SemaDeclCXX.cpp revision 568eae48a4e19c0359cdcd2a33b8ec9812e4abbc
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeOrdering.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Lex/Preprocessor.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getLocStart(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getLocStart(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getLocStart(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129                                                      CXXMethodDecl *Method) {
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137  if (!Proto)
138    return;
139
140  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142  // If this function can throw any exceptions, make a note of that.
143  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144    ClearExceptions();
145    ComputedEST = EST;
146    return;
147  }
148
149  // FIXME: If the call to this decl is using any of its default arguments, we
150  // need to search them for potentially-throwing calls.
151
152  // If this function has a basic noexcept, it doesn't affect the outcome.
153  if (EST == EST_BasicNoexcept)
154    return;
155
156  // If we have a throw-all spec at this point, ignore the function.
157  if (ComputedEST == EST_None)
158    return;
159
160  // If we're still at noexcept(true) and there's a nothrow() callee,
161  // change to that specification.
162  if (EST == EST_DynamicNone) {
163    if (ComputedEST == EST_BasicNoexcept)
164      ComputedEST = EST_DynamicNone;
165    return;
166  }
167
168  // Check out noexcept specs.
169  if (EST == EST_ComputedNoexcept) {
170    FunctionProtoType::NoexceptResult NR =
171        Proto->getNoexceptSpec(Self->Context);
172    assert(NR != FunctionProtoType::NR_NoNoexcept &&
173           "Must have noexcept result for EST_ComputedNoexcept.");
174    assert(NR != FunctionProtoType::NR_Dependent &&
175           "Should not generate implicit declarations for dependent cases, "
176           "and don't know how to handle them anyway.");
177
178    // noexcept(false) -> no spec on the new function
179    if (NR == FunctionProtoType::NR_Throw) {
180      ClearExceptions();
181      ComputedEST = EST_None;
182    }
183    // noexcept(true) won't change anything either.
184    return;
185  }
186
187  assert(EST == EST_Dynamic && "EST case not considered earlier.");
188  assert(ComputedEST != EST_None &&
189         "Shouldn't collect exceptions when throw-all is guaranteed.");
190  ComputedEST = EST_Dynamic;
191  // Record the exceptions in this function's exception specification.
192  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193                                          EEnd = Proto->exception_end();
194       E != EEnd; ++E)
195    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196      Exceptions.push_back(*E);
197}
198
199void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201    return;
202
203  // FIXME:
204  //
205  // C++0x [except.spec]p14:
206  //   [An] implicit exception-specification specifies the type-id T if and
207  // only if T is allowed by the exception-specification of a function directly
208  // invoked by f's implicit definition; f shall allow all exceptions if any
209  // function it directly invokes allows all exceptions, and f shall allow no
210  // exceptions if every function it directly invokes allows no exceptions.
211  //
212  // Note in particular that if an implicit exception-specification is generated
213  // for a function containing a throw-expression, that specification can still
214  // be noexcept(true).
215  //
216  // Note also that 'directly invoked' is not defined in the standard, and there
217  // is no indication that we should only consider potentially-evaluated calls.
218  //
219  // Ultimately we should implement the intent of the standard: the exception
220  // specification should be the set of exceptions which can be thrown by the
221  // implicit definition. For now, we assume that any non-nothrow expression can
222  // throw any exception.
223
224  if (Self->canThrow(E))
225    ComputedEST = EST_None;
226}
227
228bool
229Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230                              SourceLocation EqualLoc) {
231  if (RequireCompleteType(Param->getLocation(), Param->getType(),
232                          diag::err_typecheck_decl_incomplete_type)) {
233    Param->setInvalidDecl();
234    return true;
235  }
236
237  // C++ [dcl.fct.default]p5
238  //   A default argument expression is implicitly converted (clause
239  //   4) to the parameter type. The default argument expression has
240  //   the same semantic constraints as the initializer expression in
241  //   a declaration of a variable of the parameter type, using the
242  //   copy-initialization semantics (8.5).
243  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244                                                                    Param);
245  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246                                                           EqualLoc);
247  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249                                      MultiExprArg(*this, &Arg, 1));
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679// the requirements of a constexpr function definition or a constexpr
680// constructor definition. If so, return true. If not, produce appropriate
681// diagnostics and return false.
682//
683// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
684bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686  if (MD && MD->isInstance()) {
687    // C++11 [dcl.constexpr]p4:
688    //  The definition of a constexpr constructor shall satisfy the following
689    //  constraints:
690    //  - the class shall not have any virtual base classes;
691    const CXXRecordDecl *RD = MD->getParent();
692    if (RD->getNumVBases()) {
693      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695        << RD->getNumVBases();
696      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697             E = RD->vbases_end(); I != E; ++I)
698        Diag(I->getLocStart(),
699             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700      return false;
701    }
702  }
703
704  if (!isa<CXXConstructorDecl>(NewFD)) {
705    // C++11 [dcl.constexpr]p3:
706    //  The definition of a constexpr function shall satisfy the following
707    //  constraints:
708    // - it shall not be virtual;
709    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710    if (Method && Method->isVirtual()) {
711      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713      // If it's not obvious why this function is virtual, find an overridden
714      // function which uses the 'virtual' keyword.
715      const CXXMethodDecl *WrittenVirtual = Method;
716      while (!WrittenVirtual->isVirtualAsWritten())
717        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718      if (WrittenVirtual != Method)
719        Diag(WrittenVirtual->getLocation(),
720             diag::note_overridden_virtual_function);
721      return false;
722    }
723
724    // - its return type shall be a literal type;
725    QualType RT = NewFD->getResultType();
726    if (!RT->isDependentType() &&
727        RequireLiteralType(NewFD->getLocation(), RT,
728                           diag::err_constexpr_non_literal_return))
729      return false;
730  }
731
732  // - each of its parameter types shall be a literal type;
733  if (!CheckConstexprParameterTypes(*this, NewFD))
734    return false;
735
736  return true;
737}
738
739/// Check the given declaration statement is legal within a constexpr function
740/// body. C++0x [dcl.constexpr]p3,p4.
741///
742/// \return true if the body is OK, false if we have diagnosed a problem.
743static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744                                   DeclStmt *DS) {
745  // C++0x [dcl.constexpr]p3 and p4:
746  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
747  //  contain only
748  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750    switch ((*DclIt)->getKind()) {
751    case Decl::StaticAssert:
752    case Decl::Using:
753    case Decl::UsingShadow:
754    case Decl::UsingDirective:
755    case Decl::UnresolvedUsingTypename:
756      //   - static_assert-declarations
757      //   - using-declarations,
758      //   - using-directives,
759      continue;
760
761    case Decl::Typedef:
762    case Decl::TypeAlias: {
763      //   - typedef declarations and alias-declarations that do not define
764      //     classes or enumerations,
765      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767        // Don't allow variably-modified types in constexpr functions.
768        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770          << TL.getSourceRange() << TL.getType()
771          << isa<CXXConstructorDecl>(Dcl);
772        return false;
773      }
774      continue;
775    }
776
777    case Decl::Enum:
778    case Decl::CXXRecord:
779      // As an extension, we allow the declaration (but not the definition) of
780      // classes and enumerations in all declarations, not just in typedef and
781      // alias declarations.
782      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784          << isa<CXXConstructorDecl>(Dcl);
785        return false;
786      }
787      continue;
788
789    case Decl::Var:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793
794    default:
795      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796        << isa<CXXConstructorDecl>(Dcl);
797      return false;
798    }
799  }
800
801  return true;
802}
803
804/// Check that the given field is initialized within a constexpr constructor.
805///
806/// \param Dcl The constexpr constructor being checked.
807/// \param Field The field being checked. This may be a member of an anonymous
808///        struct or union nested within the class being checked.
809/// \param Inits All declarations, including anonymous struct/union members and
810///        indirect members, for which any initialization was provided.
811/// \param Diagnosed Set to true if an error is produced.
812static void CheckConstexprCtorInitializer(Sema &SemaRef,
813                                          const FunctionDecl *Dcl,
814                                          FieldDecl *Field,
815                                          llvm::SmallSet<Decl*, 16> &Inits,
816                                          bool &Diagnosed) {
817  if (Field->isUnnamedBitfield())
818    return;
819
820  if (Field->isAnonymousStructOrUnion() &&
821      Field->getType()->getAsCXXRecordDecl()->isEmpty())
822    return;
823
824  if (!Inits.count(Field)) {
825    if (!Diagnosed) {
826      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827      Diagnosed = true;
828    }
829    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830  } else if (Field->isAnonymousStructOrUnion()) {
831    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833         I != E; ++I)
834      // If an anonymous union contains an anonymous struct of which any member
835      // is initialized, all members must be initialized.
836      if (!RD->isUnion() || Inits.count(*I))
837        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
838  }
839}
840
841/// Check the body for the given constexpr function declaration only contains
842/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843///
844/// \return true if the body is OK, false if we have diagnosed a problem.
845bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // DR1359:
903    // - every non-variant non-static data member and base class sub-object
904    //   shall be initialized;
905    // - if the class is a non-empty union, or for each non-empty anonymous
906    //   union member of a non-union class, exactly one non-static data member
907    //   shall be initialized;
908    if (RD->isUnion()) {
909      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911        return false;
912      }
913    } else if (!Constructor->isDependentContext() &&
914               !Constructor->isDelegatingConstructor()) {
915      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917      // Skip detailed checking if we have enough initializers, and we would
918      // allow at most one initializer per member.
919      bool AnyAnonStructUnionMembers = false;
920      unsigned Fields = 0;
921      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922           E = RD->field_end(); I != E; ++I, ++Fields) {
923        if (I->isAnonymousStructOrUnion()) {
924          AnyAnonStructUnionMembers = true;
925          break;
926        }
927      }
928      if (AnyAnonStructUnionMembers ||
929          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930        // Check initialization of non-static data members. Base classes are
931        // always initialized so do not need to be checked. Dependent bases
932        // might not have initializers in the member initializer list.
933        llvm::SmallSet<Decl*, 16> Inits;
934        for (CXXConstructorDecl::init_const_iterator
935               I = Constructor->init_begin(), E = Constructor->init_end();
936             I != E; ++I) {
937          if (FieldDecl *FD = (*I)->getMember())
938            Inits.insert(FD);
939          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940            Inits.insert(ID->chain_begin(), ID->chain_end());
941        }
942
943        bool Diagnosed = false;
944        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945             E = RD->field_end(); I != E; ++I)
946          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
947        if (Diagnosed)
948          return false;
949      }
950    }
951  } else {
952    if (ReturnStmts.empty()) {
953      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954      return false;
955    }
956    if (ReturnStmts.size() > 1) {
957      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960      return false;
961    }
962  }
963
964  // C++11 [dcl.constexpr]p5:
965  //   if no function argument values exist such that the function invocation
966  //   substitution would produce a constant expression, the program is
967  //   ill-formed; no diagnostic required.
968  // C++11 [dcl.constexpr]p3:
969  //   - every constructor call and implicit conversion used in initializing the
970  //     return value shall be one of those allowed in a constant expression.
971  // C++11 [dcl.constexpr]p4:
972  //   - every constructor involved in initializing non-static data members and
973  //     base class sub-objects shall be a constexpr constructor.
974  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977      << isa<CXXConstructorDecl>(Dcl);
978    for (size_t I = 0, N = Diags.size(); I != N; ++I)
979      Diag(Diags[I].first, Diags[I].second);
980    return false;
981  }
982
983  return true;
984}
985
986/// isCurrentClassName - Determine whether the identifier II is the
987/// name of the class type currently being defined. In the case of
988/// nested classes, this will only return true if II is the name of
989/// the innermost class.
990bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991                              const CXXScopeSpec *SS) {
992  assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994  CXXRecordDecl *CurDecl;
995  if (SS && SS->isSet() && !SS->isInvalid()) {
996    DeclContext *DC = computeDeclContext(*SS, true);
997    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998  } else
999    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001  if (CurDecl && CurDecl->getIdentifier())
1002    return &II == CurDecl->getIdentifier();
1003  else
1004    return false;
1005}
1006
1007/// \brief Check the validity of a C++ base class specifier.
1008///
1009/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010/// and returns NULL otherwise.
1011CXXBaseSpecifier *
1012Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013                         SourceRange SpecifierRange,
1014                         bool Virtual, AccessSpecifier Access,
1015                         TypeSourceInfo *TInfo,
1016                         SourceLocation EllipsisLoc) {
1017  QualType BaseType = TInfo->getType();
1018
1019  // C++ [class.union]p1:
1020  //   A union shall not have base classes.
1021  if (Class->isUnion()) {
1022    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023      << SpecifierRange;
1024    return 0;
1025  }
1026
1027  if (EllipsisLoc.isValid() &&
1028      !TInfo->getType()->containsUnexpandedParameterPack()) {
1029    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030      << TInfo->getTypeLoc().getSourceRange();
1031    EllipsisLoc = SourceLocation();
1032  }
1033
1034  if (BaseType->isDependentType())
1035    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036                                          Class->getTagKind() == TTK_Class,
1037                                          Access, TInfo, EllipsisLoc);
1038
1039  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041  // Base specifiers must be record types.
1042  if (!BaseType->isRecordType()) {
1043    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044    return 0;
1045  }
1046
1047  // C++ [class.union]p1:
1048  //   A union shall not be used as a base class.
1049  if (BaseType->isUnionType()) {
1050    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051    return 0;
1052  }
1053
1054  // C++ [class.derived]p2:
1055  //   The class-name in a base-specifier shall not be an incompletely
1056  //   defined class.
1057  if (RequireCompleteType(BaseLoc, BaseType,
1058                          diag::err_incomplete_base_class, SpecifierRange)) {
1059    Class->setInvalidDecl();
1060    return 0;
1061  }
1062
1063  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1064  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1065  assert(BaseDecl && "Record type has no declaration");
1066  BaseDecl = BaseDecl->getDefinition();
1067  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1068  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1069  assert(CXXBaseDecl && "Base type is not a C++ type");
1070
1071  // C++ [class]p3:
1072  //   If a class is marked final and it appears as a base-type-specifier in
1073  //   base-clause, the program is ill-formed.
1074  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1075    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1076      << CXXBaseDecl->getDeclName();
1077    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1078      << CXXBaseDecl->getDeclName();
1079    return 0;
1080  }
1081
1082  if (BaseDecl->isInvalidDecl())
1083    Class->setInvalidDecl();
1084
1085  // Create the base specifier.
1086  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1087                                        Class->getTagKind() == TTK_Class,
1088                                        Access, TInfo, EllipsisLoc);
1089}
1090
1091/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1092/// one entry in the base class list of a class specifier, for
1093/// example:
1094///    class foo : public bar, virtual private baz {
1095/// 'public bar' and 'virtual private baz' are each base-specifiers.
1096BaseResult
1097Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1098                         bool Virtual, AccessSpecifier Access,
1099                         ParsedType basetype, SourceLocation BaseLoc,
1100                         SourceLocation EllipsisLoc) {
1101  if (!classdecl)
1102    return true;
1103
1104  AdjustDeclIfTemplate(classdecl);
1105  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1106  if (!Class)
1107    return true;
1108
1109  TypeSourceInfo *TInfo = 0;
1110  GetTypeFromParser(basetype, &TInfo);
1111
1112  if (EllipsisLoc.isInvalid() &&
1113      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1114                                      UPPC_BaseType))
1115    return true;
1116
1117  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1118                                                      Virtual, Access, TInfo,
1119                                                      EllipsisLoc))
1120    return BaseSpec;
1121
1122  return true;
1123}
1124
1125/// \brief Performs the actual work of attaching the given base class
1126/// specifiers to a C++ class.
1127bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1128                                unsigned NumBases) {
1129 if (NumBases == 0)
1130    return false;
1131
1132  // Used to keep track of which base types we have already seen, so
1133  // that we can properly diagnose redundant direct base types. Note
1134  // that the key is always the unqualified canonical type of the base
1135  // class.
1136  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1137
1138  // Copy non-redundant base specifiers into permanent storage.
1139  unsigned NumGoodBases = 0;
1140  bool Invalid = false;
1141  for (unsigned idx = 0; idx < NumBases; ++idx) {
1142    QualType NewBaseType
1143      = Context.getCanonicalType(Bases[idx]->getType());
1144    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1145
1146    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1147    if (KnownBase) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getLocStart(),
1152           diag::err_duplicate_base_class)
1153        << KnownBase->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBase = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOpts().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOpts().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442static bool InitializationHasSideEffects(const FieldDecl &FD) {
1443  if (!FD.getType().isNull()) {
1444    if (const CXXRecordDecl *RD = FD.getType()->getAsCXXRecordDecl()) {
1445      return !RD->isCompleteDefinition() ||
1446             !RD->hasTrivialDefaultConstructor() ||
1447             !RD->hasTrivialDestructor();
1448    }
1449  }
1450  return false;
1451}
1452
1453/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1454/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1455/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1456/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1457/// present (but parsing it has been deferred).
1458Decl *
1459Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1460                               MultiTemplateParamsArg TemplateParameterLists,
1461                               Expr *BW, const VirtSpecifiers &VS,
1462                               InClassInitStyle InitStyle) {
1463  const DeclSpec &DS = D.getDeclSpec();
1464  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1465  DeclarationName Name = NameInfo.getName();
1466  SourceLocation Loc = NameInfo.getLoc();
1467
1468  // For anonymous bitfields, the location should point to the type.
1469  if (Loc.isInvalid())
1470    Loc = D.getLocStart();
1471
1472  Expr *BitWidth = static_cast<Expr*>(BW);
1473
1474  assert(isa<CXXRecordDecl>(CurContext));
1475  assert(!DS.isFriendSpecified());
1476
1477  bool isFunc = D.isDeclarationOfFunction();
1478
1479  // C++ 9.2p6: A member shall not be declared to have automatic storage
1480  // duration (auto, register) or with the extern storage-class-specifier.
1481  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1482  // data members and cannot be applied to names declared const or static,
1483  // and cannot be applied to reference members.
1484  switch (DS.getStorageClassSpec()) {
1485    case DeclSpec::SCS_unspecified:
1486    case DeclSpec::SCS_typedef:
1487    case DeclSpec::SCS_static:
1488      // FALL THROUGH.
1489      break;
1490    case DeclSpec::SCS_mutable:
1491      if (isFunc) {
1492        if (DS.getStorageClassSpecLoc().isValid())
1493          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1494        else
1495          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1496
1497        // FIXME: It would be nicer if the keyword was ignored only for this
1498        // declarator. Otherwise we could get follow-up errors.
1499        D.getMutableDeclSpec().ClearStorageClassSpecs();
1500      }
1501      break;
1502    default:
1503      if (DS.getStorageClassSpecLoc().isValid())
1504        Diag(DS.getStorageClassSpecLoc(),
1505             diag::err_storageclass_invalid_for_member);
1506      else
1507        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1508      D.getMutableDeclSpec().ClearStorageClassSpecs();
1509  }
1510
1511  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1512                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1513                      !isFunc);
1514
1515  Decl *Member;
1516  if (isInstField) {
1517    CXXScopeSpec &SS = D.getCXXScopeSpec();
1518
1519    // Data members must have identifiers for names.
1520    if (!Name.isIdentifier()) {
1521      Diag(Loc, diag::err_bad_variable_name)
1522        << Name;
1523      return 0;
1524    }
1525
1526    IdentifierInfo *II = Name.getAsIdentifierInfo();
1527
1528    // Member field could not be with "template" keyword.
1529    // So TemplateParameterLists should be empty in this case.
1530    if (TemplateParameterLists.size()) {
1531      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1532      if (TemplateParams->size()) {
1533        // There is no such thing as a member field template.
1534        Diag(D.getIdentifierLoc(), diag::err_template_member)
1535            << II
1536            << SourceRange(TemplateParams->getTemplateLoc(),
1537                TemplateParams->getRAngleLoc());
1538      } else {
1539        // There is an extraneous 'template<>' for this member.
1540        Diag(TemplateParams->getTemplateLoc(),
1541            diag::err_template_member_noparams)
1542            << II
1543            << SourceRange(TemplateParams->getTemplateLoc(),
1544                TemplateParams->getRAngleLoc());
1545      }
1546      return 0;
1547    }
1548
1549    if (SS.isSet() && !SS.isInvalid()) {
1550      // The user provided a superfluous scope specifier inside a class
1551      // definition:
1552      //
1553      // class X {
1554      //   int X::member;
1555      // };
1556      if (DeclContext *DC = computeDeclContext(SS, false))
1557        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1558      else
1559        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1560          << Name << SS.getRange();
1561
1562      SS.clear();
1563    }
1564
1565    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1566                         InitStyle, AS);
1567    assert(Member && "HandleField never returns null");
1568  } else {
1569    assert(InitStyle == ICIS_NoInit);
1570
1571    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1572    if (!Member) {
1573      return 0;
1574    }
1575
1576    // Non-instance-fields can't have a bitfield.
1577    if (BitWidth) {
1578      if (Member->isInvalidDecl()) {
1579        // don't emit another diagnostic.
1580      } else if (isa<VarDecl>(Member)) {
1581        // C++ 9.6p3: A bit-field shall not be a static member.
1582        // "static member 'A' cannot be a bit-field"
1583        Diag(Loc, diag::err_static_not_bitfield)
1584          << Name << BitWidth->getSourceRange();
1585      } else if (isa<TypedefDecl>(Member)) {
1586        // "typedef member 'x' cannot be a bit-field"
1587        Diag(Loc, diag::err_typedef_not_bitfield)
1588          << Name << BitWidth->getSourceRange();
1589      } else {
1590        // A function typedef ("typedef int f(); f a;").
1591        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1592        Diag(Loc, diag::err_not_integral_type_bitfield)
1593          << Name << cast<ValueDecl>(Member)->getType()
1594          << BitWidth->getSourceRange();
1595      }
1596
1597      BitWidth = 0;
1598      Member->setInvalidDecl();
1599    }
1600
1601    Member->setAccess(AS);
1602
1603    // If we have declared a member function template, set the access of the
1604    // templated declaration as well.
1605    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1606      FunTmpl->getTemplatedDecl()->setAccess(AS);
1607  }
1608
1609  if (VS.isOverrideSpecified()) {
1610    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1611    if (!MD || !MD->isVirtual()) {
1612      Diag(Member->getLocStart(),
1613           diag::override_keyword_only_allowed_on_virtual_member_functions)
1614        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1615    } else
1616      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1617  }
1618  if (VS.isFinalSpecified()) {
1619    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1620    if (!MD || !MD->isVirtual()) {
1621      Diag(Member->getLocStart(),
1622           diag::override_keyword_only_allowed_on_virtual_member_functions)
1623      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1624    } else
1625      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1626  }
1627
1628  if (VS.getLastLocation().isValid()) {
1629    // Update the end location of a method that has a virt-specifiers.
1630    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1631      MD->setRangeEnd(VS.getLastLocation());
1632  }
1633
1634  CheckOverrideControl(Member);
1635
1636  assert((Name || isInstField) && "No identifier for non-field ?");
1637
1638  if (isInstField) {
1639    FieldDecl *FD = cast<FieldDecl>(Member);
1640    FieldCollector->Add(FD);
1641
1642    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1643                                 FD->getLocation())
1644          != DiagnosticsEngine::Ignored) {
1645      // Remember all explicit private FieldDecls that have a name, no side
1646      // effects and are not part of a dependent type declaration.
1647      if (!FD->isImplicit() && FD->getDeclName() &&
1648          FD->getAccess() == AS_private &&
1649          !FD->hasAttr<UnusedAttr>() &&
1650          !FD->getParent()->getTypeForDecl()->isDependentType() &&
1651          !InitializationHasSideEffects(*FD))
1652        UnusedPrivateFields.insert(FD);
1653    }
1654  }
1655
1656  return Member;
1657}
1658
1659/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1660/// in-class initializer for a non-static C++ class member, and after
1661/// instantiating an in-class initializer in a class template. Such actions
1662/// are deferred until the class is complete.
1663void
1664Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1665                                       Expr *InitExpr) {
1666  FieldDecl *FD = cast<FieldDecl>(D);
1667  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1668         "must set init style when field is created");
1669
1670  if (!InitExpr) {
1671    FD->setInvalidDecl();
1672    FD->removeInClassInitializer();
1673    return;
1674  }
1675
1676  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1677    FD->setInvalidDecl();
1678    FD->removeInClassInitializer();
1679    return;
1680  }
1681
1682  ExprResult Init = InitExpr;
1683  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1684    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1685      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1686        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1687    }
1688    Expr **Inits = &InitExpr;
1689    unsigned NumInits = 1;
1690    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1691    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1692        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1693        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1694    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1695    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1696    if (Init.isInvalid()) {
1697      FD->setInvalidDecl();
1698      return;
1699    }
1700
1701    CheckImplicitConversions(Init.get(), InitLoc);
1702  }
1703
1704  // C++0x [class.base.init]p7:
1705  //   The initialization of each base and member constitutes a
1706  //   full-expression.
1707  Init = MaybeCreateExprWithCleanups(Init);
1708  if (Init.isInvalid()) {
1709    FD->setInvalidDecl();
1710    return;
1711  }
1712
1713  InitExpr = Init.release();
1714
1715  FD->setInClassInitializer(InitExpr);
1716}
1717
1718/// \brief Find the direct and/or virtual base specifiers that
1719/// correspond to the given base type, for use in base initialization
1720/// within a constructor.
1721static bool FindBaseInitializer(Sema &SemaRef,
1722                                CXXRecordDecl *ClassDecl,
1723                                QualType BaseType,
1724                                const CXXBaseSpecifier *&DirectBaseSpec,
1725                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1726  // First, check for a direct base class.
1727  DirectBaseSpec = 0;
1728  for (CXXRecordDecl::base_class_const_iterator Base
1729         = ClassDecl->bases_begin();
1730       Base != ClassDecl->bases_end(); ++Base) {
1731    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1732      // We found a direct base of this type. That's what we're
1733      // initializing.
1734      DirectBaseSpec = &*Base;
1735      break;
1736    }
1737  }
1738
1739  // Check for a virtual base class.
1740  // FIXME: We might be able to short-circuit this if we know in advance that
1741  // there are no virtual bases.
1742  VirtualBaseSpec = 0;
1743  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1744    // We haven't found a base yet; search the class hierarchy for a
1745    // virtual base class.
1746    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1747                       /*DetectVirtual=*/false);
1748    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1749                              BaseType, Paths)) {
1750      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1751           Path != Paths.end(); ++Path) {
1752        if (Path->back().Base->isVirtual()) {
1753          VirtualBaseSpec = Path->back().Base;
1754          break;
1755        }
1756      }
1757    }
1758  }
1759
1760  return DirectBaseSpec || VirtualBaseSpec;
1761}
1762
1763/// \brief Handle a C++ member initializer using braced-init-list syntax.
1764MemInitResult
1765Sema::ActOnMemInitializer(Decl *ConstructorD,
1766                          Scope *S,
1767                          CXXScopeSpec &SS,
1768                          IdentifierInfo *MemberOrBase,
1769                          ParsedType TemplateTypeTy,
1770                          const DeclSpec &DS,
1771                          SourceLocation IdLoc,
1772                          Expr *InitList,
1773                          SourceLocation EllipsisLoc) {
1774  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1775                             DS, IdLoc, InitList,
1776                             EllipsisLoc);
1777}
1778
1779/// \brief Handle a C++ member initializer using parentheses syntax.
1780MemInitResult
1781Sema::ActOnMemInitializer(Decl *ConstructorD,
1782                          Scope *S,
1783                          CXXScopeSpec &SS,
1784                          IdentifierInfo *MemberOrBase,
1785                          ParsedType TemplateTypeTy,
1786                          const DeclSpec &DS,
1787                          SourceLocation IdLoc,
1788                          SourceLocation LParenLoc,
1789                          Expr **Args, unsigned NumArgs,
1790                          SourceLocation RParenLoc,
1791                          SourceLocation EllipsisLoc) {
1792  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1793                                           RParenLoc);
1794  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1795                             DS, IdLoc, List, EllipsisLoc);
1796}
1797
1798namespace {
1799
1800// Callback to only accept typo corrections that can be a valid C++ member
1801// intializer: either a non-static field member or a base class.
1802class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1803 public:
1804  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1805      : ClassDecl(ClassDecl) {}
1806
1807  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1808    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1809      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1810        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1811      else
1812        return isa<TypeDecl>(ND);
1813    }
1814    return false;
1815  }
1816
1817 private:
1818  CXXRecordDecl *ClassDecl;
1819};
1820
1821}
1822
1823/// \brief Handle a C++ member initializer.
1824MemInitResult
1825Sema::BuildMemInitializer(Decl *ConstructorD,
1826                          Scope *S,
1827                          CXXScopeSpec &SS,
1828                          IdentifierInfo *MemberOrBase,
1829                          ParsedType TemplateTypeTy,
1830                          const DeclSpec &DS,
1831                          SourceLocation IdLoc,
1832                          Expr *Init,
1833                          SourceLocation EllipsisLoc) {
1834  if (!ConstructorD)
1835    return true;
1836
1837  AdjustDeclIfTemplate(ConstructorD);
1838
1839  CXXConstructorDecl *Constructor
1840    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1841  if (!Constructor) {
1842    // The user wrote a constructor initializer on a function that is
1843    // not a C++ constructor. Ignore the error for now, because we may
1844    // have more member initializers coming; we'll diagnose it just
1845    // once in ActOnMemInitializers.
1846    return true;
1847  }
1848
1849  CXXRecordDecl *ClassDecl = Constructor->getParent();
1850
1851  // C++ [class.base.init]p2:
1852  //   Names in a mem-initializer-id are looked up in the scope of the
1853  //   constructor's class and, if not found in that scope, are looked
1854  //   up in the scope containing the constructor's definition.
1855  //   [Note: if the constructor's class contains a member with the
1856  //   same name as a direct or virtual base class of the class, a
1857  //   mem-initializer-id naming the member or base class and composed
1858  //   of a single identifier refers to the class member. A
1859  //   mem-initializer-id for the hidden base class may be specified
1860  //   using a qualified name. ]
1861  if (!SS.getScopeRep() && !TemplateTypeTy) {
1862    // Look for a member, first.
1863    DeclContext::lookup_result Result
1864      = ClassDecl->lookup(MemberOrBase);
1865    if (Result.first != Result.second) {
1866      ValueDecl *Member;
1867      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1868          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1869        if (EllipsisLoc.isValid())
1870          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1871            << MemberOrBase
1872            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1873
1874        return BuildMemberInitializer(Member, Init, IdLoc);
1875      }
1876    }
1877  }
1878  // It didn't name a member, so see if it names a class.
1879  QualType BaseType;
1880  TypeSourceInfo *TInfo = 0;
1881
1882  if (TemplateTypeTy) {
1883    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1884  } else if (DS.getTypeSpecType() == TST_decltype) {
1885    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1886  } else {
1887    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1888    LookupParsedName(R, S, &SS);
1889
1890    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1891    if (!TyD) {
1892      if (R.isAmbiguous()) return true;
1893
1894      // We don't want access-control diagnostics here.
1895      R.suppressDiagnostics();
1896
1897      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1898        bool NotUnknownSpecialization = false;
1899        DeclContext *DC = computeDeclContext(SS, false);
1900        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1901          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1902
1903        if (!NotUnknownSpecialization) {
1904          // When the scope specifier can refer to a member of an unknown
1905          // specialization, we take it as a type name.
1906          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1907                                       SS.getWithLocInContext(Context),
1908                                       *MemberOrBase, IdLoc);
1909          if (BaseType.isNull())
1910            return true;
1911
1912          R.clear();
1913          R.setLookupName(MemberOrBase);
1914        }
1915      }
1916
1917      // If no results were found, try to correct typos.
1918      TypoCorrection Corr;
1919      MemInitializerValidatorCCC Validator(ClassDecl);
1920      if (R.empty() && BaseType.isNull() &&
1921          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1922                              Validator, ClassDecl))) {
1923        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1924        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1925        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1926          // We have found a non-static data member with a similar
1927          // name to what was typed; complain and initialize that
1928          // member.
1929          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1930            << MemberOrBase << true << CorrectedQuotedStr
1931            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1932          Diag(Member->getLocation(), diag::note_previous_decl)
1933            << CorrectedQuotedStr;
1934
1935          return BuildMemberInitializer(Member, Init, IdLoc);
1936        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1937          const CXXBaseSpecifier *DirectBaseSpec;
1938          const CXXBaseSpecifier *VirtualBaseSpec;
1939          if (FindBaseInitializer(*this, ClassDecl,
1940                                  Context.getTypeDeclType(Type),
1941                                  DirectBaseSpec, VirtualBaseSpec)) {
1942            // We have found a direct or virtual base class with a
1943            // similar name to what was typed; complain and initialize
1944            // that base class.
1945            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1946              << MemberOrBase << false << CorrectedQuotedStr
1947              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1948
1949            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1950                                                             : VirtualBaseSpec;
1951            Diag(BaseSpec->getLocStart(),
1952                 diag::note_base_class_specified_here)
1953              << BaseSpec->getType()
1954              << BaseSpec->getSourceRange();
1955
1956            TyD = Type;
1957          }
1958        }
1959      }
1960
1961      if (!TyD && BaseType.isNull()) {
1962        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1963          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1964        return true;
1965      }
1966    }
1967
1968    if (BaseType.isNull()) {
1969      BaseType = Context.getTypeDeclType(TyD);
1970      if (SS.isSet()) {
1971        NestedNameSpecifier *Qualifier =
1972          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1973
1974        // FIXME: preserve source range information
1975        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1976      }
1977    }
1978  }
1979
1980  if (!TInfo)
1981    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1982
1983  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1984}
1985
1986/// Checks a member initializer expression for cases where reference (or
1987/// pointer) members are bound to by-value parameters (or their addresses).
1988static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1989                                               Expr *Init,
1990                                               SourceLocation IdLoc) {
1991  QualType MemberTy = Member->getType();
1992
1993  // We only handle pointers and references currently.
1994  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1995  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1996    return;
1997
1998  const bool IsPointer = MemberTy->isPointerType();
1999  if (IsPointer) {
2000    if (const UnaryOperator *Op
2001          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2002      // The only case we're worried about with pointers requires taking the
2003      // address.
2004      if (Op->getOpcode() != UO_AddrOf)
2005        return;
2006
2007      Init = Op->getSubExpr();
2008    } else {
2009      // We only handle address-of expression initializers for pointers.
2010      return;
2011    }
2012  }
2013
2014  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2015    // Taking the address of a temporary will be diagnosed as a hard error.
2016    if (IsPointer)
2017      return;
2018
2019    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2020      << Member << Init->getSourceRange();
2021  } else if (const DeclRefExpr *DRE
2022               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2023    // We only warn when referring to a non-reference parameter declaration.
2024    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2025    if (!Parameter || Parameter->getType()->isReferenceType())
2026      return;
2027
2028    S.Diag(Init->getExprLoc(),
2029           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2030                     : diag::warn_bind_ref_member_to_parameter)
2031      << Member << Parameter << Init->getSourceRange();
2032  } else {
2033    // Other initializers are fine.
2034    return;
2035  }
2036
2037  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2038    << (unsigned)IsPointer;
2039}
2040
2041/// Checks an initializer expression for use of uninitialized fields, such as
2042/// containing the field that is being initialized. Returns true if there is an
2043/// uninitialized field was used an updates the SourceLocation parameter; false
2044/// otherwise.
2045static bool InitExprContainsUninitializedFields(const Stmt *S,
2046                                                const ValueDecl *LhsField,
2047                                                SourceLocation *L) {
2048  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2049
2050  if (isa<CallExpr>(S)) {
2051    // Do not descend into function calls or constructors, as the use
2052    // of an uninitialized field may be valid. One would have to inspect
2053    // the contents of the function/ctor to determine if it is safe or not.
2054    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2055    // may be safe, depending on what the function/ctor does.
2056    return false;
2057  }
2058  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2059    const NamedDecl *RhsField = ME->getMemberDecl();
2060
2061    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2062      // The member expression points to a static data member.
2063      assert(VD->isStaticDataMember() &&
2064             "Member points to non-static data member!");
2065      (void)VD;
2066      return false;
2067    }
2068
2069    if (isa<EnumConstantDecl>(RhsField)) {
2070      // The member expression points to an enum.
2071      return false;
2072    }
2073
2074    if (RhsField == LhsField) {
2075      // Initializing a field with itself. Throw a warning.
2076      // But wait; there are exceptions!
2077      // Exception #1:  The field may not belong to this record.
2078      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2079      const Expr *base = ME->getBase();
2080      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2081        // Even though the field matches, it does not belong to this record.
2082        return false;
2083      }
2084      // None of the exceptions triggered; return true to indicate an
2085      // uninitialized field was used.
2086      *L = ME->getMemberLoc();
2087      return true;
2088    }
2089  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2090    // sizeof/alignof doesn't reference contents, do not warn.
2091    return false;
2092  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2093    // address-of doesn't reference contents (the pointer may be dereferenced
2094    // in the same expression but it would be rare; and weird).
2095    if (UOE->getOpcode() == UO_AddrOf)
2096      return false;
2097  }
2098  for (Stmt::const_child_range it = S->children(); it; ++it) {
2099    if (!*it) {
2100      // An expression such as 'member(arg ?: "")' may trigger this.
2101      continue;
2102    }
2103    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2104      return true;
2105  }
2106  return false;
2107}
2108
2109MemInitResult
2110Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2111                             SourceLocation IdLoc) {
2112  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2113  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2114  assert((DirectMember || IndirectMember) &&
2115         "Member must be a FieldDecl or IndirectFieldDecl");
2116
2117  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2118    return true;
2119
2120  if (Member->isInvalidDecl())
2121    return true;
2122
2123  // Diagnose value-uses of fields to initialize themselves, e.g.
2124  //   foo(foo)
2125  // where foo is not also a parameter to the constructor.
2126  // TODO: implement -Wuninitialized and fold this into that framework.
2127  Expr **Args;
2128  unsigned NumArgs;
2129  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2130    Args = ParenList->getExprs();
2131    NumArgs = ParenList->getNumExprs();
2132  } else {
2133    InitListExpr *InitList = cast<InitListExpr>(Init);
2134    Args = InitList->getInits();
2135    NumArgs = InitList->getNumInits();
2136  }
2137
2138  // Mark FieldDecl as being used if it is a non-primitive type and the
2139  // initializer does not call the default constructor (which is trivial
2140  // for all entries in UnusedPrivateFields).
2141  // FIXME: Make this smarter once more side effect-free types can be
2142  // determined.
2143  if (NumArgs > 0) {
2144    if (Member->getType()->isRecordType()) {
2145      UnusedPrivateFields.remove(Member);
2146    } else {
2147      for (unsigned i = 0; i < NumArgs; ++i) {
2148        if (Args[i]->HasSideEffects(Context)) {
2149          UnusedPrivateFields.remove(Member);
2150          break;
2151        }
2152      }
2153    }
2154  }
2155
2156  for (unsigned i = 0; i < NumArgs; ++i) {
2157    SourceLocation L;
2158    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2159      // FIXME: Return true in the case when other fields are used before being
2160      // uninitialized. For example, let this field be the i'th field. When
2161      // initializing the i'th field, throw a warning if any of the >= i'th
2162      // fields are used, as they are not yet initialized.
2163      // Right now we are only handling the case where the i'th field uses
2164      // itself in its initializer.
2165      Diag(L, diag::warn_field_is_uninit);
2166    }
2167  }
2168
2169  SourceRange InitRange = Init->getSourceRange();
2170
2171  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2172    // Can't check initialization for a member of dependent type or when
2173    // any of the arguments are type-dependent expressions.
2174    DiscardCleanupsInEvaluationContext();
2175  } else {
2176    bool InitList = false;
2177    if (isa<InitListExpr>(Init)) {
2178      InitList = true;
2179      Args = &Init;
2180      NumArgs = 1;
2181
2182      if (isStdInitializerList(Member->getType(), 0)) {
2183        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2184            << /*at end of ctor*/1 << InitRange;
2185      }
2186    }
2187
2188    // Initialize the member.
2189    InitializedEntity MemberEntity =
2190      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2191                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2192    InitializationKind Kind =
2193      InitList ? InitializationKind::CreateDirectList(IdLoc)
2194               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2195                                                  InitRange.getEnd());
2196
2197    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2198    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2199                                            MultiExprArg(*this, Args, NumArgs),
2200                                            0);
2201    if (MemberInit.isInvalid())
2202      return true;
2203
2204    CheckImplicitConversions(MemberInit.get(),
2205                             InitRange.getBegin());
2206
2207    // C++0x [class.base.init]p7:
2208    //   The initialization of each base and member constitutes a
2209    //   full-expression.
2210    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2211    if (MemberInit.isInvalid())
2212      return true;
2213
2214    // If we are in a dependent context, template instantiation will
2215    // perform this type-checking again. Just save the arguments that we
2216    // received.
2217    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2218    // of the information that we have about the member
2219    // initializer. However, deconstructing the ASTs is a dicey process,
2220    // and this approach is far more likely to get the corner cases right.
2221    if (CurContext->isDependentContext()) {
2222      // The existing Init will do fine.
2223    } else {
2224      Init = MemberInit.get();
2225      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2226    }
2227  }
2228
2229  if (DirectMember) {
2230    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2231                                            InitRange.getBegin(), Init,
2232                                            InitRange.getEnd());
2233  } else {
2234    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2235                                            InitRange.getBegin(), Init,
2236                                            InitRange.getEnd());
2237  }
2238}
2239
2240MemInitResult
2241Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2242                                 CXXRecordDecl *ClassDecl) {
2243  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2244  if (!LangOpts.CPlusPlus0x)
2245    return Diag(NameLoc, diag::err_delegating_ctor)
2246      << TInfo->getTypeLoc().getLocalSourceRange();
2247  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2248
2249  bool InitList = true;
2250  Expr **Args = &Init;
2251  unsigned NumArgs = 1;
2252  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2253    InitList = false;
2254    Args = ParenList->getExprs();
2255    NumArgs = ParenList->getNumExprs();
2256  }
2257
2258  SourceRange InitRange = Init->getSourceRange();
2259  // Initialize the object.
2260  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2261                                     QualType(ClassDecl->getTypeForDecl(), 0));
2262  InitializationKind Kind =
2263    InitList ? InitializationKind::CreateDirectList(NameLoc)
2264             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2265                                                InitRange.getEnd());
2266  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2267  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2268                                              MultiExprArg(*this, Args,NumArgs),
2269                                              0);
2270  if (DelegationInit.isInvalid())
2271    return true;
2272
2273  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2274         "Delegating constructor with no target?");
2275
2276  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2277
2278  // C++0x [class.base.init]p7:
2279  //   The initialization of each base and member constitutes a
2280  //   full-expression.
2281  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2282  if (DelegationInit.isInvalid())
2283    return true;
2284
2285  // If we are in a dependent context, template instantiation will
2286  // perform this type-checking again. Just save the arguments that we
2287  // received in a ParenListExpr.
2288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2289  // of the information that we have about the base
2290  // initializer. However, deconstructing the ASTs is a dicey process,
2291  // and this approach is far more likely to get the corner cases right.
2292  if (CurContext->isDependentContext())
2293    DelegationInit = Owned(Init);
2294
2295  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2296                                          DelegationInit.takeAs<Expr>(),
2297                                          InitRange.getEnd());
2298}
2299
2300MemInitResult
2301Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2302                           Expr *Init, CXXRecordDecl *ClassDecl,
2303                           SourceLocation EllipsisLoc) {
2304  SourceLocation BaseLoc
2305    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2306
2307  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2308    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2309             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2310
2311  // C++ [class.base.init]p2:
2312  //   [...] Unless the mem-initializer-id names a nonstatic data
2313  //   member of the constructor's class or a direct or virtual base
2314  //   of that class, the mem-initializer is ill-formed. A
2315  //   mem-initializer-list can initialize a base class using any
2316  //   name that denotes that base class type.
2317  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2318
2319  SourceRange InitRange = Init->getSourceRange();
2320  if (EllipsisLoc.isValid()) {
2321    // This is a pack expansion.
2322    if (!BaseType->containsUnexpandedParameterPack())  {
2323      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2324        << SourceRange(BaseLoc, InitRange.getEnd());
2325
2326      EllipsisLoc = SourceLocation();
2327    }
2328  } else {
2329    // Check for any unexpanded parameter packs.
2330    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2331      return true;
2332
2333    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2334      return true;
2335  }
2336
2337  // Check for direct and virtual base classes.
2338  const CXXBaseSpecifier *DirectBaseSpec = 0;
2339  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2340  if (!Dependent) {
2341    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2342                                       BaseType))
2343      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2344
2345    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2346                        VirtualBaseSpec);
2347
2348    // C++ [base.class.init]p2:
2349    // Unless the mem-initializer-id names a nonstatic data member of the
2350    // constructor's class or a direct or virtual base of that class, the
2351    // mem-initializer is ill-formed.
2352    if (!DirectBaseSpec && !VirtualBaseSpec) {
2353      // If the class has any dependent bases, then it's possible that
2354      // one of those types will resolve to the same type as
2355      // BaseType. Therefore, just treat this as a dependent base
2356      // class initialization.  FIXME: Should we try to check the
2357      // initialization anyway? It seems odd.
2358      if (ClassDecl->hasAnyDependentBases())
2359        Dependent = true;
2360      else
2361        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2362          << BaseType << Context.getTypeDeclType(ClassDecl)
2363          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2364    }
2365  }
2366
2367  if (Dependent) {
2368    DiscardCleanupsInEvaluationContext();
2369
2370    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2371                                            /*IsVirtual=*/false,
2372                                            InitRange.getBegin(), Init,
2373                                            InitRange.getEnd(), EllipsisLoc);
2374  }
2375
2376  // C++ [base.class.init]p2:
2377  //   If a mem-initializer-id is ambiguous because it designates both
2378  //   a direct non-virtual base class and an inherited virtual base
2379  //   class, the mem-initializer is ill-formed.
2380  if (DirectBaseSpec && VirtualBaseSpec)
2381    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2382      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2383
2384  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2385  if (!BaseSpec)
2386    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2387
2388  // Initialize the base.
2389  bool InitList = true;
2390  Expr **Args = &Init;
2391  unsigned NumArgs = 1;
2392  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2393    InitList = false;
2394    Args = ParenList->getExprs();
2395    NumArgs = ParenList->getNumExprs();
2396  }
2397
2398  InitializedEntity BaseEntity =
2399    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2400  InitializationKind Kind =
2401    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2402             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2403                                                InitRange.getEnd());
2404  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2405  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2406                                          MultiExprArg(*this, Args, NumArgs),
2407                                          0);
2408  if (BaseInit.isInvalid())
2409    return true;
2410
2411  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2412
2413  // C++0x [class.base.init]p7:
2414  //   The initialization of each base and member constitutes a
2415  //   full-expression.
2416  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2417  if (BaseInit.isInvalid())
2418    return true;
2419
2420  // If we are in a dependent context, template instantiation will
2421  // perform this type-checking again. Just save the arguments that we
2422  // received in a ParenListExpr.
2423  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2424  // of the information that we have about the base
2425  // initializer. However, deconstructing the ASTs is a dicey process,
2426  // and this approach is far more likely to get the corner cases right.
2427  if (CurContext->isDependentContext())
2428    BaseInit = Owned(Init);
2429
2430  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2431                                          BaseSpec->isVirtual(),
2432                                          InitRange.getBegin(),
2433                                          BaseInit.takeAs<Expr>(),
2434                                          InitRange.getEnd(), EllipsisLoc);
2435}
2436
2437// Create a static_cast\<T&&>(expr).
2438static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2439  QualType ExprType = E->getType();
2440  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2441  SourceLocation ExprLoc = E->getLocStart();
2442  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2443      TargetType, ExprLoc);
2444
2445  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2446                                   SourceRange(ExprLoc, ExprLoc),
2447                                   E->getSourceRange()).take();
2448}
2449
2450/// ImplicitInitializerKind - How an implicit base or member initializer should
2451/// initialize its base or member.
2452enum ImplicitInitializerKind {
2453  IIK_Default,
2454  IIK_Copy,
2455  IIK_Move
2456};
2457
2458static bool
2459BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2460                             ImplicitInitializerKind ImplicitInitKind,
2461                             CXXBaseSpecifier *BaseSpec,
2462                             bool IsInheritedVirtualBase,
2463                             CXXCtorInitializer *&CXXBaseInit) {
2464  InitializedEntity InitEntity
2465    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2466                                        IsInheritedVirtualBase);
2467
2468  ExprResult BaseInit;
2469
2470  switch (ImplicitInitKind) {
2471  case IIK_Default: {
2472    InitializationKind InitKind
2473      = InitializationKind::CreateDefault(Constructor->getLocation());
2474    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2475    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2476                               MultiExprArg(SemaRef, 0, 0));
2477    break;
2478  }
2479
2480  case IIK_Move:
2481  case IIK_Copy: {
2482    bool Moving = ImplicitInitKind == IIK_Move;
2483    ParmVarDecl *Param = Constructor->getParamDecl(0);
2484    QualType ParamType = Param->getType().getNonReferenceType();
2485
2486    Expr *CopyCtorArg =
2487      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2488                          SourceLocation(), Param, false,
2489                          Constructor->getLocation(), ParamType,
2490                          VK_LValue, 0);
2491
2492    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2493
2494    // Cast to the base class to avoid ambiguities.
2495    QualType ArgTy =
2496      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2497                                       ParamType.getQualifiers());
2498
2499    if (Moving) {
2500      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2501    }
2502
2503    CXXCastPath BasePath;
2504    BasePath.push_back(BaseSpec);
2505    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2506                                            CK_UncheckedDerivedToBase,
2507                                            Moving ? VK_XValue : VK_LValue,
2508                                            &BasePath).take();
2509
2510    InitializationKind InitKind
2511      = InitializationKind::CreateDirect(Constructor->getLocation(),
2512                                         SourceLocation(), SourceLocation());
2513    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2514                                   &CopyCtorArg, 1);
2515    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2516                               MultiExprArg(&CopyCtorArg, 1));
2517    break;
2518  }
2519  }
2520
2521  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2522  if (BaseInit.isInvalid())
2523    return true;
2524
2525  CXXBaseInit =
2526    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2527               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2528                                                        SourceLocation()),
2529                                             BaseSpec->isVirtual(),
2530                                             SourceLocation(),
2531                                             BaseInit.takeAs<Expr>(),
2532                                             SourceLocation(),
2533                                             SourceLocation());
2534
2535  return false;
2536}
2537
2538static bool RefersToRValueRef(Expr *MemRef) {
2539  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2540  return Referenced->getType()->isRValueReferenceType();
2541}
2542
2543static bool
2544BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2545                               ImplicitInitializerKind ImplicitInitKind,
2546                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2547                               CXXCtorInitializer *&CXXMemberInit) {
2548  if (Field->isInvalidDecl())
2549    return true;
2550
2551  SourceLocation Loc = Constructor->getLocation();
2552
2553  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2554    bool Moving = ImplicitInitKind == IIK_Move;
2555    ParmVarDecl *Param = Constructor->getParamDecl(0);
2556    QualType ParamType = Param->getType().getNonReferenceType();
2557
2558    // Suppress copying zero-width bitfields.
2559    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2560      return false;
2561
2562    Expr *MemberExprBase =
2563      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2564                          SourceLocation(), Param, false,
2565                          Loc, ParamType, VK_LValue, 0);
2566
2567    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2568
2569    if (Moving) {
2570      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2571    }
2572
2573    // Build a reference to this field within the parameter.
2574    CXXScopeSpec SS;
2575    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2576                              Sema::LookupMemberName);
2577    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2578                                  : cast<ValueDecl>(Field), AS_public);
2579    MemberLookup.resolveKind();
2580    ExprResult CtorArg
2581      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2582                                         ParamType, Loc,
2583                                         /*IsArrow=*/false,
2584                                         SS,
2585                                         /*TemplateKWLoc=*/SourceLocation(),
2586                                         /*FirstQualifierInScope=*/0,
2587                                         MemberLookup,
2588                                         /*TemplateArgs=*/0);
2589    if (CtorArg.isInvalid())
2590      return true;
2591
2592    // C++11 [class.copy]p15:
2593    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2594    //     with static_cast<T&&>(x.m);
2595    if (RefersToRValueRef(CtorArg.get())) {
2596      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2597    }
2598
2599    // When the field we are copying is an array, create index variables for
2600    // each dimension of the array. We use these index variables to subscript
2601    // the source array, and other clients (e.g., CodeGen) will perform the
2602    // necessary iteration with these index variables.
2603    SmallVector<VarDecl *, 4> IndexVariables;
2604    QualType BaseType = Field->getType();
2605    QualType SizeType = SemaRef.Context.getSizeType();
2606    bool InitializingArray = false;
2607    while (const ConstantArrayType *Array
2608                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2609      InitializingArray = true;
2610      // Create the iteration variable for this array index.
2611      IdentifierInfo *IterationVarName = 0;
2612      {
2613        SmallString<8> Str;
2614        llvm::raw_svector_ostream OS(Str);
2615        OS << "__i" << IndexVariables.size();
2616        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2617      }
2618      VarDecl *IterationVar
2619        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2620                          IterationVarName, SizeType,
2621                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2622                          SC_None, SC_None);
2623      IndexVariables.push_back(IterationVar);
2624
2625      // Create a reference to the iteration variable.
2626      ExprResult IterationVarRef
2627        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2628      assert(!IterationVarRef.isInvalid() &&
2629             "Reference to invented variable cannot fail!");
2630      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2631      assert(!IterationVarRef.isInvalid() &&
2632             "Conversion of invented variable cannot fail!");
2633
2634      // Subscript the array with this iteration variable.
2635      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2636                                                        IterationVarRef.take(),
2637                                                        Loc);
2638      if (CtorArg.isInvalid())
2639        return true;
2640
2641      BaseType = Array->getElementType();
2642    }
2643
2644    // The array subscript expression is an lvalue, which is wrong for moving.
2645    if (Moving && InitializingArray)
2646      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2647
2648    // Construct the entity that we will be initializing. For an array, this
2649    // will be first element in the array, which may require several levels
2650    // of array-subscript entities.
2651    SmallVector<InitializedEntity, 4> Entities;
2652    Entities.reserve(1 + IndexVariables.size());
2653    if (Indirect)
2654      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2655    else
2656      Entities.push_back(InitializedEntity::InitializeMember(Field));
2657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2659                                                              0,
2660                                                              Entities.back()));
2661
2662    // Direct-initialize to use the copy constructor.
2663    InitializationKind InitKind =
2664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2665
2666    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2668                                   &CtorArgE, 1);
2669
2670    ExprResult MemberInit
2671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2672                        MultiExprArg(&CtorArgE, 1));
2673    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2674    if (MemberInit.isInvalid())
2675      return true;
2676
2677    if (Indirect) {
2678      assert(IndexVariables.size() == 0 &&
2679             "Indirect field improperly initialized");
2680      CXXMemberInit
2681        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2682                                                   Loc, Loc,
2683                                                   MemberInit.takeAs<Expr>(),
2684                                                   Loc);
2685    } else
2686      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2687                                                 Loc, MemberInit.takeAs<Expr>(),
2688                                                 Loc,
2689                                                 IndexVariables.data(),
2690                                                 IndexVariables.size());
2691    return false;
2692  }
2693
2694  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2695
2696  QualType FieldBaseElementType =
2697    SemaRef.Context.getBaseElementType(Field->getType());
2698
2699  if (FieldBaseElementType->isRecordType()) {
2700    InitializedEntity InitEntity
2701      = Indirect? InitializedEntity::InitializeMember(Indirect)
2702                : InitializedEntity::InitializeMember(Field);
2703    InitializationKind InitKind =
2704      InitializationKind::CreateDefault(Loc);
2705
2706    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2707    ExprResult MemberInit =
2708      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2709
2710    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2711    if (MemberInit.isInvalid())
2712      return true;
2713
2714    if (Indirect)
2715      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2716                                                               Indirect, Loc,
2717                                                               Loc,
2718                                                               MemberInit.get(),
2719                                                               Loc);
2720    else
2721      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2722                                                               Field, Loc, Loc,
2723                                                               MemberInit.get(),
2724                                                               Loc);
2725    return false;
2726  }
2727
2728  if (!Field->getParent()->isUnion()) {
2729    if (FieldBaseElementType->isReferenceType()) {
2730      SemaRef.Diag(Constructor->getLocation(),
2731                   diag::err_uninitialized_member_in_ctor)
2732      << (int)Constructor->isImplicit()
2733      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2734      << 0 << Field->getDeclName();
2735      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2736      return true;
2737    }
2738
2739    if (FieldBaseElementType.isConstQualified()) {
2740      SemaRef.Diag(Constructor->getLocation(),
2741                   diag::err_uninitialized_member_in_ctor)
2742      << (int)Constructor->isImplicit()
2743      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2744      << 1 << Field->getDeclName();
2745      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2746      return true;
2747    }
2748  }
2749
2750  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2751      FieldBaseElementType->isObjCRetainableType() &&
2752      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2753      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2754    // Instant objects:
2755    //   Default-initialize Objective-C pointers to NULL.
2756    CXXMemberInit
2757      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2758                                                 Loc, Loc,
2759                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2760                                                 Loc);
2761    return false;
2762  }
2763
2764  // Nothing to initialize.
2765  CXXMemberInit = 0;
2766  return false;
2767}
2768
2769namespace {
2770struct BaseAndFieldInfo {
2771  Sema &S;
2772  CXXConstructorDecl *Ctor;
2773  bool AnyErrorsInInits;
2774  ImplicitInitializerKind IIK;
2775  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2776  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2777
2778  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2779    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2780    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2781    if (Generated && Ctor->isCopyConstructor())
2782      IIK = IIK_Copy;
2783    else if (Generated && Ctor->isMoveConstructor())
2784      IIK = IIK_Move;
2785    else
2786      IIK = IIK_Default;
2787  }
2788
2789  bool isImplicitCopyOrMove() const {
2790    switch (IIK) {
2791    case IIK_Copy:
2792    case IIK_Move:
2793      return true;
2794
2795    case IIK_Default:
2796      return false;
2797    }
2798
2799    llvm_unreachable("Invalid ImplicitInitializerKind!");
2800  }
2801};
2802}
2803
2804/// \brief Determine whether the given indirect field declaration is somewhere
2805/// within an anonymous union.
2806static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2807  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2808                                      CEnd = F->chain_end();
2809       C != CEnd; ++C)
2810    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2811      if (Record->isUnion())
2812        return true;
2813
2814  return false;
2815}
2816
2817/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2818/// array type.
2819static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2820  if (T->isIncompleteArrayType())
2821    return true;
2822
2823  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2824    if (!ArrayT->getSize())
2825      return true;
2826
2827    T = ArrayT->getElementType();
2828  }
2829
2830  return false;
2831}
2832
2833static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2834                                    FieldDecl *Field,
2835                                    IndirectFieldDecl *Indirect = 0) {
2836
2837  // Overwhelmingly common case: we have a direct initializer for this field.
2838  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2839    Info.AllToInit.push_back(Init);
2840    return false;
2841  }
2842
2843  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2844  // has a brace-or-equal-initializer, the entity is initialized as specified
2845  // in [dcl.init].
2846  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2847    CXXCtorInitializer *Init;
2848    if (Indirect)
2849      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2850                                                      SourceLocation(),
2851                                                      SourceLocation(), 0,
2852                                                      SourceLocation());
2853    else
2854      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2855                                                      SourceLocation(),
2856                                                      SourceLocation(), 0,
2857                                                      SourceLocation());
2858    Info.AllToInit.push_back(Init);
2859
2860    // Check whether this initializer makes the field "used".
2861    Expr *InitExpr = Field->getInClassInitializer();
2862    if (Field->getType()->isRecordType() ||
2863        (InitExpr && InitExpr->HasSideEffects(SemaRef.Context)))
2864      SemaRef.UnusedPrivateFields.remove(Field);
2865
2866    return false;
2867  }
2868
2869  // Don't build an implicit initializer for union members if none was
2870  // explicitly specified.
2871  if (Field->getParent()->isUnion() ||
2872      (Indirect && isWithinAnonymousUnion(Indirect)))
2873    return false;
2874
2875  // Don't initialize incomplete or zero-length arrays.
2876  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2877    return false;
2878
2879  // Don't try to build an implicit initializer if there were semantic
2880  // errors in any of the initializers (and therefore we might be
2881  // missing some that the user actually wrote).
2882  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2883    return false;
2884
2885  CXXCtorInitializer *Init = 0;
2886  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2887                                     Indirect, Init))
2888    return true;
2889
2890  if (Init)
2891    Info.AllToInit.push_back(Init);
2892
2893  return false;
2894}
2895
2896bool
2897Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2898                               CXXCtorInitializer *Initializer) {
2899  assert(Initializer->isDelegatingInitializer());
2900  Constructor->setNumCtorInitializers(1);
2901  CXXCtorInitializer **initializer =
2902    new (Context) CXXCtorInitializer*[1];
2903  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2904  Constructor->setCtorInitializers(initializer);
2905
2906  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2907    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2908    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2909  }
2910
2911  DelegatingCtorDecls.push_back(Constructor);
2912
2913  return false;
2914}
2915
2916bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2917                               CXXCtorInitializer **Initializers,
2918                               unsigned NumInitializers,
2919                               bool AnyErrors) {
2920  if (Constructor->isDependentContext()) {
2921    // Just store the initializers as written, they will be checked during
2922    // instantiation.
2923    if (NumInitializers > 0) {
2924      Constructor->setNumCtorInitializers(NumInitializers);
2925      CXXCtorInitializer **baseOrMemberInitializers =
2926        new (Context) CXXCtorInitializer*[NumInitializers];
2927      memcpy(baseOrMemberInitializers, Initializers,
2928             NumInitializers * sizeof(CXXCtorInitializer*));
2929      Constructor->setCtorInitializers(baseOrMemberInitializers);
2930    }
2931
2932    return false;
2933  }
2934
2935  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2936
2937  // We need to build the initializer AST according to order of construction
2938  // and not what user specified in the Initializers list.
2939  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2940  if (!ClassDecl)
2941    return true;
2942
2943  bool HadError = false;
2944
2945  for (unsigned i = 0; i < NumInitializers; i++) {
2946    CXXCtorInitializer *Member = Initializers[i];
2947
2948    if (Member->isBaseInitializer())
2949      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2950    else
2951      Info.AllBaseFields[Member->getAnyMember()] = Member;
2952  }
2953
2954  // Keep track of the direct virtual bases.
2955  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2956  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2957       E = ClassDecl->bases_end(); I != E; ++I) {
2958    if (I->isVirtual())
2959      DirectVBases.insert(I);
2960  }
2961
2962  // Push virtual bases before others.
2963  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2964       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2965
2966    if (CXXCtorInitializer *Value
2967        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2968      Info.AllToInit.push_back(Value);
2969    } else if (!AnyErrors) {
2970      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2971      CXXCtorInitializer *CXXBaseInit;
2972      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2973                                       VBase, IsInheritedVirtualBase,
2974                                       CXXBaseInit)) {
2975        HadError = true;
2976        continue;
2977      }
2978
2979      Info.AllToInit.push_back(CXXBaseInit);
2980    }
2981  }
2982
2983  // Non-virtual bases.
2984  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2985       E = ClassDecl->bases_end(); Base != E; ++Base) {
2986    // Virtuals are in the virtual base list and already constructed.
2987    if (Base->isVirtual())
2988      continue;
2989
2990    if (CXXCtorInitializer *Value
2991          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2992      Info.AllToInit.push_back(Value);
2993    } else if (!AnyErrors) {
2994      CXXCtorInitializer *CXXBaseInit;
2995      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2996                                       Base, /*IsInheritedVirtualBase=*/false,
2997                                       CXXBaseInit)) {
2998        HadError = true;
2999        continue;
3000      }
3001
3002      Info.AllToInit.push_back(CXXBaseInit);
3003    }
3004  }
3005
3006  // Fields.
3007  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3008                               MemEnd = ClassDecl->decls_end();
3009       Mem != MemEnd; ++Mem) {
3010    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3011      // C++ [class.bit]p2:
3012      //   A declaration for a bit-field that omits the identifier declares an
3013      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3014      //   initialized.
3015      if (F->isUnnamedBitfield())
3016        continue;
3017
3018      // If we're not generating the implicit copy/move constructor, then we'll
3019      // handle anonymous struct/union fields based on their individual
3020      // indirect fields.
3021      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3022        continue;
3023
3024      if (CollectFieldInitializer(*this, Info, F))
3025        HadError = true;
3026      continue;
3027    }
3028
3029    // Beyond this point, we only consider default initialization.
3030    if (Info.IIK != IIK_Default)
3031      continue;
3032
3033    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3034      if (F->getType()->isIncompleteArrayType()) {
3035        assert(ClassDecl->hasFlexibleArrayMember() &&
3036               "Incomplete array type is not valid");
3037        continue;
3038      }
3039
3040      // Initialize each field of an anonymous struct individually.
3041      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3042        HadError = true;
3043
3044      continue;
3045    }
3046  }
3047
3048  NumInitializers = Info.AllToInit.size();
3049  if (NumInitializers > 0) {
3050    Constructor->setNumCtorInitializers(NumInitializers);
3051    CXXCtorInitializer **baseOrMemberInitializers =
3052      new (Context) CXXCtorInitializer*[NumInitializers];
3053    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3054           NumInitializers * sizeof(CXXCtorInitializer*));
3055    Constructor->setCtorInitializers(baseOrMemberInitializers);
3056
3057    // Constructors implicitly reference the base and member
3058    // destructors.
3059    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3060                                           Constructor->getParent());
3061  }
3062
3063  return HadError;
3064}
3065
3066static void *GetKeyForTopLevelField(FieldDecl *Field) {
3067  // For anonymous unions, use the class declaration as the key.
3068  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3069    if (RT->getDecl()->isAnonymousStructOrUnion())
3070      return static_cast<void *>(RT->getDecl());
3071  }
3072  return static_cast<void *>(Field);
3073}
3074
3075static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3076  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3077}
3078
3079static void *GetKeyForMember(ASTContext &Context,
3080                             CXXCtorInitializer *Member) {
3081  if (!Member->isAnyMemberInitializer())
3082    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3083
3084  // For fields injected into the class via declaration of an anonymous union,
3085  // use its anonymous union class declaration as the unique key.
3086  FieldDecl *Field = Member->getAnyMember();
3087
3088  // If the field is a member of an anonymous struct or union, our key
3089  // is the anonymous record decl that's a direct child of the class.
3090  RecordDecl *RD = Field->getParent();
3091  if (RD->isAnonymousStructOrUnion()) {
3092    while (true) {
3093      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3094      if (Parent->isAnonymousStructOrUnion())
3095        RD = Parent;
3096      else
3097        break;
3098    }
3099
3100    return static_cast<void *>(RD);
3101  }
3102
3103  return static_cast<void *>(Field);
3104}
3105
3106static void
3107DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3108                                  const CXXConstructorDecl *Constructor,
3109                                  CXXCtorInitializer **Inits,
3110                                  unsigned NumInits) {
3111  if (Constructor->getDeclContext()->isDependentContext())
3112    return;
3113
3114  // Don't check initializers order unless the warning is enabled at the
3115  // location of at least one initializer.
3116  bool ShouldCheckOrder = false;
3117  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3118    CXXCtorInitializer *Init = Inits[InitIndex];
3119    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3120                                         Init->getSourceLocation())
3121          != DiagnosticsEngine::Ignored) {
3122      ShouldCheckOrder = true;
3123      break;
3124    }
3125  }
3126  if (!ShouldCheckOrder)
3127    return;
3128
3129  // Build the list of bases and members in the order that they'll
3130  // actually be initialized.  The explicit initializers should be in
3131  // this same order but may be missing things.
3132  SmallVector<const void*, 32> IdealInitKeys;
3133
3134  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3135
3136  // 1. Virtual bases.
3137  for (CXXRecordDecl::base_class_const_iterator VBase =
3138       ClassDecl->vbases_begin(),
3139       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3140    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3141
3142  // 2. Non-virtual bases.
3143  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3144       E = ClassDecl->bases_end(); Base != E; ++Base) {
3145    if (Base->isVirtual())
3146      continue;
3147    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3148  }
3149
3150  // 3. Direct fields.
3151  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3152       E = ClassDecl->field_end(); Field != E; ++Field) {
3153    if (Field->isUnnamedBitfield())
3154      continue;
3155
3156    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3157  }
3158
3159  unsigned NumIdealInits = IdealInitKeys.size();
3160  unsigned IdealIndex = 0;
3161
3162  CXXCtorInitializer *PrevInit = 0;
3163  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3164    CXXCtorInitializer *Init = Inits[InitIndex];
3165    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3166
3167    // Scan forward to try to find this initializer in the idealized
3168    // initializers list.
3169    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3170      if (InitKey == IdealInitKeys[IdealIndex])
3171        break;
3172
3173    // If we didn't find this initializer, it must be because we
3174    // scanned past it on a previous iteration.  That can only
3175    // happen if we're out of order;  emit a warning.
3176    if (IdealIndex == NumIdealInits && PrevInit) {
3177      Sema::SemaDiagnosticBuilder D =
3178        SemaRef.Diag(PrevInit->getSourceLocation(),
3179                     diag::warn_initializer_out_of_order);
3180
3181      if (PrevInit->isAnyMemberInitializer())
3182        D << 0 << PrevInit->getAnyMember()->getDeclName();
3183      else
3184        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3185
3186      if (Init->isAnyMemberInitializer())
3187        D << 0 << Init->getAnyMember()->getDeclName();
3188      else
3189        D << 1 << Init->getTypeSourceInfo()->getType();
3190
3191      // Move back to the initializer's location in the ideal list.
3192      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3193        if (InitKey == IdealInitKeys[IdealIndex])
3194          break;
3195
3196      assert(IdealIndex != NumIdealInits &&
3197             "initializer not found in initializer list");
3198    }
3199
3200    PrevInit = Init;
3201  }
3202}
3203
3204namespace {
3205bool CheckRedundantInit(Sema &S,
3206                        CXXCtorInitializer *Init,
3207                        CXXCtorInitializer *&PrevInit) {
3208  if (!PrevInit) {
3209    PrevInit = Init;
3210    return false;
3211  }
3212
3213  if (FieldDecl *Field = Init->getMember())
3214    S.Diag(Init->getSourceLocation(),
3215           diag::err_multiple_mem_initialization)
3216      << Field->getDeclName()
3217      << Init->getSourceRange();
3218  else {
3219    const Type *BaseClass = Init->getBaseClass();
3220    assert(BaseClass && "neither field nor base");
3221    S.Diag(Init->getSourceLocation(),
3222           diag::err_multiple_base_initialization)
3223      << QualType(BaseClass, 0)
3224      << Init->getSourceRange();
3225  }
3226  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3227    << 0 << PrevInit->getSourceRange();
3228
3229  return true;
3230}
3231
3232typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3233typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3234
3235bool CheckRedundantUnionInit(Sema &S,
3236                             CXXCtorInitializer *Init,
3237                             RedundantUnionMap &Unions) {
3238  FieldDecl *Field = Init->getAnyMember();
3239  RecordDecl *Parent = Field->getParent();
3240  NamedDecl *Child = Field;
3241
3242  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3243    if (Parent->isUnion()) {
3244      UnionEntry &En = Unions[Parent];
3245      if (En.first && En.first != Child) {
3246        S.Diag(Init->getSourceLocation(),
3247               diag::err_multiple_mem_union_initialization)
3248          << Field->getDeclName()
3249          << Init->getSourceRange();
3250        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3251          << 0 << En.second->getSourceRange();
3252        return true;
3253      }
3254      if (!En.first) {
3255        En.first = Child;
3256        En.second = Init;
3257      }
3258      if (!Parent->isAnonymousStructOrUnion())
3259        return false;
3260    }
3261
3262    Child = Parent;
3263    Parent = cast<RecordDecl>(Parent->getDeclContext());
3264  }
3265
3266  return false;
3267}
3268}
3269
3270/// ActOnMemInitializers - Handle the member initializers for a constructor.
3271void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3272                                SourceLocation ColonLoc,
3273                                CXXCtorInitializer **meminits,
3274                                unsigned NumMemInits,
3275                                bool AnyErrors) {
3276  if (!ConstructorDecl)
3277    return;
3278
3279  AdjustDeclIfTemplate(ConstructorDecl);
3280
3281  CXXConstructorDecl *Constructor
3282    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3283
3284  if (!Constructor) {
3285    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3286    return;
3287  }
3288
3289  CXXCtorInitializer **MemInits =
3290    reinterpret_cast<CXXCtorInitializer **>(meminits);
3291
3292  // Mapping for the duplicate initializers check.
3293  // For member initializers, this is keyed with a FieldDecl*.
3294  // For base initializers, this is keyed with a Type*.
3295  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3296
3297  // Mapping for the inconsistent anonymous-union initializers check.
3298  RedundantUnionMap MemberUnions;
3299
3300  bool HadError = false;
3301  for (unsigned i = 0; i < NumMemInits; i++) {
3302    CXXCtorInitializer *Init = MemInits[i];
3303
3304    // Set the source order index.
3305    Init->setSourceOrder(i);
3306
3307    if (Init->isAnyMemberInitializer()) {
3308      FieldDecl *Field = Init->getAnyMember();
3309      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3310          CheckRedundantUnionInit(*this, Init, MemberUnions))
3311        HadError = true;
3312    } else if (Init->isBaseInitializer()) {
3313      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3314      if (CheckRedundantInit(*this, Init, Members[Key]))
3315        HadError = true;
3316    } else {
3317      assert(Init->isDelegatingInitializer());
3318      // This must be the only initializer
3319      if (i != 0 || NumMemInits > 1) {
3320        Diag(MemInits[0]->getSourceLocation(),
3321             diag::err_delegating_initializer_alone)
3322          << MemInits[0]->getSourceRange();
3323        HadError = true;
3324        // We will treat this as being the only initializer.
3325      }
3326      SetDelegatingInitializer(Constructor, MemInits[i]);
3327      // Return immediately as the initializer is set.
3328      return;
3329    }
3330  }
3331
3332  if (HadError)
3333    return;
3334
3335  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3336
3337  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3338}
3339
3340void
3341Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3342                                             CXXRecordDecl *ClassDecl) {
3343  // Ignore dependent contexts. Also ignore unions, since their members never
3344  // have destructors implicitly called.
3345  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3346    return;
3347
3348  // FIXME: all the access-control diagnostics are positioned on the
3349  // field/base declaration.  That's probably good; that said, the
3350  // user might reasonably want to know why the destructor is being
3351  // emitted, and we currently don't say.
3352
3353  // Non-static data members.
3354  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3355       E = ClassDecl->field_end(); I != E; ++I) {
3356    FieldDecl *Field = *I;
3357    if (Field->isInvalidDecl())
3358      continue;
3359
3360    // Don't destroy incomplete or zero-length arrays.
3361    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3362      continue;
3363
3364    QualType FieldType = Context.getBaseElementType(Field->getType());
3365
3366    const RecordType* RT = FieldType->getAs<RecordType>();
3367    if (!RT)
3368      continue;
3369
3370    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3371    if (FieldClassDecl->isInvalidDecl())
3372      continue;
3373    if (FieldClassDecl->hasIrrelevantDestructor())
3374      continue;
3375    // The destructor for an implicit anonymous union member is never invoked.
3376    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3377      continue;
3378
3379    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3380    assert(Dtor && "No dtor found for FieldClassDecl!");
3381    CheckDestructorAccess(Field->getLocation(), Dtor,
3382                          PDiag(diag::err_access_dtor_field)
3383                            << Field->getDeclName()
3384                            << FieldType);
3385
3386    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3387    DiagnoseUseOfDecl(Dtor, Location);
3388  }
3389
3390  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3391
3392  // Bases.
3393  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3394       E = ClassDecl->bases_end(); Base != E; ++Base) {
3395    // Bases are always records in a well-formed non-dependent class.
3396    const RecordType *RT = Base->getType()->getAs<RecordType>();
3397
3398    // Remember direct virtual bases.
3399    if (Base->isVirtual())
3400      DirectVirtualBases.insert(RT);
3401
3402    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3403    // If our base class is invalid, we probably can't get its dtor anyway.
3404    if (BaseClassDecl->isInvalidDecl())
3405      continue;
3406    if (BaseClassDecl->hasIrrelevantDestructor())
3407      continue;
3408
3409    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3410    assert(Dtor && "No dtor found for BaseClassDecl!");
3411
3412    // FIXME: caret should be on the start of the class name
3413    CheckDestructorAccess(Base->getLocStart(), Dtor,
3414                          PDiag(diag::err_access_dtor_base)
3415                            << Base->getType()
3416                            << Base->getSourceRange(),
3417                          Context.getTypeDeclType(ClassDecl));
3418
3419    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3420    DiagnoseUseOfDecl(Dtor, Location);
3421  }
3422
3423  // Virtual bases.
3424  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3425       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3426
3427    // Bases are always records in a well-formed non-dependent class.
3428    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3429
3430    // Ignore direct virtual bases.
3431    if (DirectVirtualBases.count(RT))
3432      continue;
3433
3434    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3435    // If our base class is invalid, we probably can't get its dtor anyway.
3436    if (BaseClassDecl->isInvalidDecl())
3437      continue;
3438    if (BaseClassDecl->hasIrrelevantDestructor())
3439      continue;
3440
3441    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3442    assert(Dtor && "No dtor found for BaseClassDecl!");
3443    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3444                          PDiag(diag::err_access_dtor_vbase)
3445                            << VBase->getType(),
3446                          Context.getTypeDeclType(ClassDecl));
3447
3448    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3449    DiagnoseUseOfDecl(Dtor, Location);
3450  }
3451}
3452
3453void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3454  if (!CDtorDecl)
3455    return;
3456
3457  if (CXXConstructorDecl *Constructor
3458      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3459    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3460}
3461
3462bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3463                                  unsigned DiagID, AbstractDiagSelID SelID) {
3464  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3465    unsigned DiagID;
3466    AbstractDiagSelID SelID;
3467
3468  public:
3469    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3470      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3471
3472    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3473      if (SelID == -1)
3474        S.Diag(Loc, DiagID) << T;
3475      else
3476        S.Diag(Loc, DiagID) << SelID << T;
3477    }
3478  } Diagnoser(DiagID, SelID);
3479
3480  return RequireNonAbstractType(Loc, T, Diagnoser);
3481}
3482
3483bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3484                                  TypeDiagnoser &Diagnoser) {
3485  if (!getLangOpts().CPlusPlus)
3486    return false;
3487
3488  if (const ArrayType *AT = Context.getAsArrayType(T))
3489    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3490
3491  if (const PointerType *PT = T->getAs<PointerType>()) {
3492    // Find the innermost pointer type.
3493    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3494      PT = T;
3495
3496    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3497      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3498  }
3499
3500  const RecordType *RT = T->getAs<RecordType>();
3501  if (!RT)
3502    return false;
3503
3504  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3505
3506  // We can't answer whether something is abstract until it has a
3507  // definition.  If it's currently being defined, we'll walk back
3508  // over all the declarations when we have a full definition.
3509  const CXXRecordDecl *Def = RD->getDefinition();
3510  if (!Def || Def->isBeingDefined())
3511    return false;
3512
3513  if (!RD->isAbstract())
3514    return false;
3515
3516  Diagnoser.diagnose(*this, Loc, T);
3517  DiagnoseAbstractType(RD);
3518
3519  return true;
3520}
3521
3522void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3523  // Check if we've already emitted the list of pure virtual functions
3524  // for this class.
3525  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3526    return;
3527
3528  CXXFinalOverriderMap FinalOverriders;
3529  RD->getFinalOverriders(FinalOverriders);
3530
3531  // Keep a set of seen pure methods so we won't diagnose the same method
3532  // more than once.
3533  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3534
3535  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3536                                   MEnd = FinalOverriders.end();
3537       M != MEnd;
3538       ++M) {
3539    for (OverridingMethods::iterator SO = M->second.begin(),
3540                                  SOEnd = M->second.end();
3541         SO != SOEnd; ++SO) {
3542      // C++ [class.abstract]p4:
3543      //   A class is abstract if it contains or inherits at least one
3544      //   pure virtual function for which the final overrider is pure
3545      //   virtual.
3546
3547      //
3548      if (SO->second.size() != 1)
3549        continue;
3550
3551      if (!SO->second.front().Method->isPure())
3552        continue;
3553
3554      if (!SeenPureMethods.insert(SO->second.front().Method))
3555        continue;
3556
3557      Diag(SO->second.front().Method->getLocation(),
3558           diag::note_pure_virtual_function)
3559        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3560    }
3561  }
3562
3563  if (!PureVirtualClassDiagSet)
3564    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3565  PureVirtualClassDiagSet->insert(RD);
3566}
3567
3568namespace {
3569struct AbstractUsageInfo {
3570  Sema &S;
3571  CXXRecordDecl *Record;
3572  CanQualType AbstractType;
3573  bool Invalid;
3574
3575  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3576    : S(S), Record(Record),
3577      AbstractType(S.Context.getCanonicalType(
3578                   S.Context.getTypeDeclType(Record))),
3579      Invalid(false) {}
3580
3581  void DiagnoseAbstractType() {
3582    if (Invalid) return;
3583    S.DiagnoseAbstractType(Record);
3584    Invalid = true;
3585  }
3586
3587  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3588};
3589
3590struct CheckAbstractUsage {
3591  AbstractUsageInfo &Info;
3592  const NamedDecl *Ctx;
3593
3594  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3595    : Info(Info), Ctx(Ctx) {}
3596
3597  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3598    switch (TL.getTypeLocClass()) {
3599#define ABSTRACT_TYPELOC(CLASS, PARENT)
3600#define TYPELOC(CLASS, PARENT) \
3601    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3602#include "clang/AST/TypeLocNodes.def"
3603    }
3604  }
3605
3606  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3607    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3608    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3609      if (!TL.getArg(I))
3610        continue;
3611
3612      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3613      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3614    }
3615  }
3616
3617  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3618    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3619  }
3620
3621  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3622    // Visit the type parameters from a permissive context.
3623    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3624      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3625      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3626        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3627          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3628      // TODO: other template argument types?
3629    }
3630  }
3631
3632  // Visit pointee types from a permissive context.
3633#define CheckPolymorphic(Type) \
3634  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3635    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3636  }
3637  CheckPolymorphic(PointerTypeLoc)
3638  CheckPolymorphic(ReferenceTypeLoc)
3639  CheckPolymorphic(MemberPointerTypeLoc)
3640  CheckPolymorphic(BlockPointerTypeLoc)
3641  CheckPolymorphic(AtomicTypeLoc)
3642
3643  /// Handle all the types we haven't given a more specific
3644  /// implementation for above.
3645  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3646    // Every other kind of type that we haven't called out already
3647    // that has an inner type is either (1) sugar or (2) contains that
3648    // inner type in some way as a subobject.
3649    if (TypeLoc Next = TL.getNextTypeLoc())
3650      return Visit(Next, Sel);
3651
3652    // If there's no inner type and we're in a permissive context,
3653    // don't diagnose.
3654    if (Sel == Sema::AbstractNone) return;
3655
3656    // Check whether the type matches the abstract type.
3657    QualType T = TL.getType();
3658    if (T->isArrayType()) {
3659      Sel = Sema::AbstractArrayType;
3660      T = Info.S.Context.getBaseElementType(T);
3661    }
3662    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3663    if (CT != Info.AbstractType) return;
3664
3665    // It matched; do some magic.
3666    if (Sel == Sema::AbstractArrayType) {
3667      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3668        << T << TL.getSourceRange();
3669    } else {
3670      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3671        << Sel << T << TL.getSourceRange();
3672    }
3673    Info.DiagnoseAbstractType();
3674  }
3675};
3676
3677void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3678                                  Sema::AbstractDiagSelID Sel) {
3679  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3680}
3681
3682}
3683
3684/// Check for invalid uses of an abstract type in a method declaration.
3685static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3686                                    CXXMethodDecl *MD) {
3687  // No need to do the check on definitions, which require that
3688  // the return/param types be complete.
3689  if (MD->doesThisDeclarationHaveABody())
3690    return;
3691
3692  // For safety's sake, just ignore it if we don't have type source
3693  // information.  This should never happen for non-implicit methods,
3694  // but...
3695  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3696    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3697}
3698
3699/// Check for invalid uses of an abstract type within a class definition.
3700static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3701                                    CXXRecordDecl *RD) {
3702  for (CXXRecordDecl::decl_iterator
3703         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3704    Decl *D = *I;
3705    if (D->isImplicit()) continue;
3706
3707    // Methods and method templates.
3708    if (isa<CXXMethodDecl>(D)) {
3709      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3710    } else if (isa<FunctionTemplateDecl>(D)) {
3711      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3712      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3713
3714    // Fields and static variables.
3715    } else if (isa<FieldDecl>(D)) {
3716      FieldDecl *FD = cast<FieldDecl>(D);
3717      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3718        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3719    } else if (isa<VarDecl>(D)) {
3720      VarDecl *VD = cast<VarDecl>(D);
3721      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3722        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3723
3724    // Nested classes and class templates.
3725    } else if (isa<CXXRecordDecl>(D)) {
3726      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3727    } else if (isa<ClassTemplateDecl>(D)) {
3728      CheckAbstractClassUsage(Info,
3729                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3730    }
3731  }
3732}
3733
3734/// \brief Perform semantic checks on a class definition that has been
3735/// completing, introducing implicitly-declared members, checking for
3736/// abstract types, etc.
3737void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3738  if (!Record)
3739    return;
3740
3741  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3742    AbstractUsageInfo Info(*this, Record);
3743    CheckAbstractClassUsage(Info, Record);
3744  }
3745
3746  // If this is not an aggregate type and has no user-declared constructor,
3747  // complain about any non-static data members of reference or const scalar
3748  // type, since they will never get initializers.
3749  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3750      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3751      !Record->isLambda()) {
3752    bool Complained = false;
3753    for (RecordDecl::field_iterator F = Record->field_begin(),
3754                                 FEnd = Record->field_end();
3755         F != FEnd; ++F) {
3756      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3757        continue;
3758
3759      if (F->getType()->isReferenceType() ||
3760          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3761        if (!Complained) {
3762          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3763            << Record->getTagKind() << Record;
3764          Complained = true;
3765        }
3766
3767        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3768          << F->getType()->isReferenceType()
3769          << F->getDeclName();
3770      }
3771    }
3772  }
3773
3774  if (Record->isDynamicClass() && !Record->isDependentType())
3775    DynamicClasses.push_back(Record);
3776
3777  if (Record->getIdentifier()) {
3778    // C++ [class.mem]p13:
3779    //   If T is the name of a class, then each of the following shall have a
3780    //   name different from T:
3781    //     - every member of every anonymous union that is a member of class T.
3782    //
3783    // C++ [class.mem]p14:
3784    //   In addition, if class T has a user-declared constructor (12.1), every
3785    //   non-static data member of class T shall have a name different from T.
3786    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3787         R.first != R.second; ++R.first) {
3788      NamedDecl *D = *R.first;
3789      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3790          isa<IndirectFieldDecl>(D)) {
3791        Diag(D->getLocation(), diag::err_member_name_of_class)
3792          << D->getDeclName();
3793        break;
3794      }
3795    }
3796  }
3797
3798  // Warn if the class has virtual methods but non-virtual public destructor.
3799  if (Record->isPolymorphic() && !Record->isDependentType()) {
3800    CXXDestructorDecl *dtor = Record->getDestructor();
3801    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3802      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3803           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3804  }
3805
3806  // See if a method overloads virtual methods in a base
3807  /// class without overriding any.
3808  if (!Record->isDependentType()) {
3809    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3810                                     MEnd = Record->method_end();
3811         M != MEnd; ++M) {
3812      if (!M->isStatic())
3813        DiagnoseHiddenVirtualMethods(Record, *M);
3814    }
3815  }
3816
3817  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3818  // function that is not a constructor declares that member function to be
3819  // const. [...] The class of which that function is a member shall be
3820  // a literal type.
3821  //
3822  // If the class has virtual bases, any constexpr members will already have
3823  // been diagnosed by the checks performed on the member declaration, so
3824  // suppress this (less useful) diagnostic.
3825  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3826      !Record->isLiteral() && !Record->getNumVBases()) {
3827    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3828                                     MEnd = Record->method_end();
3829         M != MEnd; ++M) {
3830      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3831        switch (Record->getTemplateSpecializationKind()) {
3832        case TSK_ImplicitInstantiation:
3833        case TSK_ExplicitInstantiationDeclaration:
3834        case TSK_ExplicitInstantiationDefinition:
3835          // If a template instantiates to a non-literal type, but its members
3836          // instantiate to constexpr functions, the template is technically
3837          // ill-formed, but we allow it for sanity.
3838          continue;
3839
3840        case TSK_Undeclared:
3841        case TSK_ExplicitSpecialization:
3842          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3843                             diag::err_constexpr_method_non_literal);
3844          break;
3845        }
3846
3847        // Only produce one error per class.
3848        break;
3849      }
3850    }
3851  }
3852
3853  // Declare inherited constructors. We do this eagerly here because:
3854  // - The standard requires an eager diagnostic for conflicting inherited
3855  //   constructors from different classes.
3856  // - The lazy declaration of the other implicit constructors is so as to not
3857  //   waste space and performance on classes that are not meant to be
3858  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3859  //   have inherited constructors.
3860  DeclareInheritedConstructors(Record);
3861
3862  if (!Record->isDependentType())
3863    CheckExplicitlyDefaultedMethods(Record);
3864}
3865
3866void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3867  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3868                                      ME = Record->method_end();
3869       MI != ME; ++MI)
3870    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3871      CheckExplicitlyDefaultedSpecialMember(*MI);
3872}
3873
3874/// Is the special member function which would be selected to perform the
3875/// specified operation on the specified class type a constexpr constructor?
3876static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3877                                     Sema::CXXSpecialMember CSM,
3878                                     bool ConstArg) {
3879  Sema::SpecialMemberOverloadResult *SMOR =
3880      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3881                            false, false, false, false);
3882  if (!SMOR || !SMOR->getMethod())
3883    // A constructor we wouldn't select can't be "involved in initializing"
3884    // anything.
3885    return true;
3886  return SMOR->getMethod()->isConstexpr();
3887}
3888
3889/// Determine whether the specified special member function would be constexpr
3890/// if it were implicitly defined.
3891static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3892                                              Sema::CXXSpecialMember CSM,
3893                                              bool ConstArg) {
3894  if (!S.getLangOpts().CPlusPlus0x)
3895    return false;
3896
3897  // C++11 [dcl.constexpr]p4:
3898  // In the definition of a constexpr constructor [...]
3899  switch (CSM) {
3900  case Sema::CXXDefaultConstructor:
3901    // Since default constructor lookup is essentially trivial (and cannot
3902    // involve, for instance, template instantiation), we compute whether a
3903    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3904    //
3905    // This is important for performance; we need to know whether the default
3906    // constructor is constexpr to determine whether the type is a literal type.
3907    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3908
3909  case Sema::CXXCopyConstructor:
3910  case Sema::CXXMoveConstructor:
3911    // For copy or move constructors, we need to perform overload resolution.
3912    break;
3913
3914  case Sema::CXXCopyAssignment:
3915  case Sema::CXXMoveAssignment:
3916  case Sema::CXXDestructor:
3917  case Sema::CXXInvalid:
3918    return false;
3919  }
3920
3921  //   -- if the class is a non-empty union, or for each non-empty anonymous
3922  //      union member of a non-union class, exactly one non-static data member
3923  //      shall be initialized; [DR1359]
3924  //
3925  // If we squint, this is guaranteed, since exactly one non-static data member
3926  // will be initialized (if the constructor isn't deleted), we just don't know
3927  // which one.
3928  if (ClassDecl->isUnion())
3929    return true;
3930
3931  //   -- the class shall not have any virtual base classes;
3932  if (ClassDecl->getNumVBases())
3933    return false;
3934
3935  //   -- every constructor involved in initializing [...] base class
3936  //      sub-objects shall be a constexpr constructor;
3937  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3938                                       BEnd = ClassDecl->bases_end();
3939       B != BEnd; ++B) {
3940    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3941    if (!BaseType) continue;
3942
3943    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3944    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3945      return false;
3946  }
3947
3948  //   -- every constructor involved in initializing non-static data members
3949  //      [...] shall be a constexpr constructor;
3950  //   -- every non-static data member and base class sub-object shall be
3951  //      initialized
3952  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3953                               FEnd = ClassDecl->field_end();
3954       F != FEnd; ++F) {
3955    if (F->isInvalidDecl())
3956      continue;
3957    if (const RecordType *RecordTy =
3958            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3959      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3960      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3961        return false;
3962    }
3963  }
3964
3965  // All OK, it's constexpr!
3966  return true;
3967}
3968
3969void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
3970  CXXRecordDecl *RD = MD->getParent();
3971  CXXSpecialMember CSM = getSpecialMember(MD);
3972
3973  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
3974         "not an explicitly-defaulted special member");
3975
3976  // Whether this was the first-declared instance of the constructor.
3977  // This affects whether we implicitly add an exception spec and constexpr.
3978  bool First = MD == MD->getCanonicalDecl();
3979
3980  bool HadError = false;
3981
3982  // C++11 [dcl.fct.def.default]p1:
3983  //   A function that is explicitly defaulted shall
3984  //     -- be a special member function (checked elsewhere),
3985  //     -- have the same type (except for ref-qualifiers, and except that a
3986  //        copy operation can take a non-const reference) as an implicit
3987  //        declaration, and
3988  //     -- not have default arguments.
3989  unsigned ExpectedParams = 1;
3990  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
3991    ExpectedParams = 0;
3992  if (MD->getNumParams() != ExpectedParams) {
3993    // This also checks for default arguments: a copy or move constructor with a
3994    // default argument is classified as a default constructor, and assignment
3995    // operations and destructors can't have default arguments.
3996    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
3997      << CSM << MD->getSourceRange();
3998    HadError = true;
3999  }
4000
4001  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4002
4003  // Compute implicit exception specification, argument constness, constexpr
4004  // and triviality.
4005  ImplicitExceptionSpecification Spec(*this);
4006  bool CanHaveConstParam = false;
4007  bool Trivial;
4008  switch (CSM) {
4009  case CXXDefaultConstructor:
4010    Spec = ComputeDefaultedDefaultCtorExceptionSpec(RD);
4011    if (Spec.isDelayed())
4012      // Exception specification depends on some deferred part of the class.
4013      // We'll try again when the class's definition has been fully processed.
4014      return;
4015    Trivial = RD->hasTrivialDefaultConstructor();
4016    break;
4017  case CXXCopyConstructor:
4018    llvm::tie(Spec, CanHaveConstParam) =
4019      ComputeDefaultedCopyCtorExceptionSpecAndConst(RD);
4020    Trivial = RD->hasTrivialCopyConstructor();
4021    break;
4022  case CXXCopyAssignment:
4023    llvm::tie(Spec, CanHaveConstParam) =
4024      ComputeDefaultedCopyAssignmentExceptionSpecAndConst(RD);
4025    Trivial = RD->hasTrivialCopyAssignment();
4026    break;
4027  case CXXMoveConstructor:
4028    Spec = ComputeDefaultedMoveCtorExceptionSpec(RD);
4029    Trivial = RD->hasTrivialMoveConstructor();
4030    break;
4031  case CXXMoveAssignment:
4032    Spec = ComputeDefaultedMoveAssignmentExceptionSpec(RD);
4033    Trivial = RD->hasTrivialMoveAssignment();
4034    break;
4035  case CXXDestructor:
4036    Spec = ComputeDefaultedDtorExceptionSpec(RD);
4037    Trivial = RD->hasTrivialDestructor();
4038    break;
4039  case CXXInvalid:
4040    llvm_unreachable("non-special member explicitly defaulted!");
4041  }
4042
4043  QualType ReturnType = Context.VoidTy;
4044  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4045    // Check for return type matching.
4046    ReturnType = Type->getResultType();
4047    QualType ExpectedReturnType =
4048        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4049    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4050      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4051        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4052      HadError = true;
4053    }
4054
4055    // A defaulted special member cannot have cv-qualifiers.
4056    if (Type->getTypeQuals()) {
4057      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4058        << (CSM == CXXMoveAssignment);
4059      HadError = true;
4060    }
4061  }
4062
4063  // Check for parameter type matching.
4064  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4065  bool HasConstParam = false;
4066  if (ExpectedParams && ArgType->isReferenceType()) {
4067    // Argument must be reference to possibly-const T.
4068    QualType ReferentType = ArgType->getPointeeType();
4069    HasConstParam = ReferentType.isConstQualified();
4070
4071    if (ReferentType.isVolatileQualified()) {
4072      Diag(MD->getLocation(),
4073           diag::err_defaulted_special_member_volatile_param) << CSM;
4074      HadError = true;
4075    }
4076
4077    if (HasConstParam && !CanHaveConstParam) {
4078      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4079        Diag(MD->getLocation(),
4080             diag::err_defaulted_special_member_copy_const_param)
4081          << (CSM == CXXCopyAssignment);
4082        // FIXME: Explain why this special member can't be const.
4083      } else {
4084        Diag(MD->getLocation(),
4085             diag::err_defaulted_special_member_move_const_param)
4086          << (CSM == CXXMoveAssignment);
4087      }
4088      HadError = true;
4089    }
4090
4091    // If a function is explicitly defaulted on its first declaration, it shall
4092    // have the same parameter type as if it had been implicitly declared.
4093    // (Presumably this is to prevent it from being trivial?)
4094    if (!HasConstParam && CanHaveConstParam && First)
4095      Diag(MD->getLocation(),
4096           diag::err_defaulted_special_member_copy_non_const_param)
4097        << (CSM == CXXCopyAssignment);
4098  } else if (ExpectedParams) {
4099    // A copy assignment operator can take its argument by value, but a
4100    // defaulted one cannot.
4101    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4102    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4103    HadError = true;
4104  }
4105
4106  // Rebuild the type with the implicit exception specification added.
4107  FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4108  Spec.getEPI(EPI);
4109  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4110    Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4111
4112  // C++11 [dcl.fct.def.default]p2:
4113  //   An explicitly-defaulted function may be declared constexpr only if it
4114  //   would have been implicitly declared as constexpr,
4115  // Do not apply this rule to members of class templates, since core issue 1358
4116  // makes such functions always instantiate to constexpr functions. For
4117  // non-constructors, this is checked elsewhere.
4118  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4119                                                     HasConstParam);
4120  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4121      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4122    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4123    // FIXME: Explain why the constructor can't be constexpr.
4124    HadError = true;
4125  }
4126  //   and may have an explicit exception-specification only if it is compatible
4127  //   with the exception-specification on the implicit declaration.
4128  if (Type->hasExceptionSpec() &&
4129      CheckEquivalentExceptionSpec(
4130        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4131        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4132    HadError = true;
4133
4134  //   If a function is explicitly defaulted on its first declaration,
4135  if (First) {
4136    //  -- it is implicitly considered to be constexpr if the implicit
4137    //     definition would be,
4138    MD->setConstexpr(Constexpr);
4139
4140    //  -- it is implicitly considered to have the same exception-specification
4141    //     as if it had been implicitly declared,
4142    MD->setType(QualType(ImplicitType, 0));
4143
4144    // Such a function is also trivial if the implicitly-declared function
4145    // would have been.
4146    MD->setTrivial(Trivial);
4147  }
4148
4149  if (ShouldDeleteSpecialMember(MD, CSM)) {
4150    if (First) {
4151      MD->setDeletedAsWritten();
4152    } else {
4153      // C++11 [dcl.fct.def.default]p4:
4154      //   [For a] user-provided explicitly-defaulted function [...] if such a
4155      //   function is implicitly defined as deleted, the program is ill-formed.
4156      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4157      HadError = true;
4158    }
4159  }
4160
4161  if (HadError)
4162    MD->setInvalidDecl();
4163}
4164
4165namespace {
4166struct SpecialMemberDeletionInfo {
4167  Sema &S;
4168  CXXMethodDecl *MD;
4169  Sema::CXXSpecialMember CSM;
4170  bool Diagnose;
4171
4172  // Properties of the special member, computed for convenience.
4173  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4174  SourceLocation Loc;
4175
4176  bool AllFieldsAreConst;
4177
4178  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4179                            Sema::CXXSpecialMember CSM, bool Diagnose)
4180    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4181      IsConstructor(false), IsAssignment(false), IsMove(false),
4182      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4183      AllFieldsAreConst(true) {
4184    switch (CSM) {
4185      case Sema::CXXDefaultConstructor:
4186      case Sema::CXXCopyConstructor:
4187        IsConstructor = true;
4188        break;
4189      case Sema::CXXMoveConstructor:
4190        IsConstructor = true;
4191        IsMove = true;
4192        break;
4193      case Sema::CXXCopyAssignment:
4194        IsAssignment = true;
4195        break;
4196      case Sema::CXXMoveAssignment:
4197        IsAssignment = true;
4198        IsMove = true;
4199        break;
4200      case Sema::CXXDestructor:
4201        break;
4202      case Sema::CXXInvalid:
4203        llvm_unreachable("invalid special member kind");
4204    }
4205
4206    if (MD->getNumParams()) {
4207      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4208      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4209    }
4210  }
4211
4212  bool inUnion() const { return MD->getParent()->isUnion(); }
4213
4214  /// Look up the corresponding special member in the given class.
4215  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4216    unsigned TQ = MD->getTypeQualifiers();
4217    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4218                                 MD->getRefQualifier() == RQ_RValue,
4219                                 TQ & Qualifiers::Const,
4220                                 TQ & Qualifiers::Volatile);
4221  }
4222
4223  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4224
4225  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4226  bool shouldDeleteForField(FieldDecl *FD);
4227  bool shouldDeleteForAllConstMembers();
4228
4229  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4230  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4231                                    Sema::SpecialMemberOverloadResult *SMOR,
4232                                    bool IsDtorCallInCtor);
4233
4234  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4235};
4236}
4237
4238/// Is the given special member inaccessible when used on the given
4239/// sub-object.
4240bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4241                                             CXXMethodDecl *target) {
4242  /// If we're operating on a base class, the object type is the
4243  /// type of this special member.
4244  QualType objectTy;
4245  AccessSpecifier access = target->getAccess();;
4246  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4247    objectTy = S.Context.getTypeDeclType(MD->getParent());
4248    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4249
4250  // If we're operating on a field, the object type is the type of the field.
4251  } else {
4252    objectTy = S.Context.getTypeDeclType(target->getParent());
4253  }
4254
4255  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4256}
4257
4258/// Check whether we should delete a special member due to the implicit
4259/// definition containing a call to a special member of a subobject.
4260bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4261    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4262    bool IsDtorCallInCtor) {
4263  CXXMethodDecl *Decl = SMOR->getMethod();
4264  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4265
4266  int DiagKind = -1;
4267
4268  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4269    DiagKind = !Decl ? 0 : 1;
4270  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4271    DiagKind = 2;
4272  else if (!isAccessible(Subobj, Decl))
4273    DiagKind = 3;
4274  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4275           !Decl->isTrivial()) {
4276    // A member of a union must have a trivial corresponding special member.
4277    // As a weird special case, a destructor call from a union's constructor
4278    // must be accessible and non-deleted, but need not be trivial. Such a
4279    // destructor is never actually called, but is semantically checked as
4280    // if it were.
4281    DiagKind = 4;
4282  }
4283
4284  if (DiagKind == -1)
4285    return false;
4286
4287  if (Diagnose) {
4288    if (Field) {
4289      S.Diag(Field->getLocation(),
4290             diag::note_deleted_special_member_class_subobject)
4291        << CSM << MD->getParent() << /*IsField*/true
4292        << Field << DiagKind << IsDtorCallInCtor;
4293    } else {
4294      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4295      S.Diag(Base->getLocStart(),
4296             diag::note_deleted_special_member_class_subobject)
4297        << CSM << MD->getParent() << /*IsField*/false
4298        << Base->getType() << DiagKind << IsDtorCallInCtor;
4299    }
4300
4301    if (DiagKind == 1)
4302      S.NoteDeletedFunction(Decl);
4303    // FIXME: Explain inaccessibility if DiagKind == 3.
4304  }
4305
4306  return true;
4307}
4308
4309/// Check whether we should delete a special member function due to having a
4310/// direct or virtual base class or static data member of class type M.
4311bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4312    CXXRecordDecl *Class, Subobject Subobj) {
4313  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4314
4315  // C++11 [class.ctor]p5:
4316  // -- any direct or virtual base class, or non-static data member with no
4317  //    brace-or-equal-initializer, has class type M (or array thereof) and
4318  //    either M has no default constructor or overload resolution as applied
4319  //    to M's default constructor results in an ambiguity or in a function
4320  //    that is deleted or inaccessible
4321  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4322  // -- a direct or virtual base class B that cannot be copied/moved because
4323  //    overload resolution, as applied to B's corresponding special member,
4324  //    results in an ambiguity or a function that is deleted or inaccessible
4325  //    from the defaulted special member
4326  // C++11 [class.dtor]p5:
4327  // -- any direct or virtual base class [...] has a type with a destructor
4328  //    that is deleted or inaccessible
4329  if (!(CSM == Sema::CXXDefaultConstructor &&
4330        Field && Field->hasInClassInitializer()) &&
4331      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4332    return true;
4333
4334  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4335  // -- any direct or virtual base class or non-static data member has a
4336  //    type with a destructor that is deleted or inaccessible
4337  if (IsConstructor) {
4338    Sema::SpecialMemberOverloadResult *SMOR =
4339        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4340                              false, false, false, false, false);
4341    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4342      return true;
4343  }
4344
4345  return false;
4346}
4347
4348/// Check whether we should delete a special member function due to the class
4349/// having a particular direct or virtual base class.
4350bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4351  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4352  return shouldDeleteForClassSubobject(BaseClass, Base);
4353}
4354
4355/// Check whether we should delete a special member function due to the class
4356/// having a particular non-static data member.
4357bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4358  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4359  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4360
4361  if (CSM == Sema::CXXDefaultConstructor) {
4362    // For a default constructor, all references must be initialized in-class
4363    // and, if a union, it must have a non-const member.
4364    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4365      if (Diagnose)
4366        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4367          << MD->getParent() << FD << FieldType << /*Reference*/0;
4368      return true;
4369    }
4370    // C++11 [class.ctor]p5: any non-variant non-static data member of
4371    // const-qualified type (or array thereof) with no
4372    // brace-or-equal-initializer does not have a user-provided default
4373    // constructor.
4374    if (!inUnion() && FieldType.isConstQualified() &&
4375        !FD->hasInClassInitializer() &&
4376        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4377      if (Diagnose)
4378        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4379          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4380      return true;
4381    }
4382
4383    if (inUnion() && !FieldType.isConstQualified())
4384      AllFieldsAreConst = false;
4385  } else if (CSM == Sema::CXXCopyConstructor) {
4386    // For a copy constructor, data members must not be of rvalue reference
4387    // type.
4388    if (FieldType->isRValueReferenceType()) {
4389      if (Diagnose)
4390        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4391          << MD->getParent() << FD << FieldType;
4392      return true;
4393    }
4394  } else if (IsAssignment) {
4395    // For an assignment operator, data members must not be of reference type.
4396    if (FieldType->isReferenceType()) {
4397      if (Diagnose)
4398        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4399          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4400      return true;
4401    }
4402    if (!FieldRecord && FieldType.isConstQualified()) {
4403      // C++11 [class.copy]p23:
4404      // -- a non-static data member of const non-class type (or array thereof)
4405      if (Diagnose)
4406        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4407          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4408      return true;
4409    }
4410  }
4411
4412  if (FieldRecord) {
4413    // Some additional restrictions exist on the variant members.
4414    if (!inUnion() && FieldRecord->isUnion() &&
4415        FieldRecord->isAnonymousStructOrUnion()) {
4416      bool AllVariantFieldsAreConst = true;
4417
4418      // FIXME: Handle anonymous unions declared within anonymous unions.
4419      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4420                                         UE = FieldRecord->field_end();
4421           UI != UE; ++UI) {
4422        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4423
4424        if (!UnionFieldType.isConstQualified())
4425          AllVariantFieldsAreConst = false;
4426
4427        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4428        if (UnionFieldRecord &&
4429            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4430          return true;
4431      }
4432
4433      // At least one member in each anonymous union must be non-const
4434      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4435          FieldRecord->field_begin() != FieldRecord->field_end()) {
4436        if (Diagnose)
4437          S.Diag(FieldRecord->getLocation(),
4438                 diag::note_deleted_default_ctor_all_const)
4439            << MD->getParent() << /*anonymous union*/1;
4440        return true;
4441      }
4442
4443      // Don't check the implicit member of the anonymous union type.
4444      // This is technically non-conformant, but sanity demands it.
4445      return false;
4446    }
4447
4448    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4449      return true;
4450  }
4451
4452  return false;
4453}
4454
4455/// C++11 [class.ctor] p5:
4456///   A defaulted default constructor for a class X is defined as deleted if
4457/// X is a union and all of its variant members are of const-qualified type.
4458bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4459  // This is a silly definition, because it gives an empty union a deleted
4460  // default constructor. Don't do that.
4461  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4462      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4463    if (Diagnose)
4464      S.Diag(MD->getParent()->getLocation(),
4465             diag::note_deleted_default_ctor_all_const)
4466        << MD->getParent() << /*not anonymous union*/0;
4467    return true;
4468  }
4469  return false;
4470}
4471
4472/// Determine whether a defaulted special member function should be defined as
4473/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4474/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4475bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4476                                     bool Diagnose) {
4477  assert(!MD->isInvalidDecl());
4478  CXXRecordDecl *RD = MD->getParent();
4479  assert(!RD->isDependentType() && "do deletion after instantiation");
4480  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4481    return false;
4482
4483  // C++11 [expr.lambda.prim]p19:
4484  //   The closure type associated with a lambda-expression has a
4485  //   deleted (8.4.3) default constructor and a deleted copy
4486  //   assignment operator.
4487  if (RD->isLambda() &&
4488      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4489    if (Diagnose)
4490      Diag(RD->getLocation(), diag::note_lambda_decl);
4491    return true;
4492  }
4493
4494  // For an anonymous struct or union, the copy and assignment special members
4495  // will never be used, so skip the check. For an anonymous union declared at
4496  // namespace scope, the constructor and destructor are used.
4497  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4498      RD->isAnonymousStructOrUnion())
4499    return false;
4500
4501  // C++11 [class.copy]p7, p18:
4502  //   If the class definition declares a move constructor or move assignment
4503  //   operator, an implicitly declared copy constructor or copy assignment
4504  //   operator is defined as deleted.
4505  if (MD->isImplicit() &&
4506      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4507    CXXMethodDecl *UserDeclaredMove = 0;
4508
4509    // In Microsoft mode, a user-declared move only causes the deletion of the
4510    // corresponding copy operation, not both copy operations.
4511    if (RD->hasUserDeclaredMoveConstructor() &&
4512        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4513      if (!Diagnose) return true;
4514      UserDeclaredMove = RD->getMoveConstructor();
4515      assert(UserDeclaredMove);
4516    } else if (RD->hasUserDeclaredMoveAssignment() &&
4517               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4518      if (!Diagnose) return true;
4519      UserDeclaredMove = RD->getMoveAssignmentOperator();
4520      assert(UserDeclaredMove);
4521    }
4522
4523    if (UserDeclaredMove) {
4524      Diag(UserDeclaredMove->getLocation(),
4525           diag::note_deleted_copy_user_declared_move)
4526        << (CSM == CXXCopyAssignment) << RD
4527        << UserDeclaredMove->isMoveAssignmentOperator();
4528      return true;
4529    }
4530  }
4531
4532  // Do access control from the special member function
4533  ContextRAII MethodContext(*this, MD);
4534
4535  // C++11 [class.dtor]p5:
4536  // -- for a virtual destructor, lookup of the non-array deallocation function
4537  //    results in an ambiguity or in a function that is deleted or inaccessible
4538  if (CSM == CXXDestructor && MD->isVirtual()) {
4539    FunctionDecl *OperatorDelete = 0;
4540    DeclarationName Name =
4541      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4542    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4543                                 OperatorDelete, false)) {
4544      if (Diagnose)
4545        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4546      return true;
4547    }
4548  }
4549
4550  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4551
4552  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4553                                          BE = RD->bases_end(); BI != BE; ++BI)
4554    if (!BI->isVirtual() &&
4555        SMI.shouldDeleteForBase(BI))
4556      return true;
4557
4558  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4559                                          BE = RD->vbases_end(); BI != BE; ++BI)
4560    if (SMI.shouldDeleteForBase(BI))
4561      return true;
4562
4563  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4564                                     FE = RD->field_end(); FI != FE; ++FI)
4565    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4566        SMI.shouldDeleteForField(*FI))
4567      return true;
4568
4569  if (SMI.shouldDeleteForAllConstMembers())
4570    return true;
4571
4572  return false;
4573}
4574
4575/// \brief Data used with FindHiddenVirtualMethod
4576namespace {
4577  struct FindHiddenVirtualMethodData {
4578    Sema *S;
4579    CXXMethodDecl *Method;
4580    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4581    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4582  };
4583}
4584
4585/// \brief Member lookup function that determines whether a given C++
4586/// method overloads virtual methods in a base class without overriding any,
4587/// to be used with CXXRecordDecl::lookupInBases().
4588static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4589                                    CXXBasePath &Path,
4590                                    void *UserData) {
4591  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4592
4593  FindHiddenVirtualMethodData &Data
4594    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4595
4596  DeclarationName Name = Data.Method->getDeclName();
4597  assert(Name.getNameKind() == DeclarationName::Identifier);
4598
4599  bool foundSameNameMethod = false;
4600  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4601  for (Path.Decls = BaseRecord->lookup(Name);
4602       Path.Decls.first != Path.Decls.second;
4603       ++Path.Decls.first) {
4604    NamedDecl *D = *Path.Decls.first;
4605    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4606      MD = MD->getCanonicalDecl();
4607      foundSameNameMethod = true;
4608      // Interested only in hidden virtual methods.
4609      if (!MD->isVirtual())
4610        continue;
4611      // If the method we are checking overrides a method from its base
4612      // don't warn about the other overloaded methods.
4613      if (!Data.S->IsOverload(Data.Method, MD, false))
4614        return true;
4615      // Collect the overload only if its hidden.
4616      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4617        overloadedMethods.push_back(MD);
4618    }
4619  }
4620
4621  if (foundSameNameMethod)
4622    Data.OverloadedMethods.append(overloadedMethods.begin(),
4623                                   overloadedMethods.end());
4624  return foundSameNameMethod;
4625}
4626
4627/// \brief See if a method overloads virtual methods in a base class without
4628/// overriding any.
4629void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4630  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4631                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4632    return;
4633  if (!MD->getDeclName().isIdentifier())
4634    return;
4635
4636  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4637                     /*bool RecordPaths=*/false,
4638                     /*bool DetectVirtual=*/false);
4639  FindHiddenVirtualMethodData Data;
4640  Data.Method = MD;
4641  Data.S = this;
4642
4643  // Keep the base methods that were overriden or introduced in the subclass
4644  // by 'using' in a set. A base method not in this set is hidden.
4645  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4646       res.first != res.second; ++res.first) {
4647    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4648      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4649                                          E = MD->end_overridden_methods();
4650           I != E; ++I)
4651        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4652    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4653      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4654        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4655  }
4656
4657  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4658      !Data.OverloadedMethods.empty()) {
4659    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4660      << MD << (Data.OverloadedMethods.size() > 1);
4661
4662    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4663      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4664      Diag(overloadedMD->getLocation(),
4665           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4666    }
4667  }
4668}
4669
4670void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4671                                             Decl *TagDecl,
4672                                             SourceLocation LBrac,
4673                                             SourceLocation RBrac,
4674                                             AttributeList *AttrList) {
4675  if (!TagDecl)
4676    return;
4677
4678  AdjustDeclIfTemplate(TagDecl);
4679
4680  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4681              // strict aliasing violation!
4682              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4683              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4684
4685  CheckCompletedCXXClass(
4686                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4687}
4688
4689/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4690/// special functions, such as the default constructor, copy
4691/// constructor, or destructor, to the given C++ class (C++
4692/// [special]p1).  This routine can only be executed just before the
4693/// definition of the class is complete.
4694void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4695  if (!ClassDecl->hasUserDeclaredConstructor())
4696    ++ASTContext::NumImplicitDefaultConstructors;
4697
4698  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4699    ++ASTContext::NumImplicitCopyConstructors;
4700
4701  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4702    ++ASTContext::NumImplicitMoveConstructors;
4703
4704  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4705    ++ASTContext::NumImplicitCopyAssignmentOperators;
4706
4707    // If we have a dynamic class, then the copy assignment operator may be
4708    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4709    // it shows up in the right place in the vtable and that we diagnose
4710    // problems with the implicit exception specification.
4711    if (ClassDecl->isDynamicClass())
4712      DeclareImplicitCopyAssignment(ClassDecl);
4713  }
4714
4715  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4716    ++ASTContext::NumImplicitMoveAssignmentOperators;
4717
4718    // Likewise for the move assignment operator.
4719    if (ClassDecl->isDynamicClass())
4720      DeclareImplicitMoveAssignment(ClassDecl);
4721  }
4722
4723  if (!ClassDecl->hasUserDeclaredDestructor()) {
4724    ++ASTContext::NumImplicitDestructors;
4725
4726    // If we have a dynamic class, then the destructor may be virtual, so we
4727    // have to declare the destructor immediately. This ensures that, e.g., it
4728    // shows up in the right place in the vtable and that we diagnose problems
4729    // with the implicit exception specification.
4730    if (ClassDecl->isDynamicClass())
4731      DeclareImplicitDestructor(ClassDecl);
4732  }
4733}
4734
4735void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4736  if (!D)
4737    return;
4738
4739  int NumParamList = D->getNumTemplateParameterLists();
4740  for (int i = 0; i < NumParamList; i++) {
4741    TemplateParameterList* Params = D->getTemplateParameterList(i);
4742    for (TemplateParameterList::iterator Param = Params->begin(),
4743                                      ParamEnd = Params->end();
4744          Param != ParamEnd; ++Param) {
4745      NamedDecl *Named = cast<NamedDecl>(*Param);
4746      if (Named->getDeclName()) {
4747        S->AddDecl(Named);
4748        IdResolver.AddDecl(Named);
4749      }
4750    }
4751  }
4752}
4753
4754void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4755  if (!D)
4756    return;
4757
4758  TemplateParameterList *Params = 0;
4759  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4760    Params = Template->getTemplateParameters();
4761  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4762           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4763    Params = PartialSpec->getTemplateParameters();
4764  else
4765    return;
4766
4767  for (TemplateParameterList::iterator Param = Params->begin(),
4768                                    ParamEnd = Params->end();
4769       Param != ParamEnd; ++Param) {
4770    NamedDecl *Named = cast<NamedDecl>(*Param);
4771    if (Named->getDeclName()) {
4772      S->AddDecl(Named);
4773      IdResolver.AddDecl(Named);
4774    }
4775  }
4776}
4777
4778void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4779  if (!RecordD) return;
4780  AdjustDeclIfTemplate(RecordD);
4781  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4782  PushDeclContext(S, Record);
4783}
4784
4785void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4786  if (!RecordD) return;
4787  PopDeclContext();
4788}
4789
4790/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4791/// parsing a top-level (non-nested) C++ class, and we are now
4792/// parsing those parts of the given Method declaration that could
4793/// not be parsed earlier (C++ [class.mem]p2), such as default
4794/// arguments. This action should enter the scope of the given
4795/// Method declaration as if we had just parsed the qualified method
4796/// name. However, it should not bring the parameters into scope;
4797/// that will be performed by ActOnDelayedCXXMethodParameter.
4798void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4799}
4800
4801/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4802/// C++ method declaration. We're (re-)introducing the given
4803/// function parameter into scope for use in parsing later parts of
4804/// the method declaration. For example, we could see an
4805/// ActOnParamDefaultArgument event for this parameter.
4806void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4807  if (!ParamD)
4808    return;
4809
4810  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4811
4812  // If this parameter has an unparsed default argument, clear it out
4813  // to make way for the parsed default argument.
4814  if (Param->hasUnparsedDefaultArg())
4815    Param->setDefaultArg(0);
4816
4817  S->AddDecl(Param);
4818  if (Param->getDeclName())
4819    IdResolver.AddDecl(Param);
4820}
4821
4822/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4823/// processing the delayed method declaration for Method. The method
4824/// declaration is now considered finished. There may be a separate
4825/// ActOnStartOfFunctionDef action later (not necessarily
4826/// immediately!) for this method, if it was also defined inside the
4827/// class body.
4828void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4829  if (!MethodD)
4830    return;
4831
4832  AdjustDeclIfTemplate(MethodD);
4833
4834  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4835
4836  // Now that we have our default arguments, check the constructor
4837  // again. It could produce additional diagnostics or affect whether
4838  // the class has implicitly-declared destructors, among other
4839  // things.
4840  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4841    CheckConstructor(Constructor);
4842
4843  // Check the default arguments, which we may have added.
4844  if (!Method->isInvalidDecl())
4845    CheckCXXDefaultArguments(Method);
4846}
4847
4848/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4849/// the well-formedness of the constructor declarator @p D with type @p
4850/// R. If there are any errors in the declarator, this routine will
4851/// emit diagnostics and set the invalid bit to true.  In any case, the type
4852/// will be updated to reflect a well-formed type for the constructor and
4853/// returned.
4854QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4855                                          StorageClass &SC) {
4856  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4857
4858  // C++ [class.ctor]p3:
4859  //   A constructor shall not be virtual (10.3) or static (9.4). A
4860  //   constructor can be invoked for a const, volatile or const
4861  //   volatile object. A constructor shall not be declared const,
4862  //   volatile, or const volatile (9.3.2).
4863  if (isVirtual) {
4864    if (!D.isInvalidType())
4865      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4866        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4867        << SourceRange(D.getIdentifierLoc());
4868    D.setInvalidType();
4869  }
4870  if (SC == SC_Static) {
4871    if (!D.isInvalidType())
4872      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4873        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4874        << SourceRange(D.getIdentifierLoc());
4875    D.setInvalidType();
4876    SC = SC_None;
4877  }
4878
4879  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4880  if (FTI.TypeQuals != 0) {
4881    if (FTI.TypeQuals & Qualifiers::Const)
4882      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4883        << "const" << SourceRange(D.getIdentifierLoc());
4884    if (FTI.TypeQuals & Qualifiers::Volatile)
4885      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4886        << "volatile" << SourceRange(D.getIdentifierLoc());
4887    if (FTI.TypeQuals & Qualifiers::Restrict)
4888      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4889        << "restrict" << SourceRange(D.getIdentifierLoc());
4890    D.setInvalidType();
4891  }
4892
4893  // C++0x [class.ctor]p4:
4894  //   A constructor shall not be declared with a ref-qualifier.
4895  if (FTI.hasRefQualifier()) {
4896    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4897      << FTI.RefQualifierIsLValueRef
4898      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4899    D.setInvalidType();
4900  }
4901
4902  // Rebuild the function type "R" without any type qualifiers (in
4903  // case any of the errors above fired) and with "void" as the
4904  // return type, since constructors don't have return types.
4905  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4906  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4907    return R;
4908
4909  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4910  EPI.TypeQuals = 0;
4911  EPI.RefQualifier = RQ_None;
4912
4913  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4914                                 Proto->getNumArgs(), EPI);
4915}
4916
4917/// CheckConstructor - Checks a fully-formed constructor for
4918/// well-formedness, issuing any diagnostics required. Returns true if
4919/// the constructor declarator is invalid.
4920void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4921  CXXRecordDecl *ClassDecl
4922    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4923  if (!ClassDecl)
4924    return Constructor->setInvalidDecl();
4925
4926  // C++ [class.copy]p3:
4927  //   A declaration of a constructor for a class X is ill-formed if
4928  //   its first parameter is of type (optionally cv-qualified) X and
4929  //   either there are no other parameters or else all other
4930  //   parameters have default arguments.
4931  if (!Constructor->isInvalidDecl() &&
4932      ((Constructor->getNumParams() == 1) ||
4933       (Constructor->getNumParams() > 1 &&
4934        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4935      Constructor->getTemplateSpecializationKind()
4936                                              != TSK_ImplicitInstantiation) {
4937    QualType ParamType = Constructor->getParamDecl(0)->getType();
4938    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4939    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4940      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4941      const char *ConstRef
4942        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4943                                                        : " const &";
4944      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4945        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4946
4947      // FIXME: Rather that making the constructor invalid, we should endeavor
4948      // to fix the type.
4949      Constructor->setInvalidDecl();
4950    }
4951  }
4952}
4953
4954/// CheckDestructor - Checks a fully-formed destructor definition for
4955/// well-formedness, issuing any diagnostics required.  Returns true
4956/// on error.
4957bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4958  CXXRecordDecl *RD = Destructor->getParent();
4959
4960  if (Destructor->isVirtual()) {
4961    SourceLocation Loc;
4962
4963    if (!Destructor->isImplicit())
4964      Loc = Destructor->getLocation();
4965    else
4966      Loc = RD->getLocation();
4967
4968    // If we have a virtual destructor, look up the deallocation function
4969    FunctionDecl *OperatorDelete = 0;
4970    DeclarationName Name =
4971    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4972    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4973      return true;
4974
4975    MarkFunctionReferenced(Loc, OperatorDelete);
4976
4977    Destructor->setOperatorDelete(OperatorDelete);
4978  }
4979
4980  return false;
4981}
4982
4983static inline bool
4984FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4985  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4986          FTI.ArgInfo[0].Param &&
4987          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4988}
4989
4990/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4991/// the well-formednes of the destructor declarator @p D with type @p
4992/// R. If there are any errors in the declarator, this routine will
4993/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4994/// will be updated to reflect a well-formed type for the destructor and
4995/// returned.
4996QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4997                                         StorageClass& SC) {
4998  // C++ [class.dtor]p1:
4999  //   [...] A typedef-name that names a class is a class-name
5000  //   (7.1.3); however, a typedef-name that names a class shall not
5001  //   be used as the identifier in the declarator for a destructor
5002  //   declaration.
5003  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5004  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5005    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5006      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5007  else if (const TemplateSpecializationType *TST =
5008             DeclaratorType->getAs<TemplateSpecializationType>())
5009    if (TST->isTypeAlias())
5010      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5011        << DeclaratorType << 1;
5012
5013  // C++ [class.dtor]p2:
5014  //   A destructor is used to destroy objects of its class type. A
5015  //   destructor takes no parameters, and no return type can be
5016  //   specified for it (not even void). The address of a destructor
5017  //   shall not be taken. A destructor shall not be static. A
5018  //   destructor can be invoked for a const, volatile or const
5019  //   volatile object. A destructor shall not be declared const,
5020  //   volatile or const volatile (9.3.2).
5021  if (SC == SC_Static) {
5022    if (!D.isInvalidType())
5023      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5024        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5025        << SourceRange(D.getIdentifierLoc())
5026        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5027
5028    SC = SC_None;
5029  }
5030  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5031    // Destructors don't have return types, but the parser will
5032    // happily parse something like:
5033    //
5034    //   class X {
5035    //     float ~X();
5036    //   };
5037    //
5038    // The return type will be eliminated later.
5039    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5040      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5041      << SourceRange(D.getIdentifierLoc());
5042  }
5043
5044  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5045  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5046    if (FTI.TypeQuals & Qualifiers::Const)
5047      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5048        << "const" << SourceRange(D.getIdentifierLoc());
5049    if (FTI.TypeQuals & Qualifiers::Volatile)
5050      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5051        << "volatile" << SourceRange(D.getIdentifierLoc());
5052    if (FTI.TypeQuals & Qualifiers::Restrict)
5053      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5054        << "restrict" << SourceRange(D.getIdentifierLoc());
5055    D.setInvalidType();
5056  }
5057
5058  // C++0x [class.dtor]p2:
5059  //   A destructor shall not be declared with a ref-qualifier.
5060  if (FTI.hasRefQualifier()) {
5061    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5062      << FTI.RefQualifierIsLValueRef
5063      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5064    D.setInvalidType();
5065  }
5066
5067  // Make sure we don't have any parameters.
5068  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5069    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5070
5071    // Delete the parameters.
5072    FTI.freeArgs();
5073    D.setInvalidType();
5074  }
5075
5076  // Make sure the destructor isn't variadic.
5077  if (FTI.isVariadic) {
5078    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5079    D.setInvalidType();
5080  }
5081
5082  // Rebuild the function type "R" without any type qualifiers or
5083  // parameters (in case any of the errors above fired) and with
5084  // "void" as the return type, since destructors don't have return
5085  // types.
5086  if (!D.isInvalidType())
5087    return R;
5088
5089  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5090  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5091  EPI.Variadic = false;
5092  EPI.TypeQuals = 0;
5093  EPI.RefQualifier = RQ_None;
5094  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5095}
5096
5097/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5098/// well-formednes of the conversion function declarator @p D with
5099/// type @p R. If there are any errors in the declarator, this routine
5100/// will emit diagnostics and return true. Otherwise, it will return
5101/// false. Either way, the type @p R will be updated to reflect a
5102/// well-formed type for the conversion operator.
5103void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5104                                     StorageClass& SC) {
5105  // C++ [class.conv.fct]p1:
5106  //   Neither parameter types nor return type can be specified. The
5107  //   type of a conversion function (8.3.5) is "function taking no
5108  //   parameter returning conversion-type-id."
5109  if (SC == SC_Static) {
5110    if (!D.isInvalidType())
5111      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5112        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5113        << SourceRange(D.getIdentifierLoc());
5114    D.setInvalidType();
5115    SC = SC_None;
5116  }
5117
5118  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5119
5120  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5121    // Conversion functions don't have return types, but the parser will
5122    // happily parse something like:
5123    //
5124    //   class X {
5125    //     float operator bool();
5126    //   };
5127    //
5128    // The return type will be changed later anyway.
5129    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5130      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5131      << SourceRange(D.getIdentifierLoc());
5132    D.setInvalidType();
5133  }
5134
5135  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5136
5137  // Make sure we don't have any parameters.
5138  if (Proto->getNumArgs() > 0) {
5139    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5140
5141    // Delete the parameters.
5142    D.getFunctionTypeInfo().freeArgs();
5143    D.setInvalidType();
5144  } else if (Proto->isVariadic()) {
5145    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5146    D.setInvalidType();
5147  }
5148
5149  // Diagnose "&operator bool()" and other such nonsense.  This
5150  // is actually a gcc extension which we don't support.
5151  if (Proto->getResultType() != ConvType) {
5152    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5153      << Proto->getResultType();
5154    D.setInvalidType();
5155    ConvType = Proto->getResultType();
5156  }
5157
5158  // C++ [class.conv.fct]p4:
5159  //   The conversion-type-id shall not represent a function type nor
5160  //   an array type.
5161  if (ConvType->isArrayType()) {
5162    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5163    ConvType = Context.getPointerType(ConvType);
5164    D.setInvalidType();
5165  } else if (ConvType->isFunctionType()) {
5166    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5167    ConvType = Context.getPointerType(ConvType);
5168    D.setInvalidType();
5169  }
5170
5171  // Rebuild the function type "R" without any parameters (in case any
5172  // of the errors above fired) and with the conversion type as the
5173  // return type.
5174  if (D.isInvalidType())
5175    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5176
5177  // C++0x explicit conversion operators.
5178  if (D.getDeclSpec().isExplicitSpecified())
5179    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5180         getLangOpts().CPlusPlus0x ?
5181           diag::warn_cxx98_compat_explicit_conversion_functions :
5182           diag::ext_explicit_conversion_functions)
5183      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5184}
5185
5186/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5187/// the declaration of the given C++ conversion function. This routine
5188/// is responsible for recording the conversion function in the C++
5189/// class, if possible.
5190Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5191  assert(Conversion && "Expected to receive a conversion function declaration");
5192
5193  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5194
5195  // Make sure we aren't redeclaring the conversion function.
5196  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5197
5198  // C++ [class.conv.fct]p1:
5199  //   [...] A conversion function is never used to convert a
5200  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5201  //   same object type (or a reference to it), to a (possibly
5202  //   cv-qualified) base class of that type (or a reference to it),
5203  //   or to (possibly cv-qualified) void.
5204  // FIXME: Suppress this warning if the conversion function ends up being a
5205  // virtual function that overrides a virtual function in a base class.
5206  QualType ClassType
5207    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5208  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5209    ConvType = ConvTypeRef->getPointeeType();
5210  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5211      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5212    /* Suppress diagnostics for instantiations. */;
5213  else if (ConvType->isRecordType()) {
5214    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5215    if (ConvType == ClassType)
5216      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5217        << ClassType;
5218    else if (IsDerivedFrom(ClassType, ConvType))
5219      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5220        <<  ClassType << ConvType;
5221  } else if (ConvType->isVoidType()) {
5222    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5223      << ClassType << ConvType;
5224  }
5225
5226  if (FunctionTemplateDecl *ConversionTemplate
5227                                = Conversion->getDescribedFunctionTemplate())
5228    return ConversionTemplate;
5229
5230  return Conversion;
5231}
5232
5233//===----------------------------------------------------------------------===//
5234// Namespace Handling
5235//===----------------------------------------------------------------------===//
5236
5237
5238
5239/// ActOnStartNamespaceDef - This is called at the start of a namespace
5240/// definition.
5241Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5242                                   SourceLocation InlineLoc,
5243                                   SourceLocation NamespaceLoc,
5244                                   SourceLocation IdentLoc,
5245                                   IdentifierInfo *II,
5246                                   SourceLocation LBrace,
5247                                   AttributeList *AttrList) {
5248  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5249  // For anonymous namespace, take the location of the left brace.
5250  SourceLocation Loc = II ? IdentLoc : LBrace;
5251  bool IsInline = InlineLoc.isValid();
5252  bool IsInvalid = false;
5253  bool IsStd = false;
5254  bool AddToKnown = false;
5255  Scope *DeclRegionScope = NamespcScope->getParent();
5256
5257  NamespaceDecl *PrevNS = 0;
5258  if (II) {
5259    // C++ [namespace.def]p2:
5260    //   The identifier in an original-namespace-definition shall not
5261    //   have been previously defined in the declarative region in
5262    //   which the original-namespace-definition appears. The
5263    //   identifier in an original-namespace-definition is the name of
5264    //   the namespace. Subsequently in that declarative region, it is
5265    //   treated as an original-namespace-name.
5266    //
5267    // Since namespace names are unique in their scope, and we don't
5268    // look through using directives, just look for any ordinary names.
5269
5270    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5271    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5272    Decl::IDNS_Namespace;
5273    NamedDecl *PrevDecl = 0;
5274    for (DeclContext::lookup_result R
5275         = CurContext->getRedeclContext()->lookup(II);
5276         R.first != R.second; ++R.first) {
5277      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5278        PrevDecl = *R.first;
5279        break;
5280      }
5281    }
5282
5283    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5284
5285    if (PrevNS) {
5286      // This is an extended namespace definition.
5287      if (IsInline != PrevNS->isInline()) {
5288        // inline-ness must match
5289        if (PrevNS->isInline()) {
5290          // The user probably just forgot the 'inline', so suggest that it
5291          // be added back.
5292          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5293            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5294        } else {
5295          Diag(Loc, diag::err_inline_namespace_mismatch)
5296            << IsInline;
5297        }
5298        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5299
5300        IsInline = PrevNS->isInline();
5301      }
5302    } else if (PrevDecl) {
5303      // This is an invalid name redefinition.
5304      Diag(Loc, diag::err_redefinition_different_kind)
5305        << II;
5306      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5307      IsInvalid = true;
5308      // Continue on to push Namespc as current DeclContext and return it.
5309    } else if (II->isStr("std") &&
5310               CurContext->getRedeclContext()->isTranslationUnit()) {
5311      // This is the first "real" definition of the namespace "std", so update
5312      // our cache of the "std" namespace to point at this definition.
5313      PrevNS = getStdNamespace();
5314      IsStd = true;
5315      AddToKnown = !IsInline;
5316    } else {
5317      // We've seen this namespace for the first time.
5318      AddToKnown = !IsInline;
5319    }
5320  } else {
5321    // Anonymous namespaces.
5322
5323    // Determine whether the parent already has an anonymous namespace.
5324    DeclContext *Parent = CurContext->getRedeclContext();
5325    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5326      PrevNS = TU->getAnonymousNamespace();
5327    } else {
5328      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5329      PrevNS = ND->getAnonymousNamespace();
5330    }
5331
5332    if (PrevNS && IsInline != PrevNS->isInline()) {
5333      // inline-ness must match
5334      Diag(Loc, diag::err_inline_namespace_mismatch)
5335        << IsInline;
5336      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5337
5338      // Recover by ignoring the new namespace's inline status.
5339      IsInline = PrevNS->isInline();
5340    }
5341  }
5342
5343  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5344                                                 StartLoc, Loc, II, PrevNS);
5345  if (IsInvalid)
5346    Namespc->setInvalidDecl();
5347
5348  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5349
5350  // FIXME: Should we be merging attributes?
5351  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5352    PushNamespaceVisibilityAttr(Attr, Loc);
5353
5354  if (IsStd)
5355    StdNamespace = Namespc;
5356  if (AddToKnown)
5357    KnownNamespaces[Namespc] = false;
5358
5359  if (II) {
5360    PushOnScopeChains(Namespc, DeclRegionScope);
5361  } else {
5362    // Link the anonymous namespace into its parent.
5363    DeclContext *Parent = CurContext->getRedeclContext();
5364    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5365      TU->setAnonymousNamespace(Namespc);
5366    } else {
5367      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5368    }
5369
5370    CurContext->addDecl(Namespc);
5371
5372    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5373    //   behaves as if it were replaced by
5374    //     namespace unique { /* empty body */ }
5375    //     using namespace unique;
5376    //     namespace unique { namespace-body }
5377    //   where all occurrences of 'unique' in a translation unit are
5378    //   replaced by the same identifier and this identifier differs
5379    //   from all other identifiers in the entire program.
5380
5381    // We just create the namespace with an empty name and then add an
5382    // implicit using declaration, just like the standard suggests.
5383    //
5384    // CodeGen enforces the "universally unique" aspect by giving all
5385    // declarations semantically contained within an anonymous
5386    // namespace internal linkage.
5387
5388    if (!PrevNS) {
5389      UsingDirectiveDecl* UD
5390        = UsingDirectiveDecl::Create(Context, CurContext,
5391                                     /* 'using' */ LBrace,
5392                                     /* 'namespace' */ SourceLocation(),
5393                                     /* qualifier */ NestedNameSpecifierLoc(),
5394                                     /* identifier */ SourceLocation(),
5395                                     Namespc,
5396                                     /* Ancestor */ CurContext);
5397      UD->setImplicit();
5398      CurContext->addDecl(UD);
5399    }
5400  }
5401
5402  // Although we could have an invalid decl (i.e. the namespace name is a
5403  // redefinition), push it as current DeclContext and try to continue parsing.
5404  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5405  // for the namespace has the declarations that showed up in that particular
5406  // namespace definition.
5407  PushDeclContext(NamespcScope, Namespc);
5408  return Namespc;
5409}
5410
5411/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5412/// is a namespace alias, returns the namespace it points to.
5413static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5414  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5415    return AD->getNamespace();
5416  return dyn_cast_or_null<NamespaceDecl>(D);
5417}
5418
5419/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5420/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5421void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5422  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5423  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5424  Namespc->setRBraceLoc(RBrace);
5425  PopDeclContext();
5426  if (Namespc->hasAttr<VisibilityAttr>())
5427    PopPragmaVisibility(true, RBrace);
5428}
5429
5430CXXRecordDecl *Sema::getStdBadAlloc() const {
5431  return cast_or_null<CXXRecordDecl>(
5432                                  StdBadAlloc.get(Context.getExternalSource()));
5433}
5434
5435NamespaceDecl *Sema::getStdNamespace() const {
5436  return cast_or_null<NamespaceDecl>(
5437                                 StdNamespace.get(Context.getExternalSource()));
5438}
5439
5440/// \brief Retrieve the special "std" namespace, which may require us to
5441/// implicitly define the namespace.
5442NamespaceDecl *Sema::getOrCreateStdNamespace() {
5443  if (!StdNamespace) {
5444    // The "std" namespace has not yet been defined, so build one implicitly.
5445    StdNamespace = NamespaceDecl::Create(Context,
5446                                         Context.getTranslationUnitDecl(),
5447                                         /*Inline=*/false,
5448                                         SourceLocation(), SourceLocation(),
5449                                         &PP.getIdentifierTable().get("std"),
5450                                         /*PrevDecl=*/0);
5451    getStdNamespace()->setImplicit(true);
5452  }
5453
5454  return getStdNamespace();
5455}
5456
5457bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5458  assert(getLangOpts().CPlusPlus &&
5459         "Looking for std::initializer_list outside of C++.");
5460
5461  // We're looking for implicit instantiations of
5462  // template <typename E> class std::initializer_list.
5463
5464  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5465    return false;
5466
5467  ClassTemplateDecl *Template = 0;
5468  const TemplateArgument *Arguments = 0;
5469
5470  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5471
5472    ClassTemplateSpecializationDecl *Specialization =
5473        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5474    if (!Specialization)
5475      return false;
5476
5477    Template = Specialization->getSpecializedTemplate();
5478    Arguments = Specialization->getTemplateArgs().data();
5479  } else if (const TemplateSpecializationType *TST =
5480                 Ty->getAs<TemplateSpecializationType>()) {
5481    Template = dyn_cast_or_null<ClassTemplateDecl>(
5482        TST->getTemplateName().getAsTemplateDecl());
5483    Arguments = TST->getArgs();
5484  }
5485  if (!Template)
5486    return false;
5487
5488  if (!StdInitializerList) {
5489    // Haven't recognized std::initializer_list yet, maybe this is it.
5490    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5491    if (TemplateClass->getIdentifier() !=
5492            &PP.getIdentifierTable().get("initializer_list") ||
5493        !getStdNamespace()->InEnclosingNamespaceSetOf(
5494            TemplateClass->getDeclContext()))
5495      return false;
5496    // This is a template called std::initializer_list, but is it the right
5497    // template?
5498    TemplateParameterList *Params = Template->getTemplateParameters();
5499    if (Params->getMinRequiredArguments() != 1)
5500      return false;
5501    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5502      return false;
5503
5504    // It's the right template.
5505    StdInitializerList = Template;
5506  }
5507
5508  if (Template != StdInitializerList)
5509    return false;
5510
5511  // This is an instance of std::initializer_list. Find the argument type.
5512  if (Element)
5513    *Element = Arguments[0].getAsType();
5514  return true;
5515}
5516
5517static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5518  NamespaceDecl *Std = S.getStdNamespace();
5519  if (!Std) {
5520    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5521    return 0;
5522  }
5523
5524  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5525                      Loc, Sema::LookupOrdinaryName);
5526  if (!S.LookupQualifiedName(Result, Std)) {
5527    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5528    return 0;
5529  }
5530  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5531  if (!Template) {
5532    Result.suppressDiagnostics();
5533    // We found something weird. Complain about the first thing we found.
5534    NamedDecl *Found = *Result.begin();
5535    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5536    return 0;
5537  }
5538
5539  // We found some template called std::initializer_list. Now verify that it's
5540  // correct.
5541  TemplateParameterList *Params = Template->getTemplateParameters();
5542  if (Params->getMinRequiredArguments() != 1 ||
5543      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5544    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5545    return 0;
5546  }
5547
5548  return Template;
5549}
5550
5551QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5552  if (!StdInitializerList) {
5553    StdInitializerList = LookupStdInitializerList(*this, Loc);
5554    if (!StdInitializerList)
5555      return QualType();
5556  }
5557
5558  TemplateArgumentListInfo Args(Loc, Loc);
5559  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5560                                       Context.getTrivialTypeSourceInfo(Element,
5561                                                                        Loc)));
5562  return Context.getCanonicalType(
5563      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5564}
5565
5566bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5567  // C++ [dcl.init.list]p2:
5568  //   A constructor is an initializer-list constructor if its first parameter
5569  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5570  //   std::initializer_list<E> for some type E, and either there are no other
5571  //   parameters or else all other parameters have default arguments.
5572  if (Ctor->getNumParams() < 1 ||
5573      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5574    return false;
5575
5576  QualType ArgType = Ctor->getParamDecl(0)->getType();
5577  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5578    ArgType = RT->getPointeeType().getUnqualifiedType();
5579
5580  return isStdInitializerList(ArgType, 0);
5581}
5582
5583/// \brief Determine whether a using statement is in a context where it will be
5584/// apply in all contexts.
5585static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5586  switch (CurContext->getDeclKind()) {
5587    case Decl::TranslationUnit:
5588      return true;
5589    case Decl::LinkageSpec:
5590      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5591    default:
5592      return false;
5593  }
5594}
5595
5596namespace {
5597
5598// Callback to only accept typo corrections that are namespaces.
5599class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5600 public:
5601  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5602    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5603      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5604    }
5605    return false;
5606  }
5607};
5608
5609}
5610
5611static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5612                                       CXXScopeSpec &SS,
5613                                       SourceLocation IdentLoc,
5614                                       IdentifierInfo *Ident) {
5615  NamespaceValidatorCCC Validator;
5616  R.clear();
5617  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5618                                               R.getLookupKind(), Sc, &SS,
5619                                               Validator)) {
5620    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5621    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5622    if (DeclContext *DC = S.computeDeclContext(SS, false))
5623      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5624        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5625        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5626    else
5627      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5628        << Ident << CorrectedQuotedStr
5629        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5630
5631    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5632         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5633
5634    R.addDecl(Corrected.getCorrectionDecl());
5635    return true;
5636  }
5637  return false;
5638}
5639
5640Decl *Sema::ActOnUsingDirective(Scope *S,
5641                                          SourceLocation UsingLoc,
5642                                          SourceLocation NamespcLoc,
5643                                          CXXScopeSpec &SS,
5644                                          SourceLocation IdentLoc,
5645                                          IdentifierInfo *NamespcName,
5646                                          AttributeList *AttrList) {
5647  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5648  assert(NamespcName && "Invalid NamespcName.");
5649  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5650
5651  // This can only happen along a recovery path.
5652  while (S->getFlags() & Scope::TemplateParamScope)
5653    S = S->getParent();
5654  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5655
5656  UsingDirectiveDecl *UDir = 0;
5657  NestedNameSpecifier *Qualifier = 0;
5658  if (SS.isSet())
5659    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5660
5661  // Lookup namespace name.
5662  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5663  LookupParsedName(R, S, &SS);
5664  if (R.isAmbiguous())
5665    return 0;
5666
5667  if (R.empty()) {
5668    R.clear();
5669    // Allow "using namespace std;" or "using namespace ::std;" even if
5670    // "std" hasn't been defined yet, for GCC compatibility.
5671    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5672        NamespcName->isStr("std")) {
5673      Diag(IdentLoc, diag::ext_using_undefined_std);
5674      R.addDecl(getOrCreateStdNamespace());
5675      R.resolveKind();
5676    }
5677    // Otherwise, attempt typo correction.
5678    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5679  }
5680
5681  if (!R.empty()) {
5682    NamedDecl *Named = R.getFoundDecl();
5683    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5684        && "expected namespace decl");
5685    // C++ [namespace.udir]p1:
5686    //   A using-directive specifies that the names in the nominated
5687    //   namespace can be used in the scope in which the
5688    //   using-directive appears after the using-directive. During
5689    //   unqualified name lookup (3.4.1), the names appear as if they
5690    //   were declared in the nearest enclosing namespace which
5691    //   contains both the using-directive and the nominated
5692    //   namespace. [Note: in this context, "contains" means "contains
5693    //   directly or indirectly". ]
5694
5695    // Find enclosing context containing both using-directive and
5696    // nominated namespace.
5697    NamespaceDecl *NS = getNamespaceDecl(Named);
5698    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5699    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5700      CommonAncestor = CommonAncestor->getParent();
5701
5702    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5703                                      SS.getWithLocInContext(Context),
5704                                      IdentLoc, Named, CommonAncestor);
5705
5706    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5707        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5708      Diag(IdentLoc, diag::warn_using_directive_in_header);
5709    }
5710
5711    PushUsingDirective(S, UDir);
5712  } else {
5713    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5714  }
5715
5716  // FIXME: We ignore attributes for now.
5717  return UDir;
5718}
5719
5720void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5721  // If the scope has an associated entity and the using directive is at
5722  // namespace or translation unit scope, add the UsingDirectiveDecl into
5723  // its lookup structure so qualified name lookup can find it.
5724  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5725  if (Ctx && !Ctx->isFunctionOrMethod())
5726    Ctx->addDecl(UDir);
5727  else
5728    // Otherwise, it is at block sope. The using-directives will affect lookup
5729    // only to the end of the scope.
5730    S->PushUsingDirective(UDir);
5731}
5732
5733
5734Decl *Sema::ActOnUsingDeclaration(Scope *S,
5735                                  AccessSpecifier AS,
5736                                  bool HasUsingKeyword,
5737                                  SourceLocation UsingLoc,
5738                                  CXXScopeSpec &SS,
5739                                  UnqualifiedId &Name,
5740                                  AttributeList *AttrList,
5741                                  bool IsTypeName,
5742                                  SourceLocation TypenameLoc) {
5743  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5744
5745  switch (Name.getKind()) {
5746  case UnqualifiedId::IK_ImplicitSelfParam:
5747  case UnqualifiedId::IK_Identifier:
5748  case UnqualifiedId::IK_OperatorFunctionId:
5749  case UnqualifiedId::IK_LiteralOperatorId:
5750  case UnqualifiedId::IK_ConversionFunctionId:
5751    break;
5752
5753  case UnqualifiedId::IK_ConstructorName:
5754  case UnqualifiedId::IK_ConstructorTemplateId:
5755    // C++11 inheriting constructors.
5756    Diag(Name.getLocStart(),
5757         getLangOpts().CPlusPlus0x ?
5758           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5759           //        instead once inheriting constructors work.
5760           diag::err_using_decl_constructor_unsupported :
5761           diag::err_using_decl_constructor)
5762      << SS.getRange();
5763
5764    if (getLangOpts().CPlusPlus0x) break;
5765
5766    return 0;
5767
5768  case UnqualifiedId::IK_DestructorName:
5769    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5770      << SS.getRange();
5771    return 0;
5772
5773  case UnqualifiedId::IK_TemplateId:
5774    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5775      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5776    return 0;
5777  }
5778
5779  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5780  DeclarationName TargetName = TargetNameInfo.getName();
5781  if (!TargetName)
5782    return 0;
5783
5784  // Warn about using declarations.
5785  // TODO: store that the declaration was written without 'using' and
5786  // talk about access decls instead of using decls in the
5787  // diagnostics.
5788  if (!HasUsingKeyword) {
5789    UsingLoc = Name.getLocStart();
5790
5791    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5792      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5793  }
5794
5795  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5796      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5797    return 0;
5798
5799  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5800                                        TargetNameInfo, AttrList,
5801                                        /* IsInstantiation */ false,
5802                                        IsTypeName, TypenameLoc);
5803  if (UD)
5804    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5805
5806  return UD;
5807}
5808
5809/// \brief Determine whether a using declaration considers the given
5810/// declarations as "equivalent", e.g., if they are redeclarations of
5811/// the same entity or are both typedefs of the same type.
5812static bool
5813IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5814                         bool &SuppressRedeclaration) {
5815  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5816    SuppressRedeclaration = false;
5817    return true;
5818  }
5819
5820  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5821    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5822      SuppressRedeclaration = true;
5823      return Context.hasSameType(TD1->getUnderlyingType(),
5824                                 TD2->getUnderlyingType());
5825    }
5826
5827  return false;
5828}
5829
5830
5831/// Determines whether to create a using shadow decl for a particular
5832/// decl, given the set of decls existing prior to this using lookup.
5833bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5834                                const LookupResult &Previous) {
5835  // Diagnose finding a decl which is not from a base class of the
5836  // current class.  We do this now because there are cases where this
5837  // function will silently decide not to build a shadow decl, which
5838  // will pre-empt further diagnostics.
5839  //
5840  // We don't need to do this in C++0x because we do the check once on
5841  // the qualifier.
5842  //
5843  // FIXME: diagnose the following if we care enough:
5844  //   struct A { int foo; };
5845  //   struct B : A { using A::foo; };
5846  //   template <class T> struct C : A {};
5847  //   template <class T> struct D : C<T> { using B::foo; } // <---
5848  // This is invalid (during instantiation) in C++03 because B::foo
5849  // resolves to the using decl in B, which is not a base class of D<T>.
5850  // We can't diagnose it immediately because C<T> is an unknown
5851  // specialization.  The UsingShadowDecl in D<T> then points directly
5852  // to A::foo, which will look well-formed when we instantiate.
5853  // The right solution is to not collapse the shadow-decl chain.
5854  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5855    DeclContext *OrigDC = Orig->getDeclContext();
5856
5857    // Handle enums and anonymous structs.
5858    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5859    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5860    while (OrigRec->isAnonymousStructOrUnion())
5861      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5862
5863    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5864      if (OrigDC == CurContext) {
5865        Diag(Using->getLocation(),
5866             diag::err_using_decl_nested_name_specifier_is_current_class)
5867          << Using->getQualifierLoc().getSourceRange();
5868        Diag(Orig->getLocation(), diag::note_using_decl_target);
5869        return true;
5870      }
5871
5872      Diag(Using->getQualifierLoc().getBeginLoc(),
5873           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5874        << Using->getQualifier()
5875        << cast<CXXRecordDecl>(CurContext)
5876        << Using->getQualifierLoc().getSourceRange();
5877      Diag(Orig->getLocation(), diag::note_using_decl_target);
5878      return true;
5879    }
5880  }
5881
5882  if (Previous.empty()) return false;
5883
5884  NamedDecl *Target = Orig;
5885  if (isa<UsingShadowDecl>(Target))
5886    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5887
5888  // If the target happens to be one of the previous declarations, we
5889  // don't have a conflict.
5890  //
5891  // FIXME: but we might be increasing its access, in which case we
5892  // should redeclare it.
5893  NamedDecl *NonTag = 0, *Tag = 0;
5894  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5895         I != E; ++I) {
5896    NamedDecl *D = (*I)->getUnderlyingDecl();
5897    bool Result;
5898    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5899      return Result;
5900
5901    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5902  }
5903
5904  if (Target->isFunctionOrFunctionTemplate()) {
5905    FunctionDecl *FD;
5906    if (isa<FunctionTemplateDecl>(Target))
5907      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5908    else
5909      FD = cast<FunctionDecl>(Target);
5910
5911    NamedDecl *OldDecl = 0;
5912    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5913    case Ovl_Overload:
5914      return false;
5915
5916    case Ovl_NonFunction:
5917      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5918      break;
5919
5920    // We found a decl with the exact signature.
5921    case Ovl_Match:
5922      // If we're in a record, we want to hide the target, so we
5923      // return true (without a diagnostic) to tell the caller not to
5924      // build a shadow decl.
5925      if (CurContext->isRecord())
5926        return true;
5927
5928      // If we're not in a record, this is an error.
5929      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5930      break;
5931    }
5932
5933    Diag(Target->getLocation(), diag::note_using_decl_target);
5934    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5935    return true;
5936  }
5937
5938  // Target is not a function.
5939
5940  if (isa<TagDecl>(Target)) {
5941    // No conflict between a tag and a non-tag.
5942    if (!Tag) return false;
5943
5944    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5945    Diag(Target->getLocation(), diag::note_using_decl_target);
5946    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5947    return true;
5948  }
5949
5950  // No conflict between a tag and a non-tag.
5951  if (!NonTag) return false;
5952
5953  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5954  Diag(Target->getLocation(), diag::note_using_decl_target);
5955  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5956  return true;
5957}
5958
5959/// Builds a shadow declaration corresponding to a 'using' declaration.
5960UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5961                                            UsingDecl *UD,
5962                                            NamedDecl *Orig) {
5963
5964  // If we resolved to another shadow declaration, just coalesce them.
5965  NamedDecl *Target = Orig;
5966  if (isa<UsingShadowDecl>(Target)) {
5967    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5968    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5969  }
5970
5971  UsingShadowDecl *Shadow
5972    = UsingShadowDecl::Create(Context, CurContext,
5973                              UD->getLocation(), UD, Target);
5974  UD->addShadowDecl(Shadow);
5975
5976  Shadow->setAccess(UD->getAccess());
5977  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5978    Shadow->setInvalidDecl();
5979
5980  if (S)
5981    PushOnScopeChains(Shadow, S);
5982  else
5983    CurContext->addDecl(Shadow);
5984
5985
5986  return Shadow;
5987}
5988
5989/// Hides a using shadow declaration.  This is required by the current
5990/// using-decl implementation when a resolvable using declaration in a
5991/// class is followed by a declaration which would hide or override
5992/// one or more of the using decl's targets; for example:
5993///
5994///   struct Base { void foo(int); };
5995///   struct Derived : Base {
5996///     using Base::foo;
5997///     void foo(int);
5998///   };
5999///
6000/// The governing language is C++03 [namespace.udecl]p12:
6001///
6002///   When a using-declaration brings names from a base class into a
6003///   derived class scope, member functions in the derived class
6004///   override and/or hide member functions with the same name and
6005///   parameter types in a base class (rather than conflicting).
6006///
6007/// There are two ways to implement this:
6008///   (1) optimistically create shadow decls when they're not hidden
6009///       by existing declarations, or
6010///   (2) don't create any shadow decls (or at least don't make them
6011///       visible) until we've fully parsed/instantiated the class.
6012/// The problem with (1) is that we might have to retroactively remove
6013/// a shadow decl, which requires several O(n) operations because the
6014/// decl structures are (very reasonably) not designed for removal.
6015/// (2) avoids this but is very fiddly and phase-dependent.
6016void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6017  if (Shadow->getDeclName().getNameKind() ==
6018        DeclarationName::CXXConversionFunctionName)
6019    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6020
6021  // Remove it from the DeclContext...
6022  Shadow->getDeclContext()->removeDecl(Shadow);
6023
6024  // ...and the scope, if applicable...
6025  if (S) {
6026    S->RemoveDecl(Shadow);
6027    IdResolver.RemoveDecl(Shadow);
6028  }
6029
6030  // ...and the using decl.
6031  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6032
6033  // TODO: complain somehow if Shadow was used.  It shouldn't
6034  // be possible for this to happen, because...?
6035}
6036
6037/// Builds a using declaration.
6038///
6039/// \param IsInstantiation - Whether this call arises from an
6040///   instantiation of an unresolved using declaration.  We treat
6041///   the lookup differently for these declarations.
6042NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6043                                       SourceLocation UsingLoc,
6044                                       CXXScopeSpec &SS,
6045                                       const DeclarationNameInfo &NameInfo,
6046                                       AttributeList *AttrList,
6047                                       bool IsInstantiation,
6048                                       bool IsTypeName,
6049                                       SourceLocation TypenameLoc) {
6050  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6051  SourceLocation IdentLoc = NameInfo.getLoc();
6052  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6053
6054  // FIXME: We ignore attributes for now.
6055
6056  if (SS.isEmpty()) {
6057    Diag(IdentLoc, diag::err_using_requires_qualname);
6058    return 0;
6059  }
6060
6061  // Do the redeclaration lookup in the current scope.
6062  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6063                        ForRedeclaration);
6064  Previous.setHideTags(false);
6065  if (S) {
6066    LookupName(Previous, S);
6067
6068    // It is really dumb that we have to do this.
6069    LookupResult::Filter F = Previous.makeFilter();
6070    while (F.hasNext()) {
6071      NamedDecl *D = F.next();
6072      if (!isDeclInScope(D, CurContext, S))
6073        F.erase();
6074    }
6075    F.done();
6076  } else {
6077    assert(IsInstantiation && "no scope in non-instantiation");
6078    assert(CurContext->isRecord() && "scope not record in instantiation");
6079    LookupQualifiedName(Previous, CurContext);
6080  }
6081
6082  // Check for invalid redeclarations.
6083  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6084    return 0;
6085
6086  // Check for bad qualifiers.
6087  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6088    return 0;
6089
6090  DeclContext *LookupContext = computeDeclContext(SS);
6091  NamedDecl *D;
6092  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6093  if (!LookupContext) {
6094    if (IsTypeName) {
6095      // FIXME: not all declaration name kinds are legal here
6096      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6097                                              UsingLoc, TypenameLoc,
6098                                              QualifierLoc,
6099                                              IdentLoc, NameInfo.getName());
6100    } else {
6101      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6102                                           QualifierLoc, NameInfo);
6103    }
6104  } else {
6105    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6106                          NameInfo, IsTypeName);
6107  }
6108  D->setAccess(AS);
6109  CurContext->addDecl(D);
6110
6111  if (!LookupContext) return D;
6112  UsingDecl *UD = cast<UsingDecl>(D);
6113
6114  if (RequireCompleteDeclContext(SS, LookupContext)) {
6115    UD->setInvalidDecl();
6116    return UD;
6117  }
6118
6119  // The normal rules do not apply to inheriting constructor declarations.
6120  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6121    if (CheckInheritingConstructorUsingDecl(UD))
6122      UD->setInvalidDecl();
6123    return UD;
6124  }
6125
6126  // Otherwise, look up the target name.
6127
6128  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6129
6130  // Unlike most lookups, we don't always want to hide tag
6131  // declarations: tag names are visible through the using declaration
6132  // even if hidden by ordinary names, *except* in a dependent context
6133  // where it's important for the sanity of two-phase lookup.
6134  if (!IsInstantiation)
6135    R.setHideTags(false);
6136
6137  // For the purposes of this lookup, we have a base object type
6138  // equal to that of the current context.
6139  if (CurContext->isRecord()) {
6140    R.setBaseObjectType(
6141                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6142  }
6143
6144  LookupQualifiedName(R, LookupContext);
6145
6146  if (R.empty()) {
6147    Diag(IdentLoc, diag::err_no_member)
6148      << NameInfo.getName() << LookupContext << SS.getRange();
6149    UD->setInvalidDecl();
6150    return UD;
6151  }
6152
6153  if (R.isAmbiguous()) {
6154    UD->setInvalidDecl();
6155    return UD;
6156  }
6157
6158  if (IsTypeName) {
6159    // If we asked for a typename and got a non-type decl, error out.
6160    if (!R.getAsSingle<TypeDecl>()) {
6161      Diag(IdentLoc, diag::err_using_typename_non_type);
6162      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6163        Diag((*I)->getUnderlyingDecl()->getLocation(),
6164             diag::note_using_decl_target);
6165      UD->setInvalidDecl();
6166      return UD;
6167    }
6168  } else {
6169    // If we asked for a non-typename and we got a type, error out,
6170    // but only if this is an instantiation of an unresolved using
6171    // decl.  Otherwise just silently find the type name.
6172    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6173      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6174      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6175      UD->setInvalidDecl();
6176      return UD;
6177    }
6178  }
6179
6180  // C++0x N2914 [namespace.udecl]p6:
6181  // A using-declaration shall not name a namespace.
6182  if (R.getAsSingle<NamespaceDecl>()) {
6183    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6184      << SS.getRange();
6185    UD->setInvalidDecl();
6186    return UD;
6187  }
6188
6189  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6190    if (!CheckUsingShadowDecl(UD, *I, Previous))
6191      BuildUsingShadowDecl(S, UD, *I);
6192  }
6193
6194  return UD;
6195}
6196
6197/// Additional checks for a using declaration referring to a constructor name.
6198bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6199  assert(!UD->isTypeName() && "expecting a constructor name");
6200
6201  const Type *SourceType = UD->getQualifier()->getAsType();
6202  assert(SourceType &&
6203         "Using decl naming constructor doesn't have type in scope spec.");
6204  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6205
6206  // Check whether the named type is a direct base class.
6207  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6208  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6209  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6210       BaseIt != BaseE; ++BaseIt) {
6211    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6212    if (CanonicalSourceType == BaseType)
6213      break;
6214    if (BaseIt->getType()->isDependentType())
6215      break;
6216  }
6217
6218  if (BaseIt == BaseE) {
6219    // Did not find SourceType in the bases.
6220    Diag(UD->getUsingLocation(),
6221         diag::err_using_decl_constructor_not_in_direct_base)
6222      << UD->getNameInfo().getSourceRange()
6223      << QualType(SourceType, 0) << TargetClass;
6224    return true;
6225  }
6226
6227  if (!CurContext->isDependentContext())
6228    BaseIt->setInheritConstructors();
6229
6230  return false;
6231}
6232
6233/// Checks that the given using declaration is not an invalid
6234/// redeclaration.  Note that this is checking only for the using decl
6235/// itself, not for any ill-formedness among the UsingShadowDecls.
6236bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6237                                       bool isTypeName,
6238                                       const CXXScopeSpec &SS,
6239                                       SourceLocation NameLoc,
6240                                       const LookupResult &Prev) {
6241  // C++03 [namespace.udecl]p8:
6242  // C++0x [namespace.udecl]p10:
6243  //   A using-declaration is a declaration and can therefore be used
6244  //   repeatedly where (and only where) multiple declarations are
6245  //   allowed.
6246  //
6247  // That's in non-member contexts.
6248  if (!CurContext->getRedeclContext()->isRecord())
6249    return false;
6250
6251  NestedNameSpecifier *Qual
6252    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6253
6254  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6255    NamedDecl *D = *I;
6256
6257    bool DTypename;
6258    NestedNameSpecifier *DQual;
6259    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6260      DTypename = UD->isTypeName();
6261      DQual = UD->getQualifier();
6262    } else if (UnresolvedUsingValueDecl *UD
6263                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6264      DTypename = false;
6265      DQual = UD->getQualifier();
6266    } else if (UnresolvedUsingTypenameDecl *UD
6267                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6268      DTypename = true;
6269      DQual = UD->getQualifier();
6270    } else continue;
6271
6272    // using decls differ if one says 'typename' and the other doesn't.
6273    // FIXME: non-dependent using decls?
6274    if (isTypeName != DTypename) continue;
6275
6276    // using decls differ if they name different scopes (but note that
6277    // template instantiation can cause this check to trigger when it
6278    // didn't before instantiation).
6279    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6280        Context.getCanonicalNestedNameSpecifier(DQual))
6281      continue;
6282
6283    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6284    Diag(D->getLocation(), diag::note_using_decl) << 1;
6285    return true;
6286  }
6287
6288  return false;
6289}
6290
6291
6292/// Checks that the given nested-name qualifier used in a using decl
6293/// in the current context is appropriately related to the current
6294/// scope.  If an error is found, diagnoses it and returns true.
6295bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6296                                   const CXXScopeSpec &SS,
6297                                   SourceLocation NameLoc) {
6298  DeclContext *NamedContext = computeDeclContext(SS);
6299
6300  if (!CurContext->isRecord()) {
6301    // C++03 [namespace.udecl]p3:
6302    // C++0x [namespace.udecl]p8:
6303    //   A using-declaration for a class member shall be a member-declaration.
6304
6305    // If we weren't able to compute a valid scope, it must be a
6306    // dependent class scope.
6307    if (!NamedContext || NamedContext->isRecord()) {
6308      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6309        << SS.getRange();
6310      return true;
6311    }
6312
6313    // Otherwise, everything is known to be fine.
6314    return false;
6315  }
6316
6317  // The current scope is a record.
6318
6319  // If the named context is dependent, we can't decide much.
6320  if (!NamedContext) {
6321    // FIXME: in C++0x, we can diagnose if we can prove that the
6322    // nested-name-specifier does not refer to a base class, which is
6323    // still possible in some cases.
6324
6325    // Otherwise we have to conservatively report that things might be
6326    // okay.
6327    return false;
6328  }
6329
6330  if (!NamedContext->isRecord()) {
6331    // Ideally this would point at the last name in the specifier,
6332    // but we don't have that level of source info.
6333    Diag(SS.getRange().getBegin(),
6334         diag::err_using_decl_nested_name_specifier_is_not_class)
6335      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6336    return true;
6337  }
6338
6339  if (!NamedContext->isDependentContext() &&
6340      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6341    return true;
6342
6343  if (getLangOpts().CPlusPlus0x) {
6344    // C++0x [namespace.udecl]p3:
6345    //   In a using-declaration used as a member-declaration, the
6346    //   nested-name-specifier shall name a base class of the class
6347    //   being defined.
6348
6349    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6350                                 cast<CXXRecordDecl>(NamedContext))) {
6351      if (CurContext == NamedContext) {
6352        Diag(NameLoc,
6353             diag::err_using_decl_nested_name_specifier_is_current_class)
6354          << SS.getRange();
6355        return true;
6356      }
6357
6358      Diag(SS.getRange().getBegin(),
6359           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6360        << (NestedNameSpecifier*) SS.getScopeRep()
6361        << cast<CXXRecordDecl>(CurContext)
6362        << SS.getRange();
6363      return true;
6364    }
6365
6366    return false;
6367  }
6368
6369  // C++03 [namespace.udecl]p4:
6370  //   A using-declaration used as a member-declaration shall refer
6371  //   to a member of a base class of the class being defined [etc.].
6372
6373  // Salient point: SS doesn't have to name a base class as long as
6374  // lookup only finds members from base classes.  Therefore we can
6375  // diagnose here only if we can prove that that can't happen,
6376  // i.e. if the class hierarchies provably don't intersect.
6377
6378  // TODO: it would be nice if "definitely valid" results were cached
6379  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6380  // need to be repeated.
6381
6382  struct UserData {
6383    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6384
6385    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6386      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6387      Data->Bases.insert(Base);
6388      return true;
6389    }
6390
6391    bool hasDependentBases(const CXXRecordDecl *Class) {
6392      return !Class->forallBases(collect, this);
6393    }
6394
6395    /// Returns true if the base is dependent or is one of the
6396    /// accumulated base classes.
6397    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6398      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6399      return !Data->Bases.count(Base);
6400    }
6401
6402    bool mightShareBases(const CXXRecordDecl *Class) {
6403      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6404    }
6405  };
6406
6407  UserData Data;
6408
6409  // Returns false if we find a dependent base.
6410  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6411    return false;
6412
6413  // Returns false if the class has a dependent base or if it or one
6414  // of its bases is present in the base set of the current context.
6415  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6416    return false;
6417
6418  Diag(SS.getRange().getBegin(),
6419       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6420    << (NestedNameSpecifier*) SS.getScopeRep()
6421    << cast<CXXRecordDecl>(CurContext)
6422    << SS.getRange();
6423
6424  return true;
6425}
6426
6427Decl *Sema::ActOnAliasDeclaration(Scope *S,
6428                                  AccessSpecifier AS,
6429                                  MultiTemplateParamsArg TemplateParamLists,
6430                                  SourceLocation UsingLoc,
6431                                  UnqualifiedId &Name,
6432                                  TypeResult Type) {
6433  // Skip up to the relevant declaration scope.
6434  while (S->getFlags() & Scope::TemplateParamScope)
6435    S = S->getParent();
6436  assert((S->getFlags() & Scope::DeclScope) &&
6437         "got alias-declaration outside of declaration scope");
6438
6439  if (Type.isInvalid())
6440    return 0;
6441
6442  bool Invalid = false;
6443  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6444  TypeSourceInfo *TInfo = 0;
6445  GetTypeFromParser(Type.get(), &TInfo);
6446
6447  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6448    return 0;
6449
6450  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6451                                      UPPC_DeclarationType)) {
6452    Invalid = true;
6453    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6454                                             TInfo->getTypeLoc().getBeginLoc());
6455  }
6456
6457  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6458  LookupName(Previous, S);
6459
6460  // Warn about shadowing the name of a template parameter.
6461  if (Previous.isSingleResult() &&
6462      Previous.getFoundDecl()->isTemplateParameter()) {
6463    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6464    Previous.clear();
6465  }
6466
6467  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6468         "name in alias declaration must be an identifier");
6469  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6470                                               Name.StartLocation,
6471                                               Name.Identifier, TInfo);
6472
6473  NewTD->setAccess(AS);
6474
6475  if (Invalid)
6476    NewTD->setInvalidDecl();
6477
6478  CheckTypedefForVariablyModifiedType(S, NewTD);
6479  Invalid |= NewTD->isInvalidDecl();
6480
6481  bool Redeclaration = false;
6482
6483  NamedDecl *NewND;
6484  if (TemplateParamLists.size()) {
6485    TypeAliasTemplateDecl *OldDecl = 0;
6486    TemplateParameterList *OldTemplateParams = 0;
6487
6488    if (TemplateParamLists.size() != 1) {
6489      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6490        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6491         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6492    }
6493    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6494
6495    // Only consider previous declarations in the same scope.
6496    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6497                         /*ExplicitInstantiationOrSpecialization*/false);
6498    if (!Previous.empty()) {
6499      Redeclaration = true;
6500
6501      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6502      if (!OldDecl && !Invalid) {
6503        Diag(UsingLoc, diag::err_redefinition_different_kind)
6504          << Name.Identifier;
6505
6506        NamedDecl *OldD = Previous.getRepresentativeDecl();
6507        if (OldD->getLocation().isValid())
6508          Diag(OldD->getLocation(), diag::note_previous_definition);
6509
6510        Invalid = true;
6511      }
6512
6513      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6514        if (TemplateParameterListsAreEqual(TemplateParams,
6515                                           OldDecl->getTemplateParameters(),
6516                                           /*Complain=*/true,
6517                                           TPL_TemplateMatch))
6518          OldTemplateParams = OldDecl->getTemplateParameters();
6519        else
6520          Invalid = true;
6521
6522        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6523        if (!Invalid &&
6524            !Context.hasSameType(OldTD->getUnderlyingType(),
6525                                 NewTD->getUnderlyingType())) {
6526          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6527          // but we can't reasonably accept it.
6528          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6529            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6530          if (OldTD->getLocation().isValid())
6531            Diag(OldTD->getLocation(), diag::note_previous_definition);
6532          Invalid = true;
6533        }
6534      }
6535    }
6536
6537    // Merge any previous default template arguments into our parameters,
6538    // and check the parameter list.
6539    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6540                                   TPC_TypeAliasTemplate))
6541      return 0;
6542
6543    TypeAliasTemplateDecl *NewDecl =
6544      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6545                                    Name.Identifier, TemplateParams,
6546                                    NewTD);
6547
6548    NewDecl->setAccess(AS);
6549
6550    if (Invalid)
6551      NewDecl->setInvalidDecl();
6552    else if (OldDecl)
6553      NewDecl->setPreviousDeclaration(OldDecl);
6554
6555    NewND = NewDecl;
6556  } else {
6557    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6558    NewND = NewTD;
6559  }
6560
6561  if (!Redeclaration)
6562    PushOnScopeChains(NewND, S);
6563
6564  return NewND;
6565}
6566
6567Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6568                                             SourceLocation NamespaceLoc,
6569                                             SourceLocation AliasLoc,
6570                                             IdentifierInfo *Alias,
6571                                             CXXScopeSpec &SS,
6572                                             SourceLocation IdentLoc,
6573                                             IdentifierInfo *Ident) {
6574
6575  // Lookup the namespace name.
6576  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6577  LookupParsedName(R, S, &SS);
6578
6579  // Check if we have a previous declaration with the same name.
6580  NamedDecl *PrevDecl
6581    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6582                       ForRedeclaration);
6583  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6584    PrevDecl = 0;
6585
6586  if (PrevDecl) {
6587    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6588      // We already have an alias with the same name that points to the same
6589      // namespace, so don't create a new one.
6590      // FIXME: At some point, we'll want to create the (redundant)
6591      // declaration to maintain better source information.
6592      if (!R.isAmbiguous() && !R.empty() &&
6593          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6594        return 0;
6595    }
6596
6597    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6598      diag::err_redefinition_different_kind;
6599    Diag(AliasLoc, DiagID) << Alias;
6600    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6601    return 0;
6602  }
6603
6604  if (R.isAmbiguous())
6605    return 0;
6606
6607  if (R.empty()) {
6608    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6609      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6610      return 0;
6611    }
6612  }
6613
6614  NamespaceAliasDecl *AliasDecl =
6615    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6616                               Alias, SS.getWithLocInContext(Context),
6617                               IdentLoc, R.getFoundDecl());
6618
6619  PushOnScopeChains(AliasDecl, S);
6620  return AliasDecl;
6621}
6622
6623namespace {
6624  /// \brief Scoped object used to handle the state changes required in Sema
6625  /// to implicitly define the body of a C++ member function;
6626  class ImplicitlyDefinedFunctionScope {
6627    Sema &S;
6628    Sema::ContextRAII SavedContext;
6629
6630  public:
6631    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6632      : S(S), SavedContext(S, Method)
6633    {
6634      S.PushFunctionScope();
6635      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6636    }
6637
6638    ~ImplicitlyDefinedFunctionScope() {
6639      S.PopExpressionEvaluationContext();
6640      S.PopFunctionScopeInfo();
6641    }
6642  };
6643}
6644
6645Sema::ImplicitExceptionSpecification
6646Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6647  // C++ [except.spec]p14:
6648  //   An implicitly declared special member function (Clause 12) shall have an
6649  //   exception-specification. [...]
6650  ImplicitExceptionSpecification ExceptSpec(*this);
6651  if (ClassDecl->isInvalidDecl())
6652    return ExceptSpec;
6653
6654  // Direct base-class constructors.
6655  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6656                                       BEnd = ClassDecl->bases_end();
6657       B != BEnd; ++B) {
6658    if (B->isVirtual()) // Handled below.
6659      continue;
6660
6661    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6662      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6663      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6664      // If this is a deleted function, add it anyway. This might be conformant
6665      // with the standard. This might not. I'm not sure. It might not matter.
6666      if (Constructor)
6667        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6668    }
6669  }
6670
6671  // Virtual base-class constructors.
6672  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6673                                       BEnd = ClassDecl->vbases_end();
6674       B != BEnd; ++B) {
6675    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6676      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6677      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6678      // If this is a deleted function, add it anyway. This might be conformant
6679      // with the standard. This might not. I'm not sure. It might not matter.
6680      if (Constructor)
6681        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6682    }
6683  }
6684
6685  // Field constructors.
6686  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6687                               FEnd = ClassDecl->field_end();
6688       F != FEnd; ++F) {
6689    if (F->hasInClassInitializer()) {
6690      if (Expr *E = F->getInClassInitializer())
6691        ExceptSpec.CalledExpr(E);
6692      else if (!F->isInvalidDecl())
6693        ExceptSpec.SetDelayed();
6694    } else if (const RecordType *RecordTy
6695              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6696      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6697      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6698      // If this is a deleted function, add it anyway. This might be conformant
6699      // with the standard. This might not. I'm not sure. It might not matter.
6700      // In particular, the problem is that this function never gets called. It
6701      // might just be ill-formed because this function attempts to refer to
6702      // a deleted function here.
6703      if (Constructor)
6704        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6705    }
6706  }
6707
6708  return ExceptSpec;
6709}
6710
6711CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6712                                                     CXXRecordDecl *ClassDecl) {
6713  // C++ [class.ctor]p5:
6714  //   A default constructor for a class X is a constructor of class X
6715  //   that can be called without an argument. If there is no
6716  //   user-declared constructor for class X, a default constructor is
6717  //   implicitly declared. An implicitly-declared default constructor
6718  //   is an inline public member of its class.
6719  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6720         "Should not build implicit default constructor!");
6721
6722  ImplicitExceptionSpecification Spec =
6723    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6724  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6725
6726  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6727                                                     CXXDefaultConstructor,
6728                                                     false);
6729
6730  // Create the actual constructor declaration.
6731  CanQualType ClassType
6732    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6733  SourceLocation ClassLoc = ClassDecl->getLocation();
6734  DeclarationName Name
6735    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6736  DeclarationNameInfo NameInfo(Name, ClassLoc);
6737  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6738      Context, ClassDecl, ClassLoc, NameInfo,
6739      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6740      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6741      Constexpr);
6742  DefaultCon->setAccess(AS_public);
6743  DefaultCon->setDefaulted();
6744  DefaultCon->setImplicit();
6745  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6746
6747  // Note that we have declared this constructor.
6748  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6749
6750  if (Scope *S = getScopeForContext(ClassDecl))
6751    PushOnScopeChains(DefaultCon, S, false);
6752  ClassDecl->addDecl(DefaultCon);
6753
6754  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6755    DefaultCon->setDeletedAsWritten();
6756
6757  return DefaultCon;
6758}
6759
6760void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6761                                            CXXConstructorDecl *Constructor) {
6762  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6763          !Constructor->doesThisDeclarationHaveABody() &&
6764          !Constructor->isDeleted()) &&
6765    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6766
6767  CXXRecordDecl *ClassDecl = Constructor->getParent();
6768  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6769
6770  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6771  DiagnosticErrorTrap Trap(Diags);
6772  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6773      Trap.hasErrorOccurred()) {
6774    Diag(CurrentLocation, diag::note_member_synthesized_at)
6775      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6776    Constructor->setInvalidDecl();
6777    return;
6778  }
6779
6780  SourceLocation Loc = Constructor->getLocation();
6781  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6782
6783  Constructor->setUsed();
6784  MarkVTableUsed(CurrentLocation, ClassDecl);
6785
6786  if (ASTMutationListener *L = getASTMutationListener()) {
6787    L->CompletedImplicitDefinition(Constructor);
6788  }
6789}
6790
6791/// Get any existing defaulted default constructor for the given class. Do not
6792/// implicitly define one if it does not exist.
6793static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6794                                                             CXXRecordDecl *D) {
6795  ASTContext &Context = Self.Context;
6796  QualType ClassType = Context.getTypeDeclType(D);
6797  DeclarationName ConstructorName
6798    = Context.DeclarationNames.getCXXConstructorName(
6799                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6800
6801  DeclContext::lookup_const_iterator Con, ConEnd;
6802  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6803       Con != ConEnd; ++Con) {
6804    // A function template cannot be defaulted.
6805    if (isa<FunctionTemplateDecl>(*Con))
6806      continue;
6807
6808    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6809    if (Constructor->isDefaultConstructor())
6810      return Constructor->isDefaulted() ? Constructor : 0;
6811  }
6812  return 0;
6813}
6814
6815void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6816  if (!D) return;
6817  AdjustDeclIfTemplate(D);
6818
6819  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6820  CXXConstructorDecl *CtorDecl
6821    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6822
6823  if (!CtorDecl) return;
6824
6825  // Compute the exception specification for the default constructor.
6826  const FunctionProtoType *CtorTy =
6827    CtorDecl->getType()->castAs<FunctionProtoType>();
6828  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6829    // FIXME: Don't do this unless the exception spec is needed.
6830    ImplicitExceptionSpecification Spec =
6831      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6832    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6833    assert(EPI.ExceptionSpecType != EST_Delayed);
6834
6835    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6836  }
6837
6838  // If the default constructor is explicitly defaulted, checking the exception
6839  // specification is deferred until now.
6840  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6841      !ClassDecl->isDependentType())
6842    CheckExplicitlyDefaultedSpecialMember(CtorDecl);
6843}
6844
6845void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6846  // We start with an initial pass over the base classes to collect those that
6847  // inherit constructors from. If there are none, we can forgo all further
6848  // processing.
6849  typedef SmallVector<const RecordType *, 4> BasesVector;
6850  BasesVector BasesToInheritFrom;
6851  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6852                                          BaseE = ClassDecl->bases_end();
6853         BaseIt != BaseE; ++BaseIt) {
6854    if (BaseIt->getInheritConstructors()) {
6855      QualType Base = BaseIt->getType();
6856      if (Base->isDependentType()) {
6857        // If we inherit constructors from anything that is dependent, just
6858        // abort processing altogether. We'll get another chance for the
6859        // instantiations.
6860        return;
6861      }
6862      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6863    }
6864  }
6865  if (BasesToInheritFrom.empty())
6866    return;
6867
6868  // Now collect the constructors that we already have in the current class.
6869  // Those take precedence over inherited constructors.
6870  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6871  //   unless there is a user-declared constructor with the same signature in
6872  //   the class where the using-declaration appears.
6873  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6874  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6875                                    CtorE = ClassDecl->ctor_end();
6876       CtorIt != CtorE; ++CtorIt) {
6877    ExistingConstructors.insert(
6878        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6879  }
6880
6881  DeclarationName CreatedCtorName =
6882      Context.DeclarationNames.getCXXConstructorName(
6883          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6884
6885  // Now comes the true work.
6886  // First, we keep a map from constructor types to the base that introduced
6887  // them. Needed for finding conflicting constructors. We also keep the
6888  // actually inserted declarations in there, for pretty diagnostics.
6889  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6890  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6891  ConstructorToSourceMap InheritedConstructors;
6892  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6893                             BaseE = BasesToInheritFrom.end();
6894       BaseIt != BaseE; ++BaseIt) {
6895    const RecordType *Base = *BaseIt;
6896    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6897    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6898    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6899                                      CtorE = BaseDecl->ctor_end();
6900         CtorIt != CtorE; ++CtorIt) {
6901      // Find the using declaration for inheriting this base's constructors.
6902      // FIXME: Don't perform name lookup just to obtain a source location!
6903      DeclarationName Name =
6904          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6905      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6906      LookupQualifiedName(Result, CurContext);
6907      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6908      SourceLocation UsingLoc = UD ? UD->getLocation() :
6909                                     ClassDecl->getLocation();
6910
6911      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6912      //   from the class X named in the using-declaration consists of actual
6913      //   constructors and notional constructors that result from the
6914      //   transformation of defaulted parameters as follows:
6915      //   - all non-template default constructors of X, and
6916      //   - for each non-template constructor of X that has at least one
6917      //     parameter with a default argument, the set of constructors that
6918      //     results from omitting any ellipsis parameter specification and
6919      //     successively omitting parameters with a default argument from the
6920      //     end of the parameter-type-list.
6921      CXXConstructorDecl *BaseCtor = *CtorIt;
6922      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6923      const FunctionProtoType *BaseCtorType =
6924          BaseCtor->getType()->getAs<FunctionProtoType>();
6925
6926      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6927                    maxParams = BaseCtor->getNumParams();
6928           params <= maxParams; ++params) {
6929        // Skip default constructors. They're never inherited.
6930        if (params == 0)
6931          continue;
6932        // Skip copy and move constructors for the same reason.
6933        if (CanBeCopyOrMove && params == 1)
6934          continue;
6935
6936        // Build up a function type for this particular constructor.
6937        // FIXME: The working paper does not consider that the exception spec
6938        // for the inheriting constructor might be larger than that of the
6939        // source. This code doesn't yet, either. When it does, this code will
6940        // need to be delayed until after exception specifications and in-class
6941        // member initializers are attached.
6942        const Type *NewCtorType;
6943        if (params == maxParams)
6944          NewCtorType = BaseCtorType;
6945        else {
6946          SmallVector<QualType, 16> Args;
6947          for (unsigned i = 0; i < params; ++i) {
6948            Args.push_back(BaseCtorType->getArgType(i));
6949          }
6950          FunctionProtoType::ExtProtoInfo ExtInfo =
6951              BaseCtorType->getExtProtoInfo();
6952          ExtInfo.Variadic = false;
6953          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6954                                                Args.data(), params, ExtInfo)
6955                       .getTypePtr();
6956        }
6957        const Type *CanonicalNewCtorType =
6958            Context.getCanonicalType(NewCtorType);
6959
6960        // Now that we have the type, first check if the class already has a
6961        // constructor with this signature.
6962        if (ExistingConstructors.count(CanonicalNewCtorType))
6963          continue;
6964
6965        // Then we check if we have already declared an inherited constructor
6966        // with this signature.
6967        std::pair<ConstructorToSourceMap::iterator, bool> result =
6968            InheritedConstructors.insert(std::make_pair(
6969                CanonicalNewCtorType,
6970                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6971        if (!result.second) {
6972          // Already in the map. If it came from a different class, that's an
6973          // error. Not if it's from the same.
6974          CanQualType PreviousBase = result.first->second.first;
6975          if (CanonicalBase != PreviousBase) {
6976            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6977            const CXXConstructorDecl *PrevBaseCtor =
6978                PrevCtor->getInheritedConstructor();
6979            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6980
6981            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6982            Diag(BaseCtor->getLocation(),
6983                 diag::note_using_decl_constructor_conflict_current_ctor);
6984            Diag(PrevBaseCtor->getLocation(),
6985                 diag::note_using_decl_constructor_conflict_previous_ctor);
6986            Diag(PrevCtor->getLocation(),
6987                 diag::note_using_decl_constructor_conflict_previous_using);
6988          }
6989          continue;
6990        }
6991
6992        // OK, we're there, now add the constructor.
6993        // C++0x [class.inhctor]p8: [...] that would be performed by a
6994        //   user-written inline constructor [...]
6995        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6996        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6997            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6998            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6999            /*ImplicitlyDeclared=*/true,
7000            // FIXME: Due to a defect in the standard, we treat inherited
7001            // constructors as constexpr even if that makes them ill-formed.
7002            /*Constexpr=*/BaseCtor->isConstexpr());
7003        NewCtor->setAccess(BaseCtor->getAccess());
7004
7005        // Build up the parameter decls and add them.
7006        SmallVector<ParmVarDecl *, 16> ParamDecls;
7007        for (unsigned i = 0; i < params; ++i) {
7008          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7009                                                   UsingLoc, UsingLoc,
7010                                                   /*IdentifierInfo=*/0,
7011                                                   BaseCtorType->getArgType(i),
7012                                                   /*TInfo=*/0, SC_None,
7013                                                   SC_None, /*DefaultArg=*/0));
7014        }
7015        NewCtor->setParams(ParamDecls);
7016        NewCtor->setInheritedConstructor(BaseCtor);
7017
7018        ClassDecl->addDecl(NewCtor);
7019        result.first->second.second = NewCtor;
7020      }
7021    }
7022  }
7023}
7024
7025Sema::ImplicitExceptionSpecification
7026Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7027  // C++ [except.spec]p14:
7028  //   An implicitly declared special member function (Clause 12) shall have
7029  //   an exception-specification.
7030  ImplicitExceptionSpecification ExceptSpec(*this);
7031  if (ClassDecl->isInvalidDecl())
7032    return ExceptSpec;
7033
7034  // Direct base-class destructors.
7035  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7036                                       BEnd = ClassDecl->bases_end();
7037       B != BEnd; ++B) {
7038    if (B->isVirtual()) // Handled below.
7039      continue;
7040
7041    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7042      ExceptSpec.CalledDecl(B->getLocStart(),
7043                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7044  }
7045
7046  // Virtual base-class destructors.
7047  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7048                                       BEnd = ClassDecl->vbases_end();
7049       B != BEnd; ++B) {
7050    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7051      ExceptSpec.CalledDecl(B->getLocStart(),
7052                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7053  }
7054
7055  // Field destructors.
7056  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7057                               FEnd = ClassDecl->field_end();
7058       F != FEnd; ++F) {
7059    if (const RecordType *RecordTy
7060        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7061      ExceptSpec.CalledDecl(F->getLocation(),
7062                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7063  }
7064
7065  return ExceptSpec;
7066}
7067
7068CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7069  // C++ [class.dtor]p2:
7070  //   If a class has no user-declared destructor, a destructor is
7071  //   declared implicitly. An implicitly-declared destructor is an
7072  //   inline public member of its class.
7073
7074  ImplicitExceptionSpecification Spec =
7075      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7076  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7077
7078  // Create the actual destructor declaration.
7079  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7080
7081  CanQualType ClassType
7082    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7083  SourceLocation ClassLoc = ClassDecl->getLocation();
7084  DeclarationName Name
7085    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7086  DeclarationNameInfo NameInfo(Name, ClassLoc);
7087  CXXDestructorDecl *Destructor
7088      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7089                                  /*isInline=*/true,
7090                                  /*isImplicitlyDeclared=*/true);
7091  Destructor->setAccess(AS_public);
7092  Destructor->setDefaulted();
7093  Destructor->setImplicit();
7094  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7095
7096  // Note that we have declared this destructor.
7097  ++ASTContext::NumImplicitDestructorsDeclared;
7098
7099  // Introduce this destructor into its scope.
7100  if (Scope *S = getScopeForContext(ClassDecl))
7101    PushOnScopeChains(Destructor, S, false);
7102  ClassDecl->addDecl(Destructor);
7103
7104  // This could be uniqued if it ever proves significant.
7105  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7106
7107  AddOverriddenMethods(ClassDecl, Destructor);
7108
7109  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7110    Destructor->setDeletedAsWritten();
7111
7112  return Destructor;
7113}
7114
7115void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7116                                    CXXDestructorDecl *Destructor) {
7117  assert((Destructor->isDefaulted() &&
7118          !Destructor->doesThisDeclarationHaveABody() &&
7119          !Destructor->isDeleted()) &&
7120         "DefineImplicitDestructor - call it for implicit default dtor");
7121  CXXRecordDecl *ClassDecl = Destructor->getParent();
7122  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7123
7124  if (Destructor->isInvalidDecl())
7125    return;
7126
7127  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7128
7129  DiagnosticErrorTrap Trap(Diags);
7130  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7131                                         Destructor->getParent());
7132
7133  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7134    Diag(CurrentLocation, diag::note_member_synthesized_at)
7135      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7136
7137    Destructor->setInvalidDecl();
7138    return;
7139  }
7140
7141  SourceLocation Loc = Destructor->getLocation();
7142  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7143  Destructor->setImplicitlyDefined(true);
7144  Destructor->setUsed();
7145  MarkVTableUsed(CurrentLocation, ClassDecl);
7146
7147  if (ASTMutationListener *L = getASTMutationListener()) {
7148    L->CompletedImplicitDefinition(Destructor);
7149  }
7150}
7151
7152/// \brief Perform any semantic analysis which needs to be delayed until all
7153/// pending class member declarations have been parsed.
7154void Sema::ActOnFinishCXXMemberDecls() {
7155  // Now we have parsed all exception specifications, determine the implicit
7156  // exception specifications for destructors.
7157  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7158       i != e; ++i) {
7159    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7160    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7161  }
7162  DelayedDestructorExceptionSpecs.clear();
7163
7164  // Perform any deferred checking of exception specifications for virtual
7165  // destructors.
7166  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7167       i != e; ++i) {
7168    const CXXDestructorDecl *Dtor =
7169        DelayedDestructorExceptionSpecChecks[i].first;
7170    assert(!Dtor->getParent()->isDependentType() &&
7171           "Should not ever add destructors of templates into the list.");
7172    CheckOverridingFunctionExceptionSpec(Dtor,
7173        DelayedDestructorExceptionSpecChecks[i].second);
7174  }
7175  DelayedDestructorExceptionSpecChecks.clear();
7176}
7177
7178void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7179                                         CXXDestructorDecl *destructor,
7180                                         bool WasDelayed) {
7181  // C++11 [class.dtor]p3:
7182  //   A declaration of a destructor that does not have an exception-
7183  //   specification is implicitly considered to have the same exception-
7184  //   specification as an implicit declaration.
7185  const FunctionProtoType *dtorType = destructor->getType()->
7186                                        getAs<FunctionProtoType>();
7187  if (!WasDelayed && dtorType->hasExceptionSpec())
7188    return;
7189
7190  ImplicitExceptionSpecification exceptSpec =
7191      ComputeDefaultedDtorExceptionSpec(classDecl);
7192
7193  // Replace the destructor's type, building off the existing one. Fortunately,
7194  // the only thing of interest in the destructor type is its extended info.
7195  // The return and arguments are fixed.
7196  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7197  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7198  epi.NumExceptions = exceptSpec.size();
7199  epi.Exceptions = exceptSpec.data();
7200  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7201
7202  destructor->setType(ty);
7203
7204  // If we can't compute the exception specification for this destructor yet
7205  // (because it depends on an exception specification which we have not parsed
7206  // yet), make a note that we need to try again when the class is complete.
7207  if (epi.ExceptionSpecType == EST_Delayed) {
7208    assert(!WasDelayed && "couldn't compute destructor exception spec");
7209    DelayedDestructorExceptionSpecs.push_back(destructor);
7210  }
7211
7212  // FIXME: If the destructor has a body that could throw, and the newly created
7213  // spec doesn't allow exceptions, we should emit a warning, because this
7214  // change in behavior can break conforming C++03 programs at runtime.
7215  // However, we don't have a body yet, so it needs to be done somewhere else.
7216}
7217
7218/// \brief Builds a statement that copies/moves the given entity from \p From to
7219/// \c To.
7220///
7221/// This routine is used to copy/move the members of a class with an
7222/// implicitly-declared copy/move assignment operator. When the entities being
7223/// copied are arrays, this routine builds for loops to copy them.
7224///
7225/// \param S The Sema object used for type-checking.
7226///
7227/// \param Loc The location where the implicit copy/move is being generated.
7228///
7229/// \param T The type of the expressions being copied/moved. Both expressions
7230/// must have this type.
7231///
7232/// \param To The expression we are copying/moving to.
7233///
7234/// \param From The expression we are copying/moving from.
7235///
7236/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7237/// Otherwise, it's a non-static member subobject.
7238///
7239/// \param Copying Whether we're copying or moving.
7240///
7241/// \param Depth Internal parameter recording the depth of the recursion.
7242///
7243/// \returns A statement or a loop that copies the expressions.
7244static StmtResult
7245BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7246                      Expr *To, Expr *From,
7247                      bool CopyingBaseSubobject, bool Copying,
7248                      unsigned Depth = 0) {
7249  // C++0x [class.copy]p28:
7250  //   Each subobject is assigned in the manner appropriate to its type:
7251  //
7252  //     - if the subobject is of class type, as if by a call to operator= with
7253  //       the subobject as the object expression and the corresponding
7254  //       subobject of x as a single function argument (as if by explicit
7255  //       qualification; that is, ignoring any possible virtual overriding
7256  //       functions in more derived classes);
7257  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7258    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7259
7260    // Look for operator=.
7261    DeclarationName Name
7262      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7263    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7264    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7265
7266    // Filter out any result that isn't a copy/move-assignment operator.
7267    LookupResult::Filter F = OpLookup.makeFilter();
7268    while (F.hasNext()) {
7269      NamedDecl *D = F.next();
7270      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7271        if (Method->isCopyAssignmentOperator() ||
7272            (!Copying && Method->isMoveAssignmentOperator()))
7273          continue;
7274
7275      F.erase();
7276    }
7277    F.done();
7278
7279    // Suppress the protected check (C++ [class.protected]) for each of the
7280    // assignment operators we found. This strange dance is required when
7281    // we're assigning via a base classes's copy-assignment operator. To
7282    // ensure that we're getting the right base class subobject (without
7283    // ambiguities), we need to cast "this" to that subobject type; to
7284    // ensure that we don't go through the virtual call mechanism, we need
7285    // to qualify the operator= name with the base class (see below). However,
7286    // this means that if the base class has a protected copy assignment
7287    // operator, the protected member access check will fail. So, we
7288    // rewrite "protected" access to "public" access in this case, since we
7289    // know by construction that we're calling from a derived class.
7290    if (CopyingBaseSubobject) {
7291      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7292           L != LEnd; ++L) {
7293        if (L.getAccess() == AS_protected)
7294          L.setAccess(AS_public);
7295      }
7296    }
7297
7298    // Create the nested-name-specifier that will be used to qualify the
7299    // reference to operator=; this is required to suppress the virtual
7300    // call mechanism.
7301    CXXScopeSpec SS;
7302    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7303    SS.MakeTrivial(S.Context,
7304                   NestedNameSpecifier::Create(S.Context, 0, false,
7305                                               CanonicalT),
7306                   Loc);
7307
7308    // Create the reference to operator=.
7309    ExprResult OpEqualRef
7310      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7311                                   /*TemplateKWLoc=*/SourceLocation(),
7312                                   /*FirstQualifierInScope=*/0,
7313                                   OpLookup,
7314                                   /*TemplateArgs=*/0,
7315                                   /*SuppressQualifierCheck=*/true);
7316    if (OpEqualRef.isInvalid())
7317      return StmtError();
7318
7319    // Build the call to the assignment operator.
7320
7321    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7322                                                  OpEqualRef.takeAs<Expr>(),
7323                                                  Loc, &From, 1, Loc);
7324    if (Call.isInvalid())
7325      return StmtError();
7326
7327    return S.Owned(Call.takeAs<Stmt>());
7328  }
7329
7330  //     - if the subobject is of scalar type, the built-in assignment
7331  //       operator is used.
7332  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7333  if (!ArrayTy) {
7334    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7335    if (Assignment.isInvalid())
7336      return StmtError();
7337
7338    return S.Owned(Assignment.takeAs<Stmt>());
7339  }
7340
7341  //     - if the subobject is an array, each element is assigned, in the
7342  //       manner appropriate to the element type;
7343
7344  // Construct a loop over the array bounds, e.g.,
7345  //
7346  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7347  //
7348  // that will copy each of the array elements.
7349  QualType SizeType = S.Context.getSizeType();
7350
7351  // Create the iteration variable.
7352  IdentifierInfo *IterationVarName = 0;
7353  {
7354    SmallString<8> Str;
7355    llvm::raw_svector_ostream OS(Str);
7356    OS << "__i" << Depth;
7357    IterationVarName = &S.Context.Idents.get(OS.str());
7358  }
7359  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7360                                          IterationVarName, SizeType,
7361                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7362                                          SC_None, SC_None);
7363
7364  // Initialize the iteration variable to zero.
7365  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7366  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7367
7368  // Create a reference to the iteration variable; we'll use this several
7369  // times throughout.
7370  Expr *IterationVarRef
7371    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7372  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7373  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7374  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7375
7376  // Create the DeclStmt that holds the iteration variable.
7377  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7378
7379  // Create the comparison against the array bound.
7380  llvm::APInt Upper
7381    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7382  Expr *Comparison
7383    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7384                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7385                                     BO_NE, S.Context.BoolTy,
7386                                     VK_RValue, OK_Ordinary, Loc);
7387
7388  // Create the pre-increment of the iteration variable.
7389  Expr *Increment
7390    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7391                                    VK_LValue, OK_Ordinary, Loc);
7392
7393  // Subscript the "from" and "to" expressions with the iteration variable.
7394  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7395                                                         IterationVarRefRVal,
7396                                                         Loc));
7397  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7398                                                       IterationVarRefRVal,
7399                                                       Loc));
7400  if (!Copying) // Cast to rvalue
7401    From = CastForMoving(S, From);
7402
7403  // Build the copy/move for an individual element of the array.
7404  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7405                                          To, From, CopyingBaseSubobject,
7406                                          Copying, Depth + 1);
7407  if (Copy.isInvalid())
7408    return StmtError();
7409
7410  // Construct the loop that copies all elements of this array.
7411  return S.ActOnForStmt(Loc, Loc, InitStmt,
7412                        S.MakeFullExpr(Comparison),
7413                        0, S.MakeFullExpr(Increment),
7414                        Loc, Copy.take());
7415}
7416
7417std::pair<Sema::ImplicitExceptionSpecification, bool>
7418Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7419                                                   CXXRecordDecl *ClassDecl) {
7420  if (ClassDecl->isInvalidDecl())
7421    return std::make_pair(ImplicitExceptionSpecification(*this), true);
7422
7423  // C++ [class.copy]p10:
7424  //   If the class definition does not explicitly declare a copy
7425  //   assignment operator, one is declared implicitly.
7426  //   The implicitly-defined copy assignment operator for a class X
7427  //   will have the form
7428  //
7429  //       X& X::operator=(const X&)
7430  //
7431  //   if
7432  bool HasConstCopyAssignment = true;
7433
7434  //       -- each direct base class B of X has a copy assignment operator
7435  //          whose parameter is of type const B&, const volatile B& or B,
7436  //          and
7437  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7438                                       BaseEnd = ClassDecl->bases_end();
7439       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7440    // We'll handle this below
7441    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7442      continue;
7443
7444    assert(!Base->getType()->isDependentType() &&
7445           "Cannot generate implicit members for class with dependent bases.");
7446    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7447    HasConstCopyAssignment &=
7448      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7449                                    false, 0);
7450  }
7451
7452  // In C++11, the above citation has "or virtual" added
7453  if (LangOpts.CPlusPlus0x) {
7454    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7455                                         BaseEnd = ClassDecl->vbases_end();
7456         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7457      assert(!Base->getType()->isDependentType() &&
7458             "Cannot generate implicit members for class with dependent bases.");
7459      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7460      HasConstCopyAssignment &=
7461        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7462                                      false, 0);
7463    }
7464  }
7465
7466  //       -- for all the nonstatic data members of X that are of a class
7467  //          type M (or array thereof), each such class type has a copy
7468  //          assignment operator whose parameter is of type const M&,
7469  //          const volatile M& or M.
7470  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7471                                  FieldEnd = ClassDecl->field_end();
7472       HasConstCopyAssignment && Field != FieldEnd;
7473       ++Field) {
7474    QualType FieldType = Context.getBaseElementType(Field->getType());
7475    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7476      HasConstCopyAssignment &=
7477        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7478                                      false, 0);
7479    }
7480  }
7481
7482  //   Otherwise, the implicitly declared copy assignment operator will
7483  //   have the form
7484  //
7485  //       X& X::operator=(X&)
7486
7487  // C++ [except.spec]p14:
7488  //   An implicitly declared special member function (Clause 12) shall have an
7489  //   exception-specification. [...]
7490
7491  // It is unspecified whether or not an implicit copy assignment operator
7492  // attempts to deduplicate calls to assignment operators of virtual bases are
7493  // made. As such, this exception specification is effectively unspecified.
7494  // Based on a similar decision made for constness in C++0x, we're erring on
7495  // the side of assuming such calls to be made regardless of whether they
7496  // actually happen.
7497  ImplicitExceptionSpecification ExceptSpec(*this);
7498  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7499  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7500                                       BaseEnd = ClassDecl->bases_end();
7501       Base != BaseEnd; ++Base) {
7502    if (Base->isVirtual())
7503      continue;
7504
7505    CXXRecordDecl *BaseClassDecl
7506      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7507    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7508                                                            ArgQuals, false, 0))
7509      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7510  }
7511
7512  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7513                                       BaseEnd = ClassDecl->vbases_end();
7514       Base != BaseEnd; ++Base) {
7515    CXXRecordDecl *BaseClassDecl
7516      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7517    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7518                                                            ArgQuals, false, 0))
7519      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7520  }
7521
7522  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7523                                  FieldEnd = ClassDecl->field_end();
7524       Field != FieldEnd;
7525       ++Field) {
7526    QualType FieldType = Context.getBaseElementType(Field->getType());
7527    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7528      if (CXXMethodDecl *CopyAssign =
7529          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7530        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7531    }
7532  }
7533
7534  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7535}
7536
7537CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7538  // Note: The following rules are largely analoguous to the copy
7539  // constructor rules. Note that virtual bases are not taken into account
7540  // for determining the argument type of the operator. Note also that
7541  // operators taking an object instead of a reference are allowed.
7542
7543  ImplicitExceptionSpecification Spec(*this);
7544  bool Const;
7545  llvm::tie(Spec, Const) =
7546    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7547
7548  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7549  QualType RetType = Context.getLValueReferenceType(ArgType);
7550  if (Const)
7551    ArgType = ArgType.withConst();
7552  ArgType = Context.getLValueReferenceType(ArgType);
7553
7554  //   An implicitly-declared copy assignment operator is an inline public
7555  //   member of its class.
7556  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7557  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7558  SourceLocation ClassLoc = ClassDecl->getLocation();
7559  DeclarationNameInfo NameInfo(Name, ClassLoc);
7560  CXXMethodDecl *CopyAssignment
7561    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7562                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7563                            /*TInfo=*/0, /*isStatic=*/false,
7564                            /*StorageClassAsWritten=*/SC_None,
7565                            /*isInline=*/true, /*isConstexpr=*/false,
7566                            SourceLocation());
7567  CopyAssignment->setAccess(AS_public);
7568  CopyAssignment->setDefaulted();
7569  CopyAssignment->setImplicit();
7570  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7571
7572  // Add the parameter to the operator.
7573  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7574                                               ClassLoc, ClassLoc, /*Id=*/0,
7575                                               ArgType, /*TInfo=*/0,
7576                                               SC_None,
7577                                               SC_None, 0);
7578  CopyAssignment->setParams(FromParam);
7579
7580  // Note that we have added this copy-assignment operator.
7581  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7582
7583  if (Scope *S = getScopeForContext(ClassDecl))
7584    PushOnScopeChains(CopyAssignment, S, false);
7585  ClassDecl->addDecl(CopyAssignment);
7586
7587  // C++0x [class.copy]p19:
7588  //   ....  If the class definition does not explicitly declare a copy
7589  //   assignment operator, there is no user-declared move constructor, and
7590  //   there is no user-declared move assignment operator, a copy assignment
7591  //   operator is implicitly declared as defaulted.
7592  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7593    CopyAssignment->setDeletedAsWritten();
7594
7595  AddOverriddenMethods(ClassDecl, CopyAssignment);
7596  return CopyAssignment;
7597}
7598
7599void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7600                                        CXXMethodDecl *CopyAssignOperator) {
7601  assert((CopyAssignOperator->isDefaulted() &&
7602          CopyAssignOperator->isOverloadedOperator() &&
7603          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7604          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7605          !CopyAssignOperator->isDeleted()) &&
7606         "DefineImplicitCopyAssignment called for wrong function");
7607
7608  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7609
7610  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7611    CopyAssignOperator->setInvalidDecl();
7612    return;
7613  }
7614
7615  CopyAssignOperator->setUsed();
7616
7617  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7618  DiagnosticErrorTrap Trap(Diags);
7619
7620  // C++0x [class.copy]p30:
7621  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7622  //   for a non-union class X performs memberwise copy assignment of its
7623  //   subobjects. The direct base classes of X are assigned first, in the
7624  //   order of their declaration in the base-specifier-list, and then the
7625  //   immediate non-static data members of X are assigned, in the order in
7626  //   which they were declared in the class definition.
7627
7628  // The statements that form the synthesized function body.
7629  ASTOwningVector<Stmt*> Statements(*this);
7630
7631  // The parameter for the "other" object, which we are copying from.
7632  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7633  Qualifiers OtherQuals = Other->getType().getQualifiers();
7634  QualType OtherRefType = Other->getType();
7635  if (const LValueReferenceType *OtherRef
7636                                = OtherRefType->getAs<LValueReferenceType>()) {
7637    OtherRefType = OtherRef->getPointeeType();
7638    OtherQuals = OtherRefType.getQualifiers();
7639  }
7640
7641  // Our location for everything implicitly-generated.
7642  SourceLocation Loc = CopyAssignOperator->getLocation();
7643
7644  // Construct a reference to the "other" object. We'll be using this
7645  // throughout the generated ASTs.
7646  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7647  assert(OtherRef && "Reference to parameter cannot fail!");
7648
7649  // Construct the "this" pointer. We'll be using this throughout the generated
7650  // ASTs.
7651  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7652  assert(This && "Reference to this cannot fail!");
7653
7654  // Assign base classes.
7655  bool Invalid = false;
7656  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7657       E = ClassDecl->bases_end(); Base != E; ++Base) {
7658    // Form the assignment:
7659    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7660    QualType BaseType = Base->getType().getUnqualifiedType();
7661    if (!BaseType->isRecordType()) {
7662      Invalid = true;
7663      continue;
7664    }
7665
7666    CXXCastPath BasePath;
7667    BasePath.push_back(Base);
7668
7669    // Construct the "from" expression, which is an implicit cast to the
7670    // appropriately-qualified base type.
7671    Expr *From = OtherRef;
7672    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7673                             CK_UncheckedDerivedToBase,
7674                             VK_LValue, &BasePath).take();
7675
7676    // Dereference "this".
7677    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7678
7679    // Implicitly cast "this" to the appropriately-qualified base type.
7680    To = ImpCastExprToType(To.take(),
7681                           Context.getCVRQualifiedType(BaseType,
7682                                     CopyAssignOperator->getTypeQualifiers()),
7683                           CK_UncheckedDerivedToBase,
7684                           VK_LValue, &BasePath);
7685
7686    // Build the copy.
7687    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7688                                            To.get(), From,
7689                                            /*CopyingBaseSubobject=*/true,
7690                                            /*Copying=*/true);
7691    if (Copy.isInvalid()) {
7692      Diag(CurrentLocation, diag::note_member_synthesized_at)
7693        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7694      CopyAssignOperator->setInvalidDecl();
7695      return;
7696    }
7697
7698    // Success! Record the copy.
7699    Statements.push_back(Copy.takeAs<Expr>());
7700  }
7701
7702  // \brief Reference to the __builtin_memcpy function.
7703  Expr *BuiltinMemCpyRef = 0;
7704  // \brief Reference to the __builtin_objc_memmove_collectable function.
7705  Expr *CollectableMemCpyRef = 0;
7706
7707  // Assign non-static members.
7708  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7709                                  FieldEnd = ClassDecl->field_end();
7710       Field != FieldEnd; ++Field) {
7711    if (Field->isUnnamedBitfield())
7712      continue;
7713
7714    // Check for members of reference type; we can't copy those.
7715    if (Field->getType()->isReferenceType()) {
7716      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7717        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7718      Diag(Field->getLocation(), diag::note_declared_at);
7719      Diag(CurrentLocation, diag::note_member_synthesized_at)
7720        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7721      Invalid = true;
7722      continue;
7723    }
7724
7725    // Check for members of const-qualified, non-class type.
7726    QualType BaseType = Context.getBaseElementType(Field->getType());
7727    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7728      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7729        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7730      Diag(Field->getLocation(), diag::note_declared_at);
7731      Diag(CurrentLocation, diag::note_member_synthesized_at)
7732        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7733      Invalid = true;
7734      continue;
7735    }
7736
7737    // Suppress assigning zero-width bitfields.
7738    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7739      continue;
7740
7741    QualType FieldType = Field->getType().getNonReferenceType();
7742    if (FieldType->isIncompleteArrayType()) {
7743      assert(ClassDecl->hasFlexibleArrayMember() &&
7744             "Incomplete array type is not valid");
7745      continue;
7746    }
7747
7748    // Build references to the field in the object we're copying from and to.
7749    CXXScopeSpec SS; // Intentionally empty
7750    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7751                              LookupMemberName);
7752    MemberLookup.addDecl(*Field);
7753    MemberLookup.resolveKind();
7754    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7755                                               Loc, /*IsArrow=*/false,
7756                                               SS, SourceLocation(), 0,
7757                                               MemberLookup, 0);
7758    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7759                                             Loc, /*IsArrow=*/true,
7760                                             SS, SourceLocation(), 0,
7761                                             MemberLookup, 0);
7762    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7763    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7764
7765    // If the field should be copied with __builtin_memcpy rather than via
7766    // explicit assignments, do so. This optimization only applies for arrays
7767    // of scalars and arrays of class type with trivial copy-assignment
7768    // operators.
7769    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7770        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7771      // Compute the size of the memory buffer to be copied.
7772      QualType SizeType = Context.getSizeType();
7773      llvm::APInt Size(Context.getTypeSize(SizeType),
7774                       Context.getTypeSizeInChars(BaseType).getQuantity());
7775      for (const ConstantArrayType *Array
7776              = Context.getAsConstantArrayType(FieldType);
7777           Array;
7778           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7779        llvm::APInt ArraySize
7780          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7781        Size *= ArraySize;
7782      }
7783
7784      // Take the address of the field references for "from" and "to".
7785      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7786      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7787
7788      bool NeedsCollectableMemCpy =
7789          (BaseType->isRecordType() &&
7790           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7791
7792      if (NeedsCollectableMemCpy) {
7793        if (!CollectableMemCpyRef) {
7794          // Create a reference to the __builtin_objc_memmove_collectable function.
7795          LookupResult R(*this,
7796                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7797                         Loc, LookupOrdinaryName);
7798          LookupName(R, TUScope, true);
7799
7800          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7801          if (!CollectableMemCpy) {
7802            // Something went horribly wrong earlier, and we will have
7803            // complained about it.
7804            Invalid = true;
7805            continue;
7806          }
7807
7808          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7809                                                  CollectableMemCpy->getType(),
7810                                                  VK_LValue, Loc, 0).take();
7811          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7812        }
7813      }
7814      // Create a reference to the __builtin_memcpy builtin function.
7815      else if (!BuiltinMemCpyRef) {
7816        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7817                       LookupOrdinaryName);
7818        LookupName(R, TUScope, true);
7819
7820        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7821        if (!BuiltinMemCpy) {
7822          // Something went horribly wrong earlier, and we will have complained
7823          // about it.
7824          Invalid = true;
7825          continue;
7826        }
7827
7828        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7829                                            BuiltinMemCpy->getType(),
7830                                            VK_LValue, Loc, 0).take();
7831        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7832      }
7833
7834      ASTOwningVector<Expr*> CallArgs(*this);
7835      CallArgs.push_back(To.takeAs<Expr>());
7836      CallArgs.push_back(From.takeAs<Expr>());
7837      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7838      ExprResult Call = ExprError();
7839      if (NeedsCollectableMemCpy)
7840        Call = ActOnCallExpr(/*Scope=*/0,
7841                             CollectableMemCpyRef,
7842                             Loc, move_arg(CallArgs),
7843                             Loc);
7844      else
7845        Call = ActOnCallExpr(/*Scope=*/0,
7846                             BuiltinMemCpyRef,
7847                             Loc, move_arg(CallArgs),
7848                             Loc);
7849
7850      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7851      Statements.push_back(Call.takeAs<Expr>());
7852      continue;
7853    }
7854
7855    // Build the copy of this field.
7856    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7857                                            To.get(), From.get(),
7858                                            /*CopyingBaseSubobject=*/false,
7859                                            /*Copying=*/true);
7860    if (Copy.isInvalid()) {
7861      Diag(CurrentLocation, diag::note_member_synthesized_at)
7862        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7863      CopyAssignOperator->setInvalidDecl();
7864      return;
7865    }
7866
7867    // Success! Record the copy.
7868    Statements.push_back(Copy.takeAs<Stmt>());
7869  }
7870
7871  if (!Invalid) {
7872    // Add a "return *this;"
7873    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7874
7875    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7876    if (Return.isInvalid())
7877      Invalid = true;
7878    else {
7879      Statements.push_back(Return.takeAs<Stmt>());
7880
7881      if (Trap.hasErrorOccurred()) {
7882        Diag(CurrentLocation, diag::note_member_synthesized_at)
7883          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7884        Invalid = true;
7885      }
7886    }
7887  }
7888
7889  if (Invalid) {
7890    CopyAssignOperator->setInvalidDecl();
7891    return;
7892  }
7893
7894  StmtResult Body;
7895  {
7896    CompoundScopeRAII CompoundScope(*this);
7897    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7898                             /*isStmtExpr=*/false);
7899    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7900  }
7901  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7902
7903  if (ASTMutationListener *L = getASTMutationListener()) {
7904    L->CompletedImplicitDefinition(CopyAssignOperator);
7905  }
7906}
7907
7908Sema::ImplicitExceptionSpecification
7909Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7910  ImplicitExceptionSpecification ExceptSpec(*this);
7911
7912  if (ClassDecl->isInvalidDecl())
7913    return ExceptSpec;
7914
7915  // C++0x [except.spec]p14:
7916  //   An implicitly declared special member function (Clause 12) shall have an
7917  //   exception-specification. [...]
7918
7919  // It is unspecified whether or not an implicit move assignment operator
7920  // attempts to deduplicate calls to assignment operators of virtual bases are
7921  // made. As such, this exception specification is effectively unspecified.
7922  // Based on a similar decision made for constness in C++0x, we're erring on
7923  // the side of assuming such calls to be made regardless of whether they
7924  // actually happen.
7925  // Note that a move constructor is not implicitly declared when there are
7926  // virtual bases, but it can still be user-declared and explicitly defaulted.
7927  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7928                                       BaseEnd = ClassDecl->bases_end();
7929       Base != BaseEnd; ++Base) {
7930    if (Base->isVirtual())
7931      continue;
7932
7933    CXXRecordDecl *BaseClassDecl
7934      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7935    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7936                                                           false, 0))
7937      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7938  }
7939
7940  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7941                                       BaseEnd = ClassDecl->vbases_end();
7942       Base != BaseEnd; ++Base) {
7943    CXXRecordDecl *BaseClassDecl
7944      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7945    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7946                                                           false, 0))
7947      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7948  }
7949
7950  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7951                                  FieldEnd = ClassDecl->field_end();
7952       Field != FieldEnd;
7953       ++Field) {
7954    QualType FieldType = Context.getBaseElementType(Field->getType());
7955    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7956      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7957                                                             false, 0))
7958        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
7959    }
7960  }
7961
7962  return ExceptSpec;
7963}
7964
7965/// Determine whether the class type has any direct or indirect virtual base
7966/// classes which have a non-trivial move assignment operator.
7967static bool
7968hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
7969  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7970                                          BaseEnd = ClassDecl->vbases_end();
7971       Base != BaseEnd; ++Base) {
7972    CXXRecordDecl *BaseClass =
7973        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7974
7975    // Try to declare the move assignment. If it would be deleted, then the
7976    // class does not have a non-trivial move assignment.
7977    if (BaseClass->needsImplicitMoveAssignment())
7978      S.DeclareImplicitMoveAssignment(BaseClass);
7979
7980    // If the class has both a trivial move assignment and a non-trivial move
7981    // assignment, hasTrivialMoveAssignment() is false.
7982    if (BaseClass->hasDeclaredMoveAssignment() &&
7983        !BaseClass->hasTrivialMoveAssignment())
7984      return true;
7985  }
7986
7987  return false;
7988}
7989
7990/// Determine whether the given type either has a move constructor or is
7991/// trivially copyable.
7992static bool
7993hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
7994  Type = S.Context.getBaseElementType(Type);
7995
7996  // FIXME: Technically, non-trivially-copyable non-class types, such as
7997  // reference types, are supposed to return false here, but that appears
7998  // to be a standard defect.
7999  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8000  if (!ClassDecl || !ClassDecl->getDefinition())
8001    return true;
8002
8003  if (Type.isTriviallyCopyableType(S.Context))
8004    return true;
8005
8006  if (IsConstructor) {
8007    if (ClassDecl->needsImplicitMoveConstructor())
8008      S.DeclareImplicitMoveConstructor(ClassDecl);
8009    return ClassDecl->hasDeclaredMoveConstructor();
8010  }
8011
8012  if (ClassDecl->needsImplicitMoveAssignment())
8013    S.DeclareImplicitMoveAssignment(ClassDecl);
8014  return ClassDecl->hasDeclaredMoveAssignment();
8015}
8016
8017/// Determine whether all non-static data members and direct or virtual bases
8018/// of class \p ClassDecl have either a move operation, or are trivially
8019/// copyable.
8020static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8021                                            bool IsConstructor) {
8022  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8023                                          BaseEnd = ClassDecl->bases_end();
8024       Base != BaseEnd; ++Base) {
8025    if (Base->isVirtual())
8026      continue;
8027
8028    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8029      return false;
8030  }
8031
8032  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8033                                          BaseEnd = ClassDecl->vbases_end();
8034       Base != BaseEnd; ++Base) {
8035    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8036      return false;
8037  }
8038
8039  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8040                                     FieldEnd = ClassDecl->field_end();
8041       Field != FieldEnd; ++Field) {
8042    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8043      return false;
8044  }
8045
8046  return true;
8047}
8048
8049CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8050  // C++11 [class.copy]p20:
8051  //   If the definition of a class X does not explicitly declare a move
8052  //   assignment operator, one will be implicitly declared as defaulted
8053  //   if and only if:
8054  //
8055  //   - [first 4 bullets]
8056  assert(ClassDecl->needsImplicitMoveAssignment());
8057
8058  // [Checked after we build the declaration]
8059  //   - the move assignment operator would not be implicitly defined as
8060  //     deleted,
8061
8062  // [DR1402]:
8063  //   - X has no direct or indirect virtual base class with a non-trivial
8064  //     move assignment operator, and
8065  //   - each of X's non-static data members and direct or virtual base classes
8066  //     has a type that either has a move assignment operator or is trivially
8067  //     copyable.
8068  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8069      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8070    ClassDecl->setFailedImplicitMoveAssignment();
8071    return 0;
8072  }
8073
8074  // Note: The following rules are largely analoguous to the move
8075  // constructor rules.
8076
8077  ImplicitExceptionSpecification Spec(
8078      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8079
8080  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8081  QualType RetType = Context.getLValueReferenceType(ArgType);
8082  ArgType = Context.getRValueReferenceType(ArgType);
8083
8084  //   An implicitly-declared move assignment operator is an inline public
8085  //   member of its class.
8086  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8087  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8088  SourceLocation ClassLoc = ClassDecl->getLocation();
8089  DeclarationNameInfo NameInfo(Name, ClassLoc);
8090  CXXMethodDecl *MoveAssignment
8091    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8092                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8093                            /*TInfo=*/0, /*isStatic=*/false,
8094                            /*StorageClassAsWritten=*/SC_None,
8095                            /*isInline=*/true,
8096                            /*isConstexpr=*/false,
8097                            SourceLocation());
8098  MoveAssignment->setAccess(AS_public);
8099  MoveAssignment->setDefaulted();
8100  MoveAssignment->setImplicit();
8101  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8102
8103  // Add the parameter to the operator.
8104  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8105                                               ClassLoc, ClassLoc, /*Id=*/0,
8106                                               ArgType, /*TInfo=*/0,
8107                                               SC_None,
8108                                               SC_None, 0);
8109  MoveAssignment->setParams(FromParam);
8110
8111  // Note that we have added this copy-assignment operator.
8112  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8113
8114  // C++0x [class.copy]p9:
8115  //   If the definition of a class X does not explicitly declare a move
8116  //   assignment operator, one will be implicitly declared as defaulted if and
8117  //   only if:
8118  //   [...]
8119  //   - the move assignment operator would not be implicitly defined as
8120  //     deleted.
8121  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8122    // Cache this result so that we don't try to generate this over and over
8123    // on every lookup, leaking memory and wasting time.
8124    ClassDecl->setFailedImplicitMoveAssignment();
8125    return 0;
8126  }
8127
8128  if (Scope *S = getScopeForContext(ClassDecl))
8129    PushOnScopeChains(MoveAssignment, S, false);
8130  ClassDecl->addDecl(MoveAssignment);
8131
8132  AddOverriddenMethods(ClassDecl, MoveAssignment);
8133  return MoveAssignment;
8134}
8135
8136void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8137                                        CXXMethodDecl *MoveAssignOperator) {
8138  assert((MoveAssignOperator->isDefaulted() &&
8139          MoveAssignOperator->isOverloadedOperator() &&
8140          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8141          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8142          !MoveAssignOperator->isDeleted()) &&
8143         "DefineImplicitMoveAssignment called for wrong function");
8144
8145  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8146
8147  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8148    MoveAssignOperator->setInvalidDecl();
8149    return;
8150  }
8151
8152  MoveAssignOperator->setUsed();
8153
8154  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8155  DiagnosticErrorTrap Trap(Diags);
8156
8157  // C++0x [class.copy]p28:
8158  //   The implicitly-defined or move assignment operator for a non-union class
8159  //   X performs memberwise move assignment of its subobjects. The direct base
8160  //   classes of X are assigned first, in the order of their declaration in the
8161  //   base-specifier-list, and then the immediate non-static data members of X
8162  //   are assigned, in the order in which they were declared in the class
8163  //   definition.
8164
8165  // The statements that form the synthesized function body.
8166  ASTOwningVector<Stmt*> Statements(*this);
8167
8168  // The parameter for the "other" object, which we are move from.
8169  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8170  QualType OtherRefType = Other->getType()->
8171      getAs<RValueReferenceType>()->getPointeeType();
8172  assert(OtherRefType.getQualifiers() == 0 &&
8173         "Bad argument type of defaulted move assignment");
8174
8175  // Our location for everything implicitly-generated.
8176  SourceLocation Loc = MoveAssignOperator->getLocation();
8177
8178  // Construct a reference to the "other" object. We'll be using this
8179  // throughout the generated ASTs.
8180  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8181  assert(OtherRef && "Reference to parameter cannot fail!");
8182  // Cast to rvalue.
8183  OtherRef = CastForMoving(*this, OtherRef);
8184
8185  // Construct the "this" pointer. We'll be using this throughout the generated
8186  // ASTs.
8187  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8188  assert(This && "Reference to this cannot fail!");
8189
8190  // Assign base classes.
8191  bool Invalid = false;
8192  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8193       E = ClassDecl->bases_end(); Base != E; ++Base) {
8194    // Form the assignment:
8195    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8196    QualType BaseType = Base->getType().getUnqualifiedType();
8197    if (!BaseType->isRecordType()) {
8198      Invalid = true;
8199      continue;
8200    }
8201
8202    CXXCastPath BasePath;
8203    BasePath.push_back(Base);
8204
8205    // Construct the "from" expression, which is an implicit cast to the
8206    // appropriately-qualified base type.
8207    Expr *From = OtherRef;
8208    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8209                             VK_XValue, &BasePath).take();
8210
8211    // Dereference "this".
8212    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8213
8214    // Implicitly cast "this" to the appropriately-qualified base type.
8215    To = ImpCastExprToType(To.take(),
8216                           Context.getCVRQualifiedType(BaseType,
8217                                     MoveAssignOperator->getTypeQualifiers()),
8218                           CK_UncheckedDerivedToBase,
8219                           VK_LValue, &BasePath);
8220
8221    // Build the move.
8222    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8223                                            To.get(), From,
8224                                            /*CopyingBaseSubobject=*/true,
8225                                            /*Copying=*/false);
8226    if (Move.isInvalid()) {
8227      Diag(CurrentLocation, diag::note_member_synthesized_at)
8228        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8229      MoveAssignOperator->setInvalidDecl();
8230      return;
8231    }
8232
8233    // Success! Record the move.
8234    Statements.push_back(Move.takeAs<Expr>());
8235  }
8236
8237  // \brief Reference to the __builtin_memcpy function.
8238  Expr *BuiltinMemCpyRef = 0;
8239  // \brief Reference to the __builtin_objc_memmove_collectable function.
8240  Expr *CollectableMemCpyRef = 0;
8241
8242  // Assign non-static members.
8243  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8244                                  FieldEnd = ClassDecl->field_end();
8245       Field != FieldEnd; ++Field) {
8246    if (Field->isUnnamedBitfield())
8247      continue;
8248
8249    // Check for members of reference type; we can't move those.
8250    if (Field->getType()->isReferenceType()) {
8251      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8252        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8253      Diag(Field->getLocation(), diag::note_declared_at);
8254      Diag(CurrentLocation, diag::note_member_synthesized_at)
8255        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8256      Invalid = true;
8257      continue;
8258    }
8259
8260    // Check for members of const-qualified, non-class type.
8261    QualType BaseType = Context.getBaseElementType(Field->getType());
8262    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8263      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8264        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8265      Diag(Field->getLocation(), diag::note_declared_at);
8266      Diag(CurrentLocation, diag::note_member_synthesized_at)
8267        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8268      Invalid = true;
8269      continue;
8270    }
8271
8272    // Suppress assigning zero-width bitfields.
8273    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8274      continue;
8275
8276    QualType FieldType = Field->getType().getNonReferenceType();
8277    if (FieldType->isIncompleteArrayType()) {
8278      assert(ClassDecl->hasFlexibleArrayMember() &&
8279             "Incomplete array type is not valid");
8280      continue;
8281    }
8282
8283    // Build references to the field in the object we're copying from and to.
8284    CXXScopeSpec SS; // Intentionally empty
8285    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8286                              LookupMemberName);
8287    MemberLookup.addDecl(*Field);
8288    MemberLookup.resolveKind();
8289    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8290                                               Loc, /*IsArrow=*/false,
8291                                               SS, SourceLocation(), 0,
8292                                               MemberLookup, 0);
8293    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8294                                             Loc, /*IsArrow=*/true,
8295                                             SS, SourceLocation(), 0,
8296                                             MemberLookup, 0);
8297    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8298    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8299
8300    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8301        "Member reference with rvalue base must be rvalue except for reference "
8302        "members, which aren't allowed for move assignment.");
8303
8304    // If the field should be copied with __builtin_memcpy rather than via
8305    // explicit assignments, do so. This optimization only applies for arrays
8306    // of scalars and arrays of class type with trivial move-assignment
8307    // operators.
8308    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8309        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8310      // Compute the size of the memory buffer to be copied.
8311      QualType SizeType = Context.getSizeType();
8312      llvm::APInt Size(Context.getTypeSize(SizeType),
8313                       Context.getTypeSizeInChars(BaseType).getQuantity());
8314      for (const ConstantArrayType *Array
8315              = Context.getAsConstantArrayType(FieldType);
8316           Array;
8317           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8318        llvm::APInt ArraySize
8319          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8320        Size *= ArraySize;
8321      }
8322
8323      // Take the address of the field references for "from" and "to". We
8324      // directly construct UnaryOperators here because semantic analysis
8325      // does not permit us to take the address of an xvalue.
8326      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8327                             Context.getPointerType(From.get()->getType()),
8328                             VK_RValue, OK_Ordinary, Loc);
8329      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8330                           Context.getPointerType(To.get()->getType()),
8331                           VK_RValue, OK_Ordinary, Loc);
8332
8333      bool NeedsCollectableMemCpy =
8334          (BaseType->isRecordType() &&
8335           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8336
8337      if (NeedsCollectableMemCpy) {
8338        if (!CollectableMemCpyRef) {
8339          // Create a reference to the __builtin_objc_memmove_collectable function.
8340          LookupResult R(*this,
8341                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8342                         Loc, LookupOrdinaryName);
8343          LookupName(R, TUScope, true);
8344
8345          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8346          if (!CollectableMemCpy) {
8347            // Something went horribly wrong earlier, and we will have
8348            // complained about it.
8349            Invalid = true;
8350            continue;
8351          }
8352
8353          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8354                                                  CollectableMemCpy->getType(),
8355                                                  VK_LValue, Loc, 0).take();
8356          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8357        }
8358      }
8359      // Create a reference to the __builtin_memcpy builtin function.
8360      else if (!BuiltinMemCpyRef) {
8361        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8362                       LookupOrdinaryName);
8363        LookupName(R, TUScope, true);
8364
8365        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8366        if (!BuiltinMemCpy) {
8367          // Something went horribly wrong earlier, and we will have complained
8368          // about it.
8369          Invalid = true;
8370          continue;
8371        }
8372
8373        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8374                                            BuiltinMemCpy->getType(),
8375                                            VK_LValue, Loc, 0).take();
8376        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8377      }
8378
8379      ASTOwningVector<Expr*> CallArgs(*this);
8380      CallArgs.push_back(To.takeAs<Expr>());
8381      CallArgs.push_back(From.takeAs<Expr>());
8382      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8383      ExprResult Call = ExprError();
8384      if (NeedsCollectableMemCpy)
8385        Call = ActOnCallExpr(/*Scope=*/0,
8386                             CollectableMemCpyRef,
8387                             Loc, move_arg(CallArgs),
8388                             Loc);
8389      else
8390        Call = ActOnCallExpr(/*Scope=*/0,
8391                             BuiltinMemCpyRef,
8392                             Loc, move_arg(CallArgs),
8393                             Loc);
8394
8395      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8396      Statements.push_back(Call.takeAs<Expr>());
8397      continue;
8398    }
8399
8400    // Build the move of this field.
8401    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8402                                            To.get(), From.get(),
8403                                            /*CopyingBaseSubobject=*/false,
8404                                            /*Copying=*/false);
8405    if (Move.isInvalid()) {
8406      Diag(CurrentLocation, diag::note_member_synthesized_at)
8407        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8408      MoveAssignOperator->setInvalidDecl();
8409      return;
8410    }
8411
8412    // Success! Record the copy.
8413    Statements.push_back(Move.takeAs<Stmt>());
8414  }
8415
8416  if (!Invalid) {
8417    // Add a "return *this;"
8418    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8419
8420    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8421    if (Return.isInvalid())
8422      Invalid = true;
8423    else {
8424      Statements.push_back(Return.takeAs<Stmt>());
8425
8426      if (Trap.hasErrorOccurred()) {
8427        Diag(CurrentLocation, diag::note_member_synthesized_at)
8428          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8429        Invalid = true;
8430      }
8431    }
8432  }
8433
8434  if (Invalid) {
8435    MoveAssignOperator->setInvalidDecl();
8436    return;
8437  }
8438
8439  StmtResult Body;
8440  {
8441    CompoundScopeRAII CompoundScope(*this);
8442    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8443                             /*isStmtExpr=*/false);
8444    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8445  }
8446  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8447
8448  if (ASTMutationListener *L = getASTMutationListener()) {
8449    L->CompletedImplicitDefinition(MoveAssignOperator);
8450  }
8451}
8452
8453std::pair<Sema::ImplicitExceptionSpecification, bool>
8454Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8455  if (ClassDecl->isInvalidDecl())
8456    return std::make_pair(ImplicitExceptionSpecification(*this), true);
8457
8458  // C++ [class.copy]p5:
8459  //   The implicitly-declared copy constructor for a class X will
8460  //   have the form
8461  //
8462  //       X::X(const X&)
8463  //
8464  //   if
8465  // FIXME: It ought to be possible to store this on the record.
8466  bool HasConstCopyConstructor = true;
8467
8468  //     -- each direct or virtual base class B of X has a copy
8469  //        constructor whose first parameter is of type const B& or
8470  //        const volatile B&, and
8471  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8472                                       BaseEnd = ClassDecl->bases_end();
8473       HasConstCopyConstructor && Base != BaseEnd;
8474       ++Base) {
8475    // Virtual bases are handled below.
8476    if (Base->isVirtual())
8477      continue;
8478
8479    CXXRecordDecl *BaseClassDecl
8480      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8481    HasConstCopyConstructor &=
8482      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8483  }
8484
8485  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8486                                       BaseEnd = ClassDecl->vbases_end();
8487       HasConstCopyConstructor && Base != BaseEnd;
8488       ++Base) {
8489    CXXRecordDecl *BaseClassDecl
8490      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8491    HasConstCopyConstructor &=
8492      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8493  }
8494
8495  //     -- for all the nonstatic data members of X that are of a
8496  //        class type M (or array thereof), each such class type
8497  //        has a copy constructor whose first parameter is of type
8498  //        const M& or const volatile M&.
8499  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8500                                  FieldEnd = ClassDecl->field_end();
8501       HasConstCopyConstructor && Field != FieldEnd;
8502       ++Field) {
8503    QualType FieldType = Context.getBaseElementType(Field->getType());
8504    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8505      HasConstCopyConstructor &=
8506        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8507    }
8508  }
8509  //   Otherwise, the implicitly declared copy constructor will have
8510  //   the form
8511  //
8512  //       X::X(X&)
8513
8514  // C++ [except.spec]p14:
8515  //   An implicitly declared special member function (Clause 12) shall have an
8516  //   exception-specification. [...]
8517  ImplicitExceptionSpecification ExceptSpec(*this);
8518  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8519  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8520                                       BaseEnd = ClassDecl->bases_end();
8521       Base != BaseEnd;
8522       ++Base) {
8523    // Virtual bases are handled below.
8524    if (Base->isVirtual())
8525      continue;
8526
8527    CXXRecordDecl *BaseClassDecl
8528      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8529    if (CXXConstructorDecl *CopyConstructor =
8530          LookupCopyingConstructor(BaseClassDecl, Quals))
8531      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8532  }
8533  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8534                                       BaseEnd = ClassDecl->vbases_end();
8535       Base != BaseEnd;
8536       ++Base) {
8537    CXXRecordDecl *BaseClassDecl
8538      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8539    if (CXXConstructorDecl *CopyConstructor =
8540          LookupCopyingConstructor(BaseClassDecl, Quals))
8541      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8542  }
8543  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8544                                  FieldEnd = ClassDecl->field_end();
8545       Field != FieldEnd;
8546       ++Field) {
8547    QualType FieldType = Context.getBaseElementType(Field->getType());
8548    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8549      if (CXXConstructorDecl *CopyConstructor =
8550        LookupCopyingConstructor(FieldClassDecl, Quals))
8551      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8552    }
8553  }
8554
8555  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8556}
8557
8558CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8559                                                    CXXRecordDecl *ClassDecl) {
8560  // C++ [class.copy]p4:
8561  //   If the class definition does not explicitly declare a copy
8562  //   constructor, one is declared implicitly.
8563
8564  ImplicitExceptionSpecification Spec(*this);
8565  bool Const;
8566  llvm::tie(Spec, Const) =
8567    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8568
8569  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8570  QualType ArgType = ClassType;
8571  if (Const)
8572    ArgType = ArgType.withConst();
8573  ArgType = Context.getLValueReferenceType(ArgType);
8574
8575  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8576
8577  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8578                                                     CXXCopyConstructor,
8579                                                     Const);
8580
8581  DeclarationName Name
8582    = Context.DeclarationNames.getCXXConstructorName(
8583                                           Context.getCanonicalType(ClassType));
8584  SourceLocation ClassLoc = ClassDecl->getLocation();
8585  DeclarationNameInfo NameInfo(Name, ClassLoc);
8586
8587  //   An implicitly-declared copy constructor is an inline public
8588  //   member of its class.
8589  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8590      Context, ClassDecl, ClassLoc, NameInfo,
8591      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8592      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8593      Constexpr);
8594  CopyConstructor->setAccess(AS_public);
8595  CopyConstructor->setDefaulted();
8596  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8597
8598  // Note that we have declared this constructor.
8599  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8600
8601  // Add the parameter to the constructor.
8602  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8603                                               ClassLoc, ClassLoc,
8604                                               /*IdentifierInfo=*/0,
8605                                               ArgType, /*TInfo=*/0,
8606                                               SC_None,
8607                                               SC_None, 0);
8608  CopyConstructor->setParams(FromParam);
8609
8610  if (Scope *S = getScopeForContext(ClassDecl))
8611    PushOnScopeChains(CopyConstructor, S, false);
8612  ClassDecl->addDecl(CopyConstructor);
8613
8614  // C++11 [class.copy]p8:
8615  //   ... If the class definition does not explicitly declare a copy
8616  //   constructor, there is no user-declared move constructor, and there is no
8617  //   user-declared move assignment operator, a copy constructor is implicitly
8618  //   declared as defaulted.
8619  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8620    CopyConstructor->setDeletedAsWritten();
8621
8622  return CopyConstructor;
8623}
8624
8625void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8626                                   CXXConstructorDecl *CopyConstructor) {
8627  assert((CopyConstructor->isDefaulted() &&
8628          CopyConstructor->isCopyConstructor() &&
8629          !CopyConstructor->doesThisDeclarationHaveABody() &&
8630          !CopyConstructor->isDeleted()) &&
8631         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8632
8633  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8634  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8635
8636  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8637  DiagnosticErrorTrap Trap(Diags);
8638
8639  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8640      Trap.hasErrorOccurred()) {
8641    Diag(CurrentLocation, diag::note_member_synthesized_at)
8642      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8643    CopyConstructor->setInvalidDecl();
8644  }  else {
8645    Sema::CompoundScopeRAII CompoundScope(*this);
8646    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8647                                               CopyConstructor->getLocation(),
8648                                               MultiStmtArg(*this, 0, 0),
8649                                               /*isStmtExpr=*/false)
8650                                                              .takeAs<Stmt>());
8651    CopyConstructor->setImplicitlyDefined(true);
8652  }
8653
8654  CopyConstructor->setUsed();
8655  if (ASTMutationListener *L = getASTMutationListener()) {
8656    L->CompletedImplicitDefinition(CopyConstructor);
8657  }
8658}
8659
8660Sema::ImplicitExceptionSpecification
8661Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8662  // C++ [except.spec]p14:
8663  //   An implicitly declared special member function (Clause 12) shall have an
8664  //   exception-specification. [...]
8665  ImplicitExceptionSpecification ExceptSpec(*this);
8666  if (ClassDecl->isInvalidDecl())
8667    return ExceptSpec;
8668
8669  // Direct base-class constructors.
8670  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8671                                       BEnd = ClassDecl->bases_end();
8672       B != BEnd; ++B) {
8673    if (B->isVirtual()) // Handled below.
8674      continue;
8675
8676    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8677      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8678      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8679      // If this is a deleted function, add it anyway. This might be conformant
8680      // with the standard. This might not. I'm not sure. It might not matter.
8681      if (Constructor)
8682        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8683    }
8684  }
8685
8686  // Virtual base-class constructors.
8687  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8688                                       BEnd = ClassDecl->vbases_end();
8689       B != BEnd; ++B) {
8690    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8691      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8692      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8693      // If this is a deleted function, add it anyway. This might be conformant
8694      // with the standard. This might not. I'm not sure. It might not matter.
8695      if (Constructor)
8696        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8697    }
8698  }
8699
8700  // Field constructors.
8701  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8702                               FEnd = ClassDecl->field_end();
8703       F != FEnd; ++F) {
8704    if (const RecordType *RecordTy
8705              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8706      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8707      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8708      // If this is a deleted function, add it anyway. This might be conformant
8709      // with the standard. This might not. I'm not sure. It might not matter.
8710      // In particular, the problem is that this function never gets called. It
8711      // might just be ill-formed because this function attempts to refer to
8712      // a deleted function here.
8713      if (Constructor)
8714        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8715    }
8716  }
8717
8718  return ExceptSpec;
8719}
8720
8721CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8722                                                    CXXRecordDecl *ClassDecl) {
8723  // C++11 [class.copy]p9:
8724  //   If the definition of a class X does not explicitly declare a move
8725  //   constructor, one will be implicitly declared as defaulted if and only if:
8726  //
8727  //   - [first 4 bullets]
8728  assert(ClassDecl->needsImplicitMoveConstructor());
8729
8730  // [Checked after we build the declaration]
8731  //   - the move assignment operator would not be implicitly defined as
8732  //     deleted,
8733
8734  // [DR1402]:
8735  //   - each of X's non-static data members and direct or virtual base classes
8736  //     has a type that either has a move constructor or is trivially copyable.
8737  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8738    ClassDecl->setFailedImplicitMoveConstructor();
8739    return 0;
8740  }
8741
8742  ImplicitExceptionSpecification Spec(
8743      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8744
8745  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8746  QualType ArgType = Context.getRValueReferenceType(ClassType);
8747
8748  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8749
8750  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8751                                                     CXXMoveConstructor,
8752                                                     false);
8753
8754  DeclarationName Name
8755    = Context.DeclarationNames.getCXXConstructorName(
8756                                           Context.getCanonicalType(ClassType));
8757  SourceLocation ClassLoc = ClassDecl->getLocation();
8758  DeclarationNameInfo NameInfo(Name, ClassLoc);
8759
8760  // C++0x [class.copy]p11:
8761  //   An implicitly-declared copy/move constructor is an inline public
8762  //   member of its class.
8763  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8764      Context, ClassDecl, ClassLoc, NameInfo,
8765      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8766      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8767      Constexpr);
8768  MoveConstructor->setAccess(AS_public);
8769  MoveConstructor->setDefaulted();
8770  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8771
8772  // Add the parameter to the constructor.
8773  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8774                                               ClassLoc, ClassLoc,
8775                                               /*IdentifierInfo=*/0,
8776                                               ArgType, /*TInfo=*/0,
8777                                               SC_None,
8778                                               SC_None, 0);
8779  MoveConstructor->setParams(FromParam);
8780
8781  // C++0x [class.copy]p9:
8782  //   If the definition of a class X does not explicitly declare a move
8783  //   constructor, one will be implicitly declared as defaulted if and only if:
8784  //   [...]
8785  //   - the move constructor would not be implicitly defined as deleted.
8786  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8787    // Cache this result so that we don't try to generate this over and over
8788    // on every lookup, leaking memory and wasting time.
8789    ClassDecl->setFailedImplicitMoveConstructor();
8790    return 0;
8791  }
8792
8793  // Note that we have declared this constructor.
8794  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8795
8796  if (Scope *S = getScopeForContext(ClassDecl))
8797    PushOnScopeChains(MoveConstructor, S, false);
8798  ClassDecl->addDecl(MoveConstructor);
8799
8800  return MoveConstructor;
8801}
8802
8803void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8804                                   CXXConstructorDecl *MoveConstructor) {
8805  assert((MoveConstructor->isDefaulted() &&
8806          MoveConstructor->isMoveConstructor() &&
8807          !MoveConstructor->doesThisDeclarationHaveABody() &&
8808          !MoveConstructor->isDeleted()) &&
8809         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8810
8811  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8812  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8813
8814  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8815  DiagnosticErrorTrap Trap(Diags);
8816
8817  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8818      Trap.hasErrorOccurred()) {
8819    Diag(CurrentLocation, diag::note_member_synthesized_at)
8820      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8821    MoveConstructor->setInvalidDecl();
8822  }  else {
8823    Sema::CompoundScopeRAII CompoundScope(*this);
8824    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8825                                               MoveConstructor->getLocation(),
8826                                               MultiStmtArg(*this, 0, 0),
8827                                               /*isStmtExpr=*/false)
8828                                                              .takeAs<Stmt>());
8829    MoveConstructor->setImplicitlyDefined(true);
8830  }
8831
8832  MoveConstructor->setUsed();
8833
8834  if (ASTMutationListener *L = getASTMutationListener()) {
8835    L->CompletedImplicitDefinition(MoveConstructor);
8836  }
8837}
8838
8839bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8840  return FD->isDeleted() &&
8841         (FD->isDefaulted() || FD->isImplicit()) &&
8842         isa<CXXMethodDecl>(FD);
8843}
8844
8845/// \brief Mark the call operator of the given lambda closure type as "used".
8846static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8847  CXXMethodDecl *CallOperator
8848    = cast<CXXMethodDecl>(
8849        *Lambda->lookup(
8850          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8851  CallOperator->setReferenced();
8852  CallOperator->setUsed();
8853}
8854
8855void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8856       SourceLocation CurrentLocation,
8857       CXXConversionDecl *Conv)
8858{
8859  CXXRecordDecl *Lambda = Conv->getParent();
8860
8861  // Make sure that the lambda call operator is marked used.
8862  markLambdaCallOperatorUsed(*this, Lambda);
8863
8864  Conv->setUsed();
8865
8866  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8867  DiagnosticErrorTrap Trap(Diags);
8868
8869  // Return the address of the __invoke function.
8870  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8871  CXXMethodDecl *Invoke
8872    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8873  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8874                                       VK_LValue, Conv->getLocation()).take();
8875  assert(FunctionRef && "Can't refer to __invoke function?");
8876  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8877  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8878                                           Conv->getLocation(),
8879                                           Conv->getLocation()));
8880
8881  // Fill in the __invoke function with a dummy implementation. IR generation
8882  // will fill in the actual details.
8883  Invoke->setUsed();
8884  Invoke->setReferenced();
8885  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8886                                             Conv->getLocation()));
8887
8888  if (ASTMutationListener *L = getASTMutationListener()) {
8889    L->CompletedImplicitDefinition(Conv);
8890    L->CompletedImplicitDefinition(Invoke);
8891  }
8892}
8893
8894void Sema::DefineImplicitLambdaToBlockPointerConversion(
8895       SourceLocation CurrentLocation,
8896       CXXConversionDecl *Conv)
8897{
8898  Conv->setUsed();
8899
8900  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8901  DiagnosticErrorTrap Trap(Diags);
8902
8903  // Copy-initialize the lambda object as needed to capture it.
8904  Expr *This = ActOnCXXThis(CurrentLocation).take();
8905  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8906
8907  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8908                                                        Conv->getLocation(),
8909                                                        Conv, DerefThis);
8910
8911  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8912  // behavior.  Note that only the general conversion function does this
8913  // (since it's unusable otherwise); in the case where we inline the
8914  // block literal, it has block literal lifetime semantics.
8915  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8916    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8917                                          CK_CopyAndAutoreleaseBlockObject,
8918                                          BuildBlock.get(), 0, VK_RValue);
8919
8920  if (BuildBlock.isInvalid()) {
8921    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8922    Conv->setInvalidDecl();
8923    return;
8924  }
8925
8926  // Create the return statement that returns the block from the conversion
8927  // function.
8928  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8929  if (Return.isInvalid()) {
8930    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8931    Conv->setInvalidDecl();
8932    return;
8933  }
8934
8935  // Set the body of the conversion function.
8936  Stmt *ReturnS = Return.take();
8937  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8938                                           Conv->getLocation(),
8939                                           Conv->getLocation()));
8940
8941  // We're done; notify the mutation listener, if any.
8942  if (ASTMutationListener *L = getASTMutationListener()) {
8943    L->CompletedImplicitDefinition(Conv);
8944  }
8945}
8946
8947/// \brief Determine whether the given list arguments contains exactly one
8948/// "real" (non-default) argument.
8949static bool hasOneRealArgument(MultiExprArg Args) {
8950  switch (Args.size()) {
8951  case 0:
8952    return false;
8953
8954  default:
8955    if (!Args.get()[1]->isDefaultArgument())
8956      return false;
8957
8958    // fall through
8959  case 1:
8960    return !Args.get()[0]->isDefaultArgument();
8961  }
8962
8963  return false;
8964}
8965
8966ExprResult
8967Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8968                            CXXConstructorDecl *Constructor,
8969                            MultiExprArg ExprArgs,
8970                            bool HadMultipleCandidates,
8971                            bool RequiresZeroInit,
8972                            unsigned ConstructKind,
8973                            SourceRange ParenRange) {
8974  bool Elidable = false;
8975
8976  // C++0x [class.copy]p34:
8977  //   When certain criteria are met, an implementation is allowed to
8978  //   omit the copy/move construction of a class object, even if the
8979  //   copy/move constructor and/or destructor for the object have
8980  //   side effects. [...]
8981  //     - when a temporary class object that has not been bound to a
8982  //       reference (12.2) would be copied/moved to a class object
8983  //       with the same cv-unqualified type, the copy/move operation
8984  //       can be omitted by constructing the temporary object
8985  //       directly into the target of the omitted copy/move
8986  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8987      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
8988    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8989    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8990  }
8991
8992  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8993                               Elidable, move(ExprArgs), HadMultipleCandidates,
8994                               RequiresZeroInit, ConstructKind, ParenRange);
8995}
8996
8997/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8998/// including handling of its default argument expressions.
8999ExprResult
9000Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9001                            CXXConstructorDecl *Constructor, bool Elidable,
9002                            MultiExprArg ExprArgs,
9003                            bool HadMultipleCandidates,
9004                            bool RequiresZeroInit,
9005                            unsigned ConstructKind,
9006                            SourceRange ParenRange) {
9007  unsigned NumExprs = ExprArgs.size();
9008  Expr **Exprs = (Expr **)ExprArgs.release();
9009
9010  for (specific_attr_iterator<NonNullAttr>
9011           i = Constructor->specific_attr_begin<NonNullAttr>(),
9012           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9013    const NonNullAttr *NonNull = *i;
9014    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9015  }
9016
9017  MarkFunctionReferenced(ConstructLoc, Constructor);
9018  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9019                                        Constructor, Elidable, Exprs, NumExprs,
9020                                        HadMultipleCandidates, /*FIXME*/false,
9021                                        RequiresZeroInit,
9022              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9023                                        ParenRange));
9024}
9025
9026bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9027                                        CXXConstructorDecl *Constructor,
9028                                        MultiExprArg Exprs,
9029                                        bool HadMultipleCandidates) {
9030  // FIXME: Provide the correct paren SourceRange when available.
9031  ExprResult TempResult =
9032    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9033                          move(Exprs), HadMultipleCandidates, false,
9034                          CXXConstructExpr::CK_Complete, SourceRange());
9035  if (TempResult.isInvalid())
9036    return true;
9037
9038  Expr *Temp = TempResult.takeAs<Expr>();
9039  CheckImplicitConversions(Temp, VD->getLocation());
9040  MarkFunctionReferenced(VD->getLocation(), Constructor);
9041  Temp = MaybeCreateExprWithCleanups(Temp);
9042  VD->setInit(Temp);
9043
9044  return false;
9045}
9046
9047void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9048  if (VD->isInvalidDecl()) return;
9049
9050  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9051  if (ClassDecl->isInvalidDecl()) return;
9052  if (ClassDecl->hasIrrelevantDestructor()) return;
9053  if (ClassDecl->isDependentContext()) return;
9054
9055  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9056  MarkFunctionReferenced(VD->getLocation(), Destructor);
9057  CheckDestructorAccess(VD->getLocation(), Destructor,
9058                        PDiag(diag::err_access_dtor_var)
9059                        << VD->getDeclName()
9060                        << VD->getType());
9061  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9062
9063  if (!VD->hasGlobalStorage()) return;
9064
9065  // Emit warning for non-trivial dtor in global scope (a real global,
9066  // class-static, function-static).
9067  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9068
9069  // TODO: this should be re-enabled for static locals by !CXAAtExit
9070  if (!VD->isStaticLocal())
9071    Diag(VD->getLocation(), diag::warn_global_destructor);
9072}
9073
9074/// \brief Given a constructor and the set of arguments provided for the
9075/// constructor, convert the arguments and add any required default arguments
9076/// to form a proper call to this constructor.
9077///
9078/// \returns true if an error occurred, false otherwise.
9079bool
9080Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9081                              MultiExprArg ArgsPtr,
9082                              SourceLocation Loc,
9083                              ASTOwningVector<Expr*> &ConvertedArgs,
9084                              bool AllowExplicit) {
9085  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9086  unsigned NumArgs = ArgsPtr.size();
9087  Expr **Args = (Expr **)ArgsPtr.get();
9088
9089  const FunctionProtoType *Proto
9090    = Constructor->getType()->getAs<FunctionProtoType>();
9091  assert(Proto && "Constructor without a prototype?");
9092  unsigned NumArgsInProto = Proto->getNumArgs();
9093
9094  // If too few arguments are available, we'll fill in the rest with defaults.
9095  if (NumArgs < NumArgsInProto)
9096    ConvertedArgs.reserve(NumArgsInProto);
9097  else
9098    ConvertedArgs.reserve(NumArgs);
9099
9100  VariadicCallType CallType =
9101    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9102  SmallVector<Expr *, 8> AllArgs;
9103  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9104                                        Proto, 0, Args, NumArgs, AllArgs,
9105                                        CallType, AllowExplicit);
9106  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9107
9108  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9109
9110  // FIXME: Missing call to CheckFunctionCall or equivalent
9111
9112  return Invalid;
9113}
9114
9115static inline bool
9116CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9117                                       const FunctionDecl *FnDecl) {
9118  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9119  if (isa<NamespaceDecl>(DC)) {
9120    return SemaRef.Diag(FnDecl->getLocation(),
9121                        diag::err_operator_new_delete_declared_in_namespace)
9122      << FnDecl->getDeclName();
9123  }
9124
9125  if (isa<TranslationUnitDecl>(DC) &&
9126      FnDecl->getStorageClass() == SC_Static) {
9127    return SemaRef.Diag(FnDecl->getLocation(),
9128                        diag::err_operator_new_delete_declared_static)
9129      << FnDecl->getDeclName();
9130  }
9131
9132  return false;
9133}
9134
9135static inline bool
9136CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9137                            CanQualType ExpectedResultType,
9138                            CanQualType ExpectedFirstParamType,
9139                            unsigned DependentParamTypeDiag,
9140                            unsigned InvalidParamTypeDiag) {
9141  QualType ResultType =
9142    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9143
9144  // Check that the result type is not dependent.
9145  if (ResultType->isDependentType())
9146    return SemaRef.Diag(FnDecl->getLocation(),
9147                        diag::err_operator_new_delete_dependent_result_type)
9148    << FnDecl->getDeclName() << ExpectedResultType;
9149
9150  // Check that the result type is what we expect.
9151  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9152    return SemaRef.Diag(FnDecl->getLocation(),
9153                        diag::err_operator_new_delete_invalid_result_type)
9154    << FnDecl->getDeclName() << ExpectedResultType;
9155
9156  // A function template must have at least 2 parameters.
9157  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9158    return SemaRef.Diag(FnDecl->getLocation(),
9159                      diag::err_operator_new_delete_template_too_few_parameters)
9160        << FnDecl->getDeclName();
9161
9162  // The function decl must have at least 1 parameter.
9163  if (FnDecl->getNumParams() == 0)
9164    return SemaRef.Diag(FnDecl->getLocation(),
9165                        diag::err_operator_new_delete_too_few_parameters)
9166      << FnDecl->getDeclName();
9167
9168  // Check the the first parameter type is not dependent.
9169  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9170  if (FirstParamType->isDependentType())
9171    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9172      << FnDecl->getDeclName() << ExpectedFirstParamType;
9173
9174  // Check that the first parameter type is what we expect.
9175  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9176      ExpectedFirstParamType)
9177    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9178    << FnDecl->getDeclName() << ExpectedFirstParamType;
9179
9180  return false;
9181}
9182
9183static bool
9184CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9185  // C++ [basic.stc.dynamic.allocation]p1:
9186  //   A program is ill-formed if an allocation function is declared in a
9187  //   namespace scope other than global scope or declared static in global
9188  //   scope.
9189  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9190    return true;
9191
9192  CanQualType SizeTy =
9193    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9194
9195  // C++ [basic.stc.dynamic.allocation]p1:
9196  //  The return type shall be void*. The first parameter shall have type
9197  //  std::size_t.
9198  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9199                                  SizeTy,
9200                                  diag::err_operator_new_dependent_param_type,
9201                                  diag::err_operator_new_param_type))
9202    return true;
9203
9204  // C++ [basic.stc.dynamic.allocation]p1:
9205  //  The first parameter shall not have an associated default argument.
9206  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9207    return SemaRef.Diag(FnDecl->getLocation(),
9208                        diag::err_operator_new_default_arg)
9209      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9210
9211  return false;
9212}
9213
9214static bool
9215CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9216  // C++ [basic.stc.dynamic.deallocation]p1:
9217  //   A program is ill-formed if deallocation functions are declared in a
9218  //   namespace scope other than global scope or declared static in global
9219  //   scope.
9220  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9221    return true;
9222
9223  // C++ [basic.stc.dynamic.deallocation]p2:
9224  //   Each deallocation function shall return void and its first parameter
9225  //   shall be void*.
9226  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9227                                  SemaRef.Context.VoidPtrTy,
9228                                 diag::err_operator_delete_dependent_param_type,
9229                                 diag::err_operator_delete_param_type))
9230    return true;
9231
9232  return false;
9233}
9234
9235/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9236/// of this overloaded operator is well-formed. If so, returns false;
9237/// otherwise, emits appropriate diagnostics and returns true.
9238bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9239  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9240         "Expected an overloaded operator declaration");
9241
9242  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9243
9244  // C++ [over.oper]p5:
9245  //   The allocation and deallocation functions, operator new,
9246  //   operator new[], operator delete and operator delete[], are
9247  //   described completely in 3.7.3. The attributes and restrictions
9248  //   found in the rest of this subclause do not apply to them unless
9249  //   explicitly stated in 3.7.3.
9250  if (Op == OO_Delete || Op == OO_Array_Delete)
9251    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9252
9253  if (Op == OO_New || Op == OO_Array_New)
9254    return CheckOperatorNewDeclaration(*this, FnDecl);
9255
9256  // C++ [over.oper]p6:
9257  //   An operator function shall either be a non-static member
9258  //   function or be a non-member function and have at least one
9259  //   parameter whose type is a class, a reference to a class, an
9260  //   enumeration, or a reference to an enumeration.
9261  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9262    if (MethodDecl->isStatic())
9263      return Diag(FnDecl->getLocation(),
9264                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9265  } else {
9266    bool ClassOrEnumParam = false;
9267    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9268                                   ParamEnd = FnDecl->param_end();
9269         Param != ParamEnd; ++Param) {
9270      QualType ParamType = (*Param)->getType().getNonReferenceType();
9271      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9272          ParamType->isEnumeralType()) {
9273        ClassOrEnumParam = true;
9274        break;
9275      }
9276    }
9277
9278    if (!ClassOrEnumParam)
9279      return Diag(FnDecl->getLocation(),
9280                  diag::err_operator_overload_needs_class_or_enum)
9281        << FnDecl->getDeclName();
9282  }
9283
9284  // C++ [over.oper]p8:
9285  //   An operator function cannot have default arguments (8.3.6),
9286  //   except where explicitly stated below.
9287  //
9288  // Only the function-call operator allows default arguments
9289  // (C++ [over.call]p1).
9290  if (Op != OO_Call) {
9291    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9292         Param != FnDecl->param_end(); ++Param) {
9293      if ((*Param)->hasDefaultArg())
9294        return Diag((*Param)->getLocation(),
9295                    diag::err_operator_overload_default_arg)
9296          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9297    }
9298  }
9299
9300  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9301    { false, false, false }
9302#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9303    , { Unary, Binary, MemberOnly }
9304#include "clang/Basic/OperatorKinds.def"
9305  };
9306
9307  bool CanBeUnaryOperator = OperatorUses[Op][0];
9308  bool CanBeBinaryOperator = OperatorUses[Op][1];
9309  bool MustBeMemberOperator = OperatorUses[Op][2];
9310
9311  // C++ [over.oper]p8:
9312  //   [...] Operator functions cannot have more or fewer parameters
9313  //   than the number required for the corresponding operator, as
9314  //   described in the rest of this subclause.
9315  unsigned NumParams = FnDecl->getNumParams()
9316                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9317  if (Op != OO_Call &&
9318      ((NumParams == 1 && !CanBeUnaryOperator) ||
9319       (NumParams == 2 && !CanBeBinaryOperator) ||
9320       (NumParams < 1) || (NumParams > 2))) {
9321    // We have the wrong number of parameters.
9322    unsigned ErrorKind;
9323    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9324      ErrorKind = 2;  // 2 -> unary or binary.
9325    } else if (CanBeUnaryOperator) {
9326      ErrorKind = 0;  // 0 -> unary
9327    } else {
9328      assert(CanBeBinaryOperator &&
9329             "All non-call overloaded operators are unary or binary!");
9330      ErrorKind = 1;  // 1 -> binary
9331    }
9332
9333    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9334      << FnDecl->getDeclName() << NumParams << ErrorKind;
9335  }
9336
9337  // Overloaded operators other than operator() cannot be variadic.
9338  if (Op != OO_Call &&
9339      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9340    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9341      << FnDecl->getDeclName();
9342  }
9343
9344  // Some operators must be non-static member functions.
9345  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9346    return Diag(FnDecl->getLocation(),
9347                diag::err_operator_overload_must_be_member)
9348      << FnDecl->getDeclName();
9349  }
9350
9351  // C++ [over.inc]p1:
9352  //   The user-defined function called operator++ implements the
9353  //   prefix and postfix ++ operator. If this function is a member
9354  //   function with no parameters, or a non-member function with one
9355  //   parameter of class or enumeration type, it defines the prefix
9356  //   increment operator ++ for objects of that type. If the function
9357  //   is a member function with one parameter (which shall be of type
9358  //   int) or a non-member function with two parameters (the second
9359  //   of which shall be of type int), it defines the postfix
9360  //   increment operator ++ for objects of that type.
9361  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9362    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9363    bool ParamIsInt = false;
9364    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9365      ParamIsInt = BT->getKind() == BuiltinType::Int;
9366
9367    if (!ParamIsInt)
9368      return Diag(LastParam->getLocation(),
9369                  diag::err_operator_overload_post_incdec_must_be_int)
9370        << LastParam->getType() << (Op == OO_MinusMinus);
9371  }
9372
9373  return false;
9374}
9375
9376/// CheckLiteralOperatorDeclaration - Check whether the declaration
9377/// of this literal operator function is well-formed. If so, returns
9378/// false; otherwise, emits appropriate diagnostics and returns true.
9379bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9380  if (isa<CXXMethodDecl>(FnDecl)) {
9381    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9382      << FnDecl->getDeclName();
9383    return true;
9384  }
9385
9386  if (FnDecl->isExternC()) {
9387    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9388    return true;
9389  }
9390
9391  bool Valid = false;
9392
9393  // This might be the definition of a literal operator template.
9394  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9395  // This might be a specialization of a literal operator template.
9396  if (!TpDecl)
9397    TpDecl = FnDecl->getPrimaryTemplate();
9398
9399  // template <char...> type operator "" name() is the only valid template
9400  // signature, and the only valid signature with no parameters.
9401  if (TpDecl) {
9402    if (FnDecl->param_size() == 0) {
9403      // Must have only one template parameter
9404      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9405      if (Params->size() == 1) {
9406        NonTypeTemplateParmDecl *PmDecl =
9407          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9408
9409        // The template parameter must be a char parameter pack.
9410        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9411            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9412          Valid = true;
9413      }
9414    }
9415  } else if (FnDecl->param_size()) {
9416    // Check the first parameter
9417    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9418
9419    QualType T = (*Param)->getType().getUnqualifiedType();
9420
9421    // unsigned long long int, long double, and any character type are allowed
9422    // as the only parameters.
9423    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9424        Context.hasSameType(T, Context.LongDoubleTy) ||
9425        Context.hasSameType(T, Context.CharTy) ||
9426        Context.hasSameType(T, Context.WCharTy) ||
9427        Context.hasSameType(T, Context.Char16Ty) ||
9428        Context.hasSameType(T, Context.Char32Ty)) {
9429      if (++Param == FnDecl->param_end())
9430        Valid = true;
9431      goto FinishedParams;
9432    }
9433
9434    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9435    const PointerType *PT = T->getAs<PointerType>();
9436    if (!PT)
9437      goto FinishedParams;
9438    T = PT->getPointeeType();
9439    if (!T.isConstQualified() || T.isVolatileQualified())
9440      goto FinishedParams;
9441    T = T.getUnqualifiedType();
9442
9443    // Move on to the second parameter;
9444    ++Param;
9445
9446    // If there is no second parameter, the first must be a const char *
9447    if (Param == FnDecl->param_end()) {
9448      if (Context.hasSameType(T, Context.CharTy))
9449        Valid = true;
9450      goto FinishedParams;
9451    }
9452
9453    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9454    // are allowed as the first parameter to a two-parameter function
9455    if (!(Context.hasSameType(T, Context.CharTy) ||
9456          Context.hasSameType(T, Context.WCharTy) ||
9457          Context.hasSameType(T, Context.Char16Ty) ||
9458          Context.hasSameType(T, Context.Char32Ty)))
9459      goto FinishedParams;
9460
9461    // The second and final parameter must be an std::size_t
9462    T = (*Param)->getType().getUnqualifiedType();
9463    if (Context.hasSameType(T, Context.getSizeType()) &&
9464        ++Param == FnDecl->param_end())
9465      Valid = true;
9466  }
9467
9468  // FIXME: This diagnostic is absolutely terrible.
9469FinishedParams:
9470  if (!Valid) {
9471    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9472      << FnDecl->getDeclName();
9473    return true;
9474  }
9475
9476  // A parameter-declaration-clause containing a default argument is not
9477  // equivalent to any of the permitted forms.
9478  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9479                                    ParamEnd = FnDecl->param_end();
9480       Param != ParamEnd; ++Param) {
9481    if ((*Param)->hasDefaultArg()) {
9482      Diag((*Param)->getDefaultArgRange().getBegin(),
9483           diag::err_literal_operator_default_argument)
9484        << (*Param)->getDefaultArgRange();
9485      break;
9486    }
9487  }
9488
9489  StringRef LiteralName
9490    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9491  if (LiteralName[0] != '_') {
9492    // C++11 [usrlit.suffix]p1:
9493    //   Literal suffix identifiers that do not start with an underscore
9494    //   are reserved for future standardization.
9495    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9496  }
9497
9498  return false;
9499}
9500
9501/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9502/// linkage specification, including the language and (if present)
9503/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9504/// the location of the language string literal, which is provided
9505/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9506/// the '{' brace. Otherwise, this linkage specification does not
9507/// have any braces.
9508Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9509                                           SourceLocation LangLoc,
9510                                           StringRef Lang,
9511                                           SourceLocation LBraceLoc) {
9512  LinkageSpecDecl::LanguageIDs Language;
9513  if (Lang == "\"C\"")
9514    Language = LinkageSpecDecl::lang_c;
9515  else if (Lang == "\"C++\"")
9516    Language = LinkageSpecDecl::lang_cxx;
9517  else {
9518    Diag(LangLoc, diag::err_bad_language);
9519    return 0;
9520  }
9521
9522  // FIXME: Add all the various semantics of linkage specifications
9523
9524  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9525                                               ExternLoc, LangLoc, Language);
9526  CurContext->addDecl(D);
9527  PushDeclContext(S, D);
9528  return D;
9529}
9530
9531/// ActOnFinishLinkageSpecification - Complete the definition of
9532/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9533/// valid, it's the position of the closing '}' brace in a linkage
9534/// specification that uses braces.
9535Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9536                                            Decl *LinkageSpec,
9537                                            SourceLocation RBraceLoc) {
9538  if (LinkageSpec) {
9539    if (RBraceLoc.isValid()) {
9540      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9541      LSDecl->setRBraceLoc(RBraceLoc);
9542    }
9543    PopDeclContext();
9544  }
9545  return LinkageSpec;
9546}
9547
9548/// \brief Perform semantic analysis for the variable declaration that
9549/// occurs within a C++ catch clause, returning the newly-created
9550/// variable.
9551VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9552                                         TypeSourceInfo *TInfo,
9553                                         SourceLocation StartLoc,
9554                                         SourceLocation Loc,
9555                                         IdentifierInfo *Name) {
9556  bool Invalid = false;
9557  QualType ExDeclType = TInfo->getType();
9558
9559  // Arrays and functions decay.
9560  if (ExDeclType->isArrayType())
9561    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9562  else if (ExDeclType->isFunctionType())
9563    ExDeclType = Context.getPointerType(ExDeclType);
9564
9565  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9566  // The exception-declaration shall not denote a pointer or reference to an
9567  // incomplete type, other than [cv] void*.
9568  // N2844 forbids rvalue references.
9569  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9570    Diag(Loc, diag::err_catch_rvalue_ref);
9571    Invalid = true;
9572  }
9573
9574  QualType BaseType = ExDeclType;
9575  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9576  unsigned DK = diag::err_catch_incomplete;
9577  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9578    BaseType = Ptr->getPointeeType();
9579    Mode = 1;
9580    DK = diag::err_catch_incomplete_ptr;
9581  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9582    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9583    BaseType = Ref->getPointeeType();
9584    Mode = 2;
9585    DK = diag::err_catch_incomplete_ref;
9586  }
9587  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9588      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9589    Invalid = true;
9590
9591  if (!Invalid && !ExDeclType->isDependentType() &&
9592      RequireNonAbstractType(Loc, ExDeclType,
9593                             diag::err_abstract_type_in_decl,
9594                             AbstractVariableType))
9595    Invalid = true;
9596
9597  // Only the non-fragile NeXT runtime currently supports C++ catches
9598  // of ObjC types, and no runtime supports catching ObjC types by value.
9599  if (!Invalid && getLangOpts().ObjC1) {
9600    QualType T = ExDeclType;
9601    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9602      T = RT->getPointeeType();
9603
9604    if (T->isObjCObjectType()) {
9605      Diag(Loc, diag::err_objc_object_catch);
9606      Invalid = true;
9607    } else if (T->isObjCObjectPointerType()) {
9608      if (!getLangOpts().ObjCNonFragileABI)
9609        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9610    }
9611  }
9612
9613  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9614                                    ExDeclType, TInfo, SC_None, SC_None);
9615  ExDecl->setExceptionVariable(true);
9616
9617  // In ARC, infer 'retaining' for variables of retainable type.
9618  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9619    Invalid = true;
9620
9621  if (!Invalid && !ExDeclType->isDependentType()) {
9622    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9623      // C++ [except.handle]p16:
9624      //   The object declared in an exception-declaration or, if the
9625      //   exception-declaration does not specify a name, a temporary (12.2) is
9626      //   copy-initialized (8.5) from the exception object. [...]
9627      //   The object is destroyed when the handler exits, after the destruction
9628      //   of any automatic objects initialized within the handler.
9629      //
9630      // We just pretend to initialize the object with itself, then make sure
9631      // it can be destroyed later.
9632      QualType initType = ExDeclType;
9633
9634      InitializedEntity entity =
9635        InitializedEntity::InitializeVariable(ExDecl);
9636      InitializationKind initKind =
9637        InitializationKind::CreateCopy(Loc, SourceLocation());
9638
9639      Expr *opaqueValue =
9640        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9641      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9642      ExprResult result = sequence.Perform(*this, entity, initKind,
9643                                           MultiExprArg(&opaqueValue, 1));
9644      if (result.isInvalid())
9645        Invalid = true;
9646      else {
9647        // If the constructor used was non-trivial, set this as the
9648        // "initializer".
9649        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9650        if (!construct->getConstructor()->isTrivial()) {
9651          Expr *init = MaybeCreateExprWithCleanups(construct);
9652          ExDecl->setInit(init);
9653        }
9654
9655        // And make sure it's destructable.
9656        FinalizeVarWithDestructor(ExDecl, recordType);
9657      }
9658    }
9659  }
9660
9661  if (Invalid)
9662    ExDecl->setInvalidDecl();
9663
9664  return ExDecl;
9665}
9666
9667/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9668/// handler.
9669Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9670  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9671  bool Invalid = D.isInvalidType();
9672
9673  // Check for unexpanded parameter packs.
9674  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9675                                               UPPC_ExceptionType)) {
9676    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9677                                             D.getIdentifierLoc());
9678    Invalid = true;
9679  }
9680
9681  IdentifierInfo *II = D.getIdentifier();
9682  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9683                                             LookupOrdinaryName,
9684                                             ForRedeclaration)) {
9685    // The scope should be freshly made just for us. There is just no way
9686    // it contains any previous declaration.
9687    assert(!S->isDeclScope(PrevDecl));
9688    if (PrevDecl->isTemplateParameter()) {
9689      // Maybe we will complain about the shadowed template parameter.
9690      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9691      PrevDecl = 0;
9692    }
9693  }
9694
9695  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9696    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9697      << D.getCXXScopeSpec().getRange();
9698    Invalid = true;
9699  }
9700
9701  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9702                                              D.getLocStart(),
9703                                              D.getIdentifierLoc(),
9704                                              D.getIdentifier());
9705  if (Invalid)
9706    ExDecl->setInvalidDecl();
9707
9708  // Add the exception declaration into this scope.
9709  if (II)
9710    PushOnScopeChains(ExDecl, S);
9711  else
9712    CurContext->addDecl(ExDecl);
9713
9714  ProcessDeclAttributes(S, ExDecl, D);
9715  return ExDecl;
9716}
9717
9718Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9719                                         Expr *AssertExpr,
9720                                         Expr *AssertMessageExpr_,
9721                                         SourceLocation RParenLoc) {
9722  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9723
9724  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9725    // In a static_assert-declaration, the constant-expression shall be a
9726    // constant expression that can be contextually converted to bool.
9727    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9728    if (Converted.isInvalid())
9729      return 0;
9730
9731    llvm::APSInt Cond;
9732    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9733          diag::err_static_assert_expression_is_not_constant,
9734          /*AllowFold=*/false).isInvalid())
9735      return 0;
9736
9737    if (!Cond) {
9738      llvm::SmallString<256> MsgBuffer;
9739      llvm::raw_svector_ostream Msg(MsgBuffer);
9740      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9741      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9742        << Msg.str() << AssertExpr->getSourceRange();
9743    }
9744  }
9745
9746  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9747    return 0;
9748
9749  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9750                                        AssertExpr, AssertMessage, RParenLoc);
9751
9752  CurContext->addDecl(Decl);
9753  return Decl;
9754}
9755
9756/// \brief Perform semantic analysis of the given friend type declaration.
9757///
9758/// \returns A friend declaration that.
9759FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9760                                      SourceLocation FriendLoc,
9761                                      TypeSourceInfo *TSInfo) {
9762  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9763
9764  QualType T = TSInfo->getType();
9765  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9766
9767  // C++03 [class.friend]p2:
9768  //   An elaborated-type-specifier shall be used in a friend declaration
9769  //   for a class.*
9770  //
9771  //   * The class-key of the elaborated-type-specifier is required.
9772  if (!ActiveTemplateInstantiations.empty()) {
9773    // Do not complain about the form of friend template types during
9774    // template instantiation; we will already have complained when the
9775    // template was declared.
9776  } else if (!T->isElaboratedTypeSpecifier()) {
9777    // If we evaluated the type to a record type, suggest putting
9778    // a tag in front.
9779    if (const RecordType *RT = T->getAs<RecordType>()) {
9780      RecordDecl *RD = RT->getDecl();
9781
9782      std::string InsertionText = std::string(" ") + RD->getKindName();
9783
9784      Diag(TypeRange.getBegin(),
9785           getLangOpts().CPlusPlus0x ?
9786             diag::warn_cxx98_compat_unelaborated_friend_type :
9787             diag::ext_unelaborated_friend_type)
9788        << (unsigned) RD->getTagKind()
9789        << T
9790        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9791                                      InsertionText);
9792    } else {
9793      Diag(FriendLoc,
9794           getLangOpts().CPlusPlus0x ?
9795             diag::warn_cxx98_compat_nonclass_type_friend :
9796             diag::ext_nonclass_type_friend)
9797        << T
9798        << SourceRange(FriendLoc, TypeRange.getEnd());
9799    }
9800  } else if (T->getAs<EnumType>()) {
9801    Diag(FriendLoc,
9802         getLangOpts().CPlusPlus0x ?
9803           diag::warn_cxx98_compat_enum_friend :
9804           diag::ext_enum_friend)
9805      << T
9806      << SourceRange(FriendLoc, TypeRange.getEnd());
9807  }
9808
9809  // C++0x [class.friend]p3:
9810  //   If the type specifier in a friend declaration designates a (possibly
9811  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9812  //   the friend declaration is ignored.
9813
9814  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9815  // in [class.friend]p3 that we do not implement.
9816
9817  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9818}
9819
9820/// Handle a friend tag declaration where the scope specifier was
9821/// templated.
9822Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9823                                    unsigned TagSpec, SourceLocation TagLoc,
9824                                    CXXScopeSpec &SS,
9825                                    IdentifierInfo *Name, SourceLocation NameLoc,
9826                                    AttributeList *Attr,
9827                                    MultiTemplateParamsArg TempParamLists) {
9828  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9829
9830  bool isExplicitSpecialization = false;
9831  bool Invalid = false;
9832
9833  if (TemplateParameterList *TemplateParams
9834        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9835                                                  TempParamLists.get(),
9836                                                  TempParamLists.size(),
9837                                                  /*friend*/ true,
9838                                                  isExplicitSpecialization,
9839                                                  Invalid)) {
9840    if (TemplateParams->size() > 0) {
9841      // This is a declaration of a class template.
9842      if (Invalid)
9843        return 0;
9844
9845      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9846                                SS, Name, NameLoc, Attr,
9847                                TemplateParams, AS_public,
9848                                /*ModulePrivateLoc=*/SourceLocation(),
9849                                TempParamLists.size() - 1,
9850                   (TemplateParameterList**) TempParamLists.release()).take();
9851    } else {
9852      // The "template<>" header is extraneous.
9853      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9854        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9855      isExplicitSpecialization = true;
9856    }
9857  }
9858
9859  if (Invalid) return 0;
9860
9861  bool isAllExplicitSpecializations = true;
9862  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9863    if (TempParamLists.get()[I]->size()) {
9864      isAllExplicitSpecializations = false;
9865      break;
9866    }
9867  }
9868
9869  // FIXME: don't ignore attributes.
9870
9871  // If it's explicit specializations all the way down, just forget
9872  // about the template header and build an appropriate non-templated
9873  // friend.  TODO: for source fidelity, remember the headers.
9874  if (isAllExplicitSpecializations) {
9875    if (SS.isEmpty()) {
9876      bool Owned = false;
9877      bool IsDependent = false;
9878      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9879                      Attr, AS_public,
9880                      /*ModulePrivateLoc=*/SourceLocation(),
9881                      MultiTemplateParamsArg(), Owned, IsDependent,
9882                      /*ScopedEnumKWLoc=*/SourceLocation(),
9883                      /*ScopedEnumUsesClassTag=*/false,
9884                      /*UnderlyingType=*/TypeResult());
9885    }
9886
9887    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9888    ElaboratedTypeKeyword Keyword
9889      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9890    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9891                                   *Name, NameLoc);
9892    if (T.isNull())
9893      return 0;
9894
9895    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9896    if (isa<DependentNameType>(T)) {
9897      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9898      TL.setElaboratedKeywordLoc(TagLoc);
9899      TL.setQualifierLoc(QualifierLoc);
9900      TL.setNameLoc(NameLoc);
9901    } else {
9902      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9903      TL.setElaboratedKeywordLoc(TagLoc);
9904      TL.setQualifierLoc(QualifierLoc);
9905      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9906    }
9907
9908    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9909                                            TSI, FriendLoc);
9910    Friend->setAccess(AS_public);
9911    CurContext->addDecl(Friend);
9912    return Friend;
9913  }
9914
9915  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9916
9917
9918
9919  // Handle the case of a templated-scope friend class.  e.g.
9920  //   template <class T> class A<T>::B;
9921  // FIXME: we don't support these right now.
9922  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9923  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9924  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9925  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9926  TL.setElaboratedKeywordLoc(TagLoc);
9927  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9928  TL.setNameLoc(NameLoc);
9929
9930  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9931                                          TSI, FriendLoc);
9932  Friend->setAccess(AS_public);
9933  Friend->setUnsupportedFriend(true);
9934  CurContext->addDecl(Friend);
9935  return Friend;
9936}
9937
9938
9939/// Handle a friend type declaration.  This works in tandem with
9940/// ActOnTag.
9941///
9942/// Notes on friend class templates:
9943///
9944/// We generally treat friend class declarations as if they were
9945/// declaring a class.  So, for example, the elaborated type specifier
9946/// in a friend declaration is required to obey the restrictions of a
9947/// class-head (i.e. no typedefs in the scope chain), template
9948/// parameters are required to match up with simple template-ids, &c.
9949/// However, unlike when declaring a template specialization, it's
9950/// okay to refer to a template specialization without an empty
9951/// template parameter declaration, e.g.
9952///   friend class A<T>::B<unsigned>;
9953/// We permit this as a special case; if there are any template
9954/// parameters present at all, require proper matching, i.e.
9955///   template <> template <class T> friend class A<int>::B;
9956Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9957                                MultiTemplateParamsArg TempParams) {
9958  SourceLocation Loc = DS.getLocStart();
9959
9960  assert(DS.isFriendSpecified());
9961  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9962
9963  // Try to convert the decl specifier to a type.  This works for
9964  // friend templates because ActOnTag never produces a ClassTemplateDecl
9965  // for a TUK_Friend.
9966  Declarator TheDeclarator(DS, Declarator::MemberContext);
9967  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9968  QualType T = TSI->getType();
9969  if (TheDeclarator.isInvalidType())
9970    return 0;
9971
9972  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9973    return 0;
9974
9975  // This is definitely an error in C++98.  It's probably meant to
9976  // be forbidden in C++0x, too, but the specification is just
9977  // poorly written.
9978  //
9979  // The problem is with declarations like the following:
9980  //   template <T> friend A<T>::foo;
9981  // where deciding whether a class C is a friend or not now hinges
9982  // on whether there exists an instantiation of A that causes
9983  // 'foo' to equal C.  There are restrictions on class-heads
9984  // (which we declare (by fiat) elaborated friend declarations to
9985  // be) that makes this tractable.
9986  //
9987  // FIXME: handle "template <> friend class A<T>;", which
9988  // is possibly well-formed?  Who even knows?
9989  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9990    Diag(Loc, diag::err_tagless_friend_type_template)
9991      << DS.getSourceRange();
9992    return 0;
9993  }
9994
9995  // C++98 [class.friend]p1: A friend of a class is a function
9996  //   or class that is not a member of the class . . .
9997  // This is fixed in DR77, which just barely didn't make the C++03
9998  // deadline.  It's also a very silly restriction that seriously
9999  // affects inner classes and which nobody else seems to implement;
10000  // thus we never diagnose it, not even in -pedantic.
10001  //
10002  // But note that we could warn about it: it's always useless to
10003  // friend one of your own members (it's not, however, worthless to
10004  // friend a member of an arbitrary specialization of your template).
10005
10006  Decl *D;
10007  if (unsigned NumTempParamLists = TempParams.size())
10008    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10009                                   NumTempParamLists,
10010                                   TempParams.release(),
10011                                   TSI,
10012                                   DS.getFriendSpecLoc());
10013  else
10014    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10015
10016  if (!D)
10017    return 0;
10018
10019  D->setAccess(AS_public);
10020  CurContext->addDecl(D);
10021
10022  return D;
10023}
10024
10025Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10026                                    MultiTemplateParamsArg TemplateParams) {
10027  const DeclSpec &DS = D.getDeclSpec();
10028
10029  assert(DS.isFriendSpecified());
10030  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10031
10032  SourceLocation Loc = D.getIdentifierLoc();
10033  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10034
10035  // C++ [class.friend]p1
10036  //   A friend of a class is a function or class....
10037  // Note that this sees through typedefs, which is intended.
10038  // It *doesn't* see through dependent types, which is correct
10039  // according to [temp.arg.type]p3:
10040  //   If a declaration acquires a function type through a
10041  //   type dependent on a template-parameter and this causes
10042  //   a declaration that does not use the syntactic form of a
10043  //   function declarator to have a function type, the program
10044  //   is ill-formed.
10045  if (!TInfo->getType()->isFunctionType()) {
10046    Diag(Loc, diag::err_unexpected_friend);
10047
10048    // It might be worthwhile to try to recover by creating an
10049    // appropriate declaration.
10050    return 0;
10051  }
10052
10053  // C++ [namespace.memdef]p3
10054  //  - If a friend declaration in a non-local class first declares a
10055  //    class or function, the friend class or function is a member
10056  //    of the innermost enclosing namespace.
10057  //  - The name of the friend is not found by simple name lookup
10058  //    until a matching declaration is provided in that namespace
10059  //    scope (either before or after the class declaration granting
10060  //    friendship).
10061  //  - If a friend function is called, its name may be found by the
10062  //    name lookup that considers functions from namespaces and
10063  //    classes associated with the types of the function arguments.
10064  //  - When looking for a prior declaration of a class or a function
10065  //    declared as a friend, scopes outside the innermost enclosing
10066  //    namespace scope are not considered.
10067
10068  CXXScopeSpec &SS = D.getCXXScopeSpec();
10069  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10070  DeclarationName Name = NameInfo.getName();
10071  assert(Name);
10072
10073  // Check for unexpanded parameter packs.
10074  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10075      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10076      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10077    return 0;
10078
10079  // The context we found the declaration in, or in which we should
10080  // create the declaration.
10081  DeclContext *DC;
10082  Scope *DCScope = S;
10083  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10084                        ForRedeclaration);
10085
10086  // FIXME: there are different rules in local classes
10087
10088  // There are four cases here.
10089  //   - There's no scope specifier, in which case we just go to the
10090  //     appropriate scope and look for a function or function template
10091  //     there as appropriate.
10092  // Recover from invalid scope qualifiers as if they just weren't there.
10093  if (SS.isInvalid() || !SS.isSet()) {
10094    // C++0x [namespace.memdef]p3:
10095    //   If the name in a friend declaration is neither qualified nor
10096    //   a template-id and the declaration is a function or an
10097    //   elaborated-type-specifier, the lookup to determine whether
10098    //   the entity has been previously declared shall not consider
10099    //   any scopes outside the innermost enclosing namespace.
10100    // C++0x [class.friend]p11:
10101    //   If a friend declaration appears in a local class and the name
10102    //   specified is an unqualified name, a prior declaration is
10103    //   looked up without considering scopes that are outside the
10104    //   innermost enclosing non-class scope. For a friend function
10105    //   declaration, if there is no prior declaration, the program is
10106    //   ill-formed.
10107    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10108    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10109
10110    // Find the appropriate context according to the above.
10111    DC = CurContext;
10112    while (true) {
10113      // Skip class contexts.  If someone can cite chapter and verse
10114      // for this behavior, that would be nice --- it's what GCC and
10115      // EDG do, and it seems like a reasonable intent, but the spec
10116      // really only says that checks for unqualified existing
10117      // declarations should stop at the nearest enclosing namespace,
10118      // not that they should only consider the nearest enclosing
10119      // namespace.
10120      while (DC->isRecord() || DC->isTransparentContext())
10121        DC = DC->getParent();
10122
10123      LookupQualifiedName(Previous, DC);
10124
10125      // TODO: decide what we think about using declarations.
10126      if (isLocal || !Previous.empty())
10127        break;
10128
10129      if (isTemplateId) {
10130        if (isa<TranslationUnitDecl>(DC)) break;
10131      } else {
10132        if (DC->isFileContext()) break;
10133      }
10134      DC = DC->getParent();
10135    }
10136
10137    // C++ [class.friend]p1: A friend of a class is a function or
10138    //   class that is not a member of the class . . .
10139    // C++11 changes this for both friend types and functions.
10140    // Most C++ 98 compilers do seem to give an error here, so
10141    // we do, too.
10142    if (!Previous.empty() && DC->Equals(CurContext))
10143      Diag(DS.getFriendSpecLoc(),
10144           getLangOpts().CPlusPlus0x ?
10145             diag::warn_cxx98_compat_friend_is_member :
10146             diag::err_friend_is_member);
10147
10148    DCScope = getScopeForDeclContext(S, DC);
10149
10150    // C++ [class.friend]p6:
10151    //   A function can be defined in a friend declaration of a class if and
10152    //   only if the class is a non-local class (9.8), the function name is
10153    //   unqualified, and the function has namespace scope.
10154    if (isLocal && D.isFunctionDefinition()) {
10155      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10156    }
10157
10158  //   - There's a non-dependent scope specifier, in which case we
10159  //     compute it and do a previous lookup there for a function
10160  //     or function template.
10161  } else if (!SS.getScopeRep()->isDependent()) {
10162    DC = computeDeclContext(SS);
10163    if (!DC) return 0;
10164
10165    if (RequireCompleteDeclContext(SS, DC)) return 0;
10166
10167    LookupQualifiedName(Previous, DC);
10168
10169    // Ignore things found implicitly in the wrong scope.
10170    // TODO: better diagnostics for this case.  Suggesting the right
10171    // qualified scope would be nice...
10172    LookupResult::Filter F = Previous.makeFilter();
10173    while (F.hasNext()) {
10174      NamedDecl *D = F.next();
10175      if (!DC->InEnclosingNamespaceSetOf(
10176              D->getDeclContext()->getRedeclContext()))
10177        F.erase();
10178    }
10179    F.done();
10180
10181    if (Previous.empty()) {
10182      D.setInvalidType();
10183      Diag(Loc, diag::err_qualified_friend_not_found)
10184          << Name << TInfo->getType();
10185      return 0;
10186    }
10187
10188    // C++ [class.friend]p1: A friend of a class is a function or
10189    //   class that is not a member of the class . . .
10190    if (DC->Equals(CurContext))
10191      Diag(DS.getFriendSpecLoc(),
10192           getLangOpts().CPlusPlus0x ?
10193             diag::warn_cxx98_compat_friend_is_member :
10194             diag::err_friend_is_member);
10195
10196    if (D.isFunctionDefinition()) {
10197      // C++ [class.friend]p6:
10198      //   A function can be defined in a friend declaration of a class if and
10199      //   only if the class is a non-local class (9.8), the function name is
10200      //   unqualified, and the function has namespace scope.
10201      SemaDiagnosticBuilder DB
10202        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10203
10204      DB << SS.getScopeRep();
10205      if (DC->isFileContext())
10206        DB << FixItHint::CreateRemoval(SS.getRange());
10207      SS.clear();
10208    }
10209
10210  //   - There's a scope specifier that does not match any template
10211  //     parameter lists, in which case we use some arbitrary context,
10212  //     create a method or method template, and wait for instantiation.
10213  //   - There's a scope specifier that does match some template
10214  //     parameter lists, which we don't handle right now.
10215  } else {
10216    if (D.isFunctionDefinition()) {
10217      // C++ [class.friend]p6:
10218      //   A function can be defined in a friend declaration of a class if and
10219      //   only if the class is a non-local class (9.8), the function name is
10220      //   unqualified, and the function has namespace scope.
10221      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10222        << SS.getScopeRep();
10223    }
10224
10225    DC = CurContext;
10226    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10227  }
10228
10229  if (!DC->isRecord()) {
10230    // This implies that it has to be an operator or function.
10231    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10232        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10233        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10234      Diag(Loc, diag::err_introducing_special_friend) <<
10235        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10236         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10237      return 0;
10238    }
10239  }
10240
10241  // FIXME: This is an egregious hack to cope with cases where the scope stack
10242  // does not contain the declaration context, i.e., in an out-of-line
10243  // definition of a class.
10244  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10245  if (!DCScope) {
10246    FakeDCScope.setEntity(DC);
10247    DCScope = &FakeDCScope;
10248  }
10249
10250  bool AddToScope = true;
10251  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10252                                          move(TemplateParams), AddToScope);
10253  if (!ND) return 0;
10254
10255  assert(ND->getDeclContext() == DC);
10256  assert(ND->getLexicalDeclContext() == CurContext);
10257
10258  // Add the function declaration to the appropriate lookup tables,
10259  // adjusting the redeclarations list as necessary.  We don't
10260  // want to do this yet if the friending class is dependent.
10261  //
10262  // Also update the scope-based lookup if the target context's
10263  // lookup context is in lexical scope.
10264  if (!CurContext->isDependentContext()) {
10265    DC = DC->getRedeclContext();
10266    DC->makeDeclVisibleInContext(ND);
10267    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10268      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10269  }
10270
10271  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10272                                       D.getIdentifierLoc(), ND,
10273                                       DS.getFriendSpecLoc());
10274  FrD->setAccess(AS_public);
10275  CurContext->addDecl(FrD);
10276
10277  if (ND->isInvalidDecl())
10278    FrD->setInvalidDecl();
10279  else {
10280    FunctionDecl *FD;
10281    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10282      FD = FTD->getTemplatedDecl();
10283    else
10284      FD = cast<FunctionDecl>(ND);
10285
10286    // Mark templated-scope function declarations as unsupported.
10287    if (FD->getNumTemplateParameterLists())
10288      FrD->setUnsupportedFriend(true);
10289  }
10290
10291  return ND;
10292}
10293
10294void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10295  AdjustDeclIfTemplate(Dcl);
10296
10297  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10298  if (!Fn) {
10299    Diag(DelLoc, diag::err_deleted_non_function);
10300    return;
10301  }
10302  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10303    Diag(DelLoc, diag::err_deleted_decl_not_first);
10304    Diag(Prev->getLocation(), diag::note_previous_declaration);
10305    // If the declaration wasn't the first, we delete the function anyway for
10306    // recovery.
10307  }
10308  Fn->setDeletedAsWritten();
10309
10310  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10311  if (!MD)
10312    return;
10313
10314  // A deleted special member function is trivial if the corresponding
10315  // implicitly-declared function would have been.
10316  switch (getSpecialMember(MD)) {
10317  case CXXInvalid:
10318    break;
10319  case CXXDefaultConstructor:
10320    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10321    break;
10322  case CXXCopyConstructor:
10323    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10324    break;
10325  case CXXMoveConstructor:
10326    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10327    break;
10328  case CXXCopyAssignment:
10329    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10330    break;
10331  case CXXMoveAssignment:
10332    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10333    break;
10334  case CXXDestructor:
10335    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10336    break;
10337  }
10338}
10339
10340void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10341  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10342
10343  if (MD) {
10344    if (MD->getParent()->isDependentType()) {
10345      MD->setDefaulted();
10346      MD->setExplicitlyDefaulted();
10347      return;
10348    }
10349
10350    CXXSpecialMember Member = getSpecialMember(MD);
10351    if (Member == CXXInvalid) {
10352      Diag(DefaultLoc, diag::err_default_special_members);
10353      return;
10354    }
10355
10356    MD->setDefaulted();
10357    MD->setExplicitlyDefaulted();
10358
10359    // If this definition appears within the record, do the checking when
10360    // the record is complete.
10361    const FunctionDecl *Primary = MD;
10362    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10363      // Find the uninstantiated declaration that actually had the '= default'
10364      // on it.
10365      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10366
10367    if (Primary == Primary->getCanonicalDecl())
10368      return;
10369
10370    switch (Member) {
10371    case CXXDefaultConstructor: {
10372      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10373      CheckExplicitlyDefaultedSpecialMember(CD);
10374      if (!CD->isInvalidDecl())
10375        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10376      break;
10377    }
10378
10379    case CXXCopyConstructor: {
10380      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10381      CheckExplicitlyDefaultedSpecialMember(CD);
10382      if (!CD->isInvalidDecl())
10383        DefineImplicitCopyConstructor(DefaultLoc, CD);
10384      break;
10385    }
10386
10387    case CXXCopyAssignment: {
10388      CheckExplicitlyDefaultedSpecialMember(MD);
10389      if (!MD->isInvalidDecl())
10390        DefineImplicitCopyAssignment(DefaultLoc, MD);
10391      break;
10392    }
10393
10394    case CXXDestructor: {
10395      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10396      CheckExplicitlyDefaultedSpecialMember(DD);
10397      if (!DD->isInvalidDecl())
10398        DefineImplicitDestructor(DefaultLoc, DD);
10399      break;
10400    }
10401
10402    case CXXMoveConstructor: {
10403      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10404      CheckExplicitlyDefaultedSpecialMember(CD);
10405      if (!CD->isInvalidDecl())
10406        DefineImplicitMoveConstructor(DefaultLoc, CD);
10407      break;
10408    }
10409
10410    case CXXMoveAssignment: {
10411      CheckExplicitlyDefaultedSpecialMember(MD);
10412      if (!MD->isInvalidDecl())
10413        DefineImplicitMoveAssignment(DefaultLoc, MD);
10414      break;
10415    }
10416
10417    case CXXInvalid:
10418      llvm_unreachable("Invalid special member.");
10419    }
10420  } else {
10421    Diag(DefaultLoc, diag::err_default_special_members);
10422  }
10423}
10424
10425static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10426  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10427    Stmt *SubStmt = *CI;
10428    if (!SubStmt)
10429      continue;
10430    if (isa<ReturnStmt>(SubStmt))
10431      Self.Diag(SubStmt->getLocStart(),
10432           diag::err_return_in_constructor_handler);
10433    if (!isa<Expr>(SubStmt))
10434      SearchForReturnInStmt(Self, SubStmt);
10435  }
10436}
10437
10438void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10439  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10440    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10441    SearchForReturnInStmt(*this, Handler);
10442  }
10443}
10444
10445bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10446                                             const CXXMethodDecl *Old) {
10447  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10448  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10449
10450  if (Context.hasSameType(NewTy, OldTy) ||
10451      NewTy->isDependentType() || OldTy->isDependentType())
10452    return false;
10453
10454  // Check if the return types are covariant
10455  QualType NewClassTy, OldClassTy;
10456
10457  /// Both types must be pointers or references to classes.
10458  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10459    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10460      NewClassTy = NewPT->getPointeeType();
10461      OldClassTy = OldPT->getPointeeType();
10462    }
10463  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10464    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10465      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10466        NewClassTy = NewRT->getPointeeType();
10467        OldClassTy = OldRT->getPointeeType();
10468      }
10469    }
10470  }
10471
10472  // The return types aren't either both pointers or references to a class type.
10473  if (NewClassTy.isNull()) {
10474    Diag(New->getLocation(),
10475         diag::err_different_return_type_for_overriding_virtual_function)
10476      << New->getDeclName() << NewTy << OldTy;
10477    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10478
10479    return true;
10480  }
10481
10482  // C++ [class.virtual]p6:
10483  //   If the return type of D::f differs from the return type of B::f, the
10484  //   class type in the return type of D::f shall be complete at the point of
10485  //   declaration of D::f or shall be the class type D.
10486  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10487    if (!RT->isBeingDefined() &&
10488        RequireCompleteType(New->getLocation(), NewClassTy,
10489                            diag::err_covariant_return_incomplete,
10490                            New->getDeclName()))
10491    return true;
10492  }
10493
10494  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10495    // Check if the new class derives from the old class.
10496    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10497      Diag(New->getLocation(),
10498           diag::err_covariant_return_not_derived)
10499      << New->getDeclName() << NewTy << OldTy;
10500      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10501      return true;
10502    }
10503
10504    // Check if we the conversion from derived to base is valid.
10505    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10506                    diag::err_covariant_return_inaccessible_base,
10507                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10508                    // FIXME: Should this point to the return type?
10509                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10510      // FIXME: this note won't trigger for delayed access control
10511      // diagnostics, and it's impossible to get an undelayed error
10512      // here from access control during the original parse because
10513      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10514      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10515      return true;
10516    }
10517  }
10518
10519  // The qualifiers of the return types must be the same.
10520  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10521    Diag(New->getLocation(),
10522         diag::err_covariant_return_type_different_qualifications)
10523    << New->getDeclName() << NewTy << OldTy;
10524    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10525    return true;
10526  };
10527
10528
10529  // The new class type must have the same or less qualifiers as the old type.
10530  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10531    Diag(New->getLocation(),
10532         diag::err_covariant_return_type_class_type_more_qualified)
10533    << New->getDeclName() << NewTy << OldTy;
10534    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10535    return true;
10536  };
10537
10538  return false;
10539}
10540
10541/// \brief Mark the given method pure.
10542///
10543/// \param Method the method to be marked pure.
10544///
10545/// \param InitRange the source range that covers the "0" initializer.
10546bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10547  SourceLocation EndLoc = InitRange.getEnd();
10548  if (EndLoc.isValid())
10549    Method->setRangeEnd(EndLoc);
10550
10551  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10552    Method->setPure();
10553    return false;
10554  }
10555
10556  if (!Method->isInvalidDecl())
10557    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10558      << Method->getDeclName() << InitRange;
10559  return true;
10560}
10561
10562/// \brief Determine whether the given declaration is a static data member.
10563static bool isStaticDataMember(Decl *D) {
10564  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10565  if (!Var)
10566    return false;
10567
10568  return Var->isStaticDataMember();
10569}
10570/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10571/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10572/// is a fresh scope pushed for just this purpose.
10573///
10574/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10575/// static data member of class X, names should be looked up in the scope of
10576/// class X.
10577void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10578  // If there is no declaration, there was an error parsing it.
10579  if (D == 0 || D->isInvalidDecl()) return;
10580
10581  // We should only get called for declarations with scope specifiers, like:
10582  //   int foo::bar;
10583  assert(D->isOutOfLine());
10584  EnterDeclaratorContext(S, D->getDeclContext());
10585
10586  // If we are parsing the initializer for a static data member, push a
10587  // new expression evaluation context that is associated with this static
10588  // data member.
10589  if (isStaticDataMember(D))
10590    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10591}
10592
10593/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10594/// initializer for the out-of-line declaration 'D'.
10595void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10596  // If there is no declaration, there was an error parsing it.
10597  if (D == 0 || D->isInvalidDecl()) return;
10598
10599  if (isStaticDataMember(D))
10600    PopExpressionEvaluationContext();
10601
10602  assert(D->isOutOfLine());
10603  ExitDeclaratorContext(S);
10604}
10605
10606/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10607/// C++ if/switch/while/for statement.
10608/// e.g: "if (int x = f()) {...}"
10609DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10610  // C++ 6.4p2:
10611  // The declarator shall not specify a function or an array.
10612  // The type-specifier-seq shall not contain typedef and shall not declare a
10613  // new class or enumeration.
10614  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10615         "Parser allowed 'typedef' as storage class of condition decl.");
10616
10617  Decl *Dcl = ActOnDeclarator(S, D);
10618  if (!Dcl)
10619    return true;
10620
10621  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10622    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10623      << D.getSourceRange();
10624    return true;
10625  }
10626
10627  return Dcl;
10628}
10629
10630void Sema::LoadExternalVTableUses() {
10631  if (!ExternalSource)
10632    return;
10633
10634  SmallVector<ExternalVTableUse, 4> VTables;
10635  ExternalSource->ReadUsedVTables(VTables);
10636  SmallVector<VTableUse, 4> NewUses;
10637  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10638    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10639      = VTablesUsed.find(VTables[I].Record);
10640    // Even if a definition wasn't required before, it may be required now.
10641    if (Pos != VTablesUsed.end()) {
10642      if (!Pos->second && VTables[I].DefinitionRequired)
10643        Pos->second = true;
10644      continue;
10645    }
10646
10647    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10648    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10649  }
10650
10651  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10652}
10653
10654void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10655                          bool DefinitionRequired) {
10656  // Ignore any vtable uses in unevaluated operands or for classes that do
10657  // not have a vtable.
10658  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10659      CurContext->isDependentContext() ||
10660      ExprEvalContexts.back().Context == Unevaluated)
10661    return;
10662
10663  // Try to insert this class into the map.
10664  LoadExternalVTableUses();
10665  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10666  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10667    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10668  if (!Pos.second) {
10669    // If we already had an entry, check to see if we are promoting this vtable
10670    // to required a definition. If so, we need to reappend to the VTableUses
10671    // list, since we may have already processed the first entry.
10672    if (DefinitionRequired && !Pos.first->second) {
10673      Pos.first->second = true;
10674    } else {
10675      // Otherwise, we can early exit.
10676      return;
10677    }
10678  }
10679
10680  // Local classes need to have their virtual members marked
10681  // immediately. For all other classes, we mark their virtual members
10682  // at the end of the translation unit.
10683  if (Class->isLocalClass())
10684    MarkVirtualMembersReferenced(Loc, Class);
10685  else
10686    VTableUses.push_back(std::make_pair(Class, Loc));
10687}
10688
10689bool Sema::DefineUsedVTables() {
10690  LoadExternalVTableUses();
10691  if (VTableUses.empty())
10692    return false;
10693
10694  // Note: The VTableUses vector could grow as a result of marking
10695  // the members of a class as "used", so we check the size each
10696  // time through the loop and prefer indices (with are stable) to
10697  // iterators (which are not).
10698  bool DefinedAnything = false;
10699  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10700    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10701    if (!Class)
10702      continue;
10703
10704    SourceLocation Loc = VTableUses[I].second;
10705
10706    // If this class has a key function, but that key function is
10707    // defined in another translation unit, we don't need to emit the
10708    // vtable even though we're using it.
10709    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10710    if (KeyFunction && !KeyFunction->hasBody()) {
10711      switch (KeyFunction->getTemplateSpecializationKind()) {
10712      case TSK_Undeclared:
10713      case TSK_ExplicitSpecialization:
10714      case TSK_ExplicitInstantiationDeclaration:
10715        // The key function is in another translation unit.
10716        continue;
10717
10718      case TSK_ExplicitInstantiationDefinition:
10719      case TSK_ImplicitInstantiation:
10720        // We will be instantiating the key function.
10721        break;
10722      }
10723    } else if (!KeyFunction) {
10724      // If we have a class with no key function that is the subject
10725      // of an explicit instantiation declaration, suppress the
10726      // vtable; it will live with the explicit instantiation
10727      // definition.
10728      bool IsExplicitInstantiationDeclaration
10729        = Class->getTemplateSpecializationKind()
10730                                      == TSK_ExplicitInstantiationDeclaration;
10731      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10732                                 REnd = Class->redecls_end();
10733           R != REnd; ++R) {
10734        TemplateSpecializationKind TSK
10735          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10736        if (TSK == TSK_ExplicitInstantiationDeclaration)
10737          IsExplicitInstantiationDeclaration = true;
10738        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10739          IsExplicitInstantiationDeclaration = false;
10740          break;
10741        }
10742      }
10743
10744      if (IsExplicitInstantiationDeclaration)
10745        continue;
10746    }
10747
10748    // Mark all of the virtual members of this class as referenced, so
10749    // that we can build a vtable. Then, tell the AST consumer that a
10750    // vtable for this class is required.
10751    DefinedAnything = true;
10752    MarkVirtualMembersReferenced(Loc, Class);
10753    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10754    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10755
10756    // Optionally warn if we're emitting a weak vtable.
10757    if (Class->getLinkage() == ExternalLinkage &&
10758        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10759      const FunctionDecl *KeyFunctionDef = 0;
10760      if (!KeyFunction ||
10761          (KeyFunction->hasBody(KeyFunctionDef) &&
10762           KeyFunctionDef->isInlined()))
10763        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10764             TSK_ExplicitInstantiationDefinition
10765             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10766          << Class;
10767    }
10768  }
10769  VTableUses.clear();
10770
10771  return DefinedAnything;
10772}
10773
10774void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10775                                        const CXXRecordDecl *RD) {
10776  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10777       e = RD->method_end(); i != e; ++i) {
10778    CXXMethodDecl *MD = *i;
10779
10780    // C++ [basic.def.odr]p2:
10781    //   [...] A virtual member function is used if it is not pure. [...]
10782    if (MD->isVirtual() && !MD->isPure())
10783      MarkFunctionReferenced(Loc, MD);
10784  }
10785
10786  // Only classes that have virtual bases need a VTT.
10787  if (RD->getNumVBases() == 0)
10788    return;
10789
10790  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10791           e = RD->bases_end(); i != e; ++i) {
10792    const CXXRecordDecl *Base =
10793        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10794    if (Base->getNumVBases() == 0)
10795      continue;
10796    MarkVirtualMembersReferenced(Loc, Base);
10797  }
10798}
10799
10800/// SetIvarInitializers - This routine builds initialization ASTs for the
10801/// Objective-C implementation whose ivars need be initialized.
10802void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10803  if (!getLangOpts().CPlusPlus)
10804    return;
10805  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10806    SmallVector<ObjCIvarDecl*, 8> ivars;
10807    CollectIvarsToConstructOrDestruct(OID, ivars);
10808    if (ivars.empty())
10809      return;
10810    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10811    for (unsigned i = 0; i < ivars.size(); i++) {
10812      FieldDecl *Field = ivars[i];
10813      if (Field->isInvalidDecl())
10814        continue;
10815
10816      CXXCtorInitializer *Member;
10817      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10818      InitializationKind InitKind =
10819        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10820
10821      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10822      ExprResult MemberInit =
10823        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10824      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10825      // Note, MemberInit could actually come back empty if no initialization
10826      // is required (e.g., because it would call a trivial default constructor)
10827      if (!MemberInit.get() || MemberInit.isInvalid())
10828        continue;
10829
10830      Member =
10831        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10832                                         SourceLocation(),
10833                                         MemberInit.takeAs<Expr>(),
10834                                         SourceLocation());
10835      AllToInit.push_back(Member);
10836
10837      // Be sure that the destructor is accessible and is marked as referenced.
10838      if (const RecordType *RecordTy
10839                  = Context.getBaseElementType(Field->getType())
10840                                                        ->getAs<RecordType>()) {
10841                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10842        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10843          MarkFunctionReferenced(Field->getLocation(), Destructor);
10844          CheckDestructorAccess(Field->getLocation(), Destructor,
10845                            PDiag(diag::err_access_dtor_ivar)
10846                              << Context.getBaseElementType(Field->getType()));
10847        }
10848      }
10849    }
10850    ObjCImplementation->setIvarInitializers(Context,
10851                                            AllToInit.data(), AllToInit.size());
10852  }
10853}
10854
10855static
10856void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10857                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10858                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10859                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10860                           Sema &S) {
10861  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10862                                                   CE = Current.end();
10863  if (Ctor->isInvalidDecl())
10864    return;
10865
10866  const FunctionDecl *FNTarget = 0;
10867  CXXConstructorDecl *Target;
10868
10869  // We ignore the result here since if we don't have a body, Target will be
10870  // null below.
10871  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10872  Target
10873= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10874
10875  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10876                     // Avoid dereferencing a null pointer here.
10877                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10878
10879  if (!Current.insert(Canonical))
10880    return;
10881
10882  // We know that beyond here, we aren't chaining into a cycle.
10883  if (!Target || !Target->isDelegatingConstructor() ||
10884      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10885    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10886      Valid.insert(*CI);
10887    Current.clear();
10888  // We've hit a cycle.
10889  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10890             Current.count(TCanonical)) {
10891    // If we haven't diagnosed this cycle yet, do so now.
10892    if (!Invalid.count(TCanonical)) {
10893      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10894             diag::warn_delegating_ctor_cycle)
10895        << Ctor;
10896
10897      // Don't add a note for a function delegating directo to itself.
10898      if (TCanonical != Canonical)
10899        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10900
10901      CXXConstructorDecl *C = Target;
10902      while (C->getCanonicalDecl() != Canonical) {
10903        (void)C->getTargetConstructor()->hasBody(FNTarget);
10904        assert(FNTarget && "Ctor cycle through bodiless function");
10905
10906        C
10907       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10908        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10909      }
10910    }
10911
10912    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10913      Invalid.insert(*CI);
10914    Current.clear();
10915  } else {
10916    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10917  }
10918}
10919
10920
10921void Sema::CheckDelegatingCtorCycles() {
10922  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10923
10924  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10925                                                   CE = Current.end();
10926
10927  for (DelegatingCtorDeclsType::iterator
10928         I = DelegatingCtorDecls.begin(ExternalSource),
10929         E = DelegatingCtorDecls.end();
10930       I != E; ++I) {
10931   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10932  }
10933
10934  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10935    (*CI)->setInvalidDecl();
10936}
10937
10938namespace {
10939  /// \brief AST visitor that finds references to the 'this' expression.
10940  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
10941    Sema &S;
10942
10943  public:
10944    explicit FindCXXThisExpr(Sema &S) : S(S) { }
10945
10946    bool VisitCXXThisExpr(CXXThisExpr *E) {
10947      S.Diag(E->getLocation(), diag::err_this_static_member_func)
10948        << E->isImplicit();
10949      return false;
10950    }
10951  };
10952}
10953
10954bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
10955  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10956  if (!TSInfo)
10957    return false;
10958
10959  TypeLoc TL = TSInfo->getTypeLoc();
10960  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
10961  if (!ProtoTL)
10962    return false;
10963
10964  // C++11 [expr.prim.general]p3:
10965  //   [The expression this] shall not appear before the optional
10966  //   cv-qualifier-seq and it shall not appear within the declaration of a
10967  //   static member function (although its type and value category are defined
10968  //   within a static member function as they are within a non-static member
10969  //   function). [ Note: this is because declaration matching does not occur
10970  //  until the complete declarator is known. - end note ]
10971  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
10972  FindCXXThisExpr Finder(*this);
10973
10974  // If the return type came after the cv-qualifier-seq, check it now.
10975  if (Proto->hasTrailingReturn() &&
10976      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
10977    return true;
10978
10979  // Check the exception specification.
10980  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
10981    return true;
10982
10983  return checkThisInStaticMemberFunctionAttributes(Method);
10984}
10985
10986bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
10987  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10988  if (!TSInfo)
10989    return false;
10990
10991  TypeLoc TL = TSInfo->getTypeLoc();
10992  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
10993  if (!ProtoTL)
10994    return false;
10995
10996  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
10997  FindCXXThisExpr Finder(*this);
10998
10999  switch (Proto->getExceptionSpecType()) {
11000  case EST_Uninstantiated:
11001  case EST_BasicNoexcept:
11002  case EST_Delayed:
11003  case EST_DynamicNone:
11004  case EST_MSAny:
11005  case EST_None:
11006    break;
11007
11008  case EST_ComputedNoexcept:
11009    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11010      return true;
11011
11012  case EST_Dynamic:
11013    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11014         EEnd = Proto->exception_end();
11015         E != EEnd; ++E) {
11016      if (!Finder.TraverseType(*E))
11017        return true;
11018    }
11019    break;
11020  }
11021
11022  return false;
11023}
11024
11025bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11026  FindCXXThisExpr Finder(*this);
11027
11028  // Check attributes.
11029  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11030       A != AEnd; ++A) {
11031    // FIXME: This should be emitted by tblgen.
11032    Expr *Arg = 0;
11033    ArrayRef<Expr *> Args;
11034    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11035      Arg = G->getArg();
11036    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11037      Arg = G->getArg();
11038    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11039      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11040    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11041      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11042    else if (ExclusiveLockFunctionAttr *ELF
11043               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11044      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11045    else if (SharedLockFunctionAttr *SLF
11046               = dyn_cast<SharedLockFunctionAttr>(*A))
11047      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11048    else if (ExclusiveTrylockFunctionAttr *ETLF
11049               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11050      Arg = ETLF->getSuccessValue();
11051      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11052    } else if (SharedTrylockFunctionAttr *STLF
11053                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11054      Arg = STLF->getSuccessValue();
11055      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11056    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11057      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11058    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11059      Arg = LR->getArg();
11060    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11061      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11062    else if (ExclusiveLocksRequiredAttr *ELR
11063               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11064      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11065    else if (SharedLocksRequiredAttr *SLR
11066               = dyn_cast<SharedLocksRequiredAttr>(*A))
11067      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11068
11069    if (Arg && !Finder.TraverseStmt(Arg))
11070      return true;
11071
11072    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11073      if (!Finder.TraverseStmt(Args[I]))
11074        return true;
11075    }
11076  }
11077
11078  return false;
11079}
11080
11081void
11082Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11083                                  ArrayRef<ParsedType> DynamicExceptions,
11084                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11085                                  Expr *NoexceptExpr,
11086                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11087                                  FunctionProtoType::ExtProtoInfo &EPI) {
11088  Exceptions.clear();
11089  EPI.ExceptionSpecType = EST;
11090  if (EST == EST_Dynamic) {
11091    Exceptions.reserve(DynamicExceptions.size());
11092    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11093      // FIXME: Preserve type source info.
11094      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11095
11096      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11097      collectUnexpandedParameterPacks(ET, Unexpanded);
11098      if (!Unexpanded.empty()) {
11099        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11100                                         UPPC_ExceptionType,
11101                                         Unexpanded);
11102        continue;
11103      }
11104
11105      // Check that the type is valid for an exception spec, and
11106      // drop it if not.
11107      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11108        Exceptions.push_back(ET);
11109    }
11110    EPI.NumExceptions = Exceptions.size();
11111    EPI.Exceptions = Exceptions.data();
11112    return;
11113  }
11114
11115  if (EST == EST_ComputedNoexcept) {
11116    // If an error occurred, there's no expression here.
11117    if (NoexceptExpr) {
11118      assert((NoexceptExpr->isTypeDependent() ||
11119              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11120              Context.BoolTy) &&
11121             "Parser should have made sure that the expression is boolean");
11122      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11123        EPI.ExceptionSpecType = EST_BasicNoexcept;
11124        return;
11125      }
11126
11127      if (!NoexceptExpr->isValueDependent())
11128        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11129                         diag::err_noexcept_needs_constant_expression,
11130                         /*AllowFold*/ false).take();
11131      EPI.NoexceptExpr = NoexceptExpr;
11132    }
11133    return;
11134  }
11135}
11136
11137/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11138Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11139  // Implicitly declared functions (e.g. copy constructors) are
11140  // __host__ __device__
11141  if (D->isImplicit())
11142    return CFT_HostDevice;
11143
11144  if (D->hasAttr<CUDAGlobalAttr>())
11145    return CFT_Global;
11146
11147  if (D->hasAttr<CUDADeviceAttr>()) {
11148    if (D->hasAttr<CUDAHostAttr>())
11149      return CFT_HostDevice;
11150    else
11151      return CFT_Device;
11152  }
11153
11154  return CFT_Host;
11155}
11156
11157bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11158                           CUDAFunctionTarget CalleeTarget) {
11159  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11160  // Callable from the device only."
11161  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11162    return true;
11163
11164  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11165  // Callable from the host only."
11166  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11167  // Callable from the host only."
11168  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11169      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11170    return true;
11171
11172  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11173    return true;
11174
11175  return false;
11176}
11177