SemaDeclCXX.cpp revision 5ba73e1af8ef519161bd40063dc325457e21676a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++11 [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++11 [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  // C++11 [dcl.constexpr]p5:
976  //   if no function argument values exist such that the function invocation
977  //   substitution would produce a constant expression, the program is
978  //   ill-formed; no diagnostic required.
979  // C++11 [dcl.constexpr]p3:
980  //   - every constructor call and implicit conversion used in initializing the
981  //     return value shall be one of those allowed in a constant expression.
982  // C++11 [dcl.constexpr]p4:
983  //   - every constructor involved in initializing non-static data members and
984  //     base class sub-objects shall be a constexpr constructor.
985  //
986  // FIXME: We currently disable this check inside system headers, to work
987  // around early STL implementations which contain constexpr functions which
988  // can't produce constant expressions.
989  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
990  if (!Context.getSourceManager().isInSystemHeader(Dcl->getLocation()) &&
991      !Expr::isPotentialConstantExpr(Dcl, Diags)) {
992    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
993      << isa<CXXConstructorDecl>(Dcl);
994    for (size_t I = 0, N = Diags.size(); I != N; ++I)
995      Diag(Diags[I].first, Diags[I].second);
996    return false;
997  }
998
999  return true;
1000}
1001
1002/// isCurrentClassName - Determine whether the identifier II is the
1003/// name of the class type currently being defined. In the case of
1004/// nested classes, this will only return true if II is the name of
1005/// the innermost class.
1006bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1007                              const CXXScopeSpec *SS) {
1008  assert(getLangOptions().CPlusPlus && "No class names in C!");
1009
1010  CXXRecordDecl *CurDecl;
1011  if (SS && SS->isSet() && !SS->isInvalid()) {
1012    DeclContext *DC = computeDeclContext(*SS, true);
1013    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1014  } else
1015    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1016
1017  if (CurDecl && CurDecl->getIdentifier())
1018    return &II == CurDecl->getIdentifier();
1019  else
1020    return false;
1021}
1022
1023/// \brief Check the validity of a C++ base class specifier.
1024///
1025/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1026/// and returns NULL otherwise.
1027CXXBaseSpecifier *
1028Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1029                         SourceRange SpecifierRange,
1030                         bool Virtual, AccessSpecifier Access,
1031                         TypeSourceInfo *TInfo,
1032                         SourceLocation EllipsisLoc) {
1033  QualType BaseType = TInfo->getType();
1034
1035  // C++ [class.union]p1:
1036  //   A union shall not have base classes.
1037  if (Class->isUnion()) {
1038    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1039      << SpecifierRange;
1040    return 0;
1041  }
1042
1043  if (EllipsisLoc.isValid() &&
1044      !TInfo->getType()->containsUnexpandedParameterPack()) {
1045    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1046      << TInfo->getTypeLoc().getSourceRange();
1047    EllipsisLoc = SourceLocation();
1048  }
1049
1050  if (BaseType->isDependentType())
1051    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1052                                          Class->getTagKind() == TTK_Class,
1053                                          Access, TInfo, EllipsisLoc);
1054
1055  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1056
1057  // Base specifiers must be record types.
1058  if (!BaseType->isRecordType()) {
1059    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1060    return 0;
1061  }
1062
1063  // C++ [class.union]p1:
1064  //   A union shall not be used as a base class.
1065  if (BaseType->isUnionType()) {
1066    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1067    return 0;
1068  }
1069
1070  // C++ [class.derived]p2:
1071  //   The class-name in a base-specifier shall not be an incompletely
1072  //   defined class.
1073  if (RequireCompleteType(BaseLoc, BaseType,
1074                          PDiag(diag::err_incomplete_base_class)
1075                            << SpecifierRange)) {
1076    Class->setInvalidDecl();
1077    return 0;
1078  }
1079
1080  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1081  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1082  assert(BaseDecl && "Record type has no declaration");
1083  BaseDecl = BaseDecl->getDefinition();
1084  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1085  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1086  assert(CXXBaseDecl && "Base type is not a C++ type");
1087
1088  // C++ [class]p3:
1089  //   If a class is marked final and it appears as a base-type-specifier in
1090  //   base-clause, the program is ill-formed.
1091  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1092    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1093      << CXXBaseDecl->getDeclName();
1094    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1095      << CXXBaseDecl->getDeclName();
1096    return 0;
1097  }
1098
1099  if (BaseDecl->isInvalidDecl())
1100    Class->setInvalidDecl();
1101
1102  // Create the base specifier.
1103  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1104                                        Class->getTagKind() == TTK_Class,
1105                                        Access, TInfo, EllipsisLoc);
1106}
1107
1108/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1109/// one entry in the base class list of a class specifier, for
1110/// example:
1111///    class foo : public bar, virtual private baz {
1112/// 'public bar' and 'virtual private baz' are each base-specifiers.
1113BaseResult
1114Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1115                         bool Virtual, AccessSpecifier Access,
1116                         ParsedType basetype, SourceLocation BaseLoc,
1117                         SourceLocation EllipsisLoc) {
1118  if (!classdecl)
1119    return true;
1120
1121  AdjustDeclIfTemplate(classdecl);
1122  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1123  if (!Class)
1124    return true;
1125
1126  TypeSourceInfo *TInfo = 0;
1127  GetTypeFromParser(basetype, &TInfo);
1128
1129  if (EllipsisLoc.isInvalid() &&
1130      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1131                                      UPPC_BaseType))
1132    return true;
1133
1134  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1135                                                      Virtual, Access, TInfo,
1136                                                      EllipsisLoc))
1137    return BaseSpec;
1138
1139  return true;
1140}
1141
1142/// \brief Performs the actual work of attaching the given base class
1143/// specifiers to a C++ class.
1144bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1145                                unsigned NumBases) {
1146 if (NumBases == 0)
1147    return false;
1148
1149  // Used to keep track of which base types we have already seen, so
1150  // that we can properly diagnose redundant direct base types. Note
1151  // that the key is always the unqualified canonical type of the base
1152  // class.
1153  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1154
1155  // Copy non-redundant base specifiers into permanent storage.
1156  unsigned NumGoodBases = 0;
1157  bool Invalid = false;
1158  for (unsigned idx = 0; idx < NumBases; ++idx) {
1159    QualType NewBaseType
1160      = Context.getCanonicalType(Bases[idx]->getType());
1161    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1162    if (KnownBaseTypes[NewBaseType]) {
1163      // C++ [class.mi]p3:
1164      //   A class shall not be specified as a direct base class of a
1165      //   derived class more than once.
1166      Diag(Bases[idx]->getSourceRange().getBegin(),
1167           diag::err_duplicate_base_class)
1168        << KnownBaseTypes[NewBaseType]->getType()
1169        << Bases[idx]->getSourceRange();
1170
1171      // Delete the duplicate base class specifier; we're going to
1172      // overwrite its pointer later.
1173      Context.Deallocate(Bases[idx]);
1174
1175      Invalid = true;
1176    } else {
1177      // Okay, add this new base class.
1178      KnownBaseTypes[NewBaseType] = Bases[idx];
1179      Bases[NumGoodBases++] = Bases[idx];
1180      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1181        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1182          if (RD->hasAttr<WeakAttr>())
1183            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1184    }
1185  }
1186
1187  // Attach the remaining base class specifiers to the derived class.
1188  Class->setBases(Bases, NumGoodBases);
1189
1190  // Delete the remaining (good) base class specifiers, since their
1191  // data has been copied into the CXXRecordDecl.
1192  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1193    Context.Deallocate(Bases[idx]);
1194
1195  return Invalid;
1196}
1197
1198/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1199/// class, after checking whether there are any duplicate base
1200/// classes.
1201void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1202                               unsigned NumBases) {
1203  if (!ClassDecl || !Bases || !NumBases)
1204    return;
1205
1206  AdjustDeclIfTemplate(ClassDecl);
1207  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1208                       (CXXBaseSpecifier**)(Bases), NumBases);
1209}
1210
1211static CXXRecordDecl *GetClassForType(QualType T) {
1212  if (const RecordType *RT = T->getAs<RecordType>())
1213    return cast<CXXRecordDecl>(RT->getDecl());
1214  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1215    return ICT->getDecl();
1216  else
1217    return 0;
1218}
1219
1220/// \brief Determine whether the type \p Derived is a C++ class that is
1221/// derived from the type \p Base.
1222bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1223  if (!getLangOptions().CPlusPlus)
1224    return false;
1225
1226  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1227  if (!DerivedRD)
1228    return false;
1229
1230  CXXRecordDecl *BaseRD = GetClassForType(Base);
1231  if (!BaseRD)
1232    return false;
1233
1234  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1235  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1236}
1237
1238/// \brief Determine whether the type \p Derived is a C++ class that is
1239/// derived from the type \p Base.
1240bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1241  if (!getLangOptions().CPlusPlus)
1242    return false;
1243
1244  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1245  if (!DerivedRD)
1246    return false;
1247
1248  CXXRecordDecl *BaseRD = GetClassForType(Base);
1249  if (!BaseRD)
1250    return false;
1251
1252  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1253}
1254
1255void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1256                              CXXCastPath &BasePathArray) {
1257  assert(BasePathArray.empty() && "Base path array must be empty!");
1258  assert(Paths.isRecordingPaths() && "Must record paths!");
1259
1260  const CXXBasePath &Path = Paths.front();
1261
1262  // We first go backward and check if we have a virtual base.
1263  // FIXME: It would be better if CXXBasePath had the base specifier for
1264  // the nearest virtual base.
1265  unsigned Start = 0;
1266  for (unsigned I = Path.size(); I != 0; --I) {
1267    if (Path[I - 1].Base->isVirtual()) {
1268      Start = I - 1;
1269      break;
1270    }
1271  }
1272
1273  // Now add all bases.
1274  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1275    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1276}
1277
1278/// \brief Determine whether the given base path includes a virtual
1279/// base class.
1280bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1281  for (CXXCastPath::const_iterator B = BasePath.begin(),
1282                                BEnd = BasePath.end();
1283       B != BEnd; ++B)
1284    if ((*B)->isVirtual())
1285      return true;
1286
1287  return false;
1288}
1289
1290/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1291/// conversion (where Derived and Base are class types) is
1292/// well-formed, meaning that the conversion is unambiguous (and
1293/// that all of the base classes are accessible). Returns true
1294/// and emits a diagnostic if the code is ill-formed, returns false
1295/// otherwise. Loc is the location where this routine should point to
1296/// if there is an error, and Range is the source range to highlight
1297/// if there is an error.
1298bool
1299Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1300                                   unsigned InaccessibleBaseID,
1301                                   unsigned AmbigiousBaseConvID,
1302                                   SourceLocation Loc, SourceRange Range,
1303                                   DeclarationName Name,
1304                                   CXXCastPath *BasePath) {
1305  // First, determine whether the path from Derived to Base is
1306  // ambiguous. This is slightly more expensive than checking whether
1307  // the Derived to Base conversion exists, because here we need to
1308  // explore multiple paths to determine if there is an ambiguity.
1309  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1310                     /*DetectVirtual=*/false);
1311  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1312  assert(DerivationOkay &&
1313         "Can only be used with a derived-to-base conversion");
1314  (void)DerivationOkay;
1315
1316  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1317    if (InaccessibleBaseID) {
1318      // Check that the base class can be accessed.
1319      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1320                                   InaccessibleBaseID)) {
1321        case AR_inaccessible:
1322          return true;
1323        case AR_accessible:
1324        case AR_dependent:
1325        case AR_delayed:
1326          break;
1327      }
1328    }
1329
1330    // Build a base path if necessary.
1331    if (BasePath)
1332      BuildBasePathArray(Paths, *BasePath);
1333    return false;
1334  }
1335
1336  // We know that the derived-to-base conversion is ambiguous, and
1337  // we're going to produce a diagnostic. Perform the derived-to-base
1338  // search just one more time to compute all of the possible paths so
1339  // that we can print them out. This is more expensive than any of
1340  // the previous derived-to-base checks we've done, but at this point
1341  // performance isn't as much of an issue.
1342  Paths.clear();
1343  Paths.setRecordingPaths(true);
1344  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1345  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1346  (void)StillOkay;
1347
1348  // Build up a textual representation of the ambiguous paths, e.g.,
1349  // D -> B -> A, that will be used to illustrate the ambiguous
1350  // conversions in the diagnostic. We only print one of the paths
1351  // to each base class subobject.
1352  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1353
1354  Diag(Loc, AmbigiousBaseConvID)
1355  << Derived << Base << PathDisplayStr << Range << Name;
1356  return true;
1357}
1358
1359bool
1360Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1361                                   SourceLocation Loc, SourceRange Range,
1362                                   CXXCastPath *BasePath,
1363                                   bool IgnoreAccess) {
1364  return CheckDerivedToBaseConversion(Derived, Base,
1365                                      IgnoreAccess ? 0
1366                                       : diag::err_upcast_to_inaccessible_base,
1367                                      diag::err_ambiguous_derived_to_base_conv,
1368                                      Loc, Range, DeclarationName(),
1369                                      BasePath);
1370}
1371
1372
1373/// @brief Builds a string representing ambiguous paths from a
1374/// specific derived class to different subobjects of the same base
1375/// class.
1376///
1377/// This function builds a string that can be used in error messages
1378/// to show the different paths that one can take through the
1379/// inheritance hierarchy to go from the derived class to different
1380/// subobjects of a base class. The result looks something like this:
1381/// @code
1382/// struct D -> struct B -> struct A
1383/// struct D -> struct C -> struct A
1384/// @endcode
1385std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1386  std::string PathDisplayStr;
1387  std::set<unsigned> DisplayedPaths;
1388  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1389       Path != Paths.end(); ++Path) {
1390    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1391      // We haven't displayed a path to this particular base
1392      // class subobject yet.
1393      PathDisplayStr += "\n    ";
1394      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1395      for (CXXBasePath::const_iterator Element = Path->begin();
1396           Element != Path->end(); ++Element)
1397        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1398    }
1399  }
1400
1401  return PathDisplayStr;
1402}
1403
1404//===----------------------------------------------------------------------===//
1405// C++ class member Handling
1406//===----------------------------------------------------------------------===//
1407
1408/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1409bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1410                                SourceLocation ASLoc,
1411                                SourceLocation ColonLoc,
1412                                AttributeList *Attrs) {
1413  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1414  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1415                                                  ASLoc, ColonLoc);
1416  CurContext->addHiddenDecl(ASDecl);
1417  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1418}
1419
1420/// CheckOverrideControl - Check C++0x override control semantics.
1421void Sema::CheckOverrideControl(const Decl *D) {
1422  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1423  if (!MD || !MD->isVirtual())
1424    return;
1425
1426  if (MD->isDependentContext())
1427    return;
1428
1429  // C++0x [class.virtual]p3:
1430  //   If a virtual function is marked with the virt-specifier override and does
1431  //   not override a member function of a base class,
1432  //   the program is ill-formed.
1433  bool HasOverriddenMethods =
1434    MD->begin_overridden_methods() != MD->end_overridden_methods();
1435  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1436    Diag(MD->getLocation(),
1437                 diag::err_function_marked_override_not_overriding)
1438      << MD->getDeclName();
1439    return;
1440  }
1441}
1442
1443/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1444/// function overrides a virtual member function marked 'final', according to
1445/// C++0x [class.virtual]p3.
1446bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1447                                                  const CXXMethodDecl *Old) {
1448  if (!Old->hasAttr<FinalAttr>())
1449    return false;
1450
1451  Diag(New->getLocation(), diag::err_final_function_overridden)
1452    << New->getDeclName();
1453  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1454  return true;
1455}
1456
1457/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1458/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1459/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1460/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1461/// present but parsing it has been deferred.
1462Decl *
1463Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1464                               MultiTemplateParamsArg TemplateParameterLists,
1465                               Expr *BW, const VirtSpecifiers &VS,
1466                               bool HasDeferredInit) {
1467  const DeclSpec &DS = D.getDeclSpec();
1468  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1469  DeclarationName Name = NameInfo.getName();
1470  SourceLocation Loc = NameInfo.getLoc();
1471
1472  // For anonymous bitfields, the location should point to the type.
1473  if (Loc.isInvalid())
1474    Loc = D.getSourceRange().getBegin();
1475
1476  Expr *BitWidth = static_cast<Expr*>(BW);
1477
1478  assert(isa<CXXRecordDecl>(CurContext));
1479  assert(!DS.isFriendSpecified());
1480
1481  bool isFunc = D.isDeclarationOfFunction();
1482
1483  // C++ 9.2p6: A member shall not be declared to have automatic storage
1484  // duration (auto, register) or with the extern storage-class-specifier.
1485  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1486  // data members and cannot be applied to names declared const or static,
1487  // and cannot be applied to reference members.
1488  switch (DS.getStorageClassSpec()) {
1489    case DeclSpec::SCS_unspecified:
1490    case DeclSpec::SCS_typedef:
1491    case DeclSpec::SCS_static:
1492      // FALL THROUGH.
1493      break;
1494    case DeclSpec::SCS_mutable:
1495      if (isFunc) {
1496        if (DS.getStorageClassSpecLoc().isValid())
1497          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1498        else
1499          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1500
1501        // FIXME: It would be nicer if the keyword was ignored only for this
1502        // declarator. Otherwise we could get follow-up errors.
1503        D.getMutableDeclSpec().ClearStorageClassSpecs();
1504      }
1505      break;
1506    default:
1507      if (DS.getStorageClassSpecLoc().isValid())
1508        Diag(DS.getStorageClassSpecLoc(),
1509             diag::err_storageclass_invalid_for_member);
1510      else
1511        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1512      D.getMutableDeclSpec().ClearStorageClassSpecs();
1513  }
1514
1515  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1516                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1517                      !isFunc);
1518
1519  Decl *Member;
1520  if (isInstField) {
1521    CXXScopeSpec &SS = D.getCXXScopeSpec();
1522
1523    // Data members must have identifiers for names.
1524    if (Name.getNameKind() != DeclarationName::Identifier) {
1525      Diag(Loc, diag::err_bad_variable_name)
1526        << Name;
1527      return 0;
1528    }
1529
1530    IdentifierInfo *II = Name.getAsIdentifierInfo();
1531
1532    // Member field could not be with "template" keyword.
1533    // So TemplateParameterLists should be empty in this case.
1534    if (TemplateParameterLists.size()) {
1535      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1536      if (TemplateParams->size()) {
1537        // There is no such thing as a member field template.
1538        Diag(D.getIdentifierLoc(), diag::err_template_member)
1539            << II
1540            << SourceRange(TemplateParams->getTemplateLoc(),
1541                TemplateParams->getRAngleLoc());
1542      } else {
1543        // There is an extraneous 'template<>' for this member.
1544        Diag(TemplateParams->getTemplateLoc(),
1545            diag::err_template_member_noparams)
1546            << II
1547            << SourceRange(TemplateParams->getTemplateLoc(),
1548                TemplateParams->getRAngleLoc());
1549      }
1550      return 0;
1551    }
1552
1553    if (SS.isSet() && !SS.isInvalid()) {
1554      // The user provided a superfluous scope specifier inside a class
1555      // definition:
1556      //
1557      // class X {
1558      //   int X::member;
1559      // };
1560      DeclContext *DC = 0;
1561      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1562        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1563          << Name << FixItHint::CreateRemoval(SS.getRange());
1564      else
1565        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1566          << Name << SS.getRange();
1567
1568      SS.clear();
1569    }
1570
1571    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1572                         HasDeferredInit, AS);
1573    assert(Member && "HandleField never returns null");
1574  } else {
1575    assert(!HasDeferredInit);
1576
1577    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1578    if (!Member) {
1579      return 0;
1580    }
1581
1582    // Non-instance-fields can't have a bitfield.
1583    if (BitWidth) {
1584      if (Member->isInvalidDecl()) {
1585        // don't emit another diagnostic.
1586      } else if (isa<VarDecl>(Member)) {
1587        // C++ 9.6p3: A bit-field shall not be a static member.
1588        // "static member 'A' cannot be a bit-field"
1589        Diag(Loc, diag::err_static_not_bitfield)
1590          << Name << BitWidth->getSourceRange();
1591      } else if (isa<TypedefDecl>(Member)) {
1592        // "typedef member 'x' cannot be a bit-field"
1593        Diag(Loc, diag::err_typedef_not_bitfield)
1594          << Name << BitWidth->getSourceRange();
1595      } else {
1596        // A function typedef ("typedef int f(); f a;").
1597        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1598        Diag(Loc, diag::err_not_integral_type_bitfield)
1599          << Name << cast<ValueDecl>(Member)->getType()
1600          << BitWidth->getSourceRange();
1601      }
1602
1603      BitWidth = 0;
1604      Member->setInvalidDecl();
1605    }
1606
1607    Member->setAccess(AS);
1608
1609    // If we have declared a member function template, set the access of the
1610    // templated declaration as well.
1611    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1612      FunTmpl->getTemplatedDecl()->setAccess(AS);
1613  }
1614
1615  if (VS.isOverrideSpecified()) {
1616    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1617    if (!MD || !MD->isVirtual()) {
1618      Diag(Member->getLocStart(),
1619           diag::override_keyword_only_allowed_on_virtual_member_functions)
1620        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1621    } else
1622      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1623  }
1624  if (VS.isFinalSpecified()) {
1625    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1626    if (!MD || !MD->isVirtual()) {
1627      Diag(Member->getLocStart(),
1628           diag::override_keyword_only_allowed_on_virtual_member_functions)
1629      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1630    } else
1631      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1632  }
1633
1634  if (VS.getLastLocation().isValid()) {
1635    // Update the end location of a method that has a virt-specifiers.
1636    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1637      MD->setRangeEnd(VS.getLastLocation());
1638  }
1639
1640  CheckOverrideControl(Member);
1641
1642  assert((Name || isInstField) && "No identifier for non-field ?");
1643
1644  if (isInstField)
1645    FieldCollector->Add(cast<FieldDecl>(Member));
1646  return Member;
1647}
1648
1649/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1650/// in-class initializer for a non-static C++ class member, and after
1651/// instantiating an in-class initializer in a class template. Such actions
1652/// are deferred until the class is complete.
1653void
1654Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1655                                       Expr *InitExpr) {
1656  FieldDecl *FD = cast<FieldDecl>(D);
1657
1658  if (!InitExpr) {
1659    FD->setInvalidDecl();
1660    FD->removeInClassInitializer();
1661    return;
1662  }
1663
1664  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1665    FD->setInvalidDecl();
1666    FD->removeInClassInitializer();
1667    return;
1668  }
1669
1670  ExprResult Init = InitExpr;
1671  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1672    // FIXME: if there is no EqualLoc, this is list-initialization.
1673    Init = PerformCopyInitialization(
1674      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1675    if (Init.isInvalid()) {
1676      FD->setInvalidDecl();
1677      return;
1678    }
1679
1680    CheckImplicitConversions(Init.get(), EqualLoc);
1681  }
1682
1683  // C++0x [class.base.init]p7:
1684  //   The initialization of each base and member constitutes a
1685  //   full-expression.
1686  Init = MaybeCreateExprWithCleanups(Init);
1687  if (Init.isInvalid()) {
1688    FD->setInvalidDecl();
1689    return;
1690  }
1691
1692  InitExpr = Init.release();
1693
1694  FD->setInClassInitializer(InitExpr);
1695}
1696
1697/// \brief Find the direct and/or virtual base specifiers that
1698/// correspond to the given base type, for use in base initialization
1699/// within a constructor.
1700static bool FindBaseInitializer(Sema &SemaRef,
1701                                CXXRecordDecl *ClassDecl,
1702                                QualType BaseType,
1703                                const CXXBaseSpecifier *&DirectBaseSpec,
1704                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1705  // First, check for a direct base class.
1706  DirectBaseSpec = 0;
1707  for (CXXRecordDecl::base_class_const_iterator Base
1708         = ClassDecl->bases_begin();
1709       Base != ClassDecl->bases_end(); ++Base) {
1710    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1711      // We found a direct base of this type. That's what we're
1712      // initializing.
1713      DirectBaseSpec = &*Base;
1714      break;
1715    }
1716  }
1717
1718  // Check for a virtual base class.
1719  // FIXME: We might be able to short-circuit this if we know in advance that
1720  // there are no virtual bases.
1721  VirtualBaseSpec = 0;
1722  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1723    // We haven't found a base yet; search the class hierarchy for a
1724    // virtual base class.
1725    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1726                       /*DetectVirtual=*/false);
1727    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1728                              BaseType, Paths)) {
1729      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1730           Path != Paths.end(); ++Path) {
1731        if (Path->back().Base->isVirtual()) {
1732          VirtualBaseSpec = Path->back().Base;
1733          break;
1734        }
1735      }
1736    }
1737  }
1738
1739  return DirectBaseSpec || VirtualBaseSpec;
1740}
1741
1742/// \brief Handle a C++ member initializer using braced-init-list syntax.
1743MemInitResult
1744Sema::ActOnMemInitializer(Decl *ConstructorD,
1745                          Scope *S,
1746                          CXXScopeSpec &SS,
1747                          IdentifierInfo *MemberOrBase,
1748                          ParsedType TemplateTypeTy,
1749                          const DeclSpec &DS,
1750                          SourceLocation IdLoc,
1751                          Expr *InitList,
1752                          SourceLocation EllipsisLoc) {
1753  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1754                             DS, IdLoc, MultiInitializer(InitList),
1755                             EllipsisLoc);
1756}
1757
1758/// \brief Handle a C++ member initializer using parentheses syntax.
1759MemInitResult
1760Sema::ActOnMemInitializer(Decl *ConstructorD,
1761                          Scope *S,
1762                          CXXScopeSpec &SS,
1763                          IdentifierInfo *MemberOrBase,
1764                          ParsedType TemplateTypeTy,
1765                          const DeclSpec &DS,
1766                          SourceLocation IdLoc,
1767                          SourceLocation LParenLoc,
1768                          Expr **Args, unsigned NumArgs,
1769                          SourceLocation RParenLoc,
1770                          SourceLocation EllipsisLoc) {
1771  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1772                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1773                                                         NumArgs, RParenLoc),
1774                             EllipsisLoc);
1775}
1776
1777namespace {
1778
1779// Callback to only accept typo corrections that can be a valid C++ member
1780// intializer: either a non-static field member or a base class.
1781class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1782 public:
1783  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1784      : ClassDecl(ClassDecl) {}
1785
1786  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1787    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1788      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1789        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1790      else
1791        return isa<TypeDecl>(ND);
1792    }
1793    return false;
1794  }
1795
1796 private:
1797  CXXRecordDecl *ClassDecl;
1798};
1799
1800}
1801
1802/// \brief Handle a C++ member initializer.
1803MemInitResult
1804Sema::BuildMemInitializer(Decl *ConstructorD,
1805                          Scope *S,
1806                          CXXScopeSpec &SS,
1807                          IdentifierInfo *MemberOrBase,
1808                          ParsedType TemplateTypeTy,
1809                          const DeclSpec &DS,
1810                          SourceLocation IdLoc,
1811                          const MultiInitializer &Args,
1812                          SourceLocation EllipsisLoc) {
1813  if (!ConstructorD)
1814    return true;
1815
1816  AdjustDeclIfTemplate(ConstructorD);
1817
1818  CXXConstructorDecl *Constructor
1819    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1820  if (!Constructor) {
1821    // The user wrote a constructor initializer on a function that is
1822    // not a C++ constructor. Ignore the error for now, because we may
1823    // have more member initializers coming; we'll diagnose it just
1824    // once in ActOnMemInitializers.
1825    return true;
1826  }
1827
1828  CXXRecordDecl *ClassDecl = Constructor->getParent();
1829
1830  // C++ [class.base.init]p2:
1831  //   Names in a mem-initializer-id are looked up in the scope of the
1832  //   constructor's class and, if not found in that scope, are looked
1833  //   up in the scope containing the constructor's definition.
1834  //   [Note: if the constructor's class contains a member with the
1835  //   same name as a direct or virtual base class of the class, a
1836  //   mem-initializer-id naming the member or base class and composed
1837  //   of a single identifier refers to the class member. A
1838  //   mem-initializer-id for the hidden base class may be specified
1839  //   using a qualified name. ]
1840  if (!SS.getScopeRep() && !TemplateTypeTy) {
1841    // Look for a member, first.
1842    DeclContext::lookup_result Result
1843      = ClassDecl->lookup(MemberOrBase);
1844    if (Result.first != Result.second) {
1845      ValueDecl *Member;
1846      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1847          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1848        if (EllipsisLoc.isValid())
1849          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1850            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1851
1852        return BuildMemberInitializer(Member, Args, IdLoc);
1853      }
1854    }
1855  }
1856  // It didn't name a member, so see if it names a class.
1857  QualType BaseType;
1858  TypeSourceInfo *TInfo = 0;
1859
1860  if (TemplateTypeTy) {
1861    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1862  } else if (DS.getTypeSpecType() == TST_decltype) {
1863    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1864  } else {
1865    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1866    LookupParsedName(R, S, &SS);
1867
1868    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1869    if (!TyD) {
1870      if (R.isAmbiguous()) return true;
1871
1872      // We don't want access-control diagnostics here.
1873      R.suppressDiagnostics();
1874
1875      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1876        bool NotUnknownSpecialization = false;
1877        DeclContext *DC = computeDeclContext(SS, false);
1878        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1879          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1880
1881        if (!NotUnknownSpecialization) {
1882          // When the scope specifier can refer to a member of an unknown
1883          // specialization, we take it as a type name.
1884          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1885                                       SS.getWithLocInContext(Context),
1886                                       *MemberOrBase, IdLoc);
1887          if (BaseType.isNull())
1888            return true;
1889
1890          R.clear();
1891          R.setLookupName(MemberOrBase);
1892        }
1893      }
1894
1895      // If no results were found, try to correct typos.
1896      TypoCorrection Corr;
1897      MemInitializerValidatorCCC Validator(ClassDecl);
1898      if (R.empty() && BaseType.isNull() &&
1899          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1900                              Validator, ClassDecl))) {
1901        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1902        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1903        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1904          // We have found a non-static data member with a similar
1905          // name to what was typed; complain and initialize that
1906          // member.
1907          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1908            << MemberOrBase << true << CorrectedQuotedStr
1909            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1910          Diag(Member->getLocation(), diag::note_previous_decl)
1911            << CorrectedQuotedStr;
1912
1913          return BuildMemberInitializer(Member, Args, IdLoc);
1914        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1915          const CXXBaseSpecifier *DirectBaseSpec;
1916          const CXXBaseSpecifier *VirtualBaseSpec;
1917          if (FindBaseInitializer(*this, ClassDecl,
1918                                  Context.getTypeDeclType(Type),
1919                                  DirectBaseSpec, VirtualBaseSpec)) {
1920            // We have found a direct or virtual base class with a
1921            // similar name to what was typed; complain and initialize
1922            // that base class.
1923            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1924              << MemberOrBase << false << CorrectedQuotedStr
1925              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1926
1927            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1928                                                             : VirtualBaseSpec;
1929            Diag(BaseSpec->getSourceRange().getBegin(),
1930                 diag::note_base_class_specified_here)
1931              << BaseSpec->getType()
1932              << BaseSpec->getSourceRange();
1933
1934            TyD = Type;
1935          }
1936        }
1937      }
1938
1939      if (!TyD && BaseType.isNull()) {
1940        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1941          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1942        return true;
1943      }
1944    }
1945
1946    if (BaseType.isNull()) {
1947      BaseType = Context.getTypeDeclType(TyD);
1948      if (SS.isSet()) {
1949        NestedNameSpecifier *Qualifier =
1950          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1951
1952        // FIXME: preserve source range information
1953        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1954      }
1955    }
1956  }
1957
1958  if (!TInfo)
1959    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1960
1961  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1962}
1963
1964/// Checks a member initializer expression for cases where reference (or
1965/// pointer) members are bound to by-value parameters (or their addresses).
1966static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1967                                               Expr *Init,
1968                                               SourceLocation IdLoc) {
1969  QualType MemberTy = Member->getType();
1970
1971  // We only handle pointers and references currently.
1972  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1973  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1974    return;
1975
1976  const bool IsPointer = MemberTy->isPointerType();
1977  if (IsPointer) {
1978    if (const UnaryOperator *Op
1979          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1980      // The only case we're worried about with pointers requires taking the
1981      // address.
1982      if (Op->getOpcode() != UO_AddrOf)
1983        return;
1984
1985      Init = Op->getSubExpr();
1986    } else {
1987      // We only handle address-of expression initializers for pointers.
1988      return;
1989    }
1990  }
1991
1992  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1993    // Taking the address of a temporary will be diagnosed as a hard error.
1994    if (IsPointer)
1995      return;
1996
1997    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1998      << Member << Init->getSourceRange();
1999  } else if (const DeclRefExpr *DRE
2000               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2001    // We only warn when referring to a non-reference parameter declaration.
2002    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2003    if (!Parameter || Parameter->getType()->isReferenceType())
2004      return;
2005
2006    S.Diag(Init->getExprLoc(),
2007           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2008                     : diag::warn_bind_ref_member_to_parameter)
2009      << Member << Parameter << Init->getSourceRange();
2010  } else {
2011    // Other initializers are fine.
2012    return;
2013  }
2014
2015  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2016    << (unsigned)IsPointer;
2017}
2018
2019/// Checks an initializer expression for use of uninitialized fields, such as
2020/// containing the field that is being initialized. Returns true if there is an
2021/// uninitialized field was used an updates the SourceLocation parameter; false
2022/// otherwise.
2023static bool InitExprContainsUninitializedFields(const Stmt *S,
2024                                                const ValueDecl *LhsField,
2025                                                SourceLocation *L) {
2026  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2027
2028  if (isa<CallExpr>(S)) {
2029    // Do not descend into function calls or constructors, as the use
2030    // of an uninitialized field may be valid. One would have to inspect
2031    // the contents of the function/ctor to determine if it is safe or not.
2032    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2033    // may be safe, depending on what the function/ctor does.
2034    return false;
2035  }
2036  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2037    const NamedDecl *RhsField = ME->getMemberDecl();
2038
2039    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2040      // The member expression points to a static data member.
2041      assert(VD->isStaticDataMember() &&
2042             "Member points to non-static data member!");
2043      (void)VD;
2044      return false;
2045    }
2046
2047    if (isa<EnumConstantDecl>(RhsField)) {
2048      // The member expression points to an enum.
2049      return false;
2050    }
2051
2052    if (RhsField == LhsField) {
2053      // Initializing a field with itself. Throw a warning.
2054      // But wait; there are exceptions!
2055      // Exception #1:  The field may not belong to this record.
2056      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2057      const Expr *base = ME->getBase();
2058      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2059        // Even though the field matches, it does not belong to this record.
2060        return false;
2061      }
2062      // None of the exceptions triggered; return true to indicate an
2063      // uninitialized field was used.
2064      *L = ME->getMemberLoc();
2065      return true;
2066    }
2067  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2068    // sizeof/alignof doesn't reference contents, do not warn.
2069    return false;
2070  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2071    // address-of doesn't reference contents (the pointer may be dereferenced
2072    // in the same expression but it would be rare; and weird).
2073    if (UOE->getOpcode() == UO_AddrOf)
2074      return false;
2075  }
2076  for (Stmt::const_child_range it = S->children(); it; ++it) {
2077    if (!*it) {
2078      // An expression such as 'member(arg ?: "")' may trigger this.
2079      continue;
2080    }
2081    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2082      return true;
2083  }
2084  return false;
2085}
2086
2087MemInitResult
2088Sema::BuildMemberInitializer(ValueDecl *Member,
2089                             const MultiInitializer &Args,
2090                             SourceLocation IdLoc) {
2091  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2092  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2093  assert((DirectMember || IndirectMember) &&
2094         "Member must be a FieldDecl or IndirectFieldDecl");
2095
2096  if (Args.DiagnoseUnexpandedParameterPack(*this))
2097    return true;
2098
2099  if (Member->isInvalidDecl())
2100    return true;
2101
2102  // Diagnose value-uses of fields to initialize themselves, e.g.
2103  //   foo(foo)
2104  // where foo is not also a parameter to the constructor.
2105  // TODO: implement -Wuninitialized and fold this into that framework.
2106  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2107       I != E; ++I) {
2108    SourceLocation L;
2109    Expr *Arg = *I;
2110    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2111      Arg = DIE->getInit();
2112    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2113      // FIXME: Return true in the case when other fields are used before being
2114      // uninitialized. For example, let this field be the i'th field. When
2115      // initializing the i'th field, throw a warning if any of the >= i'th
2116      // fields are used, as they are not yet initialized.
2117      // Right now we are only handling the case where the i'th field uses
2118      // itself in its initializer.
2119      Diag(L, diag::warn_field_is_uninit);
2120    }
2121  }
2122
2123  bool HasDependentArg = Args.isTypeDependent();
2124
2125  Expr *Init;
2126  if (Member->getType()->isDependentType() || HasDependentArg) {
2127    // Can't check initialization for a member of dependent type or when
2128    // any of the arguments are type-dependent expressions.
2129    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2130
2131    DiscardCleanupsInEvaluationContext();
2132  } else {
2133    // Initialize the member.
2134    InitializedEntity MemberEntity =
2135      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2136                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2137    InitializationKind Kind =
2138      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2139                                       Args.getEndLoc());
2140
2141    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2142    if (MemberInit.isInvalid())
2143      return true;
2144
2145    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2146
2147    // C++0x [class.base.init]p7:
2148    //   The initialization of each base and member constitutes a
2149    //   full-expression.
2150    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2151    if (MemberInit.isInvalid())
2152      return true;
2153
2154    // If we are in a dependent context, template instantiation will
2155    // perform this type-checking again. Just save the arguments that we
2156    // received in a ParenListExpr.
2157    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2158    // of the information that we have about the member
2159    // initializer. However, deconstructing the ASTs is a dicey process,
2160    // and this approach is far more likely to get the corner cases right.
2161    if (CurContext->isDependentContext()) {
2162      Init = Args.CreateInitExpr(Context,
2163                                 Member->getType().getNonReferenceType());
2164    } else {
2165      Init = MemberInit.get();
2166      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2167    }
2168  }
2169
2170  if (DirectMember) {
2171    return new (Context) CXXCtorInitializer(Context, DirectMember,
2172                                                    IdLoc, Args.getStartLoc(),
2173                                                    Init, Args.getEndLoc());
2174  } else {
2175    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2176                                                    IdLoc, Args.getStartLoc(),
2177                                                    Init, Args.getEndLoc());
2178  }
2179}
2180
2181MemInitResult
2182Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2183                                 const MultiInitializer &Args,
2184                                 CXXRecordDecl *ClassDecl) {
2185  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2186  if (!LangOpts.CPlusPlus0x)
2187    return Diag(NameLoc, diag::err_delegating_ctor)
2188      << TInfo->getTypeLoc().getLocalSourceRange();
2189  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2190
2191  // Initialize the object.
2192  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2193                                     QualType(ClassDecl->getTypeForDecl(), 0));
2194  InitializationKind Kind =
2195    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2196                                     Args.getEndLoc());
2197
2198  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2199  if (DelegationInit.isInvalid())
2200    return true;
2201
2202  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2203         "Delegating constructor with no target?");
2204
2205  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2206
2207  // C++0x [class.base.init]p7:
2208  //   The initialization of each base and member constitutes a
2209  //   full-expression.
2210  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2211  if (DelegationInit.isInvalid())
2212    return true;
2213
2214  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2215                                          DelegationInit.takeAs<Expr>(),
2216                                          Args.getEndLoc());
2217}
2218
2219MemInitResult
2220Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2221                           const MultiInitializer &Args,
2222                           CXXRecordDecl *ClassDecl,
2223                           SourceLocation EllipsisLoc) {
2224  bool HasDependentArg = Args.isTypeDependent();
2225
2226  SourceLocation BaseLoc
2227    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2228
2229  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2230    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2231             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2232
2233  // C++ [class.base.init]p2:
2234  //   [...] Unless the mem-initializer-id names a nonstatic data
2235  //   member of the constructor's class or a direct or virtual base
2236  //   of that class, the mem-initializer is ill-formed. A
2237  //   mem-initializer-list can initialize a base class using any
2238  //   name that denotes that base class type.
2239  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2240
2241  if (EllipsisLoc.isValid()) {
2242    // This is a pack expansion.
2243    if (!BaseType->containsUnexpandedParameterPack())  {
2244      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2245        << SourceRange(BaseLoc, Args.getEndLoc());
2246
2247      EllipsisLoc = SourceLocation();
2248    }
2249  } else {
2250    // Check for any unexpanded parameter packs.
2251    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2252      return true;
2253
2254    if (Args.DiagnoseUnexpandedParameterPack(*this))
2255      return true;
2256  }
2257
2258  // Check for direct and virtual base classes.
2259  const CXXBaseSpecifier *DirectBaseSpec = 0;
2260  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2261  if (!Dependent) {
2262    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2263                                       BaseType))
2264      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2265
2266    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2267                        VirtualBaseSpec);
2268
2269    // C++ [base.class.init]p2:
2270    // Unless the mem-initializer-id names a nonstatic data member of the
2271    // constructor's class or a direct or virtual base of that class, the
2272    // mem-initializer is ill-formed.
2273    if (!DirectBaseSpec && !VirtualBaseSpec) {
2274      // If the class has any dependent bases, then it's possible that
2275      // one of those types will resolve to the same type as
2276      // BaseType. Therefore, just treat this as a dependent base
2277      // class initialization.  FIXME: Should we try to check the
2278      // initialization anyway? It seems odd.
2279      if (ClassDecl->hasAnyDependentBases())
2280        Dependent = true;
2281      else
2282        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2283          << BaseType << Context.getTypeDeclType(ClassDecl)
2284          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2285    }
2286  }
2287
2288  if (Dependent) {
2289    // Can't check initialization for a base of dependent type or when
2290    // any of the arguments are type-dependent expressions.
2291    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2292
2293    DiscardCleanupsInEvaluationContext();
2294
2295    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2296                                            /*IsVirtual=*/false,
2297                                            Args.getStartLoc(), BaseInit,
2298                                            Args.getEndLoc(), EllipsisLoc);
2299  }
2300
2301  // C++ [base.class.init]p2:
2302  //   If a mem-initializer-id is ambiguous because it designates both
2303  //   a direct non-virtual base class and an inherited virtual base
2304  //   class, the mem-initializer is ill-formed.
2305  if (DirectBaseSpec && VirtualBaseSpec)
2306    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2307      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2308
2309  CXXBaseSpecifier *BaseSpec
2310    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2311  if (!BaseSpec)
2312    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2313
2314  // Initialize the base.
2315  InitializedEntity BaseEntity =
2316    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2317  InitializationKind Kind =
2318    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2319                                     Args.getEndLoc());
2320
2321  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2322  if (BaseInit.isInvalid())
2323    return true;
2324
2325  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2326
2327  // C++0x [class.base.init]p7:
2328  //   The initialization of each base and member constitutes a
2329  //   full-expression.
2330  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2331  if (BaseInit.isInvalid())
2332    return true;
2333
2334  // If we are in a dependent context, template instantiation will
2335  // perform this type-checking again. Just save the arguments that we
2336  // received in a ParenListExpr.
2337  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2338  // of the information that we have about the base
2339  // initializer. However, deconstructing the ASTs is a dicey process,
2340  // and this approach is far more likely to get the corner cases right.
2341  if (CurContext->isDependentContext())
2342    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2343
2344  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2345                                          BaseSpec->isVirtual(),
2346                                          Args.getStartLoc(),
2347                                          BaseInit.takeAs<Expr>(),
2348                                          Args.getEndLoc(), EllipsisLoc);
2349}
2350
2351// Create a static_cast\<T&&>(expr).
2352static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2353  QualType ExprType = E->getType();
2354  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2355  SourceLocation ExprLoc = E->getLocStart();
2356  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2357      TargetType, ExprLoc);
2358
2359  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2360                                   SourceRange(ExprLoc, ExprLoc),
2361                                   E->getSourceRange()).take();
2362}
2363
2364/// ImplicitInitializerKind - How an implicit base or member initializer should
2365/// initialize its base or member.
2366enum ImplicitInitializerKind {
2367  IIK_Default,
2368  IIK_Copy,
2369  IIK_Move
2370};
2371
2372static bool
2373BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2374                             ImplicitInitializerKind ImplicitInitKind,
2375                             CXXBaseSpecifier *BaseSpec,
2376                             bool IsInheritedVirtualBase,
2377                             CXXCtorInitializer *&CXXBaseInit) {
2378  InitializedEntity InitEntity
2379    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2380                                        IsInheritedVirtualBase);
2381
2382  ExprResult BaseInit;
2383
2384  switch (ImplicitInitKind) {
2385  case IIK_Default: {
2386    InitializationKind InitKind
2387      = InitializationKind::CreateDefault(Constructor->getLocation());
2388    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2389    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2390                               MultiExprArg(SemaRef, 0, 0));
2391    break;
2392  }
2393
2394  case IIK_Move:
2395  case IIK_Copy: {
2396    bool Moving = ImplicitInitKind == IIK_Move;
2397    ParmVarDecl *Param = Constructor->getParamDecl(0);
2398    QualType ParamType = Param->getType().getNonReferenceType();
2399
2400    Expr *CopyCtorArg =
2401      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2402                          SourceLocation(), Param,
2403                          Constructor->getLocation(), ParamType,
2404                          VK_LValue, 0);
2405
2406    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2407
2408    // Cast to the base class to avoid ambiguities.
2409    QualType ArgTy =
2410      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2411                                       ParamType.getQualifiers());
2412
2413    if (Moving) {
2414      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2415    }
2416
2417    CXXCastPath BasePath;
2418    BasePath.push_back(BaseSpec);
2419    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2420                                            CK_UncheckedDerivedToBase,
2421                                            Moving ? VK_XValue : VK_LValue,
2422                                            &BasePath).take();
2423
2424    InitializationKind InitKind
2425      = InitializationKind::CreateDirect(Constructor->getLocation(),
2426                                         SourceLocation(), SourceLocation());
2427    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2428                                   &CopyCtorArg, 1);
2429    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2430                               MultiExprArg(&CopyCtorArg, 1));
2431    break;
2432  }
2433  }
2434
2435  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2436  if (BaseInit.isInvalid())
2437    return true;
2438
2439  CXXBaseInit =
2440    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2441               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2442                                                        SourceLocation()),
2443                                             BaseSpec->isVirtual(),
2444                                             SourceLocation(),
2445                                             BaseInit.takeAs<Expr>(),
2446                                             SourceLocation(),
2447                                             SourceLocation());
2448
2449  return false;
2450}
2451
2452static bool RefersToRValueRef(Expr *MemRef) {
2453  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2454  return Referenced->getType()->isRValueReferenceType();
2455}
2456
2457static bool
2458BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2459                               ImplicitInitializerKind ImplicitInitKind,
2460                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2461                               CXXCtorInitializer *&CXXMemberInit) {
2462  if (Field->isInvalidDecl())
2463    return true;
2464
2465  SourceLocation Loc = Constructor->getLocation();
2466
2467  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2468    bool Moving = ImplicitInitKind == IIK_Move;
2469    ParmVarDecl *Param = Constructor->getParamDecl(0);
2470    QualType ParamType = Param->getType().getNonReferenceType();
2471
2472    // Suppress copying zero-width bitfields.
2473    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2474      return false;
2475
2476    Expr *MemberExprBase =
2477      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2478                          SourceLocation(), Param,
2479                          Loc, ParamType, VK_LValue, 0);
2480
2481    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2482
2483    if (Moving) {
2484      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2485    }
2486
2487    // Build a reference to this field within the parameter.
2488    CXXScopeSpec SS;
2489    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2490                              Sema::LookupMemberName);
2491    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2492                                  : cast<ValueDecl>(Field), AS_public);
2493    MemberLookup.resolveKind();
2494    ExprResult CtorArg
2495      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2496                                         ParamType, Loc,
2497                                         /*IsArrow=*/false,
2498                                         SS,
2499                                         /*TemplateKWLoc=*/SourceLocation(),
2500                                         /*FirstQualifierInScope=*/0,
2501                                         MemberLookup,
2502                                         /*TemplateArgs=*/0);
2503    if (CtorArg.isInvalid())
2504      return true;
2505
2506    // C++11 [class.copy]p15:
2507    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2508    //     with static_cast<T&&>(x.m);
2509    if (RefersToRValueRef(CtorArg.get())) {
2510      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2511    }
2512
2513    // When the field we are copying is an array, create index variables for
2514    // each dimension of the array. We use these index variables to subscript
2515    // the source array, and other clients (e.g., CodeGen) will perform the
2516    // necessary iteration with these index variables.
2517    SmallVector<VarDecl *, 4> IndexVariables;
2518    QualType BaseType = Field->getType();
2519    QualType SizeType = SemaRef.Context.getSizeType();
2520    bool InitializingArray = false;
2521    while (const ConstantArrayType *Array
2522                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2523      InitializingArray = true;
2524      // Create the iteration variable for this array index.
2525      IdentifierInfo *IterationVarName = 0;
2526      {
2527        llvm::SmallString<8> Str;
2528        llvm::raw_svector_ostream OS(Str);
2529        OS << "__i" << IndexVariables.size();
2530        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2531      }
2532      VarDecl *IterationVar
2533        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2534                          IterationVarName, SizeType,
2535                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2536                          SC_None, SC_None);
2537      IndexVariables.push_back(IterationVar);
2538
2539      // Create a reference to the iteration variable.
2540      ExprResult IterationVarRef
2541        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2542      assert(!IterationVarRef.isInvalid() &&
2543             "Reference to invented variable cannot fail!");
2544      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2545      assert(!IterationVarRef.isInvalid() &&
2546             "Conversion of invented variable cannot fail!");
2547
2548      // Subscript the array with this iteration variable.
2549      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2550                                                        IterationVarRef.take(),
2551                                                        Loc);
2552      if (CtorArg.isInvalid())
2553        return true;
2554
2555      BaseType = Array->getElementType();
2556    }
2557
2558    // The array subscript expression is an lvalue, which is wrong for moving.
2559    if (Moving && InitializingArray)
2560      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2561
2562    // Construct the entity that we will be initializing. For an array, this
2563    // will be first element in the array, which may require several levels
2564    // of array-subscript entities.
2565    SmallVector<InitializedEntity, 4> Entities;
2566    Entities.reserve(1 + IndexVariables.size());
2567    if (Indirect)
2568      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2569    else
2570      Entities.push_back(InitializedEntity::InitializeMember(Field));
2571    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2572      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2573                                                              0,
2574                                                              Entities.back()));
2575
2576    // Direct-initialize to use the copy constructor.
2577    InitializationKind InitKind =
2578      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2579
2580    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2581    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2582                                   &CtorArgE, 1);
2583
2584    ExprResult MemberInit
2585      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2586                        MultiExprArg(&CtorArgE, 1));
2587    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2588    if (MemberInit.isInvalid())
2589      return true;
2590
2591    if (Indirect) {
2592      assert(IndexVariables.size() == 0 &&
2593             "Indirect field improperly initialized");
2594      CXXMemberInit
2595        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2596                                                   Loc, Loc,
2597                                                   MemberInit.takeAs<Expr>(),
2598                                                   Loc);
2599    } else
2600      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2601                                                 Loc, MemberInit.takeAs<Expr>(),
2602                                                 Loc,
2603                                                 IndexVariables.data(),
2604                                                 IndexVariables.size());
2605    return false;
2606  }
2607
2608  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2609
2610  QualType FieldBaseElementType =
2611    SemaRef.Context.getBaseElementType(Field->getType());
2612
2613  if (FieldBaseElementType->isRecordType()) {
2614    InitializedEntity InitEntity
2615      = Indirect? InitializedEntity::InitializeMember(Indirect)
2616                : InitializedEntity::InitializeMember(Field);
2617    InitializationKind InitKind =
2618      InitializationKind::CreateDefault(Loc);
2619
2620    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2621    ExprResult MemberInit =
2622      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2623
2624    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2625    if (MemberInit.isInvalid())
2626      return true;
2627
2628    if (Indirect)
2629      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2630                                                               Indirect, Loc,
2631                                                               Loc,
2632                                                               MemberInit.get(),
2633                                                               Loc);
2634    else
2635      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2636                                                               Field, Loc, Loc,
2637                                                               MemberInit.get(),
2638                                                               Loc);
2639    return false;
2640  }
2641
2642  if (!Field->getParent()->isUnion()) {
2643    if (FieldBaseElementType->isReferenceType()) {
2644      SemaRef.Diag(Constructor->getLocation(),
2645                   diag::err_uninitialized_member_in_ctor)
2646      << (int)Constructor->isImplicit()
2647      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2648      << 0 << Field->getDeclName();
2649      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2650      return true;
2651    }
2652
2653    if (FieldBaseElementType.isConstQualified()) {
2654      SemaRef.Diag(Constructor->getLocation(),
2655                   diag::err_uninitialized_member_in_ctor)
2656      << (int)Constructor->isImplicit()
2657      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2658      << 1 << Field->getDeclName();
2659      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2660      return true;
2661    }
2662  }
2663
2664  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2665      FieldBaseElementType->isObjCRetainableType() &&
2666      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2667      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2668    // Instant objects:
2669    //   Default-initialize Objective-C pointers to NULL.
2670    CXXMemberInit
2671      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2672                                                 Loc, Loc,
2673                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2674                                                 Loc);
2675    return false;
2676  }
2677
2678  // Nothing to initialize.
2679  CXXMemberInit = 0;
2680  return false;
2681}
2682
2683namespace {
2684struct BaseAndFieldInfo {
2685  Sema &S;
2686  CXXConstructorDecl *Ctor;
2687  bool AnyErrorsInInits;
2688  ImplicitInitializerKind IIK;
2689  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2690  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2691
2692  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2693    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2694    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2695    if (Generated && Ctor->isCopyConstructor())
2696      IIK = IIK_Copy;
2697    else if (Generated && Ctor->isMoveConstructor())
2698      IIK = IIK_Move;
2699    else
2700      IIK = IIK_Default;
2701  }
2702
2703  bool isImplicitCopyOrMove() const {
2704    switch (IIK) {
2705    case IIK_Copy:
2706    case IIK_Move:
2707      return true;
2708
2709    case IIK_Default:
2710      return false;
2711    }
2712
2713    llvm_unreachable("Invalid ImplicitInitializerKind!");
2714  }
2715};
2716}
2717
2718/// \brief Determine whether the given indirect field declaration is somewhere
2719/// within an anonymous union.
2720static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2721  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2722                                      CEnd = F->chain_end();
2723       C != CEnd; ++C)
2724    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2725      if (Record->isUnion())
2726        return true;
2727
2728  return false;
2729}
2730
2731/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2732/// array type.
2733static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2734  if (T->isIncompleteArrayType())
2735    return true;
2736
2737  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2738    if (!ArrayT->getSize())
2739      return true;
2740
2741    T = ArrayT->getElementType();
2742  }
2743
2744  return false;
2745}
2746
2747static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2748                                    FieldDecl *Field,
2749                                    IndirectFieldDecl *Indirect = 0) {
2750
2751  // Overwhelmingly common case: we have a direct initializer for this field.
2752  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2753    Info.AllToInit.push_back(Init);
2754    return false;
2755  }
2756
2757  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2758  // has a brace-or-equal-initializer, the entity is initialized as specified
2759  // in [dcl.init].
2760  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2761    CXXCtorInitializer *Init;
2762    if (Indirect)
2763      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2764                                                      SourceLocation(),
2765                                                      SourceLocation(), 0,
2766                                                      SourceLocation());
2767    else
2768      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2769                                                      SourceLocation(),
2770                                                      SourceLocation(), 0,
2771                                                      SourceLocation());
2772    Info.AllToInit.push_back(Init);
2773    return false;
2774  }
2775
2776  // Don't build an implicit initializer for union members if none was
2777  // explicitly specified.
2778  if (Field->getParent()->isUnion() ||
2779      (Indirect && isWithinAnonymousUnion(Indirect)))
2780    return false;
2781
2782  // Don't initialize incomplete or zero-length arrays.
2783  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2784    return false;
2785
2786  // Don't try to build an implicit initializer if there were semantic
2787  // errors in any of the initializers (and therefore we might be
2788  // missing some that the user actually wrote).
2789  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2790    return false;
2791
2792  CXXCtorInitializer *Init = 0;
2793  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2794                                     Indirect, Init))
2795    return true;
2796
2797  if (Init)
2798    Info.AllToInit.push_back(Init);
2799
2800  return false;
2801}
2802
2803bool
2804Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2805                               CXXCtorInitializer *Initializer) {
2806  assert(Initializer->isDelegatingInitializer());
2807  Constructor->setNumCtorInitializers(1);
2808  CXXCtorInitializer **initializer =
2809    new (Context) CXXCtorInitializer*[1];
2810  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2811  Constructor->setCtorInitializers(initializer);
2812
2813  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2814    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2815    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2816  }
2817
2818  DelegatingCtorDecls.push_back(Constructor);
2819
2820  return false;
2821}
2822
2823bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2824                               CXXCtorInitializer **Initializers,
2825                               unsigned NumInitializers,
2826                               bool AnyErrors) {
2827  if (Constructor->isDependentContext()) {
2828    // Just store the initializers as written, they will be checked during
2829    // instantiation.
2830    if (NumInitializers > 0) {
2831      Constructor->setNumCtorInitializers(NumInitializers);
2832      CXXCtorInitializer **baseOrMemberInitializers =
2833        new (Context) CXXCtorInitializer*[NumInitializers];
2834      memcpy(baseOrMemberInitializers, Initializers,
2835             NumInitializers * sizeof(CXXCtorInitializer*));
2836      Constructor->setCtorInitializers(baseOrMemberInitializers);
2837    }
2838
2839    return false;
2840  }
2841
2842  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2843
2844  // We need to build the initializer AST according to order of construction
2845  // and not what user specified in the Initializers list.
2846  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2847  if (!ClassDecl)
2848    return true;
2849
2850  bool HadError = false;
2851
2852  for (unsigned i = 0; i < NumInitializers; i++) {
2853    CXXCtorInitializer *Member = Initializers[i];
2854
2855    if (Member->isBaseInitializer())
2856      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2857    else
2858      Info.AllBaseFields[Member->getAnyMember()] = Member;
2859  }
2860
2861  // Keep track of the direct virtual bases.
2862  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2863  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2864       E = ClassDecl->bases_end(); I != E; ++I) {
2865    if (I->isVirtual())
2866      DirectVBases.insert(I);
2867  }
2868
2869  // Push virtual bases before others.
2870  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2871       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2872
2873    if (CXXCtorInitializer *Value
2874        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2875      Info.AllToInit.push_back(Value);
2876    } else if (!AnyErrors) {
2877      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2878      CXXCtorInitializer *CXXBaseInit;
2879      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2880                                       VBase, IsInheritedVirtualBase,
2881                                       CXXBaseInit)) {
2882        HadError = true;
2883        continue;
2884      }
2885
2886      Info.AllToInit.push_back(CXXBaseInit);
2887    }
2888  }
2889
2890  // Non-virtual bases.
2891  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2892       E = ClassDecl->bases_end(); Base != E; ++Base) {
2893    // Virtuals are in the virtual base list and already constructed.
2894    if (Base->isVirtual())
2895      continue;
2896
2897    if (CXXCtorInitializer *Value
2898          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2899      Info.AllToInit.push_back(Value);
2900    } else if (!AnyErrors) {
2901      CXXCtorInitializer *CXXBaseInit;
2902      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2903                                       Base, /*IsInheritedVirtualBase=*/false,
2904                                       CXXBaseInit)) {
2905        HadError = true;
2906        continue;
2907      }
2908
2909      Info.AllToInit.push_back(CXXBaseInit);
2910    }
2911  }
2912
2913  // Fields.
2914  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2915                               MemEnd = ClassDecl->decls_end();
2916       Mem != MemEnd; ++Mem) {
2917    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2918      // C++ [class.bit]p2:
2919      //   A declaration for a bit-field that omits the identifier declares an
2920      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2921      //   initialized.
2922      if (F->isUnnamedBitfield())
2923        continue;
2924
2925      // If we're not generating the implicit copy/move constructor, then we'll
2926      // handle anonymous struct/union fields based on their individual
2927      // indirect fields.
2928      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2929        continue;
2930
2931      if (CollectFieldInitializer(*this, Info, F))
2932        HadError = true;
2933      continue;
2934    }
2935
2936    // Beyond this point, we only consider default initialization.
2937    if (Info.IIK != IIK_Default)
2938      continue;
2939
2940    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2941      if (F->getType()->isIncompleteArrayType()) {
2942        assert(ClassDecl->hasFlexibleArrayMember() &&
2943               "Incomplete array type is not valid");
2944        continue;
2945      }
2946
2947      // Initialize each field of an anonymous struct individually.
2948      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2949        HadError = true;
2950
2951      continue;
2952    }
2953  }
2954
2955  NumInitializers = Info.AllToInit.size();
2956  if (NumInitializers > 0) {
2957    Constructor->setNumCtorInitializers(NumInitializers);
2958    CXXCtorInitializer **baseOrMemberInitializers =
2959      new (Context) CXXCtorInitializer*[NumInitializers];
2960    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2961           NumInitializers * sizeof(CXXCtorInitializer*));
2962    Constructor->setCtorInitializers(baseOrMemberInitializers);
2963
2964    // Constructors implicitly reference the base and member
2965    // destructors.
2966    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2967                                           Constructor->getParent());
2968  }
2969
2970  return HadError;
2971}
2972
2973static void *GetKeyForTopLevelField(FieldDecl *Field) {
2974  // For anonymous unions, use the class declaration as the key.
2975  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2976    if (RT->getDecl()->isAnonymousStructOrUnion())
2977      return static_cast<void *>(RT->getDecl());
2978  }
2979  return static_cast<void *>(Field);
2980}
2981
2982static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2983  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2984}
2985
2986static void *GetKeyForMember(ASTContext &Context,
2987                             CXXCtorInitializer *Member) {
2988  if (!Member->isAnyMemberInitializer())
2989    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2990
2991  // For fields injected into the class via declaration of an anonymous union,
2992  // use its anonymous union class declaration as the unique key.
2993  FieldDecl *Field = Member->getAnyMember();
2994
2995  // If the field is a member of an anonymous struct or union, our key
2996  // is the anonymous record decl that's a direct child of the class.
2997  RecordDecl *RD = Field->getParent();
2998  if (RD->isAnonymousStructOrUnion()) {
2999    while (true) {
3000      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3001      if (Parent->isAnonymousStructOrUnion())
3002        RD = Parent;
3003      else
3004        break;
3005    }
3006
3007    return static_cast<void *>(RD);
3008  }
3009
3010  return static_cast<void *>(Field);
3011}
3012
3013static void
3014DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3015                                  const CXXConstructorDecl *Constructor,
3016                                  CXXCtorInitializer **Inits,
3017                                  unsigned NumInits) {
3018  if (Constructor->getDeclContext()->isDependentContext())
3019    return;
3020
3021  // Don't check initializers order unless the warning is enabled at the
3022  // location of at least one initializer.
3023  bool ShouldCheckOrder = false;
3024  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3025    CXXCtorInitializer *Init = Inits[InitIndex];
3026    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3027                                         Init->getSourceLocation())
3028          != DiagnosticsEngine::Ignored) {
3029      ShouldCheckOrder = true;
3030      break;
3031    }
3032  }
3033  if (!ShouldCheckOrder)
3034    return;
3035
3036  // Build the list of bases and members in the order that they'll
3037  // actually be initialized.  The explicit initializers should be in
3038  // this same order but may be missing things.
3039  SmallVector<const void*, 32> IdealInitKeys;
3040
3041  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3042
3043  // 1. Virtual bases.
3044  for (CXXRecordDecl::base_class_const_iterator VBase =
3045       ClassDecl->vbases_begin(),
3046       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3047    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3048
3049  // 2. Non-virtual bases.
3050  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3051       E = ClassDecl->bases_end(); Base != E; ++Base) {
3052    if (Base->isVirtual())
3053      continue;
3054    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3055  }
3056
3057  // 3. Direct fields.
3058  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3059       E = ClassDecl->field_end(); Field != E; ++Field) {
3060    if (Field->isUnnamedBitfield())
3061      continue;
3062
3063    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3064  }
3065
3066  unsigned NumIdealInits = IdealInitKeys.size();
3067  unsigned IdealIndex = 0;
3068
3069  CXXCtorInitializer *PrevInit = 0;
3070  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3071    CXXCtorInitializer *Init = Inits[InitIndex];
3072    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3073
3074    // Scan forward to try to find this initializer in the idealized
3075    // initializers list.
3076    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3077      if (InitKey == IdealInitKeys[IdealIndex])
3078        break;
3079
3080    // If we didn't find this initializer, it must be because we
3081    // scanned past it on a previous iteration.  That can only
3082    // happen if we're out of order;  emit a warning.
3083    if (IdealIndex == NumIdealInits && PrevInit) {
3084      Sema::SemaDiagnosticBuilder D =
3085        SemaRef.Diag(PrevInit->getSourceLocation(),
3086                     diag::warn_initializer_out_of_order);
3087
3088      if (PrevInit->isAnyMemberInitializer())
3089        D << 0 << PrevInit->getAnyMember()->getDeclName();
3090      else
3091        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3092
3093      if (Init->isAnyMemberInitializer())
3094        D << 0 << Init->getAnyMember()->getDeclName();
3095      else
3096        D << 1 << Init->getTypeSourceInfo()->getType();
3097
3098      // Move back to the initializer's location in the ideal list.
3099      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3100        if (InitKey == IdealInitKeys[IdealIndex])
3101          break;
3102
3103      assert(IdealIndex != NumIdealInits &&
3104             "initializer not found in initializer list");
3105    }
3106
3107    PrevInit = Init;
3108  }
3109}
3110
3111namespace {
3112bool CheckRedundantInit(Sema &S,
3113                        CXXCtorInitializer *Init,
3114                        CXXCtorInitializer *&PrevInit) {
3115  if (!PrevInit) {
3116    PrevInit = Init;
3117    return false;
3118  }
3119
3120  if (FieldDecl *Field = Init->getMember())
3121    S.Diag(Init->getSourceLocation(),
3122           diag::err_multiple_mem_initialization)
3123      << Field->getDeclName()
3124      << Init->getSourceRange();
3125  else {
3126    const Type *BaseClass = Init->getBaseClass();
3127    assert(BaseClass && "neither field nor base");
3128    S.Diag(Init->getSourceLocation(),
3129           diag::err_multiple_base_initialization)
3130      << QualType(BaseClass, 0)
3131      << Init->getSourceRange();
3132  }
3133  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3134    << 0 << PrevInit->getSourceRange();
3135
3136  return true;
3137}
3138
3139typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3140typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3141
3142bool CheckRedundantUnionInit(Sema &S,
3143                             CXXCtorInitializer *Init,
3144                             RedundantUnionMap &Unions) {
3145  FieldDecl *Field = Init->getAnyMember();
3146  RecordDecl *Parent = Field->getParent();
3147  NamedDecl *Child = Field;
3148
3149  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3150    if (Parent->isUnion()) {
3151      UnionEntry &En = Unions[Parent];
3152      if (En.first && En.first != Child) {
3153        S.Diag(Init->getSourceLocation(),
3154               diag::err_multiple_mem_union_initialization)
3155          << Field->getDeclName()
3156          << Init->getSourceRange();
3157        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3158          << 0 << En.second->getSourceRange();
3159        return true;
3160      }
3161      if (!En.first) {
3162        En.first = Child;
3163        En.second = Init;
3164      }
3165      if (!Parent->isAnonymousStructOrUnion())
3166        return false;
3167    }
3168
3169    Child = Parent;
3170    Parent = cast<RecordDecl>(Parent->getDeclContext());
3171  }
3172
3173  return false;
3174}
3175}
3176
3177/// ActOnMemInitializers - Handle the member initializers for a constructor.
3178void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3179                                SourceLocation ColonLoc,
3180                                CXXCtorInitializer **meminits,
3181                                unsigned NumMemInits,
3182                                bool AnyErrors) {
3183  if (!ConstructorDecl)
3184    return;
3185
3186  AdjustDeclIfTemplate(ConstructorDecl);
3187
3188  CXXConstructorDecl *Constructor
3189    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3190
3191  if (!Constructor) {
3192    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3193    return;
3194  }
3195
3196  CXXCtorInitializer **MemInits =
3197    reinterpret_cast<CXXCtorInitializer **>(meminits);
3198
3199  // Mapping for the duplicate initializers check.
3200  // For member initializers, this is keyed with a FieldDecl*.
3201  // For base initializers, this is keyed with a Type*.
3202  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3203
3204  // Mapping for the inconsistent anonymous-union initializers check.
3205  RedundantUnionMap MemberUnions;
3206
3207  bool HadError = false;
3208  for (unsigned i = 0; i < NumMemInits; i++) {
3209    CXXCtorInitializer *Init = MemInits[i];
3210
3211    // Set the source order index.
3212    Init->setSourceOrder(i);
3213
3214    if (Init->isAnyMemberInitializer()) {
3215      FieldDecl *Field = Init->getAnyMember();
3216      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3217          CheckRedundantUnionInit(*this, Init, MemberUnions))
3218        HadError = true;
3219    } else if (Init->isBaseInitializer()) {
3220      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3221      if (CheckRedundantInit(*this, Init, Members[Key]))
3222        HadError = true;
3223    } else {
3224      assert(Init->isDelegatingInitializer());
3225      // This must be the only initializer
3226      if (i != 0 || NumMemInits > 1) {
3227        Diag(MemInits[0]->getSourceLocation(),
3228             diag::err_delegating_initializer_alone)
3229          << MemInits[0]->getSourceRange();
3230        HadError = true;
3231        // We will treat this as being the only initializer.
3232      }
3233      SetDelegatingInitializer(Constructor, MemInits[i]);
3234      // Return immediately as the initializer is set.
3235      return;
3236    }
3237  }
3238
3239  if (HadError)
3240    return;
3241
3242  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3243
3244  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3245}
3246
3247void
3248Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3249                                             CXXRecordDecl *ClassDecl) {
3250  // Ignore dependent contexts. Also ignore unions, since their members never
3251  // have destructors implicitly called.
3252  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3253    return;
3254
3255  // FIXME: all the access-control diagnostics are positioned on the
3256  // field/base declaration.  That's probably good; that said, the
3257  // user might reasonably want to know why the destructor is being
3258  // emitted, and we currently don't say.
3259
3260  // Non-static data members.
3261  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3262       E = ClassDecl->field_end(); I != E; ++I) {
3263    FieldDecl *Field = *I;
3264    if (Field->isInvalidDecl())
3265      continue;
3266
3267    // Don't destroy incomplete or zero-length arrays.
3268    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3269      continue;
3270
3271    QualType FieldType = Context.getBaseElementType(Field->getType());
3272
3273    const RecordType* RT = FieldType->getAs<RecordType>();
3274    if (!RT)
3275      continue;
3276
3277    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3278    if (FieldClassDecl->isInvalidDecl())
3279      continue;
3280    if (FieldClassDecl->hasTrivialDestructor())
3281      continue;
3282
3283    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3284    assert(Dtor && "No dtor found for FieldClassDecl!");
3285    CheckDestructorAccess(Field->getLocation(), Dtor,
3286                          PDiag(diag::err_access_dtor_field)
3287                            << Field->getDeclName()
3288                            << FieldType);
3289
3290    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3291  }
3292
3293  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3294
3295  // Bases.
3296  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3297       E = ClassDecl->bases_end(); Base != E; ++Base) {
3298    // Bases are always records in a well-formed non-dependent class.
3299    const RecordType *RT = Base->getType()->getAs<RecordType>();
3300
3301    // Remember direct virtual bases.
3302    if (Base->isVirtual())
3303      DirectVirtualBases.insert(RT);
3304
3305    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3306    // If our base class is invalid, we probably can't get its dtor anyway.
3307    if (BaseClassDecl->isInvalidDecl())
3308      continue;
3309    // Ignore trivial destructors.
3310    if (BaseClassDecl->hasTrivialDestructor())
3311      continue;
3312
3313    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3314    assert(Dtor && "No dtor found for BaseClassDecl!");
3315
3316    // FIXME: caret should be on the start of the class name
3317    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3318                          PDiag(diag::err_access_dtor_base)
3319                            << Base->getType()
3320                            << Base->getSourceRange());
3321
3322    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3323  }
3324
3325  // Virtual bases.
3326  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3327       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3328
3329    // Bases are always records in a well-formed non-dependent class.
3330    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3331
3332    // Ignore direct virtual bases.
3333    if (DirectVirtualBases.count(RT))
3334      continue;
3335
3336    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3337    // If our base class is invalid, we probably can't get its dtor anyway.
3338    if (BaseClassDecl->isInvalidDecl())
3339      continue;
3340    // Ignore trivial destructors.
3341    if (BaseClassDecl->hasTrivialDestructor())
3342      continue;
3343
3344    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3345    assert(Dtor && "No dtor found for BaseClassDecl!");
3346    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3347                          PDiag(diag::err_access_dtor_vbase)
3348                            << VBase->getType());
3349
3350    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3351  }
3352}
3353
3354void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3355  if (!CDtorDecl)
3356    return;
3357
3358  if (CXXConstructorDecl *Constructor
3359      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3360    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3361}
3362
3363bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3364                                  unsigned DiagID, AbstractDiagSelID SelID) {
3365  if (SelID == -1)
3366    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3367  else
3368    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3369}
3370
3371bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3372                                  const PartialDiagnostic &PD) {
3373  if (!getLangOptions().CPlusPlus)
3374    return false;
3375
3376  if (const ArrayType *AT = Context.getAsArrayType(T))
3377    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3378
3379  if (const PointerType *PT = T->getAs<PointerType>()) {
3380    // Find the innermost pointer type.
3381    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3382      PT = T;
3383
3384    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3385      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3386  }
3387
3388  const RecordType *RT = T->getAs<RecordType>();
3389  if (!RT)
3390    return false;
3391
3392  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3393
3394  // We can't answer whether something is abstract until it has a
3395  // definition.  If it's currently being defined, we'll walk back
3396  // over all the declarations when we have a full definition.
3397  const CXXRecordDecl *Def = RD->getDefinition();
3398  if (!Def || Def->isBeingDefined())
3399    return false;
3400
3401  if (!RD->isAbstract())
3402    return false;
3403
3404  Diag(Loc, PD) << RD->getDeclName();
3405  DiagnoseAbstractType(RD);
3406
3407  return true;
3408}
3409
3410void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3411  // Check if we've already emitted the list of pure virtual functions
3412  // for this class.
3413  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3414    return;
3415
3416  CXXFinalOverriderMap FinalOverriders;
3417  RD->getFinalOverriders(FinalOverriders);
3418
3419  // Keep a set of seen pure methods so we won't diagnose the same method
3420  // more than once.
3421  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3422
3423  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3424                                   MEnd = FinalOverriders.end();
3425       M != MEnd;
3426       ++M) {
3427    for (OverridingMethods::iterator SO = M->second.begin(),
3428                                  SOEnd = M->second.end();
3429         SO != SOEnd; ++SO) {
3430      // C++ [class.abstract]p4:
3431      //   A class is abstract if it contains or inherits at least one
3432      //   pure virtual function for which the final overrider is pure
3433      //   virtual.
3434
3435      //
3436      if (SO->second.size() != 1)
3437        continue;
3438
3439      if (!SO->second.front().Method->isPure())
3440        continue;
3441
3442      if (!SeenPureMethods.insert(SO->second.front().Method))
3443        continue;
3444
3445      Diag(SO->second.front().Method->getLocation(),
3446           diag::note_pure_virtual_function)
3447        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3448    }
3449  }
3450
3451  if (!PureVirtualClassDiagSet)
3452    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3453  PureVirtualClassDiagSet->insert(RD);
3454}
3455
3456namespace {
3457struct AbstractUsageInfo {
3458  Sema &S;
3459  CXXRecordDecl *Record;
3460  CanQualType AbstractType;
3461  bool Invalid;
3462
3463  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3464    : S(S), Record(Record),
3465      AbstractType(S.Context.getCanonicalType(
3466                   S.Context.getTypeDeclType(Record))),
3467      Invalid(false) {}
3468
3469  void DiagnoseAbstractType() {
3470    if (Invalid) return;
3471    S.DiagnoseAbstractType(Record);
3472    Invalid = true;
3473  }
3474
3475  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3476};
3477
3478struct CheckAbstractUsage {
3479  AbstractUsageInfo &Info;
3480  const NamedDecl *Ctx;
3481
3482  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3483    : Info(Info), Ctx(Ctx) {}
3484
3485  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3486    switch (TL.getTypeLocClass()) {
3487#define ABSTRACT_TYPELOC(CLASS, PARENT)
3488#define TYPELOC(CLASS, PARENT) \
3489    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3490#include "clang/AST/TypeLocNodes.def"
3491    }
3492  }
3493
3494  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3495    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3496    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3497      if (!TL.getArg(I))
3498        continue;
3499
3500      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3501      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3502    }
3503  }
3504
3505  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3506    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3507  }
3508
3509  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3510    // Visit the type parameters from a permissive context.
3511    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3512      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3513      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3514        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3515          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3516      // TODO: other template argument types?
3517    }
3518  }
3519
3520  // Visit pointee types from a permissive context.
3521#define CheckPolymorphic(Type) \
3522  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3523    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3524  }
3525  CheckPolymorphic(PointerTypeLoc)
3526  CheckPolymorphic(ReferenceTypeLoc)
3527  CheckPolymorphic(MemberPointerTypeLoc)
3528  CheckPolymorphic(BlockPointerTypeLoc)
3529  CheckPolymorphic(AtomicTypeLoc)
3530
3531  /// Handle all the types we haven't given a more specific
3532  /// implementation for above.
3533  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3534    // Every other kind of type that we haven't called out already
3535    // that has an inner type is either (1) sugar or (2) contains that
3536    // inner type in some way as a subobject.
3537    if (TypeLoc Next = TL.getNextTypeLoc())
3538      return Visit(Next, Sel);
3539
3540    // If there's no inner type and we're in a permissive context,
3541    // don't diagnose.
3542    if (Sel == Sema::AbstractNone) return;
3543
3544    // Check whether the type matches the abstract type.
3545    QualType T = TL.getType();
3546    if (T->isArrayType()) {
3547      Sel = Sema::AbstractArrayType;
3548      T = Info.S.Context.getBaseElementType(T);
3549    }
3550    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3551    if (CT != Info.AbstractType) return;
3552
3553    // It matched; do some magic.
3554    if (Sel == Sema::AbstractArrayType) {
3555      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3556        << T << TL.getSourceRange();
3557    } else {
3558      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3559        << Sel << T << TL.getSourceRange();
3560    }
3561    Info.DiagnoseAbstractType();
3562  }
3563};
3564
3565void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3566                                  Sema::AbstractDiagSelID Sel) {
3567  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3568}
3569
3570}
3571
3572/// Check for invalid uses of an abstract type in a method declaration.
3573static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3574                                    CXXMethodDecl *MD) {
3575  // No need to do the check on definitions, which require that
3576  // the return/param types be complete.
3577  if (MD->doesThisDeclarationHaveABody())
3578    return;
3579
3580  // For safety's sake, just ignore it if we don't have type source
3581  // information.  This should never happen for non-implicit methods,
3582  // but...
3583  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3584    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3585}
3586
3587/// Check for invalid uses of an abstract type within a class definition.
3588static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3589                                    CXXRecordDecl *RD) {
3590  for (CXXRecordDecl::decl_iterator
3591         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3592    Decl *D = *I;
3593    if (D->isImplicit()) continue;
3594
3595    // Methods and method templates.
3596    if (isa<CXXMethodDecl>(D)) {
3597      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3598    } else if (isa<FunctionTemplateDecl>(D)) {
3599      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3600      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3601
3602    // Fields and static variables.
3603    } else if (isa<FieldDecl>(D)) {
3604      FieldDecl *FD = cast<FieldDecl>(D);
3605      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3606        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3607    } else if (isa<VarDecl>(D)) {
3608      VarDecl *VD = cast<VarDecl>(D);
3609      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3610        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3611
3612    // Nested classes and class templates.
3613    } else if (isa<CXXRecordDecl>(D)) {
3614      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3615    } else if (isa<ClassTemplateDecl>(D)) {
3616      CheckAbstractClassUsage(Info,
3617                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3618    }
3619  }
3620}
3621
3622/// \brief Perform semantic checks on a class definition that has been
3623/// completing, introducing implicitly-declared members, checking for
3624/// abstract types, etc.
3625void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3626  if (!Record)
3627    return;
3628
3629  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3630    AbstractUsageInfo Info(*this, Record);
3631    CheckAbstractClassUsage(Info, Record);
3632  }
3633
3634  // If this is not an aggregate type and has no user-declared constructor,
3635  // complain about any non-static data members of reference or const scalar
3636  // type, since they will never get initializers.
3637  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3638      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3639    bool Complained = false;
3640    for (RecordDecl::field_iterator F = Record->field_begin(),
3641                                 FEnd = Record->field_end();
3642         F != FEnd; ++F) {
3643      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3644        continue;
3645
3646      if (F->getType()->isReferenceType() ||
3647          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3648        if (!Complained) {
3649          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3650            << Record->getTagKind() << Record;
3651          Complained = true;
3652        }
3653
3654        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3655          << F->getType()->isReferenceType()
3656          << F->getDeclName();
3657      }
3658    }
3659  }
3660
3661  if (Record->isDynamicClass() && !Record->isDependentType())
3662    DynamicClasses.push_back(Record);
3663
3664  if (Record->getIdentifier()) {
3665    // C++ [class.mem]p13:
3666    //   If T is the name of a class, then each of the following shall have a
3667    //   name different from T:
3668    //     - every member of every anonymous union that is a member of class T.
3669    //
3670    // C++ [class.mem]p14:
3671    //   In addition, if class T has a user-declared constructor (12.1), every
3672    //   non-static data member of class T shall have a name different from T.
3673    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3674         R.first != R.second; ++R.first) {
3675      NamedDecl *D = *R.first;
3676      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3677          isa<IndirectFieldDecl>(D)) {
3678        Diag(D->getLocation(), diag::err_member_name_of_class)
3679          << D->getDeclName();
3680        break;
3681      }
3682    }
3683  }
3684
3685  // Warn if the class has virtual methods but non-virtual public destructor.
3686  if (Record->isPolymorphic() && !Record->isDependentType()) {
3687    CXXDestructorDecl *dtor = Record->getDestructor();
3688    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3689      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3690           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3691  }
3692
3693  // See if a method overloads virtual methods in a base
3694  /// class without overriding any.
3695  if (!Record->isDependentType()) {
3696    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3697                                     MEnd = Record->method_end();
3698         M != MEnd; ++M) {
3699      if (!(*M)->isStatic())
3700        DiagnoseHiddenVirtualMethods(Record, *M);
3701    }
3702  }
3703
3704  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3705  // function that is not a constructor declares that member function to be
3706  // const. [...] The class of which that function is a member shall be
3707  // a literal type.
3708  //
3709  // It's fine to diagnose constructors here too: such constructors cannot
3710  // produce a constant expression, so are ill-formed (no diagnostic required).
3711  //
3712  // If the class has virtual bases, any constexpr members will already have
3713  // been diagnosed by the checks performed on the member declaration, so
3714  // suppress this (less useful) diagnostic.
3715  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3716      !Record->isLiteral() && !Record->getNumVBases()) {
3717    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3718                                     MEnd = Record->method_end();
3719         M != MEnd; ++M) {
3720      if (M->isConstexpr() && M->isInstance()) {
3721        switch (Record->getTemplateSpecializationKind()) {
3722        case TSK_ImplicitInstantiation:
3723        case TSK_ExplicitInstantiationDeclaration:
3724        case TSK_ExplicitInstantiationDefinition:
3725          // If a template instantiates to a non-literal type, but its members
3726          // instantiate to constexpr functions, the template is technically
3727          // ill-formed, but we allow it for sanity. Such members are treated as
3728          // non-constexpr.
3729          (*M)->setConstexpr(false);
3730          continue;
3731
3732        case TSK_Undeclared:
3733        case TSK_ExplicitSpecialization:
3734          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3735                             PDiag(diag::err_constexpr_method_non_literal));
3736          break;
3737        }
3738
3739        // Only produce one error per class.
3740        break;
3741      }
3742    }
3743  }
3744
3745  // Declare inherited constructors. We do this eagerly here because:
3746  // - The standard requires an eager diagnostic for conflicting inherited
3747  //   constructors from different classes.
3748  // - The lazy declaration of the other implicit constructors is so as to not
3749  //   waste space and performance on classes that are not meant to be
3750  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3751  //   have inherited constructors.
3752  DeclareInheritedConstructors(Record);
3753
3754  if (!Record->isDependentType())
3755    CheckExplicitlyDefaultedMethods(Record);
3756}
3757
3758void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3759  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3760                                      ME = Record->method_end();
3761       MI != ME; ++MI) {
3762    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3763      switch (getSpecialMember(*MI)) {
3764      case CXXDefaultConstructor:
3765        CheckExplicitlyDefaultedDefaultConstructor(
3766                                                  cast<CXXConstructorDecl>(*MI));
3767        break;
3768
3769      case CXXDestructor:
3770        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3771        break;
3772
3773      case CXXCopyConstructor:
3774        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3775        break;
3776
3777      case CXXCopyAssignment:
3778        CheckExplicitlyDefaultedCopyAssignment(*MI);
3779        break;
3780
3781      case CXXMoveConstructor:
3782        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3783        break;
3784
3785      case CXXMoveAssignment:
3786        CheckExplicitlyDefaultedMoveAssignment(*MI);
3787        break;
3788
3789      case CXXInvalid:
3790        llvm_unreachable("non-special member explicitly defaulted!");
3791      }
3792    }
3793  }
3794
3795}
3796
3797void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3798  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3799
3800  // Whether this was the first-declared instance of the constructor.
3801  // This affects whether we implicitly add an exception spec (and, eventually,
3802  // constexpr). It is also ill-formed to explicitly default a constructor such
3803  // that it would be deleted. (C++0x [decl.fct.def.default])
3804  bool First = CD == CD->getCanonicalDecl();
3805
3806  bool HadError = false;
3807  if (CD->getNumParams() != 0) {
3808    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3809      << CD->getSourceRange();
3810    HadError = true;
3811  }
3812
3813  ImplicitExceptionSpecification Spec
3814    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3815  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3816  if (EPI.ExceptionSpecType == EST_Delayed) {
3817    // Exception specification depends on some deferred part of the class. We'll
3818    // try again when the class's definition has been fully processed.
3819    return;
3820  }
3821  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3822                          *ExceptionType = Context.getFunctionType(
3823                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3824
3825  // C++11 [dcl.fct.def.default]p2:
3826  //   An explicitly-defaulted function may be declared constexpr only if it
3827  //   would have been implicitly declared as constexpr,
3828  if (CD->isConstexpr()) {
3829    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3830      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3831        << CXXDefaultConstructor;
3832      HadError = true;
3833    }
3834  }
3835  //   and may have an explicit exception-specification only if it is compatible
3836  //   with the exception-specification on the implicit declaration.
3837  if (CtorType->hasExceptionSpec()) {
3838    if (CheckEquivalentExceptionSpec(
3839          PDiag(diag::err_incorrect_defaulted_exception_spec)
3840            << CXXDefaultConstructor,
3841          PDiag(),
3842          ExceptionType, SourceLocation(),
3843          CtorType, CD->getLocation())) {
3844      HadError = true;
3845    }
3846  }
3847
3848  //   If a function is explicitly defaulted on its first declaration,
3849  if (First) {
3850    //  -- it is implicitly considered to be constexpr if the implicit
3851    //     definition would be,
3852    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3853
3854    //  -- it is implicitly considered to have the same
3855    //     exception-specification as if it had been implicitly declared
3856    //
3857    // FIXME: a compatible, but different, explicit exception specification
3858    // will be silently overridden. We should issue a warning if this happens.
3859    EPI.ExtInfo = CtorType->getExtInfo();
3860  }
3861
3862  if (HadError) {
3863    CD->setInvalidDecl();
3864    return;
3865  }
3866
3867  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3868    if (First) {
3869      CD->setDeletedAsWritten();
3870    } else {
3871      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3872        << CXXDefaultConstructor;
3873      CD->setInvalidDecl();
3874    }
3875  }
3876}
3877
3878void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3879  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3880
3881  // Whether this was the first-declared instance of the constructor.
3882  bool First = CD == CD->getCanonicalDecl();
3883
3884  bool HadError = false;
3885  if (CD->getNumParams() != 1) {
3886    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3887      << CD->getSourceRange();
3888    HadError = true;
3889  }
3890
3891  ImplicitExceptionSpecification Spec(Context);
3892  bool Const;
3893  llvm::tie(Spec, Const) =
3894    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3895
3896  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3897  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3898                          *ExceptionType = Context.getFunctionType(
3899                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3900
3901  // Check for parameter type matching.
3902  // This is a copy ctor so we know it's a cv-qualified reference to T.
3903  QualType ArgType = CtorType->getArgType(0);
3904  if (ArgType->getPointeeType().isVolatileQualified()) {
3905    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3906    HadError = true;
3907  }
3908  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3909    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3910    HadError = true;
3911  }
3912
3913  // C++11 [dcl.fct.def.default]p2:
3914  //   An explicitly-defaulted function may be declared constexpr only if it
3915  //   would have been implicitly declared as constexpr,
3916  if (CD->isConstexpr()) {
3917    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3918      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3919        << CXXCopyConstructor;
3920      HadError = true;
3921    }
3922  }
3923  //   and may have an explicit exception-specification only if it is compatible
3924  //   with the exception-specification on the implicit declaration.
3925  if (CtorType->hasExceptionSpec()) {
3926    if (CheckEquivalentExceptionSpec(
3927          PDiag(diag::err_incorrect_defaulted_exception_spec)
3928            << CXXCopyConstructor,
3929          PDiag(),
3930          ExceptionType, SourceLocation(),
3931          CtorType, CD->getLocation())) {
3932      HadError = true;
3933    }
3934  }
3935
3936  //   If a function is explicitly defaulted on its first declaration,
3937  if (First) {
3938    //  -- it is implicitly considered to be constexpr if the implicit
3939    //     definition would be,
3940    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3941
3942    //  -- it is implicitly considered to have the same
3943    //     exception-specification as if it had been implicitly declared, and
3944    //
3945    // FIXME: a compatible, but different, explicit exception specification
3946    // will be silently overridden. We should issue a warning if this happens.
3947    EPI.ExtInfo = CtorType->getExtInfo();
3948
3949    //  -- [...] it shall have the same parameter type as if it had been
3950    //     implicitly declared.
3951    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3952  }
3953
3954  if (HadError) {
3955    CD->setInvalidDecl();
3956    return;
3957  }
3958
3959  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3960    if (First) {
3961      CD->setDeletedAsWritten();
3962    } else {
3963      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3964        << CXXCopyConstructor;
3965      CD->setInvalidDecl();
3966    }
3967  }
3968}
3969
3970void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3971  assert(MD->isExplicitlyDefaulted());
3972
3973  // Whether this was the first-declared instance of the operator
3974  bool First = MD == MD->getCanonicalDecl();
3975
3976  bool HadError = false;
3977  if (MD->getNumParams() != 1) {
3978    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3979      << MD->getSourceRange();
3980    HadError = true;
3981  }
3982
3983  QualType ReturnType =
3984    MD->getType()->getAs<FunctionType>()->getResultType();
3985  if (!ReturnType->isLValueReferenceType() ||
3986      !Context.hasSameType(
3987        Context.getCanonicalType(ReturnType->getPointeeType()),
3988        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3989    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3990    HadError = true;
3991  }
3992
3993  ImplicitExceptionSpecification Spec(Context);
3994  bool Const;
3995  llvm::tie(Spec, Const) =
3996    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3997
3998  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3999  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4000                          *ExceptionType = Context.getFunctionType(
4001                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4002
4003  QualType ArgType = OperType->getArgType(0);
4004  if (!ArgType->isLValueReferenceType()) {
4005    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4006    HadError = true;
4007  } else {
4008    if (ArgType->getPointeeType().isVolatileQualified()) {
4009      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4010      HadError = true;
4011    }
4012    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4013      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4014      HadError = true;
4015    }
4016  }
4017
4018  if (OperType->getTypeQuals()) {
4019    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4020    HadError = true;
4021  }
4022
4023  if (OperType->hasExceptionSpec()) {
4024    if (CheckEquivalentExceptionSpec(
4025          PDiag(diag::err_incorrect_defaulted_exception_spec)
4026            << CXXCopyAssignment,
4027          PDiag(),
4028          ExceptionType, SourceLocation(),
4029          OperType, MD->getLocation())) {
4030      HadError = true;
4031    }
4032  }
4033  if (First) {
4034    // We set the declaration to have the computed exception spec here.
4035    // We duplicate the one parameter type.
4036    EPI.RefQualifier = OperType->getRefQualifier();
4037    EPI.ExtInfo = OperType->getExtInfo();
4038    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4039  }
4040
4041  if (HadError) {
4042    MD->setInvalidDecl();
4043    return;
4044  }
4045
4046  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4047    if (First) {
4048      MD->setDeletedAsWritten();
4049    } else {
4050      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4051        << CXXCopyAssignment;
4052      MD->setInvalidDecl();
4053    }
4054  }
4055}
4056
4057void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4058  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4059
4060  // Whether this was the first-declared instance of the constructor.
4061  bool First = CD == CD->getCanonicalDecl();
4062
4063  bool HadError = false;
4064  if (CD->getNumParams() != 1) {
4065    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4066      << CD->getSourceRange();
4067    HadError = true;
4068  }
4069
4070  ImplicitExceptionSpecification Spec(
4071      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4072
4073  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4074  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4075                          *ExceptionType = Context.getFunctionType(
4076                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4077
4078  // Check for parameter type matching.
4079  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4080  QualType ArgType = CtorType->getArgType(0);
4081  if (ArgType->getPointeeType().isVolatileQualified()) {
4082    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4083    HadError = true;
4084  }
4085  if (ArgType->getPointeeType().isConstQualified()) {
4086    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4087    HadError = true;
4088  }
4089
4090  // C++11 [dcl.fct.def.default]p2:
4091  //   An explicitly-defaulted function may be declared constexpr only if it
4092  //   would have been implicitly declared as constexpr,
4093  if (CD->isConstexpr()) {
4094    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4095      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4096        << CXXMoveConstructor;
4097      HadError = true;
4098    }
4099  }
4100  //   and may have an explicit exception-specification only if it is compatible
4101  //   with the exception-specification on the implicit declaration.
4102  if (CtorType->hasExceptionSpec()) {
4103    if (CheckEquivalentExceptionSpec(
4104          PDiag(diag::err_incorrect_defaulted_exception_spec)
4105            << CXXMoveConstructor,
4106          PDiag(),
4107          ExceptionType, SourceLocation(),
4108          CtorType, CD->getLocation())) {
4109      HadError = true;
4110    }
4111  }
4112
4113  //   If a function is explicitly defaulted on its first declaration,
4114  if (First) {
4115    //  -- it is implicitly considered to be constexpr if the implicit
4116    //     definition would be,
4117    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4118
4119    //  -- it is implicitly considered to have the same
4120    //     exception-specification as if it had been implicitly declared, and
4121    //
4122    // FIXME: a compatible, but different, explicit exception specification
4123    // will be silently overridden. We should issue a warning if this happens.
4124    EPI.ExtInfo = CtorType->getExtInfo();
4125
4126    //  -- [...] it shall have the same parameter type as if it had been
4127    //     implicitly declared.
4128    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4129  }
4130
4131  if (HadError) {
4132    CD->setInvalidDecl();
4133    return;
4134  }
4135
4136  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4137    if (First) {
4138      CD->setDeletedAsWritten();
4139    } else {
4140      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4141        << CXXMoveConstructor;
4142      CD->setInvalidDecl();
4143    }
4144  }
4145}
4146
4147void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4148  assert(MD->isExplicitlyDefaulted());
4149
4150  // Whether this was the first-declared instance of the operator
4151  bool First = MD == MD->getCanonicalDecl();
4152
4153  bool HadError = false;
4154  if (MD->getNumParams() != 1) {
4155    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4156      << MD->getSourceRange();
4157    HadError = true;
4158  }
4159
4160  QualType ReturnType =
4161    MD->getType()->getAs<FunctionType>()->getResultType();
4162  if (!ReturnType->isLValueReferenceType() ||
4163      !Context.hasSameType(
4164        Context.getCanonicalType(ReturnType->getPointeeType()),
4165        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4166    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4167    HadError = true;
4168  }
4169
4170  ImplicitExceptionSpecification Spec(
4171      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4172
4173  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4174  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4175                          *ExceptionType = Context.getFunctionType(
4176                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4177
4178  QualType ArgType = OperType->getArgType(0);
4179  if (!ArgType->isRValueReferenceType()) {
4180    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4181    HadError = true;
4182  } else {
4183    if (ArgType->getPointeeType().isVolatileQualified()) {
4184      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4185      HadError = true;
4186    }
4187    if (ArgType->getPointeeType().isConstQualified()) {
4188      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4189      HadError = true;
4190    }
4191  }
4192
4193  if (OperType->getTypeQuals()) {
4194    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4195    HadError = true;
4196  }
4197
4198  if (OperType->hasExceptionSpec()) {
4199    if (CheckEquivalentExceptionSpec(
4200          PDiag(diag::err_incorrect_defaulted_exception_spec)
4201            << CXXMoveAssignment,
4202          PDiag(),
4203          ExceptionType, SourceLocation(),
4204          OperType, MD->getLocation())) {
4205      HadError = true;
4206    }
4207  }
4208  if (First) {
4209    // We set the declaration to have the computed exception spec here.
4210    // We duplicate the one parameter type.
4211    EPI.RefQualifier = OperType->getRefQualifier();
4212    EPI.ExtInfo = OperType->getExtInfo();
4213    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4214  }
4215
4216  if (HadError) {
4217    MD->setInvalidDecl();
4218    return;
4219  }
4220
4221  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4222    if (First) {
4223      MD->setDeletedAsWritten();
4224    } else {
4225      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4226        << CXXMoveAssignment;
4227      MD->setInvalidDecl();
4228    }
4229  }
4230}
4231
4232void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4233  assert(DD->isExplicitlyDefaulted());
4234
4235  // Whether this was the first-declared instance of the destructor.
4236  bool First = DD == DD->getCanonicalDecl();
4237
4238  ImplicitExceptionSpecification Spec
4239    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4240  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4241  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4242                          *ExceptionType = Context.getFunctionType(
4243                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4244
4245  if (DtorType->hasExceptionSpec()) {
4246    if (CheckEquivalentExceptionSpec(
4247          PDiag(diag::err_incorrect_defaulted_exception_spec)
4248            << CXXDestructor,
4249          PDiag(),
4250          ExceptionType, SourceLocation(),
4251          DtorType, DD->getLocation())) {
4252      DD->setInvalidDecl();
4253      return;
4254    }
4255  }
4256  if (First) {
4257    // We set the declaration to have the computed exception spec here.
4258    // There are no parameters.
4259    EPI.ExtInfo = DtorType->getExtInfo();
4260    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4261  }
4262
4263  if (ShouldDeleteDestructor(DD)) {
4264    if (First) {
4265      DD->setDeletedAsWritten();
4266    } else {
4267      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4268        << CXXDestructor;
4269      DD->setInvalidDecl();
4270    }
4271  }
4272}
4273
4274/// This function implements the following C++0x paragraphs:
4275///  - [class.ctor]/5
4276///  - [class.copy]/11
4277bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4278  assert(!MD->isInvalidDecl());
4279  CXXRecordDecl *RD = MD->getParent();
4280  assert(!RD->isDependentType() && "do deletion after instantiation");
4281  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4282    return false;
4283
4284  bool IsUnion = RD->isUnion();
4285  bool IsConstructor = false;
4286  bool IsAssignment = false;
4287  bool IsMove = false;
4288
4289  bool ConstArg = false;
4290
4291  switch (CSM) {
4292  case CXXDefaultConstructor:
4293    IsConstructor = true;
4294    break;
4295  case CXXCopyConstructor:
4296    IsConstructor = true;
4297    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4298    break;
4299  case CXXMoveConstructor:
4300    IsConstructor = true;
4301    IsMove = true;
4302    break;
4303  default:
4304    llvm_unreachable("function only currently implemented for default ctors");
4305  }
4306
4307  SourceLocation Loc = MD->getLocation();
4308
4309  // Do access control from the special member function
4310  ContextRAII MethodContext(*this, MD);
4311
4312  bool AllConst = true;
4313
4314  // We do this because we should never actually use an anonymous
4315  // union's constructor.
4316  if (IsUnion && RD->isAnonymousStructOrUnion())
4317    return false;
4318
4319  // FIXME: We should put some diagnostic logic right into this function.
4320
4321  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4322                                          BE = RD->bases_end();
4323       BI != BE; ++BI) {
4324    // We'll handle this one later
4325    if (BI->isVirtual())
4326      continue;
4327
4328    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4329    assert(BaseDecl && "base isn't a CXXRecordDecl");
4330
4331    // Unless we have an assignment operator, the base's destructor must
4332    // be accessible and not deleted.
4333    if (!IsAssignment) {
4334      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4335      if (BaseDtor->isDeleted())
4336        return true;
4337      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4338          AR_accessible)
4339        return true;
4340    }
4341
4342    // Finding the corresponding member in the base should lead to a
4343    // unique, accessible, non-deleted function. If we are doing
4344    // a destructor, we have already checked this case.
4345    if (CSM != CXXDestructor) {
4346      SpecialMemberOverloadResult *SMOR =
4347        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4348                            false);
4349      if (!SMOR->hasSuccess())
4350        return true;
4351      CXXMethodDecl *BaseMember = SMOR->getMethod();
4352      if (IsConstructor) {
4353        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4354        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4355                                   PDiag()) != AR_accessible)
4356          return true;
4357
4358        // For a move operation, the corresponding operation must actually
4359        // be a move operation (and not a copy selected by overload
4360        // resolution) unless we are working on a trivially copyable class.
4361        if (IsMove && !BaseCtor->isMoveConstructor() &&
4362            !BaseDecl->isTriviallyCopyable())
4363          return true;
4364      }
4365    }
4366  }
4367
4368  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4369                                          BE = RD->vbases_end();
4370       BI != BE; ++BI) {
4371    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4372    assert(BaseDecl && "base isn't a CXXRecordDecl");
4373
4374    // Unless we have an assignment operator, the base's destructor must
4375    // be accessible and not deleted.
4376    if (!IsAssignment) {
4377      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4378      if (BaseDtor->isDeleted())
4379        return true;
4380      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4381          AR_accessible)
4382        return true;
4383    }
4384
4385    // Finding the corresponding member in the base should lead to a
4386    // unique, accessible, non-deleted function.
4387    if (CSM != CXXDestructor) {
4388      SpecialMemberOverloadResult *SMOR =
4389        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4390                            false);
4391      if (!SMOR->hasSuccess())
4392        return true;
4393      CXXMethodDecl *BaseMember = SMOR->getMethod();
4394      if (IsConstructor) {
4395        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4396        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4397                                   PDiag()) != AR_accessible)
4398          return true;
4399
4400        // For a move operation, the corresponding operation must actually
4401        // be a move operation (and not a copy selected by overload
4402        // resolution) unless we are working on a trivially copyable class.
4403        if (IsMove && !BaseCtor->isMoveConstructor() &&
4404            !BaseDecl->isTriviallyCopyable())
4405          return true;
4406      }
4407    }
4408  }
4409
4410  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4411                                     FE = RD->field_end();
4412       FI != FE; ++FI) {
4413    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4414      continue;
4415
4416    QualType FieldType = Context.getBaseElementType(FI->getType());
4417    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4418
4419    // For a default constructor, all references must be initialized in-class
4420    // and, if a union, it must have a non-const member.
4421    if (CSM == CXXDefaultConstructor) {
4422      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4423        return true;
4424
4425      if (IsUnion && !FieldType.isConstQualified())
4426        AllConst = false;
4427    // For a copy constructor, data members must not be of rvalue reference
4428    // type.
4429    } else if (CSM == CXXCopyConstructor) {
4430      if (FieldType->isRValueReferenceType())
4431        return true;
4432    }
4433
4434    if (FieldRecord) {
4435      // For a default constructor, a const member must have a user-provided
4436      // default constructor or else be explicitly initialized.
4437      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4438          !FI->hasInClassInitializer() &&
4439          !FieldRecord->hasUserProvidedDefaultConstructor())
4440        return true;
4441
4442      // Some additional restrictions exist on the variant members.
4443      if (!IsUnion && FieldRecord->isUnion() &&
4444          FieldRecord->isAnonymousStructOrUnion()) {
4445        // We're okay to reuse AllConst here since we only care about the
4446        // value otherwise if we're in a union.
4447        AllConst = true;
4448
4449        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4450                                           UE = FieldRecord->field_end();
4451             UI != UE; ++UI) {
4452          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4453          CXXRecordDecl *UnionFieldRecord =
4454            UnionFieldType->getAsCXXRecordDecl();
4455
4456          if (!UnionFieldType.isConstQualified())
4457            AllConst = false;
4458
4459          if (UnionFieldRecord) {
4460            // FIXME: Checking for accessibility and validity of this
4461            //        destructor is technically going beyond the
4462            //        standard, but this is believed to be a defect.
4463            if (!IsAssignment) {
4464              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4465              if (FieldDtor->isDeleted())
4466                return true;
4467              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4468                  AR_accessible)
4469                return true;
4470              if (!FieldDtor->isTrivial())
4471                return true;
4472            }
4473
4474            if (CSM != CXXDestructor) {
4475              SpecialMemberOverloadResult *SMOR =
4476                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4477                                    false, false, false);
4478              // FIXME: Checking for accessibility and validity of this
4479              //        corresponding member is technically going beyond the
4480              //        standard, but this is believed to be a defect.
4481              if (!SMOR->hasSuccess())
4482                return true;
4483
4484              CXXMethodDecl *FieldMember = SMOR->getMethod();
4485              // A member of a union must have a trivial corresponding
4486              // constructor.
4487              if (!FieldMember->isTrivial())
4488                return true;
4489
4490              if (IsConstructor) {
4491                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4492                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4493                                           PDiag()) != AR_accessible)
4494                return true;
4495              }
4496            }
4497          }
4498        }
4499
4500        // At least one member in each anonymous union must be non-const
4501        if (CSM == CXXDefaultConstructor && AllConst)
4502          return true;
4503
4504        // Don't try to initialize the anonymous union
4505        // This is technically non-conformant, but sanity demands it.
4506        continue;
4507      }
4508
4509      // Unless we're doing assignment, the field's destructor must be
4510      // accessible and not deleted.
4511      if (!IsAssignment) {
4512        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4513        if (FieldDtor->isDeleted())
4514          return true;
4515        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4516            AR_accessible)
4517          return true;
4518      }
4519
4520      // Check that the corresponding member of the field is accessible,
4521      // unique, and non-deleted. We don't do this if it has an explicit
4522      // initialization when default-constructing.
4523      if (CSM != CXXDestructor &&
4524          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4525        SpecialMemberOverloadResult *SMOR =
4526          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4527                              false);
4528        if (!SMOR->hasSuccess())
4529          return true;
4530
4531        CXXMethodDecl *FieldMember = SMOR->getMethod();
4532        if (IsConstructor) {
4533          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4534          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4535                                     PDiag()) != AR_accessible)
4536          return true;
4537
4538          // For a move operation, the corresponding operation must actually
4539          // be a move operation (and not a copy selected by overload
4540          // resolution) unless we are working on a trivially copyable class.
4541          if (IsMove && !FieldCtor->isMoveConstructor() &&
4542              !FieldRecord->isTriviallyCopyable())
4543            return true;
4544        }
4545
4546        // We need the corresponding member of a union to be trivial so that
4547        // we can safely copy them all simultaneously.
4548        // FIXME: Note that performing the check here (where we rely on the lack
4549        // of an in-class initializer) is technically ill-formed. However, this
4550        // seems most obviously to be a bug in the standard.
4551        if (IsUnion && !FieldMember->isTrivial())
4552          return true;
4553      }
4554    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4555               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4556      // We can't initialize a const member of non-class type to any value.
4557      return true;
4558    }
4559  }
4560
4561  // We can't have all const members in a union when default-constructing,
4562  // or else they're all nonsensical garbage values that can't be changed.
4563  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4564    return true;
4565
4566  return false;
4567}
4568
4569bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4570  CXXRecordDecl *RD = MD->getParent();
4571  assert(!RD->isDependentType() && "do deletion after instantiation");
4572  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4573    return false;
4574
4575  SourceLocation Loc = MD->getLocation();
4576
4577  // Do access control from the constructor
4578  ContextRAII MethodContext(*this, MD);
4579
4580  bool Union = RD->isUnion();
4581
4582  unsigned ArgQuals =
4583    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4584      Qualifiers::Const : 0;
4585
4586  // We do this because we should never actually use an anonymous
4587  // union's constructor.
4588  if (Union && RD->isAnonymousStructOrUnion())
4589    return false;
4590
4591  // FIXME: We should put some diagnostic logic right into this function.
4592
4593  // C++0x [class.copy]/20
4594  //    A defaulted [copy] assignment operator for class X is defined as deleted
4595  //    if X has:
4596
4597  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4598                                          BE = RD->bases_end();
4599       BI != BE; ++BI) {
4600    // We'll handle this one later
4601    if (BI->isVirtual())
4602      continue;
4603
4604    QualType BaseType = BI->getType();
4605    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4606    assert(BaseDecl && "base isn't a CXXRecordDecl");
4607
4608    // -- a [direct base class] B that cannot be [copied] because overload
4609    //    resolution, as applied to B's [copy] assignment operator, results in
4610    //    an ambiguity or a function that is deleted or inaccessible from the
4611    //    assignment operator
4612    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4613                                                      0);
4614    if (!CopyOper || CopyOper->isDeleted())
4615      return true;
4616    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4617      return true;
4618  }
4619
4620  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4621                                          BE = RD->vbases_end();
4622       BI != BE; ++BI) {
4623    QualType BaseType = BI->getType();
4624    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4625    assert(BaseDecl && "base isn't a CXXRecordDecl");
4626
4627    // -- a [virtual base class] B that cannot be [copied] because overload
4628    //    resolution, as applied to B's [copy] assignment operator, results in
4629    //    an ambiguity or a function that is deleted or inaccessible from the
4630    //    assignment operator
4631    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4632                                                      0);
4633    if (!CopyOper || CopyOper->isDeleted())
4634      return true;
4635    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4636      return true;
4637  }
4638
4639  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4640                                     FE = RD->field_end();
4641       FI != FE; ++FI) {
4642    if (FI->isUnnamedBitfield())
4643      continue;
4644
4645    QualType FieldType = Context.getBaseElementType(FI->getType());
4646
4647    // -- a non-static data member of reference type
4648    if (FieldType->isReferenceType())
4649      return true;
4650
4651    // -- a non-static data member of const non-class type (or array thereof)
4652    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4653      return true;
4654
4655    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4656
4657    if (FieldRecord) {
4658      // This is an anonymous union
4659      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4660        // Anonymous unions inside unions do not variant members create
4661        if (!Union) {
4662          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4663                                             UE = FieldRecord->field_end();
4664               UI != UE; ++UI) {
4665            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4666            CXXRecordDecl *UnionFieldRecord =
4667              UnionFieldType->getAsCXXRecordDecl();
4668
4669            // -- a variant member with a non-trivial [copy] assignment operator
4670            //    and X is a union-like class
4671            if (UnionFieldRecord &&
4672                !UnionFieldRecord->hasTrivialCopyAssignment())
4673              return true;
4674          }
4675        }
4676
4677        // Don't try to initalize an anonymous union
4678        continue;
4679      // -- a variant member with a non-trivial [copy] assignment operator
4680      //    and X is a union-like class
4681      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4682          return true;
4683      }
4684
4685      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4686                                                        false, 0);
4687      if (!CopyOper || CopyOper->isDeleted())
4688        return true;
4689      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4690        return true;
4691    }
4692  }
4693
4694  return false;
4695}
4696
4697bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4698  CXXRecordDecl *RD = MD->getParent();
4699  assert(!RD->isDependentType() && "do deletion after instantiation");
4700  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4701    return false;
4702
4703  SourceLocation Loc = MD->getLocation();
4704
4705  // Do access control from the constructor
4706  ContextRAII MethodContext(*this, MD);
4707
4708  bool Union = RD->isUnion();
4709
4710  // We do this because we should never actually use an anonymous
4711  // union's constructor.
4712  if (Union && RD->isAnonymousStructOrUnion())
4713    return false;
4714
4715  // C++0x [class.copy]/20
4716  //    A defaulted [move] assignment operator for class X is defined as deleted
4717  //    if X has:
4718
4719  //    -- for the move constructor, [...] any direct or indirect virtual base
4720  //       class.
4721  if (RD->getNumVBases() != 0)
4722    return true;
4723
4724  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4725                                          BE = RD->bases_end();
4726       BI != BE; ++BI) {
4727
4728    QualType BaseType = BI->getType();
4729    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4730    assert(BaseDecl && "base isn't a CXXRecordDecl");
4731
4732    // -- a [direct base class] B that cannot be [moved] because overload
4733    //    resolution, as applied to B's [move] assignment operator, results in
4734    //    an ambiguity or a function that is deleted or inaccessible from the
4735    //    assignment operator
4736    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4737    if (!MoveOper || MoveOper->isDeleted())
4738      return true;
4739    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4740      return true;
4741
4742    // -- for the move assignment operator, a [direct base class] with a type
4743    //    that does not have a move assignment operator and is not trivially
4744    //    copyable.
4745    if (!MoveOper->isMoveAssignmentOperator() &&
4746        !BaseDecl->isTriviallyCopyable())
4747      return true;
4748  }
4749
4750  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4751                                     FE = RD->field_end();
4752       FI != FE; ++FI) {
4753    if (FI->isUnnamedBitfield())
4754      continue;
4755
4756    QualType FieldType = Context.getBaseElementType(FI->getType());
4757
4758    // -- a non-static data member of reference type
4759    if (FieldType->isReferenceType())
4760      return true;
4761
4762    // -- a non-static data member of const non-class type (or array thereof)
4763    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4764      return true;
4765
4766    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4767
4768    if (FieldRecord) {
4769      // This is an anonymous union
4770      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4771        // Anonymous unions inside unions do not variant members create
4772        if (!Union) {
4773          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4774                                             UE = FieldRecord->field_end();
4775               UI != UE; ++UI) {
4776            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4777            CXXRecordDecl *UnionFieldRecord =
4778              UnionFieldType->getAsCXXRecordDecl();
4779
4780            // -- a variant member with a non-trivial [move] assignment operator
4781            //    and X is a union-like class
4782            if (UnionFieldRecord &&
4783                !UnionFieldRecord->hasTrivialMoveAssignment())
4784              return true;
4785          }
4786        }
4787
4788        // Don't try to initalize an anonymous union
4789        continue;
4790      // -- a variant member with a non-trivial [move] assignment operator
4791      //    and X is a union-like class
4792      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4793          return true;
4794      }
4795
4796      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4797      if (!MoveOper || MoveOper->isDeleted())
4798        return true;
4799      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4800        return true;
4801
4802      // -- for the move assignment operator, a [non-static data member] with a
4803      //    type that does not have a move assignment operator and is not
4804      //    trivially copyable.
4805      if (!MoveOper->isMoveAssignmentOperator() &&
4806          !FieldRecord->isTriviallyCopyable())
4807        return true;
4808    }
4809  }
4810
4811  return false;
4812}
4813
4814bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4815  CXXRecordDecl *RD = DD->getParent();
4816  assert(!RD->isDependentType() && "do deletion after instantiation");
4817  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4818    return false;
4819
4820  SourceLocation Loc = DD->getLocation();
4821
4822  // Do access control from the destructor
4823  ContextRAII CtorContext(*this, DD);
4824
4825  bool Union = RD->isUnion();
4826
4827  // We do this because we should never actually use an anonymous
4828  // union's destructor.
4829  if (Union && RD->isAnonymousStructOrUnion())
4830    return false;
4831
4832  // C++0x [class.dtor]p5
4833  //    A defaulted destructor for a class X is defined as deleted if:
4834  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4835                                          BE = RD->bases_end();
4836       BI != BE; ++BI) {
4837    // We'll handle this one later
4838    if (BI->isVirtual())
4839      continue;
4840
4841    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4842    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4843    assert(BaseDtor && "base has no destructor");
4844
4845    // -- any direct or virtual base class has a deleted destructor or
4846    //    a destructor that is inaccessible from the defaulted destructor
4847    if (BaseDtor->isDeleted())
4848      return true;
4849    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4850        AR_accessible)
4851      return true;
4852  }
4853
4854  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4855                                          BE = RD->vbases_end();
4856       BI != BE; ++BI) {
4857    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4858    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4859    assert(BaseDtor && "base has no destructor");
4860
4861    // -- any direct or virtual base class has a deleted destructor or
4862    //    a destructor that is inaccessible from the defaulted destructor
4863    if (BaseDtor->isDeleted())
4864      return true;
4865    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4866        AR_accessible)
4867      return true;
4868  }
4869
4870  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4871                                     FE = RD->field_end();
4872       FI != FE; ++FI) {
4873    QualType FieldType = Context.getBaseElementType(FI->getType());
4874    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4875    if (FieldRecord) {
4876      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4877         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4878                                            UE = FieldRecord->field_end();
4879              UI != UE; ++UI) {
4880           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4881           CXXRecordDecl *UnionFieldRecord =
4882             UnionFieldType->getAsCXXRecordDecl();
4883
4884           // -- X is a union-like class that has a variant member with a non-
4885           //    trivial destructor.
4886           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4887             return true;
4888         }
4889      // Technically we are supposed to do this next check unconditionally.
4890      // But that makes absolutely no sense.
4891      } else {
4892        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4893
4894        // -- any of the non-static data members has class type M (or array
4895        //    thereof) and M has a deleted destructor or a destructor that is
4896        //    inaccessible from the defaulted destructor
4897        if (FieldDtor->isDeleted())
4898          return true;
4899        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4900          AR_accessible)
4901        return true;
4902
4903        // -- X is a union-like class that has a variant member with a non-
4904        //    trivial destructor.
4905        if (Union && !FieldDtor->isTrivial())
4906          return true;
4907      }
4908    }
4909  }
4910
4911  if (DD->isVirtual()) {
4912    FunctionDecl *OperatorDelete = 0;
4913    DeclarationName Name =
4914      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4915    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4916          false))
4917      return true;
4918  }
4919
4920
4921  return false;
4922}
4923
4924/// \brief Data used with FindHiddenVirtualMethod
4925namespace {
4926  struct FindHiddenVirtualMethodData {
4927    Sema *S;
4928    CXXMethodDecl *Method;
4929    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4930    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4931  };
4932}
4933
4934/// \brief Member lookup function that determines whether a given C++
4935/// method overloads virtual methods in a base class without overriding any,
4936/// to be used with CXXRecordDecl::lookupInBases().
4937static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4938                                    CXXBasePath &Path,
4939                                    void *UserData) {
4940  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4941
4942  FindHiddenVirtualMethodData &Data
4943    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4944
4945  DeclarationName Name = Data.Method->getDeclName();
4946  assert(Name.getNameKind() == DeclarationName::Identifier);
4947
4948  bool foundSameNameMethod = false;
4949  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4950  for (Path.Decls = BaseRecord->lookup(Name);
4951       Path.Decls.first != Path.Decls.second;
4952       ++Path.Decls.first) {
4953    NamedDecl *D = *Path.Decls.first;
4954    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4955      MD = MD->getCanonicalDecl();
4956      foundSameNameMethod = true;
4957      // Interested only in hidden virtual methods.
4958      if (!MD->isVirtual())
4959        continue;
4960      // If the method we are checking overrides a method from its base
4961      // don't warn about the other overloaded methods.
4962      if (!Data.S->IsOverload(Data.Method, MD, false))
4963        return true;
4964      // Collect the overload only if its hidden.
4965      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4966        overloadedMethods.push_back(MD);
4967    }
4968  }
4969
4970  if (foundSameNameMethod)
4971    Data.OverloadedMethods.append(overloadedMethods.begin(),
4972                                   overloadedMethods.end());
4973  return foundSameNameMethod;
4974}
4975
4976/// \brief See if a method overloads virtual methods in a base class without
4977/// overriding any.
4978void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4979  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4980                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4981    return;
4982  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4983    return;
4984
4985  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4986                     /*bool RecordPaths=*/false,
4987                     /*bool DetectVirtual=*/false);
4988  FindHiddenVirtualMethodData Data;
4989  Data.Method = MD;
4990  Data.S = this;
4991
4992  // Keep the base methods that were overriden or introduced in the subclass
4993  // by 'using' in a set. A base method not in this set is hidden.
4994  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4995       res.first != res.second; ++res.first) {
4996    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4997      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4998                                          E = MD->end_overridden_methods();
4999           I != E; ++I)
5000        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5001    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5002      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5003        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5004  }
5005
5006  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5007      !Data.OverloadedMethods.empty()) {
5008    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5009      << MD << (Data.OverloadedMethods.size() > 1);
5010
5011    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5012      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5013      Diag(overloadedMD->getLocation(),
5014           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5015    }
5016  }
5017}
5018
5019void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5020                                             Decl *TagDecl,
5021                                             SourceLocation LBrac,
5022                                             SourceLocation RBrac,
5023                                             AttributeList *AttrList) {
5024  if (!TagDecl)
5025    return;
5026
5027  AdjustDeclIfTemplate(TagDecl);
5028
5029  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5030              // strict aliasing violation!
5031              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5032              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5033
5034  CheckCompletedCXXClass(
5035                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5036}
5037
5038/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5039/// special functions, such as the default constructor, copy
5040/// constructor, or destructor, to the given C++ class (C++
5041/// [special]p1).  This routine can only be executed just before the
5042/// definition of the class is complete.
5043void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5044  if (!ClassDecl->hasUserDeclaredConstructor())
5045    ++ASTContext::NumImplicitDefaultConstructors;
5046
5047  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5048    ++ASTContext::NumImplicitCopyConstructors;
5049
5050  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5051    ++ASTContext::NumImplicitMoveConstructors;
5052
5053  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5054    ++ASTContext::NumImplicitCopyAssignmentOperators;
5055
5056    // If we have a dynamic class, then the copy assignment operator may be
5057    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5058    // it shows up in the right place in the vtable and that we diagnose
5059    // problems with the implicit exception specification.
5060    if (ClassDecl->isDynamicClass())
5061      DeclareImplicitCopyAssignment(ClassDecl);
5062  }
5063
5064  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5065    ++ASTContext::NumImplicitMoveAssignmentOperators;
5066
5067    // Likewise for the move assignment operator.
5068    if (ClassDecl->isDynamicClass())
5069      DeclareImplicitMoveAssignment(ClassDecl);
5070  }
5071
5072  if (!ClassDecl->hasUserDeclaredDestructor()) {
5073    ++ASTContext::NumImplicitDestructors;
5074
5075    // If we have a dynamic class, then the destructor may be virtual, so we
5076    // have to declare the destructor immediately. This ensures that, e.g., it
5077    // shows up in the right place in the vtable and that we diagnose problems
5078    // with the implicit exception specification.
5079    if (ClassDecl->isDynamicClass())
5080      DeclareImplicitDestructor(ClassDecl);
5081  }
5082}
5083
5084void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5085  if (!D)
5086    return;
5087
5088  int NumParamList = D->getNumTemplateParameterLists();
5089  for (int i = 0; i < NumParamList; i++) {
5090    TemplateParameterList* Params = D->getTemplateParameterList(i);
5091    for (TemplateParameterList::iterator Param = Params->begin(),
5092                                      ParamEnd = Params->end();
5093          Param != ParamEnd; ++Param) {
5094      NamedDecl *Named = cast<NamedDecl>(*Param);
5095      if (Named->getDeclName()) {
5096        S->AddDecl(Named);
5097        IdResolver.AddDecl(Named);
5098      }
5099    }
5100  }
5101}
5102
5103void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5104  if (!D)
5105    return;
5106
5107  TemplateParameterList *Params = 0;
5108  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5109    Params = Template->getTemplateParameters();
5110  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5111           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5112    Params = PartialSpec->getTemplateParameters();
5113  else
5114    return;
5115
5116  for (TemplateParameterList::iterator Param = Params->begin(),
5117                                    ParamEnd = Params->end();
5118       Param != ParamEnd; ++Param) {
5119    NamedDecl *Named = cast<NamedDecl>(*Param);
5120    if (Named->getDeclName()) {
5121      S->AddDecl(Named);
5122      IdResolver.AddDecl(Named);
5123    }
5124  }
5125}
5126
5127void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5128  if (!RecordD) return;
5129  AdjustDeclIfTemplate(RecordD);
5130  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5131  PushDeclContext(S, Record);
5132}
5133
5134void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5135  if (!RecordD) return;
5136  PopDeclContext();
5137}
5138
5139/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5140/// parsing a top-level (non-nested) C++ class, and we are now
5141/// parsing those parts of the given Method declaration that could
5142/// not be parsed earlier (C++ [class.mem]p2), such as default
5143/// arguments. This action should enter the scope of the given
5144/// Method declaration as if we had just parsed the qualified method
5145/// name. However, it should not bring the parameters into scope;
5146/// that will be performed by ActOnDelayedCXXMethodParameter.
5147void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5148}
5149
5150/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5151/// C++ method declaration. We're (re-)introducing the given
5152/// function parameter into scope for use in parsing later parts of
5153/// the method declaration. For example, we could see an
5154/// ActOnParamDefaultArgument event for this parameter.
5155void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5156  if (!ParamD)
5157    return;
5158
5159  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5160
5161  // If this parameter has an unparsed default argument, clear it out
5162  // to make way for the parsed default argument.
5163  if (Param->hasUnparsedDefaultArg())
5164    Param->setDefaultArg(0);
5165
5166  S->AddDecl(Param);
5167  if (Param->getDeclName())
5168    IdResolver.AddDecl(Param);
5169}
5170
5171/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5172/// processing the delayed method declaration for Method. The method
5173/// declaration is now considered finished. There may be a separate
5174/// ActOnStartOfFunctionDef action later (not necessarily
5175/// immediately!) for this method, if it was also defined inside the
5176/// class body.
5177void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5178  if (!MethodD)
5179    return;
5180
5181  AdjustDeclIfTemplate(MethodD);
5182
5183  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5184
5185  // Now that we have our default arguments, check the constructor
5186  // again. It could produce additional diagnostics or affect whether
5187  // the class has implicitly-declared destructors, among other
5188  // things.
5189  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5190    CheckConstructor(Constructor);
5191
5192  // Check the default arguments, which we may have added.
5193  if (!Method->isInvalidDecl())
5194    CheckCXXDefaultArguments(Method);
5195}
5196
5197/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5198/// the well-formedness of the constructor declarator @p D with type @p
5199/// R. If there are any errors in the declarator, this routine will
5200/// emit diagnostics and set the invalid bit to true.  In any case, the type
5201/// will be updated to reflect a well-formed type for the constructor and
5202/// returned.
5203QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5204                                          StorageClass &SC) {
5205  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5206
5207  // C++ [class.ctor]p3:
5208  //   A constructor shall not be virtual (10.3) or static (9.4). A
5209  //   constructor can be invoked for a const, volatile or const
5210  //   volatile object. A constructor shall not be declared const,
5211  //   volatile, or const volatile (9.3.2).
5212  if (isVirtual) {
5213    if (!D.isInvalidType())
5214      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5215        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5216        << SourceRange(D.getIdentifierLoc());
5217    D.setInvalidType();
5218  }
5219  if (SC == SC_Static) {
5220    if (!D.isInvalidType())
5221      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5222        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5223        << SourceRange(D.getIdentifierLoc());
5224    D.setInvalidType();
5225    SC = SC_None;
5226  }
5227
5228  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5229  if (FTI.TypeQuals != 0) {
5230    if (FTI.TypeQuals & Qualifiers::Const)
5231      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5232        << "const" << SourceRange(D.getIdentifierLoc());
5233    if (FTI.TypeQuals & Qualifiers::Volatile)
5234      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5235        << "volatile" << SourceRange(D.getIdentifierLoc());
5236    if (FTI.TypeQuals & Qualifiers::Restrict)
5237      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5238        << "restrict" << SourceRange(D.getIdentifierLoc());
5239    D.setInvalidType();
5240  }
5241
5242  // C++0x [class.ctor]p4:
5243  //   A constructor shall not be declared with a ref-qualifier.
5244  if (FTI.hasRefQualifier()) {
5245    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5246      << FTI.RefQualifierIsLValueRef
5247      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5248    D.setInvalidType();
5249  }
5250
5251  // Rebuild the function type "R" without any type qualifiers (in
5252  // case any of the errors above fired) and with "void" as the
5253  // return type, since constructors don't have return types.
5254  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5255  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5256    return R;
5257
5258  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5259  EPI.TypeQuals = 0;
5260  EPI.RefQualifier = RQ_None;
5261
5262  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5263                                 Proto->getNumArgs(), EPI);
5264}
5265
5266/// CheckConstructor - Checks a fully-formed constructor for
5267/// well-formedness, issuing any diagnostics required. Returns true if
5268/// the constructor declarator is invalid.
5269void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5270  CXXRecordDecl *ClassDecl
5271    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5272  if (!ClassDecl)
5273    return Constructor->setInvalidDecl();
5274
5275  // C++ [class.copy]p3:
5276  //   A declaration of a constructor for a class X is ill-formed if
5277  //   its first parameter is of type (optionally cv-qualified) X and
5278  //   either there are no other parameters or else all other
5279  //   parameters have default arguments.
5280  if (!Constructor->isInvalidDecl() &&
5281      ((Constructor->getNumParams() == 1) ||
5282       (Constructor->getNumParams() > 1 &&
5283        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5284      Constructor->getTemplateSpecializationKind()
5285                                              != TSK_ImplicitInstantiation) {
5286    QualType ParamType = Constructor->getParamDecl(0)->getType();
5287    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5288    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5289      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5290      const char *ConstRef
5291        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5292                                                        : " const &";
5293      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5294        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5295
5296      // FIXME: Rather that making the constructor invalid, we should endeavor
5297      // to fix the type.
5298      Constructor->setInvalidDecl();
5299    }
5300  }
5301}
5302
5303/// CheckDestructor - Checks a fully-formed destructor definition for
5304/// well-formedness, issuing any diagnostics required.  Returns true
5305/// on error.
5306bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5307  CXXRecordDecl *RD = Destructor->getParent();
5308
5309  if (Destructor->isVirtual()) {
5310    SourceLocation Loc;
5311
5312    if (!Destructor->isImplicit())
5313      Loc = Destructor->getLocation();
5314    else
5315      Loc = RD->getLocation();
5316
5317    // If we have a virtual destructor, look up the deallocation function
5318    FunctionDecl *OperatorDelete = 0;
5319    DeclarationName Name =
5320    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5321    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5322      return true;
5323
5324    MarkFunctionReferenced(Loc, OperatorDelete);
5325
5326    Destructor->setOperatorDelete(OperatorDelete);
5327  }
5328
5329  return false;
5330}
5331
5332static inline bool
5333FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5334  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5335          FTI.ArgInfo[0].Param &&
5336          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5337}
5338
5339/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5340/// the well-formednes of the destructor declarator @p D with type @p
5341/// R. If there are any errors in the declarator, this routine will
5342/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5343/// will be updated to reflect a well-formed type for the destructor and
5344/// returned.
5345QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5346                                         StorageClass& SC) {
5347  // C++ [class.dtor]p1:
5348  //   [...] A typedef-name that names a class is a class-name
5349  //   (7.1.3); however, a typedef-name that names a class shall not
5350  //   be used as the identifier in the declarator for a destructor
5351  //   declaration.
5352  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5353  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5354    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5355      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5356  else if (const TemplateSpecializationType *TST =
5357             DeclaratorType->getAs<TemplateSpecializationType>())
5358    if (TST->isTypeAlias())
5359      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5360        << DeclaratorType << 1;
5361
5362  // C++ [class.dtor]p2:
5363  //   A destructor is used to destroy objects of its class type. A
5364  //   destructor takes no parameters, and no return type can be
5365  //   specified for it (not even void). The address of a destructor
5366  //   shall not be taken. A destructor shall not be static. A
5367  //   destructor can be invoked for a const, volatile or const
5368  //   volatile object. A destructor shall not be declared const,
5369  //   volatile or const volatile (9.3.2).
5370  if (SC == SC_Static) {
5371    if (!D.isInvalidType())
5372      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5373        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5374        << SourceRange(D.getIdentifierLoc())
5375        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5376
5377    SC = SC_None;
5378  }
5379  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5380    // Destructors don't have return types, but the parser will
5381    // happily parse something like:
5382    //
5383    //   class X {
5384    //     float ~X();
5385    //   };
5386    //
5387    // The return type will be eliminated later.
5388    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5389      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5390      << SourceRange(D.getIdentifierLoc());
5391  }
5392
5393  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5394  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5395    if (FTI.TypeQuals & Qualifiers::Const)
5396      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5397        << "const" << SourceRange(D.getIdentifierLoc());
5398    if (FTI.TypeQuals & Qualifiers::Volatile)
5399      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5400        << "volatile" << SourceRange(D.getIdentifierLoc());
5401    if (FTI.TypeQuals & Qualifiers::Restrict)
5402      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5403        << "restrict" << SourceRange(D.getIdentifierLoc());
5404    D.setInvalidType();
5405  }
5406
5407  // C++0x [class.dtor]p2:
5408  //   A destructor shall not be declared with a ref-qualifier.
5409  if (FTI.hasRefQualifier()) {
5410    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5411      << FTI.RefQualifierIsLValueRef
5412      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5413    D.setInvalidType();
5414  }
5415
5416  // Make sure we don't have any parameters.
5417  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5418    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5419
5420    // Delete the parameters.
5421    FTI.freeArgs();
5422    D.setInvalidType();
5423  }
5424
5425  // Make sure the destructor isn't variadic.
5426  if (FTI.isVariadic) {
5427    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5428    D.setInvalidType();
5429  }
5430
5431  // Rebuild the function type "R" without any type qualifiers or
5432  // parameters (in case any of the errors above fired) and with
5433  // "void" as the return type, since destructors don't have return
5434  // types.
5435  if (!D.isInvalidType())
5436    return R;
5437
5438  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5439  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5440  EPI.Variadic = false;
5441  EPI.TypeQuals = 0;
5442  EPI.RefQualifier = RQ_None;
5443  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5444}
5445
5446/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5447/// well-formednes of the conversion function declarator @p D with
5448/// type @p R. If there are any errors in the declarator, this routine
5449/// will emit diagnostics and return true. Otherwise, it will return
5450/// false. Either way, the type @p R will be updated to reflect a
5451/// well-formed type for the conversion operator.
5452void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5453                                     StorageClass& SC) {
5454  // C++ [class.conv.fct]p1:
5455  //   Neither parameter types nor return type can be specified. The
5456  //   type of a conversion function (8.3.5) is "function taking no
5457  //   parameter returning conversion-type-id."
5458  if (SC == SC_Static) {
5459    if (!D.isInvalidType())
5460      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5461        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5462        << SourceRange(D.getIdentifierLoc());
5463    D.setInvalidType();
5464    SC = SC_None;
5465  }
5466
5467  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5468
5469  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5470    // Conversion functions don't have return types, but the parser will
5471    // happily parse something like:
5472    //
5473    //   class X {
5474    //     float operator bool();
5475    //   };
5476    //
5477    // The return type will be changed later anyway.
5478    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5479      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5480      << SourceRange(D.getIdentifierLoc());
5481    D.setInvalidType();
5482  }
5483
5484  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5485
5486  // Make sure we don't have any parameters.
5487  if (Proto->getNumArgs() > 0) {
5488    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5489
5490    // Delete the parameters.
5491    D.getFunctionTypeInfo().freeArgs();
5492    D.setInvalidType();
5493  } else if (Proto->isVariadic()) {
5494    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5495    D.setInvalidType();
5496  }
5497
5498  // Diagnose "&operator bool()" and other such nonsense.  This
5499  // is actually a gcc extension which we don't support.
5500  if (Proto->getResultType() != ConvType) {
5501    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5502      << Proto->getResultType();
5503    D.setInvalidType();
5504    ConvType = Proto->getResultType();
5505  }
5506
5507  // C++ [class.conv.fct]p4:
5508  //   The conversion-type-id shall not represent a function type nor
5509  //   an array type.
5510  if (ConvType->isArrayType()) {
5511    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5512    ConvType = Context.getPointerType(ConvType);
5513    D.setInvalidType();
5514  } else if (ConvType->isFunctionType()) {
5515    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5516    ConvType = Context.getPointerType(ConvType);
5517    D.setInvalidType();
5518  }
5519
5520  // Rebuild the function type "R" without any parameters (in case any
5521  // of the errors above fired) and with the conversion type as the
5522  // return type.
5523  if (D.isInvalidType())
5524    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5525
5526  // C++0x explicit conversion operators.
5527  if (D.getDeclSpec().isExplicitSpecified())
5528    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5529         getLangOptions().CPlusPlus0x ?
5530           diag::warn_cxx98_compat_explicit_conversion_functions :
5531           diag::ext_explicit_conversion_functions)
5532      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5533}
5534
5535/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5536/// the declaration of the given C++ conversion function. This routine
5537/// is responsible for recording the conversion function in the C++
5538/// class, if possible.
5539Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5540  assert(Conversion && "Expected to receive a conversion function declaration");
5541
5542  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5543
5544  // Make sure we aren't redeclaring the conversion function.
5545  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5546
5547  // C++ [class.conv.fct]p1:
5548  //   [...] A conversion function is never used to convert a
5549  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5550  //   same object type (or a reference to it), to a (possibly
5551  //   cv-qualified) base class of that type (or a reference to it),
5552  //   or to (possibly cv-qualified) void.
5553  // FIXME: Suppress this warning if the conversion function ends up being a
5554  // virtual function that overrides a virtual function in a base class.
5555  QualType ClassType
5556    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5557  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5558    ConvType = ConvTypeRef->getPointeeType();
5559  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5560      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5561    /* Suppress diagnostics for instantiations. */;
5562  else if (ConvType->isRecordType()) {
5563    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5564    if (ConvType == ClassType)
5565      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5566        << ClassType;
5567    else if (IsDerivedFrom(ClassType, ConvType))
5568      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5569        <<  ClassType << ConvType;
5570  } else if (ConvType->isVoidType()) {
5571    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5572      << ClassType << ConvType;
5573  }
5574
5575  if (FunctionTemplateDecl *ConversionTemplate
5576                                = Conversion->getDescribedFunctionTemplate())
5577    return ConversionTemplate;
5578
5579  return Conversion;
5580}
5581
5582//===----------------------------------------------------------------------===//
5583// Namespace Handling
5584//===----------------------------------------------------------------------===//
5585
5586
5587
5588/// ActOnStartNamespaceDef - This is called at the start of a namespace
5589/// definition.
5590Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5591                                   SourceLocation InlineLoc,
5592                                   SourceLocation NamespaceLoc,
5593                                   SourceLocation IdentLoc,
5594                                   IdentifierInfo *II,
5595                                   SourceLocation LBrace,
5596                                   AttributeList *AttrList) {
5597  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5598  // For anonymous namespace, take the location of the left brace.
5599  SourceLocation Loc = II ? IdentLoc : LBrace;
5600  bool IsInline = InlineLoc.isValid();
5601  bool IsInvalid = false;
5602  bool IsStd = false;
5603  bool AddToKnown = false;
5604  Scope *DeclRegionScope = NamespcScope->getParent();
5605
5606  NamespaceDecl *PrevNS = 0;
5607  if (II) {
5608    // C++ [namespace.def]p2:
5609    //   The identifier in an original-namespace-definition shall not
5610    //   have been previously defined in the declarative region in
5611    //   which the original-namespace-definition appears. The
5612    //   identifier in an original-namespace-definition is the name of
5613    //   the namespace. Subsequently in that declarative region, it is
5614    //   treated as an original-namespace-name.
5615    //
5616    // Since namespace names are unique in their scope, and we don't
5617    // look through using directives, just look for any ordinary names.
5618
5619    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5620    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5621    Decl::IDNS_Namespace;
5622    NamedDecl *PrevDecl = 0;
5623    for (DeclContext::lookup_result R
5624         = CurContext->getRedeclContext()->lookup(II);
5625         R.first != R.second; ++R.first) {
5626      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5627        PrevDecl = *R.first;
5628        break;
5629      }
5630    }
5631
5632    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5633
5634    if (PrevNS) {
5635      // This is an extended namespace definition.
5636      if (IsInline != PrevNS->isInline()) {
5637        // inline-ness must match
5638        if (PrevNS->isInline()) {
5639          // The user probably just forgot the 'inline', so suggest that it
5640          // be added back.
5641          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5642            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5643        } else {
5644          Diag(Loc, diag::err_inline_namespace_mismatch)
5645            << IsInline;
5646        }
5647        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5648
5649        IsInline = PrevNS->isInline();
5650      }
5651    } else if (PrevDecl) {
5652      // This is an invalid name redefinition.
5653      Diag(Loc, diag::err_redefinition_different_kind)
5654        << II;
5655      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5656      IsInvalid = true;
5657      // Continue on to push Namespc as current DeclContext and return it.
5658    } else if (II->isStr("std") &&
5659               CurContext->getRedeclContext()->isTranslationUnit()) {
5660      // This is the first "real" definition of the namespace "std", so update
5661      // our cache of the "std" namespace to point at this definition.
5662      PrevNS = getStdNamespace();
5663      IsStd = true;
5664      AddToKnown = !IsInline;
5665    } else {
5666      // We've seen this namespace for the first time.
5667      AddToKnown = !IsInline;
5668    }
5669  } else {
5670    // Anonymous namespaces.
5671
5672    // Determine whether the parent already has an anonymous namespace.
5673    DeclContext *Parent = CurContext->getRedeclContext();
5674    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5675      PrevNS = TU->getAnonymousNamespace();
5676    } else {
5677      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5678      PrevNS = ND->getAnonymousNamespace();
5679    }
5680
5681    if (PrevNS && IsInline != PrevNS->isInline()) {
5682      // inline-ness must match
5683      Diag(Loc, diag::err_inline_namespace_mismatch)
5684        << IsInline;
5685      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5686
5687      // Recover by ignoring the new namespace's inline status.
5688      IsInline = PrevNS->isInline();
5689    }
5690  }
5691
5692  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5693                                                 StartLoc, Loc, II, PrevNS);
5694  if (IsInvalid)
5695    Namespc->setInvalidDecl();
5696
5697  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5698
5699  // FIXME: Should we be merging attributes?
5700  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5701    PushNamespaceVisibilityAttr(Attr, Loc);
5702
5703  if (IsStd)
5704    StdNamespace = Namespc;
5705  if (AddToKnown)
5706    KnownNamespaces[Namespc] = false;
5707
5708  if (II) {
5709    PushOnScopeChains(Namespc, DeclRegionScope);
5710  } else {
5711    // Link the anonymous namespace into its parent.
5712    DeclContext *Parent = CurContext->getRedeclContext();
5713    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5714      TU->setAnonymousNamespace(Namespc);
5715    } else {
5716      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5717    }
5718
5719    CurContext->addDecl(Namespc);
5720
5721    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5722    //   behaves as if it were replaced by
5723    //     namespace unique { /* empty body */ }
5724    //     using namespace unique;
5725    //     namespace unique { namespace-body }
5726    //   where all occurrences of 'unique' in a translation unit are
5727    //   replaced by the same identifier and this identifier differs
5728    //   from all other identifiers in the entire program.
5729
5730    // We just create the namespace with an empty name and then add an
5731    // implicit using declaration, just like the standard suggests.
5732    //
5733    // CodeGen enforces the "universally unique" aspect by giving all
5734    // declarations semantically contained within an anonymous
5735    // namespace internal linkage.
5736
5737    if (!PrevNS) {
5738      UsingDirectiveDecl* UD
5739        = UsingDirectiveDecl::Create(Context, CurContext,
5740                                     /* 'using' */ LBrace,
5741                                     /* 'namespace' */ SourceLocation(),
5742                                     /* qualifier */ NestedNameSpecifierLoc(),
5743                                     /* identifier */ SourceLocation(),
5744                                     Namespc,
5745                                     /* Ancestor */ CurContext);
5746      UD->setImplicit();
5747      CurContext->addDecl(UD);
5748    }
5749  }
5750
5751  // Although we could have an invalid decl (i.e. the namespace name is a
5752  // redefinition), push it as current DeclContext and try to continue parsing.
5753  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5754  // for the namespace has the declarations that showed up in that particular
5755  // namespace definition.
5756  PushDeclContext(NamespcScope, Namespc);
5757  return Namespc;
5758}
5759
5760/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5761/// is a namespace alias, returns the namespace it points to.
5762static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5763  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5764    return AD->getNamespace();
5765  return dyn_cast_or_null<NamespaceDecl>(D);
5766}
5767
5768/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5769/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5770void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5771  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5772  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5773  Namespc->setRBraceLoc(RBrace);
5774  PopDeclContext();
5775  if (Namespc->hasAttr<VisibilityAttr>())
5776    PopPragmaVisibility(true, RBrace);
5777}
5778
5779CXXRecordDecl *Sema::getStdBadAlloc() const {
5780  return cast_or_null<CXXRecordDecl>(
5781                                  StdBadAlloc.get(Context.getExternalSource()));
5782}
5783
5784NamespaceDecl *Sema::getStdNamespace() const {
5785  return cast_or_null<NamespaceDecl>(
5786                                 StdNamespace.get(Context.getExternalSource()));
5787}
5788
5789/// \brief Retrieve the special "std" namespace, which may require us to
5790/// implicitly define the namespace.
5791NamespaceDecl *Sema::getOrCreateStdNamespace() {
5792  if (!StdNamespace) {
5793    // The "std" namespace has not yet been defined, so build one implicitly.
5794    StdNamespace = NamespaceDecl::Create(Context,
5795                                         Context.getTranslationUnitDecl(),
5796                                         /*Inline=*/false,
5797                                         SourceLocation(), SourceLocation(),
5798                                         &PP.getIdentifierTable().get("std"),
5799                                         /*PrevDecl=*/0);
5800    getStdNamespace()->setImplicit(true);
5801  }
5802
5803  return getStdNamespace();
5804}
5805
5806bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5807  assert(getLangOptions().CPlusPlus &&
5808         "Looking for std::initializer_list outside of C++.");
5809
5810  // We're looking for implicit instantiations of
5811  // template <typename E> class std::initializer_list.
5812
5813  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5814    return false;
5815
5816  ClassTemplateDecl *Template = 0;
5817  const TemplateArgument *Arguments = 0;
5818
5819  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5820
5821    ClassTemplateSpecializationDecl *Specialization =
5822        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5823    if (!Specialization)
5824      return false;
5825
5826    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5827      return false;
5828
5829    Template = Specialization->getSpecializedTemplate();
5830    Arguments = Specialization->getTemplateArgs().data();
5831  } else if (const TemplateSpecializationType *TST =
5832                 Ty->getAs<TemplateSpecializationType>()) {
5833    Template = dyn_cast_or_null<ClassTemplateDecl>(
5834        TST->getTemplateName().getAsTemplateDecl());
5835    Arguments = TST->getArgs();
5836  }
5837  if (!Template)
5838    return false;
5839
5840  if (!StdInitializerList) {
5841    // Haven't recognized std::initializer_list yet, maybe this is it.
5842    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5843    if (TemplateClass->getIdentifier() !=
5844            &PP.getIdentifierTable().get("initializer_list") ||
5845        !getStdNamespace()->InEnclosingNamespaceSetOf(
5846            TemplateClass->getDeclContext()))
5847      return false;
5848    // This is a template called std::initializer_list, but is it the right
5849    // template?
5850    TemplateParameterList *Params = Template->getTemplateParameters();
5851    if (Params->getMinRequiredArguments() != 1)
5852      return false;
5853    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5854      return false;
5855
5856    // It's the right template.
5857    StdInitializerList = Template;
5858  }
5859
5860  if (Template != StdInitializerList)
5861    return false;
5862
5863  // This is an instance of std::initializer_list. Find the argument type.
5864  if (Element)
5865    *Element = Arguments[0].getAsType();
5866  return true;
5867}
5868
5869static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5870  NamespaceDecl *Std = S.getStdNamespace();
5871  if (!Std) {
5872    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5873    return 0;
5874  }
5875
5876  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5877                      Loc, Sema::LookupOrdinaryName);
5878  if (!S.LookupQualifiedName(Result, Std)) {
5879    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5880    return 0;
5881  }
5882  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5883  if (!Template) {
5884    Result.suppressDiagnostics();
5885    // We found something weird. Complain about the first thing we found.
5886    NamedDecl *Found = *Result.begin();
5887    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5888    return 0;
5889  }
5890
5891  // We found some template called std::initializer_list. Now verify that it's
5892  // correct.
5893  TemplateParameterList *Params = Template->getTemplateParameters();
5894  if (Params->getMinRequiredArguments() != 1 ||
5895      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5896    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5897    return 0;
5898  }
5899
5900  return Template;
5901}
5902
5903QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5904  if (!StdInitializerList) {
5905    StdInitializerList = LookupStdInitializerList(*this, Loc);
5906    if (!StdInitializerList)
5907      return QualType();
5908  }
5909
5910  TemplateArgumentListInfo Args(Loc, Loc);
5911  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5912                                       Context.getTrivialTypeSourceInfo(Element,
5913                                                                        Loc)));
5914  return Context.getCanonicalType(
5915      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5916}
5917
5918bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5919  // C++ [dcl.init.list]p2:
5920  //   A constructor is an initializer-list constructor if its first parameter
5921  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5922  //   std::initializer_list<E> for some type E, and either there are no other
5923  //   parameters or else all other parameters have default arguments.
5924  if (Ctor->getNumParams() < 1 ||
5925      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5926    return false;
5927
5928  QualType ArgType = Ctor->getParamDecl(0)->getType();
5929  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5930    ArgType = RT->getPointeeType().getUnqualifiedType();
5931
5932  return isStdInitializerList(ArgType, 0);
5933}
5934
5935/// \brief Determine whether a using statement is in a context where it will be
5936/// apply in all contexts.
5937static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5938  switch (CurContext->getDeclKind()) {
5939    case Decl::TranslationUnit:
5940      return true;
5941    case Decl::LinkageSpec:
5942      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5943    default:
5944      return false;
5945  }
5946}
5947
5948namespace {
5949
5950// Callback to only accept typo corrections that are namespaces.
5951class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5952 public:
5953  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5954    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5955      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5956    }
5957    return false;
5958  }
5959};
5960
5961}
5962
5963static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5964                                       CXXScopeSpec &SS,
5965                                       SourceLocation IdentLoc,
5966                                       IdentifierInfo *Ident) {
5967  NamespaceValidatorCCC Validator;
5968  R.clear();
5969  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5970                                               R.getLookupKind(), Sc, &SS,
5971                                               Validator)) {
5972    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5973    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5974    if (DeclContext *DC = S.computeDeclContext(SS, false))
5975      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5976        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5977        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5978    else
5979      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5980        << Ident << CorrectedQuotedStr
5981        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5982
5983    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5984         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5985
5986    Ident = Corrected.getCorrectionAsIdentifierInfo();
5987    R.addDecl(Corrected.getCorrectionDecl());
5988    return true;
5989  }
5990  return false;
5991}
5992
5993Decl *Sema::ActOnUsingDirective(Scope *S,
5994                                          SourceLocation UsingLoc,
5995                                          SourceLocation NamespcLoc,
5996                                          CXXScopeSpec &SS,
5997                                          SourceLocation IdentLoc,
5998                                          IdentifierInfo *NamespcName,
5999                                          AttributeList *AttrList) {
6000  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6001  assert(NamespcName && "Invalid NamespcName.");
6002  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6003
6004  // This can only happen along a recovery path.
6005  while (S->getFlags() & Scope::TemplateParamScope)
6006    S = S->getParent();
6007  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6008
6009  UsingDirectiveDecl *UDir = 0;
6010  NestedNameSpecifier *Qualifier = 0;
6011  if (SS.isSet())
6012    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6013
6014  // Lookup namespace name.
6015  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6016  LookupParsedName(R, S, &SS);
6017  if (R.isAmbiguous())
6018    return 0;
6019
6020  if (R.empty()) {
6021    R.clear();
6022    // Allow "using namespace std;" or "using namespace ::std;" even if
6023    // "std" hasn't been defined yet, for GCC compatibility.
6024    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6025        NamespcName->isStr("std")) {
6026      Diag(IdentLoc, diag::ext_using_undefined_std);
6027      R.addDecl(getOrCreateStdNamespace());
6028      R.resolveKind();
6029    }
6030    // Otherwise, attempt typo correction.
6031    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6032  }
6033
6034  if (!R.empty()) {
6035    NamedDecl *Named = R.getFoundDecl();
6036    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6037        && "expected namespace decl");
6038    // C++ [namespace.udir]p1:
6039    //   A using-directive specifies that the names in the nominated
6040    //   namespace can be used in the scope in which the
6041    //   using-directive appears after the using-directive. During
6042    //   unqualified name lookup (3.4.1), the names appear as if they
6043    //   were declared in the nearest enclosing namespace which
6044    //   contains both the using-directive and the nominated
6045    //   namespace. [Note: in this context, "contains" means "contains
6046    //   directly or indirectly". ]
6047
6048    // Find enclosing context containing both using-directive and
6049    // nominated namespace.
6050    NamespaceDecl *NS = getNamespaceDecl(Named);
6051    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6052    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6053      CommonAncestor = CommonAncestor->getParent();
6054
6055    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6056                                      SS.getWithLocInContext(Context),
6057                                      IdentLoc, Named, CommonAncestor);
6058
6059    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6060        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6061      Diag(IdentLoc, diag::warn_using_directive_in_header);
6062    }
6063
6064    PushUsingDirective(S, UDir);
6065  } else {
6066    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6067  }
6068
6069  // FIXME: We ignore attributes for now.
6070  return UDir;
6071}
6072
6073void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6074  // If scope has associated entity, then using directive is at namespace
6075  // or translation unit scope. We add UsingDirectiveDecls, into
6076  // it's lookup structure.
6077  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6078    Ctx->addDecl(UDir);
6079  else
6080    // Otherwise it is block-sope. using-directives will affect lookup
6081    // only to the end of scope.
6082    S->PushUsingDirective(UDir);
6083}
6084
6085
6086Decl *Sema::ActOnUsingDeclaration(Scope *S,
6087                                  AccessSpecifier AS,
6088                                  bool HasUsingKeyword,
6089                                  SourceLocation UsingLoc,
6090                                  CXXScopeSpec &SS,
6091                                  UnqualifiedId &Name,
6092                                  AttributeList *AttrList,
6093                                  bool IsTypeName,
6094                                  SourceLocation TypenameLoc) {
6095  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6096
6097  switch (Name.getKind()) {
6098  case UnqualifiedId::IK_ImplicitSelfParam:
6099  case UnqualifiedId::IK_Identifier:
6100  case UnqualifiedId::IK_OperatorFunctionId:
6101  case UnqualifiedId::IK_LiteralOperatorId:
6102  case UnqualifiedId::IK_ConversionFunctionId:
6103    break;
6104
6105  case UnqualifiedId::IK_ConstructorName:
6106  case UnqualifiedId::IK_ConstructorTemplateId:
6107    // C++0x inherited constructors.
6108    Diag(Name.getSourceRange().getBegin(),
6109         getLangOptions().CPlusPlus0x ?
6110           diag::warn_cxx98_compat_using_decl_constructor :
6111           diag::err_using_decl_constructor)
6112      << SS.getRange();
6113
6114    if (getLangOptions().CPlusPlus0x) break;
6115
6116    return 0;
6117
6118  case UnqualifiedId::IK_DestructorName:
6119    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6120      << SS.getRange();
6121    return 0;
6122
6123  case UnqualifiedId::IK_TemplateId:
6124    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6125      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6126    return 0;
6127  }
6128
6129  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6130  DeclarationName TargetName = TargetNameInfo.getName();
6131  if (!TargetName)
6132    return 0;
6133
6134  // Warn about using declarations.
6135  // TODO: store that the declaration was written without 'using' and
6136  // talk about access decls instead of using decls in the
6137  // diagnostics.
6138  if (!HasUsingKeyword) {
6139    UsingLoc = Name.getSourceRange().getBegin();
6140
6141    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6142      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6143  }
6144
6145  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6146      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6147    return 0;
6148
6149  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6150                                        TargetNameInfo, AttrList,
6151                                        /* IsInstantiation */ false,
6152                                        IsTypeName, TypenameLoc);
6153  if (UD)
6154    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6155
6156  return UD;
6157}
6158
6159/// \brief Determine whether a using declaration considers the given
6160/// declarations as "equivalent", e.g., if they are redeclarations of
6161/// the same entity or are both typedefs of the same type.
6162static bool
6163IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6164                         bool &SuppressRedeclaration) {
6165  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6166    SuppressRedeclaration = false;
6167    return true;
6168  }
6169
6170  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6171    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6172      SuppressRedeclaration = true;
6173      return Context.hasSameType(TD1->getUnderlyingType(),
6174                                 TD2->getUnderlyingType());
6175    }
6176
6177  return false;
6178}
6179
6180
6181/// Determines whether to create a using shadow decl for a particular
6182/// decl, given the set of decls existing prior to this using lookup.
6183bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6184                                const LookupResult &Previous) {
6185  // Diagnose finding a decl which is not from a base class of the
6186  // current class.  We do this now because there are cases where this
6187  // function will silently decide not to build a shadow decl, which
6188  // will pre-empt further diagnostics.
6189  //
6190  // We don't need to do this in C++0x because we do the check once on
6191  // the qualifier.
6192  //
6193  // FIXME: diagnose the following if we care enough:
6194  //   struct A { int foo; };
6195  //   struct B : A { using A::foo; };
6196  //   template <class T> struct C : A {};
6197  //   template <class T> struct D : C<T> { using B::foo; } // <---
6198  // This is invalid (during instantiation) in C++03 because B::foo
6199  // resolves to the using decl in B, which is not a base class of D<T>.
6200  // We can't diagnose it immediately because C<T> is an unknown
6201  // specialization.  The UsingShadowDecl in D<T> then points directly
6202  // to A::foo, which will look well-formed when we instantiate.
6203  // The right solution is to not collapse the shadow-decl chain.
6204  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6205    DeclContext *OrigDC = Orig->getDeclContext();
6206
6207    // Handle enums and anonymous structs.
6208    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6209    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6210    while (OrigRec->isAnonymousStructOrUnion())
6211      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6212
6213    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6214      if (OrigDC == CurContext) {
6215        Diag(Using->getLocation(),
6216             diag::err_using_decl_nested_name_specifier_is_current_class)
6217          << Using->getQualifierLoc().getSourceRange();
6218        Diag(Orig->getLocation(), diag::note_using_decl_target);
6219        return true;
6220      }
6221
6222      Diag(Using->getQualifierLoc().getBeginLoc(),
6223           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6224        << Using->getQualifier()
6225        << cast<CXXRecordDecl>(CurContext)
6226        << Using->getQualifierLoc().getSourceRange();
6227      Diag(Orig->getLocation(), diag::note_using_decl_target);
6228      return true;
6229    }
6230  }
6231
6232  if (Previous.empty()) return false;
6233
6234  NamedDecl *Target = Orig;
6235  if (isa<UsingShadowDecl>(Target))
6236    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6237
6238  // If the target happens to be one of the previous declarations, we
6239  // don't have a conflict.
6240  //
6241  // FIXME: but we might be increasing its access, in which case we
6242  // should redeclare it.
6243  NamedDecl *NonTag = 0, *Tag = 0;
6244  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6245         I != E; ++I) {
6246    NamedDecl *D = (*I)->getUnderlyingDecl();
6247    bool Result;
6248    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6249      return Result;
6250
6251    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6252  }
6253
6254  if (Target->isFunctionOrFunctionTemplate()) {
6255    FunctionDecl *FD;
6256    if (isa<FunctionTemplateDecl>(Target))
6257      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6258    else
6259      FD = cast<FunctionDecl>(Target);
6260
6261    NamedDecl *OldDecl = 0;
6262    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6263    case Ovl_Overload:
6264      return false;
6265
6266    case Ovl_NonFunction:
6267      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6268      break;
6269
6270    // We found a decl with the exact signature.
6271    case Ovl_Match:
6272      // If we're in a record, we want to hide the target, so we
6273      // return true (without a diagnostic) to tell the caller not to
6274      // build a shadow decl.
6275      if (CurContext->isRecord())
6276        return true;
6277
6278      // If we're not in a record, this is an error.
6279      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6280      break;
6281    }
6282
6283    Diag(Target->getLocation(), diag::note_using_decl_target);
6284    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6285    return true;
6286  }
6287
6288  // Target is not a function.
6289
6290  if (isa<TagDecl>(Target)) {
6291    // No conflict between a tag and a non-tag.
6292    if (!Tag) return false;
6293
6294    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6295    Diag(Target->getLocation(), diag::note_using_decl_target);
6296    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6297    return true;
6298  }
6299
6300  // No conflict between a tag and a non-tag.
6301  if (!NonTag) return false;
6302
6303  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6304  Diag(Target->getLocation(), diag::note_using_decl_target);
6305  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6306  return true;
6307}
6308
6309/// Builds a shadow declaration corresponding to a 'using' declaration.
6310UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6311                                            UsingDecl *UD,
6312                                            NamedDecl *Orig) {
6313
6314  // If we resolved to another shadow declaration, just coalesce them.
6315  NamedDecl *Target = Orig;
6316  if (isa<UsingShadowDecl>(Target)) {
6317    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6318    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6319  }
6320
6321  UsingShadowDecl *Shadow
6322    = UsingShadowDecl::Create(Context, CurContext,
6323                              UD->getLocation(), UD, Target);
6324  UD->addShadowDecl(Shadow);
6325
6326  Shadow->setAccess(UD->getAccess());
6327  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6328    Shadow->setInvalidDecl();
6329
6330  if (S)
6331    PushOnScopeChains(Shadow, S);
6332  else
6333    CurContext->addDecl(Shadow);
6334
6335
6336  return Shadow;
6337}
6338
6339/// Hides a using shadow declaration.  This is required by the current
6340/// using-decl implementation when a resolvable using declaration in a
6341/// class is followed by a declaration which would hide or override
6342/// one or more of the using decl's targets; for example:
6343///
6344///   struct Base { void foo(int); };
6345///   struct Derived : Base {
6346///     using Base::foo;
6347///     void foo(int);
6348///   };
6349///
6350/// The governing language is C++03 [namespace.udecl]p12:
6351///
6352///   When a using-declaration brings names from a base class into a
6353///   derived class scope, member functions in the derived class
6354///   override and/or hide member functions with the same name and
6355///   parameter types in a base class (rather than conflicting).
6356///
6357/// There are two ways to implement this:
6358///   (1) optimistically create shadow decls when they're not hidden
6359///       by existing declarations, or
6360///   (2) don't create any shadow decls (or at least don't make them
6361///       visible) until we've fully parsed/instantiated the class.
6362/// The problem with (1) is that we might have to retroactively remove
6363/// a shadow decl, which requires several O(n) operations because the
6364/// decl structures are (very reasonably) not designed for removal.
6365/// (2) avoids this but is very fiddly and phase-dependent.
6366void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6367  if (Shadow->getDeclName().getNameKind() ==
6368        DeclarationName::CXXConversionFunctionName)
6369    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6370
6371  // Remove it from the DeclContext...
6372  Shadow->getDeclContext()->removeDecl(Shadow);
6373
6374  // ...and the scope, if applicable...
6375  if (S) {
6376    S->RemoveDecl(Shadow);
6377    IdResolver.RemoveDecl(Shadow);
6378  }
6379
6380  // ...and the using decl.
6381  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6382
6383  // TODO: complain somehow if Shadow was used.  It shouldn't
6384  // be possible for this to happen, because...?
6385}
6386
6387/// Builds a using declaration.
6388///
6389/// \param IsInstantiation - Whether this call arises from an
6390///   instantiation of an unresolved using declaration.  We treat
6391///   the lookup differently for these declarations.
6392NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6393                                       SourceLocation UsingLoc,
6394                                       CXXScopeSpec &SS,
6395                                       const DeclarationNameInfo &NameInfo,
6396                                       AttributeList *AttrList,
6397                                       bool IsInstantiation,
6398                                       bool IsTypeName,
6399                                       SourceLocation TypenameLoc) {
6400  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6401  SourceLocation IdentLoc = NameInfo.getLoc();
6402  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6403
6404  // FIXME: We ignore attributes for now.
6405
6406  if (SS.isEmpty()) {
6407    Diag(IdentLoc, diag::err_using_requires_qualname);
6408    return 0;
6409  }
6410
6411  // Do the redeclaration lookup in the current scope.
6412  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6413                        ForRedeclaration);
6414  Previous.setHideTags(false);
6415  if (S) {
6416    LookupName(Previous, S);
6417
6418    // It is really dumb that we have to do this.
6419    LookupResult::Filter F = Previous.makeFilter();
6420    while (F.hasNext()) {
6421      NamedDecl *D = F.next();
6422      if (!isDeclInScope(D, CurContext, S))
6423        F.erase();
6424    }
6425    F.done();
6426  } else {
6427    assert(IsInstantiation && "no scope in non-instantiation");
6428    assert(CurContext->isRecord() && "scope not record in instantiation");
6429    LookupQualifiedName(Previous, CurContext);
6430  }
6431
6432  // Check for invalid redeclarations.
6433  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6434    return 0;
6435
6436  // Check for bad qualifiers.
6437  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6438    return 0;
6439
6440  DeclContext *LookupContext = computeDeclContext(SS);
6441  NamedDecl *D;
6442  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6443  if (!LookupContext) {
6444    if (IsTypeName) {
6445      // FIXME: not all declaration name kinds are legal here
6446      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6447                                              UsingLoc, TypenameLoc,
6448                                              QualifierLoc,
6449                                              IdentLoc, NameInfo.getName());
6450    } else {
6451      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6452                                           QualifierLoc, NameInfo);
6453    }
6454  } else {
6455    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6456                          NameInfo, IsTypeName);
6457  }
6458  D->setAccess(AS);
6459  CurContext->addDecl(D);
6460
6461  if (!LookupContext) return D;
6462  UsingDecl *UD = cast<UsingDecl>(D);
6463
6464  if (RequireCompleteDeclContext(SS, LookupContext)) {
6465    UD->setInvalidDecl();
6466    return UD;
6467  }
6468
6469  // Constructor inheriting using decls get special treatment.
6470  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6471    if (CheckInheritedConstructorUsingDecl(UD))
6472      UD->setInvalidDecl();
6473    return UD;
6474  }
6475
6476  // Otherwise, look up the target name.
6477
6478  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6479
6480  // Unlike most lookups, we don't always want to hide tag
6481  // declarations: tag names are visible through the using declaration
6482  // even if hidden by ordinary names, *except* in a dependent context
6483  // where it's important for the sanity of two-phase lookup.
6484  if (!IsInstantiation)
6485    R.setHideTags(false);
6486
6487  LookupQualifiedName(R, LookupContext);
6488
6489  if (R.empty()) {
6490    Diag(IdentLoc, diag::err_no_member)
6491      << NameInfo.getName() << LookupContext << SS.getRange();
6492    UD->setInvalidDecl();
6493    return UD;
6494  }
6495
6496  if (R.isAmbiguous()) {
6497    UD->setInvalidDecl();
6498    return UD;
6499  }
6500
6501  if (IsTypeName) {
6502    // If we asked for a typename and got a non-type decl, error out.
6503    if (!R.getAsSingle<TypeDecl>()) {
6504      Diag(IdentLoc, diag::err_using_typename_non_type);
6505      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6506        Diag((*I)->getUnderlyingDecl()->getLocation(),
6507             diag::note_using_decl_target);
6508      UD->setInvalidDecl();
6509      return UD;
6510    }
6511  } else {
6512    // If we asked for a non-typename and we got a type, error out,
6513    // but only if this is an instantiation of an unresolved using
6514    // decl.  Otherwise just silently find the type name.
6515    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6516      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6517      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6518      UD->setInvalidDecl();
6519      return UD;
6520    }
6521  }
6522
6523  // C++0x N2914 [namespace.udecl]p6:
6524  // A using-declaration shall not name a namespace.
6525  if (R.getAsSingle<NamespaceDecl>()) {
6526    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6527      << SS.getRange();
6528    UD->setInvalidDecl();
6529    return UD;
6530  }
6531
6532  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6533    if (!CheckUsingShadowDecl(UD, *I, Previous))
6534      BuildUsingShadowDecl(S, UD, *I);
6535  }
6536
6537  return UD;
6538}
6539
6540/// Additional checks for a using declaration referring to a constructor name.
6541bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6542  if (UD->isTypeName()) {
6543    // FIXME: Cannot specify typename when specifying constructor
6544    return true;
6545  }
6546
6547  const Type *SourceType = UD->getQualifier()->getAsType();
6548  assert(SourceType &&
6549         "Using decl naming constructor doesn't have type in scope spec.");
6550  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6551
6552  // Check whether the named type is a direct base class.
6553  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6554  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6555  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6556       BaseIt != BaseE; ++BaseIt) {
6557    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6558    if (CanonicalSourceType == BaseType)
6559      break;
6560  }
6561
6562  if (BaseIt == BaseE) {
6563    // Did not find SourceType in the bases.
6564    Diag(UD->getUsingLocation(),
6565         diag::err_using_decl_constructor_not_in_direct_base)
6566      << UD->getNameInfo().getSourceRange()
6567      << QualType(SourceType, 0) << TargetClass;
6568    return true;
6569  }
6570
6571  BaseIt->setInheritConstructors();
6572
6573  return false;
6574}
6575
6576/// Checks that the given using declaration is not an invalid
6577/// redeclaration.  Note that this is checking only for the using decl
6578/// itself, not for any ill-formedness among the UsingShadowDecls.
6579bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6580                                       bool isTypeName,
6581                                       const CXXScopeSpec &SS,
6582                                       SourceLocation NameLoc,
6583                                       const LookupResult &Prev) {
6584  // C++03 [namespace.udecl]p8:
6585  // C++0x [namespace.udecl]p10:
6586  //   A using-declaration is a declaration and can therefore be used
6587  //   repeatedly where (and only where) multiple declarations are
6588  //   allowed.
6589  //
6590  // That's in non-member contexts.
6591  if (!CurContext->getRedeclContext()->isRecord())
6592    return false;
6593
6594  NestedNameSpecifier *Qual
6595    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6596
6597  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6598    NamedDecl *D = *I;
6599
6600    bool DTypename;
6601    NestedNameSpecifier *DQual;
6602    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6603      DTypename = UD->isTypeName();
6604      DQual = UD->getQualifier();
6605    } else if (UnresolvedUsingValueDecl *UD
6606                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6607      DTypename = false;
6608      DQual = UD->getQualifier();
6609    } else if (UnresolvedUsingTypenameDecl *UD
6610                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6611      DTypename = true;
6612      DQual = UD->getQualifier();
6613    } else continue;
6614
6615    // using decls differ if one says 'typename' and the other doesn't.
6616    // FIXME: non-dependent using decls?
6617    if (isTypeName != DTypename) continue;
6618
6619    // using decls differ if they name different scopes (but note that
6620    // template instantiation can cause this check to trigger when it
6621    // didn't before instantiation).
6622    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6623        Context.getCanonicalNestedNameSpecifier(DQual))
6624      continue;
6625
6626    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6627    Diag(D->getLocation(), diag::note_using_decl) << 1;
6628    return true;
6629  }
6630
6631  return false;
6632}
6633
6634
6635/// Checks that the given nested-name qualifier used in a using decl
6636/// in the current context is appropriately related to the current
6637/// scope.  If an error is found, diagnoses it and returns true.
6638bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6639                                   const CXXScopeSpec &SS,
6640                                   SourceLocation NameLoc) {
6641  DeclContext *NamedContext = computeDeclContext(SS);
6642
6643  if (!CurContext->isRecord()) {
6644    // C++03 [namespace.udecl]p3:
6645    // C++0x [namespace.udecl]p8:
6646    //   A using-declaration for a class member shall be a member-declaration.
6647
6648    // If we weren't able to compute a valid scope, it must be a
6649    // dependent class scope.
6650    if (!NamedContext || NamedContext->isRecord()) {
6651      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6652        << SS.getRange();
6653      return true;
6654    }
6655
6656    // Otherwise, everything is known to be fine.
6657    return false;
6658  }
6659
6660  // The current scope is a record.
6661
6662  // If the named context is dependent, we can't decide much.
6663  if (!NamedContext) {
6664    // FIXME: in C++0x, we can diagnose if we can prove that the
6665    // nested-name-specifier does not refer to a base class, which is
6666    // still possible in some cases.
6667
6668    // Otherwise we have to conservatively report that things might be
6669    // okay.
6670    return false;
6671  }
6672
6673  if (!NamedContext->isRecord()) {
6674    // Ideally this would point at the last name in the specifier,
6675    // but we don't have that level of source info.
6676    Diag(SS.getRange().getBegin(),
6677         diag::err_using_decl_nested_name_specifier_is_not_class)
6678      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6679    return true;
6680  }
6681
6682  if (!NamedContext->isDependentContext() &&
6683      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6684    return true;
6685
6686  if (getLangOptions().CPlusPlus0x) {
6687    // C++0x [namespace.udecl]p3:
6688    //   In a using-declaration used as a member-declaration, the
6689    //   nested-name-specifier shall name a base class of the class
6690    //   being defined.
6691
6692    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6693                                 cast<CXXRecordDecl>(NamedContext))) {
6694      if (CurContext == NamedContext) {
6695        Diag(NameLoc,
6696             diag::err_using_decl_nested_name_specifier_is_current_class)
6697          << SS.getRange();
6698        return true;
6699      }
6700
6701      Diag(SS.getRange().getBegin(),
6702           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6703        << (NestedNameSpecifier*) SS.getScopeRep()
6704        << cast<CXXRecordDecl>(CurContext)
6705        << SS.getRange();
6706      return true;
6707    }
6708
6709    return false;
6710  }
6711
6712  // C++03 [namespace.udecl]p4:
6713  //   A using-declaration used as a member-declaration shall refer
6714  //   to a member of a base class of the class being defined [etc.].
6715
6716  // Salient point: SS doesn't have to name a base class as long as
6717  // lookup only finds members from base classes.  Therefore we can
6718  // diagnose here only if we can prove that that can't happen,
6719  // i.e. if the class hierarchies provably don't intersect.
6720
6721  // TODO: it would be nice if "definitely valid" results were cached
6722  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6723  // need to be repeated.
6724
6725  struct UserData {
6726    llvm::DenseSet<const CXXRecordDecl*> Bases;
6727
6728    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6729      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6730      Data->Bases.insert(Base);
6731      return true;
6732    }
6733
6734    bool hasDependentBases(const CXXRecordDecl *Class) {
6735      return !Class->forallBases(collect, this);
6736    }
6737
6738    /// Returns true if the base is dependent or is one of the
6739    /// accumulated base classes.
6740    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6741      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6742      return !Data->Bases.count(Base);
6743    }
6744
6745    bool mightShareBases(const CXXRecordDecl *Class) {
6746      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6747    }
6748  };
6749
6750  UserData Data;
6751
6752  // Returns false if we find a dependent base.
6753  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6754    return false;
6755
6756  // Returns false if the class has a dependent base or if it or one
6757  // of its bases is present in the base set of the current context.
6758  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6759    return false;
6760
6761  Diag(SS.getRange().getBegin(),
6762       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6763    << (NestedNameSpecifier*) SS.getScopeRep()
6764    << cast<CXXRecordDecl>(CurContext)
6765    << SS.getRange();
6766
6767  return true;
6768}
6769
6770Decl *Sema::ActOnAliasDeclaration(Scope *S,
6771                                  AccessSpecifier AS,
6772                                  MultiTemplateParamsArg TemplateParamLists,
6773                                  SourceLocation UsingLoc,
6774                                  UnqualifiedId &Name,
6775                                  TypeResult Type) {
6776  // Skip up to the relevant declaration scope.
6777  while (S->getFlags() & Scope::TemplateParamScope)
6778    S = S->getParent();
6779  assert((S->getFlags() & Scope::DeclScope) &&
6780         "got alias-declaration outside of declaration scope");
6781
6782  if (Type.isInvalid())
6783    return 0;
6784
6785  bool Invalid = false;
6786  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6787  TypeSourceInfo *TInfo = 0;
6788  GetTypeFromParser(Type.get(), &TInfo);
6789
6790  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6791    return 0;
6792
6793  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6794                                      UPPC_DeclarationType)) {
6795    Invalid = true;
6796    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6797                                             TInfo->getTypeLoc().getBeginLoc());
6798  }
6799
6800  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6801  LookupName(Previous, S);
6802
6803  // Warn about shadowing the name of a template parameter.
6804  if (Previous.isSingleResult() &&
6805      Previous.getFoundDecl()->isTemplateParameter()) {
6806    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6807    Previous.clear();
6808  }
6809
6810  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6811         "name in alias declaration must be an identifier");
6812  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6813                                               Name.StartLocation,
6814                                               Name.Identifier, TInfo);
6815
6816  NewTD->setAccess(AS);
6817
6818  if (Invalid)
6819    NewTD->setInvalidDecl();
6820
6821  CheckTypedefForVariablyModifiedType(S, NewTD);
6822  Invalid |= NewTD->isInvalidDecl();
6823
6824  bool Redeclaration = false;
6825
6826  NamedDecl *NewND;
6827  if (TemplateParamLists.size()) {
6828    TypeAliasTemplateDecl *OldDecl = 0;
6829    TemplateParameterList *OldTemplateParams = 0;
6830
6831    if (TemplateParamLists.size() != 1) {
6832      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6833        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6834         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6835    }
6836    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6837
6838    // Only consider previous declarations in the same scope.
6839    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6840                         /*ExplicitInstantiationOrSpecialization*/false);
6841    if (!Previous.empty()) {
6842      Redeclaration = true;
6843
6844      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6845      if (!OldDecl && !Invalid) {
6846        Diag(UsingLoc, diag::err_redefinition_different_kind)
6847          << Name.Identifier;
6848
6849        NamedDecl *OldD = Previous.getRepresentativeDecl();
6850        if (OldD->getLocation().isValid())
6851          Diag(OldD->getLocation(), diag::note_previous_definition);
6852
6853        Invalid = true;
6854      }
6855
6856      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6857        if (TemplateParameterListsAreEqual(TemplateParams,
6858                                           OldDecl->getTemplateParameters(),
6859                                           /*Complain=*/true,
6860                                           TPL_TemplateMatch))
6861          OldTemplateParams = OldDecl->getTemplateParameters();
6862        else
6863          Invalid = true;
6864
6865        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6866        if (!Invalid &&
6867            !Context.hasSameType(OldTD->getUnderlyingType(),
6868                                 NewTD->getUnderlyingType())) {
6869          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6870          // but we can't reasonably accept it.
6871          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6872            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6873          if (OldTD->getLocation().isValid())
6874            Diag(OldTD->getLocation(), diag::note_previous_definition);
6875          Invalid = true;
6876        }
6877      }
6878    }
6879
6880    // Merge any previous default template arguments into our parameters,
6881    // and check the parameter list.
6882    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6883                                   TPC_TypeAliasTemplate))
6884      return 0;
6885
6886    TypeAliasTemplateDecl *NewDecl =
6887      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6888                                    Name.Identifier, TemplateParams,
6889                                    NewTD);
6890
6891    NewDecl->setAccess(AS);
6892
6893    if (Invalid)
6894      NewDecl->setInvalidDecl();
6895    else if (OldDecl)
6896      NewDecl->setPreviousDeclaration(OldDecl);
6897
6898    NewND = NewDecl;
6899  } else {
6900    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6901    NewND = NewTD;
6902  }
6903
6904  if (!Redeclaration)
6905    PushOnScopeChains(NewND, S);
6906
6907  return NewND;
6908}
6909
6910Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6911                                             SourceLocation NamespaceLoc,
6912                                             SourceLocation AliasLoc,
6913                                             IdentifierInfo *Alias,
6914                                             CXXScopeSpec &SS,
6915                                             SourceLocation IdentLoc,
6916                                             IdentifierInfo *Ident) {
6917
6918  // Lookup the namespace name.
6919  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6920  LookupParsedName(R, S, &SS);
6921
6922  // Check if we have a previous declaration with the same name.
6923  NamedDecl *PrevDecl
6924    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6925                       ForRedeclaration);
6926  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6927    PrevDecl = 0;
6928
6929  if (PrevDecl) {
6930    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6931      // We already have an alias with the same name that points to the same
6932      // namespace, so don't create a new one.
6933      // FIXME: At some point, we'll want to create the (redundant)
6934      // declaration to maintain better source information.
6935      if (!R.isAmbiguous() && !R.empty() &&
6936          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6937        return 0;
6938    }
6939
6940    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6941      diag::err_redefinition_different_kind;
6942    Diag(AliasLoc, DiagID) << Alias;
6943    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6944    return 0;
6945  }
6946
6947  if (R.isAmbiguous())
6948    return 0;
6949
6950  if (R.empty()) {
6951    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6952      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6953      return 0;
6954    }
6955  }
6956
6957  NamespaceAliasDecl *AliasDecl =
6958    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6959                               Alias, SS.getWithLocInContext(Context),
6960                               IdentLoc, R.getFoundDecl());
6961
6962  PushOnScopeChains(AliasDecl, S);
6963  return AliasDecl;
6964}
6965
6966namespace {
6967  /// \brief Scoped object used to handle the state changes required in Sema
6968  /// to implicitly define the body of a C++ member function;
6969  class ImplicitlyDefinedFunctionScope {
6970    Sema &S;
6971    Sema::ContextRAII SavedContext;
6972
6973  public:
6974    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6975      : S(S), SavedContext(S, Method)
6976    {
6977      S.PushFunctionScope();
6978      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6979    }
6980
6981    ~ImplicitlyDefinedFunctionScope() {
6982      S.PopExpressionEvaluationContext();
6983      S.PopFunctionScopeInfo();
6984    }
6985  };
6986}
6987
6988Sema::ImplicitExceptionSpecification
6989Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6990  // C++ [except.spec]p14:
6991  //   An implicitly declared special member function (Clause 12) shall have an
6992  //   exception-specification. [...]
6993  ImplicitExceptionSpecification ExceptSpec(Context);
6994  if (ClassDecl->isInvalidDecl())
6995    return ExceptSpec;
6996
6997  // Direct base-class constructors.
6998  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6999                                       BEnd = ClassDecl->bases_end();
7000       B != BEnd; ++B) {
7001    if (B->isVirtual()) // Handled below.
7002      continue;
7003
7004    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7005      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7006      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7007      // If this is a deleted function, add it anyway. This might be conformant
7008      // with the standard. This might not. I'm not sure. It might not matter.
7009      if (Constructor)
7010        ExceptSpec.CalledDecl(Constructor);
7011    }
7012  }
7013
7014  // Virtual base-class constructors.
7015  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7016                                       BEnd = ClassDecl->vbases_end();
7017       B != BEnd; ++B) {
7018    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7019      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7020      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7021      // If this is a deleted function, add it anyway. This might be conformant
7022      // with the standard. This might not. I'm not sure. It might not matter.
7023      if (Constructor)
7024        ExceptSpec.CalledDecl(Constructor);
7025    }
7026  }
7027
7028  // Field constructors.
7029  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7030                               FEnd = ClassDecl->field_end();
7031       F != FEnd; ++F) {
7032    if (F->hasInClassInitializer()) {
7033      if (Expr *E = F->getInClassInitializer())
7034        ExceptSpec.CalledExpr(E);
7035      else if (!F->isInvalidDecl())
7036        ExceptSpec.SetDelayed();
7037    } else if (const RecordType *RecordTy
7038              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7039      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7040      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7041      // If this is a deleted function, add it anyway. This might be conformant
7042      // with the standard. This might not. I'm not sure. It might not matter.
7043      // In particular, the problem is that this function never gets called. It
7044      // might just be ill-formed because this function attempts to refer to
7045      // a deleted function here.
7046      if (Constructor)
7047        ExceptSpec.CalledDecl(Constructor);
7048    }
7049  }
7050
7051  return ExceptSpec;
7052}
7053
7054CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7055                                                     CXXRecordDecl *ClassDecl) {
7056  // C++ [class.ctor]p5:
7057  //   A default constructor for a class X is a constructor of class X
7058  //   that can be called without an argument. If there is no
7059  //   user-declared constructor for class X, a default constructor is
7060  //   implicitly declared. An implicitly-declared default constructor
7061  //   is an inline public member of its class.
7062  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7063         "Should not build implicit default constructor!");
7064
7065  ImplicitExceptionSpecification Spec =
7066    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7067  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7068
7069  // Create the actual constructor declaration.
7070  CanQualType ClassType
7071    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7072  SourceLocation ClassLoc = ClassDecl->getLocation();
7073  DeclarationName Name
7074    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7075  DeclarationNameInfo NameInfo(Name, ClassLoc);
7076  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7077      Context, ClassDecl, ClassLoc, NameInfo,
7078      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7079      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7080      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7081        getLangOptions().CPlusPlus0x);
7082  DefaultCon->setAccess(AS_public);
7083  DefaultCon->setDefaulted();
7084  DefaultCon->setImplicit();
7085  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7086
7087  // Note that we have declared this constructor.
7088  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7089
7090  if (Scope *S = getScopeForContext(ClassDecl))
7091    PushOnScopeChains(DefaultCon, S, false);
7092  ClassDecl->addDecl(DefaultCon);
7093
7094  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7095    DefaultCon->setDeletedAsWritten();
7096
7097  return DefaultCon;
7098}
7099
7100void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7101                                            CXXConstructorDecl *Constructor) {
7102  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7103          !Constructor->doesThisDeclarationHaveABody() &&
7104          !Constructor->isDeleted()) &&
7105    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7106
7107  CXXRecordDecl *ClassDecl = Constructor->getParent();
7108  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7109
7110  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7111  DiagnosticErrorTrap Trap(Diags);
7112  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7113      Trap.hasErrorOccurred()) {
7114    Diag(CurrentLocation, diag::note_member_synthesized_at)
7115      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7116    Constructor->setInvalidDecl();
7117    return;
7118  }
7119
7120  SourceLocation Loc = Constructor->getLocation();
7121  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7122
7123  Constructor->setUsed();
7124  MarkVTableUsed(CurrentLocation, ClassDecl);
7125
7126  if (ASTMutationListener *L = getASTMutationListener()) {
7127    L->CompletedImplicitDefinition(Constructor);
7128  }
7129}
7130
7131/// Get any existing defaulted default constructor for the given class. Do not
7132/// implicitly define one if it does not exist.
7133static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7134                                                             CXXRecordDecl *D) {
7135  ASTContext &Context = Self.Context;
7136  QualType ClassType = Context.getTypeDeclType(D);
7137  DeclarationName ConstructorName
7138    = Context.DeclarationNames.getCXXConstructorName(
7139                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7140
7141  DeclContext::lookup_const_iterator Con, ConEnd;
7142  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7143       Con != ConEnd; ++Con) {
7144    // A function template cannot be defaulted.
7145    if (isa<FunctionTemplateDecl>(*Con))
7146      continue;
7147
7148    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7149    if (Constructor->isDefaultConstructor())
7150      return Constructor->isDefaulted() ? Constructor : 0;
7151  }
7152  return 0;
7153}
7154
7155void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7156  if (!D) return;
7157  AdjustDeclIfTemplate(D);
7158
7159  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7160  CXXConstructorDecl *CtorDecl
7161    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7162
7163  if (!CtorDecl) return;
7164
7165  // Compute the exception specification for the default constructor.
7166  const FunctionProtoType *CtorTy =
7167    CtorDecl->getType()->castAs<FunctionProtoType>();
7168  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7169    ImplicitExceptionSpecification Spec =
7170      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7171    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7172    assert(EPI.ExceptionSpecType != EST_Delayed);
7173
7174    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7175  }
7176
7177  // If the default constructor is explicitly defaulted, checking the exception
7178  // specification is deferred until now.
7179  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7180      !ClassDecl->isDependentType())
7181    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7182}
7183
7184void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7185  // We start with an initial pass over the base classes to collect those that
7186  // inherit constructors from. If there are none, we can forgo all further
7187  // processing.
7188  typedef SmallVector<const RecordType *, 4> BasesVector;
7189  BasesVector BasesToInheritFrom;
7190  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7191                                          BaseE = ClassDecl->bases_end();
7192         BaseIt != BaseE; ++BaseIt) {
7193    if (BaseIt->getInheritConstructors()) {
7194      QualType Base = BaseIt->getType();
7195      if (Base->isDependentType()) {
7196        // If we inherit constructors from anything that is dependent, just
7197        // abort processing altogether. We'll get another chance for the
7198        // instantiations.
7199        return;
7200      }
7201      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7202    }
7203  }
7204  if (BasesToInheritFrom.empty())
7205    return;
7206
7207  // Now collect the constructors that we already have in the current class.
7208  // Those take precedence over inherited constructors.
7209  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7210  //   unless there is a user-declared constructor with the same signature in
7211  //   the class where the using-declaration appears.
7212  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7213  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7214                                    CtorE = ClassDecl->ctor_end();
7215       CtorIt != CtorE; ++CtorIt) {
7216    ExistingConstructors.insert(
7217        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7218  }
7219
7220  Scope *S = getScopeForContext(ClassDecl);
7221  DeclarationName CreatedCtorName =
7222      Context.DeclarationNames.getCXXConstructorName(
7223          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7224
7225  // Now comes the true work.
7226  // First, we keep a map from constructor types to the base that introduced
7227  // them. Needed for finding conflicting constructors. We also keep the
7228  // actually inserted declarations in there, for pretty diagnostics.
7229  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7230  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7231  ConstructorToSourceMap InheritedConstructors;
7232  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7233                             BaseE = BasesToInheritFrom.end();
7234       BaseIt != BaseE; ++BaseIt) {
7235    const RecordType *Base = *BaseIt;
7236    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7237    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7238    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7239                                      CtorE = BaseDecl->ctor_end();
7240         CtorIt != CtorE; ++CtorIt) {
7241      // Find the using declaration for inheriting this base's constructors.
7242      DeclarationName Name =
7243          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7244      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7245          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7246      SourceLocation UsingLoc = UD ? UD->getLocation() :
7247                                     ClassDecl->getLocation();
7248
7249      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7250      //   from the class X named in the using-declaration consists of actual
7251      //   constructors and notional constructors that result from the
7252      //   transformation of defaulted parameters as follows:
7253      //   - all non-template default constructors of X, and
7254      //   - for each non-template constructor of X that has at least one
7255      //     parameter with a default argument, the set of constructors that
7256      //     results from omitting any ellipsis parameter specification and
7257      //     successively omitting parameters with a default argument from the
7258      //     end of the parameter-type-list.
7259      CXXConstructorDecl *BaseCtor = *CtorIt;
7260      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7261      const FunctionProtoType *BaseCtorType =
7262          BaseCtor->getType()->getAs<FunctionProtoType>();
7263
7264      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7265                    maxParams = BaseCtor->getNumParams();
7266           params <= maxParams; ++params) {
7267        // Skip default constructors. They're never inherited.
7268        if (params == 0)
7269          continue;
7270        // Skip copy and move constructors for the same reason.
7271        if (CanBeCopyOrMove && params == 1)
7272          continue;
7273
7274        // Build up a function type for this particular constructor.
7275        // FIXME: The working paper does not consider that the exception spec
7276        // for the inheriting constructor might be larger than that of the
7277        // source. This code doesn't yet, either. When it does, this code will
7278        // need to be delayed until after exception specifications and in-class
7279        // member initializers are attached.
7280        const Type *NewCtorType;
7281        if (params == maxParams)
7282          NewCtorType = BaseCtorType;
7283        else {
7284          SmallVector<QualType, 16> Args;
7285          for (unsigned i = 0; i < params; ++i) {
7286            Args.push_back(BaseCtorType->getArgType(i));
7287          }
7288          FunctionProtoType::ExtProtoInfo ExtInfo =
7289              BaseCtorType->getExtProtoInfo();
7290          ExtInfo.Variadic = false;
7291          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7292                                                Args.data(), params, ExtInfo)
7293                       .getTypePtr();
7294        }
7295        const Type *CanonicalNewCtorType =
7296            Context.getCanonicalType(NewCtorType);
7297
7298        // Now that we have the type, first check if the class already has a
7299        // constructor with this signature.
7300        if (ExistingConstructors.count(CanonicalNewCtorType))
7301          continue;
7302
7303        // Then we check if we have already declared an inherited constructor
7304        // with this signature.
7305        std::pair<ConstructorToSourceMap::iterator, bool> result =
7306            InheritedConstructors.insert(std::make_pair(
7307                CanonicalNewCtorType,
7308                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7309        if (!result.second) {
7310          // Already in the map. If it came from a different class, that's an
7311          // error. Not if it's from the same.
7312          CanQualType PreviousBase = result.first->second.first;
7313          if (CanonicalBase != PreviousBase) {
7314            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7315            const CXXConstructorDecl *PrevBaseCtor =
7316                PrevCtor->getInheritedConstructor();
7317            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7318
7319            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7320            Diag(BaseCtor->getLocation(),
7321                 diag::note_using_decl_constructor_conflict_current_ctor);
7322            Diag(PrevBaseCtor->getLocation(),
7323                 diag::note_using_decl_constructor_conflict_previous_ctor);
7324            Diag(PrevCtor->getLocation(),
7325                 diag::note_using_decl_constructor_conflict_previous_using);
7326          }
7327          continue;
7328        }
7329
7330        // OK, we're there, now add the constructor.
7331        // C++0x [class.inhctor]p8: [...] that would be performed by a
7332        //   user-written inline constructor [...]
7333        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7334        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7335            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7336            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7337            /*ImplicitlyDeclared=*/true,
7338            // FIXME: Due to a defect in the standard, we treat inherited
7339            // constructors as constexpr even if that makes them ill-formed.
7340            /*Constexpr=*/BaseCtor->isConstexpr());
7341        NewCtor->setAccess(BaseCtor->getAccess());
7342
7343        // Build up the parameter decls and add them.
7344        SmallVector<ParmVarDecl *, 16> ParamDecls;
7345        for (unsigned i = 0; i < params; ++i) {
7346          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7347                                                   UsingLoc, UsingLoc,
7348                                                   /*IdentifierInfo=*/0,
7349                                                   BaseCtorType->getArgType(i),
7350                                                   /*TInfo=*/0, SC_None,
7351                                                   SC_None, /*DefaultArg=*/0));
7352        }
7353        NewCtor->setParams(ParamDecls);
7354        NewCtor->setInheritedConstructor(BaseCtor);
7355
7356        PushOnScopeChains(NewCtor, S, false);
7357        ClassDecl->addDecl(NewCtor);
7358        result.first->second.second = NewCtor;
7359      }
7360    }
7361  }
7362}
7363
7364Sema::ImplicitExceptionSpecification
7365Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7366  // C++ [except.spec]p14:
7367  //   An implicitly declared special member function (Clause 12) shall have
7368  //   an exception-specification.
7369  ImplicitExceptionSpecification ExceptSpec(Context);
7370  if (ClassDecl->isInvalidDecl())
7371    return ExceptSpec;
7372
7373  // Direct base-class destructors.
7374  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7375                                       BEnd = ClassDecl->bases_end();
7376       B != BEnd; ++B) {
7377    if (B->isVirtual()) // Handled below.
7378      continue;
7379
7380    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7381      ExceptSpec.CalledDecl(
7382                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7383  }
7384
7385  // Virtual base-class destructors.
7386  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7387                                       BEnd = ClassDecl->vbases_end();
7388       B != BEnd; ++B) {
7389    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7390      ExceptSpec.CalledDecl(
7391                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7392  }
7393
7394  // Field destructors.
7395  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7396                               FEnd = ClassDecl->field_end();
7397       F != FEnd; ++F) {
7398    if (const RecordType *RecordTy
7399        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7400      ExceptSpec.CalledDecl(
7401                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7402  }
7403
7404  return ExceptSpec;
7405}
7406
7407CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7408  // C++ [class.dtor]p2:
7409  //   If a class has no user-declared destructor, a destructor is
7410  //   declared implicitly. An implicitly-declared destructor is an
7411  //   inline public member of its class.
7412
7413  ImplicitExceptionSpecification Spec =
7414      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7415  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7416
7417  // Create the actual destructor declaration.
7418  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7419
7420  CanQualType ClassType
7421    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7422  SourceLocation ClassLoc = ClassDecl->getLocation();
7423  DeclarationName Name
7424    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7425  DeclarationNameInfo NameInfo(Name, ClassLoc);
7426  CXXDestructorDecl *Destructor
7427      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7428                                  /*isInline=*/true,
7429                                  /*isImplicitlyDeclared=*/true);
7430  Destructor->setAccess(AS_public);
7431  Destructor->setDefaulted();
7432  Destructor->setImplicit();
7433  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7434
7435  // Note that we have declared this destructor.
7436  ++ASTContext::NumImplicitDestructorsDeclared;
7437
7438  // Introduce this destructor into its scope.
7439  if (Scope *S = getScopeForContext(ClassDecl))
7440    PushOnScopeChains(Destructor, S, false);
7441  ClassDecl->addDecl(Destructor);
7442
7443  // This could be uniqued if it ever proves significant.
7444  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7445
7446  if (ShouldDeleteDestructor(Destructor))
7447    Destructor->setDeletedAsWritten();
7448
7449  AddOverriddenMethods(ClassDecl, Destructor);
7450
7451  return Destructor;
7452}
7453
7454void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7455                                    CXXDestructorDecl *Destructor) {
7456  assert((Destructor->isDefaulted() &&
7457          !Destructor->doesThisDeclarationHaveABody()) &&
7458         "DefineImplicitDestructor - call it for implicit default dtor");
7459  CXXRecordDecl *ClassDecl = Destructor->getParent();
7460  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7461
7462  if (Destructor->isInvalidDecl())
7463    return;
7464
7465  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7466
7467  DiagnosticErrorTrap Trap(Diags);
7468  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7469                                         Destructor->getParent());
7470
7471  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7472    Diag(CurrentLocation, diag::note_member_synthesized_at)
7473      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7474
7475    Destructor->setInvalidDecl();
7476    return;
7477  }
7478
7479  SourceLocation Loc = Destructor->getLocation();
7480  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7481  Destructor->setImplicitlyDefined(true);
7482  Destructor->setUsed();
7483  MarkVTableUsed(CurrentLocation, ClassDecl);
7484
7485  if (ASTMutationListener *L = getASTMutationListener()) {
7486    L->CompletedImplicitDefinition(Destructor);
7487  }
7488}
7489
7490void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7491                                         CXXDestructorDecl *destructor) {
7492  // C++11 [class.dtor]p3:
7493  //   A declaration of a destructor that does not have an exception-
7494  //   specification is implicitly considered to have the same exception-
7495  //   specification as an implicit declaration.
7496  const FunctionProtoType *dtorType = destructor->getType()->
7497                                        getAs<FunctionProtoType>();
7498  if (dtorType->hasExceptionSpec())
7499    return;
7500
7501  ImplicitExceptionSpecification exceptSpec =
7502      ComputeDefaultedDtorExceptionSpec(classDecl);
7503
7504  // Replace the destructor's type, building off the existing one. Fortunately,
7505  // the only thing of interest in the destructor type is its extended info.
7506  // The return and arguments are fixed.
7507  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7508  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7509  epi.NumExceptions = exceptSpec.size();
7510  epi.Exceptions = exceptSpec.data();
7511  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7512
7513  destructor->setType(ty);
7514
7515  // FIXME: If the destructor has a body that could throw, and the newly created
7516  // spec doesn't allow exceptions, we should emit a warning, because this
7517  // change in behavior can break conforming C++03 programs at runtime.
7518  // However, we don't have a body yet, so it needs to be done somewhere else.
7519}
7520
7521/// \brief Builds a statement that copies/moves the given entity from \p From to
7522/// \c To.
7523///
7524/// This routine is used to copy/move the members of a class with an
7525/// implicitly-declared copy/move assignment operator. When the entities being
7526/// copied are arrays, this routine builds for loops to copy them.
7527///
7528/// \param S The Sema object used for type-checking.
7529///
7530/// \param Loc The location where the implicit copy/move is being generated.
7531///
7532/// \param T The type of the expressions being copied/moved. Both expressions
7533/// must have this type.
7534///
7535/// \param To The expression we are copying/moving to.
7536///
7537/// \param From The expression we are copying/moving from.
7538///
7539/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7540/// Otherwise, it's a non-static member subobject.
7541///
7542/// \param Copying Whether we're copying or moving.
7543///
7544/// \param Depth Internal parameter recording the depth of the recursion.
7545///
7546/// \returns A statement or a loop that copies the expressions.
7547static StmtResult
7548BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7549                      Expr *To, Expr *From,
7550                      bool CopyingBaseSubobject, bool Copying,
7551                      unsigned Depth = 0) {
7552  // C++0x [class.copy]p28:
7553  //   Each subobject is assigned in the manner appropriate to its type:
7554  //
7555  //     - if the subobject is of class type, as if by a call to operator= with
7556  //       the subobject as the object expression and the corresponding
7557  //       subobject of x as a single function argument (as if by explicit
7558  //       qualification; that is, ignoring any possible virtual overriding
7559  //       functions in more derived classes);
7560  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7561    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7562
7563    // Look for operator=.
7564    DeclarationName Name
7565      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7566    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7567    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7568
7569    // Filter out any result that isn't a copy/move-assignment operator.
7570    LookupResult::Filter F = OpLookup.makeFilter();
7571    while (F.hasNext()) {
7572      NamedDecl *D = F.next();
7573      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7574        if (Copying ? Method->isCopyAssignmentOperator() :
7575                      Method->isMoveAssignmentOperator())
7576          continue;
7577
7578      F.erase();
7579    }
7580    F.done();
7581
7582    // Suppress the protected check (C++ [class.protected]) for each of the
7583    // assignment operators we found. This strange dance is required when
7584    // we're assigning via a base classes's copy-assignment operator. To
7585    // ensure that we're getting the right base class subobject (without
7586    // ambiguities), we need to cast "this" to that subobject type; to
7587    // ensure that we don't go through the virtual call mechanism, we need
7588    // to qualify the operator= name with the base class (see below). However,
7589    // this means that if the base class has a protected copy assignment
7590    // operator, the protected member access check will fail. So, we
7591    // rewrite "protected" access to "public" access in this case, since we
7592    // know by construction that we're calling from a derived class.
7593    if (CopyingBaseSubobject) {
7594      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7595           L != LEnd; ++L) {
7596        if (L.getAccess() == AS_protected)
7597          L.setAccess(AS_public);
7598      }
7599    }
7600
7601    // Create the nested-name-specifier that will be used to qualify the
7602    // reference to operator=; this is required to suppress the virtual
7603    // call mechanism.
7604    CXXScopeSpec SS;
7605    SS.MakeTrivial(S.Context,
7606                   NestedNameSpecifier::Create(S.Context, 0, false,
7607                                               T.getTypePtr()),
7608                   Loc);
7609
7610    // Create the reference to operator=.
7611    ExprResult OpEqualRef
7612      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7613                                   /*TemplateKWLoc=*/SourceLocation(),
7614                                   /*FirstQualifierInScope=*/0,
7615                                   OpLookup,
7616                                   /*TemplateArgs=*/0,
7617                                   /*SuppressQualifierCheck=*/true);
7618    if (OpEqualRef.isInvalid())
7619      return StmtError();
7620
7621    // Build the call to the assignment operator.
7622
7623    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7624                                                  OpEqualRef.takeAs<Expr>(),
7625                                                  Loc, &From, 1, Loc);
7626    if (Call.isInvalid())
7627      return StmtError();
7628
7629    return S.Owned(Call.takeAs<Stmt>());
7630  }
7631
7632  //     - if the subobject is of scalar type, the built-in assignment
7633  //       operator is used.
7634  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7635  if (!ArrayTy) {
7636    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7637    if (Assignment.isInvalid())
7638      return StmtError();
7639
7640    return S.Owned(Assignment.takeAs<Stmt>());
7641  }
7642
7643  //     - if the subobject is an array, each element is assigned, in the
7644  //       manner appropriate to the element type;
7645
7646  // Construct a loop over the array bounds, e.g.,
7647  //
7648  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7649  //
7650  // that will copy each of the array elements.
7651  QualType SizeType = S.Context.getSizeType();
7652
7653  // Create the iteration variable.
7654  IdentifierInfo *IterationVarName = 0;
7655  {
7656    llvm::SmallString<8> Str;
7657    llvm::raw_svector_ostream OS(Str);
7658    OS << "__i" << Depth;
7659    IterationVarName = &S.Context.Idents.get(OS.str());
7660  }
7661  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7662                                          IterationVarName, SizeType,
7663                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7664                                          SC_None, SC_None);
7665
7666  // Initialize the iteration variable to zero.
7667  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7668  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7669
7670  // Create a reference to the iteration variable; we'll use this several
7671  // times throughout.
7672  Expr *IterationVarRef
7673    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7674  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7675  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7676  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7677
7678  // Create the DeclStmt that holds the iteration variable.
7679  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7680
7681  // Create the comparison against the array bound.
7682  llvm::APInt Upper
7683    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7684  Expr *Comparison
7685    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7686                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7687                                     BO_NE, S.Context.BoolTy,
7688                                     VK_RValue, OK_Ordinary, Loc);
7689
7690  // Create the pre-increment of the iteration variable.
7691  Expr *Increment
7692    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7693                                    VK_LValue, OK_Ordinary, Loc);
7694
7695  // Subscript the "from" and "to" expressions with the iteration variable.
7696  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7697                                                         IterationVarRefRVal,
7698                                                         Loc));
7699  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7700                                                       IterationVarRefRVal,
7701                                                       Loc));
7702  if (!Copying) // Cast to rvalue
7703    From = CastForMoving(S, From);
7704
7705  // Build the copy/move for an individual element of the array.
7706  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7707                                          To, From, CopyingBaseSubobject,
7708                                          Copying, Depth + 1);
7709  if (Copy.isInvalid())
7710    return StmtError();
7711
7712  // Construct the loop that copies all elements of this array.
7713  return S.ActOnForStmt(Loc, Loc, InitStmt,
7714                        S.MakeFullExpr(Comparison),
7715                        0, S.MakeFullExpr(Increment),
7716                        Loc, Copy.take());
7717}
7718
7719std::pair<Sema::ImplicitExceptionSpecification, bool>
7720Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7721                                                   CXXRecordDecl *ClassDecl) {
7722  if (ClassDecl->isInvalidDecl())
7723    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7724
7725  // C++ [class.copy]p10:
7726  //   If the class definition does not explicitly declare a copy
7727  //   assignment operator, one is declared implicitly.
7728  //   The implicitly-defined copy assignment operator for a class X
7729  //   will have the form
7730  //
7731  //       X& X::operator=(const X&)
7732  //
7733  //   if
7734  bool HasConstCopyAssignment = true;
7735
7736  //       -- each direct base class B of X has a copy assignment operator
7737  //          whose parameter is of type const B&, const volatile B& or B,
7738  //          and
7739  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7740                                       BaseEnd = ClassDecl->bases_end();
7741       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7742    // We'll handle this below
7743    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7744      continue;
7745
7746    assert(!Base->getType()->isDependentType() &&
7747           "Cannot generate implicit members for class with dependent bases.");
7748    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7749    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7750                            &HasConstCopyAssignment);
7751  }
7752
7753  // In C++11, the above citation has "or virtual" added
7754  if (LangOpts.CPlusPlus0x) {
7755    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7756                                         BaseEnd = ClassDecl->vbases_end();
7757         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7758      assert(!Base->getType()->isDependentType() &&
7759             "Cannot generate implicit members for class with dependent bases.");
7760      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7761      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7762                              &HasConstCopyAssignment);
7763    }
7764  }
7765
7766  //       -- for all the nonstatic data members of X that are of a class
7767  //          type M (or array thereof), each such class type has a copy
7768  //          assignment operator whose parameter is of type const M&,
7769  //          const volatile M& or M.
7770  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7771                                  FieldEnd = ClassDecl->field_end();
7772       HasConstCopyAssignment && Field != FieldEnd;
7773       ++Field) {
7774    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7775    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7776      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7777                              &HasConstCopyAssignment);
7778    }
7779  }
7780
7781  //   Otherwise, the implicitly declared copy assignment operator will
7782  //   have the form
7783  //
7784  //       X& X::operator=(X&)
7785
7786  // C++ [except.spec]p14:
7787  //   An implicitly declared special member function (Clause 12) shall have an
7788  //   exception-specification. [...]
7789
7790  // It is unspecified whether or not an implicit copy assignment operator
7791  // attempts to deduplicate calls to assignment operators of virtual bases are
7792  // made. As such, this exception specification is effectively unspecified.
7793  // Based on a similar decision made for constness in C++0x, we're erring on
7794  // the side of assuming such calls to be made regardless of whether they
7795  // actually happen.
7796  ImplicitExceptionSpecification ExceptSpec(Context);
7797  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7798  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7799                                       BaseEnd = ClassDecl->bases_end();
7800       Base != BaseEnd; ++Base) {
7801    if (Base->isVirtual())
7802      continue;
7803
7804    CXXRecordDecl *BaseClassDecl
7805      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7806    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7807                                                            ArgQuals, false, 0))
7808      ExceptSpec.CalledDecl(CopyAssign);
7809  }
7810
7811  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7812                                       BaseEnd = ClassDecl->vbases_end();
7813       Base != BaseEnd; ++Base) {
7814    CXXRecordDecl *BaseClassDecl
7815      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7816    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7817                                                            ArgQuals, false, 0))
7818      ExceptSpec.CalledDecl(CopyAssign);
7819  }
7820
7821  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7822                                  FieldEnd = ClassDecl->field_end();
7823       Field != FieldEnd;
7824       ++Field) {
7825    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7826    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7827      if (CXXMethodDecl *CopyAssign =
7828          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7829        ExceptSpec.CalledDecl(CopyAssign);
7830    }
7831  }
7832
7833  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7834}
7835
7836CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7837  // Note: The following rules are largely analoguous to the copy
7838  // constructor rules. Note that virtual bases are not taken into account
7839  // for determining the argument type of the operator. Note also that
7840  // operators taking an object instead of a reference are allowed.
7841
7842  ImplicitExceptionSpecification Spec(Context);
7843  bool Const;
7844  llvm::tie(Spec, Const) =
7845    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7846
7847  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7848  QualType RetType = Context.getLValueReferenceType(ArgType);
7849  if (Const)
7850    ArgType = ArgType.withConst();
7851  ArgType = Context.getLValueReferenceType(ArgType);
7852
7853  //   An implicitly-declared copy assignment operator is an inline public
7854  //   member of its class.
7855  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7856  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7857  SourceLocation ClassLoc = ClassDecl->getLocation();
7858  DeclarationNameInfo NameInfo(Name, ClassLoc);
7859  CXXMethodDecl *CopyAssignment
7860    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7861                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7862                            /*TInfo=*/0, /*isStatic=*/false,
7863                            /*StorageClassAsWritten=*/SC_None,
7864                            /*isInline=*/true, /*isConstexpr=*/false,
7865                            SourceLocation());
7866  CopyAssignment->setAccess(AS_public);
7867  CopyAssignment->setDefaulted();
7868  CopyAssignment->setImplicit();
7869  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7870
7871  // Add the parameter to the operator.
7872  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7873                                               ClassLoc, ClassLoc, /*Id=*/0,
7874                                               ArgType, /*TInfo=*/0,
7875                                               SC_None,
7876                                               SC_None, 0);
7877  CopyAssignment->setParams(FromParam);
7878
7879  // Note that we have added this copy-assignment operator.
7880  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7881
7882  if (Scope *S = getScopeForContext(ClassDecl))
7883    PushOnScopeChains(CopyAssignment, S, false);
7884  ClassDecl->addDecl(CopyAssignment);
7885
7886  // C++0x [class.copy]p19:
7887  //   ....  If the class definition does not explicitly declare a copy
7888  //   assignment operator, there is no user-declared move constructor, and
7889  //   there is no user-declared move assignment operator, a copy assignment
7890  //   operator is implicitly declared as defaulted.
7891  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7892          !getLangOptions().MicrosoftMode) ||
7893      ClassDecl->hasUserDeclaredMoveAssignment() ||
7894      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7895    CopyAssignment->setDeletedAsWritten();
7896
7897  AddOverriddenMethods(ClassDecl, CopyAssignment);
7898  return CopyAssignment;
7899}
7900
7901void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7902                                        CXXMethodDecl *CopyAssignOperator) {
7903  assert((CopyAssignOperator->isDefaulted() &&
7904          CopyAssignOperator->isOverloadedOperator() &&
7905          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7906          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7907         "DefineImplicitCopyAssignment called for wrong function");
7908
7909  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7910
7911  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7912    CopyAssignOperator->setInvalidDecl();
7913    return;
7914  }
7915
7916  CopyAssignOperator->setUsed();
7917
7918  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7919  DiagnosticErrorTrap Trap(Diags);
7920
7921  // C++0x [class.copy]p30:
7922  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7923  //   for a non-union class X performs memberwise copy assignment of its
7924  //   subobjects. The direct base classes of X are assigned first, in the
7925  //   order of their declaration in the base-specifier-list, and then the
7926  //   immediate non-static data members of X are assigned, in the order in
7927  //   which they were declared in the class definition.
7928
7929  // The statements that form the synthesized function body.
7930  ASTOwningVector<Stmt*> Statements(*this);
7931
7932  // The parameter for the "other" object, which we are copying from.
7933  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7934  Qualifiers OtherQuals = Other->getType().getQualifiers();
7935  QualType OtherRefType = Other->getType();
7936  if (const LValueReferenceType *OtherRef
7937                                = OtherRefType->getAs<LValueReferenceType>()) {
7938    OtherRefType = OtherRef->getPointeeType();
7939    OtherQuals = OtherRefType.getQualifiers();
7940  }
7941
7942  // Our location for everything implicitly-generated.
7943  SourceLocation Loc = CopyAssignOperator->getLocation();
7944
7945  // Construct a reference to the "other" object. We'll be using this
7946  // throughout the generated ASTs.
7947  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7948  assert(OtherRef && "Reference to parameter cannot fail!");
7949
7950  // Construct the "this" pointer. We'll be using this throughout the generated
7951  // ASTs.
7952  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7953  assert(This && "Reference to this cannot fail!");
7954
7955  // Assign base classes.
7956  bool Invalid = false;
7957  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7958       E = ClassDecl->bases_end(); Base != E; ++Base) {
7959    // Form the assignment:
7960    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7961    QualType BaseType = Base->getType().getUnqualifiedType();
7962    if (!BaseType->isRecordType()) {
7963      Invalid = true;
7964      continue;
7965    }
7966
7967    CXXCastPath BasePath;
7968    BasePath.push_back(Base);
7969
7970    // Construct the "from" expression, which is an implicit cast to the
7971    // appropriately-qualified base type.
7972    Expr *From = OtherRef;
7973    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7974                             CK_UncheckedDerivedToBase,
7975                             VK_LValue, &BasePath).take();
7976
7977    // Dereference "this".
7978    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7979
7980    // Implicitly cast "this" to the appropriately-qualified base type.
7981    To = ImpCastExprToType(To.take(),
7982                           Context.getCVRQualifiedType(BaseType,
7983                                     CopyAssignOperator->getTypeQualifiers()),
7984                           CK_UncheckedDerivedToBase,
7985                           VK_LValue, &BasePath);
7986
7987    // Build the copy.
7988    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7989                                            To.get(), From,
7990                                            /*CopyingBaseSubobject=*/true,
7991                                            /*Copying=*/true);
7992    if (Copy.isInvalid()) {
7993      Diag(CurrentLocation, diag::note_member_synthesized_at)
7994        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7995      CopyAssignOperator->setInvalidDecl();
7996      return;
7997    }
7998
7999    // Success! Record the copy.
8000    Statements.push_back(Copy.takeAs<Expr>());
8001  }
8002
8003  // \brief Reference to the __builtin_memcpy function.
8004  Expr *BuiltinMemCpyRef = 0;
8005  // \brief Reference to the __builtin_objc_memmove_collectable function.
8006  Expr *CollectableMemCpyRef = 0;
8007
8008  // Assign non-static members.
8009  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8010                                  FieldEnd = ClassDecl->field_end();
8011       Field != FieldEnd; ++Field) {
8012    if (Field->isUnnamedBitfield())
8013      continue;
8014
8015    // Check for members of reference type; we can't copy those.
8016    if (Field->getType()->isReferenceType()) {
8017      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8018        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8019      Diag(Field->getLocation(), diag::note_declared_at);
8020      Diag(CurrentLocation, diag::note_member_synthesized_at)
8021        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8022      Invalid = true;
8023      continue;
8024    }
8025
8026    // Check for members of const-qualified, non-class type.
8027    QualType BaseType = Context.getBaseElementType(Field->getType());
8028    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8029      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8030        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8031      Diag(Field->getLocation(), diag::note_declared_at);
8032      Diag(CurrentLocation, diag::note_member_synthesized_at)
8033        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8034      Invalid = true;
8035      continue;
8036    }
8037
8038    // Suppress assigning zero-width bitfields.
8039    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8040      continue;
8041
8042    QualType FieldType = Field->getType().getNonReferenceType();
8043    if (FieldType->isIncompleteArrayType()) {
8044      assert(ClassDecl->hasFlexibleArrayMember() &&
8045             "Incomplete array type is not valid");
8046      continue;
8047    }
8048
8049    // Build references to the field in the object we're copying from and to.
8050    CXXScopeSpec SS; // Intentionally empty
8051    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8052                              LookupMemberName);
8053    MemberLookup.addDecl(*Field);
8054    MemberLookup.resolveKind();
8055    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8056                                               Loc, /*IsArrow=*/false,
8057                                               SS, SourceLocation(), 0,
8058                                               MemberLookup, 0);
8059    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8060                                             Loc, /*IsArrow=*/true,
8061                                             SS, SourceLocation(), 0,
8062                                             MemberLookup, 0);
8063    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8064    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8065
8066    // If the field should be copied with __builtin_memcpy rather than via
8067    // explicit assignments, do so. This optimization only applies for arrays
8068    // of scalars and arrays of class type with trivial copy-assignment
8069    // operators.
8070    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8071        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8072      // Compute the size of the memory buffer to be copied.
8073      QualType SizeType = Context.getSizeType();
8074      llvm::APInt Size(Context.getTypeSize(SizeType),
8075                       Context.getTypeSizeInChars(BaseType).getQuantity());
8076      for (const ConstantArrayType *Array
8077              = Context.getAsConstantArrayType(FieldType);
8078           Array;
8079           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8080        llvm::APInt ArraySize
8081          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8082        Size *= ArraySize;
8083      }
8084
8085      // Take the address of the field references for "from" and "to".
8086      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8087      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8088
8089      bool NeedsCollectableMemCpy =
8090          (BaseType->isRecordType() &&
8091           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8092
8093      if (NeedsCollectableMemCpy) {
8094        if (!CollectableMemCpyRef) {
8095          // Create a reference to the __builtin_objc_memmove_collectable function.
8096          LookupResult R(*this,
8097                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8098                         Loc, LookupOrdinaryName);
8099          LookupName(R, TUScope, true);
8100
8101          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8102          if (!CollectableMemCpy) {
8103            // Something went horribly wrong earlier, and we will have
8104            // complained about it.
8105            Invalid = true;
8106            continue;
8107          }
8108
8109          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8110                                                  CollectableMemCpy->getType(),
8111                                                  VK_LValue, Loc, 0).take();
8112          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8113        }
8114      }
8115      // Create a reference to the __builtin_memcpy builtin function.
8116      else if (!BuiltinMemCpyRef) {
8117        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8118                       LookupOrdinaryName);
8119        LookupName(R, TUScope, true);
8120
8121        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8122        if (!BuiltinMemCpy) {
8123          // Something went horribly wrong earlier, and we will have complained
8124          // about it.
8125          Invalid = true;
8126          continue;
8127        }
8128
8129        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8130                                            BuiltinMemCpy->getType(),
8131                                            VK_LValue, Loc, 0).take();
8132        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8133      }
8134
8135      ASTOwningVector<Expr*> CallArgs(*this);
8136      CallArgs.push_back(To.takeAs<Expr>());
8137      CallArgs.push_back(From.takeAs<Expr>());
8138      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8139      ExprResult Call = ExprError();
8140      if (NeedsCollectableMemCpy)
8141        Call = ActOnCallExpr(/*Scope=*/0,
8142                             CollectableMemCpyRef,
8143                             Loc, move_arg(CallArgs),
8144                             Loc);
8145      else
8146        Call = ActOnCallExpr(/*Scope=*/0,
8147                             BuiltinMemCpyRef,
8148                             Loc, move_arg(CallArgs),
8149                             Loc);
8150
8151      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8152      Statements.push_back(Call.takeAs<Expr>());
8153      continue;
8154    }
8155
8156    // Build the copy of this field.
8157    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8158                                            To.get(), From.get(),
8159                                            /*CopyingBaseSubobject=*/false,
8160                                            /*Copying=*/true);
8161    if (Copy.isInvalid()) {
8162      Diag(CurrentLocation, diag::note_member_synthesized_at)
8163        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8164      CopyAssignOperator->setInvalidDecl();
8165      return;
8166    }
8167
8168    // Success! Record the copy.
8169    Statements.push_back(Copy.takeAs<Stmt>());
8170  }
8171
8172  if (!Invalid) {
8173    // Add a "return *this;"
8174    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8175
8176    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8177    if (Return.isInvalid())
8178      Invalid = true;
8179    else {
8180      Statements.push_back(Return.takeAs<Stmt>());
8181
8182      if (Trap.hasErrorOccurred()) {
8183        Diag(CurrentLocation, diag::note_member_synthesized_at)
8184          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8185        Invalid = true;
8186      }
8187    }
8188  }
8189
8190  if (Invalid) {
8191    CopyAssignOperator->setInvalidDecl();
8192    return;
8193  }
8194
8195  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8196                                            /*isStmtExpr=*/false);
8197  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8198  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8199
8200  if (ASTMutationListener *L = getASTMutationListener()) {
8201    L->CompletedImplicitDefinition(CopyAssignOperator);
8202  }
8203}
8204
8205Sema::ImplicitExceptionSpecification
8206Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8207  ImplicitExceptionSpecification ExceptSpec(Context);
8208
8209  if (ClassDecl->isInvalidDecl())
8210    return ExceptSpec;
8211
8212  // C++0x [except.spec]p14:
8213  //   An implicitly declared special member function (Clause 12) shall have an
8214  //   exception-specification. [...]
8215
8216  // It is unspecified whether or not an implicit move assignment operator
8217  // attempts to deduplicate calls to assignment operators of virtual bases are
8218  // made. As such, this exception specification is effectively unspecified.
8219  // Based on a similar decision made for constness in C++0x, we're erring on
8220  // the side of assuming such calls to be made regardless of whether they
8221  // actually happen.
8222  // Note that a move constructor is not implicitly declared when there are
8223  // virtual bases, but it can still be user-declared and explicitly defaulted.
8224  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8225                                       BaseEnd = ClassDecl->bases_end();
8226       Base != BaseEnd; ++Base) {
8227    if (Base->isVirtual())
8228      continue;
8229
8230    CXXRecordDecl *BaseClassDecl
8231      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8232    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8233                                                           false, 0))
8234      ExceptSpec.CalledDecl(MoveAssign);
8235  }
8236
8237  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8238                                       BaseEnd = ClassDecl->vbases_end();
8239       Base != BaseEnd; ++Base) {
8240    CXXRecordDecl *BaseClassDecl
8241      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8242    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8243                                                           false, 0))
8244      ExceptSpec.CalledDecl(MoveAssign);
8245  }
8246
8247  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8248                                  FieldEnd = ClassDecl->field_end();
8249       Field != FieldEnd;
8250       ++Field) {
8251    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8252    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8253      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8254                                                             false, 0))
8255        ExceptSpec.CalledDecl(MoveAssign);
8256    }
8257  }
8258
8259  return ExceptSpec;
8260}
8261
8262CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8263  // Note: The following rules are largely analoguous to the move
8264  // constructor rules.
8265
8266  ImplicitExceptionSpecification Spec(
8267      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8268
8269  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8270  QualType RetType = Context.getLValueReferenceType(ArgType);
8271  ArgType = Context.getRValueReferenceType(ArgType);
8272
8273  //   An implicitly-declared move assignment operator is an inline public
8274  //   member of its class.
8275  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8276  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8277  SourceLocation ClassLoc = ClassDecl->getLocation();
8278  DeclarationNameInfo NameInfo(Name, ClassLoc);
8279  CXXMethodDecl *MoveAssignment
8280    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8281                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8282                            /*TInfo=*/0, /*isStatic=*/false,
8283                            /*StorageClassAsWritten=*/SC_None,
8284                            /*isInline=*/true,
8285                            /*isConstexpr=*/false,
8286                            SourceLocation());
8287  MoveAssignment->setAccess(AS_public);
8288  MoveAssignment->setDefaulted();
8289  MoveAssignment->setImplicit();
8290  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8291
8292  // Add the parameter to the operator.
8293  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8294                                               ClassLoc, ClassLoc, /*Id=*/0,
8295                                               ArgType, /*TInfo=*/0,
8296                                               SC_None,
8297                                               SC_None, 0);
8298  MoveAssignment->setParams(FromParam);
8299
8300  // Note that we have added this copy-assignment operator.
8301  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8302
8303  // C++0x [class.copy]p9:
8304  //   If the definition of a class X does not explicitly declare a move
8305  //   assignment operator, one will be implicitly declared as defaulted if and
8306  //   only if:
8307  //   [...]
8308  //   - the move assignment operator would not be implicitly defined as
8309  //     deleted.
8310  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8311    // Cache this result so that we don't try to generate this over and over
8312    // on every lookup, leaking memory and wasting time.
8313    ClassDecl->setFailedImplicitMoveAssignment();
8314    return 0;
8315  }
8316
8317  if (Scope *S = getScopeForContext(ClassDecl))
8318    PushOnScopeChains(MoveAssignment, S, false);
8319  ClassDecl->addDecl(MoveAssignment);
8320
8321  AddOverriddenMethods(ClassDecl, MoveAssignment);
8322  return MoveAssignment;
8323}
8324
8325void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8326                                        CXXMethodDecl *MoveAssignOperator) {
8327  assert((MoveAssignOperator->isDefaulted() &&
8328          MoveAssignOperator->isOverloadedOperator() &&
8329          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8330          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8331         "DefineImplicitMoveAssignment called for wrong function");
8332
8333  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8334
8335  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8336    MoveAssignOperator->setInvalidDecl();
8337    return;
8338  }
8339
8340  MoveAssignOperator->setUsed();
8341
8342  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8343  DiagnosticErrorTrap Trap(Diags);
8344
8345  // C++0x [class.copy]p28:
8346  //   The implicitly-defined or move assignment operator for a non-union class
8347  //   X performs memberwise move assignment of its subobjects. The direct base
8348  //   classes of X are assigned first, in the order of their declaration in the
8349  //   base-specifier-list, and then the immediate non-static data members of X
8350  //   are assigned, in the order in which they were declared in the class
8351  //   definition.
8352
8353  // The statements that form the synthesized function body.
8354  ASTOwningVector<Stmt*> Statements(*this);
8355
8356  // The parameter for the "other" object, which we are move from.
8357  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8358  QualType OtherRefType = Other->getType()->
8359      getAs<RValueReferenceType>()->getPointeeType();
8360  assert(OtherRefType.getQualifiers() == 0 &&
8361         "Bad argument type of defaulted move assignment");
8362
8363  // Our location for everything implicitly-generated.
8364  SourceLocation Loc = MoveAssignOperator->getLocation();
8365
8366  // Construct a reference to the "other" object. We'll be using this
8367  // throughout the generated ASTs.
8368  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8369  assert(OtherRef && "Reference to parameter cannot fail!");
8370  // Cast to rvalue.
8371  OtherRef = CastForMoving(*this, OtherRef);
8372
8373  // Construct the "this" pointer. We'll be using this throughout the generated
8374  // ASTs.
8375  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8376  assert(This && "Reference to this cannot fail!");
8377
8378  // Assign base classes.
8379  bool Invalid = false;
8380  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8381       E = ClassDecl->bases_end(); Base != E; ++Base) {
8382    // Form the assignment:
8383    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8384    QualType BaseType = Base->getType().getUnqualifiedType();
8385    if (!BaseType->isRecordType()) {
8386      Invalid = true;
8387      continue;
8388    }
8389
8390    CXXCastPath BasePath;
8391    BasePath.push_back(Base);
8392
8393    // Construct the "from" expression, which is an implicit cast to the
8394    // appropriately-qualified base type.
8395    Expr *From = OtherRef;
8396    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8397                             VK_XValue, &BasePath).take();
8398
8399    // Dereference "this".
8400    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8401
8402    // Implicitly cast "this" to the appropriately-qualified base type.
8403    To = ImpCastExprToType(To.take(),
8404                           Context.getCVRQualifiedType(BaseType,
8405                                     MoveAssignOperator->getTypeQualifiers()),
8406                           CK_UncheckedDerivedToBase,
8407                           VK_LValue, &BasePath);
8408
8409    // Build the move.
8410    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8411                                            To.get(), From,
8412                                            /*CopyingBaseSubobject=*/true,
8413                                            /*Copying=*/false);
8414    if (Move.isInvalid()) {
8415      Diag(CurrentLocation, diag::note_member_synthesized_at)
8416        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8417      MoveAssignOperator->setInvalidDecl();
8418      return;
8419    }
8420
8421    // Success! Record the move.
8422    Statements.push_back(Move.takeAs<Expr>());
8423  }
8424
8425  // \brief Reference to the __builtin_memcpy function.
8426  Expr *BuiltinMemCpyRef = 0;
8427  // \brief Reference to the __builtin_objc_memmove_collectable function.
8428  Expr *CollectableMemCpyRef = 0;
8429
8430  // Assign non-static members.
8431  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8432                                  FieldEnd = ClassDecl->field_end();
8433       Field != FieldEnd; ++Field) {
8434    if (Field->isUnnamedBitfield())
8435      continue;
8436
8437    // Check for members of reference type; we can't move those.
8438    if (Field->getType()->isReferenceType()) {
8439      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8440        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8441      Diag(Field->getLocation(), diag::note_declared_at);
8442      Diag(CurrentLocation, diag::note_member_synthesized_at)
8443        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8444      Invalid = true;
8445      continue;
8446    }
8447
8448    // Check for members of const-qualified, non-class type.
8449    QualType BaseType = Context.getBaseElementType(Field->getType());
8450    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8451      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8452        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8453      Diag(Field->getLocation(), diag::note_declared_at);
8454      Diag(CurrentLocation, diag::note_member_synthesized_at)
8455        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8456      Invalid = true;
8457      continue;
8458    }
8459
8460    // Suppress assigning zero-width bitfields.
8461    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8462      continue;
8463
8464    QualType FieldType = Field->getType().getNonReferenceType();
8465    if (FieldType->isIncompleteArrayType()) {
8466      assert(ClassDecl->hasFlexibleArrayMember() &&
8467             "Incomplete array type is not valid");
8468      continue;
8469    }
8470
8471    // Build references to the field in the object we're copying from and to.
8472    CXXScopeSpec SS; // Intentionally empty
8473    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8474                              LookupMemberName);
8475    MemberLookup.addDecl(*Field);
8476    MemberLookup.resolveKind();
8477    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8478                                               Loc, /*IsArrow=*/false,
8479                                               SS, SourceLocation(), 0,
8480                                               MemberLookup, 0);
8481    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8482                                             Loc, /*IsArrow=*/true,
8483                                             SS, SourceLocation(), 0,
8484                                             MemberLookup, 0);
8485    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8486    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8487
8488    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8489        "Member reference with rvalue base must be rvalue except for reference "
8490        "members, which aren't allowed for move assignment.");
8491
8492    // If the field should be copied with __builtin_memcpy rather than via
8493    // explicit assignments, do so. This optimization only applies for arrays
8494    // of scalars and arrays of class type with trivial move-assignment
8495    // operators.
8496    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8497        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8498      // Compute the size of the memory buffer to be copied.
8499      QualType SizeType = Context.getSizeType();
8500      llvm::APInt Size(Context.getTypeSize(SizeType),
8501                       Context.getTypeSizeInChars(BaseType).getQuantity());
8502      for (const ConstantArrayType *Array
8503              = Context.getAsConstantArrayType(FieldType);
8504           Array;
8505           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8506        llvm::APInt ArraySize
8507          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8508        Size *= ArraySize;
8509      }
8510
8511      // Take the address of the field references for "from" and "to". We
8512      // directly construct UnaryOperators here because semantic analysis
8513      // does not permit us to take the address of an xvalue.
8514      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8515                             Context.getPointerType(From.get()->getType()),
8516                             VK_RValue, OK_Ordinary, Loc);
8517      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8518                           Context.getPointerType(To.get()->getType()),
8519                           VK_RValue, OK_Ordinary, Loc);
8520
8521      bool NeedsCollectableMemCpy =
8522          (BaseType->isRecordType() &&
8523           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8524
8525      if (NeedsCollectableMemCpy) {
8526        if (!CollectableMemCpyRef) {
8527          // Create a reference to the __builtin_objc_memmove_collectable function.
8528          LookupResult R(*this,
8529                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8530                         Loc, LookupOrdinaryName);
8531          LookupName(R, TUScope, true);
8532
8533          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8534          if (!CollectableMemCpy) {
8535            // Something went horribly wrong earlier, and we will have
8536            // complained about it.
8537            Invalid = true;
8538            continue;
8539          }
8540
8541          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8542                                                  CollectableMemCpy->getType(),
8543                                                  VK_LValue, Loc, 0).take();
8544          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8545        }
8546      }
8547      // Create a reference to the __builtin_memcpy builtin function.
8548      else if (!BuiltinMemCpyRef) {
8549        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8550                       LookupOrdinaryName);
8551        LookupName(R, TUScope, true);
8552
8553        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8554        if (!BuiltinMemCpy) {
8555          // Something went horribly wrong earlier, and we will have complained
8556          // about it.
8557          Invalid = true;
8558          continue;
8559        }
8560
8561        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8562                                            BuiltinMemCpy->getType(),
8563                                            VK_LValue, Loc, 0).take();
8564        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8565      }
8566
8567      ASTOwningVector<Expr*> CallArgs(*this);
8568      CallArgs.push_back(To.takeAs<Expr>());
8569      CallArgs.push_back(From.takeAs<Expr>());
8570      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8571      ExprResult Call = ExprError();
8572      if (NeedsCollectableMemCpy)
8573        Call = ActOnCallExpr(/*Scope=*/0,
8574                             CollectableMemCpyRef,
8575                             Loc, move_arg(CallArgs),
8576                             Loc);
8577      else
8578        Call = ActOnCallExpr(/*Scope=*/0,
8579                             BuiltinMemCpyRef,
8580                             Loc, move_arg(CallArgs),
8581                             Loc);
8582
8583      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8584      Statements.push_back(Call.takeAs<Expr>());
8585      continue;
8586    }
8587
8588    // Build the move of this field.
8589    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8590                                            To.get(), From.get(),
8591                                            /*CopyingBaseSubobject=*/false,
8592                                            /*Copying=*/false);
8593    if (Move.isInvalid()) {
8594      Diag(CurrentLocation, diag::note_member_synthesized_at)
8595        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8596      MoveAssignOperator->setInvalidDecl();
8597      return;
8598    }
8599
8600    // Success! Record the copy.
8601    Statements.push_back(Move.takeAs<Stmt>());
8602  }
8603
8604  if (!Invalid) {
8605    // Add a "return *this;"
8606    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8607
8608    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8609    if (Return.isInvalid())
8610      Invalid = true;
8611    else {
8612      Statements.push_back(Return.takeAs<Stmt>());
8613
8614      if (Trap.hasErrorOccurred()) {
8615        Diag(CurrentLocation, diag::note_member_synthesized_at)
8616          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8617        Invalid = true;
8618      }
8619    }
8620  }
8621
8622  if (Invalid) {
8623    MoveAssignOperator->setInvalidDecl();
8624    return;
8625  }
8626
8627  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8628                                            /*isStmtExpr=*/false);
8629  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8630  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8631
8632  if (ASTMutationListener *L = getASTMutationListener()) {
8633    L->CompletedImplicitDefinition(MoveAssignOperator);
8634  }
8635}
8636
8637std::pair<Sema::ImplicitExceptionSpecification, bool>
8638Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8639  if (ClassDecl->isInvalidDecl())
8640    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8641
8642  // C++ [class.copy]p5:
8643  //   The implicitly-declared copy constructor for a class X will
8644  //   have the form
8645  //
8646  //       X::X(const X&)
8647  //
8648  //   if
8649  // FIXME: It ought to be possible to store this on the record.
8650  bool HasConstCopyConstructor = true;
8651
8652  //     -- each direct or virtual base class B of X has a copy
8653  //        constructor whose first parameter is of type const B& or
8654  //        const volatile B&, and
8655  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8656                                       BaseEnd = ClassDecl->bases_end();
8657       HasConstCopyConstructor && Base != BaseEnd;
8658       ++Base) {
8659    // Virtual bases are handled below.
8660    if (Base->isVirtual())
8661      continue;
8662
8663    CXXRecordDecl *BaseClassDecl
8664      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8665    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8666                             &HasConstCopyConstructor);
8667  }
8668
8669  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8670                                       BaseEnd = ClassDecl->vbases_end();
8671       HasConstCopyConstructor && Base != BaseEnd;
8672       ++Base) {
8673    CXXRecordDecl *BaseClassDecl
8674      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8675    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8676                             &HasConstCopyConstructor);
8677  }
8678
8679  //     -- for all the nonstatic data members of X that are of a
8680  //        class type M (or array thereof), each such class type
8681  //        has a copy constructor whose first parameter is of type
8682  //        const M& or const volatile M&.
8683  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8684                                  FieldEnd = ClassDecl->field_end();
8685       HasConstCopyConstructor && Field != FieldEnd;
8686       ++Field) {
8687    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8688    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8689      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8690                               &HasConstCopyConstructor);
8691    }
8692  }
8693  //   Otherwise, the implicitly declared copy constructor will have
8694  //   the form
8695  //
8696  //       X::X(X&)
8697
8698  // C++ [except.spec]p14:
8699  //   An implicitly declared special member function (Clause 12) shall have an
8700  //   exception-specification. [...]
8701  ImplicitExceptionSpecification ExceptSpec(Context);
8702  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8703  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8704                                       BaseEnd = ClassDecl->bases_end();
8705       Base != BaseEnd;
8706       ++Base) {
8707    // Virtual bases are handled below.
8708    if (Base->isVirtual())
8709      continue;
8710
8711    CXXRecordDecl *BaseClassDecl
8712      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8713    if (CXXConstructorDecl *CopyConstructor =
8714          LookupCopyingConstructor(BaseClassDecl, Quals))
8715      ExceptSpec.CalledDecl(CopyConstructor);
8716  }
8717  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8718                                       BaseEnd = ClassDecl->vbases_end();
8719       Base != BaseEnd;
8720       ++Base) {
8721    CXXRecordDecl *BaseClassDecl
8722      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8723    if (CXXConstructorDecl *CopyConstructor =
8724          LookupCopyingConstructor(BaseClassDecl, Quals))
8725      ExceptSpec.CalledDecl(CopyConstructor);
8726  }
8727  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8728                                  FieldEnd = ClassDecl->field_end();
8729       Field != FieldEnd;
8730       ++Field) {
8731    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8732    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8733      if (CXXConstructorDecl *CopyConstructor =
8734        LookupCopyingConstructor(FieldClassDecl, Quals))
8735      ExceptSpec.CalledDecl(CopyConstructor);
8736    }
8737  }
8738
8739  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8740}
8741
8742CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8743                                                    CXXRecordDecl *ClassDecl) {
8744  // C++ [class.copy]p4:
8745  //   If the class definition does not explicitly declare a copy
8746  //   constructor, one is declared implicitly.
8747
8748  ImplicitExceptionSpecification Spec(Context);
8749  bool Const;
8750  llvm::tie(Spec, Const) =
8751    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8752
8753  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8754  QualType ArgType = ClassType;
8755  if (Const)
8756    ArgType = ArgType.withConst();
8757  ArgType = Context.getLValueReferenceType(ArgType);
8758
8759  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8760
8761  DeclarationName Name
8762    = Context.DeclarationNames.getCXXConstructorName(
8763                                           Context.getCanonicalType(ClassType));
8764  SourceLocation ClassLoc = ClassDecl->getLocation();
8765  DeclarationNameInfo NameInfo(Name, ClassLoc);
8766
8767  //   An implicitly-declared copy constructor is an inline public
8768  //   member of its class.
8769  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8770      Context, ClassDecl, ClassLoc, NameInfo,
8771      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8772      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8773      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8774        getLangOptions().CPlusPlus0x);
8775  CopyConstructor->setAccess(AS_public);
8776  CopyConstructor->setDefaulted();
8777  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8778
8779  // Note that we have declared this constructor.
8780  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8781
8782  // Add the parameter to the constructor.
8783  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8784                                               ClassLoc, ClassLoc,
8785                                               /*IdentifierInfo=*/0,
8786                                               ArgType, /*TInfo=*/0,
8787                                               SC_None,
8788                                               SC_None, 0);
8789  CopyConstructor->setParams(FromParam);
8790
8791  if (Scope *S = getScopeForContext(ClassDecl))
8792    PushOnScopeChains(CopyConstructor, S, false);
8793  ClassDecl->addDecl(CopyConstructor);
8794
8795  // C++11 [class.copy]p8:
8796  //   ... If the class definition does not explicitly declare a copy
8797  //   constructor, there is no user-declared move constructor, and there is no
8798  //   user-declared move assignment operator, a copy constructor is implicitly
8799  //   declared as defaulted.
8800  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8801      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8802          !getLangOptions().MicrosoftMode) ||
8803      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8804    CopyConstructor->setDeletedAsWritten();
8805
8806  return CopyConstructor;
8807}
8808
8809void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8810                                   CXXConstructorDecl *CopyConstructor) {
8811  assert((CopyConstructor->isDefaulted() &&
8812          CopyConstructor->isCopyConstructor() &&
8813          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8814         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8815
8816  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8817  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8818
8819  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8820  DiagnosticErrorTrap Trap(Diags);
8821
8822  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8823      Trap.hasErrorOccurred()) {
8824    Diag(CurrentLocation, diag::note_member_synthesized_at)
8825      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8826    CopyConstructor->setInvalidDecl();
8827  }  else {
8828    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8829                                               CopyConstructor->getLocation(),
8830                                               MultiStmtArg(*this, 0, 0),
8831                                               /*isStmtExpr=*/false)
8832                                                              .takeAs<Stmt>());
8833    CopyConstructor->setImplicitlyDefined(true);
8834  }
8835
8836  CopyConstructor->setUsed();
8837  if (ASTMutationListener *L = getASTMutationListener()) {
8838    L->CompletedImplicitDefinition(CopyConstructor);
8839  }
8840}
8841
8842Sema::ImplicitExceptionSpecification
8843Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8844  // C++ [except.spec]p14:
8845  //   An implicitly declared special member function (Clause 12) shall have an
8846  //   exception-specification. [...]
8847  ImplicitExceptionSpecification ExceptSpec(Context);
8848  if (ClassDecl->isInvalidDecl())
8849    return ExceptSpec;
8850
8851  // Direct base-class constructors.
8852  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8853                                       BEnd = ClassDecl->bases_end();
8854       B != BEnd; ++B) {
8855    if (B->isVirtual()) // Handled below.
8856      continue;
8857
8858    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8859      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8860      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8861      // If this is a deleted function, add it anyway. This might be conformant
8862      // with the standard. This might not. I'm not sure. It might not matter.
8863      if (Constructor)
8864        ExceptSpec.CalledDecl(Constructor);
8865    }
8866  }
8867
8868  // Virtual base-class constructors.
8869  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8870                                       BEnd = ClassDecl->vbases_end();
8871       B != BEnd; ++B) {
8872    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8873      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8874      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8875      // If this is a deleted function, add it anyway. This might be conformant
8876      // with the standard. This might not. I'm not sure. It might not matter.
8877      if (Constructor)
8878        ExceptSpec.CalledDecl(Constructor);
8879    }
8880  }
8881
8882  // Field constructors.
8883  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8884                               FEnd = ClassDecl->field_end();
8885       F != FEnd; ++F) {
8886    if (const RecordType *RecordTy
8887              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8888      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8889      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8890      // If this is a deleted function, add it anyway. This might be conformant
8891      // with the standard. This might not. I'm not sure. It might not matter.
8892      // In particular, the problem is that this function never gets called. It
8893      // might just be ill-formed because this function attempts to refer to
8894      // a deleted function here.
8895      if (Constructor)
8896        ExceptSpec.CalledDecl(Constructor);
8897    }
8898  }
8899
8900  return ExceptSpec;
8901}
8902
8903CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8904                                                    CXXRecordDecl *ClassDecl) {
8905  ImplicitExceptionSpecification Spec(
8906      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8907
8908  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8909  QualType ArgType = Context.getRValueReferenceType(ClassType);
8910
8911  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8912
8913  DeclarationName Name
8914    = Context.DeclarationNames.getCXXConstructorName(
8915                                           Context.getCanonicalType(ClassType));
8916  SourceLocation ClassLoc = ClassDecl->getLocation();
8917  DeclarationNameInfo NameInfo(Name, ClassLoc);
8918
8919  // C++0x [class.copy]p11:
8920  //   An implicitly-declared copy/move constructor is an inline public
8921  //   member of its class.
8922  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8923      Context, ClassDecl, ClassLoc, NameInfo,
8924      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8925      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8926      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8927        getLangOptions().CPlusPlus0x);
8928  MoveConstructor->setAccess(AS_public);
8929  MoveConstructor->setDefaulted();
8930  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8931
8932  // Add the parameter to the constructor.
8933  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8934                                               ClassLoc, ClassLoc,
8935                                               /*IdentifierInfo=*/0,
8936                                               ArgType, /*TInfo=*/0,
8937                                               SC_None,
8938                                               SC_None, 0);
8939  MoveConstructor->setParams(FromParam);
8940
8941  // C++0x [class.copy]p9:
8942  //   If the definition of a class X does not explicitly declare a move
8943  //   constructor, one will be implicitly declared as defaulted if and only if:
8944  //   [...]
8945  //   - the move constructor would not be implicitly defined as deleted.
8946  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8947    // Cache this result so that we don't try to generate this over and over
8948    // on every lookup, leaking memory and wasting time.
8949    ClassDecl->setFailedImplicitMoveConstructor();
8950    return 0;
8951  }
8952
8953  // Note that we have declared this constructor.
8954  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8955
8956  if (Scope *S = getScopeForContext(ClassDecl))
8957    PushOnScopeChains(MoveConstructor, S, false);
8958  ClassDecl->addDecl(MoveConstructor);
8959
8960  return MoveConstructor;
8961}
8962
8963void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8964                                   CXXConstructorDecl *MoveConstructor) {
8965  assert((MoveConstructor->isDefaulted() &&
8966          MoveConstructor->isMoveConstructor() &&
8967          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8968         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8969
8970  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8971  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8972
8973  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8974  DiagnosticErrorTrap Trap(Diags);
8975
8976  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8977      Trap.hasErrorOccurred()) {
8978    Diag(CurrentLocation, diag::note_member_synthesized_at)
8979      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8980    MoveConstructor->setInvalidDecl();
8981  }  else {
8982    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8983                                               MoveConstructor->getLocation(),
8984                                               MultiStmtArg(*this, 0, 0),
8985                                               /*isStmtExpr=*/false)
8986                                                              .takeAs<Stmt>());
8987    MoveConstructor->setImplicitlyDefined(true);
8988  }
8989
8990  MoveConstructor->setUsed();
8991
8992  if (ASTMutationListener *L = getASTMutationListener()) {
8993    L->CompletedImplicitDefinition(MoveConstructor);
8994  }
8995}
8996
8997ExprResult
8998Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8999                            CXXConstructorDecl *Constructor,
9000                            MultiExprArg ExprArgs,
9001                            bool HadMultipleCandidates,
9002                            bool RequiresZeroInit,
9003                            unsigned ConstructKind,
9004                            SourceRange ParenRange) {
9005  bool Elidable = false;
9006
9007  // C++0x [class.copy]p34:
9008  //   When certain criteria are met, an implementation is allowed to
9009  //   omit the copy/move construction of a class object, even if the
9010  //   copy/move constructor and/or destructor for the object have
9011  //   side effects. [...]
9012  //     - when a temporary class object that has not been bound to a
9013  //       reference (12.2) would be copied/moved to a class object
9014  //       with the same cv-unqualified type, the copy/move operation
9015  //       can be omitted by constructing the temporary object
9016  //       directly into the target of the omitted copy/move
9017  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9018      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9019    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9020    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9021  }
9022
9023  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9024                               Elidable, move(ExprArgs), HadMultipleCandidates,
9025                               RequiresZeroInit, ConstructKind, ParenRange);
9026}
9027
9028/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9029/// including handling of its default argument expressions.
9030ExprResult
9031Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9032                            CXXConstructorDecl *Constructor, bool Elidable,
9033                            MultiExprArg ExprArgs,
9034                            bool HadMultipleCandidates,
9035                            bool RequiresZeroInit,
9036                            unsigned ConstructKind,
9037                            SourceRange ParenRange) {
9038  unsigned NumExprs = ExprArgs.size();
9039  Expr **Exprs = (Expr **)ExprArgs.release();
9040
9041  for (specific_attr_iterator<NonNullAttr>
9042           i = Constructor->specific_attr_begin<NonNullAttr>(),
9043           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9044    const NonNullAttr *NonNull = *i;
9045    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9046  }
9047
9048  MarkFunctionReferenced(ConstructLoc, Constructor);
9049  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9050                                        Constructor, Elidable, Exprs, NumExprs,
9051                                        HadMultipleCandidates, RequiresZeroInit,
9052              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9053                                        ParenRange));
9054}
9055
9056bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9057                                        CXXConstructorDecl *Constructor,
9058                                        MultiExprArg Exprs,
9059                                        bool HadMultipleCandidates) {
9060  // FIXME: Provide the correct paren SourceRange when available.
9061  ExprResult TempResult =
9062    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9063                          move(Exprs), HadMultipleCandidates, false,
9064                          CXXConstructExpr::CK_Complete, SourceRange());
9065  if (TempResult.isInvalid())
9066    return true;
9067
9068  Expr *Temp = TempResult.takeAs<Expr>();
9069  CheckImplicitConversions(Temp, VD->getLocation());
9070  MarkFunctionReferenced(VD->getLocation(), Constructor);
9071  Temp = MaybeCreateExprWithCleanups(Temp);
9072  VD->setInit(Temp);
9073
9074  return false;
9075}
9076
9077void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9078  if (VD->isInvalidDecl()) return;
9079
9080  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9081  if (ClassDecl->isInvalidDecl()) return;
9082  if (ClassDecl->hasTrivialDestructor()) return;
9083  if (ClassDecl->isDependentContext()) return;
9084
9085  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9086  MarkFunctionReferenced(VD->getLocation(), Destructor);
9087  CheckDestructorAccess(VD->getLocation(), Destructor,
9088                        PDiag(diag::err_access_dtor_var)
9089                        << VD->getDeclName()
9090                        << VD->getType());
9091
9092  if (!VD->hasGlobalStorage()) return;
9093
9094  // Emit warning for non-trivial dtor in global scope (a real global,
9095  // class-static, function-static).
9096  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9097
9098  // TODO: this should be re-enabled for static locals by !CXAAtExit
9099  if (!VD->isStaticLocal())
9100    Diag(VD->getLocation(), diag::warn_global_destructor);
9101}
9102
9103/// AddCXXDirectInitializerToDecl - This action is called immediately after
9104/// ActOnDeclarator, when a C++ direct initializer is present.
9105/// e.g: "int x(1);"
9106void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9107                                         SourceLocation LParenLoc,
9108                                         MultiExprArg Exprs,
9109                                         SourceLocation RParenLoc,
9110                                         bool TypeMayContainAuto) {
9111  // If there is no declaration, there was an error parsing it.  Just ignore
9112  // the initializer.
9113  if (RealDecl == 0)
9114    return;
9115
9116  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9117  if (!VDecl) {
9118    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9119    RealDecl->setInvalidDecl();
9120    return;
9121  }
9122
9123  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9124  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9125    if (Exprs.size() == 0) {
9126      // It isn't possible to write this directly, but it is possible to
9127      // end up in this situation with "auto x(some_pack...);"
9128      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9129        << VDecl->getDeclName() << VDecl->getType()
9130        << VDecl->getSourceRange();
9131      RealDecl->setInvalidDecl();
9132      return;
9133    }
9134
9135    if (Exprs.size() > 1) {
9136      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9137           diag::err_auto_var_init_multiple_expressions)
9138        << VDecl->getDeclName() << VDecl->getType()
9139        << VDecl->getSourceRange();
9140      RealDecl->setInvalidDecl();
9141      return;
9142    }
9143
9144    Expr *Init = Exprs.get()[0];
9145    TypeSourceInfo *DeducedType = 0;
9146    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9147            DAR_Failed)
9148      DiagnoseAutoDeductionFailure(VDecl, Init);
9149    if (!DeducedType) {
9150      RealDecl->setInvalidDecl();
9151      return;
9152    }
9153    VDecl->setTypeSourceInfo(DeducedType);
9154    VDecl->setType(DeducedType->getType());
9155
9156    // In ARC, infer lifetime.
9157    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9158      VDecl->setInvalidDecl();
9159
9160    // If this is a redeclaration, check that the type we just deduced matches
9161    // the previously declared type.
9162    if (VarDecl *Old = VDecl->getPreviousDecl())
9163      MergeVarDeclTypes(VDecl, Old);
9164  }
9165
9166  // We will represent direct-initialization similarly to copy-initialization:
9167  //    int x(1);  -as-> int x = 1;
9168  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9169  //
9170  // Clients that want to distinguish between the two forms, can check for
9171  // direct initializer using VarDecl::hasCXXDirectInitializer().
9172  // A major benefit is that clients that don't particularly care about which
9173  // exactly form was it (like the CodeGen) can handle both cases without
9174  // special case code.
9175
9176  // C++ 8.5p11:
9177  // The form of initialization (using parentheses or '=') is generally
9178  // insignificant, but does matter when the entity being initialized has a
9179  // class type.
9180
9181  if (!VDecl->getType()->isDependentType() &&
9182      !VDecl->getType()->isIncompleteArrayType() &&
9183      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9184                          diag::err_typecheck_decl_incomplete_type)) {
9185    VDecl->setInvalidDecl();
9186    return;
9187  }
9188
9189  // The variable can not have an abstract class type.
9190  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9191                             diag::err_abstract_type_in_decl,
9192                             AbstractVariableType))
9193    VDecl->setInvalidDecl();
9194
9195  const VarDecl *Def;
9196  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9197    Diag(VDecl->getLocation(), diag::err_redefinition)
9198    << VDecl->getDeclName();
9199    Diag(Def->getLocation(), diag::note_previous_definition);
9200    VDecl->setInvalidDecl();
9201    return;
9202  }
9203
9204  // C++ [class.static.data]p4
9205  //   If a static data member is of const integral or const
9206  //   enumeration type, its declaration in the class definition can
9207  //   specify a constant-initializer which shall be an integral
9208  //   constant expression (5.19). In that case, the member can appear
9209  //   in integral constant expressions. The member shall still be
9210  //   defined in a namespace scope if it is used in the program and the
9211  //   namespace scope definition shall not contain an initializer.
9212  //
9213  // We already performed a redefinition check above, but for static
9214  // data members we also need to check whether there was an in-class
9215  // declaration with an initializer.
9216  const VarDecl* PrevInit = 0;
9217  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9218    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9219    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9220    return;
9221  }
9222
9223  bool IsDependent = false;
9224  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9225    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9226      VDecl->setInvalidDecl();
9227      return;
9228    }
9229
9230    if (Exprs.get()[I]->isTypeDependent())
9231      IsDependent = true;
9232  }
9233
9234  // If either the declaration has a dependent type or if any of the
9235  // expressions is type-dependent, we represent the initialization
9236  // via a ParenListExpr for later use during template instantiation.
9237  if (VDecl->getType()->isDependentType() || IsDependent) {
9238    // Let clients know that initialization was done with a direct initializer.
9239    VDecl->setCXXDirectInitializer(true);
9240
9241    // Store the initialization expressions as a ParenListExpr.
9242    unsigned NumExprs = Exprs.size();
9243    VDecl->setInit(new (Context) ParenListExpr(
9244        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9245        VDecl->getType().getNonReferenceType()));
9246    return;
9247  }
9248
9249  // Capture the variable that is being initialized and the style of
9250  // initialization.
9251  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9252
9253  // FIXME: Poor source location information.
9254  InitializationKind Kind
9255    = InitializationKind::CreateDirect(VDecl->getLocation(),
9256                                       LParenLoc, RParenLoc);
9257
9258  QualType T = VDecl->getType();
9259  InitializationSequence InitSeq(*this, Entity, Kind,
9260                                 Exprs.get(), Exprs.size());
9261  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9262  if (Result.isInvalid()) {
9263    VDecl->setInvalidDecl();
9264    return;
9265  } else if (T != VDecl->getType()) {
9266    VDecl->setType(T);
9267    Result.get()->setType(T);
9268  }
9269
9270
9271  Expr *Init = Result.get();
9272  CheckImplicitConversions(Init, LParenLoc);
9273
9274  Init = MaybeCreateExprWithCleanups(Init);
9275  VDecl->setInit(Init);
9276  VDecl->setCXXDirectInitializer(true);
9277
9278  CheckCompleteVariableDeclaration(VDecl);
9279}
9280
9281/// \brief Given a constructor and the set of arguments provided for the
9282/// constructor, convert the arguments and add any required default arguments
9283/// to form a proper call to this constructor.
9284///
9285/// \returns true if an error occurred, false otherwise.
9286bool
9287Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9288                              MultiExprArg ArgsPtr,
9289                              SourceLocation Loc,
9290                              ASTOwningVector<Expr*> &ConvertedArgs) {
9291  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9292  unsigned NumArgs = ArgsPtr.size();
9293  Expr **Args = (Expr **)ArgsPtr.get();
9294
9295  const FunctionProtoType *Proto
9296    = Constructor->getType()->getAs<FunctionProtoType>();
9297  assert(Proto && "Constructor without a prototype?");
9298  unsigned NumArgsInProto = Proto->getNumArgs();
9299
9300  // If too few arguments are available, we'll fill in the rest with defaults.
9301  if (NumArgs < NumArgsInProto)
9302    ConvertedArgs.reserve(NumArgsInProto);
9303  else
9304    ConvertedArgs.reserve(NumArgs);
9305
9306  VariadicCallType CallType =
9307    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9308  SmallVector<Expr *, 8> AllArgs;
9309  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9310                                        Proto, 0, Args, NumArgs, AllArgs,
9311                                        CallType);
9312  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9313    ConvertedArgs.push_back(AllArgs[i]);
9314  return Invalid;
9315}
9316
9317static inline bool
9318CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9319                                       const FunctionDecl *FnDecl) {
9320  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9321  if (isa<NamespaceDecl>(DC)) {
9322    return SemaRef.Diag(FnDecl->getLocation(),
9323                        diag::err_operator_new_delete_declared_in_namespace)
9324      << FnDecl->getDeclName();
9325  }
9326
9327  if (isa<TranslationUnitDecl>(DC) &&
9328      FnDecl->getStorageClass() == SC_Static) {
9329    return SemaRef.Diag(FnDecl->getLocation(),
9330                        diag::err_operator_new_delete_declared_static)
9331      << FnDecl->getDeclName();
9332  }
9333
9334  return false;
9335}
9336
9337static inline bool
9338CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9339                            CanQualType ExpectedResultType,
9340                            CanQualType ExpectedFirstParamType,
9341                            unsigned DependentParamTypeDiag,
9342                            unsigned InvalidParamTypeDiag) {
9343  QualType ResultType =
9344    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9345
9346  // Check that the result type is not dependent.
9347  if (ResultType->isDependentType())
9348    return SemaRef.Diag(FnDecl->getLocation(),
9349                        diag::err_operator_new_delete_dependent_result_type)
9350    << FnDecl->getDeclName() << ExpectedResultType;
9351
9352  // Check that the result type is what we expect.
9353  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9354    return SemaRef.Diag(FnDecl->getLocation(),
9355                        diag::err_operator_new_delete_invalid_result_type)
9356    << FnDecl->getDeclName() << ExpectedResultType;
9357
9358  // A function template must have at least 2 parameters.
9359  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9360    return SemaRef.Diag(FnDecl->getLocation(),
9361                      diag::err_operator_new_delete_template_too_few_parameters)
9362        << FnDecl->getDeclName();
9363
9364  // The function decl must have at least 1 parameter.
9365  if (FnDecl->getNumParams() == 0)
9366    return SemaRef.Diag(FnDecl->getLocation(),
9367                        diag::err_operator_new_delete_too_few_parameters)
9368      << FnDecl->getDeclName();
9369
9370  // Check the the first parameter type is not dependent.
9371  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9372  if (FirstParamType->isDependentType())
9373    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9374      << FnDecl->getDeclName() << ExpectedFirstParamType;
9375
9376  // Check that the first parameter type is what we expect.
9377  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9378      ExpectedFirstParamType)
9379    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9380    << FnDecl->getDeclName() << ExpectedFirstParamType;
9381
9382  return false;
9383}
9384
9385static bool
9386CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9387  // C++ [basic.stc.dynamic.allocation]p1:
9388  //   A program is ill-formed if an allocation function is declared in a
9389  //   namespace scope other than global scope or declared static in global
9390  //   scope.
9391  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9392    return true;
9393
9394  CanQualType SizeTy =
9395    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9396
9397  // C++ [basic.stc.dynamic.allocation]p1:
9398  //  The return type shall be void*. The first parameter shall have type
9399  //  std::size_t.
9400  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9401                                  SizeTy,
9402                                  diag::err_operator_new_dependent_param_type,
9403                                  diag::err_operator_new_param_type))
9404    return true;
9405
9406  // C++ [basic.stc.dynamic.allocation]p1:
9407  //  The first parameter shall not have an associated default argument.
9408  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9409    return SemaRef.Diag(FnDecl->getLocation(),
9410                        diag::err_operator_new_default_arg)
9411      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9412
9413  return false;
9414}
9415
9416static bool
9417CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9418  // C++ [basic.stc.dynamic.deallocation]p1:
9419  //   A program is ill-formed if deallocation functions are declared in a
9420  //   namespace scope other than global scope or declared static in global
9421  //   scope.
9422  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9423    return true;
9424
9425  // C++ [basic.stc.dynamic.deallocation]p2:
9426  //   Each deallocation function shall return void and its first parameter
9427  //   shall be void*.
9428  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9429                                  SemaRef.Context.VoidPtrTy,
9430                                 diag::err_operator_delete_dependent_param_type,
9431                                 diag::err_operator_delete_param_type))
9432    return true;
9433
9434  return false;
9435}
9436
9437/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9438/// of this overloaded operator is well-formed. If so, returns false;
9439/// otherwise, emits appropriate diagnostics and returns true.
9440bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9441  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9442         "Expected an overloaded operator declaration");
9443
9444  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9445
9446  // C++ [over.oper]p5:
9447  //   The allocation and deallocation functions, operator new,
9448  //   operator new[], operator delete and operator delete[], are
9449  //   described completely in 3.7.3. The attributes and restrictions
9450  //   found in the rest of this subclause do not apply to them unless
9451  //   explicitly stated in 3.7.3.
9452  if (Op == OO_Delete || Op == OO_Array_Delete)
9453    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9454
9455  if (Op == OO_New || Op == OO_Array_New)
9456    return CheckOperatorNewDeclaration(*this, FnDecl);
9457
9458  // C++ [over.oper]p6:
9459  //   An operator function shall either be a non-static member
9460  //   function or be a non-member function and have at least one
9461  //   parameter whose type is a class, a reference to a class, an
9462  //   enumeration, or a reference to an enumeration.
9463  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9464    if (MethodDecl->isStatic())
9465      return Diag(FnDecl->getLocation(),
9466                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9467  } else {
9468    bool ClassOrEnumParam = false;
9469    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9470                                   ParamEnd = FnDecl->param_end();
9471         Param != ParamEnd; ++Param) {
9472      QualType ParamType = (*Param)->getType().getNonReferenceType();
9473      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9474          ParamType->isEnumeralType()) {
9475        ClassOrEnumParam = true;
9476        break;
9477      }
9478    }
9479
9480    if (!ClassOrEnumParam)
9481      return Diag(FnDecl->getLocation(),
9482                  diag::err_operator_overload_needs_class_or_enum)
9483        << FnDecl->getDeclName();
9484  }
9485
9486  // C++ [over.oper]p8:
9487  //   An operator function cannot have default arguments (8.3.6),
9488  //   except where explicitly stated below.
9489  //
9490  // Only the function-call operator allows default arguments
9491  // (C++ [over.call]p1).
9492  if (Op != OO_Call) {
9493    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9494         Param != FnDecl->param_end(); ++Param) {
9495      if ((*Param)->hasDefaultArg())
9496        return Diag((*Param)->getLocation(),
9497                    diag::err_operator_overload_default_arg)
9498          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9499    }
9500  }
9501
9502  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9503    { false, false, false }
9504#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9505    , { Unary, Binary, MemberOnly }
9506#include "clang/Basic/OperatorKinds.def"
9507  };
9508
9509  bool CanBeUnaryOperator = OperatorUses[Op][0];
9510  bool CanBeBinaryOperator = OperatorUses[Op][1];
9511  bool MustBeMemberOperator = OperatorUses[Op][2];
9512
9513  // C++ [over.oper]p8:
9514  //   [...] Operator functions cannot have more or fewer parameters
9515  //   than the number required for the corresponding operator, as
9516  //   described in the rest of this subclause.
9517  unsigned NumParams = FnDecl->getNumParams()
9518                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9519  if (Op != OO_Call &&
9520      ((NumParams == 1 && !CanBeUnaryOperator) ||
9521       (NumParams == 2 && !CanBeBinaryOperator) ||
9522       (NumParams < 1) || (NumParams > 2))) {
9523    // We have the wrong number of parameters.
9524    unsigned ErrorKind;
9525    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9526      ErrorKind = 2;  // 2 -> unary or binary.
9527    } else if (CanBeUnaryOperator) {
9528      ErrorKind = 0;  // 0 -> unary
9529    } else {
9530      assert(CanBeBinaryOperator &&
9531             "All non-call overloaded operators are unary or binary!");
9532      ErrorKind = 1;  // 1 -> binary
9533    }
9534
9535    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9536      << FnDecl->getDeclName() << NumParams << ErrorKind;
9537  }
9538
9539  // Overloaded operators other than operator() cannot be variadic.
9540  if (Op != OO_Call &&
9541      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9542    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9543      << FnDecl->getDeclName();
9544  }
9545
9546  // Some operators must be non-static member functions.
9547  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9548    return Diag(FnDecl->getLocation(),
9549                diag::err_operator_overload_must_be_member)
9550      << FnDecl->getDeclName();
9551  }
9552
9553  // C++ [over.inc]p1:
9554  //   The user-defined function called operator++ implements the
9555  //   prefix and postfix ++ operator. If this function is a member
9556  //   function with no parameters, or a non-member function with one
9557  //   parameter of class or enumeration type, it defines the prefix
9558  //   increment operator ++ for objects of that type. If the function
9559  //   is a member function with one parameter (which shall be of type
9560  //   int) or a non-member function with two parameters (the second
9561  //   of which shall be of type int), it defines the postfix
9562  //   increment operator ++ for objects of that type.
9563  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9564    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9565    bool ParamIsInt = false;
9566    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9567      ParamIsInt = BT->getKind() == BuiltinType::Int;
9568
9569    if (!ParamIsInt)
9570      return Diag(LastParam->getLocation(),
9571                  diag::err_operator_overload_post_incdec_must_be_int)
9572        << LastParam->getType() << (Op == OO_MinusMinus);
9573  }
9574
9575  return false;
9576}
9577
9578/// CheckLiteralOperatorDeclaration - Check whether the declaration
9579/// of this literal operator function is well-formed. If so, returns
9580/// false; otherwise, emits appropriate diagnostics and returns true.
9581bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9582  DeclContext *DC = FnDecl->getDeclContext();
9583  Decl::Kind Kind = DC->getDeclKind();
9584  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9585      Kind != Decl::LinkageSpec) {
9586    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9587      << FnDecl->getDeclName();
9588    return true;
9589  }
9590
9591  bool Valid = false;
9592
9593  // template <char...> type operator "" name() is the only valid template
9594  // signature, and the only valid signature with no parameters.
9595  if (FnDecl->param_size() == 0) {
9596    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9597      // Must have only one template parameter
9598      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9599      if (Params->size() == 1) {
9600        NonTypeTemplateParmDecl *PmDecl =
9601          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9602
9603        // The template parameter must be a char parameter pack.
9604        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9605            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9606          Valid = true;
9607      }
9608    }
9609  } else {
9610    // Check the first parameter
9611    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9612
9613    QualType T = (*Param)->getType();
9614
9615    // unsigned long long int, long double, and any character type are allowed
9616    // as the only parameters.
9617    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9618        Context.hasSameType(T, Context.LongDoubleTy) ||
9619        Context.hasSameType(T, Context.CharTy) ||
9620        Context.hasSameType(T, Context.WCharTy) ||
9621        Context.hasSameType(T, Context.Char16Ty) ||
9622        Context.hasSameType(T, Context.Char32Ty)) {
9623      if (++Param == FnDecl->param_end())
9624        Valid = true;
9625      goto FinishedParams;
9626    }
9627
9628    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9629    const PointerType *PT = T->getAs<PointerType>();
9630    if (!PT)
9631      goto FinishedParams;
9632    T = PT->getPointeeType();
9633    if (!T.isConstQualified())
9634      goto FinishedParams;
9635    T = T.getUnqualifiedType();
9636
9637    // Move on to the second parameter;
9638    ++Param;
9639
9640    // If there is no second parameter, the first must be a const char *
9641    if (Param == FnDecl->param_end()) {
9642      if (Context.hasSameType(T, Context.CharTy))
9643        Valid = true;
9644      goto FinishedParams;
9645    }
9646
9647    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9648    // are allowed as the first parameter to a two-parameter function
9649    if (!(Context.hasSameType(T, Context.CharTy) ||
9650          Context.hasSameType(T, Context.WCharTy) ||
9651          Context.hasSameType(T, Context.Char16Ty) ||
9652          Context.hasSameType(T, Context.Char32Ty)))
9653      goto FinishedParams;
9654
9655    // The second and final parameter must be an std::size_t
9656    T = (*Param)->getType().getUnqualifiedType();
9657    if (Context.hasSameType(T, Context.getSizeType()) &&
9658        ++Param == FnDecl->param_end())
9659      Valid = true;
9660  }
9661
9662  // FIXME: This diagnostic is absolutely terrible.
9663FinishedParams:
9664  if (!Valid) {
9665    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9666      << FnDecl->getDeclName();
9667    return true;
9668  }
9669
9670  StringRef LiteralName
9671    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9672  if (LiteralName[0] != '_') {
9673    // C++0x [usrlit.suffix]p1:
9674    //   Literal suffix identifiers that do not start with an underscore are
9675    //   reserved for future standardization.
9676    bool IsHexFloat = true;
9677    if (LiteralName.size() > 1 &&
9678        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9679      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9680        if (!isdigit(LiteralName[I])) {
9681          IsHexFloat = false;
9682          break;
9683        }
9684      }
9685    }
9686
9687    if (IsHexFloat)
9688      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9689        << LiteralName;
9690    else
9691      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9692  }
9693
9694  return false;
9695}
9696
9697/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9698/// linkage specification, including the language and (if present)
9699/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9700/// the location of the language string literal, which is provided
9701/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9702/// the '{' brace. Otherwise, this linkage specification does not
9703/// have any braces.
9704Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9705                                           SourceLocation LangLoc,
9706                                           StringRef Lang,
9707                                           SourceLocation LBraceLoc) {
9708  LinkageSpecDecl::LanguageIDs Language;
9709  if (Lang == "\"C\"")
9710    Language = LinkageSpecDecl::lang_c;
9711  else if (Lang == "\"C++\"")
9712    Language = LinkageSpecDecl::lang_cxx;
9713  else {
9714    Diag(LangLoc, diag::err_bad_language);
9715    return 0;
9716  }
9717
9718  // FIXME: Add all the various semantics of linkage specifications
9719
9720  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9721                                               ExternLoc, LangLoc, Language);
9722  CurContext->addDecl(D);
9723  PushDeclContext(S, D);
9724  return D;
9725}
9726
9727/// ActOnFinishLinkageSpecification - Complete the definition of
9728/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9729/// valid, it's the position of the closing '}' brace in a linkage
9730/// specification that uses braces.
9731Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9732                                            Decl *LinkageSpec,
9733                                            SourceLocation RBraceLoc) {
9734  if (LinkageSpec) {
9735    if (RBraceLoc.isValid()) {
9736      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9737      LSDecl->setRBraceLoc(RBraceLoc);
9738    }
9739    PopDeclContext();
9740  }
9741  return LinkageSpec;
9742}
9743
9744/// \brief Perform semantic analysis for the variable declaration that
9745/// occurs within a C++ catch clause, returning the newly-created
9746/// variable.
9747VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9748                                         TypeSourceInfo *TInfo,
9749                                         SourceLocation StartLoc,
9750                                         SourceLocation Loc,
9751                                         IdentifierInfo *Name) {
9752  bool Invalid = false;
9753  QualType ExDeclType = TInfo->getType();
9754
9755  // Arrays and functions decay.
9756  if (ExDeclType->isArrayType())
9757    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9758  else if (ExDeclType->isFunctionType())
9759    ExDeclType = Context.getPointerType(ExDeclType);
9760
9761  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9762  // The exception-declaration shall not denote a pointer or reference to an
9763  // incomplete type, other than [cv] void*.
9764  // N2844 forbids rvalue references.
9765  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9766    Diag(Loc, diag::err_catch_rvalue_ref);
9767    Invalid = true;
9768  }
9769
9770  QualType BaseType = ExDeclType;
9771  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9772  unsigned DK = diag::err_catch_incomplete;
9773  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9774    BaseType = Ptr->getPointeeType();
9775    Mode = 1;
9776    DK = diag::err_catch_incomplete_ptr;
9777  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9778    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9779    BaseType = Ref->getPointeeType();
9780    Mode = 2;
9781    DK = diag::err_catch_incomplete_ref;
9782  }
9783  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9784      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9785    Invalid = true;
9786
9787  if (!Invalid && !ExDeclType->isDependentType() &&
9788      RequireNonAbstractType(Loc, ExDeclType,
9789                             diag::err_abstract_type_in_decl,
9790                             AbstractVariableType))
9791    Invalid = true;
9792
9793  // Only the non-fragile NeXT runtime currently supports C++ catches
9794  // of ObjC types, and no runtime supports catching ObjC types by value.
9795  if (!Invalid && getLangOptions().ObjC1) {
9796    QualType T = ExDeclType;
9797    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9798      T = RT->getPointeeType();
9799
9800    if (T->isObjCObjectType()) {
9801      Diag(Loc, diag::err_objc_object_catch);
9802      Invalid = true;
9803    } else if (T->isObjCObjectPointerType()) {
9804      if (!getLangOptions().ObjCNonFragileABI)
9805        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9806    }
9807  }
9808
9809  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9810                                    ExDeclType, TInfo, SC_None, SC_None);
9811  ExDecl->setExceptionVariable(true);
9812
9813  // In ARC, infer 'retaining' for variables of retainable type.
9814  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9815    Invalid = true;
9816
9817  if (!Invalid && !ExDeclType->isDependentType()) {
9818    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9819      // C++ [except.handle]p16:
9820      //   The object declared in an exception-declaration or, if the
9821      //   exception-declaration does not specify a name, a temporary (12.2) is
9822      //   copy-initialized (8.5) from the exception object. [...]
9823      //   The object is destroyed when the handler exits, after the destruction
9824      //   of any automatic objects initialized within the handler.
9825      //
9826      // We just pretend to initialize the object with itself, then make sure
9827      // it can be destroyed later.
9828      QualType initType = ExDeclType;
9829
9830      InitializedEntity entity =
9831        InitializedEntity::InitializeVariable(ExDecl);
9832      InitializationKind initKind =
9833        InitializationKind::CreateCopy(Loc, SourceLocation());
9834
9835      Expr *opaqueValue =
9836        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9837      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9838      ExprResult result = sequence.Perform(*this, entity, initKind,
9839                                           MultiExprArg(&opaqueValue, 1));
9840      if (result.isInvalid())
9841        Invalid = true;
9842      else {
9843        // If the constructor used was non-trivial, set this as the
9844        // "initializer".
9845        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9846        if (!construct->getConstructor()->isTrivial()) {
9847          Expr *init = MaybeCreateExprWithCleanups(construct);
9848          ExDecl->setInit(init);
9849        }
9850
9851        // And make sure it's destructable.
9852        FinalizeVarWithDestructor(ExDecl, recordType);
9853      }
9854    }
9855  }
9856
9857  if (Invalid)
9858    ExDecl->setInvalidDecl();
9859
9860  return ExDecl;
9861}
9862
9863/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9864/// handler.
9865Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9866  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9867  bool Invalid = D.isInvalidType();
9868
9869  // Check for unexpanded parameter packs.
9870  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9871                                               UPPC_ExceptionType)) {
9872    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9873                                             D.getIdentifierLoc());
9874    Invalid = true;
9875  }
9876
9877  IdentifierInfo *II = D.getIdentifier();
9878  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9879                                             LookupOrdinaryName,
9880                                             ForRedeclaration)) {
9881    // The scope should be freshly made just for us. There is just no way
9882    // it contains any previous declaration.
9883    assert(!S->isDeclScope(PrevDecl));
9884    if (PrevDecl->isTemplateParameter()) {
9885      // Maybe we will complain about the shadowed template parameter.
9886      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9887      PrevDecl = 0;
9888    }
9889  }
9890
9891  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9892    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9893      << D.getCXXScopeSpec().getRange();
9894    Invalid = true;
9895  }
9896
9897  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9898                                              D.getSourceRange().getBegin(),
9899                                              D.getIdentifierLoc(),
9900                                              D.getIdentifier());
9901  if (Invalid)
9902    ExDecl->setInvalidDecl();
9903
9904  // Add the exception declaration into this scope.
9905  if (II)
9906    PushOnScopeChains(ExDecl, S);
9907  else
9908    CurContext->addDecl(ExDecl);
9909
9910  ProcessDeclAttributes(S, ExDecl, D);
9911  return ExDecl;
9912}
9913
9914Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9915                                         Expr *AssertExpr,
9916                                         Expr *AssertMessageExpr_,
9917                                         SourceLocation RParenLoc) {
9918  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9919
9920  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9921    llvm::APSInt Cond;
9922    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9923                             diag::err_static_assert_expression_is_not_constant,
9924                                        /*AllowFold=*/false))
9925      return 0;
9926
9927    if (!Cond)
9928      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9929        << AssertMessage->getString() << AssertExpr->getSourceRange();
9930  }
9931
9932  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9933    return 0;
9934
9935  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9936                                        AssertExpr, AssertMessage, RParenLoc);
9937
9938  CurContext->addDecl(Decl);
9939  return Decl;
9940}
9941
9942/// \brief Perform semantic analysis of the given friend type declaration.
9943///
9944/// \returns A friend declaration that.
9945FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9946                                      SourceLocation FriendLoc,
9947                                      TypeSourceInfo *TSInfo) {
9948  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9949
9950  QualType T = TSInfo->getType();
9951  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9952
9953  // C++03 [class.friend]p2:
9954  //   An elaborated-type-specifier shall be used in a friend declaration
9955  //   for a class.*
9956  //
9957  //   * The class-key of the elaborated-type-specifier is required.
9958  if (!ActiveTemplateInstantiations.empty()) {
9959    // Do not complain about the form of friend template types during
9960    // template instantiation; we will already have complained when the
9961    // template was declared.
9962  } else if (!T->isElaboratedTypeSpecifier()) {
9963    // If we evaluated the type to a record type, suggest putting
9964    // a tag in front.
9965    if (const RecordType *RT = T->getAs<RecordType>()) {
9966      RecordDecl *RD = RT->getDecl();
9967
9968      std::string InsertionText = std::string(" ") + RD->getKindName();
9969
9970      Diag(TypeRange.getBegin(),
9971           getLangOptions().CPlusPlus0x ?
9972             diag::warn_cxx98_compat_unelaborated_friend_type :
9973             diag::ext_unelaborated_friend_type)
9974        << (unsigned) RD->getTagKind()
9975        << T
9976        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9977                                      InsertionText);
9978    } else {
9979      Diag(FriendLoc,
9980           getLangOptions().CPlusPlus0x ?
9981             diag::warn_cxx98_compat_nonclass_type_friend :
9982             diag::ext_nonclass_type_friend)
9983        << T
9984        << SourceRange(FriendLoc, TypeRange.getEnd());
9985    }
9986  } else if (T->getAs<EnumType>()) {
9987    Diag(FriendLoc,
9988         getLangOptions().CPlusPlus0x ?
9989           diag::warn_cxx98_compat_enum_friend :
9990           diag::ext_enum_friend)
9991      << T
9992      << SourceRange(FriendLoc, TypeRange.getEnd());
9993  }
9994
9995  // C++0x [class.friend]p3:
9996  //   If the type specifier in a friend declaration designates a (possibly
9997  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9998  //   the friend declaration is ignored.
9999
10000  // FIXME: C++0x has some syntactic restrictions on friend type declarations
10001  // in [class.friend]p3 that we do not implement.
10002
10003  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
10004}
10005
10006/// Handle a friend tag declaration where the scope specifier was
10007/// templated.
10008Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10009                                    unsigned TagSpec, SourceLocation TagLoc,
10010                                    CXXScopeSpec &SS,
10011                                    IdentifierInfo *Name, SourceLocation NameLoc,
10012                                    AttributeList *Attr,
10013                                    MultiTemplateParamsArg TempParamLists) {
10014  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10015
10016  bool isExplicitSpecialization = false;
10017  bool Invalid = false;
10018
10019  if (TemplateParameterList *TemplateParams
10020        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10021                                                  TempParamLists.get(),
10022                                                  TempParamLists.size(),
10023                                                  /*friend*/ true,
10024                                                  isExplicitSpecialization,
10025                                                  Invalid)) {
10026    if (TemplateParams->size() > 0) {
10027      // This is a declaration of a class template.
10028      if (Invalid)
10029        return 0;
10030
10031      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10032                                SS, Name, NameLoc, Attr,
10033                                TemplateParams, AS_public,
10034                                /*ModulePrivateLoc=*/SourceLocation(),
10035                                TempParamLists.size() - 1,
10036                   (TemplateParameterList**) TempParamLists.release()).take();
10037    } else {
10038      // The "template<>" header is extraneous.
10039      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10040        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10041      isExplicitSpecialization = true;
10042    }
10043  }
10044
10045  if (Invalid) return 0;
10046
10047  bool isAllExplicitSpecializations = true;
10048  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10049    if (TempParamLists.get()[I]->size()) {
10050      isAllExplicitSpecializations = false;
10051      break;
10052    }
10053  }
10054
10055  // FIXME: don't ignore attributes.
10056
10057  // If it's explicit specializations all the way down, just forget
10058  // about the template header and build an appropriate non-templated
10059  // friend.  TODO: for source fidelity, remember the headers.
10060  if (isAllExplicitSpecializations) {
10061    if (SS.isEmpty()) {
10062      bool Owned = false;
10063      bool IsDependent = false;
10064      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10065                      Attr, AS_public,
10066                      /*ModulePrivateLoc=*/SourceLocation(),
10067                      MultiTemplateParamsArg(), Owned, IsDependent,
10068                      /*ScopedEnumKWLoc=*/SourceLocation(),
10069                      /*ScopedEnumUsesClassTag=*/false,
10070                      /*UnderlyingType=*/TypeResult());
10071    }
10072
10073    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10074    ElaboratedTypeKeyword Keyword
10075      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10076    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10077                                   *Name, NameLoc);
10078    if (T.isNull())
10079      return 0;
10080
10081    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10082    if (isa<DependentNameType>(T)) {
10083      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10084      TL.setKeywordLoc(TagLoc);
10085      TL.setQualifierLoc(QualifierLoc);
10086      TL.setNameLoc(NameLoc);
10087    } else {
10088      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10089      TL.setKeywordLoc(TagLoc);
10090      TL.setQualifierLoc(QualifierLoc);
10091      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10092    }
10093
10094    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10095                                            TSI, FriendLoc);
10096    Friend->setAccess(AS_public);
10097    CurContext->addDecl(Friend);
10098    return Friend;
10099  }
10100
10101  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10102
10103
10104
10105  // Handle the case of a templated-scope friend class.  e.g.
10106  //   template <class T> class A<T>::B;
10107  // FIXME: we don't support these right now.
10108  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10109  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10110  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10111  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10112  TL.setKeywordLoc(TagLoc);
10113  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10114  TL.setNameLoc(NameLoc);
10115
10116  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10117                                          TSI, FriendLoc);
10118  Friend->setAccess(AS_public);
10119  Friend->setUnsupportedFriend(true);
10120  CurContext->addDecl(Friend);
10121  return Friend;
10122}
10123
10124
10125/// Handle a friend type declaration.  This works in tandem with
10126/// ActOnTag.
10127///
10128/// Notes on friend class templates:
10129///
10130/// We generally treat friend class declarations as if they were
10131/// declaring a class.  So, for example, the elaborated type specifier
10132/// in a friend declaration is required to obey the restrictions of a
10133/// class-head (i.e. no typedefs in the scope chain), template
10134/// parameters are required to match up with simple template-ids, &c.
10135/// However, unlike when declaring a template specialization, it's
10136/// okay to refer to a template specialization without an empty
10137/// template parameter declaration, e.g.
10138///   friend class A<T>::B<unsigned>;
10139/// We permit this as a special case; if there are any template
10140/// parameters present at all, require proper matching, i.e.
10141///   template <> template <class T> friend class A<int>::B;
10142Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10143                                MultiTemplateParamsArg TempParams) {
10144  SourceLocation Loc = DS.getSourceRange().getBegin();
10145
10146  assert(DS.isFriendSpecified());
10147  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10148
10149  // Try to convert the decl specifier to a type.  This works for
10150  // friend templates because ActOnTag never produces a ClassTemplateDecl
10151  // for a TUK_Friend.
10152  Declarator TheDeclarator(DS, Declarator::MemberContext);
10153  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10154  QualType T = TSI->getType();
10155  if (TheDeclarator.isInvalidType())
10156    return 0;
10157
10158  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10159    return 0;
10160
10161  // This is definitely an error in C++98.  It's probably meant to
10162  // be forbidden in C++0x, too, but the specification is just
10163  // poorly written.
10164  //
10165  // The problem is with declarations like the following:
10166  //   template <T> friend A<T>::foo;
10167  // where deciding whether a class C is a friend or not now hinges
10168  // on whether there exists an instantiation of A that causes
10169  // 'foo' to equal C.  There are restrictions on class-heads
10170  // (which we declare (by fiat) elaborated friend declarations to
10171  // be) that makes this tractable.
10172  //
10173  // FIXME: handle "template <> friend class A<T>;", which
10174  // is possibly well-formed?  Who even knows?
10175  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10176    Diag(Loc, diag::err_tagless_friend_type_template)
10177      << DS.getSourceRange();
10178    return 0;
10179  }
10180
10181  // C++98 [class.friend]p1: A friend of a class is a function
10182  //   or class that is not a member of the class . . .
10183  // This is fixed in DR77, which just barely didn't make the C++03
10184  // deadline.  It's also a very silly restriction that seriously
10185  // affects inner classes and which nobody else seems to implement;
10186  // thus we never diagnose it, not even in -pedantic.
10187  //
10188  // But note that we could warn about it: it's always useless to
10189  // friend one of your own members (it's not, however, worthless to
10190  // friend a member of an arbitrary specialization of your template).
10191
10192  Decl *D;
10193  if (unsigned NumTempParamLists = TempParams.size())
10194    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10195                                   NumTempParamLists,
10196                                   TempParams.release(),
10197                                   TSI,
10198                                   DS.getFriendSpecLoc());
10199  else
10200    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10201
10202  if (!D)
10203    return 0;
10204
10205  D->setAccess(AS_public);
10206  CurContext->addDecl(D);
10207
10208  return D;
10209}
10210
10211Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10212                                    MultiTemplateParamsArg TemplateParams) {
10213  const DeclSpec &DS = D.getDeclSpec();
10214
10215  assert(DS.isFriendSpecified());
10216  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10217
10218  SourceLocation Loc = D.getIdentifierLoc();
10219  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10220
10221  // C++ [class.friend]p1
10222  //   A friend of a class is a function or class....
10223  // Note that this sees through typedefs, which is intended.
10224  // It *doesn't* see through dependent types, which is correct
10225  // according to [temp.arg.type]p3:
10226  //   If a declaration acquires a function type through a
10227  //   type dependent on a template-parameter and this causes
10228  //   a declaration that does not use the syntactic form of a
10229  //   function declarator to have a function type, the program
10230  //   is ill-formed.
10231  if (!TInfo->getType()->isFunctionType()) {
10232    Diag(Loc, diag::err_unexpected_friend);
10233
10234    // It might be worthwhile to try to recover by creating an
10235    // appropriate declaration.
10236    return 0;
10237  }
10238
10239  // C++ [namespace.memdef]p3
10240  //  - If a friend declaration in a non-local class first declares a
10241  //    class or function, the friend class or function is a member
10242  //    of the innermost enclosing namespace.
10243  //  - The name of the friend is not found by simple name lookup
10244  //    until a matching declaration is provided in that namespace
10245  //    scope (either before or after the class declaration granting
10246  //    friendship).
10247  //  - If a friend function is called, its name may be found by the
10248  //    name lookup that considers functions from namespaces and
10249  //    classes associated with the types of the function arguments.
10250  //  - When looking for a prior declaration of a class or a function
10251  //    declared as a friend, scopes outside the innermost enclosing
10252  //    namespace scope are not considered.
10253
10254  CXXScopeSpec &SS = D.getCXXScopeSpec();
10255  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10256  DeclarationName Name = NameInfo.getName();
10257  assert(Name);
10258
10259  // Check for unexpanded parameter packs.
10260  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10261      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10262      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10263    return 0;
10264
10265  // The context we found the declaration in, or in which we should
10266  // create the declaration.
10267  DeclContext *DC;
10268  Scope *DCScope = S;
10269  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10270                        ForRedeclaration);
10271
10272  // FIXME: there are different rules in local classes
10273
10274  // There are four cases here.
10275  //   - There's no scope specifier, in which case we just go to the
10276  //     appropriate scope and look for a function or function template
10277  //     there as appropriate.
10278  // Recover from invalid scope qualifiers as if they just weren't there.
10279  if (SS.isInvalid() || !SS.isSet()) {
10280    // C++0x [namespace.memdef]p3:
10281    //   If the name in a friend declaration is neither qualified nor
10282    //   a template-id and the declaration is a function or an
10283    //   elaborated-type-specifier, the lookup to determine whether
10284    //   the entity has been previously declared shall not consider
10285    //   any scopes outside the innermost enclosing namespace.
10286    // C++0x [class.friend]p11:
10287    //   If a friend declaration appears in a local class and the name
10288    //   specified is an unqualified name, a prior declaration is
10289    //   looked up without considering scopes that are outside the
10290    //   innermost enclosing non-class scope. For a friend function
10291    //   declaration, if there is no prior declaration, the program is
10292    //   ill-formed.
10293    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10294    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10295
10296    // Find the appropriate context according to the above.
10297    DC = CurContext;
10298    while (true) {
10299      // Skip class contexts.  If someone can cite chapter and verse
10300      // for this behavior, that would be nice --- it's what GCC and
10301      // EDG do, and it seems like a reasonable intent, but the spec
10302      // really only says that checks for unqualified existing
10303      // declarations should stop at the nearest enclosing namespace,
10304      // not that they should only consider the nearest enclosing
10305      // namespace.
10306      while (DC->isRecord())
10307        DC = DC->getParent();
10308
10309      LookupQualifiedName(Previous, DC);
10310
10311      // TODO: decide what we think about using declarations.
10312      if (isLocal || !Previous.empty())
10313        break;
10314
10315      if (isTemplateId) {
10316        if (isa<TranslationUnitDecl>(DC)) break;
10317      } else {
10318        if (DC->isFileContext()) break;
10319      }
10320      DC = DC->getParent();
10321    }
10322
10323    // C++ [class.friend]p1: A friend of a class is a function or
10324    //   class that is not a member of the class . . .
10325    // C++11 changes this for both friend types and functions.
10326    // Most C++ 98 compilers do seem to give an error here, so
10327    // we do, too.
10328    if (!Previous.empty() && DC->Equals(CurContext))
10329      Diag(DS.getFriendSpecLoc(),
10330           getLangOptions().CPlusPlus0x ?
10331             diag::warn_cxx98_compat_friend_is_member :
10332             diag::err_friend_is_member);
10333
10334    DCScope = getScopeForDeclContext(S, DC);
10335
10336    // C++ [class.friend]p6:
10337    //   A function can be defined in a friend declaration of a class if and
10338    //   only if the class is a non-local class (9.8), the function name is
10339    //   unqualified, and the function has namespace scope.
10340    if (isLocal && D.isFunctionDefinition()) {
10341      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10342    }
10343
10344  //   - There's a non-dependent scope specifier, in which case we
10345  //     compute it and do a previous lookup there for a function
10346  //     or function template.
10347  } else if (!SS.getScopeRep()->isDependent()) {
10348    DC = computeDeclContext(SS);
10349    if (!DC) return 0;
10350
10351    if (RequireCompleteDeclContext(SS, DC)) return 0;
10352
10353    LookupQualifiedName(Previous, DC);
10354
10355    // Ignore things found implicitly in the wrong scope.
10356    // TODO: better diagnostics for this case.  Suggesting the right
10357    // qualified scope would be nice...
10358    LookupResult::Filter F = Previous.makeFilter();
10359    while (F.hasNext()) {
10360      NamedDecl *D = F.next();
10361      if (!DC->InEnclosingNamespaceSetOf(
10362              D->getDeclContext()->getRedeclContext()))
10363        F.erase();
10364    }
10365    F.done();
10366
10367    if (Previous.empty()) {
10368      D.setInvalidType();
10369      Diag(Loc, diag::err_qualified_friend_not_found)
10370          << Name << TInfo->getType();
10371      return 0;
10372    }
10373
10374    // C++ [class.friend]p1: A friend of a class is a function or
10375    //   class that is not a member of the class . . .
10376    if (DC->Equals(CurContext))
10377      Diag(DS.getFriendSpecLoc(),
10378           getLangOptions().CPlusPlus0x ?
10379             diag::warn_cxx98_compat_friend_is_member :
10380             diag::err_friend_is_member);
10381
10382    if (D.isFunctionDefinition()) {
10383      // C++ [class.friend]p6:
10384      //   A function can be defined in a friend declaration of a class if and
10385      //   only if the class is a non-local class (9.8), the function name is
10386      //   unqualified, and the function has namespace scope.
10387      SemaDiagnosticBuilder DB
10388        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10389
10390      DB << SS.getScopeRep();
10391      if (DC->isFileContext())
10392        DB << FixItHint::CreateRemoval(SS.getRange());
10393      SS.clear();
10394    }
10395
10396  //   - There's a scope specifier that does not match any template
10397  //     parameter lists, in which case we use some arbitrary context,
10398  //     create a method or method template, and wait for instantiation.
10399  //   - There's a scope specifier that does match some template
10400  //     parameter lists, which we don't handle right now.
10401  } else {
10402    if (D.isFunctionDefinition()) {
10403      // C++ [class.friend]p6:
10404      //   A function can be defined in a friend declaration of a class if and
10405      //   only if the class is a non-local class (9.8), the function name is
10406      //   unqualified, and the function has namespace scope.
10407      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10408        << SS.getScopeRep();
10409    }
10410
10411    DC = CurContext;
10412    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10413  }
10414
10415  if (!DC->isRecord()) {
10416    // This implies that it has to be an operator or function.
10417    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10418        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10419        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10420      Diag(Loc, diag::err_introducing_special_friend) <<
10421        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10422         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10423      return 0;
10424    }
10425  }
10426
10427  // FIXME: This is an egregious hack to cope with cases where the scope stack
10428  // does not contain the declaration context, i.e., in an out-of-line
10429  // definition of a class.
10430  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10431  if (!DCScope) {
10432    FakeDCScope.setEntity(DC);
10433    DCScope = &FakeDCScope;
10434  }
10435
10436  bool AddToScope = true;
10437  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10438                                          move(TemplateParams), AddToScope);
10439  if (!ND) return 0;
10440
10441  assert(ND->getDeclContext() == DC);
10442  assert(ND->getLexicalDeclContext() == CurContext);
10443
10444  // Add the function declaration to the appropriate lookup tables,
10445  // adjusting the redeclarations list as necessary.  We don't
10446  // want to do this yet if the friending class is dependent.
10447  //
10448  // Also update the scope-based lookup if the target context's
10449  // lookup context is in lexical scope.
10450  if (!CurContext->isDependentContext()) {
10451    DC = DC->getRedeclContext();
10452    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10453    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10454      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10455  }
10456
10457  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10458                                       D.getIdentifierLoc(), ND,
10459                                       DS.getFriendSpecLoc());
10460  FrD->setAccess(AS_public);
10461  CurContext->addDecl(FrD);
10462
10463  if (ND->isInvalidDecl())
10464    FrD->setInvalidDecl();
10465  else {
10466    FunctionDecl *FD;
10467    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10468      FD = FTD->getTemplatedDecl();
10469    else
10470      FD = cast<FunctionDecl>(ND);
10471
10472    // Mark templated-scope function declarations as unsupported.
10473    if (FD->getNumTemplateParameterLists())
10474      FrD->setUnsupportedFriend(true);
10475  }
10476
10477  return ND;
10478}
10479
10480void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10481  AdjustDeclIfTemplate(Dcl);
10482
10483  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10484  if (!Fn) {
10485    Diag(DelLoc, diag::err_deleted_non_function);
10486    return;
10487  }
10488  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10489    Diag(DelLoc, diag::err_deleted_decl_not_first);
10490    Diag(Prev->getLocation(), diag::note_previous_declaration);
10491    // If the declaration wasn't the first, we delete the function anyway for
10492    // recovery.
10493  }
10494  Fn->setDeletedAsWritten();
10495}
10496
10497void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10498  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10499
10500  if (MD) {
10501    if (MD->getParent()->isDependentType()) {
10502      MD->setDefaulted();
10503      MD->setExplicitlyDefaulted();
10504      return;
10505    }
10506
10507    CXXSpecialMember Member = getSpecialMember(MD);
10508    if (Member == CXXInvalid) {
10509      Diag(DefaultLoc, diag::err_default_special_members);
10510      return;
10511    }
10512
10513    MD->setDefaulted();
10514    MD->setExplicitlyDefaulted();
10515
10516    // If this definition appears within the record, do the checking when
10517    // the record is complete.
10518    const FunctionDecl *Primary = MD;
10519    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10520      // Find the uninstantiated declaration that actually had the '= default'
10521      // on it.
10522      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10523
10524    if (Primary == Primary->getCanonicalDecl())
10525      return;
10526
10527    switch (Member) {
10528    case CXXDefaultConstructor: {
10529      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10530      CheckExplicitlyDefaultedDefaultConstructor(CD);
10531      if (!CD->isInvalidDecl())
10532        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10533      break;
10534    }
10535
10536    case CXXCopyConstructor: {
10537      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10538      CheckExplicitlyDefaultedCopyConstructor(CD);
10539      if (!CD->isInvalidDecl())
10540        DefineImplicitCopyConstructor(DefaultLoc, CD);
10541      break;
10542    }
10543
10544    case CXXCopyAssignment: {
10545      CheckExplicitlyDefaultedCopyAssignment(MD);
10546      if (!MD->isInvalidDecl())
10547        DefineImplicitCopyAssignment(DefaultLoc, MD);
10548      break;
10549    }
10550
10551    case CXXDestructor: {
10552      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10553      CheckExplicitlyDefaultedDestructor(DD);
10554      if (!DD->isInvalidDecl())
10555        DefineImplicitDestructor(DefaultLoc, DD);
10556      break;
10557    }
10558
10559    case CXXMoveConstructor: {
10560      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10561      CheckExplicitlyDefaultedMoveConstructor(CD);
10562      if (!CD->isInvalidDecl())
10563        DefineImplicitMoveConstructor(DefaultLoc, CD);
10564      break;
10565    }
10566
10567    case CXXMoveAssignment: {
10568      CheckExplicitlyDefaultedMoveAssignment(MD);
10569      if (!MD->isInvalidDecl())
10570        DefineImplicitMoveAssignment(DefaultLoc, MD);
10571      break;
10572    }
10573
10574    case CXXInvalid:
10575      llvm_unreachable("Invalid special member.");
10576    }
10577  } else {
10578    Diag(DefaultLoc, diag::err_default_special_members);
10579  }
10580}
10581
10582static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10583  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10584    Stmt *SubStmt = *CI;
10585    if (!SubStmt)
10586      continue;
10587    if (isa<ReturnStmt>(SubStmt))
10588      Self.Diag(SubStmt->getSourceRange().getBegin(),
10589           diag::err_return_in_constructor_handler);
10590    if (!isa<Expr>(SubStmt))
10591      SearchForReturnInStmt(Self, SubStmt);
10592  }
10593}
10594
10595void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10596  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10597    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10598    SearchForReturnInStmt(*this, Handler);
10599  }
10600}
10601
10602bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10603                                             const CXXMethodDecl *Old) {
10604  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10605  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10606
10607  if (Context.hasSameType(NewTy, OldTy) ||
10608      NewTy->isDependentType() || OldTy->isDependentType())
10609    return false;
10610
10611  // Check if the return types are covariant
10612  QualType NewClassTy, OldClassTy;
10613
10614  /// Both types must be pointers or references to classes.
10615  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10616    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10617      NewClassTy = NewPT->getPointeeType();
10618      OldClassTy = OldPT->getPointeeType();
10619    }
10620  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10621    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10622      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10623        NewClassTy = NewRT->getPointeeType();
10624        OldClassTy = OldRT->getPointeeType();
10625      }
10626    }
10627  }
10628
10629  // The return types aren't either both pointers or references to a class type.
10630  if (NewClassTy.isNull()) {
10631    Diag(New->getLocation(),
10632         diag::err_different_return_type_for_overriding_virtual_function)
10633      << New->getDeclName() << NewTy << OldTy;
10634    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10635
10636    return true;
10637  }
10638
10639  // C++ [class.virtual]p6:
10640  //   If the return type of D::f differs from the return type of B::f, the
10641  //   class type in the return type of D::f shall be complete at the point of
10642  //   declaration of D::f or shall be the class type D.
10643  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10644    if (!RT->isBeingDefined() &&
10645        RequireCompleteType(New->getLocation(), NewClassTy,
10646                            PDiag(diag::err_covariant_return_incomplete)
10647                              << New->getDeclName()))
10648    return true;
10649  }
10650
10651  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10652    // Check if the new class derives from the old class.
10653    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10654      Diag(New->getLocation(),
10655           diag::err_covariant_return_not_derived)
10656      << New->getDeclName() << NewTy << OldTy;
10657      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10658      return true;
10659    }
10660
10661    // Check if we the conversion from derived to base is valid.
10662    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10663                    diag::err_covariant_return_inaccessible_base,
10664                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10665                    // FIXME: Should this point to the return type?
10666                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10667      // FIXME: this note won't trigger for delayed access control
10668      // diagnostics, and it's impossible to get an undelayed error
10669      // here from access control during the original parse because
10670      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10671      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10672      return true;
10673    }
10674  }
10675
10676  // The qualifiers of the return types must be the same.
10677  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10678    Diag(New->getLocation(),
10679         diag::err_covariant_return_type_different_qualifications)
10680    << New->getDeclName() << NewTy << OldTy;
10681    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10682    return true;
10683  };
10684
10685
10686  // The new class type must have the same or less qualifiers as the old type.
10687  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10688    Diag(New->getLocation(),
10689         diag::err_covariant_return_type_class_type_more_qualified)
10690    << New->getDeclName() << NewTy << OldTy;
10691    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10692    return true;
10693  };
10694
10695  return false;
10696}
10697
10698/// \brief Mark the given method pure.
10699///
10700/// \param Method the method to be marked pure.
10701///
10702/// \param InitRange the source range that covers the "0" initializer.
10703bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10704  SourceLocation EndLoc = InitRange.getEnd();
10705  if (EndLoc.isValid())
10706    Method->setRangeEnd(EndLoc);
10707
10708  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10709    Method->setPure();
10710    return false;
10711  }
10712
10713  if (!Method->isInvalidDecl())
10714    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10715      << Method->getDeclName() << InitRange;
10716  return true;
10717}
10718
10719/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10720/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10721/// is a fresh scope pushed for just this purpose.
10722///
10723/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10724/// static data member of class X, names should be looked up in the scope of
10725/// class X.
10726void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10727  // If there is no declaration, there was an error parsing it.
10728  if (D == 0 || D->isInvalidDecl()) return;
10729
10730  // We should only get called for declarations with scope specifiers, like:
10731  //   int foo::bar;
10732  assert(D->isOutOfLine());
10733  EnterDeclaratorContext(S, D->getDeclContext());
10734}
10735
10736/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10737/// initializer for the out-of-line declaration 'D'.
10738void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10739  // If there is no declaration, there was an error parsing it.
10740  if (D == 0 || D->isInvalidDecl()) return;
10741
10742  assert(D->isOutOfLine());
10743  ExitDeclaratorContext(S);
10744}
10745
10746/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10747/// C++ if/switch/while/for statement.
10748/// e.g: "if (int x = f()) {...}"
10749DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10750  // C++ 6.4p2:
10751  // The declarator shall not specify a function or an array.
10752  // The type-specifier-seq shall not contain typedef and shall not declare a
10753  // new class or enumeration.
10754  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10755         "Parser allowed 'typedef' as storage class of condition decl.");
10756
10757  Decl *Dcl = ActOnDeclarator(S, D);
10758  if (!Dcl)
10759    return true;
10760
10761  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10762    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10763      << D.getSourceRange();
10764    return true;
10765  }
10766
10767  return Dcl;
10768}
10769
10770void Sema::LoadExternalVTableUses() {
10771  if (!ExternalSource)
10772    return;
10773
10774  SmallVector<ExternalVTableUse, 4> VTables;
10775  ExternalSource->ReadUsedVTables(VTables);
10776  SmallVector<VTableUse, 4> NewUses;
10777  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10778    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10779      = VTablesUsed.find(VTables[I].Record);
10780    // Even if a definition wasn't required before, it may be required now.
10781    if (Pos != VTablesUsed.end()) {
10782      if (!Pos->second && VTables[I].DefinitionRequired)
10783        Pos->second = true;
10784      continue;
10785    }
10786
10787    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10788    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10789  }
10790
10791  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10792}
10793
10794void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10795                          bool DefinitionRequired) {
10796  // Ignore any vtable uses in unevaluated operands or for classes that do
10797  // not have a vtable.
10798  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10799      CurContext->isDependentContext() ||
10800      ExprEvalContexts.back().Context == Unevaluated)
10801    return;
10802
10803  // Try to insert this class into the map.
10804  LoadExternalVTableUses();
10805  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10806  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10807    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10808  if (!Pos.second) {
10809    // If we already had an entry, check to see if we are promoting this vtable
10810    // to required a definition. If so, we need to reappend to the VTableUses
10811    // list, since we may have already processed the first entry.
10812    if (DefinitionRequired && !Pos.first->second) {
10813      Pos.first->second = true;
10814    } else {
10815      // Otherwise, we can early exit.
10816      return;
10817    }
10818  }
10819
10820  // Local classes need to have their virtual members marked
10821  // immediately. For all other classes, we mark their virtual members
10822  // at the end of the translation unit.
10823  if (Class->isLocalClass())
10824    MarkVirtualMembersReferenced(Loc, Class);
10825  else
10826    VTableUses.push_back(std::make_pair(Class, Loc));
10827}
10828
10829bool Sema::DefineUsedVTables() {
10830  LoadExternalVTableUses();
10831  if (VTableUses.empty())
10832    return false;
10833
10834  // Note: The VTableUses vector could grow as a result of marking
10835  // the members of a class as "used", so we check the size each
10836  // time through the loop and prefer indices (with are stable) to
10837  // iterators (which are not).
10838  bool DefinedAnything = false;
10839  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10840    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10841    if (!Class)
10842      continue;
10843
10844    SourceLocation Loc = VTableUses[I].second;
10845
10846    // If this class has a key function, but that key function is
10847    // defined in another translation unit, we don't need to emit the
10848    // vtable even though we're using it.
10849    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10850    if (KeyFunction && !KeyFunction->hasBody()) {
10851      switch (KeyFunction->getTemplateSpecializationKind()) {
10852      case TSK_Undeclared:
10853      case TSK_ExplicitSpecialization:
10854      case TSK_ExplicitInstantiationDeclaration:
10855        // The key function is in another translation unit.
10856        continue;
10857
10858      case TSK_ExplicitInstantiationDefinition:
10859      case TSK_ImplicitInstantiation:
10860        // We will be instantiating the key function.
10861        break;
10862      }
10863    } else if (!KeyFunction) {
10864      // If we have a class with no key function that is the subject
10865      // of an explicit instantiation declaration, suppress the
10866      // vtable; it will live with the explicit instantiation
10867      // definition.
10868      bool IsExplicitInstantiationDeclaration
10869        = Class->getTemplateSpecializationKind()
10870                                      == TSK_ExplicitInstantiationDeclaration;
10871      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10872                                 REnd = Class->redecls_end();
10873           R != REnd; ++R) {
10874        TemplateSpecializationKind TSK
10875          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10876        if (TSK == TSK_ExplicitInstantiationDeclaration)
10877          IsExplicitInstantiationDeclaration = true;
10878        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10879          IsExplicitInstantiationDeclaration = false;
10880          break;
10881        }
10882      }
10883
10884      if (IsExplicitInstantiationDeclaration)
10885        continue;
10886    }
10887
10888    // Mark all of the virtual members of this class as referenced, so
10889    // that we can build a vtable. Then, tell the AST consumer that a
10890    // vtable for this class is required.
10891    DefinedAnything = true;
10892    MarkVirtualMembersReferenced(Loc, Class);
10893    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10894    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10895
10896    // Optionally warn if we're emitting a weak vtable.
10897    if (Class->getLinkage() == ExternalLinkage &&
10898        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10899      const FunctionDecl *KeyFunctionDef = 0;
10900      if (!KeyFunction ||
10901          (KeyFunction->hasBody(KeyFunctionDef) &&
10902           KeyFunctionDef->isInlined()))
10903        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10904             TSK_ExplicitInstantiationDefinition
10905             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10906          << Class;
10907    }
10908  }
10909  VTableUses.clear();
10910
10911  return DefinedAnything;
10912}
10913
10914void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10915                                        const CXXRecordDecl *RD) {
10916  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10917       e = RD->method_end(); i != e; ++i) {
10918    CXXMethodDecl *MD = *i;
10919
10920    // C++ [basic.def.odr]p2:
10921    //   [...] A virtual member function is used if it is not pure. [...]
10922    if (MD->isVirtual() && !MD->isPure())
10923      MarkFunctionReferenced(Loc, MD);
10924  }
10925
10926  // Only classes that have virtual bases need a VTT.
10927  if (RD->getNumVBases() == 0)
10928    return;
10929
10930  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10931           e = RD->bases_end(); i != e; ++i) {
10932    const CXXRecordDecl *Base =
10933        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10934    if (Base->getNumVBases() == 0)
10935      continue;
10936    MarkVirtualMembersReferenced(Loc, Base);
10937  }
10938}
10939
10940/// SetIvarInitializers - This routine builds initialization ASTs for the
10941/// Objective-C implementation whose ivars need be initialized.
10942void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10943  if (!getLangOptions().CPlusPlus)
10944    return;
10945  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10946    SmallVector<ObjCIvarDecl*, 8> ivars;
10947    CollectIvarsToConstructOrDestruct(OID, ivars);
10948    if (ivars.empty())
10949      return;
10950    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10951    for (unsigned i = 0; i < ivars.size(); i++) {
10952      FieldDecl *Field = ivars[i];
10953      if (Field->isInvalidDecl())
10954        continue;
10955
10956      CXXCtorInitializer *Member;
10957      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10958      InitializationKind InitKind =
10959        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10960
10961      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10962      ExprResult MemberInit =
10963        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10964      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10965      // Note, MemberInit could actually come back empty if no initialization
10966      // is required (e.g., because it would call a trivial default constructor)
10967      if (!MemberInit.get() || MemberInit.isInvalid())
10968        continue;
10969
10970      Member =
10971        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10972                                         SourceLocation(),
10973                                         MemberInit.takeAs<Expr>(),
10974                                         SourceLocation());
10975      AllToInit.push_back(Member);
10976
10977      // Be sure that the destructor is accessible and is marked as referenced.
10978      if (const RecordType *RecordTy
10979                  = Context.getBaseElementType(Field->getType())
10980                                                        ->getAs<RecordType>()) {
10981                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10982        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10983          MarkFunctionReferenced(Field->getLocation(), Destructor);
10984          CheckDestructorAccess(Field->getLocation(), Destructor,
10985                            PDiag(diag::err_access_dtor_ivar)
10986                              << Context.getBaseElementType(Field->getType()));
10987        }
10988      }
10989    }
10990    ObjCImplementation->setIvarInitializers(Context,
10991                                            AllToInit.data(), AllToInit.size());
10992  }
10993}
10994
10995static
10996void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10997                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10998                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10999                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11000                           Sema &S) {
11001  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11002                                                   CE = Current.end();
11003  if (Ctor->isInvalidDecl())
11004    return;
11005
11006  const FunctionDecl *FNTarget = 0;
11007  CXXConstructorDecl *Target;
11008
11009  // We ignore the result here since if we don't have a body, Target will be
11010  // null below.
11011  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11012  Target
11013= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11014
11015  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11016                     // Avoid dereferencing a null pointer here.
11017                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11018
11019  if (!Current.insert(Canonical))
11020    return;
11021
11022  // We know that beyond here, we aren't chaining into a cycle.
11023  if (!Target || !Target->isDelegatingConstructor() ||
11024      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11025    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11026      Valid.insert(*CI);
11027    Current.clear();
11028  // We've hit a cycle.
11029  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11030             Current.count(TCanonical)) {
11031    // If we haven't diagnosed this cycle yet, do so now.
11032    if (!Invalid.count(TCanonical)) {
11033      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11034             diag::warn_delegating_ctor_cycle)
11035        << Ctor;
11036
11037      // Don't add a note for a function delegating directo to itself.
11038      if (TCanonical != Canonical)
11039        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11040
11041      CXXConstructorDecl *C = Target;
11042      while (C->getCanonicalDecl() != Canonical) {
11043        (void)C->getTargetConstructor()->hasBody(FNTarget);
11044        assert(FNTarget && "Ctor cycle through bodiless function");
11045
11046        C
11047       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11048        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11049      }
11050    }
11051
11052    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11053      Invalid.insert(*CI);
11054    Current.clear();
11055  } else {
11056    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11057  }
11058}
11059
11060
11061void Sema::CheckDelegatingCtorCycles() {
11062  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11063
11064  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11065                                                   CE = Current.end();
11066
11067  for (DelegatingCtorDeclsType::iterator
11068         I = DelegatingCtorDecls.begin(ExternalSource),
11069         E = DelegatingCtorDecls.end();
11070       I != E; ++I) {
11071   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11072  }
11073
11074  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11075    (*CI)->setInvalidDecl();
11076}
11077
11078/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11079Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11080  // Implicitly declared functions (e.g. copy constructors) are
11081  // __host__ __device__
11082  if (D->isImplicit())
11083    return CFT_HostDevice;
11084
11085  if (D->hasAttr<CUDAGlobalAttr>())
11086    return CFT_Global;
11087
11088  if (D->hasAttr<CUDADeviceAttr>()) {
11089    if (D->hasAttr<CUDAHostAttr>())
11090      return CFT_HostDevice;
11091    else
11092      return CFT_Device;
11093  }
11094
11095  return CFT_Host;
11096}
11097
11098bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11099                           CUDAFunctionTarget CalleeTarget) {
11100  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11101  // Callable from the device only."
11102  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11103    return true;
11104
11105  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11106  // Callable from the host only."
11107  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11108  // Callable from the host only."
11109  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11110      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11111    return true;
11112
11113  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11114    return true;
11115
11116  return false;
11117}
11118