->getDeclName();
5286    return true;
5287  }
5288
5289  bool Valid = false;
5290
5291  // template <char...> type operator "" name() is the only valid template
5292  // signature, and the only valid signature with no parameters.
5293  if (FnDecl->param_size() == 0) {
5294    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5295      // Must have only one template parameter
5296      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5297      if (Params->size() == 1) {
5298        NonTypeTemplateParmDecl *PmDecl =
5299          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5300
5301        // The template parameter must be a char parameter pack.
5302        // FIXME: This test will always fail because non-type parameter packs
5303        //   have not been implemented.
5304        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5305            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5306          Valid = true;
5307      }
5308    }
5309  } else {
5310    // Check the first parameter
5311    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5312
5313    QualType T = (*Param)->getType();
5314
5315    // unsigned long long int, long double, and any character type are allowed
5316    // as the only parameters.
5317    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5318        Context.hasSameType(T, Context.LongDoubleTy) ||
5319        Context.hasSameType(T, Context.CharTy) ||
5320        Context.hasSameType(T, Context.WCharTy) ||
5321        Context.hasSameType(T, Context.Char16Ty) ||
5322        Context.hasSameType(T, Context.Char32Ty)) {
5323      if (++Param == FnDecl->param_end())
5324        Valid = true;
5325      goto FinishedParams;
5326    }
5327
5328    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5329    const PointerType *PT = T->getAs<PointerType>();
5330    if (!PT)
5331      goto FinishedParams;
5332    T = PT->getPointeeType();
5333    if (!T.isConstQualified())
5334      goto FinishedParams;
5335    T = T.getUnqualifiedType();
5336
5337    // Move on to the second parameter;
5338    ++Param;
5339
5340    // If there is no second parameter, the first must be a const char *
5341    if (Param == FnDecl->param_end()) {
5342      if (Context.hasSameType(T, Context.CharTy))
5343        Valid = true;
5344      goto FinishedParams;
5345    }
5346
5347    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5348    // are allowed as the first parameter to a two-parameter function
5349    if (!(Context.hasSameType(T, Context.CharTy) ||
5350          Context.hasSameType(T, Context.WCharTy) ||
5351          Context.hasSameType(T, Context.Char16Ty) ||
5352          Context.hasSameType(T, Context.Char32Ty)))
5353      goto FinishedParams;
5354
5355    // The second and final parameter must be an std::size_t
5356    T = (*Param)->getType().getUnqualifiedType();
5357    if (Context.hasSameType(T, Context.getSizeType()) &&
5358        ++Param == FnDecl->param_end())
5359      Valid = true;
5360  }
5361
5362  // FIXME: This diagnostic is absolutely terrible.
5363FinishedParams:
5364  if (!Valid) {
5365    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5366      << FnDecl->getDeclName();
5367    return true;
5368  }
5369
5370  return false;
5371}
5372
5373/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5374/// linkage specification, including the language and (if present)
5375/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5376/// the location of the language string literal, which is provided
5377/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5378/// the '{' brace. Otherwise, this linkage specification does not
5379/// have any braces.
5380Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5381                                                     SourceLocation ExternLoc,
5382                                                     SourceLocation LangLoc,
5383                                                     llvm::StringRef Lang,
5384                                                     SourceLocation LBraceLoc) {
5385  LinkageSpecDecl::LanguageIDs Language;
5386  if (Lang == "\"C\"")
5387    Language = LinkageSpecDecl::lang_c;
5388  else if (Lang == "\"C++\"")
5389    Language = LinkageSpecDecl::lang_cxx;
5390  else {
5391    Diag(LangLoc, diag::err_bad_language);
5392    return DeclPtrTy();
5393  }
5394
5395  // FIXME: Add all the various semantics of linkage specifications
5396
5397  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5398                                               LangLoc, Language,
5399                                               LBraceLoc.isValid());
5400  CurContext->addDecl(D);
5401  PushDeclContext(S, D);
5402  return DeclPtrTy::make(D);
5403}
5404
5405/// ActOnFinishLinkageSpecification - Completely the definition of
5406/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5407/// valid, it's the position of the closing '}' brace in a linkage
5408/// specification that uses braces.
5409Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5410                                                      DeclPtrTy LinkageSpec,
5411                                                      SourceLocation RBraceLoc) {
5412  if (LinkageSpec)
5413    PopDeclContext();
5414  return LinkageSpec;
5415}
5416
5417/// \brief Perform semantic analysis for the variable declaration that
5418/// occurs within a C++ catch clause, returning the newly-created
5419/// variable.
5420VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5421                                         TypeSourceInfo *TInfo,
5422                                         IdentifierInfo *Name,
5423                                         SourceLocation Loc,
5424                                         SourceRange Range) {
5425  bool Invalid = false;
5426
5427  // Arrays and functions decay.
5428  if (ExDeclType->isArrayType())
5429    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5430  else if (ExDeclType->isFunctionType())
5431    ExDeclType = Context.getPointerType(ExDeclType);
5432
5433  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5434  // The exception-declaration shall not denote a pointer or reference to an
5435  // incomplete type, other than [cv] void*.
5436  // N2844 forbids rvalue references.
5437  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5438    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5439    Invalid = true;
5440  }
5441
5442  // GCC allows catching pointers and references to incomplete types
5443  // as an extension; so do we, but we warn by default.
5444
5445  QualType BaseType = ExDeclType;
5446  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5447  unsigned DK = diag::err_catch_incomplete;
5448  bool IncompleteCatchIsInvalid = true;
5449  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5450    BaseType = Ptr->getPointeeType();
5451    Mode = 1;
5452    DK = diag::ext_catch_incomplete_ptr;
5453    IncompleteCatchIsInvalid = false;
5454  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5455    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5456    BaseType = Ref->getPointeeType();
5457    Mode = 2;
5458    DK = diag::ext_catch_incomplete_ref;
5459    IncompleteCatchIsInvalid = false;
5460  }
5461  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5462      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5463      IncompleteCatchIsInvalid)
5464    Invalid = true;
5465
5466  if (!Invalid && !ExDeclType->isDependentType() &&
5467      RequireNonAbstractType(Loc, ExDeclType,
5468                             diag::err_abstract_type_in_decl,
5469                             AbstractVariableType))
5470    Invalid = true;
5471
5472  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5473                                    Name, ExDeclType, TInfo, VarDecl::None,
5474                                    VarDecl::None);
5475  ExDecl->setExceptionVariable(true);
5476
5477  if (!Invalid) {
5478    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5479      // C++ [except.handle]p16:
5480      //   The object declared in an exception-declaration or, if the
5481      //   exception-declaration does not specify a name, a temporary (12.2) is
5482      //   copy-initialized (8.5) from the exception object. [...]
5483      //   The object is destroyed when the handler exits, after the destruction
5484      //   of any automatic objects initialized within the handler.
5485      //
5486      // We just pretend to initialize the object with itself, then make sure
5487      // it can be destroyed later.
5488      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5489      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5490                                            Loc, ExDeclType, 0);
5491      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5492                                                               SourceLocation());
5493      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5494      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5495                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5496      if (Result.isInvalid())
5497        Invalid = true;
5498      else
5499        FinalizeVarWithDestructor(ExDecl, RecordTy);
5500    }
5501  }
5502
5503  if (Invalid)
5504    ExDecl->setInvalidDecl();
5505
5506  return ExDecl;
5507}
5508
5509/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5510/// handler.
5511Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5512  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5513  QualType ExDeclType = TInfo->getType();
5514
5515  bool Invalid = D.isInvalidType();
5516  IdentifierInfo *II = D.getIdentifier();
5517  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5518                                             LookupOrdinaryName,
5519                                             ForRedeclaration)) {
5520    // The scope should be freshly made just for us. There is just no way
5521    // it contains any previous declaration.
5522    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5523    if (PrevDecl->isTemplateParameter()) {
5524      // Maybe we will complain about the shadowed template parameter.
5525      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5526    }
5527  }
5528
5529  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5530    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5531      << D.getCXXScopeSpec().getRange();
5532    Invalid = true;
5533  }
5534
5535  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5536                                              D.getIdentifier(),
5537                                              D.getIdentifierLoc(),
5538                                            D.getDeclSpec().getSourceRange());
5539
5540  if (Invalid)
5541    ExDecl->setInvalidDecl();
5542
5543  // Add the exception declaration into this scope.
5544  if (II)
5545    PushOnScopeChains(ExDecl, S);
5546  else
5547    CurContext->addDecl(ExDecl);
5548
5549  ProcessDeclAttributes(S, ExDecl, D);
5550  return DeclPtrTy::make(ExDecl);
5551}
5552
5553Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5554                                                   ExprArg assertexpr,
5555                                                   ExprArg assertmessageexpr) {
5556  Expr *AssertExpr = (Expr *)assertexpr.get();
5557  StringLiteral *AssertMessage =
5558    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5559
5560  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5561    llvm::APSInt Value(32);
5562    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5563      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5564        AssertExpr->getSourceRange();
5565      return DeclPtrTy();
5566    }
5567
5568    if (Value == 0) {
5569      Diag(AssertLoc, diag::err_static_assert_failed)
5570        << AssertMessage->getString() << AssertExpr->getSourceRange();
5571    }
5572  }
5573
5574  assertexpr.release();
5575  assertmessageexpr.release();
5576  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5577                                        AssertExpr, AssertMessage);
5578
5579  CurContext->addDecl(Decl);
5580  return DeclPtrTy::make(Decl);
5581}
5582
5583/// \brief Perform semantic analysis of the given friend type declaration.
5584///
5585/// \returns A friend declaration that.
5586FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5587                                      TypeSourceInfo *TSInfo) {
5588  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5589
5590  QualType T = TSInfo->getType();
5591  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5592
5593  if (!getLangOptions().CPlusPlus0x) {
5594    // C++03 [class.friend]p2:
5595    //   An elaborated-type-specifier shall be used in a friend declaration
5596    //   for a class.*
5597    //
5598    //   * The class-key of the elaborated-type-specifier is required.
5599    if (!ActiveTemplateInstantiations.empty()) {
5600      // Do not complain about the form of friend template types during
5601      // template instantiation; we will already have complained when the
5602      // template was declared.
5603    } else if (!T->isElaboratedTypeSpecifier()) {
5604      // If we evaluated the type to a record type, suggest putting
5605      // a tag in front.
5606      if (const RecordType *RT = T->getAs<RecordType>()) {
5607        RecordDecl *RD = RT->getDecl();
5608
5609        std::string InsertionText = std::string(" ") + RD->getKindName();
5610
5611        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5612          << (unsigned) RD->getTagKind()
5613          << T
5614          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5615                                        InsertionText);
5616      } else {
5617        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5618          << T
5619          << SourceRange(FriendLoc, TypeRange.getEnd());
5620      }
5621    } else if (T->getAs<EnumType>()) {
5622      Diag(FriendLoc, diag::ext_enum_friend)
5623        << T
5624        << SourceRange(FriendLoc, TypeRange.getEnd());
5625    }
5626  }
5627
5628  // C++0x [class.friend]p3:
5629  //   If the type specifier in a friend declaration designates a (possibly
5630  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5631  //   the friend declaration is ignored.
5632
5633  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5634  // in [class.friend]p3 that we do not implement.
5635
5636  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5637}
5638
5639/// Handle a friend type declaration.  This works in tandem with
5640/// ActOnTag.
5641///
5642/// Notes on friend class templates:
5643///
5644/// We generally treat friend class declarations as if they were
5645/// declaring a class.  So, for example, the elaborated type specifier
5646/// in a friend declaration is required to obey the restrictions of a
5647/// class-head (i.e. no typedefs in the scope chain), template
5648/// parameters are required to match up with simple template-ids, &c.
5649/// However, unlike when declaring a template specialization, it's
5650/// okay to refer to a template specialization without an empty
5651/// template parameter declaration, e.g.
5652///   friend class A<T>::B<unsigned>;
5653/// We permit this as a special case; if there are any template
5654/// parameters present at all, require proper matching, i.e.
5655///   template <> template <class T> friend class A<int>::B;
5656Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5657                                          MultiTemplateParamsArg TempParams) {
5658  SourceLocation Loc = DS.getSourceRange().getBegin();
5659
5660  assert(DS.isFriendSpecified());
5661  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5662
5663  // Try to convert the decl specifier to a type.  This works for
5664  // friend templates because ActOnTag never produces a ClassTemplateDecl
5665  // for a TUK_Friend.
5666  Declarator TheDeclarator(DS, Declarator::MemberContext);
5667  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
5668  QualType T = TSI->getType();
5669  if (TheDeclarator.isInvalidType())
5670    return DeclPtrTy();
5671
5672  // This is definitely an error in C++98.  It's probably meant to
5673  // be forbidden in C++0x, too, but the specification is just
5674  // poorly written.
5675  //
5676  // The problem is with declarations like the following:
5677  //   template <T> friend A<T>::foo;
5678  // where deciding whether a class C is a friend or not now hinges
5679  // on whether there exists an instantiation of A that causes
5680  // 'foo' to equal C.  There are restrictions on class-heads
5681  // (which we declare (by fiat) elaborated friend declarations to
5682  // be) that makes this tractable.
5683  //
5684  // FIXME: handle "template <> friend class A<T>;", which
5685  // is possibly well-formed?  Who even knows?
5686  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5687    Diag(Loc, diag::err_tagless_friend_type_template)
5688      << DS.getSourceRange();
5689    return DeclPtrTy();
5690  }
5691
5692  // C++98 [class.friend]p1: A friend of a class is a function
5693  //   or class that is not a member of the class . . .
5694  // This is fixed in DR77, which just barely didn't make the C++03
5695  // deadline.  It's also a very silly restriction that seriously
5696  // affects inner classes and which nobody else seems to implement;
5697  // thus we never diagnose it, not even in -pedantic.
5698  //
5699  // But note that we could warn about it: it's always useless to
5700  // friend one of your own members (it's not, however, worthless to
5701  // friend a member of an arbitrary specialization of your template).
5702
5703  Decl *D;
5704  if (unsigned NumTempParamLists = TempParams.size())
5705    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5706                                   NumTempParamLists,
5707                                 (TemplateParameterList**) TempParams.release(),
5708                                   TSI,
5709                                   DS.getFriendSpecLoc());
5710  else
5711    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5712
5713  if (!D)
5714    return DeclPtrTy();
5715
5716  D->setAccess(AS_public);
5717  CurContext->addDecl(D);
5718
5719  return DeclPtrTy::make(D);
5720}
5721
5722Sema::DeclPtrTy
5723Sema::ActOnFriendFunctionDecl(Scope *S,
5724                              Declarator &D,
5725                              bool IsDefinition,
5726                              MultiTemplateParamsArg TemplateParams) {
5727  const DeclSpec &DS = D.getDeclSpec();
5728
5729  assert(DS.isFriendSpecified());
5730  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5731
5732  SourceLocation Loc = D.getIdentifierLoc();
5733  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5734  QualType T = TInfo->getType();
5735
5736  // C++ [class.friend]p1
5737  //   A friend of a class is a function or class....
5738  // Note that this sees through typedefs, which is intended.
5739  // It *doesn't* see through dependent types, which is correct
5740  // according to [temp.arg.type]p3:
5741  //   If a declaration acquires a function type through a
5742  //   type dependent on a template-parameter and this causes
5743  //   a declaration that does not use the syntactic form of a
5744  //   function declarator to have a function type, the program
5745  //   is ill-formed.
5746  if (!T->isFunctionType()) {
5747    Diag(Loc, diag::err_unexpected_friend);
5748
5749    // It might be worthwhile to try to recover by creating an
5750    // appropriate declaration.
5751    return DeclPtrTy();
5752  }
5753
5754  // C++ [namespace.memdef]p3
5755  //  - If a friend declaration in a non-local class first declares a
5756  //    class or function, the friend class or function is a member
5757  //    of the innermost enclosing namespace.
5758  //  - The name of the friend is not found by simple name lookup
5759  //    until a matching declaration is provided in that namespace
5760  //    scope (either before or after the class declaration granting
5761  //    friendship).
5762  //  - If a friend function is called, its name may be found by the
5763  //    name lookup that considers functions from namespaces and
5764  //    classes associated with the types of the function arguments.
5765  //  - When looking for a prior declaration of a class or a function
5766  //    declared as a friend, scopes outside the innermost enclosing
5767  //    namespace scope are not considered.
5768
5769  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5770  DeclarationName Name = GetNameForDeclarator(D);
5771  assert(Name);
5772
5773  // The context we found the declaration in, or in which we should
5774  // create the declaration.
5775  DeclContext *DC;
5776
5777  // FIXME: handle local classes
5778
5779  // Recover from invalid scope qualifiers as if they just weren't there.
5780  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5781                        ForRedeclaration);
5782  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5783    DC = computeDeclContext(ScopeQual);
5784
5785    // FIXME: handle dependent contexts
5786    if (!DC) return DeclPtrTy();
5787    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5788
5789    LookupQualifiedName(Previous, DC);
5790
5791    // Ignore things found implicitly in the wrong scope.
5792    // TODO: better diagnostics for this case.  Suggesting the right
5793    // qualified scope would be nice...
5794    LookupResult::Filter F = Previous.makeFilter();
5795    while (F.hasNext()) {
5796      NamedDecl *D = F.next();
5797      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
5798        F.erase();
5799    }
5800    F.done();
5801
5802    if (Previous.empty()) {
5803      D.setInvalidType();
5804      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5805      return DeclPtrTy();
5806    }
5807
5808    // C++ [class.friend]p1: A friend of a class is a function or
5809    //   class that is not a member of the class . . .
5810    if (DC->Equals(CurContext))
5811      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5812
5813  // Otherwise walk out to the nearest namespace scope looking for matches.
5814  } else {
5815    // TODO: handle local class contexts.
5816
5817    DC = CurContext;
5818    while (true) {
5819      // Skip class contexts.  If someone can cite chapter and verse
5820      // for this behavior, that would be nice --- it's what GCC and
5821      // EDG do, and it seems like a reasonable intent, but the spec
5822      // really only says that checks for unqualified existing
5823      // declarations should stop at the nearest enclosing namespace,
5824      // not that they should only consider the nearest enclosing
5825      // namespace.
5826      while (DC->isRecord())
5827        DC = DC->getParent();
5828
5829      LookupQualifiedName(Previous, DC);
5830
5831      // TODO: decide what we think about using declarations.
5832      if (!Previous.empty())
5833        break;
5834
5835      if (DC->isFileContext()) break;
5836      DC = DC->getParent();
5837    }
5838
5839    // C++ [class.friend]p1: A friend of a class is a function or
5840    //   class that is not a member of the class . . .
5841    // C++0x changes this for both friend types and functions.
5842    // Most C++ 98 compilers do seem to give an error here, so
5843    // we do, too.
5844    if (!Previous.empty() && DC->Equals(CurContext)
5845        && !getLangOptions().CPlusPlus0x)
5846      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5847  }
5848
5849  if (DC->isFileContext()) {
5850    // This implies that it has to be an operator or function.
5851    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5852        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5853        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5854      Diag(Loc, diag::err_introducing_special_friend) <<
5855        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5856         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5857      return DeclPtrTy();
5858    }
5859  }
5860
5861  bool Redeclaration = false;
5862  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5863                                          move(TemplateParams),
5864                                          IsDefinition,
5865                                          Redeclaration);
5866  if (!ND) return DeclPtrTy();
5867
5868  assert(ND->getDeclContext() == DC);
5869  assert(ND->getLexicalDeclContext() == CurContext);
5870
5871  // Add the function declaration to the appropriate lookup tables,
5872  // adjusting the redeclarations list as necessary.  We don't
5873  // want to do this yet if the friending class is dependent.
5874  //
5875  // Also update the scope-based lookup if the target context's
5876  // lookup context is in lexical scope.
5877  if (!CurContext->isDependentContext()) {
5878    DC = DC->getLookupContext();
5879    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5880    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5881      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5882  }
5883
5884  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5885                                       D.getIdentifierLoc(), ND,
5886                                       DS.getFriendSpecLoc());
5887  FrD->setAccess(AS_public);
5888  CurContext->addDecl(FrD);
5889
5890  return DeclPtrTy::make(ND);
5891}
5892
5893void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5894  AdjustDeclIfTemplate(dcl);
5895
5896  Decl *Dcl = dcl.getAs<Decl>();
5897  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5898  if (!Fn) {
5899    Diag(DelLoc, diag::err_deleted_non_function);
5900    return;
5901  }
5902  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5903    Diag(DelLoc, diag::err_deleted_decl_not_first);
5904    Diag(Prev->getLocation(), diag::note_previous_declaration);
5905    // If the declaration wasn't the first, we delete the function anyway for
5906    // recovery.
5907  }
5908  Fn->setDeleted();
5909}
5910
5911static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5912  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5913       ++CI) {
5914    Stmt *SubStmt = *CI;
5915    if (!SubStmt)
5916      continue;
5917    if (isa<ReturnStmt>(SubStmt))
5918      Self.Diag(SubStmt->getSourceRange().getBegin(),
5919           diag::err_return_in_constructor_handler);
5920    if (!isa<Expr>(SubStmt))
5921      SearchForReturnInStmt(Self, SubStmt);
5922  }
5923}
5924
5925void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5926  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5927    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5928    SearchForReturnInStmt(*this, Handler);
5929  }
5930}
5931
5932bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5933                                             const CXXMethodDecl *Old) {
5934  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5935  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5936
5937  if (Context.hasSameType(NewTy, OldTy) ||
5938      NewTy->isDependentType() || OldTy->isDependentType())
5939    return false;
5940
5941  // Check if the return types are covariant
5942  QualType NewClassTy, OldClassTy;
5943
5944  /// Both types must be pointers or references to classes.
5945  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5946    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5947      NewClassTy = NewPT->getPointeeType();
5948      OldClassTy = OldPT->getPointeeType();
5949    }
5950  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5951    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5952      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5953        NewClassTy = NewRT->getPointeeType();
5954        OldClassTy = OldRT->getPointeeType();
5955      }
5956    }
5957  }
5958
5959  // The return types aren't either both pointers or references to a class type.
5960  if (NewClassTy.isNull()) {
5961    Diag(New->getLocation(),
5962         diag::err_different_return_type_for_overriding_virtual_function)
5963      << New->getDeclName() << NewTy << OldTy;
5964    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5965
5966    return true;
5967  }
5968
5969  // C++ [class.virtual]p6:
5970  //   If the return type of D::f differs from the return type of B::f, the
5971  //   class type in the return type of D::f shall be complete at the point of
5972  //   declaration of D::f or shall be the class type D.
5973  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5974    if (!RT->isBeingDefined() &&
5975        RequireCompleteType(New->getLocation(), NewClassTy,
5976                            PDiag(diag::err_covariant_return_incomplete)
5977                              << New->getDeclName()))
5978    return true;
5979  }
5980
5981  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5982    // Check if the new class derives from the old class.
5983    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5984      Diag(New->getLocation(),
5985           diag::err_covariant_return_not_derived)
5986      << New->getDeclName() << NewTy << OldTy;
5987      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5988      return true;
5989    }
5990
5991    // Check if we the conversion from derived to base is valid.
5992    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5993                    diag::err_covariant_return_inaccessible_base,
5994                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5995                    // FIXME: Should this point to the return type?
5996                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5997      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5998      return true;
5999    }
6000  }
6001
6002  // The qualifiers of the return types must be the same.
6003  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6004    Diag(New->getLocation(),
6005         diag::err_covariant_return_type_different_qualifications)
6006    << New->getDeclName() << NewTy << OldTy;
6007    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6008    return true;
6009  };
6010
6011
6012  // The new class type must have the same or less qualifiers as the old type.
6013  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6014    Diag(New->getLocation(),
6015         diag::err_covariant_return_type_class_type_more_qualified)
6016    << New->getDeclName() << NewTy << OldTy;
6017    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6018    return true;
6019  };
6020
6021  return false;
6022}
6023
6024bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6025                                             const CXXMethodDecl *Old)
6026{
6027  if (Old->hasAttr<FinalAttr>()) {
6028    Diag(New->getLocation(), diag::err_final_function_overridden)
6029      << New->getDeclName();
6030    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6031    return true;
6032  }
6033
6034  return false;
6035}
6036
6037/// \brief Mark the given method pure.
6038///
6039/// \param Method the method to be marked pure.
6040///
6041/// \param InitRange the source range that covers the "0" initializer.
6042bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6043  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6044    Method->setPure();
6045
6046    // A class is abstract if at least one function is pure virtual.
6047    Method->getParent()->setAbstract(true);
6048    return false;
6049  }
6050
6051  if (!Method->isInvalidDecl())
6052    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6053      << Method->getDeclName() << InitRange;
6054  return true;
6055}
6056
6057/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6058/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6059/// is a fresh scope pushed for just this purpose.
6060///
6061/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6062/// static data member of class X, names should be looked up in the scope of
6063/// class X.
6064void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6065  // If there is no declaration, there was an error parsing it.
6066  Decl *D = Dcl.getAs<Decl>();
6067  if (D == 0) return;
6068
6069  // We should only get called for declarations with scope specifiers, like:
6070  //   int foo::bar;
6071  assert(D->isOutOfLine());
6072  EnterDeclaratorContext(S, D->getDeclContext());
6073}
6074
6075/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6076/// initializer for the out-of-line declaration 'Dcl'.
6077void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6078  // If there is no declaration, there was an error parsing it.
6079  Decl *D = Dcl.getAs<Decl>();
6080  if (D == 0) return;
6081
6082  assert(D->isOutOfLine());
6083  ExitDeclaratorContext(S);
6084}
6085
6086/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6087/// C++ if/switch/while/for statement.
6088/// e.g: "if (int x = f()) {...}"
6089Action::DeclResult
6090Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6091  // C++ 6.4p2:
6092  // The declarator shall not specify a function or an array.
6093  // The type-specifier-seq shall not contain typedef and shall not declare a
6094  // new class or enumeration.
6095  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6096         "Parser allowed 'typedef' as storage class of condition decl.");
6097
6098  TagDecl *OwnedTag = 0;
6099  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6100  QualType Ty = TInfo->getType();
6101
6102  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6103                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6104                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6105    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6106      << D.getSourceRange();
6107    return DeclResult();
6108  } else if (OwnedTag && OwnedTag->isDefinition()) {
6109    // The type-specifier-seq shall not declare a new class or enumeration.
6110    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6111  }
6112
6113  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6114  if (!Dcl)
6115    return DeclResult();
6116
6117  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6118  VD->setDeclaredInCondition(true);
6119  return Dcl;
6120}
6121
6122void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6123                          bool DefinitionRequired) {
6124  // Ignore any vtable uses in unevaluated operands or for classes that do
6125  // not have a vtable.
6126  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6127      CurContext->isDependentContext() ||
6128      ExprEvalContexts.back().Context == Unevaluated)
6129    return;
6130
6131  // Try to insert this class into the map.
6132  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6133  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6134    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6135  if (!Pos.second) {
6136    // If we already had an entry, check to see if we are promoting this vtable
6137    // to required a definition. If so, we need to reappend to the VTableUses
6138    // list, since we may have already processed the first entry.
6139    if (DefinitionRequired && !Pos.first->second) {
6140      Pos.first->second = true;
6141    } else {
6142      // Otherwise, we can early exit.
6143      return;
6144    }
6145  }
6146
6147  // Local classes need to have their virtual members marked
6148  // immediately. For all other classes, we mark their virtual members
6149  // at the end of the translation unit.
6150  if (Class->isLocalClass())
6151    MarkVirtualMembersReferenced(Loc, Class);
6152  else
6153    VTableUses.push_back(std::make_pair(Class, Loc));
6154}
6155
6156bool Sema::DefineUsedVTables() {
6157  // If any dynamic classes have their key function defined within
6158  // this translation unit, then those vtables are considered "used" and must
6159  // be emitted.
6160  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6161    if (const CXXMethodDecl *KeyFunction
6162                             = Context.getKeyFunction(DynamicClasses[I])) {
6163      const FunctionDecl *Definition = 0;
6164      if (KeyFunction->getBody(Definition))
6165        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6166    }
6167  }
6168
6169  if (VTableUses.empty())
6170    return false;
6171
6172  // Note: The VTableUses vector could grow as a result of marking
6173  // the members of a class as "used", so we check the size each
6174  // time through the loop and prefer indices (with are stable) to
6175  // iterators (which are not).
6176  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6177    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6178    if (!Class)
6179      continue;
6180
6181    SourceLocation Loc = VTableUses[I].second;
6182
6183    // If this class has a key function, but that key function is
6184    // defined in another translation unit, we don't need to emit the
6185    // vtable even though we're using it.
6186    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6187    if (KeyFunction && !KeyFunction->getBody()) {
6188      switch (KeyFunction->getTemplateSpecializationKind()) {
6189      case TSK_Undeclared:
6190      case TSK_ExplicitSpecialization:
6191      case TSK_ExplicitInstantiationDeclaration:
6192        // The key function is in another translation unit.
6193        continue;
6194
6195      case TSK_ExplicitInstantiationDefinition:
6196      case TSK_ImplicitInstantiation:
6197        // We will be instantiating the key function.
6198        break;
6199      }
6200    } else if (!KeyFunction) {
6201      // If we have a class with no key function that is the subject
6202      // of an explicit instantiation declaration, suppress the
6203      // vtable; it will live with the explicit instantiation
6204      // definition.
6205      bool IsExplicitInstantiationDeclaration
6206        = Class->getTemplateSpecializationKind()
6207                                      == TSK_ExplicitInstantiationDeclaration;
6208      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6209                                 REnd = Class->redecls_end();
6210           R != REnd; ++R) {
6211        TemplateSpecializationKind TSK
6212          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6213        if (TSK == TSK_ExplicitInstantiationDeclaration)
6214          IsExplicitInstantiationDeclaration = true;
6215        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6216          IsExplicitInstantiationDeclaration = false;
6217          break;
6218        }
6219      }
6220
6221      if (IsExplicitInstantiationDeclaration)
6222        continue;
6223    }
6224
6225    // Mark all of the virtual members of this class as referenced, so
6226    // that we can build a vtable. Then, tell the AST consumer that a
6227    // vtable for this class is required.
6228    MarkVirtualMembersReferenced(Loc, Class);
6229    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6230    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6231
6232    // Optionally warn if we're emitting a weak vtable.
6233    if (Class->getLinkage() == ExternalLinkage &&
6234        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6235      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6236        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6237    }
6238  }
6239  VTableUses.clear();
6240
6241  return true;
6242}
6243
6244void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6245                                        const CXXRecordDecl *RD) {
6246  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6247       e = RD->method_end(); i != e; ++i) {
6248    CXXMethodDecl *MD = *i;
6249
6250    // C++ [basic.def.odr]p2:
6251    //   [...] A virtual member function is used if it is not pure. [...]
6252    if (MD->isVirtual() && !MD->isPure())
6253      MarkDeclarationReferenced(Loc, MD);
6254  }
6255
6256  // Only classes that have virtual bases need a VTT.
6257  if (RD->getNumVBases() == 0)
6258    return;
6259
6260  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6261           e = RD->bases_end(); i != e; ++i) {
6262    const CXXRecordDecl *Base =
6263        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6264    if (i->isVirtual())
6265      continue;
6266    if (Base->getNumVBases() == 0)
6267      continue;
6268    MarkVirtualMembersReferenced(Loc, Base);
6269  }
6270}
6271
6272/// SetIvarInitializers - This routine builds initialization ASTs for the
6273/// Objective-C implementation whose ivars need be initialized.
6274void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6275  if (!getLangOptions().CPlusPlus)
6276    return;
6277  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6278    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6279    CollectIvarsToConstructOrDestruct(OID, ivars);
6280    if (ivars.empty())
6281      return;
6282    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6283    for (unsigned i = 0; i < ivars.size(); i++) {
6284      FieldDecl *Field = ivars[i];
6285      if (Field->isInvalidDecl())
6286        continue;
6287
6288      CXXBaseOrMemberInitializer *Member;
6289      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6290      InitializationKind InitKind =
6291        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6292
6293      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6294      Sema::OwningExprResult MemberInit =
6295        InitSeq.Perform(*this, InitEntity, InitKind,
6296                        Sema::MultiExprArg(*this, 0, 0));
6297      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6298      // Note, MemberInit could actually come back empty if no initialization
6299      // is required (e.g., because it would call a trivial default constructor)
6300      if (!MemberInit.get() || MemberInit.isInvalid())
6301        continue;
6302
6303      Member =
6304        new (Context) CXXBaseOrMemberInitializer(Context,
6305                                                 Field, SourceLocation(),
6306                                                 SourceLocation(),
6307                                                 MemberInit.takeAs<Expr>(),
6308                                                 SourceLocation());
6309      AllToInit.push_back(Member);
6310
6311      // Be sure that the destructor is accessible and is marked as referenced.
6312      if (const RecordType *RecordTy
6313                  = Context.getBaseElementType(Field->getType())
6314                                                        ->getAs<RecordType>()) {
6315                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6316        if (CXXDestructorDecl *Destructor
6317              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6318          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6319          CheckDestructorAccess(Field->getLocation(), Destructor,
6320                            PDiag(diag::err_access_dtor_ivar)
6321                              << Context.getBaseElementType(Field->getType()));
6322        }
6323      }
6324    }
6325    ObjCImplementation->setIvarInitializers(Context,
6326                                            AllToInit.data(), AllToInit.size());
6327  }
6328}
6329