SemaDeclCXX.cpp revision 5e058eb02875530f1aed10c3417a1011744239b1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include <map>
38#include <set>
39
40using namespace clang;
41
42//===----------------------------------------------------------------------===//
43// CheckDefaultArgumentVisitor
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
48  /// the default argument of a parameter to determine whether it
49  /// contains any ill-formed subexpressions. For example, this will
50  /// diagnose the use of local variables or parameters within the
51  /// default argument expression.
52  class CheckDefaultArgumentVisitor
53    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
54    Expr *DefaultArg;
55    Sema *S;
56
57  public:
58    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
59      : DefaultArg(defarg), S(s) {}
60
61    bool VisitExpr(Expr *Node);
62    bool VisitDeclRefExpr(DeclRefExpr *DRE);
63    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
64  };
65
66  /// VisitExpr - Visit all of the children of this expression.
67  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
68    bool IsInvalid = false;
69    for (Stmt::child_range I = Node->children(); I; ++I)
70      IsInvalid |= Visit(*I);
71    return IsInvalid;
72  }
73
74  /// VisitDeclRefExpr - Visit a reference to a declaration, to
75  /// determine whether this declaration can be used in the default
76  /// argument expression.
77  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
78    NamedDecl *Decl = DRE->getDecl();
79    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p9
81      //   Default arguments are evaluated each time the function is
82      //   called. The order of evaluation of function arguments is
83      //   unspecified. Consequently, parameters of a function shall not
84      //   be used in default argument expressions, even if they are not
85      //   evaluated. Parameters of a function declared before a default
86      //   argument expression are in scope and can hide namespace and
87      //   class member names.
88      return S->Diag(DRE->getSourceRange().getBegin(),
89                     diag::err_param_default_argument_references_param)
90         << Param->getDeclName() << DefaultArg->getSourceRange();
91    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
92      // C++ [dcl.fct.default]p7
93      //   Local variables shall not be used in default argument
94      //   expressions.
95      if (VDecl->isLocalVarDecl())
96        return S->Diag(DRE->getSourceRange().getBegin(),
97                       diag::err_param_default_argument_references_local)
98          << VDecl->getDeclName() << DefaultArg->getSourceRange();
99    }
100
101    return false;
102  }
103
104  /// VisitCXXThisExpr - Visit a C++ "this" expression.
105  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
106    // C++ [dcl.fct.default]p8:
107    //   The keyword this shall not be used in a default argument of a
108    //   member function.
109    return S->Diag(ThisE->getSourceRange().getBegin(),
110                   diag::err_param_default_argument_references_this)
111               << ThisE->getSourceRange();
112  }
113}
114
115void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
116  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
117  // If we have an MSAny or unknown spec already, don't bother.
118  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
119    return;
120
121  const FunctionProtoType *Proto
122    = Method->getType()->getAs<FunctionProtoType>();
123
124  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
125
126  // If this function can throw any exceptions, make a note of that.
127  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
128    ClearExceptions();
129    ComputedEST = EST;
130    return;
131  }
132
133  // FIXME: If the call to this decl is using any of its default arguments, we
134  // need to search them for potentially-throwing calls.
135
136  // If this function has a basic noexcept, it doesn't affect the outcome.
137  if (EST == EST_BasicNoexcept)
138    return;
139
140  // If we have a throw-all spec at this point, ignore the function.
141  if (ComputedEST == EST_None)
142    return;
143
144  // If we're still at noexcept(true) and there's a nothrow() callee,
145  // change to that specification.
146  if (EST == EST_DynamicNone) {
147    if (ComputedEST == EST_BasicNoexcept)
148      ComputedEST = EST_DynamicNone;
149    return;
150  }
151
152  // Check out noexcept specs.
153  if (EST == EST_ComputedNoexcept) {
154    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
155    assert(NR != FunctionProtoType::NR_NoNoexcept &&
156           "Must have noexcept result for EST_ComputedNoexcept.");
157    assert(NR != FunctionProtoType::NR_Dependent &&
158           "Should not generate implicit declarations for dependent cases, "
159           "and don't know how to handle them anyway.");
160
161    // noexcept(false) -> no spec on the new function
162    if (NR == FunctionProtoType::NR_Throw) {
163      ClearExceptions();
164      ComputedEST = EST_None;
165    }
166    // noexcept(true) won't change anything either.
167    return;
168  }
169
170  assert(EST == EST_Dynamic && "EST case not considered earlier.");
171  assert(ComputedEST != EST_None &&
172         "Shouldn't collect exceptions when throw-all is guaranteed.");
173  ComputedEST = EST_Dynamic;
174  // Record the exceptions in this function's exception specification.
175  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
176                                          EEnd = Proto->exception_end();
177       E != EEnd; ++E)
178    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
179      Exceptions.push_back(*E);
180}
181
182void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
183  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
184    return;
185
186  // FIXME:
187  //
188  // C++0x [except.spec]p14:
189  //   [An] implicit exception-specification specifies the type-id T if and
190  // only if T is allowed by the exception-specification of a function directly
191  // invoked by f's implicit definition; f shall allow all exceptions if any
192  // function it directly invokes allows all exceptions, and f shall allow no
193  // exceptions if every function it directly invokes allows no exceptions.
194  //
195  // Note in particular that if an implicit exception-specification is generated
196  // for a function containing a throw-expression, that specification can still
197  // be noexcept(true).
198  //
199  // Note also that 'directly invoked' is not defined in the standard, and there
200  // is no indication that we should only consider potentially-evaluated calls.
201  //
202  // Ultimately we should implement the intent of the standard: the exception
203  // specification should be the set of exceptions which can be thrown by the
204  // implicit definition. For now, we assume that any non-nothrow expression can
205  // throw any exception.
206
207  if (E->CanThrow(*Context))
208    ComputedEST = EST_None;
209}
210
211bool
212Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
213                              SourceLocation EqualLoc) {
214  if (RequireCompleteType(Param->getLocation(), Param->getType(),
215                          diag::err_typecheck_decl_incomplete_type)) {
216    Param->setInvalidDecl();
217    return true;
218  }
219
220  // C++ [dcl.fct.default]p5
221  //   A default argument expression is implicitly converted (clause
222  //   4) to the parameter type. The default argument expression has
223  //   the same semantic constraints as the initializer expression in
224  //   a declaration of a variable of the parameter type, using the
225  //   copy-initialization semantics (8.5).
226  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
227                                                                    Param);
228  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
229                                                           EqualLoc);
230  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
231  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
232                                      MultiExprArg(*this, &Arg, 1));
233  if (Result.isInvalid())
234    return true;
235  Arg = Result.takeAs<Expr>();
236
237  CheckImplicitConversions(Arg, EqualLoc);
238  Arg = MaybeCreateExprWithCleanups(Arg);
239
240  // Okay: add the default argument to the parameter
241  Param->setDefaultArg(Arg);
242
243  // We have already instantiated this parameter; provide each of the
244  // instantiations with the uninstantiated default argument.
245  UnparsedDefaultArgInstantiationsMap::iterator InstPos
246    = UnparsedDefaultArgInstantiations.find(Param);
247  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
248    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
249      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
250
251    // We're done tracking this parameter's instantiations.
252    UnparsedDefaultArgInstantiations.erase(InstPos);
253  }
254
255  return false;
256}
257
258/// ActOnParamDefaultArgument - Check whether the default argument
259/// provided for a function parameter is well-formed. If so, attach it
260/// to the parameter declaration.
261void
262Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
263                                Expr *DefaultArg) {
264  if (!param || !DefaultArg)
265    return;
266
267  ParmVarDecl *Param = cast<ParmVarDecl>(param);
268  UnparsedDefaultArgLocs.erase(Param);
269
270  // Default arguments are only permitted in C++
271  if (!getLangOptions().CPlusPlus) {
272    Diag(EqualLoc, diag::err_param_default_argument)
273      << DefaultArg->getSourceRange();
274    Param->setInvalidDecl();
275    return;
276  }
277
278  // Check for unexpanded parameter packs.
279  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
280    Param->setInvalidDecl();
281    return;
282  }
283
284  // Check that the default argument is well-formed
285  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
286  if (DefaultArgChecker.Visit(DefaultArg)) {
287    Param->setInvalidDecl();
288    return;
289  }
290
291  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
292}
293
294/// ActOnParamUnparsedDefaultArgument - We've seen a default
295/// argument for a function parameter, but we can't parse it yet
296/// because we're inside a class definition. Note that this default
297/// argument will be parsed later.
298void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
299                                             SourceLocation EqualLoc,
300                                             SourceLocation ArgLoc) {
301  if (!param)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  if (Param)
306    Param->setUnparsedDefaultArg();
307
308  UnparsedDefaultArgLocs[Param] = ArgLoc;
309}
310
311/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
312/// the default argument for the parameter param failed.
313void Sema::ActOnParamDefaultArgumentError(Decl *param) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318
319  Param->setInvalidDecl();
320
321  UnparsedDefaultArgLocs.erase(Param);
322}
323
324/// CheckExtraCXXDefaultArguments - Check for any extra default
325/// arguments in the declarator, which is not a function declaration
326/// or definition and therefore is not permitted to have default
327/// arguments. This routine should be invoked for every declarator
328/// that is not a function declaration or definition.
329void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
330  // C++ [dcl.fct.default]p3
331  //   A default argument expression shall be specified only in the
332  //   parameter-declaration-clause of a function declaration or in a
333  //   template-parameter (14.1). It shall not be specified for a
334  //   parameter pack. If it is specified in a
335  //   parameter-declaration-clause, it shall not occur within a
336  //   declarator or abstract-declarator of a parameter-declaration.
337  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
338    DeclaratorChunk &chunk = D.getTypeObject(i);
339    if (chunk.Kind == DeclaratorChunk::Function) {
340      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
341        ParmVarDecl *Param =
342          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
343        if (Param->hasUnparsedDefaultArg()) {
344          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
345          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
346            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
347          delete Toks;
348          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
349        } else if (Param->getDefaultArg()) {
350          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
351            << Param->getDefaultArg()->getSourceRange();
352          Param->setDefaultArg(0);
353        }
354      }
355    }
356  }
357}
358
359// MergeCXXFunctionDecl - Merge two declarations of the same C++
360// function, once we already know that they have the same
361// type. Subroutine of MergeFunctionDecl. Returns true if there was an
362// error, false otherwise.
363bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
364  bool Invalid = false;
365
366  // C++ [dcl.fct.default]p4:
367  //   For non-template functions, default arguments can be added in
368  //   later declarations of a function in the same
369  //   scope. Declarations in different scopes have completely
370  //   distinct sets of default arguments. That is, declarations in
371  //   inner scopes do not acquire default arguments from
372  //   declarations in outer scopes, and vice versa. In a given
373  //   function declaration, all parameters subsequent to a
374  //   parameter with a default argument shall have default
375  //   arguments supplied in this or previous declarations. A
376  //   default argument shall not be redefined by a later
377  //   declaration (not even to the same value).
378  //
379  // C++ [dcl.fct.default]p6:
380  //   Except for member functions of class templates, the default arguments
381  //   in a member function definition that appears outside of the class
382  //   definition are added to the set of default arguments provided by the
383  //   member function declaration in the class definition.
384  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
385    ParmVarDecl *OldParam = Old->getParamDecl(p);
386    ParmVarDecl *NewParam = New->getParamDecl(p);
387
388    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
389
390      unsigned DiagDefaultParamID =
391        diag::err_param_default_argument_redefinition;
392
393      // MSVC accepts that default parameters be redefined for member functions
394      // of template class. The new default parameter's value is ignored.
395      Invalid = true;
396      if (getLangOptions().MicrosoftExt) {
397        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
398        if (MD && MD->getParent()->getDescribedClassTemplate()) {
399          // Merge the old default argument into the new parameter.
400          NewParam->setHasInheritedDefaultArg();
401          if (OldParam->hasUninstantiatedDefaultArg())
402            NewParam->setUninstantiatedDefaultArg(
403                                      OldParam->getUninstantiatedDefaultArg());
404          else
405            NewParam->setDefaultArg(OldParam->getInit());
406          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
407          Invalid = false;
408        }
409      }
410
411      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
412      // hint here. Alternatively, we could walk the type-source information
413      // for NewParam to find the last source location in the type... but it
414      // isn't worth the effort right now. This is the kind of test case that
415      // is hard to get right:
416      //   int f(int);
417      //   void g(int (*fp)(int) = f);
418      //   void g(int (*fp)(int) = &f);
419      Diag(NewParam->getLocation(), DiagDefaultParamID)
420        << NewParam->getDefaultArgRange();
421
422      // Look for the function declaration where the default argument was
423      // actually written, which may be a declaration prior to Old.
424      for (FunctionDecl *Older = Old->getPreviousDecl();
425           Older; Older = Older->getPreviousDecl()) {
426        if (!Older->getParamDecl(p)->hasDefaultArg())
427          break;
428
429        OldParam = Older->getParamDecl(p);
430      }
431
432      Diag(OldParam->getLocation(), diag::note_previous_definition)
433        << OldParam->getDefaultArgRange();
434    } else if (OldParam->hasDefaultArg()) {
435      // Merge the old default argument into the new parameter.
436      // It's important to use getInit() here;  getDefaultArg()
437      // strips off any top-level ExprWithCleanups.
438      NewParam->setHasInheritedDefaultArg();
439      if (OldParam->hasUninstantiatedDefaultArg())
440        NewParam->setUninstantiatedDefaultArg(
441                                      OldParam->getUninstantiatedDefaultArg());
442      else
443        NewParam->setDefaultArg(OldParam->getInit());
444    } else if (NewParam->hasDefaultArg()) {
445      if (New->getDescribedFunctionTemplate()) {
446        // Paragraph 4, quoted above, only applies to non-template functions.
447        Diag(NewParam->getLocation(),
448             diag::err_param_default_argument_template_redecl)
449          << NewParam->getDefaultArgRange();
450        Diag(Old->getLocation(), diag::note_template_prev_declaration)
451          << false;
452      } else if (New->getTemplateSpecializationKind()
453                   != TSK_ImplicitInstantiation &&
454                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
455        // C++ [temp.expr.spec]p21:
456        //   Default function arguments shall not be specified in a declaration
457        //   or a definition for one of the following explicit specializations:
458        //     - the explicit specialization of a function template;
459        //     - the explicit specialization of a member function template;
460        //     - the explicit specialization of a member function of a class
461        //       template where the class template specialization to which the
462        //       member function specialization belongs is implicitly
463        //       instantiated.
464        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
465          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
466          << New->getDeclName()
467          << NewParam->getDefaultArgRange();
468      } else if (New->getDeclContext()->isDependentContext()) {
469        // C++ [dcl.fct.default]p6 (DR217):
470        //   Default arguments for a member function of a class template shall
471        //   be specified on the initial declaration of the member function
472        //   within the class template.
473        //
474        // Reading the tea leaves a bit in DR217 and its reference to DR205
475        // leads me to the conclusion that one cannot add default function
476        // arguments for an out-of-line definition of a member function of a
477        // dependent type.
478        int WhichKind = 2;
479        if (CXXRecordDecl *Record
480              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
481          if (Record->getDescribedClassTemplate())
482            WhichKind = 0;
483          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
484            WhichKind = 1;
485          else
486            WhichKind = 2;
487        }
488
489        Diag(NewParam->getLocation(),
490             diag::err_param_default_argument_member_template_redecl)
491          << WhichKind
492          << NewParam->getDefaultArgRange();
493      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
494        CXXSpecialMember NewSM = getSpecialMember(Ctor),
495                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
496        if (NewSM != OldSM) {
497          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
498            << NewParam->getDefaultArgRange() << NewSM;
499          Diag(Old->getLocation(), diag::note_previous_declaration_special)
500            << OldSM;
501        }
502      }
503    }
504  }
505
506  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
507  // template has a constexpr specifier then all its declarations shall
508  // contain the constexpr specifier. [Note: An explicit specialization can
509  // differ from the template declaration with respect to the constexpr
510  // specifier. -- end note]
511  //
512  // FIXME: Don't reject changes in constexpr in explicit specializations.
513  if (New->isConstexpr() != Old->isConstexpr()) {
514    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
515      << New << New->isConstexpr();
516    Diag(Old->getLocation(), diag::note_previous_declaration);
517    Invalid = true;
518  }
519
520  if (CheckEquivalentExceptionSpec(Old, New))
521    Invalid = true;
522
523  return Invalid;
524}
525
526/// \brief Merge the exception specifications of two variable declarations.
527///
528/// This is called when there's a redeclaration of a VarDecl. The function
529/// checks if the redeclaration might have an exception specification and
530/// validates compatibility and merges the specs if necessary.
531void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
532  // Shortcut if exceptions are disabled.
533  if (!getLangOptions().CXXExceptions)
534    return;
535
536  assert(Context.hasSameType(New->getType(), Old->getType()) &&
537         "Should only be called if types are otherwise the same.");
538
539  QualType NewType = New->getType();
540  QualType OldType = Old->getType();
541
542  // We're only interested in pointers and references to functions, as well
543  // as pointers to member functions.
544  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
545    NewType = R->getPointeeType();
546    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
547  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
548    NewType = P->getPointeeType();
549    OldType = OldType->getAs<PointerType>()->getPointeeType();
550  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
551    NewType = M->getPointeeType();
552    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
553  }
554
555  if (!NewType->isFunctionProtoType())
556    return;
557
558  // There's lots of special cases for functions. For function pointers, system
559  // libraries are hopefully not as broken so that we don't need these
560  // workarounds.
561  if (CheckEquivalentExceptionSpec(
562        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
563        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
564    New->setInvalidDecl();
565  }
566}
567
568/// CheckCXXDefaultArguments - Verify that the default arguments for a
569/// function declaration are well-formed according to C++
570/// [dcl.fct.default].
571void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
572  unsigned NumParams = FD->getNumParams();
573  unsigned p;
574
575  // Find first parameter with a default argument
576  for (p = 0; p < NumParams; ++p) {
577    ParmVarDecl *Param = FD->getParamDecl(p);
578    if (Param->hasDefaultArg())
579      break;
580  }
581
582  // C++ [dcl.fct.default]p4:
583  //   In a given function declaration, all parameters
584  //   subsequent to a parameter with a default argument shall
585  //   have default arguments supplied in this or previous
586  //   declarations. A default argument shall not be redefined
587  //   by a later declaration (not even to the same value).
588  unsigned LastMissingDefaultArg = 0;
589  for (; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (!Param->hasDefaultArg()) {
592      if (Param->isInvalidDecl())
593        /* We already complained about this parameter. */;
594      else if (Param->getIdentifier())
595        Diag(Param->getLocation(),
596             diag::err_param_default_argument_missing_name)
597          << Param->getIdentifier();
598      else
599        Diag(Param->getLocation(),
600             diag::err_param_default_argument_missing);
601
602      LastMissingDefaultArg = p;
603    }
604  }
605
606  if (LastMissingDefaultArg > 0) {
607    // Some default arguments were missing. Clear out all of the
608    // default arguments up to (and including) the last missing
609    // default argument, so that we leave the function parameters
610    // in a semantically valid state.
611    for (p = 0; p <= LastMissingDefaultArg; ++p) {
612      ParmVarDecl *Param = FD->getParamDecl(p);
613      if (Param->hasDefaultArg()) {
614        Param->setDefaultArg(0);
615      }
616    }
617  }
618}
619
620// CheckConstexprParameterTypes - Check whether a function's parameter types
621// are all literal types. If so, return true. If not, produce a suitable
622// diagnostic depending on @p CCK and return false.
623static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
624                                         Sema::CheckConstexprKind CCK) {
625  unsigned ArgIndex = 0;
626  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
627  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
628       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
629    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
630    SourceLocation ParamLoc = PD->getLocation();
631    if (!(*i)->isDependentType() &&
632        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
633                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
634                                     << ArgIndex+1 << PD->getSourceRange()
635                                     << isa<CXXConstructorDecl>(FD) :
636                                   SemaRef.PDiag(),
637                                   /*AllowIncompleteType*/ true)) {
638      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
639        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
640          << ArgIndex+1 << PD->getSourceRange()
641          << isa<CXXConstructorDecl>(FD) << *i;
642      return false;
643    }
644  }
645  return true;
646}
647
648// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
649// the requirements of a constexpr function declaration or a constexpr
650// constructor declaration. Return true if it does, false if not.
651//
652// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
653//
654// \param CCK Specifies whether to produce diagnostics if the function does not
655// satisfy the requirements.
656bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
657                                      CheckConstexprKind CCK) {
658  assert((CCK != CCK_NoteNonConstexprInstantiation ||
659          (NewFD->getTemplateInstantiationPattern() &&
660           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
661         "only constexpr templates can be instantiated non-constexpr");
662
663  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
664  if (MD && MD->isInstance()) {
665    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
666    //  In addition, either its function-body shall be = delete or = default or
667    //  it shall satisfy the following constraints:
668    //  - the class shall not have any virtual base classes;
669    //
670    // We apply this to constexpr member functions too: the class cannot be a
671    // literal type, so the members are not permitted to be constexpr.
672    const CXXRecordDecl *RD = MD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
683          << RD->getNumVBases();
684        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
685               E = RD->vbases_end(); I != E; ++I)
686          Diag(I->getSourceRange().getBegin(),
687               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
688      }
689      return false;
690    }
691  }
692
693  if (!isa<CXXConstructorDecl>(NewFD)) {
694    // C++11 [dcl.constexpr]p3:
695    //  The definition of a constexpr function shall satisfy the following
696    //  constraints:
697    // - it shall not be virtual;
698    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
699    if (Method && Method->isVirtual()) {
700      if (CCK != CCK_Instantiation) {
701        Diag(NewFD->getLocation(),
702             CCK == CCK_Declaration ? diag::err_constexpr_virtual
703                                    : diag::note_constexpr_tmpl_virtual);
704
705        // If it's not obvious why this function is virtual, find an overridden
706        // function which uses the 'virtual' keyword.
707        const CXXMethodDecl *WrittenVirtual = Method;
708        while (!WrittenVirtual->isVirtualAsWritten())
709          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
710        if (WrittenVirtual != Method)
711          Diag(WrittenVirtual->getLocation(),
712               diag::note_overridden_virtual_function);
713      }
714      return false;
715    }
716
717    // - its return type shall be a literal type;
718    QualType RT = NewFD->getResultType();
719    if (!RT->isDependentType() &&
720        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
721                           PDiag(diag::err_constexpr_non_literal_return) :
722                           PDiag(),
723                           /*AllowIncompleteType*/ true)) {
724      if (CCK == CCK_NoteNonConstexprInstantiation)
725        Diag(NewFD->getLocation(),
726             diag::note_constexpr_tmpl_non_literal_return) << RT;
727      return false;
728    }
729  }
730
731  // - each of its parameter types shall be a literal type;
732  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
733    return false;
734
735  return true;
736}
737
738/// Check the given declaration statement is legal within a constexpr function
739/// body. C++0x [dcl.constexpr]p3,p4.
740///
741/// \return true if the body is OK, false if we have diagnosed a problem.
742static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
743                                   DeclStmt *DS) {
744  // C++0x [dcl.constexpr]p3 and p4:
745  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
746  //  contain only
747  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
748         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
749    switch ((*DclIt)->getKind()) {
750    case Decl::StaticAssert:
751    case Decl::Using:
752    case Decl::UsingShadow:
753    case Decl::UsingDirective:
754    case Decl::UnresolvedUsingTypename:
755      //   - static_assert-declarations
756      //   - using-declarations,
757      //   - using-directives,
758      continue;
759
760    case Decl::Typedef:
761    case Decl::TypeAlias: {
762      //   - typedef declarations and alias-declarations that do not define
763      //     classes or enumerations,
764      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
765      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
766        // Don't allow variably-modified types in constexpr functions.
767        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
768        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
769          << TL.getSourceRange() << TL.getType()
770          << isa<CXXConstructorDecl>(Dcl);
771        return false;
772      }
773      continue;
774    }
775
776    case Decl::Enum:
777    case Decl::CXXRecord:
778      // As an extension, we allow the declaration (but not the definition) of
779      // classes and enumerations in all declarations, not just in typedef and
780      // alias declarations.
781      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
782        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
783          << isa<CXXConstructorDecl>(Dcl);
784        return false;
785      }
786      continue;
787
788    case Decl::Var:
789      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
790        << isa<CXXConstructorDecl>(Dcl);
791      return false;
792
793    default:
794      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
795        << isa<CXXConstructorDecl>(Dcl);
796      return false;
797    }
798  }
799
800  return true;
801}
802
803/// Check that the given field is initialized within a constexpr constructor.
804///
805/// \param Dcl The constexpr constructor being checked.
806/// \param Field The field being checked. This may be a member of an anonymous
807///        struct or union nested within the class being checked.
808/// \param Inits All declarations, including anonymous struct/union members and
809///        indirect members, for which any initialization was provided.
810/// \param Diagnosed Set to true if an error is produced.
811static void CheckConstexprCtorInitializer(Sema &SemaRef,
812                                          const FunctionDecl *Dcl,
813                                          FieldDecl *Field,
814                                          llvm::SmallSet<Decl*, 16> &Inits,
815                                          bool &Diagnosed) {
816  if (Field->isUnnamedBitfield())
817    return;
818
819  if (!Inits.count(Field)) {
820    if (!Diagnosed) {
821      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
822      Diagnosed = true;
823    }
824    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
825  } else if (Field->isAnonymousStructOrUnion()) {
826    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
827    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
828         I != E; ++I)
829      // If an anonymous union contains an anonymous struct of which any member
830      // is initialized, all members must be initialized.
831      if (!RD->isUnion() || Inits.count(*I))
832        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
833  }
834}
835
836/// Check the body for the given constexpr function declaration only contains
837/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
838///
839/// \return true if the body is OK, false if we have diagnosed a problem.
840bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body,
841                                      bool IsInstantiation) {
842  if (isa<CXXTryStmt>(Body)) {
843    // C++11 [dcl.constexpr]p3:
844    //  The definition of a constexpr function shall satisfy the following
845    //  constraints: [...]
846    // - its function-body shall be = delete, = default, or a
847    //   compound-statement
848    //
849    // C++11 [dcl.constexpr]p4:
850    //  In the definition of a constexpr constructor, [...]
851    // - its function-body shall not be a function-try-block;
852    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
853      << isa<CXXConstructorDecl>(Dcl);
854    return false;
855  }
856
857  // - its function-body shall be [...] a compound-statement that contains only
858  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
859
860  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
861  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
862         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
863    switch ((*BodyIt)->getStmtClass()) {
864    case Stmt::NullStmtClass:
865      //   - null statements,
866      continue;
867
868    case Stmt::DeclStmtClass:
869      //   - static_assert-declarations
870      //   - using-declarations,
871      //   - using-directives,
872      //   - typedef declarations and alias-declarations that do not define
873      //     classes or enumerations,
874      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
875        return false;
876      continue;
877
878    case Stmt::ReturnStmtClass:
879      //   - and exactly one return statement;
880      if (isa<CXXConstructorDecl>(Dcl))
881        break;
882
883      ReturnStmts.push_back((*BodyIt)->getLocStart());
884      // FIXME
885      // - every constructor call and implicit conversion used in initializing
886      //   the return value shall be one of those allowed in a constant
887      //   expression.
888      // Deal with this as part of a general check that the function can produce
889      // a constant expression (for [dcl.constexpr]p5).
890      continue;
891
892    default:
893      break;
894    }
895
896    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
897      << isa<CXXConstructorDecl>(Dcl);
898    return false;
899  }
900
901  if (const CXXConstructorDecl *Constructor
902        = dyn_cast<CXXConstructorDecl>(Dcl)) {
903    const CXXRecordDecl *RD = Constructor->getParent();
904    // - every non-static data member and base class sub-object shall be
905    //   initialized;
906    if (RD->isUnion()) {
907      // DR1359: Exactly one member of a union shall be initialized.
908      if (Constructor->getNumCtorInitializers() == 0) {
909        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
910        return false;
911      }
912    } else if (!Constructor->isDependentContext() &&
913               !Constructor->isDelegatingConstructor()) {
914      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
915
916      // Skip detailed checking if we have enough initializers, and we would
917      // allow at most one initializer per member.
918      bool AnyAnonStructUnionMembers = false;
919      unsigned Fields = 0;
920      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
921           E = RD->field_end(); I != E; ++I, ++Fields) {
922        if ((*I)->isAnonymousStructOrUnion()) {
923          AnyAnonStructUnionMembers = true;
924          break;
925        }
926      }
927      if (AnyAnonStructUnionMembers ||
928          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
929        // Check initialization of non-static data members. Base classes are
930        // always initialized so do not need to be checked. Dependent bases
931        // might not have initializers in the member initializer list.
932        llvm::SmallSet<Decl*, 16> Inits;
933        for (CXXConstructorDecl::init_const_iterator
934               I = Constructor->init_begin(), E = Constructor->init_end();
935             I != E; ++I) {
936          if (FieldDecl *FD = (*I)->getMember())
937            Inits.insert(FD);
938          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
939            Inits.insert(ID->chain_begin(), ID->chain_end());
940        }
941
942        bool Diagnosed = false;
943        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
944             E = RD->field_end(); I != E; ++I)
945          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
946        if (Diagnosed)
947          return false;
948      }
949    }
950
951    // FIXME
952    // - every constructor involved in initializing non-static data members
953    //   and base class sub-objects shall be a constexpr constructor;
954    // - every assignment-expression that is an initializer-clause appearing
955    //   directly or indirectly within a brace-or-equal-initializer for
956    //   a non-static data member that is not named by a mem-initializer-id
957    //   shall be a constant expression; and
958    // - every implicit conversion used in converting a constructor argument
959    //   to the corresponding parameter type and converting
960    //   a full-expression to the corresponding member type shall be one of
961    //   those allowed in a constant expression.
962    // Deal with these as part of a general check that the function can produce
963    // a constant expression (for [dcl.constexpr]p5).
964  } else {
965    if (ReturnStmts.empty()) {
966      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
967      return false;
968    }
969    if (ReturnStmts.size() > 1) {
970      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
971      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
972        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
973      return false;
974    }
975  }
976
977  // C++11 [dcl.constexpr]p5:
978  //   if no function argument values exist such that the function invocation
979  //   substitution would produce a constant expression, the program is
980  //   ill-formed; no diagnostic required.
981  // C++11 [dcl.constexpr]p3:
982  //   - every constructor call and implicit conversion used in initializing the
983  //     return value shall be one of those allowed in a constant expression.
984  // C++11 [dcl.constexpr]p4:
985  //   - every constructor involved in initializing non-static data members and
986  //     base class sub-objects shall be a constexpr constructor.
987  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
988  if (!IsInstantiation && !Expr::isPotentialConstantExpr(Dcl, Diags)) {
989    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
990      << isa<CXXConstructorDecl>(Dcl);
991    for (size_t I = 0, N = Diags.size(); I != N; ++I)
992      Diag(Diags[I].first, Diags[I].second);
993    return false;
994  }
995
996  return true;
997}
998
999/// isCurrentClassName - Determine whether the identifier II is the
1000/// name of the class type currently being defined. In the case of
1001/// nested classes, this will only return true if II is the name of
1002/// the innermost class.
1003bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1004                              const CXXScopeSpec *SS) {
1005  assert(getLangOptions().CPlusPlus && "No class names in C!");
1006
1007  CXXRecordDecl *CurDecl;
1008  if (SS && SS->isSet() && !SS->isInvalid()) {
1009    DeclContext *DC = computeDeclContext(*SS, true);
1010    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1011  } else
1012    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1013
1014  if (CurDecl && CurDecl->getIdentifier())
1015    return &II == CurDecl->getIdentifier();
1016  else
1017    return false;
1018}
1019
1020/// \brief Check the validity of a C++ base class specifier.
1021///
1022/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1023/// and returns NULL otherwise.
1024CXXBaseSpecifier *
1025Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1026                         SourceRange SpecifierRange,
1027                         bool Virtual, AccessSpecifier Access,
1028                         TypeSourceInfo *TInfo,
1029                         SourceLocation EllipsisLoc) {
1030  QualType BaseType = TInfo->getType();
1031
1032  // C++ [class.union]p1:
1033  //   A union shall not have base classes.
1034  if (Class->isUnion()) {
1035    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1036      << SpecifierRange;
1037    return 0;
1038  }
1039
1040  if (EllipsisLoc.isValid() &&
1041      !TInfo->getType()->containsUnexpandedParameterPack()) {
1042    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1043      << TInfo->getTypeLoc().getSourceRange();
1044    EllipsisLoc = SourceLocation();
1045  }
1046
1047  if (BaseType->isDependentType())
1048    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1049                                          Class->getTagKind() == TTK_Class,
1050                                          Access, TInfo, EllipsisLoc);
1051
1052  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1053
1054  // Base specifiers must be record types.
1055  if (!BaseType->isRecordType()) {
1056    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1057    return 0;
1058  }
1059
1060  // C++ [class.union]p1:
1061  //   A union shall not be used as a base class.
1062  if (BaseType->isUnionType()) {
1063    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1064    return 0;
1065  }
1066
1067  // C++ [class.derived]p2:
1068  //   The class-name in a base-specifier shall not be an incompletely
1069  //   defined class.
1070  if (RequireCompleteType(BaseLoc, BaseType,
1071                          PDiag(diag::err_incomplete_base_class)
1072                            << SpecifierRange)) {
1073    Class->setInvalidDecl();
1074    return 0;
1075  }
1076
1077  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1078  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1079  assert(BaseDecl && "Record type has no declaration");
1080  BaseDecl = BaseDecl->getDefinition();
1081  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1082  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1083  assert(CXXBaseDecl && "Base type is not a C++ type");
1084
1085  // C++ [class]p3:
1086  //   If a class is marked final and it appears as a base-type-specifier in
1087  //   base-clause, the program is ill-formed.
1088  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1089    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1090      << CXXBaseDecl->getDeclName();
1091    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1092      << CXXBaseDecl->getDeclName();
1093    return 0;
1094  }
1095
1096  if (BaseDecl->isInvalidDecl())
1097    Class->setInvalidDecl();
1098
1099  // Create the base specifier.
1100  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1101                                        Class->getTagKind() == TTK_Class,
1102                                        Access, TInfo, EllipsisLoc);
1103}
1104
1105/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1106/// one entry in the base class list of a class specifier, for
1107/// example:
1108///    class foo : public bar, virtual private baz {
1109/// 'public bar' and 'virtual private baz' are each base-specifiers.
1110BaseResult
1111Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1112                         bool Virtual, AccessSpecifier Access,
1113                         ParsedType basetype, SourceLocation BaseLoc,
1114                         SourceLocation EllipsisLoc) {
1115  if (!classdecl)
1116    return true;
1117
1118  AdjustDeclIfTemplate(classdecl);
1119  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1120  if (!Class)
1121    return true;
1122
1123  TypeSourceInfo *TInfo = 0;
1124  GetTypeFromParser(basetype, &TInfo);
1125
1126  if (EllipsisLoc.isInvalid() &&
1127      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1128                                      UPPC_BaseType))
1129    return true;
1130
1131  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1132                                                      Virtual, Access, TInfo,
1133                                                      EllipsisLoc))
1134    return BaseSpec;
1135
1136  return true;
1137}
1138
1139/// \brief Performs the actual work of attaching the given base class
1140/// specifiers to a C++ class.
1141bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1142                                unsigned NumBases) {
1143 if (NumBases == 0)
1144    return false;
1145
1146  // Used to keep track of which base types we have already seen, so
1147  // that we can properly diagnose redundant direct base types. Note
1148  // that the key is always the unqualified canonical type of the base
1149  // class.
1150  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1151
1152  // Copy non-redundant base specifiers into permanent storage.
1153  unsigned NumGoodBases = 0;
1154  bool Invalid = false;
1155  for (unsigned idx = 0; idx < NumBases; ++idx) {
1156    QualType NewBaseType
1157      = Context.getCanonicalType(Bases[idx]->getType());
1158    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1159    if (KnownBaseTypes[NewBaseType]) {
1160      // C++ [class.mi]p3:
1161      //   A class shall not be specified as a direct base class of a
1162      //   derived class more than once.
1163      Diag(Bases[idx]->getSourceRange().getBegin(),
1164           diag::err_duplicate_base_class)
1165        << KnownBaseTypes[NewBaseType]->getType()
1166        << Bases[idx]->getSourceRange();
1167
1168      // Delete the duplicate base class specifier; we're going to
1169      // overwrite its pointer later.
1170      Context.Deallocate(Bases[idx]);
1171
1172      Invalid = true;
1173    } else {
1174      // Okay, add this new base class.
1175      KnownBaseTypes[NewBaseType] = Bases[idx];
1176      Bases[NumGoodBases++] = Bases[idx];
1177      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1178        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1179          if (RD->hasAttr<WeakAttr>())
1180            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1181    }
1182  }
1183
1184  // Attach the remaining base class specifiers to the derived class.
1185  Class->setBases(Bases, NumGoodBases);
1186
1187  // Delete the remaining (good) base class specifiers, since their
1188  // data has been copied into the CXXRecordDecl.
1189  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1190    Context.Deallocate(Bases[idx]);
1191
1192  return Invalid;
1193}
1194
1195/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1196/// class, after checking whether there are any duplicate base
1197/// classes.
1198void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1199                               unsigned NumBases) {
1200  if (!ClassDecl || !Bases || !NumBases)
1201    return;
1202
1203  AdjustDeclIfTemplate(ClassDecl);
1204  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1205                       (CXXBaseSpecifier**)(Bases), NumBases);
1206}
1207
1208static CXXRecordDecl *GetClassForType(QualType T) {
1209  if (const RecordType *RT = T->getAs<RecordType>())
1210    return cast<CXXRecordDecl>(RT->getDecl());
1211  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1212    return ICT->getDecl();
1213  else
1214    return 0;
1215}
1216
1217/// \brief Determine whether the type \p Derived is a C++ class that is
1218/// derived from the type \p Base.
1219bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1220  if (!getLangOptions().CPlusPlus)
1221    return false;
1222
1223  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1224  if (!DerivedRD)
1225    return false;
1226
1227  CXXRecordDecl *BaseRD = GetClassForType(Base);
1228  if (!BaseRD)
1229    return false;
1230
1231  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1232  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1233}
1234
1235/// \brief Determine whether the type \p Derived is a C++ class that is
1236/// derived from the type \p Base.
1237bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1238  if (!getLangOptions().CPlusPlus)
1239    return false;
1240
1241  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1242  if (!DerivedRD)
1243    return false;
1244
1245  CXXRecordDecl *BaseRD = GetClassForType(Base);
1246  if (!BaseRD)
1247    return false;
1248
1249  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1250}
1251
1252void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1253                              CXXCastPath &BasePathArray) {
1254  assert(BasePathArray.empty() && "Base path array must be empty!");
1255  assert(Paths.isRecordingPaths() && "Must record paths!");
1256
1257  const CXXBasePath &Path = Paths.front();
1258
1259  // We first go backward and check if we have a virtual base.
1260  // FIXME: It would be better if CXXBasePath had the base specifier for
1261  // the nearest virtual base.
1262  unsigned Start = 0;
1263  for (unsigned I = Path.size(); I != 0; --I) {
1264    if (Path[I - 1].Base->isVirtual()) {
1265      Start = I - 1;
1266      break;
1267    }
1268  }
1269
1270  // Now add all bases.
1271  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1272    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1273}
1274
1275/// \brief Determine whether the given base path includes a virtual
1276/// base class.
1277bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1278  for (CXXCastPath::const_iterator B = BasePath.begin(),
1279                                BEnd = BasePath.end();
1280       B != BEnd; ++B)
1281    if ((*B)->isVirtual())
1282      return true;
1283
1284  return false;
1285}
1286
1287/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1288/// conversion (where Derived and Base are class types) is
1289/// well-formed, meaning that the conversion is unambiguous (and
1290/// that all of the base classes are accessible). Returns true
1291/// and emits a diagnostic if the code is ill-formed, returns false
1292/// otherwise. Loc is the location where this routine should point to
1293/// if there is an error, and Range is the source range to highlight
1294/// if there is an error.
1295bool
1296Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1297                                   unsigned InaccessibleBaseID,
1298                                   unsigned AmbigiousBaseConvID,
1299                                   SourceLocation Loc, SourceRange Range,
1300                                   DeclarationName Name,
1301                                   CXXCastPath *BasePath) {
1302  // First, determine whether the path from Derived to Base is
1303  // ambiguous. This is slightly more expensive than checking whether
1304  // the Derived to Base conversion exists, because here we need to
1305  // explore multiple paths to determine if there is an ambiguity.
1306  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1307                     /*DetectVirtual=*/false);
1308  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1309  assert(DerivationOkay &&
1310         "Can only be used with a derived-to-base conversion");
1311  (void)DerivationOkay;
1312
1313  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1314    if (InaccessibleBaseID) {
1315      // Check that the base class can be accessed.
1316      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1317                                   InaccessibleBaseID)) {
1318        case AR_inaccessible:
1319          return true;
1320        case AR_accessible:
1321        case AR_dependent:
1322        case AR_delayed:
1323          break;
1324      }
1325    }
1326
1327    // Build a base path if necessary.
1328    if (BasePath)
1329      BuildBasePathArray(Paths, *BasePath);
1330    return false;
1331  }
1332
1333  // We know that the derived-to-base conversion is ambiguous, and
1334  // we're going to produce a diagnostic. Perform the derived-to-base
1335  // search just one more time to compute all of the possible paths so
1336  // that we can print them out. This is more expensive than any of
1337  // the previous derived-to-base checks we've done, but at this point
1338  // performance isn't as much of an issue.
1339  Paths.clear();
1340  Paths.setRecordingPaths(true);
1341  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1342  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1343  (void)StillOkay;
1344
1345  // Build up a textual representation of the ambiguous paths, e.g.,
1346  // D -> B -> A, that will be used to illustrate the ambiguous
1347  // conversions in the diagnostic. We only print one of the paths
1348  // to each base class subobject.
1349  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1350
1351  Diag(Loc, AmbigiousBaseConvID)
1352  << Derived << Base << PathDisplayStr << Range << Name;
1353  return true;
1354}
1355
1356bool
1357Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1358                                   SourceLocation Loc, SourceRange Range,
1359                                   CXXCastPath *BasePath,
1360                                   bool IgnoreAccess) {
1361  return CheckDerivedToBaseConversion(Derived, Base,
1362                                      IgnoreAccess ? 0
1363                                       : diag::err_upcast_to_inaccessible_base,
1364                                      diag::err_ambiguous_derived_to_base_conv,
1365                                      Loc, Range, DeclarationName(),
1366                                      BasePath);
1367}
1368
1369
1370/// @brief Builds a string representing ambiguous paths from a
1371/// specific derived class to different subobjects of the same base
1372/// class.
1373///
1374/// This function builds a string that can be used in error messages
1375/// to show the different paths that one can take through the
1376/// inheritance hierarchy to go from the derived class to different
1377/// subobjects of a base class. The result looks something like this:
1378/// @code
1379/// struct D -> struct B -> struct A
1380/// struct D -> struct C -> struct A
1381/// @endcode
1382std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1383  std::string PathDisplayStr;
1384  std::set<unsigned> DisplayedPaths;
1385  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1386       Path != Paths.end(); ++Path) {
1387    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1388      // We haven't displayed a path to this particular base
1389      // class subobject yet.
1390      PathDisplayStr += "\n    ";
1391      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1392      for (CXXBasePath::const_iterator Element = Path->begin();
1393           Element != Path->end(); ++Element)
1394        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1395    }
1396  }
1397
1398  return PathDisplayStr;
1399}
1400
1401//===----------------------------------------------------------------------===//
1402// C++ class member Handling
1403//===----------------------------------------------------------------------===//
1404
1405/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1406bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1407                                SourceLocation ASLoc,
1408                                SourceLocation ColonLoc,
1409                                AttributeList *Attrs) {
1410  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1411  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1412                                                  ASLoc, ColonLoc);
1413  CurContext->addHiddenDecl(ASDecl);
1414  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1415}
1416
1417/// CheckOverrideControl - Check C++0x override control semantics.
1418void Sema::CheckOverrideControl(const Decl *D) {
1419  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1420  if (!MD || !MD->isVirtual())
1421    return;
1422
1423  if (MD->isDependentContext())
1424    return;
1425
1426  // C++0x [class.virtual]p3:
1427  //   If a virtual function is marked with the virt-specifier override and does
1428  //   not override a member function of a base class,
1429  //   the program is ill-formed.
1430  bool HasOverriddenMethods =
1431    MD->begin_overridden_methods() != MD->end_overridden_methods();
1432  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1433    Diag(MD->getLocation(),
1434                 diag::err_function_marked_override_not_overriding)
1435      << MD->getDeclName();
1436    return;
1437  }
1438}
1439
1440/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1441/// function overrides a virtual member function marked 'final', according to
1442/// C++0x [class.virtual]p3.
1443bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1444                                                  const CXXMethodDecl *Old) {
1445  if (!Old->hasAttr<FinalAttr>())
1446    return false;
1447
1448  Diag(New->getLocation(), diag::err_final_function_overridden)
1449    << New->getDeclName();
1450  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1451  return true;
1452}
1453
1454/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1455/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1456/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1457/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1458/// present but parsing it has been deferred.
1459Decl *
1460Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1461                               MultiTemplateParamsArg TemplateParameterLists,
1462                               Expr *BW, const VirtSpecifiers &VS,
1463                               bool HasDeferredInit) {
1464  const DeclSpec &DS = D.getDeclSpec();
1465  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1466  DeclarationName Name = NameInfo.getName();
1467  SourceLocation Loc = NameInfo.getLoc();
1468
1469  // For anonymous bitfields, the location should point to the type.
1470  if (Loc.isInvalid())
1471    Loc = D.getSourceRange().getBegin();
1472
1473  Expr *BitWidth = static_cast<Expr*>(BW);
1474
1475  assert(isa<CXXRecordDecl>(CurContext));
1476  assert(!DS.isFriendSpecified());
1477
1478  bool isFunc = D.isDeclarationOfFunction();
1479
1480  // C++ 9.2p6: A member shall not be declared to have automatic storage
1481  // duration (auto, register) or with the extern storage-class-specifier.
1482  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1483  // data members and cannot be applied to names declared const or static,
1484  // and cannot be applied to reference members.
1485  switch (DS.getStorageClassSpec()) {
1486    case DeclSpec::SCS_unspecified:
1487    case DeclSpec::SCS_typedef:
1488    case DeclSpec::SCS_static:
1489      // FALL THROUGH.
1490      break;
1491    case DeclSpec::SCS_mutable:
1492      if (isFunc) {
1493        if (DS.getStorageClassSpecLoc().isValid())
1494          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1495        else
1496          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1497
1498        // FIXME: It would be nicer if the keyword was ignored only for this
1499        // declarator. Otherwise we could get follow-up errors.
1500        D.getMutableDeclSpec().ClearStorageClassSpecs();
1501      }
1502      break;
1503    default:
1504      if (DS.getStorageClassSpecLoc().isValid())
1505        Diag(DS.getStorageClassSpecLoc(),
1506             diag::err_storageclass_invalid_for_member);
1507      else
1508        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1509      D.getMutableDeclSpec().ClearStorageClassSpecs();
1510  }
1511
1512  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1513                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1514                      !isFunc);
1515
1516  Decl *Member;
1517  if (isInstField) {
1518    CXXScopeSpec &SS = D.getCXXScopeSpec();
1519
1520    // Data members must have identifiers for names.
1521    if (Name.getNameKind() != DeclarationName::Identifier) {
1522      Diag(Loc, diag::err_bad_variable_name)
1523        << Name;
1524      return 0;
1525    }
1526
1527    IdentifierInfo *II = Name.getAsIdentifierInfo();
1528
1529    // Member field could not be with "template" keyword.
1530    // So TemplateParameterLists should be empty in this case.
1531    if (TemplateParameterLists.size()) {
1532      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1533      if (TemplateParams->size()) {
1534        // There is no such thing as a member field template.
1535        Diag(D.getIdentifierLoc(), diag::err_template_member)
1536            << II
1537            << SourceRange(TemplateParams->getTemplateLoc(),
1538                TemplateParams->getRAngleLoc());
1539      } else {
1540        // There is an extraneous 'template<>' for this member.
1541        Diag(TemplateParams->getTemplateLoc(),
1542            diag::err_template_member_noparams)
1543            << II
1544            << SourceRange(TemplateParams->getTemplateLoc(),
1545                TemplateParams->getRAngleLoc());
1546      }
1547      return 0;
1548    }
1549
1550    if (SS.isSet() && !SS.isInvalid()) {
1551      // The user provided a superfluous scope specifier inside a class
1552      // definition:
1553      //
1554      // class X {
1555      //   int X::member;
1556      // };
1557      DeclContext *DC = 0;
1558      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1559        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1560          << Name << FixItHint::CreateRemoval(SS.getRange());
1561      else
1562        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1563          << Name << SS.getRange();
1564
1565      SS.clear();
1566    }
1567
1568    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1569                         HasDeferredInit, AS);
1570    assert(Member && "HandleField never returns null");
1571  } else {
1572    assert(!HasDeferredInit);
1573
1574    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1575    if (!Member) {
1576      return 0;
1577    }
1578
1579    // Non-instance-fields can't have a bitfield.
1580    if (BitWidth) {
1581      if (Member->isInvalidDecl()) {
1582        // don't emit another diagnostic.
1583      } else if (isa<VarDecl>(Member)) {
1584        // C++ 9.6p3: A bit-field shall not be a static member.
1585        // "static member 'A' cannot be a bit-field"
1586        Diag(Loc, diag::err_static_not_bitfield)
1587          << Name << BitWidth->getSourceRange();
1588      } else if (isa<TypedefDecl>(Member)) {
1589        // "typedef member 'x' cannot be a bit-field"
1590        Diag(Loc, diag::err_typedef_not_bitfield)
1591          << Name << BitWidth->getSourceRange();
1592      } else {
1593        // A function typedef ("typedef int f(); f a;").
1594        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1595        Diag(Loc, diag::err_not_integral_type_bitfield)
1596          << Name << cast<ValueDecl>(Member)->getType()
1597          << BitWidth->getSourceRange();
1598      }
1599
1600      BitWidth = 0;
1601      Member->setInvalidDecl();
1602    }
1603
1604    Member->setAccess(AS);
1605
1606    // If we have declared a member function template, set the access of the
1607    // templated declaration as well.
1608    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1609      FunTmpl->getTemplatedDecl()->setAccess(AS);
1610  }
1611
1612  if (VS.isOverrideSpecified()) {
1613    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1614    if (!MD || !MD->isVirtual()) {
1615      Diag(Member->getLocStart(),
1616           diag::override_keyword_only_allowed_on_virtual_member_functions)
1617        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1618    } else
1619      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1620  }
1621  if (VS.isFinalSpecified()) {
1622    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1623    if (!MD || !MD->isVirtual()) {
1624      Diag(Member->getLocStart(),
1625           diag::override_keyword_only_allowed_on_virtual_member_functions)
1626      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1627    } else
1628      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1629  }
1630
1631  if (VS.getLastLocation().isValid()) {
1632    // Update the end location of a method that has a virt-specifiers.
1633    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1634      MD->setRangeEnd(VS.getLastLocation());
1635  }
1636
1637  CheckOverrideControl(Member);
1638
1639  assert((Name || isInstField) && "No identifier for non-field ?");
1640
1641  if (isInstField)
1642    FieldCollector->Add(cast<FieldDecl>(Member));
1643  return Member;
1644}
1645
1646/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1647/// in-class initializer for a non-static C++ class member, and after
1648/// instantiating an in-class initializer in a class template. Such actions
1649/// are deferred until the class is complete.
1650void
1651Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1652                                       Expr *InitExpr) {
1653  FieldDecl *FD = cast<FieldDecl>(D);
1654
1655  if (!InitExpr) {
1656    FD->setInvalidDecl();
1657    FD->removeInClassInitializer();
1658    return;
1659  }
1660
1661  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1662    FD->setInvalidDecl();
1663    FD->removeInClassInitializer();
1664    return;
1665  }
1666
1667  ExprResult Init = InitExpr;
1668  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1669    // FIXME: if there is no EqualLoc, this is list-initialization.
1670    Init = PerformCopyInitialization(
1671      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1672    if (Init.isInvalid()) {
1673      FD->setInvalidDecl();
1674      return;
1675    }
1676
1677    CheckImplicitConversions(Init.get(), EqualLoc);
1678  }
1679
1680  // C++0x [class.base.init]p7:
1681  //   The initialization of each base and member constitutes a
1682  //   full-expression.
1683  Init = MaybeCreateExprWithCleanups(Init);
1684  if (Init.isInvalid()) {
1685    FD->setInvalidDecl();
1686    return;
1687  }
1688
1689  InitExpr = Init.release();
1690
1691  FD->setInClassInitializer(InitExpr);
1692}
1693
1694/// \brief Find the direct and/or virtual base specifiers that
1695/// correspond to the given base type, for use in base initialization
1696/// within a constructor.
1697static bool FindBaseInitializer(Sema &SemaRef,
1698                                CXXRecordDecl *ClassDecl,
1699                                QualType BaseType,
1700                                const CXXBaseSpecifier *&DirectBaseSpec,
1701                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1702  // First, check for a direct base class.
1703  DirectBaseSpec = 0;
1704  for (CXXRecordDecl::base_class_const_iterator Base
1705         = ClassDecl->bases_begin();
1706       Base != ClassDecl->bases_end(); ++Base) {
1707    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1708      // We found a direct base of this type. That's what we're
1709      // initializing.
1710      DirectBaseSpec = &*Base;
1711      break;
1712    }
1713  }
1714
1715  // Check for a virtual base class.
1716  // FIXME: We might be able to short-circuit this if we know in advance that
1717  // there are no virtual bases.
1718  VirtualBaseSpec = 0;
1719  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1720    // We haven't found a base yet; search the class hierarchy for a
1721    // virtual base class.
1722    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1723                       /*DetectVirtual=*/false);
1724    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1725                              BaseType, Paths)) {
1726      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1727           Path != Paths.end(); ++Path) {
1728        if (Path->back().Base->isVirtual()) {
1729          VirtualBaseSpec = Path->back().Base;
1730          break;
1731        }
1732      }
1733    }
1734  }
1735
1736  return DirectBaseSpec || VirtualBaseSpec;
1737}
1738
1739/// \brief Handle a C++ member initializer using braced-init-list syntax.
1740MemInitResult
1741Sema::ActOnMemInitializer(Decl *ConstructorD,
1742                          Scope *S,
1743                          CXXScopeSpec &SS,
1744                          IdentifierInfo *MemberOrBase,
1745                          ParsedType TemplateTypeTy,
1746                          const DeclSpec &DS,
1747                          SourceLocation IdLoc,
1748                          Expr *InitList,
1749                          SourceLocation EllipsisLoc) {
1750  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1751                             DS, IdLoc, MultiInitializer(InitList),
1752                             EllipsisLoc);
1753}
1754
1755/// \brief Handle a C++ member initializer using parentheses syntax.
1756MemInitResult
1757Sema::ActOnMemInitializer(Decl *ConstructorD,
1758                          Scope *S,
1759                          CXXScopeSpec &SS,
1760                          IdentifierInfo *MemberOrBase,
1761                          ParsedType TemplateTypeTy,
1762                          const DeclSpec &DS,
1763                          SourceLocation IdLoc,
1764                          SourceLocation LParenLoc,
1765                          Expr **Args, unsigned NumArgs,
1766                          SourceLocation RParenLoc,
1767                          SourceLocation EllipsisLoc) {
1768  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1769                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1770                                                         NumArgs, RParenLoc),
1771                             EllipsisLoc);
1772}
1773
1774namespace {
1775
1776// Callback to only accept typo corrections that can be a valid C++ member
1777// intializer: either a non-static field member or a base class.
1778class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1779 public:
1780  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1781      : ClassDecl(ClassDecl) {}
1782
1783  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1784    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1785      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1786        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1787      else
1788        return isa<TypeDecl>(ND);
1789    }
1790    return false;
1791  }
1792
1793 private:
1794  CXXRecordDecl *ClassDecl;
1795};
1796
1797}
1798
1799/// \brief Handle a C++ member initializer.
1800MemInitResult
1801Sema::BuildMemInitializer(Decl *ConstructorD,
1802                          Scope *S,
1803                          CXXScopeSpec &SS,
1804                          IdentifierInfo *MemberOrBase,
1805                          ParsedType TemplateTypeTy,
1806                          const DeclSpec &DS,
1807                          SourceLocation IdLoc,
1808                          const MultiInitializer &Args,
1809                          SourceLocation EllipsisLoc) {
1810  if (!ConstructorD)
1811    return true;
1812
1813  AdjustDeclIfTemplate(ConstructorD);
1814
1815  CXXConstructorDecl *Constructor
1816    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1817  if (!Constructor) {
1818    // The user wrote a constructor initializer on a function that is
1819    // not a C++ constructor. Ignore the error for now, because we may
1820    // have more member initializers coming; we'll diagnose it just
1821    // once in ActOnMemInitializers.
1822    return true;
1823  }
1824
1825  CXXRecordDecl *ClassDecl = Constructor->getParent();
1826
1827  // C++ [class.base.init]p2:
1828  //   Names in a mem-initializer-id are looked up in the scope of the
1829  //   constructor's class and, if not found in that scope, are looked
1830  //   up in the scope containing the constructor's definition.
1831  //   [Note: if the constructor's class contains a member with the
1832  //   same name as a direct or virtual base class of the class, a
1833  //   mem-initializer-id naming the member or base class and composed
1834  //   of a single identifier refers to the class member. A
1835  //   mem-initializer-id for the hidden base class may be specified
1836  //   using a qualified name. ]
1837  if (!SS.getScopeRep() && !TemplateTypeTy) {
1838    // Look for a member, first.
1839    DeclContext::lookup_result Result
1840      = ClassDecl->lookup(MemberOrBase);
1841    if (Result.first != Result.second) {
1842      ValueDecl *Member;
1843      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1844          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1845        if (EllipsisLoc.isValid())
1846          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1847            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1848
1849        return BuildMemberInitializer(Member, Args, IdLoc);
1850      }
1851    }
1852  }
1853  // It didn't name a member, so see if it names a class.
1854  QualType BaseType;
1855  TypeSourceInfo *TInfo = 0;
1856
1857  if (TemplateTypeTy) {
1858    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1859  } else if (DS.getTypeSpecType() == TST_decltype) {
1860    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1861  } else {
1862    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1863    LookupParsedName(R, S, &SS);
1864
1865    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1866    if (!TyD) {
1867      if (R.isAmbiguous()) return true;
1868
1869      // We don't want access-control diagnostics here.
1870      R.suppressDiagnostics();
1871
1872      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1873        bool NotUnknownSpecialization = false;
1874        DeclContext *DC = computeDeclContext(SS, false);
1875        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1876          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1877
1878        if (!NotUnknownSpecialization) {
1879          // When the scope specifier can refer to a member of an unknown
1880          // specialization, we take it as a type name.
1881          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1882                                       SS.getWithLocInContext(Context),
1883                                       *MemberOrBase, IdLoc);
1884          if (BaseType.isNull())
1885            return true;
1886
1887          R.clear();
1888          R.setLookupName(MemberOrBase);
1889        }
1890      }
1891
1892      // If no results were found, try to correct typos.
1893      TypoCorrection Corr;
1894      MemInitializerValidatorCCC Validator(ClassDecl);
1895      if (R.empty() && BaseType.isNull() &&
1896          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1897                              Validator, ClassDecl))) {
1898        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1899        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1900        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1901          // We have found a non-static data member with a similar
1902          // name to what was typed; complain and initialize that
1903          // member.
1904          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1905            << MemberOrBase << true << CorrectedQuotedStr
1906            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1907          Diag(Member->getLocation(), diag::note_previous_decl)
1908            << CorrectedQuotedStr;
1909
1910          return BuildMemberInitializer(Member, Args, IdLoc);
1911        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1912          const CXXBaseSpecifier *DirectBaseSpec;
1913          const CXXBaseSpecifier *VirtualBaseSpec;
1914          if (FindBaseInitializer(*this, ClassDecl,
1915                                  Context.getTypeDeclType(Type),
1916                                  DirectBaseSpec, VirtualBaseSpec)) {
1917            // We have found a direct or virtual base class with a
1918            // similar name to what was typed; complain and initialize
1919            // that base class.
1920            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1921              << MemberOrBase << false << CorrectedQuotedStr
1922              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1923
1924            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1925                                                             : VirtualBaseSpec;
1926            Diag(BaseSpec->getSourceRange().getBegin(),
1927                 diag::note_base_class_specified_here)
1928              << BaseSpec->getType()
1929              << BaseSpec->getSourceRange();
1930
1931            TyD = Type;
1932          }
1933        }
1934      }
1935
1936      if (!TyD && BaseType.isNull()) {
1937        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1938          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1939        return true;
1940      }
1941    }
1942
1943    if (BaseType.isNull()) {
1944      BaseType = Context.getTypeDeclType(TyD);
1945      if (SS.isSet()) {
1946        NestedNameSpecifier *Qualifier =
1947          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1948
1949        // FIXME: preserve source range information
1950        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1951      }
1952    }
1953  }
1954
1955  if (!TInfo)
1956    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1957
1958  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1959}
1960
1961/// Checks a member initializer expression for cases where reference (or
1962/// pointer) members are bound to by-value parameters (or their addresses).
1963static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1964                                               Expr *Init,
1965                                               SourceLocation IdLoc) {
1966  QualType MemberTy = Member->getType();
1967
1968  // We only handle pointers and references currently.
1969  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1970  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1971    return;
1972
1973  const bool IsPointer = MemberTy->isPointerType();
1974  if (IsPointer) {
1975    if (const UnaryOperator *Op
1976          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1977      // The only case we're worried about with pointers requires taking the
1978      // address.
1979      if (Op->getOpcode() != UO_AddrOf)
1980        return;
1981
1982      Init = Op->getSubExpr();
1983    } else {
1984      // We only handle address-of expression initializers for pointers.
1985      return;
1986    }
1987  }
1988
1989  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1990    // Taking the address of a temporary will be diagnosed as a hard error.
1991    if (IsPointer)
1992      return;
1993
1994    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1995      << Member << Init->getSourceRange();
1996  } else if (const DeclRefExpr *DRE
1997               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1998    // We only warn when referring to a non-reference parameter declaration.
1999    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2000    if (!Parameter || Parameter->getType()->isReferenceType())
2001      return;
2002
2003    S.Diag(Init->getExprLoc(),
2004           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2005                     : diag::warn_bind_ref_member_to_parameter)
2006      << Member << Parameter << Init->getSourceRange();
2007  } else {
2008    // Other initializers are fine.
2009    return;
2010  }
2011
2012  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2013    << (unsigned)IsPointer;
2014}
2015
2016/// Checks an initializer expression for use of uninitialized fields, such as
2017/// containing the field that is being initialized. Returns true if there is an
2018/// uninitialized field was used an updates the SourceLocation parameter; false
2019/// otherwise.
2020static bool InitExprContainsUninitializedFields(const Stmt *S,
2021                                                const ValueDecl *LhsField,
2022                                                SourceLocation *L) {
2023  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2024
2025  if (isa<CallExpr>(S)) {
2026    // Do not descend into function calls or constructors, as the use
2027    // of an uninitialized field may be valid. One would have to inspect
2028    // the contents of the function/ctor to determine if it is safe or not.
2029    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2030    // may be safe, depending on what the function/ctor does.
2031    return false;
2032  }
2033  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2034    const NamedDecl *RhsField = ME->getMemberDecl();
2035
2036    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2037      // The member expression points to a static data member.
2038      assert(VD->isStaticDataMember() &&
2039             "Member points to non-static data member!");
2040      (void)VD;
2041      return false;
2042    }
2043
2044    if (isa<EnumConstantDecl>(RhsField)) {
2045      // The member expression points to an enum.
2046      return false;
2047    }
2048
2049    if (RhsField == LhsField) {
2050      // Initializing a field with itself. Throw a warning.
2051      // But wait; there are exceptions!
2052      // Exception #1:  The field may not belong to this record.
2053      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2054      const Expr *base = ME->getBase();
2055      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2056        // Even though the field matches, it does not belong to this record.
2057        return false;
2058      }
2059      // None of the exceptions triggered; return true to indicate an
2060      // uninitialized field was used.
2061      *L = ME->getMemberLoc();
2062      return true;
2063    }
2064  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2065    // sizeof/alignof doesn't reference contents, do not warn.
2066    return false;
2067  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2068    // address-of doesn't reference contents (the pointer may be dereferenced
2069    // in the same expression but it would be rare; and weird).
2070    if (UOE->getOpcode() == UO_AddrOf)
2071      return false;
2072  }
2073  for (Stmt::const_child_range it = S->children(); it; ++it) {
2074    if (!*it) {
2075      // An expression such as 'member(arg ?: "")' may trigger this.
2076      continue;
2077    }
2078    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2079      return true;
2080  }
2081  return false;
2082}
2083
2084MemInitResult
2085Sema::BuildMemberInitializer(ValueDecl *Member,
2086                             const MultiInitializer &Args,
2087                             SourceLocation IdLoc) {
2088  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2089  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2090  assert((DirectMember || IndirectMember) &&
2091         "Member must be a FieldDecl or IndirectFieldDecl");
2092
2093  if (Args.DiagnoseUnexpandedParameterPack(*this))
2094    return true;
2095
2096  if (Member->isInvalidDecl())
2097    return true;
2098
2099  // Diagnose value-uses of fields to initialize themselves, e.g.
2100  //   foo(foo)
2101  // where foo is not also a parameter to the constructor.
2102  // TODO: implement -Wuninitialized and fold this into that framework.
2103  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2104       I != E; ++I) {
2105    SourceLocation L;
2106    Expr *Arg = *I;
2107    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2108      Arg = DIE->getInit();
2109    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2110      // FIXME: Return true in the case when other fields are used before being
2111      // uninitialized. For example, let this field be the i'th field. When
2112      // initializing the i'th field, throw a warning if any of the >= i'th
2113      // fields are used, as they are not yet initialized.
2114      // Right now we are only handling the case where the i'th field uses
2115      // itself in its initializer.
2116      Diag(L, diag::warn_field_is_uninit);
2117    }
2118  }
2119
2120  bool HasDependentArg = Args.isTypeDependent();
2121
2122  Expr *Init;
2123  if (Member->getType()->isDependentType() || HasDependentArg) {
2124    // Can't check initialization for a member of dependent type or when
2125    // any of the arguments are type-dependent expressions.
2126    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2127
2128    DiscardCleanupsInEvaluationContext();
2129  } else {
2130    // Initialize the member.
2131    InitializedEntity MemberEntity =
2132      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2133                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2134    InitializationKind Kind =
2135      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2136                                       Args.getEndLoc());
2137
2138    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2139    if (MemberInit.isInvalid())
2140      return true;
2141
2142    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2143
2144    // C++0x [class.base.init]p7:
2145    //   The initialization of each base and member constitutes a
2146    //   full-expression.
2147    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2148    if (MemberInit.isInvalid())
2149      return true;
2150
2151    // If we are in a dependent context, template instantiation will
2152    // perform this type-checking again. Just save the arguments that we
2153    // received in a ParenListExpr.
2154    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2155    // of the information that we have about the member
2156    // initializer. However, deconstructing the ASTs is a dicey process,
2157    // and this approach is far more likely to get the corner cases right.
2158    if (CurContext->isDependentContext()) {
2159      Init = Args.CreateInitExpr(Context,
2160                                 Member->getType().getNonReferenceType());
2161    } else {
2162      Init = MemberInit.get();
2163      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2164    }
2165  }
2166
2167  if (DirectMember) {
2168    return new (Context) CXXCtorInitializer(Context, DirectMember,
2169                                                    IdLoc, Args.getStartLoc(),
2170                                                    Init, Args.getEndLoc());
2171  } else {
2172    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2173                                                    IdLoc, Args.getStartLoc(),
2174                                                    Init, Args.getEndLoc());
2175  }
2176}
2177
2178MemInitResult
2179Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2180                                 const MultiInitializer &Args,
2181                                 CXXRecordDecl *ClassDecl) {
2182  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2183  if (!LangOpts.CPlusPlus0x)
2184    return Diag(NameLoc, diag::err_delegating_ctor)
2185      << TInfo->getTypeLoc().getLocalSourceRange();
2186  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2187
2188  // Initialize the object.
2189  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2190                                     QualType(ClassDecl->getTypeForDecl(), 0));
2191  InitializationKind Kind =
2192    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2193                                     Args.getEndLoc());
2194
2195  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2196  if (DelegationInit.isInvalid())
2197    return true;
2198
2199  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2200         "Delegating constructor with no target?");
2201
2202  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2203
2204  // C++0x [class.base.init]p7:
2205  //   The initialization of each base and member constitutes a
2206  //   full-expression.
2207  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2208  if (DelegationInit.isInvalid())
2209    return true;
2210
2211  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2212                                          DelegationInit.takeAs<Expr>(),
2213                                          Args.getEndLoc());
2214}
2215
2216MemInitResult
2217Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2218                           const MultiInitializer &Args,
2219                           CXXRecordDecl *ClassDecl,
2220                           SourceLocation EllipsisLoc) {
2221  bool HasDependentArg = Args.isTypeDependent();
2222
2223  SourceLocation BaseLoc
2224    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2225
2226  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2227    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2228             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229
2230  // C++ [class.base.init]p2:
2231  //   [...] Unless the mem-initializer-id names a nonstatic data
2232  //   member of the constructor's class or a direct or virtual base
2233  //   of that class, the mem-initializer is ill-formed. A
2234  //   mem-initializer-list can initialize a base class using any
2235  //   name that denotes that base class type.
2236  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2237
2238  if (EllipsisLoc.isValid()) {
2239    // This is a pack expansion.
2240    if (!BaseType->containsUnexpandedParameterPack())  {
2241      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2242        << SourceRange(BaseLoc, Args.getEndLoc());
2243
2244      EllipsisLoc = SourceLocation();
2245    }
2246  } else {
2247    // Check for any unexpanded parameter packs.
2248    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2249      return true;
2250
2251    if (Args.DiagnoseUnexpandedParameterPack(*this))
2252      return true;
2253  }
2254
2255  // Check for direct and virtual base classes.
2256  const CXXBaseSpecifier *DirectBaseSpec = 0;
2257  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2258  if (!Dependent) {
2259    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2260                                       BaseType))
2261      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2262
2263    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2264                        VirtualBaseSpec);
2265
2266    // C++ [base.class.init]p2:
2267    // Unless the mem-initializer-id names a nonstatic data member of the
2268    // constructor's class or a direct or virtual base of that class, the
2269    // mem-initializer is ill-formed.
2270    if (!DirectBaseSpec && !VirtualBaseSpec) {
2271      // If the class has any dependent bases, then it's possible that
2272      // one of those types will resolve to the same type as
2273      // BaseType. Therefore, just treat this as a dependent base
2274      // class initialization.  FIXME: Should we try to check the
2275      // initialization anyway? It seems odd.
2276      if (ClassDecl->hasAnyDependentBases())
2277        Dependent = true;
2278      else
2279        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2280          << BaseType << Context.getTypeDeclType(ClassDecl)
2281          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2282    }
2283  }
2284
2285  if (Dependent) {
2286    // Can't check initialization for a base of dependent type or when
2287    // any of the arguments are type-dependent expressions.
2288    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2289
2290    DiscardCleanupsInEvaluationContext();
2291
2292    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2293                                            /*IsVirtual=*/false,
2294                                            Args.getStartLoc(), BaseInit,
2295                                            Args.getEndLoc(), EllipsisLoc);
2296  }
2297
2298  // C++ [base.class.init]p2:
2299  //   If a mem-initializer-id is ambiguous because it designates both
2300  //   a direct non-virtual base class and an inherited virtual base
2301  //   class, the mem-initializer is ill-formed.
2302  if (DirectBaseSpec && VirtualBaseSpec)
2303    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2304      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2305
2306  CXXBaseSpecifier *BaseSpec
2307    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2308  if (!BaseSpec)
2309    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2310
2311  // Initialize the base.
2312  InitializedEntity BaseEntity =
2313    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2314  InitializationKind Kind =
2315    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2316                                     Args.getEndLoc());
2317
2318  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2319  if (BaseInit.isInvalid())
2320    return true;
2321
2322  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2323
2324  // C++0x [class.base.init]p7:
2325  //   The initialization of each base and member constitutes a
2326  //   full-expression.
2327  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2328  if (BaseInit.isInvalid())
2329    return true;
2330
2331  // If we are in a dependent context, template instantiation will
2332  // perform this type-checking again. Just save the arguments that we
2333  // received in a ParenListExpr.
2334  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2335  // of the information that we have about the base
2336  // initializer. However, deconstructing the ASTs is a dicey process,
2337  // and this approach is far more likely to get the corner cases right.
2338  if (CurContext->isDependentContext())
2339    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2340
2341  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2342                                          BaseSpec->isVirtual(),
2343                                          Args.getStartLoc(),
2344                                          BaseInit.takeAs<Expr>(),
2345                                          Args.getEndLoc(), EllipsisLoc);
2346}
2347
2348// Create a static_cast\<T&&>(expr).
2349static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2350  QualType ExprType = E->getType();
2351  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2352  SourceLocation ExprLoc = E->getLocStart();
2353  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2354      TargetType, ExprLoc);
2355
2356  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2357                                   SourceRange(ExprLoc, ExprLoc),
2358                                   E->getSourceRange()).take();
2359}
2360
2361/// ImplicitInitializerKind - How an implicit base or member initializer should
2362/// initialize its base or member.
2363enum ImplicitInitializerKind {
2364  IIK_Default,
2365  IIK_Copy,
2366  IIK_Move
2367};
2368
2369static bool
2370BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2371                             ImplicitInitializerKind ImplicitInitKind,
2372                             CXXBaseSpecifier *BaseSpec,
2373                             bool IsInheritedVirtualBase,
2374                             CXXCtorInitializer *&CXXBaseInit) {
2375  InitializedEntity InitEntity
2376    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2377                                        IsInheritedVirtualBase);
2378
2379  ExprResult BaseInit;
2380
2381  switch (ImplicitInitKind) {
2382  case IIK_Default: {
2383    InitializationKind InitKind
2384      = InitializationKind::CreateDefault(Constructor->getLocation());
2385    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2386    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2387                               MultiExprArg(SemaRef, 0, 0));
2388    break;
2389  }
2390
2391  case IIK_Move:
2392  case IIK_Copy: {
2393    bool Moving = ImplicitInitKind == IIK_Move;
2394    ParmVarDecl *Param = Constructor->getParamDecl(0);
2395    QualType ParamType = Param->getType().getNonReferenceType();
2396
2397    Expr *CopyCtorArg =
2398      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2399                          SourceLocation(), Param,
2400                          Constructor->getLocation(), ParamType,
2401                          VK_LValue, 0);
2402
2403    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2404
2405    // Cast to the base class to avoid ambiguities.
2406    QualType ArgTy =
2407      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2408                                       ParamType.getQualifiers());
2409
2410    if (Moving) {
2411      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2412    }
2413
2414    CXXCastPath BasePath;
2415    BasePath.push_back(BaseSpec);
2416    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2417                                            CK_UncheckedDerivedToBase,
2418                                            Moving ? VK_XValue : VK_LValue,
2419                                            &BasePath).take();
2420
2421    InitializationKind InitKind
2422      = InitializationKind::CreateDirect(Constructor->getLocation(),
2423                                         SourceLocation(), SourceLocation());
2424    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2425                                   &CopyCtorArg, 1);
2426    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2427                               MultiExprArg(&CopyCtorArg, 1));
2428    break;
2429  }
2430  }
2431
2432  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2433  if (BaseInit.isInvalid())
2434    return true;
2435
2436  CXXBaseInit =
2437    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2438               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2439                                                        SourceLocation()),
2440                                             BaseSpec->isVirtual(),
2441                                             SourceLocation(),
2442                                             BaseInit.takeAs<Expr>(),
2443                                             SourceLocation(),
2444                                             SourceLocation());
2445
2446  return false;
2447}
2448
2449static bool RefersToRValueRef(Expr *MemRef) {
2450  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2451  return Referenced->getType()->isRValueReferenceType();
2452}
2453
2454static bool
2455BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2456                               ImplicitInitializerKind ImplicitInitKind,
2457                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2458                               CXXCtorInitializer *&CXXMemberInit) {
2459  if (Field->isInvalidDecl())
2460    return true;
2461
2462  SourceLocation Loc = Constructor->getLocation();
2463
2464  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2465    bool Moving = ImplicitInitKind == IIK_Move;
2466    ParmVarDecl *Param = Constructor->getParamDecl(0);
2467    QualType ParamType = Param->getType().getNonReferenceType();
2468
2469    // Suppress copying zero-width bitfields.
2470    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2471      return false;
2472
2473    Expr *MemberExprBase =
2474      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2475                          SourceLocation(), Param,
2476                          Loc, ParamType, VK_LValue, 0);
2477
2478    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2479
2480    if (Moving) {
2481      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2482    }
2483
2484    // Build a reference to this field within the parameter.
2485    CXXScopeSpec SS;
2486    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2487                              Sema::LookupMemberName);
2488    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2489                                  : cast<ValueDecl>(Field), AS_public);
2490    MemberLookup.resolveKind();
2491    ExprResult CtorArg
2492      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2493                                         ParamType, Loc,
2494                                         /*IsArrow=*/false,
2495                                         SS,
2496                                         /*TemplateKWLoc=*/SourceLocation(),
2497                                         /*FirstQualifierInScope=*/0,
2498                                         MemberLookup,
2499                                         /*TemplateArgs=*/0);
2500    if (CtorArg.isInvalid())
2501      return true;
2502
2503    // C++11 [class.copy]p15:
2504    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2505    //     with static_cast<T&&>(x.m);
2506    if (RefersToRValueRef(CtorArg.get())) {
2507      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2508    }
2509
2510    // When the field we are copying is an array, create index variables for
2511    // each dimension of the array. We use these index variables to subscript
2512    // the source array, and other clients (e.g., CodeGen) will perform the
2513    // necessary iteration with these index variables.
2514    SmallVector<VarDecl *, 4> IndexVariables;
2515    QualType BaseType = Field->getType();
2516    QualType SizeType = SemaRef.Context.getSizeType();
2517    bool InitializingArray = false;
2518    while (const ConstantArrayType *Array
2519                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2520      InitializingArray = true;
2521      // Create the iteration variable for this array index.
2522      IdentifierInfo *IterationVarName = 0;
2523      {
2524        SmallString<8> Str;
2525        llvm::raw_svector_ostream OS(Str);
2526        OS << "__i" << IndexVariables.size();
2527        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2528      }
2529      VarDecl *IterationVar
2530        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2531                          IterationVarName, SizeType,
2532                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2533                          SC_None, SC_None);
2534      IndexVariables.push_back(IterationVar);
2535
2536      // Create a reference to the iteration variable.
2537      ExprResult IterationVarRef
2538        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2539      assert(!IterationVarRef.isInvalid() &&
2540             "Reference to invented variable cannot fail!");
2541      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2542      assert(!IterationVarRef.isInvalid() &&
2543             "Conversion of invented variable cannot fail!");
2544
2545      // Subscript the array with this iteration variable.
2546      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2547                                                        IterationVarRef.take(),
2548                                                        Loc);
2549      if (CtorArg.isInvalid())
2550        return true;
2551
2552      BaseType = Array->getElementType();
2553    }
2554
2555    // The array subscript expression is an lvalue, which is wrong for moving.
2556    if (Moving && InitializingArray)
2557      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2558
2559    // Construct the entity that we will be initializing. For an array, this
2560    // will be first element in the array, which may require several levels
2561    // of array-subscript entities.
2562    SmallVector<InitializedEntity, 4> Entities;
2563    Entities.reserve(1 + IndexVariables.size());
2564    if (Indirect)
2565      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2566    else
2567      Entities.push_back(InitializedEntity::InitializeMember(Field));
2568    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2569      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2570                                                              0,
2571                                                              Entities.back()));
2572
2573    // Direct-initialize to use the copy constructor.
2574    InitializationKind InitKind =
2575      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2576
2577    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2578    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2579                                   &CtorArgE, 1);
2580
2581    ExprResult MemberInit
2582      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2583                        MultiExprArg(&CtorArgE, 1));
2584    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2585    if (MemberInit.isInvalid())
2586      return true;
2587
2588    if (Indirect) {
2589      assert(IndexVariables.size() == 0 &&
2590             "Indirect field improperly initialized");
2591      CXXMemberInit
2592        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2593                                                   Loc, Loc,
2594                                                   MemberInit.takeAs<Expr>(),
2595                                                   Loc);
2596    } else
2597      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2598                                                 Loc, MemberInit.takeAs<Expr>(),
2599                                                 Loc,
2600                                                 IndexVariables.data(),
2601                                                 IndexVariables.size());
2602    return false;
2603  }
2604
2605  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2606
2607  QualType FieldBaseElementType =
2608    SemaRef.Context.getBaseElementType(Field->getType());
2609
2610  if (FieldBaseElementType->isRecordType()) {
2611    InitializedEntity InitEntity
2612      = Indirect? InitializedEntity::InitializeMember(Indirect)
2613                : InitializedEntity::InitializeMember(Field);
2614    InitializationKind InitKind =
2615      InitializationKind::CreateDefault(Loc);
2616
2617    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2618    ExprResult MemberInit =
2619      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2620
2621    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2622    if (MemberInit.isInvalid())
2623      return true;
2624
2625    if (Indirect)
2626      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2627                                                               Indirect, Loc,
2628                                                               Loc,
2629                                                               MemberInit.get(),
2630                                                               Loc);
2631    else
2632      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2633                                                               Field, Loc, Loc,
2634                                                               MemberInit.get(),
2635                                                               Loc);
2636    return false;
2637  }
2638
2639  if (!Field->getParent()->isUnion()) {
2640    if (FieldBaseElementType->isReferenceType()) {
2641      SemaRef.Diag(Constructor->getLocation(),
2642                   diag::err_uninitialized_member_in_ctor)
2643      << (int)Constructor->isImplicit()
2644      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2645      << 0 << Field->getDeclName();
2646      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2647      return true;
2648    }
2649
2650    if (FieldBaseElementType.isConstQualified()) {
2651      SemaRef.Diag(Constructor->getLocation(),
2652                   diag::err_uninitialized_member_in_ctor)
2653      << (int)Constructor->isImplicit()
2654      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2655      << 1 << Field->getDeclName();
2656      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2657      return true;
2658    }
2659  }
2660
2661  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2662      FieldBaseElementType->isObjCRetainableType() &&
2663      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2664      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2665    // Instant objects:
2666    //   Default-initialize Objective-C pointers to NULL.
2667    CXXMemberInit
2668      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2669                                                 Loc, Loc,
2670                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2671                                                 Loc);
2672    return false;
2673  }
2674
2675  // Nothing to initialize.
2676  CXXMemberInit = 0;
2677  return false;
2678}
2679
2680namespace {
2681struct BaseAndFieldInfo {
2682  Sema &S;
2683  CXXConstructorDecl *Ctor;
2684  bool AnyErrorsInInits;
2685  ImplicitInitializerKind IIK;
2686  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2687  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2688
2689  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2690    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2691    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2692    if (Generated && Ctor->isCopyConstructor())
2693      IIK = IIK_Copy;
2694    else if (Generated && Ctor->isMoveConstructor())
2695      IIK = IIK_Move;
2696    else
2697      IIK = IIK_Default;
2698  }
2699
2700  bool isImplicitCopyOrMove() const {
2701    switch (IIK) {
2702    case IIK_Copy:
2703    case IIK_Move:
2704      return true;
2705
2706    case IIK_Default:
2707      return false;
2708    }
2709
2710    llvm_unreachable("Invalid ImplicitInitializerKind!");
2711  }
2712};
2713}
2714
2715/// \brief Determine whether the given indirect field declaration is somewhere
2716/// within an anonymous union.
2717static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2718  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2719                                      CEnd = F->chain_end();
2720       C != CEnd; ++C)
2721    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2722      if (Record->isUnion())
2723        return true;
2724
2725  return false;
2726}
2727
2728/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2729/// array type.
2730static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2731  if (T->isIncompleteArrayType())
2732    return true;
2733
2734  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2735    if (!ArrayT->getSize())
2736      return true;
2737
2738    T = ArrayT->getElementType();
2739  }
2740
2741  return false;
2742}
2743
2744static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2745                                    FieldDecl *Field,
2746                                    IndirectFieldDecl *Indirect = 0) {
2747
2748  // Overwhelmingly common case: we have a direct initializer for this field.
2749  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2750    Info.AllToInit.push_back(Init);
2751    return false;
2752  }
2753
2754  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2755  // has a brace-or-equal-initializer, the entity is initialized as specified
2756  // in [dcl.init].
2757  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2758    CXXCtorInitializer *Init;
2759    if (Indirect)
2760      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2761                                                      SourceLocation(),
2762                                                      SourceLocation(), 0,
2763                                                      SourceLocation());
2764    else
2765      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2766                                                      SourceLocation(),
2767                                                      SourceLocation(), 0,
2768                                                      SourceLocation());
2769    Info.AllToInit.push_back(Init);
2770    return false;
2771  }
2772
2773  // Don't build an implicit initializer for union members if none was
2774  // explicitly specified.
2775  if (Field->getParent()->isUnion() ||
2776      (Indirect && isWithinAnonymousUnion(Indirect)))
2777    return false;
2778
2779  // Don't initialize incomplete or zero-length arrays.
2780  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2781    return false;
2782
2783  // Don't try to build an implicit initializer if there were semantic
2784  // errors in any of the initializers (and therefore we might be
2785  // missing some that the user actually wrote).
2786  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2787    return false;
2788
2789  CXXCtorInitializer *Init = 0;
2790  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2791                                     Indirect, Init))
2792    return true;
2793
2794  if (Init)
2795    Info.AllToInit.push_back(Init);
2796
2797  return false;
2798}
2799
2800bool
2801Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2802                               CXXCtorInitializer *Initializer) {
2803  assert(Initializer->isDelegatingInitializer());
2804  Constructor->setNumCtorInitializers(1);
2805  CXXCtorInitializer **initializer =
2806    new (Context) CXXCtorInitializer*[1];
2807  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2808  Constructor->setCtorInitializers(initializer);
2809
2810  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2811    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2812    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2813  }
2814
2815  DelegatingCtorDecls.push_back(Constructor);
2816
2817  return false;
2818}
2819
2820bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2821                               CXXCtorInitializer **Initializers,
2822                               unsigned NumInitializers,
2823                               bool AnyErrors) {
2824  if (Constructor->isDependentContext()) {
2825    // Just store the initializers as written, they will be checked during
2826    // instantiation.
2827    if (NumInitializers > 0) {
2828      Constructor->setNumCtorInitializers(NumInitializers);
2829      CXXCtorInitializer **baseOrMemberInitializers =
2830        new (Context) CXXCtorInitializer*[NumInitializers];
2831      memcpy(baseOrMemberInitializers, Initializers,
2832             NumInitializers * sizeof(CXXCtorInitializer*));
2833      Constructor->setCtorInitializers(baseOrMemberInitializers);
2834    }
2835
2836    return false;
2837  }
2838
2839  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2840
2841  // We need to build the initializer AST according to order of construction
2842  // and not what user specified in the Initializers list.
2843  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2844  if (!ClassDecl)
2845    return true;
2846
2847  bool HadError = false;
2848
2849  for (unsigned i = 0; i < NumInitializers; i++) {
2850    CXXCtorInitializer *Member = Initializers[i];
2851
2852    if (Member->isBaseInitializer())
2853      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2854    else
2855      Info.AllBaseFields[Member->getAnyMember()] = Member;
2856  }
2857
2858  // Keep track of the direct virtual bases.
2859  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2860  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2861       E = ClassDecl->bases_end(); I != E; ++I) {
2862    if (I->isVirtual())
2863      DirectVBases.insert(I);
2864  }
2865
2866  // Push virtual bases before others.
2867  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2868       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2869
2870    if (CXXCtorInitializer *Value
2871        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2872      Info.AllToInit.push_back(Value);
2873    } else if (!AnyErrors) {
2874      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2875      CXXCtorInitializer *CXXBaseInit;
2876      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2877                                       VBase, IsInheritedVirtualBase,
2878                                       CXXBaseInit)) {
2879        HadError = true;
2880        continue;
2881      }
2882
2883      Info.AllToInit.push_back(CXXBaseInit);
2884    }
2885  }
2886
2887  // Non-virtual bases.
2888  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2889       E = ClassDecl->bases_end(); Base != E; ++Base) {
2890    // Virtuals are in the virtual base list and already constructed.
2891    if (Base->isVirtual())
2892      continue;
2893
2894    if (CXXCtorInitializer *Value
2895          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2896      Info.AllToInit.push_back(Value);
2897    } else if (!AnyErrors) {
2898      CXXCtorInitializer *CXXBaseInit;
2899      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2900                                       Base, /*IsInheritedVirtualBase=*/false,
2901                                       CXXBaseInit)) {
2902        HadError = true;
2903        continue;
2904      }
2905
2906      Info.AllToInit.push_back(CXXBaseInit);
2907    }
2908  }
2909
2910  // Fields.
2911  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2912                               MemEnd = ClassDecl->decls_end();
2913       Mem != MemEnd; ++Mem) {
2914    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2915      // C++ [class.bit]p2:
2916      //   A declaration for a bit-field that omits the identifier declares an
2917      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2918      //   initialized.
2919      if (F->isUnnamedBitfield())
2920        continue;
2921
2922      // If we're not generating the implicit copy/move constructor, then we'll
2923      // handle anonymous struct/union fields based on their individual
2924      // indirect fields.
2925      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2926        continue;
2927
2928      if (CollectFieldInitializer(*this, Info, F))
2929        HadError = true;
2930      continue;
2931    }
2932
2933    // Beyond this point, we only consider default initialization.
2934    if (Info.IIK != IIK_Default)
2935      continue;
2936
2937    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2938      if (F->getType()->isIncompleteArrayType()) {
2939        assert(ClassDecl->hasFlexibleArrayMember() &&
2940               "Incomplete array type is not valid");
2941        continue;
2942      }
2943
2944      // Initialize each field of an anonymous struct individually.
2945      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2946        HadError = true;
2947
2948      continue;
2949    }
2950  }
2951
2952  NumInitializers = Info.AllToInit.size();
2953  if (NumInitializers > 0) {
2954    Constructor->setNumCtorInitializers(NumInitializers);
2955    CXXCtorInitializer **baseOrMemberInitializers =
2956      new (Context) CXXCtorInitializer*[NumInitializers];
2957    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2958           NumInitializers * sizeof(CXXCtorInitializer*));
2959    Constructor->setCtorInitializers(baseOrMemberInitializers);
2960
2961    // Constructors implicitly reference the base and member
2962    // destructors.
2963    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2964                                           Constructor->getParent());
2965  }
2966
2967  return HadError;
2968}
2969
2970static void *GetKeyForTopLevelField(FieldDecl *Field) {
2971  // For anonymous unions, use the class declaration as the key.
2972  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2973    if (RT->getDecl()->isAnonymousStructOrUnion())
2974      return static_cast<void *>(RT->getDecl());
2975  }
2976  return static_cast<void *>(Field);
2977}
2978
2979static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2980  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2981}
2982
2983static void *GetKeyForMember(ASTContext &Context,
2984                             CXXCtorInitializer *Member) {
2985  if (!Member->isAnyMemberInitializer())
2986    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2987
2988  // For fields injected into the class via declaration of an anonymous union,
2989  // use its anonymous union class declaration as the unique key.
2990  FieldDecl *Field = Member->getAnyMember();
2991
2992  // If the field is a member of an anonymous struct or union, our key
2993  // is the anonymous record decl that's a direct child of the class.
2994  RecordDecl *RD = Field->getParent();
2995  if (RD->isAnonymousStructOrUnion()) {
2996    while (true) {
2997      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2998      if (Parent->isAnonymousStructOrUnion())
2999        RD = Parent;
3000      else
3001        break;
3002    }
3003
3004    return static_cast<void *>(RD);
3005  }
3006
3007  return static_cast<void *>(Field);
3008}
3009
3010static void
3011DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3012                                  const CXXConstructorDecl *Constructor,
3013                                  CXXCtorInitializer **Inits,
3014                                  unsigned NumInits) {
3015  if (Constructor->getDeclContext()->isDependentContext())
3016    return;
3017
3018  // Don't check initializers order unless the warning is enabled at the
3019  // location of at least one initializer.
3020  bool ShouldCheckOrder = false;
3021  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3022    CXXCtorInitializer *Init = Inits[InitIndex];
3023    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3024                                         Init->getSourceLocation())
3025          != DiagnosticsEngine::Ignored) {
3026      ShouldCheckOrder = true;
3027      break;
3028    }
3029  }
3030  if (!ShouldCheckOrder)
3031    return;
3032
3033  // Build the list of bases and members in the order that they'll
3034  // actually be initialized.  The explicit initializers should be in
3035  // this same order but may be missing things.
3036  SmallVector<const void*, 32> IdealInitKeys;
3037
3038  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3039
3040  // 1. Virtual bases.
3041  for (CXXRecordDecl::base_class_const_iterator VBase =
3042       ClassDecl->vbases_begin(),
3043       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3044    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3045
3046  // 2. Non-virtual bases.
3047  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3048       E = ClassDecl->bases_end(); Base != E; ++Base) {
3049    if (Base->isVirtual())
3050      continue;
3051    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3052  }
3053
3054  // 3. Direct fields.
3055  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3056       E = ClassDecl->field_end(); Field != E; ++Field) {
3057    if (Field->isUnnamedBitfield())
3058      continue;
3059
3060    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3061  }
3062
3063  unsigned NumIdealInits = IdealInitKeys.size();
3064  unsigned IdealIndex = 0;
3065
3066  CXXCtorInitializer *PrevInit = 0;
3067  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3068    CXXCtorInitializer *Init = Inits[InitIndex];
3069    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3070
3071    // Scan forward to try to find this initializer in the idealized
3072    // initializers list.
3073    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3074      if (InitKey == IdealInitKeys[IdealIndex])
3075        break;
3076
3077    // If we didn't find this initializer, it must be because we
3078    // scanned past it on a previous iteration.  That can only
3079    // happen if we're out of order;  emit a warning.
3080    if (IdealIndex == NumIdealInits && PrevInit) {
3081      Sema::SemaDiagnosticBuilder D =
3082        SemaRef.Diag(PrevInit->getSourceLocation(),
3083                     diag::warn_initializer_out_of_order);
3084
3085      if (PrevInit->isAnyMemberInitializer())
3086        D << 0 << PrevInit->getAnyMember()->getDeclName();
3087      else
3088        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3089
3090      if (Init->isAnyMemberInitializer())
3091        D << 0 << Init->getAnyMember()->getDeclName();
3092      else
3093        D << 1 << Init->getTypeSourceInfo()->getType();
3094
3095      // Move back to the initializer's location in the ideal list.
3096      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3097        if (InitKey == IdealInitKeys[IdealIndex])
3098          break;
3099
3100      assert(IdealIndex != NumIdealInits &&
3101             "initializer not found in initializer list");
3102    }
3103
3104    PrevInit = Init;
3105  }
3106}
3107
3108namespace {
3109bool CheckRedundantInit(Sema &S,
3110                        CXXCtorInitializer *Init,
3111                        CXXCtorInitializer *&PrevInit) {
3112  if (!PrevInit) {
3113    PrevInit = Init;
3114    return false;
3115  }
3116
3117  if (FieldDecl *Field = Init->getMember())
3118    S.Diag(Init->getSourceLocation(),
3119           diag::err_multiple_mem_initialization)
3120      << Field->getDeclName()
3121      << Init->getSourceRange();
3122  else {
3123    const Type *BaseClass = Init->getBaseClass();
3124    assert(BaseClass && "neither field nor base");
3125    S.Diag(Init->getSourceLocation(),
3126           diag::err_multiple_base_initialization)
3127      << QualType(BaseClass, 0)
3128      << Init->getSourceRange();
3129  }
3130  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3131    << 0 << PrevInit->getSourceRange();
3132
3133  return true;
3134}
3135
3136typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3137typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3138
3139bool CheckRedundantUnionInit(Sema &S,
3140                             CXXCtorInitializer *Init,
3141                             RedundantUnionMap &Unions) {
3142  FieldDecl *Field = Init->getAnyMember();
3143  RecordDecl *Parent = Field->getParent();
3144  NamedDecl *Child = Field;
3145
3146  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3147    if (Parent->isUnion()) {
3148      UnionEntry &En = Unions[Parent];
3149      if (En.first && En.first != Child) {
3150        S.Diag(Init->getSourceLocation(),
3151               diag::err_multiple_mem_union_initialization)
3152          << Field->getDeclName()
3153          << Init->getSourceRange();
3154        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3155          << 0 << En.second->getSourceRange();
3156        return true;
3157      }
3158      if (!En.first) {
3159        En.first = Child;
3160        En.second = Init;
3161      }
3162      if (!Parent->isAnonymousStructOrUnion())
3163        return false;
3164    }
3165
3166    Child = Parent;
3167    Parent = cast<RecordDecl>(Parent->getDeclContext());
3168  }
3169
3170  return false;
3171}
3172}
3173
3174/// ActOnMemInitializers - Handle the member initializers for a constructor.
3175void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3176                                SourceLocation ColonLoc,
3177                                CXXCtorInitializer **meminits,
3178                                unsigned NumMemInits,
3179                                bool AnyErrors) {
3180  if (!ConstructorDecl)
3181    return;
3182
3183  AdjustDeclIfTemplate(ConstructorDecl);
3184
3185  CXXConstructorDecl *Constructor
3186    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3187
3188  if (!Constructor) {
3189    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3190    return;
3191  }
3192
3193  CXXCtorInitializer **MemInits =
3194    reinterpret_cast<CXXCtorInitializer **>(meminits);
3195
3196  // Mapping for the duplicate initializers check.
3197  // For member initializers, this is keyed with a FieldDecl*.
3198  // For base initializers, this is keyed with a Type*.
3199  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3200
3201  // Mapping for the inconsistent anonymous-union initializers check.
3202  RedundantUnionMap MemberUnions;
3203
3204  bool HadError = false;
3205  for (unsigned i = 0; i < NumMemInits; i++) {
3206    CXXCtorInitializer *Init = MemInits[i];
3207
3208    // Set the source order index.
3209    Init->setSourceOrder(i);
3210
3211    if (Init->isAnyMemberInitializer()) {
3212      FieldDecl *Field = Init->getAnyMember();
3213      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3214          CheckRedundantUnionInit(*this, Init, MemberUnions))
3215        HadError = true;
3216    } else if (Init->isBaseInitializer()) {
3217      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3218      if (CheckRedundantInit(*this, Init, Members[Key]))
3219        HadError = true;
3220    } else {
3221      assert(Init->isDelegatingInitializer());
3222      // This must be the only initializer
3223      if (i != 0 || NumMemInits > 1) {
3224        Diag(MemInits[0]->getSourceLocation(),
3225             diag::err_delegating_initializer_alone)
3226          << MemInits[0]->getSourceRange();
3227        HadError = true;
3228        // We will treat this as being the only initializer.
3229      }
3230      SetDelegatingInitializer(Constructor, MemInits[i]);
3231      // Return immediately as the initializer is set.
3232      return;
3233    }
3234  }
3235
3236  if (HadError)
3237    return;
3238
3239  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3240
3241  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3242}
3243
3244void
3245Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3246                                             CXXRecordDecl *ClassDecl) {
3247  // Ignore dependent contexts. Also ignore unions, since their members never
3248  // have destructors implicitly called.
3249  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3250    return;
3251
3252  // FIXME: all the access-control diagnostics are positioned on the
3253  // field/base declaration.  That's probably good; that said, the
3254  // user might reasonably want to know why the destructor is being
3255  // emitted, and we currently don't say.
3256
3257  // Non-static data members.
3258  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3259       E = ClassDecl->field_end(); I != E; ++I) {
3260    FieldDecl *Field = *I;
3261    if (Field->isInvalidDecl())
3262      continue;
3263
3264    // Don't destroy incomplete or zero-length arrays.
3265    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3266      continue;
3267
3268    QualType FieldType = Context.getBaseElementType(Field->getType());
3269
3270    const RecordType* RT = FieldType->getAs<RecordType>();
3271    if (!RT)
3272      continue;
3273
3274    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3275    if (FieldClassDecl->isInvalidDecl())
3276      continue;
3277    if (FieldClassDecl->hasTrivialDestructor())
3278      continue;
3279
3280    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3281    assert(Dtor && "No dtor found for FieldClassDecl!");
3282    CheckDestructorAccess(Field->getLocation(), Dtor,
3283                          PDiag(diag::err_access_dtor_field)
3284                            << Field->getDeclName()
3285                            << FieldType);
3286
3287    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3288  }
3289
3290  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3291
3292  // Bases.
3293  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3294       E = ClassDecl->bases_end(); Base != E; ++Base) {
3295    // Bases are always records in a well-formed non-dependent class.
3296    const RecordType *RT = Base->getType()->getAs<RecordType>();
3297
3298    // Remember direct virtual bases.
3299    if (Base->isVirtual())
3300      DirectVirtualBases.insert(RT);
3301
3302    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3303    // If our base class is invalid, we probably can't get its dtor anyway.
3304    if (BaseClassDecl->isInvalidDecl())
3305      continue;
3306    // Ignore trivial destructors.
3307    if (BaseClassDecl->hasTrivialDestructor())
3308      continue;
3309
3310    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3311    assert(Dtor && "No dtor found for BaseClassDecl!");
3312
3313    // FIXME: caret should be on the start of the class name
3314    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3315                          PDiag(diag::err_access_dtor_base)
3316                            << Base->getType()
3317                            << Base->getSourceRange());
3318
3319    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3320  }
3321
3322  // Virtual bases.
3323  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3324       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3325
3326    // Bases are always records in a well-formed non-dependent class.
3327    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3328
3329    // Ignore direct virtual bases.
3330    if (DirectVirtualBases.count(RT))
3331      continue;
3332
3333    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3334    // If our base class is invalid, we probably can't get its dtor anyway.
3335    if (BaseClassDecl->isInvalidDecl())
3336      continue;
3337    // Ignore trivial destructors.
3338    if (BaseClassDecl->hasTrivialDestructor())
3339      continue;
3340
3341    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3342    assert(Dtor && "No dtor found for BaseClassDecl!");
3343    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3344                          PDiag(diag::err_access_dtor_vbase)
3345                            << VBase->getType());
3346
3347    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3348  }
3349}
3350
3351void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3352  if (!CDtorDecl)
3353    return;
3354
3355  if (CXXConstructorDecl *Constructor
3356      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3357    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3358}
3359
3360bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3361                                  unsigned DiagID, AbstractDiagSelID SelID) {
3362  if (SelID == -1)
3363    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3364  else
3365    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3366}
3367
3368bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3369                                  const PartialDiagnostic &PD) {
3370  if (!getLangOptions().CPlusPlus)
3371    return false;
3372
3373  if (const ArrayType *AT = Context.getAsArrayType(T))
3374    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3375
3376  if (const PointerType *PT = T->getAs<PointerType>()) {
3377    // Find the innermost pointer type.
3378    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3379      PT = T;
3380
3381    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3382      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3383  }
3384
3385  const RecordType *RT = T->getAs<RecordType>();
3386  if (!RT)
3387    return false;
3388
3389  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3390
3391  // We can't answer whether something is abstract until it has a
3392  // definition.  If it's currently being defined, we'll walk back
3393  // over all the declarations when we have a full definition.
3394  const CXXRecordDecl *Def = RD->getDefinition();
3395  if (!Def || Def->isBeingDefined())
3396    return false;
3397
3398  if (!RD->isAbstract())
3399    return false;
3400
3401  Diag(Loc, PD) << RD->getDeclName();
3402  DiagnoseAbstractType(RD);
3403
3404  return true;
3405}
3406
3407void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3408  // Check if we've already emitted the list of pure virtual functions
3409  // for this class.
3410  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3411    return;
3412
3413  CXXFinalOverriderMap FinalOverriders;
3414  RD->getFinalOverriders(FinalOverriders);
3415
3416  // Keep a set of seen pure methods so we won't diagnose the same method
3417  // more than once.
3418  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3419
3420  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3421                                   MEnd = FinalOverriders.end();
3422       M != MEnd;
3423       ++M) {
3424    for (OverridingMethods::iterator SO = M->second.begin(),
3425                                  SOEnd = M->second.end();
3426         SO != SOEnd; ++SO) {
3427      // C++ [class.abstract]p4:
3428      //   A class is abstract if it contains or inherits at least one
3429      //   pure virtual function for which the final overrider is pure
3430      //   virtual.
3431
3432      //
3433      if (SO->second.size() != 1)
3434        continue;
3435
3436      if (!SO->second.front().Method->isPure())
3437        continue;
3438
3439      if (!SeenPureMethods.insert(SO->second.front().Method))
3440        continue;
3441
3442      Diag(SO->second.front().Method->getLocation(),
3443           diag::note_pure_virtual_function)
3444        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3445    }
3446  }
3447
3448  if (!PureVirtualClassDiagSet)
3449    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3450  PureVirtualClassDiagSet->insert(RD);
3451}
3452
3453namespace {
3454struct AbstractUsageInfo {
3455  Sema &S;
3456  CXXRecordDecl *Record;
3457  CanQualType AbstractType;
3458  bool Invalid;
3459
3460  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3461    : S(S), Record(Record),
3462      AbstractType(S.Context.getCanonicalType(
3463                   S.Context.getTypeDeclType(Record))),
3464      Invalid(false) {}
3465
3466  void DiagnoseAbstractType() {
3467    if (Invalid) return;
3468    S.DiagnoseAbstractType(Record);
3469    Invalid = true;
3470  }
3471
3472  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3473};
3474
3475struct CheckAbstractUsage {
3476  AbstractUsageInfo &Info;
3477  const NamedDecl *Ctx;
3478
3479  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3480    : Info(Info), Ctx(Ctx) {}
3481
3482  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3483    switch (TL.getTypeLocClass()) {
3484#define ABSTRACT_TYPELOC(CLASS, PARENT)
3485#define TYPELOC(CLASS, PARENT) \
3486    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3487#include "clang/AST/TypeLocNodes.def"
3488    }
3489  }
3490
3491  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3492    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3493    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3494      if (!TL.getArg(I))
3495        continue;
3496
3497      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3498      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3499    }
3500  }
3501
3502  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3503    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3504  }
3505
3506  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3507    // Visit the type parameters from a permissive context.
3508    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3509      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3510      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3511        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3512          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3513      // TODO: other template argument types?
3514    }
3515  }
3516
3517  // Visit pointee types from a permissive context.
3518#define CheckPolymorphic(Type) \
3519  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3520    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3521  }
3522  CheckPolymorphic(PointerTypeLoc)
3523  CheckPolymorphic(ReferenceTypeLoc)
3524  CheckPolymorphic(MemberPointerTypeLoc)
3525  CheckPolymorphic(BlockPointerTypeLoc)
3526  CheckPolymorphic(AtomicTypeLoc)
3527
3528  /// Handle all the types we haven't given a more specific
3529  /// implementation for above.
3530  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3531    // Every other kind of type that we haven't called out already
3532    // that has an inner type is either (1) sugar or (2) contains that
3533    // inner type in some way as a subobject.
3534    if (TypeLoc Next = TL.getNextTypeLoc())
3535      return Visit(Next, Sel);
3536
3537    // If there's no inner type and we're in a permissive context,
3538    // don't diagnose.
3539    if (Sel == Sema::AbstractNone) return;
3540
3541    // Check whether the type matches the abstract type.
3542    QualType T = TL.getType();
3543    if (T->isArrayType()) {
3544      Sel = Sema::AbstractArrayType;
3545      T = Info.S.Context.getBaseElementType(T);
3546    }
3547    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3548    if (CT != Info.AbstractType) return;
3549
3550    // It matched; do some magic.
3551    if (Sel == Sema::AbstractArrayType) {
3552      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3553        << T << TL.getSourceRange();
3554    } else {
3555      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3556        << Sel << T << TL.getSourceRange();
3557    }
3558    Info.DiagnoseAbstractType();
3559  }
3560};
3561
3562void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3563                                  Sema::AbstractDiagSelID Sel) {
3564  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3565}
3566
3567}
3568
3569/// Check for invalid uses of an abstract type in a method declaration.
3570static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3571                                    CXXMethodDecl *MD) {
3572  // No need to do the check on definitions, which require that
3573  // the return/param types be complete.
3574  if (MD->doesThisDeclarationHaveABody())
3575    return;
3576
3577  // For safety's sake, just ignore it if we don't have type source
3578  // information.  This should never happen for non-implicit methods,
3579  // but...
3580  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3581    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3582}
3583
3584/// Check for invalid uses of an abstract type within a class definition.
3585static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3586                                    CXXRecordDecl *RD) {
3587  for (CXXRecordDecl::decl_iterator
3588         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3589    Decl *D = *I;
3590    if (D->isImplicit()) continue;
3591
3592    // Methods and method templates.
3593    if (isa<CXXMethodDecl>(D)) {
3594      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3595    } else if (isa<FunctionTemplateDecl>(D)) {
3596      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3597      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3598
3599    // Fields and static variables.
3600    } else if (isa<FieldDecl>(D)) {
3601      FieldDecl *FD = cast<FieldDecl>(D);
3602      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3603        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3604    } else if (isa<VarDecl>(D)) {
3605      VarDecl *VD = cast<VarDecl>(D);
3606      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3607        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3608
3609    // Nested classes and class templates.
3610    } else if (isa<CXXRecordDecl>(D)) {
3611      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3612    } else if (isa<ClassTemplateDecl>(D)) {
3613      CheckAbstractClassUsage(Info,
3614                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3615    }
3616  }
3617}
3618
3619/// \brief Perform semantic checks on a class definition that has been
3620/// completing, introducing implicitly-declared members, checking for
3621/// abstract types, etc.
3622void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3623  if (!Record)
3624    return;
3625
3626  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3627    AbstractUsageInfo Info(*this, Record);
3628    CheckAbstractClassUsage(Info, Record);
3629  }
3630
3631  // If this is not an aggregate type and has no user-declared constructor,
3632  // complain about any non-static data members of reference or const scalar
3633  // type, since they will never get initializers.
3634  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3635      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3636      !Record->isLambda()) {
3637    bool Complained = false;
3638    for (RecordDecl::field_iterator F = Record->field_begin(),
3639                                 FEnd = Record->field_end();
3640         F != FEnd; ++F) {
3641      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3642        continue;
3643
3644      if (F->getType()->isReferenceType() ||
3645          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3646        if (!Complained) {
3647          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3648            << Record->getTagKind() << Record;
3649          Complained = true;
3650        }
3651
3652        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3653          << F->getType()->isReferenceType()
3654          << F->getDeclName();
3655      }
3656    }
3657  }
3658
3659  if (Record->isDynamicClass() && !Record->isDependentType())
3660    DynamicClasses.push_back(Record);
3661
3662  if (Record->getIdentifier()) {
3663    // C++ [class.mem]p13:
3664    //   If T is the name of a class, then each of the following shall have a
3665    //   name different from T:
3666    //     - every member of every anonymous union that is a member of class T.
3667    //
3668    // C++ [class.mem]p14:
3669    //   In addition, if class T has a user-declared constructor (12.1), every
3670    //   non-static data member of class T shall have a name different from T.
3671    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3672         R.first != R.second; ++R.first) {
3673      NamedDecl *D = *R.first;
3674      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3675          isa<IndirectFieldDecl>(D)) {
3676        Diag(D->getLocation(), diag::err_member_name_of_class)
3677          << D->getDeclName();
3678        break;
3679      }
3680    }
3681  }
3682
3683  // Warn if the class has virtual methods but non-virtual public destructor.
3684  if (Record->isPolymorphic() && !Record->isDependentType()) {
3685    CXXDestructorDecl *dtor = Record->getDestructor();
3686    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3687      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3688           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3689  }
3690
3691  // See if a method overloads virtual methods in a base
3692  /// class without overriding any.
3693  if (!Record->isDependentType()) {
3694    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3695                                     MEnd = Record->method_end();
3696         M != MEnd; ++M) {
3697      if (!(*M)->isStatic())
3698        DiagnoseHiddenVirtualMethods(Record, *M);
3699    }
3700  }
3701
3702  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3703  // function that is not a constructor declares that member function to be
3704  // const. [...] The class of which that function is a member shall be
3705  // a literal type.
3706  //
3707  // It's fine to diagnose constructors here too: such constructors cannot
3708  // produce a constant expression, so are ill-formed (no diagnostic required).
3709  //
3710  // If the class has virtual bases, any constexpr members will already have
3711  // been diagnosed by the checks performed on the member declaration, so
3712  // suppress this (less useful) diagnostic.
3713  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3714      !Record->isLiteral() && !Record->getNumVBases()) {
3715    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3716                                     MEnd = Record->method_end();
3717         M != MEnd; ++M) {
3718      if (M->isConstexpr() && M->isInstance()) {
3719        switch (Record->getTemplateSpecializationKind()) {
3720        case TSK_ImplicitInstantiation:
3721        case TSK_ExplicitInstantiationDeclaration:
3722        case TSK_ExplicitInstantiationDefinition:
3723          // If a template instantiates to a non-literal type, but its members
3724          // instantiate to constexpr functions, the template is technically
3725          // ill-formed, but we allow it for sanity. Such members are treated as
3726          // non-constexpr.
3727          (*M)->setConstexpr(false);
3728          continue;
3729
3730        case TSK_Undeclared:
3731        case TSK_ExplicitSpecialization:
3732          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3733                             PDiag(diag::err_constexpr_method_non_literal));
3734          break;
3735        }
3736
3737        // Only produce one error per class.
3738        break;
3739      }
3740    }
3741  }
3742
3743  // Declare inherited constructors. We do this eagerly here because:
3744  // - The standard requires an eager diagnostic for conflicting inherited
3745  //   constructors from different classes.
3746  // - The lazy declaration of the other implicit constructors is so as to not
3747  //   waste space and performance on classes that are not meant to be
3748  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3749  //   have inherited constructors.
3750  DeclareInheritedConstructors(Record);
3751
3752  if (!Record->isDependentType())
3753    CheckExplicitlyDefaultedMethods(Record);
3754}
3755
3756void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3757  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3758                                      ME = Record->method_end();
3759       MI != ME; ++MI) {
3760    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3761      switch (getSpecialMember(*MI)) {
3762      case CXXDefaultConstructor:
3763        CheckExplicitlyDefaultedDefaultConstructor(
3764                                                  cast<CXXConstructorDecl>(*MI));
3765        break;
3766
3767      case CXXDestructor:
3768        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3769        break;
3770
3771      case CXXCopyConstructor:
3772        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3773        break;
3774
3775      case CXXCopyAssignment:
3776        CheckExplicitlyDefaultedCopyAssignment(*MI);
3777        break;
3778
3779      case CXXMoveConstructor:
3780        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3781        break;
3782
3783      case CXXMoveAssignment:
3784        CheckExplicitlyDefaultedMoveAssignment(*MI);
3785        break;
3786
3787      case CXXInvalid:
3788        llvm_unreachable("non-special member explicitly defaulted!");
3789      }
3790    }
3791  }
3792
3793}
3794
3795void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3796  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3797
3798  // Whether this was the first-declared instance of the constructor.
3799  // This affects whether we implicitly add an exception spec (and, eventually,
3800  // constexpr). It is also ill-formed to explicitly default a constructor such
3801  // that it would be deleted. (C++0x [decl.fct.def.default])
3802  bool First = CD == CD->getCanonicalDecl();
3803
3804  bool HadError = false;
3805  if (CD->getNumParams() != 0) {
3806    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3807      << CD->getSourceRange();
3808    HadError = true;
3809  }
3810
3811  ImplicitExceptionSpecification Spec
3812    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3813  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3814  if (EPI.ExceptionSpecType == EST_Delayed) {
3815    // Exception specification depends on some deferred part of the class. We'll
3816    // try again when the class's definition has been fully processed.
3817    return;
3818  }
3819  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3820                          *ExceptionType = Context.getFunctionType(
3821                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3822
3823  // C++11 [dcl.fct.def.default]p2:
3824  //   An explicitly-defaulted function may be declared constexpr only if it
3825  //   would have been implicitly declared as constexpr,
3826  if (CD->isConstexpr()) {
3827    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3828      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3829        << CXXDefaultConstructor;
3830      HadError = true;
3831    }
3832  }
3833  //   and may have an explicit exception-specification only if it is compatible
3834  //   with the exception-specification on the implicit declaration.
3835  if (CtorType->hasExceptionSpec()) {
3836    if (CheckEquivalentExceptionSpec(
3837          PDiag(diag::err_incorrect_defaulted_exception_spec)
3838            << CXXDefaultConstructor,
3839          PDiag(),
3840          ExceptionType, SourceLocation(),
3841          CtorType, CD->getLocation())) {
3842      HadError = true;
3843    }
3844  }
3845
3846  //   If a function is explicitly defaulted on its first declaration,
3847  if (First) {
3848    //  -- it is implicitly considered to be constexpr if the implicit
3849    //     definition would be,
3850    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3851
3852    //  -- it is implicitly considered to have the same
3853    //     exception-specification as if it had been implicitly declared
3854    //
3855    // FIXME: a compatible, but different, explicit exception specification
3856    // will be silently overridden. We should issue a warning if this happens.
3857    EPI.ExtInfo = CtorType->getExtInfo();
3858  }
3859
3860  if (HadError) {
3861    CD->setInvalidDecl();
3862    return;
3863  }
3864
3865  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3866    if (First) {
3867      CD->setDeletedAsWritten();
3868    } else {
3869      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3870        << CXXDefaultConstructor;
3871      CD->setInvalidDecl();
3872    }
3873  }
3874}
3875
3876void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3877  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3878
3879  // Whether this was the first-declared instance of the constructor.
3880  bool First = CD == CD->getCanonicalDecl();
3881
3882  bool HadError = false;
3883  if (CD->getNumParams() != 1) {
3884    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3885      << CD->getSourceRange();
3886    HadError = true;
3887  }
3888
3889  ImplicitExceptionSpecification Spec(Context);
3890  bool Const;
3891  llvm::tie(Spec, Const) =
3892    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3893
3894  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3895  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3896                          *ExceptionType = Context.getFunctionType(
3897                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3898
3899  // Check for parameter type matching.
3900  // This is a copy ctor so we know it's a cv-qualified reference to T.
3901  QualType ArgType = CtorType->getArgType(0);
3902  if (ArgType->getPointeeType().isVolatileQualified()) {
3903    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3904    HadError = true;
3905  }
3906  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3907    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3908    HadError = true;
3909  }
3910
3911  // C++11 [dcl.fct.def.default]p2:
3912  //   An explicitly-defaulted function may be declared constexpr only if it
3913  //   would have been implicitly declared as constexpr,
3914  if (CD->isConstexpr()) {
3915    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3916      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3917        << CXXCopyConstructor;
3918      HadError = true;
3919    }
3920  }
3921  //   and may have an explicit exception-specification only if it is compatible
3922  //   with the exception-specification on the implicit declaration.
3923  if (CtorType->hasExceptionSpec()) {
3924    if (CheckEquivalentExceptionSpec(
3925          PDiag(diag::err_incorrect_defaulted_exception_spec)
3926            << CXXCopyConstructor,
3927          PDiag(),
3928          ExceptionType, SourceLocation(),
3929          CtorType, CD->getLocation())) {
3930      HadError = true;
3931    }
3932  }
3933
3934  //   If a function is explicitly defaulted on its first declaration,
3935  if (First) {
3936    //  -- it is implicitly considered to be constexpr if the implicit
3937    //     definition would be,
3938    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3939
3940    //  -- it is implicitly considered to have the same
3941    //     exception-specification as if it had been implicitly declared, and
3942    //
3943    // FIXME: a compatible, but different, explicit exception specification
3944    // will be silently overridden. We should issue a warning if this happens.
3945    EPI.ExtInfo = CtorType->getExtInfo();
3946
3947    //  -- [...] it shall have the same parameter type as if it had been
3948    //     implicitly declared.
3949    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3950  }
3951
3952  if (HadError) {
3953    CD->setInvalidDecl();
3954    return;
3955  }
3956
3957  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3958    if (First) {
3959      CD->setDeletedAsWritten();
3960    } else {
3961      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3962        << CXXCopyConstructor;
3963      CD->setInvalidDecl();
3964    }
3965  }
3966}
3967
3968void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3969  assert(MD->isExplicitlyDefaulted());
3970
3971  // Whether this was the first-declared instance of the operator
3972  bool First = MD == MD->getCanonicalDecl();
3973
3974  bool HadError = false;
3975  if (MD->getNumParams() != 1) {
3976    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3977      << MD->getSourceRange();
3978    HadError = true;
3979  }
3980
3981  QualType ReturnType =
3982    MD->getType()->getAs<FunctionType>()->getResultType();
3983  if (!ReturnType->isLValueReferenceType() ||
3984      !Context.hasSameType(
3985        Context.getCanonicalType(ReturnType->getPointeeType()),
3986        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3987    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3988    HadError = true;
3989  }
3990
3991  ImplicitExceptionSpecification Spec(Context);
3992  bool Const;
3993  llvm::tie(Spec, Const) =
3994    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3995
3996  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3997  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3998                          *ExceptionType = Context.getFunctionType(
3999                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4000
4001  QualType ArgType = OperType->getArgType(0);
4002  if (!ArgType->isLValueReferenceType()) {
4003    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4004    HadError = true;
4005  } else {
4006    if (ArgType->getPointeeType().isVolatileQualified()) {
4007      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4008      HadError = true;
4009    }
4010    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4011      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4012      HadError = true;
4013    }
4014  }
4015
4016  if (OperType->getTypeQuals()) {
4017    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4018    HadError = true;
4019  }
4020
4021  if (OperType->hasExceptionSpec()) {
4022    if (CheckEquivalentExceptionSpec(
4023          PDiag(diag::err_incorrect_defaulted_exception_spec)
4024            << CXXCopyAssignment,
4025          PDiag(),
4026          ExceptionType, SourceLocation(),
4027          OperType, MD->getLocation())) {
4028      HadError = true;
4029    }
4030  }
4031  if (First) {
4032    // We set the declaration to have the computed exception spec here.
4033    // We duplicate the one parameter type.
4034    EPI.RefQualifier = OperType->getRefQualifier();
4035    EPI.ExtInfo = OperType->getExtInfo();
4036    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4037  }
4038
4039  if (HadError) {
4040    MD->setInvalidDecl();
4041    return;
4042  }
4043
4044  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4045    if (First) {
4046      MD->setDeletedAsWritten();
4047    } else {
4048      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4049        << CXXCopyAssignment;
4050      MD->setInvalidDecl();
4051    }
4052  }
4053}
4054
4055void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4056  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4057
4058  // Whether this was the first-declared instance of the constructor.
4059  bool First = CD == CD->getCanonicalDecl();
4060
4061  bool HadError = false;
4062  if (CD->getNumParams() != 1) {
4063    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4064      << CD->getSourceRange();
4065    HadError = true;
4066  }
4067
4068  ImplicitExceptionSpecification Spec(
4069      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4070
4071  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4072  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4073                          *ExceptionType = Context.getFunctionType(
4074                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4075
4076  // Check for parameter type matching.
4077  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4078  QualType ArgType = CtorType->getArgType(0);
4079  if (ArgType->getPointeeType().isVolatileQualified()) {
4080    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4081    HadError = true;
4082  }
4083  if (ArgType->getPointeeType().isConstQualified()) {
4084    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4085    HadError = true;
4086  }
4087
4088  // C++11 [dcl.fct.def.default]p2:
4089  //   An explicitly-defaulted function may be declared constexpr only if it
4090  //   would have been implicitly declared as constexpr,
4091  if (CD->isConstexpr()) {
4092    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4093      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4094        << CXXMoveConstructor;
4095      HadError = true;
4096    }
4097  }
4098  //   and may have an explicit exception-specification only if it is compatible
4099  //   with the exception-specification on the implicit declaration.
4100  if (CtorType->hasExceptionSpec()) {
4101    if (CheckEquivalentExceptionSpec(
4102          PDiag(diag::err_incorrect_defaulted_exception_spec)
4103            << CXXMoveConstructor,
4104          PDiag(),
4105          ExceptionType, SourceLocation(),
4106          CtorType, CD->getLocation())) {
4107      HadError = true;
4108    }
4109  }
4110
4111  //   If a function is explicitly defaulted on its first declaration,
4112  if (First) {
4113    //  -- it is implicitly considered to be constexpr if the implicit
4114    //     definition would be,
4115    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4116
4117    //  -- it is implicitly considered to have the same
4118    //     exception-specification as if it had been implicitly declared, and
4119    //
4120    // FIXME: a compatible, but different, explicit exception specification
4121    // will be silently overridden. We should issue a warning if this happens.
4122    EPI.ExtInfo = CtorType->getExtInfo();
4123
4124    //  -- [...] it shall have the same parameter type as if it had been
4125    //     implicitly declared.
4126    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4127  }
4128
4129  if (HadError) {
4130    CD->setInvalidDecl();
4131    return;
4132  }
4133
4134  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4135    if (First) {
4136      CD->setDeletedAsWritten();
4137    } else {
4138      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4139        << CXXMoveConstructor;
4140      CD->setInvalidDecl();
4141    }
4142  }
4143}
4144
4145void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4146  assert(MD->isExplicitlyDefaulted());
4147
4148  // Whether this was the first-declared instance of the operator
4149  bool First = MD == MD->getCanonicalDecl();
4150
4151  bool HadError = false;
4152  if (MD->getNumParams() != 1) {
4153    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4154      << MD->getSourceRange();
4155    HadError = true;
4156  }
4157
4158  QualType ReturnType =
4159    MD->getType()->getAs<FunctionType>()->getResultType();
4160  if (!ReturnType->isLValueReferenceType() ||
4161      !Context.hasSameType(
4162        Context.getCanonicalType(ReturnType->getPointeeType()),
4163        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4164    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4165    HadError = true;
4166  }
4167
4168  ImplicitExceptionSpecification Spec(
4169      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4170
4171  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4172  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4173                          *ExceptionType = Context.getFunctionType(
4174                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4175
4176  QualType ArgType = OperType->getArgType(0);
4177  if (!ArgType->isRValueReferenceType()) {
4178    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4179    HadError = true;
4180  } else {
4181    if (ArgType->getPointeeType().isVolatileQualified()) {
4182      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4183      HadError = true;
4184    }
4185    if (ArgType->getPointeeType().isConstQualified()) {
4186      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4187      HadError = true;
4188    }
4189  }
4190
4191  if (OperType->getTypeQuals()) {
4192    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4193    HadError = true;
4194  }
4195
4196  if (OperType->hasExceptionSpec()) {
4197    if (CheckEquivalentExceptionSpec(
4198          PDiag(diag::err_incorrect_defaulted_exception_spec)
4199            << CXXMoveAssignment,
4200          PDiag(),
4201          ExceptionType, SourceLocation(),
4202          OperType, MD->getLocation())) {
4203      HadError = true;
4204    }
4205  }
4206  if (First) {
4207    // We set the declaration to have the computed exception spec here.
4208    // We duplicate the one parameter type.
4209    EPI.RefQualifier = OperType->getRefQualifier();
4210    EPI.ExtInfo = OperType->getExtInfo();
4211    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4212  }
4213
4214  if (HadError) {
4215    MD->setInvalidDecl();
4216    return;
4217  }
4218
4219  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4220    if (First) {
4221      MD->setDeletedAsWritten();
4222    } else {
4223      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4224        << CXXMoveAssignment;
4225      MD->setInvalidDecl();
4226    }
4227  }
4228}
4229
4230void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4231  assert(DD->isExplicitlyDefaulted());
4232
4233  // Whether this was the first-declared instance of the destructor.
4234  bool First = DD == DD->getCanonicalDecl();
4235
4236  ImplicitExceptionSpecification Spec
4237    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4238  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4239  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4240                          *ExceptionType = Context.getFunctionType(
4241                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4242
4243  if (DtorType->hasExceptionSpec()) {
4244    if (CheckEquivalentExceptionSpec(
4245          PDiag(diag::err_incorrect_defaulted_exception_spec)
4246            << CXXDestructor,
4247          PDiag(),
4248          ExceptionType, SourceLocation(),
4249          DtorType, DD->getLocation())) {
4250      DD->setInvalidDecl();
4251      return;
4252    }
4253  }
4254  if (First) {
4255    // We set the declaration to have the computed exception spec here.
4256    // There are no parameters.
4257    EPI.ExtInfo = DtorType->getExtInfo();
4258    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4259  }
4260
4261  if (ShouldDeleteDestructor(DD)) {
4262    if (First) {
4263      DD->setDeletedAsWritten();
4264    } else {
4265      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4266        << CXXDestructor;
4267      DD->setInvalidDecl();
4268    }
4269  }
4270}
4271
4272/// This function implements the following C++0x paragraphs:
4273///  - [class.ctor]/5
4274///  - [class.copy]/11
4275bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4276  assert(!MD->isInvalidDecl());
4277  CXXRecordDecl *RD = MD->getParent();
4278  assert(!RD->isDependentType() && "do deletion after instantiation");
4279  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4280    return false;
4281
4282  bool IsUnion = RD->isUnion();
4283  bool IsConstructor = false;
4284  bool IsAssignment = false;
4285  bool IsMove = false;
4286
4287  bool ConstArg = false;
4288
4289  switch (CSM) {
4290  case CXXDefaultConstructor:
4291    IsConstructor = true;
4292    break;
4293  case CXXCopyConstructor:
4294    IsConstructor = true;
4295    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4296    break;
4297  case CXXMoveConstructor:
4298    IsConstructor = true;
4299    IsMove = true;
4300    break;
4301  default:
4302    llvm_unreachable("function only currently implemented for default ctors");
4303  }
4304
4305  SourceLocation Loc = MD->getLocation();
4306
4307  // Do access control from the special member function
4308  ContextRAII MethodContext(*this, MD);
4309
4310  bool AllConst = true;
4311
4312  // We do this because we should never actually use an anonymous
4313  // union's constructor.
4314  if (IsUnion && RD->isAnonymousStructOrUnion())
4315    return false;
4316
4317  // FIXME: We should put some diagnostic logic right into this function.
4318
4319  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4320                                          BE = RD->bases_end();
4321       BI != BE; ++BI) {
4322    // We'll handle this one later
4323    if (BI->isVirtual())
4324      continue;
4325
4326    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4327    assert(BaseDecl && "base isn't a CXXRecordDecl");
4328
4329    // Unless we have an assignment operator, the base's destructor must
4330    // be accessible and not deleted.
4331    if (!IsAssignment) {
4332      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4333      if (BaseDtor->isDeleted())
4334        return true;
4335      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4336          AR_accessible)
4337        return true;
4338    }
4339
4340    // Finding the corresponding member in the base should lead to a
4341    // unique, accessible, non-deleted function. If we are doing
4342    // a destructor, we have already checked this case.
4343    if (CSM != CXXDestructor) {
4344      SpecialMemberOverloadResult *SMOR =
4345        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4346                            false);
4347      if (!SMOR->hasSuccess())
4348        return true;
4349      CXXMethodDecl *BaseMember = SMOR->getMethod();
4350      if (IsConstructor) {
4351        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4352        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4353                                   PDiag()) != AR_accessible)
4354          return true;
4355
4356        // For a move operation, the corresponding operation must actually
4357        // be a move operation (and not a copy selected by overload
4358        // resolution) unless we are working on a trivially copyable class.
4359        if (IsMove && !BaseCtor->isMoveConstructor() &&
4360            !BaseDecl->isTriviallyCopyable())
4361          return true;
4362      }
4363    }
4364  }
4365
4366  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4367                                          BE = RD->vbases_end();
4368       BI != BE; ++BI) {
4369    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4370    assert(BaseDecl && "base isn't a CXXRecordDecl");
4371
4372    // Unless we have an assignment operator, the base's destructor must
4373    // be accessible and not deleted.
4374    if (!IsAssignment) {
4375      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4376      if (BaseDtor->isDeleted())
4377        return true;
4378      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4379          AR_accessible)
4380        return true;
4381    }
4382
4383    // Finding the corresponding member in the base should lead to a
4384    // unique, accessible, non-deleted function.
4385    if (CSM != CXXDestructor) {
4386      SpecialMemberOverloadResult *SMOR =
4387        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4388                            false);
4389      if (!SMOR->hasSuccess())
4390        return true;
4391      CXXMethodDecl *BaseMember = SMOR->getMethod();
4392      if (IsConstructor) {
4393        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4394        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4395                                   PDiag()) != AR_accessible)
4396          return true;
4397
4398        // For a move operation, the corresponding operation must actually
4399        // be a move operation (and not a copy selected by overload
4400        // resolution) unless we are working on a trivially copyable class.
4401        if (IsMove && !BaseCtor->isMoveConstructor() &&
4402            !BaseDecl->isTriviallyCopyable())
4403          return true;
4404      }
4405    }
4406  }
4407
4408  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4409                                     FE = RD->field_end();
4410       FI != FE; ++FI) {
4411    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4412      continue;
4413
4414    QualType FieldType = Context.getBaseElementType(FI->getType());
4415    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4416
4417    // For a default constructor, all references must be initialized in-class
4418    // and, if a union, it must have a non-const member.
4419    if (CSM == CXXDefaultConstructor) {
4420      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4421        return true;
4422
4423      if (IsUnion && !FieldType.isConstQualified())
4424        AllConst = false;
4425    // For a copy constructor, data members must not be of rvalue reference
4426    // type.
4427    } else if (CSM == CXXCopyConstructor) {
4428      if (FieldType->isRValueReferenceType())
4429        return true;
4430    }
4431
4432    if (FieldRecord) {
4433      // For a default constructor, a const member must have a user-provided
4434      // default constructor or else be explicitly initialized.
4435      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4436          !FI->hasInClassInitializer() &&
4437          !FieldRecord->hasUserProvidedDefaultConstructor())
4438        return true;
4439
4440      // Some additional restrictions exist on the variant members.
4441      if (!IsUnion && FieldRecord->isUnion() &&
4442          FieldRecord->isAnonymousStructOrUnion()) {
4443        // We're okay to reuse AllConst here since we only care about the
4444        // value otherwise if we're in a union.
4445        AllConst = true;
4446
4447        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4448                                           UE = FieldRecord->field_end();
4449             UI != UE; ++UI) {
4450          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4451          CXXRecordDecl *UnionFieldRecord =
4452            UnionFieldType->getAsCXXRecordDecl();
4453
4454          if (!UnionFieldType.isConstQualified())
4455            AllConst = false;
4456
4457          if (UnionFieldRecord) {
4458            // FIXME: Checking for accessibility and validity of this
4459            //        destructor is technically going beyond the
4460            //        standard, but this is believed to be a defect.
4461            if (!IsAssignment) {
4462              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4463              if (FieldDtor->isDeleted())
4464                return true;
4465              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4466                  AR_accessible)
4467                return true;
4468              if (!FieldDtor->isTrivial())
4469                return true;
4470            }
4471
4472            if (CSM != CXXDestructor) {
4473              SpecialMemberOverloadResult *SMOR =
4474                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4475                                    false, false, false);
4476              // FIXME: Checking for accessibility and validity of this
4477              //        corresponding member is technically going beyond the
4478              //        standard, but this is believed to be a defect.
4479              if (!SMOR->hasSuccess())
4480                return true;
4481
4482              CXXMethodDecl *FieldMember = SMOR->getMethod();
4483              // A member of a union must have a trivial corresponding
4484              // constructor.
4485              if (!FieldMember->isTrivial())
4486                return true;
4487
4488              if (IsConstructor) {
4489                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4490                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4491                                           PDiag()) != AR_accessible)
4492                return true;
4493              }
4494            }
4495          }
4496        }
4497
4498        // At least one member in each anonymous union must be non-const
4499        if (CSM == CXXDefaultConstructor && AllConst)
4500          return true;
4501
4502        // Don't try to initialize the anonymous union
4503        // This is technically non-conformant, but sanity demands it.
4504        continue;
4505      }
4506
4507      // Unless we're doing assignment, the field's destructor must be
4508      // accessible and not deleted.
4509      if (!IsAssignment) {
4510        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4511        if (FieldDtor->isDeleted())
4512          return true;
4513        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4514            AR_accessible)
4515          return true;
4516      }
4517
4518      // Check that the corresponding member of the field is accessible,
4519      // unique, and non-deleted. We don't do this if it has an explicit
4520      // initialization when default-constructing.
4521      if (CSM != CXXDestructor &&
4522          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4523        SpecialMemberOverloadResult *SMOR =
4524          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4525                              false);
4526        if (!SMOR->hasSuccess())
4527          return true;
4528
4529        CXXMethodDecl *FieldMember = SMOR->getMethod();
4530        if (IsConstructor) {
4531          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4532          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4533                                     PDiag()) != AR_accessible)
4534          return true;
4535
4536          // For a move operation, the corresponding operation must actually
4537          // be a move operation (and not a copy selected by overload
4538          // resolution) unless we are working on a trivially copyable class.
4539          if (IsMove && !FieldCtor->isMoveConstructor() &&
4540              !FieldRecord->isTriviallyCopyable())
4541            return true;
4542        }
4543
4544        // We need the corresponding member of a union to be trivial so that
4545        // we can safely copy them all simultaneously.
4546        // FIXME: Note that performing the check here (where we rely on the lack
4547        // of an in-class initializer) is technically ill-formed. However, this
4548        // seems most obviously to be a bug in the standard.
4549        if (IsUnion && !FieldMember->isTrivial())
4550          return true;
4551      }
4552    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4553               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4554      // We can't initialize a const member of non-class type to any value.
4555      return true;
4556    }
4557  }
4558
4559  // We can't have all const members in a union when default-constructing,
4560  // or else they're all nonsensical garbage values that can't be changed.
4561  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4562    return true;
4563
4564  return false;
4565}
4566
4567bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4568  CXXRecordDecl *RD = MD->getParent();
4569  assert(!RD->isDependentType() && "do deletion after instantiation");
4570  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4571    return false;
4572
4573  SourceLocation Loc = MD->getLocation();
4574
4575  // Do access control from the constructor
4576  ContextRAII MethodContext(*this, MD);
4577
4578  bool Union = RD->isUnion();
4579
4580  unsigned ArgQuals =
4581    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4582      Qualifiers::Const : 0;
4583
4584  // We do this because we should never actually use an anonymous
4585  // union's constructor.
4586  if (Union && RD->isAnonymousStructOrUnion())
4587    return false;
4588
4589  // FIXME: We should put some diagnostic logic right into this function.
4590
4591  // C++0x [class.copy]/20
4592  //    A defaulted [copy] assignment operator for class X is defined as deleted
4593  //    if X has:
4594
4595  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4596                                          BE = RD->bases_end();
4597       BI != BE; ++BI) {
4598    // We'll handle this one later
4599    if (BI->isVirtual())
4600      continue;
4601
4602    QualType BaseType = BI->getType();
4603    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4604    assert(BaseDecl && "base isn't a CXXRecordDecl");
4605
4606    // -- a [direct base class] B that cannot be [copied] because overload
4607    //    resolution, as applied to B's [copy] assignment operator, results in
4608    //    an ambiguity or a function that is deleted or inaccessible from the
4609    //    assignment operator
4610    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4611                                                      0);
4612    if (!CopyOper || CopyOper->isDeleted())
4613      return true;
4614    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4615      return true;
4616  }
4617
4618  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4619                                          BE = RD->vbases_end();
4620       BI != BE; ++BI) {
4621    QualType BaseType = BI->getType();
4622    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4623    assert(BaseDecl && "base isn't a CXXRecordDecl");
4624
4625    // -- a [virtual base class] B that cannot be [copied] because overload
4626    //    resolution, as applied to B's [copy] assignment operator, results in
4627    //    an ambiguity or a function that is deleted or inaccessible from the
4628    //    assignment operator
4629    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4630                                                      0);
4631    if (!CopyOper || CopyOper->isDeleted())
4632      return true;
4633    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4634      return true;
4635  }
4636
4637  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4638                                     FE = RD->field_end();
4639       FI != FE; ++FI) {
4640    if (FI->isUnnamedBitfield())
4641      continue;
4642
4643    QualType FieldType = Context.getBaseElementType(FI->getType());
4644
4645    // -- a non-static data member of reference type
4646    if (FieldType->isReferenceType())
4647      return true;
4648
4649    // -- a non-static data member of const non-class type (or array thereof)
4650    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4651      return true;
4652
4653    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4654
4655    if (FieldRecord) {
4656      // This is an anonymous union
4657      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4658        // Anonymous unions inside unions do not variant members create
4659        if (!Union) {
4660          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4661                                             UE = FieldRecord->field_end();
4662               UI != UE; ++UI) {
4663            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4664            CXXRecordDecl *UnionFieldRecord =
4665              UnionFieldType->getAsCXXRecordDecl();
4666
4667            // -- a variant member with a non-trivial [copy] assignment operator
4668            //    and X is a union-like class
4669            if (UnionFieldRecord &&
4670                !UnionFieldRecord->hasTrivialCopyAssignment())
4671              return true;
4672          }
4673        }
4674
4675        // Don't try to initalize an anonymous union
4676        continue;
4677      // -- a variant member with a non-trivial [copy] assignment operator
4678      //    and X is a union-like class
4679      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4680          return true;
4681      }
4682
4683      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4684                                                        false, 0);
4685      if (!CopyOper || CopyOper->isDeleted())
4686        return true;
4687      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4688        return true;
4689    }
4690  }
4691
4692  return false;
4693}
4694
4695bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4696  CXXRecordDecl *RD = MD->getParent();
4697  assert(!RD->isDependentType() && "do deletion after instantiation");
4698  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4699    return false;
4700
4701  SourceLocation Loc = MD->getLocation();
4702
4703  // Do access control from the constructor
4704  ContextRAII MethodContext(*this, MD);
4705
4706  bool Union = RD->isUnion();
4707
4708  // We do this because we should never actually use an anonymous
4709  // union's constructor.
4710  if (Union && RD->isAnonymousStructOrUnion())
4711    return false;
4712
4713  // C++0x [class.copy]/20
4714  //    A defaulted [move] assignment operator for class X is defined as deleted
4715  //    if X has:
4716
4717  //    -- for the move constructor, [...] any direct or indirect virtual base
4718  //       class.
4719  if (RD->getNumVBases() != 0)
4720    return true;
4721
4722  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4723                                          BE = RD->bases_end();
4724       BI != BE; ++BI) {
4725
4726    QualType BaseType = BI->getType();
4727    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4728    assert(BaseDecl && "base isn't a CXXRecordDecl");
4729
4730    // -- a [direct base class] B that cannot be [moved] because overload
4731    //    resolution, as applied to B's [move] assignment operator, results in
4732    //    an ambiguity or a function that is deleted or inaccessible from the
4733    //    assignment operator
4734    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4735    if (!MoveOper || MoveOper->isDeleted())
4736      return true;
4737    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4738      return true;
4739
4740    // -- for the move assignment operator, a [direct base class] with a type
4741    //    that does not have a move assignment operator and is not trivially
4742    //    copyable.
4743    if (!MoveOper->isMoveAssignmentOperator() &&
4744        !BaseDecl->isTriviallyCopyable())
4745      return true;
4746  }
4747
4748  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4749                                     FE = RD->field_end();
4750       FI != FE; ++FI) {
4751    if (FI->isUnnamedBitfield())
4752      continue;
4753
4754    QualType FieldType = Context.getBaseElementType(FI->getType());
4755
4756    // -- a non-static data member of reference type
4757    if (FieldType->isReferenceType())
4758      return true;
4759
4760    // -- a non-static data member of const non-class type (or array thereof)
4761    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4762      return true;
4763
4764    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4765
4766    if (FieldRecord) {
4767      // This is an anonymous union
4768      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4769        // Anonymous unions inside unions do not variant members create
4770        if (!Union) {
4771          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4772                                             UE = FieldRecord->field_end();
4773               UI != UE; ++UI) {
4774            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4775            CXXRecordDecl *UnionFieldRecord =
4776              UnionFieldType->getAsCXXRecordDecl();
4777
4778            // -- a variant member with a non-trivial [move] assignment operator
4779            //    and X is a union-like class
4780            if (UnionFieldRecord &&
4781                !UnionFieldRecord->hasTrivialMoveAssignment())
4782              return true;
4783          }
4784        }
4785
4786        // Don't try to initalize an anonymous union
4787        continue;
4788      // -- a variant member with a non-trivial [move] assignment operator
4789      //    and X is a union-like class
4790      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4791          return true;
4792      }
4793
4794      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4795      if (!MoveOper || MoveOper->isDeleted())
4796        return true;
4797      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4798        return true;
4799
4800      // -- for the move assignment operator, a [non-static data member] with a
4801      //    type that does not have a move assignment operator and is not
4802      //    trivially copyable.
4803      if (!MoveOper->isMoveAssignmentOperator() &&
4804          !FieldRecord->isTriviallyCopyable())
4805        return true;
4806    }
4807  }
4808
4809  return false;
4810}
4811
4812bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4813  CXXRecordDecl *RD = DD->getParent();
4814  assert(!RD->isDependentType() && "do deletion after instantiation");
4815  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4816    return false;
4817
4818  SourceLocation Loc = DD->getLocation();
4819
4820  // Do access control from the destructor
4821  ContextRAII CtorContext(*this, DD);
4822
4823  bool Union = RD->isUnion();
4824
4825  // We do this because we should never actually use an anonymous
4826  // union's destructor.
4827  if (Union && RD->isAnonymousStructOrUnion())
4828    return false;
4829
4830  // C++0x [class.dtor]p5
4831  //    A defaulted destructor for a class X is defined as deleted if:
4832  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4833                                          BE = RD->bases_end();
4834       BI != BE; ++BI) {
4835    // We'll handle this one later
4836    if (BI->isVirtual())
4837      continue;
4838
4839    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4840    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4841    assert(BaseDtor && "base has no destructor");
4842
4843    // -- any direct or virtual base class has a deleted destructor or
4844    //    a destructor that is inaccessible from the defaulted destructor
4845    if (BaseDtor->isDeleted())
4846      return true;
4847    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4848        AR_accessible)
4849      return true;
4850  }
4851
4852  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4853                                          BE = RD->vbases_end();
4854       BI != BE; ++BI) {
4855    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4856    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4857    assert(BaseDtor && "base has no destructor");
4858
4859    // -- any direct or virtual base class has a deleted destructor or
4860    //    a destructor that is inaccessible from the defaulted destructor
4861    if (BaseDtor->isDeleted())
4862      return true;
4863    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4864        AR_accessible)
4865      return true;
4866  }
4867
4868  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4869                                     FE = RD->field_end();
4870       FI != FE; ++FI) {
4871    QualType FieldType = Context.getBaseElementType(FI->getType());
4872    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4873    if (FieldRecord) {
4874      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4875         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4876                                            UE = FieldRecord->field_end();
4877              UI != UE; ++UI) {
4878           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4879           CXXRecordDecl *UnionFieldRecord =
4880             UnionFieldType->getAsCXXRecordDecl();
4881
4882           // -- X is a union-like class that has a variant member with a non-
4883           //    trivial destructor.
4884           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4885             return true;
4886         }
4887      // Technically we are supposed to do this next check unconditionally.
4888      // But that makes absolutely no sense.
4889      } else {
4890        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4891
4892        // -- any of the non-static data members has class type M (or array
4893        //    thereof) and M has a deleted destructor or a destructor that is
4894        //    inaccessible from the defaulted destructor
4895        if (FieldDtor->isDeleted())
4896          return true;
4897        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4898          AR_accessible)
4899        return true;
4900
4901        // -- X is a union-like class that has a variant member with a non-
4902        //    trivial destructor.
4903        if (Union && !FieldDtor->isTrivial())
4904          return true;
4905      }
4906    }
4907  }
4908
4909  if (DD->isVirtual()) {
4910    FunctionDecl *OperatorDelete = 0;
4911    DeclarationName Name =
4912      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4913    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4914          false))
4915      return true;
4916  }
4917
4918
4919  return false;
4920}
4921
4922/// \brief Data used with FindHiddenVirtualMethod
4923namespace {
4924  struct FindHiddenVirtualMethodData {
4925    Sema *S;
4926    CXXMethodDecl *Method;
4927    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4928    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4929  };
4930}
4931
4932/// \brief Member lookup function that determines whether a given C++
4933/// method overloads virtual methods in a base class without overriding any,
4934/// to be used with CXXRecordDecl::lookupInBases().
4935static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4936                                    CXXBasePath &Path,
4937                                    void *UserData) {
4938  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4939
4940  FindHiddenVirtualMethodData &Data
4941    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4942
4943  DeclarationName Name = Data.Method->getDeclName();
4944  assert(Name.getNameKind() == DeclarationName::Identifier);
4945
4946  bool foundSameNameMethod = false;
4947  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4948  for (Path.Decls = BaseRecord->lookup(Name);
4949       Path.Decls.first != Path.Decls.second;
4950       ++Path.Decls.first) {
4951    NamedDecl *D = *Path.Decls.first;
4952    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4953      MD = MD->getCanonicalDecl();
4954      foundSameNameMethod = true;
4955      // Interested only in hidden virtual methods.
4956      if (!MD->isVirtual())
4957        continue;
4958      // If the method we are checking overrides a method from its base
4959      // don't warn about the other overloaded methods.
4960      if (!Data.S->IsOverload(Data.Method, MD, false))
4961        return true;
4962      // Collect the overload only if its hidden.
4963      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4964        overloadedMethods.push_back(MD);
4965    }
4966  }
4967
4968  if (foundSameNameMethod)
4969    Data.OverloadedMethods.append(overloadedMethods.begin(),
4970                                   overloadedMethods.end());
4971  return foundSameNameMethod;
4972}
4973
4974/// \brief See if a method overloads virtual methods in a base class without
4975/// overriding any.
4976void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4977  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4978                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4979    return;
4980  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4981    return;
4982
4983  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4984                     /*bool RecordPaths=*/false,
4985                     /*bool DetectVirtual=*/false);
4986  FindHiddenVirtualMethodData Data;
4987  Data.Method = MD;
4988  Data.S = this;
4989
4990  // Keep the base methods that were overriden or introduced in the subclass
4991  // by 'using' in a set. A base method not in this set is hidden.
4992  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4993       res.first != res.second; ++res.first) {
4994    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4995      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4996                                          E = MD->end_overridden_methods();
4997           I != E; ++I)
4998        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4999    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5000      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5001        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5002  }
5003
5004  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5005      !Data.OverloadedMethods.empty()) {
5006    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5007      << MD << (Data.OverloadedMethods.size() > 1);
5008
5009    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5010      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5011      Diag(overloadedMD->getLocation(),
5012           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5013    }
5014  }
5015}
5016
5017void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5018                                             Decl *TagDecl,
5019                                             SourceLocation LBrac,
5020                                             SourceLocation RBrac,
5021                                             AttributeList *AttrList) {
5022  if (!TagDecl)
5023    return;
5024
5025  AdjustDeclIfTemplate(TagDecl);
5026
5027  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5028              // strict aliasing violation!
5029              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5030              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5031
5032  CheckCompletedCXXClass(
5033                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5034}
5035
5036/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5037/// special functions, such as the default constructor, copy
5038/// constructor, or destructor, to the given C++ class (C++
5039/// [special]p1).  This routine can only be executed just before the
5040/// definition of the class is complete.
5041void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5042  if (!ClassDecl->hasUserDeclaredConstructor())
5043    ++ASTContext::NumImplicitDefaultConstructors;
5044
5045  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5046    ++ASTContext::NumImplicitCopyConstructors;
5047
5048  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5049    ++ASTContext::NumImplicitMoveConstructors;
5050
5051  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5052    ++ASTContext::NumImplicitCopyAssignmentOperators;
5053
5054    // If we have a dynamic class, then the copy assignment operator may be
5055    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5056    // it shows up in the right place in the vtable and that we diagnose
5057    // problems with the implicit exception specification.
5058    if (ClassDecl->isDynamicClass())
5059      DeclareImplicitCopyAssignment(ClassDecl);
5060  }
5061
5062  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5063    ++ASTContext::NumImplicitMoveAssignmentOperators;
5064
5065    // Likewise for the move assignment operator.
5066    if (ClassDecl->isDynamicClass())
5067      DeclareImplicitMoveAssignment(ClassDecl);
5068  }
5069
5070  if (!ClassDecl->hasUserDeclaredDestructor()) {
5071    ++ASTContext::NumImplicitDestructors;
5072
5073    // If we have a dynamic class, then the destructor may be virtual, so we
5074    // have to declare the destructor immediately. This ensures that, e.g., it
5075    // shows up in the right place in the vtable and that we diagnose problems
5076    // with the implicit exception specification.
5077    if (ClassDecl->isDynamicClass())
5078      DeclareImplicitDestructor(ClassDecl);
5079  }
5080}
5081
5082void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5083  if (!D)
5084    return;
5085
5086  int NumParamList = D->getNumTemplateParameterLists();
5087  for (int i = 0; i < NumParamList; i++) {
5088    TemplateParameterList* Params = D->getTemplateParameterList(i);
5089    for (TemplateParameterList::iterator Param = Params->begin(),
5090                                      ParamEnd = Params->end();
5091          Param != ParamEnd; ++Param) {
5092      NamedDecl *Named = cast<NamedDecl>(*Param);
5093      if (Named->getDeclName()) {
5094        S->AddDecl(Named);
5095        IdResolver.AddDecl(Named);
5096      }
5097    }
5098  }
5099}
5100
5101void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5102  if (!D)
5103    return;
5104
5105  TemplateParameterList *Params = 0;
5106  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5107    Params = Template->getTemplateParameters();
5108  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5109           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5110    Params = PartialSpec->getTemplateParameters();
5111  else
5112    return;
5113
5114  for (TemplateParameterList::iterator Param = Params->begin(),
5115                                    ParamEnd = Params->end();
5116       Param != ParamEnd; ++Param) {
5117    NamedDecl *Named = cast<NamedDecl>(*Param);
5118    if (Named->getDeclName()) {
5119      S->AddDecl(Named);
5120      IdResolver.AddDecl(Named);
5121    }
5122  }
5123}
5124
5125void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5126  if (!RecordD) return;
5127  AdjustDeclIfTemplate(RecordD);
5128  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5129  PushDeclContext(S, Record);
5130}
5131
5132void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5133  if (!RecordD) return;
5134  PopDeclContext();
5135}
5136
5137/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5138/// parsing a top-level (non-nested) C++ class, and we are now
5139/// parsing those parts of the given Method declaration that could
5140/// not be parsed earlier (C++ [class.mem]p2), such as default
5141/// arguments. This action should enter the scope of the given
5142/// Method declaration as if we had just parsed the qualified method
5143/// name. However, it should not bring the parameters into scope;
5144/// that will be performed by ActOnDelayedCXXMethodParameter.
5145void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5146}
5147
5148/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5149/// C++ method declaration. We're (re-)introducing the given
5150/// function parameter into scope for use in parsing later parts of
5151/// the method declaration. For example, we could see an
5152/// ActOnParamDefaultArgument event for this parameter.
5153void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5154  if (!ParamD)
5155    return;
5156
5157  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5158
5159  // If this parameter has an unparsed default argument, clear it out
5160  // to make way for the parsed default argument.
5161  if (Param->hasUnparsedDefaultArg())
5162    Param->setDefaultArg(0);
5163
5164  S->AddDecl(Param);
5165  if (Param->getDeclName())
5166    IdResolver.AddDecl(Param);
5167}
5168
5169/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5170/// processing the delayed method declaration for Method. The method
5171/// declaration is now considered finished. There may be a separate
5172/// ActOnStartOfFunctionDef action later (not necessarily
5173/// immediately!) for this method, if it was also defined inside the
5174/// class body.
5175void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5176  if (!MethodD)
5177    return;
5178
5179  AdjustDeclIfTemplate(MethodD);
5180
5181  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5182
5183  // Now that we have our default arguments, check the constructor
5184  // again. It could produce additional diagnostics or affect whether
5185  // the class has implicitly-declared destructors, among other
5186  // things.
5187  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5188    CheckConstructor(Constructor);
5189
5190  // Check the default arguments, which we may have added.
5191  if (!Method->isInvalidDecl())
5192    CheckCXXDefaultArguments(Method);
5193}
5194
5195/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5196/// the well-formedness of the constructor declarator @p D with type @p
5197/// R. If there are any errors in the declarator, this routine will
5198/// emit diagnostics and set the invalid bit to true.  In any case, the type
5199/// will be updated to reflect a well-formed type for the constructor and
5200/// returned.
5201QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5202                                          StorageClass &SC) {
5203  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5204
5205  // C++ [class.ctor]p3:
5206  //   A constructor shall not be virtual (10.3) or static (9.4). A
5207  //   constructor can be invoked for a const, volatile or const
5208  //   volatile object. A constructor shall not be declared const,
5209  //   volatile, or const volatile (9.3.2).
5210  if (isVirtual) {
5211    if (!D.isInvalidType())
5212      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5213        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5214        << SourceRange(D.getIdentifierLoc());
5215    D.setInvalidType();
5216  }
5217  if (SC == SC_Static) {
5218    if (!D.isInvalidType())
5219      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5220        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5221        << SourceRange(D.getIdentifierLoc());
5222    D.setInvalidType();
5223    SC = SC_None;
5224  }
5225
5226  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5227  if (FTI.TypeQuals != 0) {
5228    if (FTI.TypeQuals & Qualifiers::Const)
5229      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5230        << "const" << SourceRange(D.getIdentifierLoc());
5231    if (FTI.TypeQuals & Qualifiers::Volatile)
5232      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5233        << "volatile" << SourceRange(D.getIdentifierLoc());
5234    if (FTI.TypeQuals & Qualifiers::Restrict)
5235      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5236        << "restrict" << SourceRange(D.getIdentifierLoc());
5237    D.setInvalidType();
5238  }
5239
5240  // C++0x [class.ctor]p4:
5241  //   A constructor shall not be declared with a ref-qualifier.
5242  if (FTI.hasRefQualifier()) {
5243    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5244      << FTI.RefQualifierIsLValueRef
5245      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5246    D.setInvalidType();
5247  }
5248
5249  // Rebuild the function type "R" without any type qualifiers (in
5250  // case any of the errors above fired) and with "void" as the
5251  // return type, since constructors don't have return types.
5252  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5253  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5254    return R;
5255
5256  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5257  EPI.TypeQuals = 0;
5258  EPI.RefQualifier = RQ_None;
5259
5260  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5261                                 Proto->getNumArgs(), EPI);
5262}
5263
5264/// CheckConstructor - Checks a fully-formed constructor for
5265/// well-formedness, issuing any diagnostics required. Returns true if
5266/// the constructor declarator is invalid.
5267void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5268  CXXRecordDecl *ClassDecl
5269    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5270  if (!ClassDecl)
5271    return Constructor->setInvalidDecl();
5272
5273  // C++ [class.copy]p3:
5274  //   A declaration of a constructor for a class X is ill-formed if
5275  //   its first parameter is of type (optionally cv-qualified) X and
5276  //   either there are no other parameters or else all other
5277  //   parameters have default arguments.
5278  if (!Constructor->isInvalidDecl() &&
5279      ((Constructor->getNumParams() == 1) ||
5280       (Constructor->getNumParams() > 1 &&
5281        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5282      Constructor->getTemplateSpecializationKind()
5283                                              != TSK_ImplicitInstantiation) {
5284    QualType ParamType = Constructor->getParamDecl(0)->getType();
5285    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5286    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5287      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5288      const char *ConstRef
5289        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5290                                                        : " const &";
5291      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5292        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5293
5294      // FIXME: Rather that making the constructor invalid, we should endeavor
5295      // to fix the type.
5296      Constructor->setInvalidDecl();
5297    }
5298  }
5299}
5300
5301/// CheckDestructor - Checks a fully-formed destructor definition for
5302/// well-formedness, issuing any diagnostics required.  Returns true
5303/// on error.
5304bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5305  CXXRecordDecl *RD = Destructor->getParent();
5306
5307  if (Destructor->isVirtual()) {
5308    SourceLocation Loc;
5309
5310    if (!Destructor->isImplicit())
5311      Loc = Destructor->getLocation();
5312    else
5313      Loc = RD->getLocation();
5314
5315    // If we have a virtual destructor, look up the deallocation function
5316    FunctionDecl *OperatorDelete = 0;
5317    DeclarationName Name =
5318    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5319    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5320      return true;
5321
5322    MarkFunctionReferenced(Loc, OperatorDelete);
5323
5324    Destructor->setOperatorDelete(OperatorDelete);
5325  }
5326
5327  return false;
5328}
5329
5330static inline bool
5331FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5332  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5333          FTI.ArgInfo[0].Param &&
5334          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5335}
5336
5337/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5338/// the well-formednes of the destructor declarator @p D with type @p
5339/// R. If there are any errors in the declarator, this routine will
5340/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5341/// will be updated to reflect a well-formed type for the destructor and
5342/// returned.
5343QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5344                                         StorageClass& SC) {
5345  // C++ [class.dtor]p1:
5346  //   [...] A typedef-name that names a class is a class-name
5347  //   (7.1.3); however, a typedef-name that names a class shall not
5348  //   be used as the identifier in the declarator for a destructor
5349  //   declaration.
5350  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5351  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5352    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5353      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5354  else if (const TemplateSpecializationType *TST =
5355             DeclaratorType->getAs<TemplateSpecializationType>())
5356    if (TST->isTypeAlias())
5357      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5358        << DeclaratorType << 1;
5359
5360  // C++ [class.dtor]p2:
5361  //   A destructor is used to destroy objects of its class type. A
5362  //   destructor takes no parameters, and no return type can be
5363  //   specified for it (not even void). The address of a destructor
5364  //   shall not be taken. A destructor shall not be static. A
5365  //   destructor can be invoked for a const, volatile or const
5366  //   volatile object. A destructor shall not be declared const,
5367  //   volatile or const volatile (9.3.2).
5368  if (SC == SC_Static) {
5369    if (!D.isInvalidType())
5370      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5371        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5372        << SourceRange(D.getIdentifierLoc())
5373        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5374
5375    SC = SC_None;
5376  }
5377  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5378    // Destructors don't have return types, but the parser will
5379    // happily parse something like:
5380    //
5381    //   class X {
5382    //     float ~X();
5383    //   };
5384    //
5385    // The return type will be eliminated later.
5386    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5387      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5388      << SourceRange(D.getIdentifierLoc());
5389  }
5390
5391  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5392  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5393    if (FTI.TypeQuals & Qualifiers::Const)
5394      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5395        << "const" << SourceRange(D.getIdentifierLoc());
5396    if (FTI.TypeQuals & Qualifiers::Volatile)
5397      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5398        << "volatile" << SourceRange(D.getIdentifierLoc());
5399    if (FTI.TypeQuals & Qualifiers::Restrict)
5400      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5401        << "restrict" << SourceRange(D.getIdentifierLoc());
5402    D.setInvalidType();
5403  }
5404
5405  // C++0x [class.dtor]p2:
5406  //   A destructor shall not be declared with a ref-qualifier.
5407  if (FTI.hasRefQualifier()) {
5408    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5409      << FTI.RefQualifierIsLValueRef
5410      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5411    D.setInvalidType();
5412  }
5413
5414  // Make sure we don't have any parameters.
5415  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5416    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5417
5418    // Delete the parameters.
5419    FTI.freeArgs();
5420    D.setInvalidType();
5421  }
5422
5423  // Make sure the destructor isn't variadic.
5424  if (FTI.isVariadic) {
5425    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5426    D.setInvalidType();
5427  }
5428
5429  // Rebuild the function type "R" without any type qualifiers or
5430  // parameters (in case any of the errors above fired) and with
5431  // "void" as the return type, since destructors don't have return
5432  // types.
5433  if (!D.isInvalidType())
5434    return R;
5435
5436  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5437  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5438  EPI.Variadic = false;
5439  EPI.TypeQuals = 0;
5440  EPI.RefQualifier = RQ_None;
5441  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5442}
5443
5444/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5445/// well-formednes of the conversion function declarator @p D with
5446/// type @p R. If there are any errors in the declarator, this routine
5447/// will emit diagnostics and return true. Otherwise, it will return
5448/// false. Either way, the type @p R will be updated to reflect a
5449/// well-formed type for the conversion operator.
5450void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5451                                     StorageClass& SC) {
5452  // C++ [class.conv.fct]p1:
5453  //   Neither parameter types nor return type can be specified. The
5454  //   type of a conversion function (8.3.5) is "function taking no
5455  //   parameter returning conversion-type-id."
5456  if (SC == SC_Static) {
5457    if (!D.isInvalidType())
5458      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5459        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5460        << SourceRange(D.getIdentifierLoc());
5461    D.setInvalidType();
5462    SC = SC_None;
5463  }
5464
5465  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5466
5467  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5468    // Conversion functions don't have return types, but the parser will
5469    // happily parse something like:
5470    //
5471    //   class X {
5472    //     float operator bool();
5473    //   };
5474    //
5475    // The return type will be changed later anyway.
5476    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5477      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5478      << SourceRange(D.getIdentifierLoc());
5479    D.setInvalidType();
5480  }
5481
5482  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5483
5484  // Make sure we don't have any parameters.
5485  if (Proto->getNumArgs() > 0) {
5486    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5487
5488    // Delete the parameters.
5489    D.getFunctionTypeInfo().freeArgs();
5490    D.setInvalidType();
5491  } else if (Proto->isVariadic()) {
5492    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5493    D.setInvalidType();
5494  }
5495
5496  // Diagnose "&operator bool()" and other such nonsense.  This
5497  // is actually a gcc extension which we don't support.
5498  if (Proto->getResultType() != ConvType) {
5499    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5500      << Proto->getResultType();
5501    D.setInvalidType();
5502    ConvType = Proto->getResultType();
5503  }
5504
5505  // C++ [class.conv.fct]p4:
5506  //   The conversion-type-id shall not represent a function type nor
5507  //   an array type.
5508  if (ConvType->isArrayType()) {
5509    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5510    ConvType = Context.getPointerType(ConvType);
5511    D.setInvalidType();
5512  } else if (ConvType->isFunctionType()) {
5513    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5514    ConvType = Context.getPointerType(ConvType);
5515    D.setInvalidType();
5516  }
5517
5518  // Rebuild the function type "R" without any parameters (in case any
5519  // of the errors above fired) and with the conversion type as the
5520  // return type.
5521  if (D.isInvalidType())
5522    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5523
5524  // C++0x explicit conversion operators.
5525  if (D.getDeclSpec().isExplicitSpecified())
5526    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5527         getLangOptions().CPlusPlus0x ?
5528           diag::warn_cxx98_compat_explicit_conversion_functions :
5529           diag::ext_explicit_conversion_functions)
5530      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5531}
5532
5533/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5534/// the declaration of the given C++ conversion function. This routine
5535/// is responsible for recording the conversion function in the C++
5536/// class, if possible.
5537Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5538  assert(Conversion && "Expected to receive a conversion function declaration");
5539
5540  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5541
5542  // Make sure we aren't redeclaring the conversion function.
5543  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5544
5545  // C++ [class.conv.fct]p1:
5546  //   [...] A conversion function is never used to convert a
5547  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5548  //   same object type (or a reference to it), to a (possibly
5549  //   cv-qualified) base class of that type (or a reference to it),
5550  //   or to (possibly cv-qualified) void.
5551  // FIXME: Suppress this warning if the conversion function ends up being a
5552  // virtual function that overrides a virtual function in a base class.
5553  QualType ClassType
5554    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5555  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5556    ConvType = ConvTypeRef->getPointeeType();
5557  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5558      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5559    /* Suppress diagnostics for instantiations. */;
5560  else if (ConvType->isRecordType()) {
5561    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5562    if (ConvType == ClassType)
5563      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5564        << ClassType;
5565    else if (IsDerivedFrom(ClassType, ConvType))
5566      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5567        <<  ClassType << ConvType;
5568  } else if (ConvType->isVoidType()) {
5569    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5570      << ClassType << ConvType;
5571  }
5572
5573  if (FunctionTemplateDecl *ConversionTemplate
5574                                = Conversion->getDescribedFunctionTemplate())
5575    return ConversionTemplate;
5576
5577  return Conversion;
5578}
5579
5580//===----------------------------------------------------------------------===//
5581// Namespace Handling
5582//===----------------------------------------------------------------------===//
5583
5584
5585
5586/// ActOnStartNamespaceDef - This is called at the start of a namespace
5587/// definition.
5588Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5589                                   SourceLocation InlineLoc,
5590                                   SourceLocation NamespaceLoc,
5591                                   SourceLocation IdentLoc,
5592                                   IdentifierInfo *II,
5593                                   SourceLocation LBrace,
5594                                   AttributeList *AttrList) {
5595  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5596  // For anonymous namespace, take the location of the left brace.
5597  SourceLocation Loc = II ? IdentLoc : LBrace;
5598  bool IsInline = InlineLoc.isValid();
5599  bool IsInvalid = false;
5600  bool IsStd = false;
5601  bool AddToKnown = false;
5602  Scope *DeclRegionScope = NamespcScope->getParent();
5603
5604  NamespaceDecl *PrevNS = 0;
5605  if (II) {
5606    // C++ [namespace.def]p2:
5607    //   The identifier in an original-namespace-definition shall not
5608    //   have been previously defined in the declarative region in
5609    //   which the original-namespace-definition appears. The
5610    //   identifier in an original-namespace-definition is the name of
5611    //   the namespace. Subsequently in that declarative region, it is
5612    //   treated as an original-namespace-name.
5613    //
5614    // Since namespace names are unique in their scope, and we don't
5615    // look through using directives, just look for any ordinary names.
5616
5617    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5618    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5619    Decl::IDNS_Namespace;
5620    NamedDecl *PrevDecl = 0;
5621    for (DeclContext::lookup_result R
5622         = CurContext->getRedeclContext()->lookup(II);
5623         R.first != R.second; ++R.first) {
5624      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5625        PrevDecl = *R.first;
5626        break;
5627      }
5628    }
5629
5630    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5631
5632    if (PrevNS) {
5633      // This is an extended namespace definition.
5634      if (IsInline != PrevNS->isInline()) {
5635        // inline-ness must match
5636        if (PrevNS->isInline()) {
5637          // The user probably just forgot the 'inline', so suggest that it
5638          // be added back.
5639          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5640            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5641        } else {
5642          Diag(Loc, diag::err_inline_namespace_mismatch)
5643            << IsInline;
5644        }
5645        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5646
5647        IsInline = PrevNS->isInline();
5648      }
5649    } else if (PrevDecl) {
5650      // This is an invalid name redefinition.
5651      Diag(Loc, diag::err_redefinition_different_kind)
5652        << II;
5653      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5654      IsInvalid = true;
5655      // Continue on to push Namespc as current DeclContext and return it.
5656    } else if (II->isStr("std") &&
5657               CurContext->getRedeclContext()->isTranslationUnit()) {
5658      // This is the first "real" definition of the namespace "std", so update
5659      // our cache of the "std" namespace to point at this definition.
5660      PrevNS = getStdNamespace();
5661      IsStd = true;
5662      AddToKnown = !IsInline;
5663    } else {
5664      // We've seen this namespace for the first time.
5665      AddToKnown = !IsInline;
5666    }
5667  } else {
5668    // Anonymous namespaces.
5669
5670    // Determine whether the parent already has an anonymous namespace.
5671    DeclContext *Parent = CurContext->getRedeclContext();
5672    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5673      PrevNS = TU->getAnonymousNamespace();
5674    } else {
5675      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5676      PrevNS = ND->getAnonymousNamespace();
5677    }
5678
5679    if (PrevNS && IsInline != PrevNS->isInline()) {
5680      // inline-ness must match
5681      Diag(Loc, diag::err_inline_namespace_mismatch)
5682        << IsInline;
5683      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5684
5685      // Recover by ignoring the new namespace's inline status.
5686      IsInline = PrevNS->isInline();
5687    }
5688  }
5689
5690  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5691                                                 StartLoc, Loc, II, PrevNS);
5692  if (IsInvalid)
5693    Namespc->setInvalidDecl();
5694
5695  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5696
5697  // FIXME: Should we be merging attributes?
5698  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5699    PushNamespaceVisibilityAttr(Attr, Loc);
5700
5701  if (IsStd)
5702    StdNamespace = Namespc;
5703  if (AddToKnown)
5704    KnownNamespaces[Namespc] = false;
5705
5706  if (II) {
5707    PushOnScopeChains(Namespc, DeclRegionScope);
5708  } else {
5709    // Link the anonymous namespace into its parent.
5710    DeclContext *Parent = CurContext->getRedeclContext();
5711    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5712      TU->setAnonymousNamespace(Namespc);
5713    } else {
5714      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5715    }
5716
5717    CurContext->addDecl(Namespc);
5718
5719    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5720    //   behaves as if it were replaced by
5721    //     namespace unique { /* empty body */ }
5722    //     using namespace unique;
5723    //     namespace unique { namespace-body }
5724    //   where all occurrences of 'unique' in a translation unit are
5725    //   replaced by the same identifier and this identifier differs
5726    //   from all other identifiers in the entire program.
5727
5728    // We just create the namespace with an empty name and then add an
5729    // implicit using declaration, just like the standard suggests.
5730    //
5731    // CodeGen enforces the "universally unique" aspect by giving all
5732    // declarations semantically contained within an anonymous
5733    // namespace internal linkage.
5734
5735    if (!PrevNS) {
5736      UsingDirectiveDecl* UD
5737        = UsingDirectiveDecl::Create(Context, CurContext,
5738                                     /* 'using' */ LBrace,
5739                                     /* 'namespace' */ SourceLocation(),
5740                                     /* qualifier */ NestedNameSpecifierLoc(),
5741                                     /* identifier */ SourceLocation(),
5742                                     Namespc,
5743                                     /* Ancestor */ CurContext);
5744      UD->setImplicit();
5745      CurContext->addDecl(UD);
5746    }
5747  }
5748
5749  // Although we could have an invalid decl (i.e. the namespace name is a
5750  // redefinition), push it as current DeclContext and try to continue parsing.
5751  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5752  // for the namespace has the declarations that showed up in that particular
5753  // namespace definition.
5754  PushDeclContext(NamespcScope, Namespc);
5755  return Namespc;
5756}
5757
5758/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5759/// is a namespace alias, returns the namespace it points to.
5760static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5761  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5762    return AD->getNamespace();
5763  return dyn_cast_or_null<NamespaceDecl>(D);
5764}
5765
5766/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5767/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5768void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5769  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5770  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5771  Namespc->setRBraceLoc(RBrace);
5772  PopDeclContext();
5773  if (Namespc->hasAttr<VisibilityAttr>())
5774    PopPragmaVisibility(true, RBrace);
5775}
5776
5777CXXRecordDecl *Sema::getStdBadAlloc() const {
5778  return cast_or_null<CXXRecordDecl>(
5779                                  StdBadAlloc.get(Context.getExternalSource()));
5780}
5781
5782NamespaceDecl *Sema::getStdNamespace() const {
5783  return cast_or_null<NamespaceDecl>(
5784                                 StdNamespace.get(Context.getExternalSource()));
5785}
5786
5787/// \brief Retrieve the special "std" namespace, which may require us to
5788/// implicitly define the namespace.
5789NamespaceDecl *Sema::getOrCreateStdNamespace() {
5790  if (!StdNamespace) {
5791    // The "std" namespace has not yet been defined, so build one implicitly.
5792    StdNamespace = NamespaceDecl::Create(Context,
5793                                         Context.getTranslationUnitDecl(),
5794                                         /*Inline=*/false,
5795                                         SourceLocation(), SourceLocation(),
5796                                         &PP.getIdentifierTable().get("std"),
5797                                         /*PrevDecl=*/0);
5798    getStdNamespace()->setImplicit(true);
5799  }
5800
5801  return getStdNamespace();
5802}
5803
5804bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5805  assert(getLangOptions().CPlusPlus &&
5806         "Looking for std::initializer_list outside of C++.");
5807
5808  // We're looking for implicit instantiations of
5809  // template <typename E> class std::initializer_list.
5810
5811  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5812    return false;
5813
5814  ClassTemplateDecl *Template = 0;
5815  const TemplateArgument *Arguments = 0;
5816
5817  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5818
5819    ClassTemplateSpecializationDecl *Specialization =
5820        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5821    if (!Specialization)
5822      return false;
5823
5824    Template = Specialization->getSpecializedTemplate();
5825    Arguments = Specialization->getTemplateArgs().data();
5826  } else if (const TemplateSpecializationType *TST =
5827                 Ty->getAs<TemplateSpecializationType>()) {
5828    Template = dyn_cast_or_null<ClassTemplateDecl>(
5829        TST->getTemplateName().getAsTemplateDecl());
5830    Arguments = TST->getArgs();
5831  }
5832  if (!Template)
5833    return false;
5834
5835  if (!StdInitializerList) {
5836    // Haven't recognized std::initializer_list yet, maybe this is it.
5837    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5838    if (TemplateClass->getIdentifier() !=
5839            &PP.getIdentifierTable().get("initializer_list") ||
5840        !getStdNamespace()->InEnclosingNamespaceSetOf(
5841            TemplateClass->getDeclContext()))
5842      return false;
5843    // This is a template called std::initializer_list, but is it the right
5844    // template?
5845    TemplateParameterList *Params = Template->getTemplateParameters();
5846    if (Params->getMinRequiredArguments() != 1)
5847      return false;
5848    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5849      return false;
5850
5851    // It's the right template.
5852    StdInitializerList = Template;
5853  }
5854
5855  if (Template != StdInitializerList)
5856    return false;
5857
5858  // This is an instance of std::initializer_list. Find the argument type.
5859  if (Element)
5860    *Element = Arguments[0].getAsType();
5861  return true;
5862}
5863
5864static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5865  NamespaceDecl *Std = S.getStdNamespace();
5866  if (!Std) {
5867    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5868    return 0;
5869  }
5870
5871  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5872                      Loc, Sema::LookupOrdinaryName);
5873  if (!S.LookupQualifiedName(Result, Std)) {
5874    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5875    return 0;
5876  }
5877  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5878  if (!Template) {
5879    Result.suppressDiagnostics();
5880    // We found something weird. Complain about the first thing we found.
5881    NamedDecl *Found = *Result.begin();
5882    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5883    return 0;
5884  }
5885
5886  // We found some template called std::initializer_list. Now verify that it's
5887  // correct.
5888  TemplateParameterList *Params = Template->getTemplateParameters();
5889  if (Params->getMinRequiredArguments() != 1 ||
5890      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5891    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5892    return 0;
5893  }
5894
5895  return Template;
5896}
5897
5898QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5899  if (!StdInitializerList) {
5900    StdInitializerList = LookupStdInitializerList(*this, Loc);
5901    if (!StdInitializerList)
5902      return QualType();
5903  }
5904
5905  TemplateArgumentListInfo Args(Loc, Loc);
5906  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5907                                       Context.getTrivialTypeSourceInfo(Element,
5908                                                                        Loc)));
5909  return Context.getCanonicalType(
5910      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5911}
5912
5913bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5914  // C++ [dcl.init.list]p2:
5915  //   A constructor is an initializer-list constructor if its first parameter
5916  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5917  //   std::initializer_list<E> for some type E, and either there are no other
5918  //   parameters or else all other parameters have default arguments.
5919  if (Ctor->getNumParams() < 1 ||
5920      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5921    return false;
5922
5923  QualType ArgType = Ctor->getParamDecl(0)->getType();
5924  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5925    ArgType = RT->getPointeeType().getUnqualifiedType();
5926
5927  return isStdInitializerList(ArgType, 0);
5928}
5929
5930/// \brief Determine whether a using statement is in a context where it will be
5931/// apply in all contexts.
5932static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5933  switch (CurContext->getDeclKind()) {
5934    case Decl::TranslationUnit:
5935      return true;
5936    case Decl::LinkageSpec:
5937      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5938    default:
5939      return false;
5940  }
5941}
5942
5943namespace {
5944
5945// Callback to only accept typo corrections that are namespaces.
5946class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5947 public:
5948  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5949    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5950      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5951    }
5952    return false;
5953  }
5954};
5955
5956}
5957
5958static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5959                                       CXXScopeSpec &SS,
5960                                       SourceLocation IdentLoc,
5961                                       IdentifierInfo *Ident) {
5962  NamespaceValidatorCCC Validator;
5963  R.clear();
5964  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5965                                               R.getLookupKind(), Sc, &SS,
5966                                               Validator)) {
5967    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5968    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5969    if (DeclContext *DC = S.computeDeclContext(SS, false))
5970      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5971        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5972        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5973    else
5974      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5975        << Ident << CorrectedQuotedStr
5976        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5977
5978    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5979         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5980
5981    Ident = Corrected.getCorrectionAsIdentifierInfo();
5982    R.addDecl(Corrected.getCorrectionDecl());
5983    return true;
5984  }
5985  return false;
5986}
5987
5988Decl *Sema::ActOnUsingDirective(Scope *S,
5989                                          SourceLocation UsingLoc,
5990                                          SourceLocation NamespcLoc,
5991                                          CXXScopeSpec &SS,
5992                                          SourceLocation IdentLoc,
5993                                          IdentifierInfo *NamespcName,
5994                                          AttributeList *AttrList) {
5995  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5996  assert(NamespcName && "Invalid NamespcName.");
5997  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5998
5999  // This can only happen along a recovery path.
6000  while (S->getFlags() & Scope::TemplateParamScope)
6001    S = S->getParent();
6002  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6003
6004  UsingDirectiveDecl *UDir = 0;
6005  NestedNameSpecifier *Qualifier = 0;
6006  if (SS.isSet())
6007    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6008
6009  // Lookup namespace name.
6010  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6011  LookupParsedName(R, S, &SS);
6012  if (R.isAmbiguous())
6013    return 0;
6014
6015  if (R.empty()) {
6016    R.clear();
6017    // Allow "using namespace std;" or "using namespace ::std;" even if
6018    // "std" hasn't been defined yet, for GCC compatibility.
6019    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6020        NamespcName->isStr("std")) {
6021      Diag(IdentLoc, diag::ext_using_undefined_std);
6022      R.addDecl(getOrCreateStdNamespace());
6023      R.resolveKind();
6024    }
6025    // Otherwise, attempt typo correction.
6026    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6027  }
6028
6029  if (!R.empty()) {
6030    NamedDecl *Named = R.getFoundDecl();
6031    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6032        && "expected namespace decl");
6033    // C++ [namespace.udir]p1:
6034    //   A using-directive specifies that the names in the nominated
6035    //   namespace can be used in the scope in which the
6036    //   using-directive appears after the using-directive. During
6037    //   unqualified name lookup (3.4.1), the names appear as if they
6038    //   were declared in the nearest enclosing namespace which
6039    //   contains both the using-directive and the nominated
6040    //   namespace. [Note: in this context, "contains" means "contains
6041    //   directly or indirectly". ]
6042
6043    // Find enclosing context containing both using-directive and
6044    // nominated namespace.
6045    NamespaceDecl *NS = getNamespaceDecl(Named);
6046    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6047    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6048      CommonAncestor = CommonAncestor->getParent();
6049
6050    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6051                                      SS.getWithLocInContext(Context),
6052                                      IdentLoc, Named, CommonAncestor);
6053
6054    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6055        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6056      Diag(IdentLoc, diag::warn_using_directive_in_header);
6057    }
6058
6059    PushUsingDirective(S, UDir);
6060  } else {
6061    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6062  }
6063
6064  // FIXME: We ignore attributes for now.
6065  return UDir;
6066}
6067
6068void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6069  // If scope has associated entity, then using directive is at namespace
6070  // or translation unit scope. We add UsingDirectiveDecls, into
6071  // it's lookup structure.
6072  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6073    Ctx->addDecl(UDir);
6074  else
6075    // Otherwise it is block-sope. using-directives will affect lookup
6076    // only to the end of scope.
6077    S->PushUsingDirective(UDir);
6078}
6079
6080
6081Decl *Sema::ActOnUsingDeclaration(Scope *S,
6082                                  AccessSpecifier AS,
6083                                  bool HasUsingKeyword,
6084                                  SourceLocation UsingLoc,
6085                                  CXXScopeSpec &SS,
6086                                  UnqualifiedId &Name,
6087                                  AttributeList *AttrList,
6088                                  bool IsTypeName,
6089                                  SourceLocation TypenameLoc) {
6090  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6091
6092  switch (Name.getKind()) {
6093  case UnqualifiedId::IK_ImplicitSelfParam:
6094  case UnqualifiedId::IK_Identifier:
6095  case UnqualifiedId::IK_OperatorFunctionId:
6096  case UnqualifiedId::IK_LiteralOperatorId:
6097  case UnqualifiedId::IK_ConversionFunctionId:
6098    break;
6099
6100  case UnqualifiedId::IK_ConstructorName:
6101  case UnqualifiedId::IK_ConstructorTemplateId:
6102    // C++0x inherited constructors.
6103    Diag(Name.getSourceRange().getBegin(),
6104         getLangOptions().CPlusPlus0x ?
6105           diag::warn_cxx98_compat_using_decl_constructor :
6106           diag::err_using_decl_constructor)
6107      << SS.getRange();
6108
6109    if (getLangOptions().CPlusPlus0x) break;
6110
6111    return 0;
6112
6113  case UnqualifiedId::IK_DestructorName:
6114    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6115      << SS.getRange();
6116    return 0;
6117
6118  case UnqualifiedId::IK_TemplateId:
6119    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6120      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6121    return 0;
6122  }
6123
6124  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6125  DeclarationName TargetName = TargetNameInfo.getName();
6126  if (!TargetName)
6127    return 0;
6128
6129  // Warn about using declarations.
6130  // TODO: store that the declaration was written without 'using' and
6131  // talk about access decls instead of using decls in the
6132  // diagnostics.
6133  if (!HasUsingKeyword) {
6134    UsingLoc = Name.getSourceRange().getBegin();
6135
6136    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6137      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6138  }
6139
6140  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6141      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6142    return 0;
6143
6144  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6145                                        TargetNameInfo, AttrList,
6146                                        /* IsInstantiation */ false,
6147                                        IsTypeName, TypenameLoc);
6148  if (UD)
6149    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6150
6151  return UD;
6152}
6153
6154/// \brief Determine whether a using declaration considers the given
6155/// declarations as "equivalent", e.g., if they are redeclarations of
6156/// the same entity or are both typedefs of the same type.
6157static bool
6158IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6159                         bool &SuppressRedeclaration) {
6160  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6161    SuppressRedeclaration = false;
6162    return true;
6163  }
6164
6165  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6166    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6167      SuppressRedeclaration = true;
6168      return Context.hasSameType(TD1->getUnderlyingType(),
6169                                 TD2->getUnderlyingType());
6170    }
6171
6172  return false;
6173}
6174
6175
6176/// Determines whether to create a using shadow decl for a particular
6177/// decl, given the set of decls existing prior to this using lookup.
6178bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6179                                const LookupResult &Previous) {
6180  // Diagnose finding a decl which is not from a base class of the
6181  // current class.  We do this now because there are cases where this
6182  // function will silently decide not to build a shadow decl, which
6183  // will pre-empt further diagnostics.
6184  //
6185  // We don't need to do this in C++0x because we do the check once on
6186  // the qualifier.
6187  //
6188  // FIXME: diagnose the following if we care enough:
6189  //   struct A { int foo; };
6190  //   struct B : A { using A::foo; };
6191  //   template <class T> struct C : A {};
6192  //   template <class T> struct D : C<T> { using B::foo; } // <---
6193  // This is invalid (during instantiation) in C++03 because B::foo
6194  // resolves to the using decl in B, which is not a base class of D<T>.
6195  // We can't diagnose it immediately because C<T> is an unknown
6196  // specialization.  The UsingShadowDecl in D<T> then points directly
6197  // to A::foo, which will look well-formed when we instantiate.
6198  // The right solution is to not collapse the shadow-decl chain.
6199  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6200    DeclContext *OrigDC = Orig->getDeclContext();
6201
6202    // Handle enums and anonymous structs.
6203    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6204    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6205    while (OrigRec->isAnonymousStructOrUnion())
6206      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6207
6208    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6209      if (OrigDC == CurContext) {
6210        Diag(Using->getLocation(),
6211             diag::err_using_decl_nested_name_specifier_is_current_class)
6212          << Using->getQualifierLoc().getSourceRange();
6213        Diag(Orig->getLocation(), diag::note_using_decl_target);
6214        return true;
6215      }
6216
6217      Diag(Using->getQualifierLoc().getBeginLoc(),
6218           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6219        << Using->getQualifier()
6220        << cast<CXXRecordDecl>(CurContext)
6221        << Using->getQualifierLoc().getSourceRange();
6222      Diag(Orig->getLocation(), diag::note_using_decl_target);
6223      return true;
6224    }
6225  }
6226
6227  if (Previous.empty()) return false;
6228
6229  NamedDecl *Target = Orig;
6230  if (isa<UsingShadowDecl>(Target))
6231    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6232
6233  // If the target happens to be one of the previous declarations, we
6234  // don't have a conflict.
6235  //
6236  // FIXME: but we might be increasing its access, in which case we
6237  // should redeclare it.
6238  NamedDecl *NonTag = 0, *Tag = 0;
6239  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6240         I != E; ++I) {
6241    NamedDecl *D = (*I)->getUnderlyingDecl();
6242    bool Result;
6243    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6244      return Result;
6245
6246    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6247  }
6248
6249  if (Target->isFunctionOrFunctionTemplate()) {
6250    FunctionDecl *FD;
6251    if (isa<FunctionTemplateDecl>(Target))
6252      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6253    else
6254      FD = cast<FunctionDecl>(Target);
6255
6256    NamedDecl *OldDecl = 0;
6257    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6258    case Ovl_Overload:
6259      return false;
6260
6261    case Ovl_NonFunction:
6262      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6263      break;
6264
6265    // We found a decl with the exact signature.
6266    case Ovl_Match:
6267      // If we're in a record, we want to hide the target, so we
6268      // return true (without a diagnostic) to tell the caller not to
6269      // build a shadow decl.
6270      if (CurContext->isRecord())
6271        return true;
6272
6273      // If we're not in a record, this is an error.
6274      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6275      break;
6276    }
6277
6278    Diag(Target->getLocation(), diag::note_using_decl_target);
6279    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6280    return true;
6281  }
6282
6283  // Target is not a function.
6284
6285  if (isa<TagDecl>(Target)) {
6286    // No conflict between a tag and a non-tag.
6287    if (!Tag) return false;
6288
6289    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6290    Diag(Target->getLocation(), diag::note_using_decl_target);
6291    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6292    return true;
6293  }
6294
6295  // No conflict between a tag and a non-tag.
6296  if (!NonTag) return false;
6297
6298  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6299  Diag(Target->getLocation(), diag::note_using_decl_target);
6300  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6301  return true;
6302}
6303
6304/// Builds a shadow declaration corresponding to a 'using' declaration.
6305UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6306                                            UsingDecl *UD,
6307                                            NamedDecl *Orig) {
6308
6309  // If we resolved to another shadow declaration, just coalesce them.
6310  NamedDecl *Target = Orig;
6311  if (isa<UsingShadowDecl>(Target)) {
6312    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6313    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6314  }
6315
6316  UsingShadowDecl *Shadow
6317    = UsingShadowDecl::Create(Context, CurContext,
6318                              UD->getLocation(), UD, Target);
6319  UD->addShadowDecl(Shadow);
6320
6321  Shadow->setAccess(UD->getAccess());
6322  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6323    Shadow->setInvalidDecl();
6324
6325  if (S)
6326    PushOnScopeChains(Shadow, S);
6327  else
6328    CurContext->addDecl(Shadow);
6329
6330
6331  return Shadow;
6332}
6333
6334/// Hides a using shadow declaration.  This is required by the current
6335/// using-decl implementation when a resolvable using declaration in a
6336/// class is followed by a declaration which would hide or override
6337/// one or more of the using decl's targets; for example:
6338///
6339///   struct Base { void foo(int); };
6340///   struct Derived : Base {
6341///     using Base::foo;
6342///     void foo(int);
6343///   };
6344///
6345/// The governing language is C++03 [namespace.udecl]p12:
6346///
6347///   When a using-declaration brings names from a base class into a
6348///   derived class scope, member functions in the derived class
6349///   override and/or hide member functions with the same name and
6350///   parameter types in a base class (rather than conflicting).
6351///
6352/// There are two ways to implement this:
6353///   (1) optimistically create shadow decls when they're not hidden
6354///       by existing declarations, or
6355///   (2) don't create any shadow decls (or at least don't make them
6356///       visible) until we've fully parsed/instantiated the class.
6357/// The problem with (1) is that we might have to retroactively remove
6358/// a shadow decl, which requires several O(n) operations because the
6359/// decl structures are (very reasonably) not designed for removal.
6360/// (2) avoids this but is very fiddly and phase-dependent.
6361void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6362  if (Shadow->getDeclName().getNameKind() ==
6363        DeclarationName::CXXConversionFunctionName)
6364    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6365
6366  // Remove it from the DeclContext...
6367  Shadow->getDeclContext()->removeDecl(Shadow);
6368
6369  // ...and the scope, if applicable...
6370  if (S) {
6371    S->RemoveDecl(Shadow);
6372    IdResolver.RemoveDecl(Shadow);
6373  }
6374
6375  // ...and the using decl.
6376  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6377
6378  // TODO: complain somehow if Shadow was used.  It shouldn't
6379  // be possible for this to happen, because...?
6380}
6381
6382/// Builds a using declaration.
6383///
6384/// \param IsInstantiation - Whether this call arises from an
6385///   instantiation of an unresolved using declaration.  We treat
6386///   the lookup differently for these declarations.
6387NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6388                                       SourceLocation UsingLoc,
6389                                       CXXScopeSpec &SS,
6390                                       const DeclarationNameInfo &NameInfo,
6391                                       AttributeList *AttrList,
6392                                       bool IsInstantiation,
6393                                       bool IsTypeName,
6394                                       SourceLocation TypenameLoc) {
6395  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6396  SourceLocation IdentLoc = NameInfo.getLoc();
6397  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6398
6399  // FIXME: We ignore attributes for now.
6400
6401  if (SS.isEmpty()) {
6402    Diag(IdentLoc, diag::err_using_requires_qualname);
6403    return 0;
6404  }
6405
6406  // Do the redeclaration lookup in the current scope.
6407  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6408                        ForRedeclaration);
6409  Previous.setHideTags(false);
6410  if (S) {
6411    LookupName(Previous, S);
6412
6413    // It is really dumb that we have to do this.
6414    LookupResult::Filter F = Previous.makeFilter();
6415    while (F.hasNext()) {
6416      NamedDecl *D = F.next();
6417      if (!isDeclInScope(D, CurContext, S))
6418        F.erase();
6419    }
6420    F.done();
6421  } else {
6422    assert(IsInstantiation && "no scope in non-instantiation");
6423    assert(CurContext->isRecord() && "scope not record in instantiation");
6424    LookupQualifiedName(Previous, CurContext);
6425  }
6426
6427  // Check for invalid redeclarations.
6428  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6429    return 0;
6430
6431  // Check for bad qualifiers.
6432  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6433    return 0;
6434
6435  DeclContext *LookupContext = computeDeclContext(SS);
6436  NamedDecl *D;
6437  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6438  if (!LookupContext) {
6439    if (IsTypeName) {
6440      // FIXME: not all declaration name kinds are legal here
6441      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6442                                              UsingLoc, TypenameLoc,
6443                                              QualifierLoc,
6444                                              IdentLoc, NameInfo.getName());
6445    } else {
6446      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6447                                           QualifierLoc, NameInfo);
6448    }
6449  } else {
6450    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6451                          NameInfo, IsTypeName);
6452  }
6453  D->setAccess(AS);
6454  CurContext->addDecl(D);
6455
6456  if (!LookupContext) return D;
6457  UsingDecl *UD = cast<UsingDecl>(D);
6458
6459  if (RequireCompleteDeclContext(SS, LookupContext)) {
6460    UD->setInvalidDecl();
6461    return UD;
6462  }
6463
6464  // Constructor inheriting using decls get special treatment.
6465  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6466    if (CheckInheritedConstructorUsingDecl(UD))
6467      UD->setInvalidDecl();
6468    return UD;
6469  }
6470
6471  // Otherwise, look up the target name.
6472
6473  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6474
6475  // Unlike most lookups, we don't always want to hide tag
6476  // declarations: tag names are visible through the using declaration
6477  // even if hidden by ordinary names, *except* in a dependent context
6478  // where it's important for the sanity of two-phase lookup.
6479  if (!IsInstantiation)
6480    R.setHideTags(false);
6481
6482  LookupQualifiedName(R, LookupContext);
6483
6484  if (R.empty()) {
6485    Diag(IdentLoc, diag::err_no_member)
6486      << NameInfo.getName() << LookupContext << SS.getRange();
6487    UD->setInvalidDecl();
6488    return UD;
6489  }
6490
6491  if (R.isAmbiguous()) {
6492    UD->setInvalidDecl();
6493    return UD;
6494  }
6495
6496  if (IsTypeName) {
6497    // If we asked for a typename and got a non-type decl, error out.
6498    if (!R.getAsSingle<TypeDecl>()) {
6499      Diag(IdentLoc, diag::err_using_typename_non_type);
6500      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6501        Diag((*I)->getUnderlyingDecl()->getLocation(),
6502             diag::note_using_decl_target);
6503      UD->setInvalidDecl();
6504      return UD;
6505    }
6506  } else {
6507    // If we asked for a non-typename and we got a type, error out,
6508    // but only if this is an instantiation of an unresolved using
6509    // decl.  Otherwise just silently find the type name.
6510    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6511      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6512      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6513      UD->setInvalidDecl();
6514      return UD;
6515    }
6516  }
6517
6518  // C++0x N2914 [namespace.udecl]p6:
6519  // A using-declaration shall not name a namespace.
6520  if (R.getAsSingle<NamespaceDecl>()) {
6521    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6522      << SS.getRange();
6523    UD->setInvalidDecl();
6524    return UD;
6525  }
6526
6527  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6528    if (!CheckUsingShadowDecl(UD, *I, Previous))
6529      BuildUsingShadowDecl(S, UD, *I);
6530  }
6531
6532  return UD;
6533}
6534
6535/// Additional checks for a using declaration referring to a constructor name.
6536bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6537  if (UD->isTypeName()) {
6538    // FIXME: Cannot specify typename when specifying constructor
6539    return true;
6540  }
6541
6542  const Type *SourceType = UD->getQualifier()->getAsType();
6543  assert(SourceType &&
6544         "Using decl naming constructor doesn't have type in scope spec.");
6545  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6546
6547  // Check whether the named type is a direct base class.
6548  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6549  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6550  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6551       BaseIt != BaseE; ++BaseIt) {
6552    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6553    if (CanonicalSourceType == BaseType)
6554      break;
6555  }
6556
6557  if (BaseIt == BaseE) {
6558    // Did not find SourceType in the bases.
6559    Diag(UD->getUsingLocation(),
6560         diag::err_using_decl_constructor_not_in_direct_base)
6561      << UD->getNameInfo().getSourceRange()
6562      << QualType(SourceType, 0) << TargetClass;
6563    return true;
6564  }
6565
6566  BaseIt->setInheritConstructors();
6567
6568  return false;
6569}
6570
6571/// Checks that the given using declaration is not an invalid
6572/// redeclaration.  Note that this is checking only for the using decl
6573/// itself, not for any ill-formedness among the UsingShadowDecls.
6574bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6575                                       bool isTypeName,
6576                                       const CXXScopeSpec &SS,
6577                                       SourceLocation NameLoc,
6578                                       const LookupResult &Prev) {
6579  // C++03 [namespace.udecl]p8:
6580  // C++0x [namespace.udecl]p10:
6581  //   A using-declaration is a declaration and can therefore be used
6582  //   repeatedly where (and only where) multiple declarations are
6583  //   allowed.
6584  //
6585  // That's in non-member contexts.
6586  if (!CurContext->getRedeclContext()->isRecord())
6587    return false;
6588
6589  NestedNameSpecifier *Qual
6590    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6591
6592  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6593    NamedDecl *D = *I;
6594
6595    bool DTypename;
6596    NestedNameSpecifier *DQual;
6597    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6598      DTypename = UD->isTypeName();
6599      DQual = UD->getQualifier();
6600    } else if (UnresolvedUsingValueDecl *UD
6601                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6602      DTypename = false;
6603      DQual = UD->getQualifier();
6604    } else if (UnresolvedUsingTypenameDecl *UD
6605                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6606      DTypename = true;
6607      DQual = UD->getQualifier();
6608    } else continue;
6609
6610    // using decls differ if one says 'typename' and the other doesn't.
6611    // FIXME: non-dependent using decls?
6612    if (isTypeName != DTypename) continue;
6613
6614    // using decls differ if they name different scopes (but note that
6615    // template instantiation can cause this check to trigger when it
6616    // didn't before instantiation).
6617    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6618        Context.getCanonicalNestedNameSpecifier(DQual))
6619      continue;
6620
6621    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6622    Diag(D->getLocation(), diag::note_using_decl) << 1;
6623    return true;
6624  }
6625
6626  return false;
6627}
6628
6629
6630/// Checks that the given nested-name qualifier used in a using decl
6631/// in the current context is appropriately related to the current
6632/// scope.  If an error is found, diagnoses it and returns true.
6633bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6634                                   const CXXScopeSpec &SS,
6635                                   SourceLocation NameLoc) {
6636  DeclContext *NamedContext = computeDeclContext(SS);
6637
6638  if (!CurContext->isRecord()) {
6639    // C++03 [namespace.udecl]p3:
6640    // C++0x [namespace.udecl]p8:
6641    //   A using-declaration for a class member shall be a member-declaration.
6642
6643    // If we weren't able to compute a valid scope, it must be a
6644    // dependent class scope.
6645    if (!NamedContext || NamedContext->isRecord()) {
6646      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6647        << SS.getRange();
6648      return true;
6649    }
6650
6651    // Otherwise, everything is known to be fine.
6652    return false;
6653  }
6654
6655  // The current scope is a record.
6656
6657  // If the named context is dependent, we can't decide much.
6658  if (!NamedContext) {
6659    // FIXME: in C++0x, we can diagnose if we can prove that the
6660    // nested-name-specifier does not refer to a base class, which is
6661    // still possible in some cases.
6662
6663    // Otherwise we have to conservatively report that things might be
6664    // okay.
6665    return false;
6666  }
6667
6668  if (!NamedContext->isRecord()) {
6669    // Ideally this would point at the last name in the specifier,
6670    // but we don't have that level of source info.
6671    Diag(SS.getRange().getBegin(),
6672         diag::err_using_decl_nested_name_specifier_is_not_class)
6673      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6674    return true;
6675  }
6676
6677  if (!NamedContext->isDependentContext() &&
6678      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6679    return true;
6680
6681  if (getLangOptions().CPlusPlus0x) {
6682    // C++0x [namespace.udecl]p3:
6683    //   In a using-declaration used as a member-declaration, the
6684    //   nested-name-specifier shall name a base class of the class
6685    //   being defined.
6686
6687    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6688                                 cast<CXXRecordDecl>(NamedContext))) {
6689      if (CurContext == NamedContext) {
6690        Diag(NameLoc,
6691             diag::err_using_decl_nested_name_specifier_is_current_class)
6692          << SS.getRange();
6693        return true;
6694      }
6695
6696      Diag(SS.getRange().getBegin(),
6697           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6698        << (NestedNameSpecifier*) SS.getScopeRep()
6699        << cast<CXXRecordDecl>(CurContext)
6700        << SS.getRange();
6701      return true;
6702    }
6703
6704    return false;
6705  }
6706
6707  // C++03 [namespace.udecl]p4:
6708  //   A using-declaration used as a member-declaration shall refer
6709  //   to a member of a base class of the class being defined [etc.].
6710
6711  // Salient point: SS doesn't have to name a base class as long as
6712  // lookup only finds members from base classes.  Therefore we can
6713  // diagnose here only if we can prove that that can't happen,
6714  // i.e. if the class hierarchies provably don't intersect.
6715
6716  // TODO: it would be nice if "definitely valid" results were cached
6717  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6718  // need to be repeated.
6719
6720  struct UserData {
6721    llvm::DenseSet<const CXXRecordDecl*> Bases;
6722
6723    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6724      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6725      Data->Bases.insert(Base);
6726      return true;
6727    }
6728
6729    bool hasDependentBases(const CXXRecordDecl *Class) {
6730      return !Class->forallBases(collect, this);
6731    }
6732
6733    /// Returns true if the base is dependent or is one of the
6734    /// accumulated base classes.
6735    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6736      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6737      return !Data->Bases.count(Base);
6738    }
6739
6740    bool mightShareBases(const CXXRecordDecl *Class) {
6741      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6742    }
6743  };
6744
6745  UserData Data;
6746
6747  // Returns false if we find a dependent base.
6748  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6749    return false;
6750
6751  // Returns false if the class has a dependent base or if it or one
6752  // of its bases is present in the base set of the current context.
6753  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6754    return false;
6755
6756  Diag(SS.getRange().getBegin(),
6757       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6758    << (NestedNameSpecifier*) SS.getScopeRep()
6759    << cast<CXXRecordDecl>(CurContext)
6760    << SS.getRange();
6761
6762  return true;
6763}
6764
6765Decl *Sema::ActOnAliasDeclaration(Scope *S,
6766                                  AccessSpecifier AS,
6767                                  MultiTemplateParamsArg TemplateParamLists,
6768                                  SourceLocation UsingLoc,
6769                                  UnqualifiedId &Name,
6770                                  TypeResult Type) {
6771  // Skip up to the relevant declaration scope.
6772  while (S->getFlags() & Scope::TemplateParamScope)
6773    S = S->getParent();
6774  assert((S->getFlags() & Scope::DeclScope) &&
6775         "got alias-declaration outside of declaration scope");
6776
6777  if (Type.isInvalid())
6778    return 0;
6779
6780  bool Invalid = false;
6781  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6782  TypeSourceInfo *TInfo = 0;
6783  GetTypeFromParser(Type.get(), &TInfo);
6784
6785  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6786    return 0;
6787
6788  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6789                                      UPPC_DeclarationType)) {
6790    Invalid = true;
6791    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6792                                             TInfo->getTypeLoc().getBeginLoc());
6793  }
6794
6795  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6796  LookupName(Previous, S);
6797
6798  // Warn about shadowing the name of a template parameter.
6799  if (Previous.isSingleResult() &&
6800      Previous.getFoundDecl()->isTemplateParameter()) {
6801    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6802    Previous.clear();
6803  }
6804
6805  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6806         "name in alias declaration must be an identifier");
6807  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6808                                               Name.StartLocation,
6809                                               Name.Identifier, TInfo);
6810
6811  NewTD->setAccess(AS);
6812
6813  if (Invalid)
6814    NewTD->setInvalidDecl();
6815
6816  CheckTypedefForVariablyModifiedType(S, NewTD);
6817  Invalid |= NewTD->isInvalidDecl();
6818
6819  bool Redeclaration = false;
6820
6821  NamedDecl *NewND;
6822  if (TemplateParamLists.size()) {
6823    TypeAliasTemplateDecl *OldDecl = 0;
6824    TemplateParameterList *OldTemplateParams = 0;
6825
6826    if (TemplateParamLists.size() != 1) {
6827      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6828        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6829         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6830    }
6831    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6832
6833    // Only consider previous declarations in the same scope.
6834    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6835                         /*ExplicitInstantiationOrSpecialization*/false);
6836    if (!Previous.empty()) {
6837      Redeclaration = true;
6838
6839      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6840      if (!OldDecl && !Invalid) {
6841        Diag(UsingLoc, diag::err_redefinition_different_kind)
6842          << Name.Identifier;
6843
6844        NamedDecl *OldD = Previous.getRepresentativeDecl();
6845        if (OldD->getLocation().isValid())
6846          Diag(OldD->getLocation(), diag::note_previous_definition);
6847
6848        Invalid = true;
6849      }
6850
6851      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6852        if (TemplateParameterListsAreEqual(TemplateParams,
6853                                           OldDecl->getTemplateParameters(),
6854                                           /*Complain=*/true,
6855                                           TPL_TemplateMatch))
6856          OldTemplateParams = OldDecl->getTemplateParameters();
6857        else
6858          Invalid = true;
6859
6860        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6861        if (!Invalid &&
6862            !Context.hasSameType(OldTD->getUnderlyingType(),
6863                                 NewTD->getUnderlyingType())) {
6864          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6865          // but we can't reasonably accept it.
6866          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6867            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6868          if (OldTD->getLocation().isValid())
6869            Diag(OldTD->getLocation(), diag::note_previous_definition);
6870          Invalid = true;
6871        }
6872      }
6873    }
6874
6875    // Merge any previous default template arguments into our parameters,
6876    // and check the parameter list.
6877    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6878                                   TPC_TypeAliasTemplate))
6879      return 0;
6880
6881    TypeAliasTemplateDecl *NewDecl =
6882      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6883                                    Name.Identifier, TemplateParams,
6884                                    NewTD);
6885
6886    NewDecl->setAccess(AS);
6887
6888    if (Invalid)
6889      NewDecl->setInvalidDecl();
6890    else if (OldDecl)
6891      NewDecl->setPreviousDeclaration(OldDecl);
6892
6893    NewND = NewDecl;
6894  } else {
6895    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6896    NewND = NewTD;
6897  }
6898
6899  if (!Redeclaration)
6900    PushOnScopeChains(NewND, S);
6901
6902  return NewND;
6903}
6904
6905Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6906                                             SourceLocation NamespaceLoc,
6907                                             SourceLocation AliasLoc,
6908                                             IdentifierInfo *Alias,
6909                                             CXXScopeSpec &SS,
6910                                             SourceLocation IdentLoc,
6911                                             IdentifierInfo *Ident) {
6912
6913  // Lookup the namespace name.
6914  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6915  LookupParsedName(R, S, &SS);
6916
6917  // Check if we have a previous declaration with the same name.
6918  NamedDecl *PrevDecl
6919    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6920                       ForRedeclaration);
6921  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6922    PrevDecl = 0;
6923
6924  if (PrevDecl) {
6925    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6926      // We already have an alias with the same name that points to the same
6927      // namespace, so don't create a new one.
6928      // FIXME: At some point, we'll want to create the (redundant)
6929      // declaration to maintain better source information.
6930      if (!R.isAmbiguous() && !R.empty() &&
6931          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6932        return 0;
6933    }
6934
6935    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6936      diag::err_redefinition_different_kind;
6937    Diag(AliasLoc, DiagID) << Alias;
6938    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6939    return 0;
6940  }
6941
6942  if (R.isAmbiguous())
6943    return 0;
6944
6945  if (R.empty()) {
6946    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6947      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6948      return 0;
6949    }
6950  }
6951
6952  NamespaceAliasDecl *AliasDecl =
6953    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6954                               Alias, SS.getWithLocInContext(Context),
6955                               IdentLoc, R.getFoundDecl());
6956
6957  PushOnScopeChains(AliasDecl, S);
6958  return AliasDecl;
6959}
6960
6961namespace {
6962  /// \brief Scoped object used to handle the state changes required in Sema
6963  /// to implicitly define the body of a C++ member function;
6964  class ImplicitlyDefinedFunctionScope {
6965    Sema &S;
6966    Sema::ContextRAII SavedContext;
6967
6968  public:
6969    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6970      : S(S), SavedContext(S, Method)
6971    {
6972      S.PushFunctionScope();
6973      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6974    }
6975
6976    ~ImplicitlyDefinedFunctionScope() {
6977      S.PopExpressionEvaluationContext();
6978      S.PopFunctionScopeInfo();
6979    }
6980  };
6981}
6982
6983Sema::ImplicitExceptionSpecification
6984Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6985  // C++ [except.spec]p14:
6986  //   An implicitly declared special member function (Clause 12) shall have an
6987  //   exception-specification. [...]
6988  ImplicitExceptionSpecification ExceptSpec(Context);
6989  if (ClassDecl->isInvalidDecl())
6990    return ExceptSpec;
6991
6992  // Direct base-class constructors.
6993  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6994                                       BEnd = ClassDecl->bases_end();
6995       B != BEnd; ++B) {
6996    if (B->isVirtual()) // Handled below.
6997      continue;
6998
6999    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7000      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7001      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7002      // If this is a deleted function, add it anyway. This might be conformant
7003      // with the standard. This might not. I'm not sure. It might not matter.
7004      if (Constructor)
7005        ExceptSpec.CalledDecl(Constructor);
7006    }
7007  }
7008
7009  // Virtual base-class constructors.
7010  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7011                                       BEnd = ClassDecl->vbases_end();
7012       B != BEnd; ++B) {
7013    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7014      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7015      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7016      // If this is a deleted function, add it anyway. This might be conformant
7017      // with the standard. This might not. I'm not sure. It might not matter.
7018      if (Constructor)
7019        ExceptSpec.CalledDecl(Constructor);
7020    }
7021  }
7022
7023  // Field constructors.
7024  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7025                               FEnd = ClassDecl->field_end();
7026       F != FEnd; ++F) {
7027    if (F->hasInClassInitializer()) {
7028      if (Expr *E = F->getInClassInitializer())
7029        ExceptSpec.CalledExpr(E);
7030      else if (!F->isInvalidDecl())
7031        ExceptSpec.SetDelayed();
7032    } else if (const RecordType *RecordTy
7033              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7034      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7035      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7036      // If this is a deleted function, add it anyway. This might be conformant
7037      // with the standard. This might not. I'm not sure. It might not matter.
7038      // In particular, the problem is that this function never gets called. It
7039      // might just be ill-formed because this function attempts to refer to
7040      // a deleted function here.
7041      if (Constructor)
7042        ExceptSpec.CalledDecl(Constructor);
7043    }
7044  }
7045
7046  return ExceptSpec;
7047}
7048
7049CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7050                                                     CXXRecordDecl *ClassDecl) {
7051  // C++ [class.ctor]p5:
7052  //   A default constructor for a class X is a constructor of class X
7053  //   that can be called without an argument. If there is no
7054  //   user-declared constructor for class X, a default constructor is
7055  //   implicitly declared. An implicitly-declared default constructor
7056  //   is an inline public member of its class.
7057  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7058         "Should not build implicit default constructor!");
7059
7060  ImplicitExceptionSpecification Spec =
7061    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7062  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7063
7064  // Create the actual constructor declaration.
7065  CanQualType ClassType
7066    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7067  SourceLocation ClassLoc = ClassDecl->getLocation();
7068  DeclarationName Name
7069    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7070  DeclarationNameInfo NameInfo(Name, ClassLoc);
7071  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7072      Context, ClassDecl, ClassLoc, NameInfo,
7073      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7074      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7075      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7076        getLangOptions().CPlusPlus0x);
7077  DefaultCon->setAccess(AS_public);
7078  DefaultCon->setDefaulted();
7079  DefaultCon->setImplicit();
7080  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7081
7082  // Note that we have declared this constructor.
7083  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7084
7085  if (Scope *S = getScopeForContext(ClassDecl))
7086    PushOnScopeChains(DefaultCon, S, false);
7087  ClassDecl->addDecl(DefaultCon);
7088
7089  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7090    DefaultCon->setDeletedAsWritten();
7091
7092  return DefaultCon;
7093}
7094
7095void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7096                                            CXXConstructorDecl *Constructor) {
7097  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7098          !Constructor->doesThisDeclarationHaveABody() &&
7099          !Constructor->isDeleted()) &&
7100    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7101
7102  CXXRecordDecl *ClassDecl = Constructor->getParent();
7103  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7104
7105  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7106  DiagnosticErrorTrap Trap(Diags);
7107  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7108      Trap.hasErrorOccurred()) {
7109    Diag(CurrentLocation, diag::note_member_synthesized_at)
7110      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7111    Constructor->setInvalidDecl();
7112    return;
7113  }
7114
7115  SourceLocation Loc = Constructor->getLocation();
7116  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7117
7118  Constructor->setUsed();
7119  MarkVTableUsed(CurrentLocation, ClassDecl);
7120
7121  if (ASTMutationListener *L = getASTMutationListener()) {
7122    L->CompletedImplicitDefinition(Constructor);
7123  }
7124}
7125
7126/// Get any existing defaulted default constructor for the given class. Do not
7127/// implicitly define one if it does not exist.
7128static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7129                                                             CXXRecordDecl *D) {
7130  ASTContext &Context = Self.Context;
7131  QualType ClassType = Context.getTypeDeclType(D);
7132  DeclarationName ConstructorName
7133    = Context.DeclarationNames.getCXXConstructorName(
7134                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7135
7136  DeclContext::lookup_const_iterator Con, ConEnd;
7137  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7138       Con != ConEnd; ++Con) {
7139    // A function template cannot be defaulted.
7140    if (isa<FunctionTemplateDecl>(*Con))
7141      continue;
7142
7143    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7144    if (Constructor->isDefaultConstructor())
7145      return Constructor->isDefaulted() ? Constructor : 0;
7146  }
7147  return 0;
7148}
7149
7150void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7151  if (!D) return;
7152  AdjustDeclIfTemplate(D);
7153
7154  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7155  CXXConstructorDecl *CtorDecl
7156    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7157
7158  if (!CtorDecl) return;
7159
7160  // Compute the exception specification for the default constructor.
7161  const FunctionProtoType *CtorTy =
7162    CtorDecl->getType()->castAs<FunctionProtoType>();
7163  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7164    ImplicitExceptionSpecification Spec =
7165      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7166    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7167    assert(EPI.ExceptionSpecType != EST_Delayed);
7168
7169    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7170  }
7171
7172  // If the default constructor is explicitly defaulted, checking the exception
7173  // specification is deferred until now.
7174  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7175      !ClassDecl->isDependentType())
7176    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7177}
7178
7179void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7180  // We start with an initial pass over the base classes to collect those that
7181  // inherit constructors from. If there are none, we can forgo all further
7182  // processing.
7183  typedef SmallVector<const RecordType *, 4> BasesVector;
7184  BasesVector BasesToInheritFrom;
7185  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7186                                          BaseE = ClassDecl->bases_end();
7187         BaseIt != BaseE; ++BaseIt) {
7188    if (BaseIt->getInheritConstructors()) {
7189      QualType Base = BaseIt->getType();
7190      if (Base->isDependentType()) {
7191        // If we inherit constructors from anything that is dependent, just
7192        // abort processing altogether. We'll get another chance for the
7193        // instantiations.
7194        return;
7195      }
7196      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7197    }
7198  }
7199  if (BasesToInheritFrom.empty())
7200    return;
7201
7202  // Now collect the constructors that we already have in the current class.
7203  // Those take precedence over inherited constructors.
7204  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7205  //   unless there is a user-declared constructor with the same signature in
7206  //   the class where the using-declaration appears.
7207  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7208  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7209                                    CtorE = ClassDecl->ctor_end();
7210       CtorIt != CtorE; ++CtorIt) {
7211    ExistingConstructors.insert(
7212        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7213  }
7214
7215  Scope *S = getScopeForContext(ClassDecl);
7216  DeclarationName CreatedCtorName =
7217      Context.DeclarationNames.getCXXConstructorName(
7218          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7219
7220  // Now comes the true work.
7221  // First, we keep a map from constructor types to the base that introduced
7222  // them. Needed for finding conflicting constructors. We also keep the
7223  // actually inserted declarations in there, for pretty diagnostics.
7224  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7225  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7226  ConstructorToSourceMap InheritedConstructors;
7227  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7228                             BaseE = BasesToInheritFrom.end();
7229       BaseIt != BaseE; ++BaseIt) {
7230    const RecordType *Base = *BaseIt;
7231    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7232    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7233    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7234                                      CtorE = BaseDecl->ctor_end();
7235         CtorIt != CtorE; ++CtorIt) {
7236      // Find the using declaration for inheriting this base's constructors.
7237      DeclarationName Name =
7238          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7239      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7240          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7241      SourceLocation UsingLoc = UD ? UD->getLocation() :
7242                                     ClassDecl->getLocation();
7243
7244      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7245      //   from the class X named in the using-declaration consists of actual
7246      //   constructors and notional constructors that result from the
7247      //   transformation of defaulted parameters as follows:
7248      //   - all non-template default constructors of X, and
7249      //   - for each non-template constructor of X that has at least one
7250      //     parameter with a default argument, the set of constructors that
7251      //     results from omitting any ellipsis parameter specification and
7252      //     successively omitting parameters with a default argument from the
7253      //     end of the parameter-type-list.
7254      CXXConstructorDecl *BaseCtor = *CtorIt;
7255      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7256      const FunctionProtoType *BaseCtorType =
7257          BaseCtor->getType()->getAs<FunctionProtoType>();
7258
7259      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7260                    maxParams = BaseCtor->getNumParams();
7261           params <= maxParams; ++params) {
7262        // Skip default constructors. They're never inherited.
7263        if (params == 0)
7264          continue;
7265        // Skip copy and move constructors for the same reason.
7266        if (CanBeCopyOrMove && params == 1)
7267          continue;
7268
7269        // Build up a function type for this particular constructor.
7270        // FIXME: The working paper does not consider that the exception spec
7271        // for the inheriting constructor might be larger than that of the
7272        // source. This code doesn't yet, either. When it does, this code will
7273        // need to be delayed until after exception specifications and in-class
7274        // member initializers are attached.
7275        const Type *NewCtorType;
7276        if (params == maxParams)
7277          NewCtorType = BaseCtorType;
7278        else {
7279          SmallVector<QualType, 16> Args;
7280          for (unsigned i = 0; i < params; ++i) {
7281            Args.push_back(BaseCtorType->getArgType(i));
7282          }
7283          FunctionProtoType::ExtProtoInfo ExtInfo =
7284              BaseCtorType->getExtProtoInfo();
7285          ExtInfo.Variadic = false;
7286          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7287                                                Args.data(), params, ExtInfo)
7288                       .getTypePtr();
7289        }
7290        const Type *CanonicalNewCtorType =
7291            Context.getCanonicalType(NewCtorType);
7292
7293        // Now that we have the type, first check if the class already has a
7294        // constructor with this signature.
7295        if (ExistingConstructors.count(CanonicalNewCtorType))
7296          continue;
7297
7298        // Then we check if we have already declared an inherited constructor
7299        // with this signature.
7300        std::pair<ConstructorToSourceMap::iterator, bool> result =
7301            InheritedConstructors.insert(std::make_pair(
7302                CanonicalNewCtorType,
7303                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7304        if (!result.second) {
7305          // Already in the map. If it came from a different class, that's an
7306          // error. Not if it's from the same.
7307          CanQualType PreviousBase = result.first->second.first;
7308          if (CanonicalBase != PreviousBase) {
7309            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7310            const CXXConstructorDecl *PrevBaseCtor =
7311                PrevCtor->getInheritedConstructor();
7312            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7313
7314            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7315            Diag(BaseCtor->getLocation(),
7316                 diag::note_using_decl_constructor_conflict_current_ctor);
7317            Diag(PrevBaseCtor->getLocation(),
7318                 diag::note_using_decl_constructor_conflict_previous_ctor);
7319            Diag(PrevCtor->getLocation(),
7320                 diag::note_using_decl_constructor_conflict_previous_using);
7321          }
7322          continue;
7323        }
7324
7325        // OK, we're there, now add the constructor.
7326        // C++0x [class.inhctor]p8: [...] that would be performed by a
7327        //   user-written inline constructor [...]
7328        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7329        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7330            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7331            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7332            /*ImplicitlyDeclared=*/true,
7333            // FIXME: Due to a defect in the standard, we treat inherited
7334            // constructors as constexpr even if that makes them ill-formed.
7335            /*Constexpr=*/BaseCtor->isConstexpr());
7336        NewCtor->setAccess(BaseCtor->getAccess());
7337
7338        // Build up the parameter decls and add them.
7339        SmallVector<ParmVarDecl *, 16> ParamDecls;
7340        for (unsigned i = 0; i < params; ++i) {
7341          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7342                                                   UsingLoc, UsingLoc,
7343                                                   /*IdentifierInfo=*/0,
7344                                                   BaseCtorType->getArgType(i),
7345                                                   /*TInfo=*/0, SC_None,
7346                                                   SC_None, /*DefaultArg=*/0));
7347        }
7348        NewCtor->setParams(ParamDecls);
7349        NewCtor->setInheritedConstructor(BaseCtor);
7350
7351        PushOnScopeChains(NewCtor, S, false);
7352        ClassDecl->addDecl(NewCtor);
7353        result.first->second.second = NewCtor;
7354      }
7355    }
7356  }
7357}
7358
7359Sema::ImplicitExceptionSpecification
7360Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7361  // C++ [except.spec]p14:
7362  //   An implicitly declared special member function (Clause 12) shall have
7363  //   an exception-specification.
7364  ImplicitExceptionSpecification ExceptSpec(Context);
7365  if (ClassDecl->isInvalidDecl())
7366    return ExceptSpec;
7367
7368  // Direct base-class destructors.
7369  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7370                                       BEnd = ClassDecl->bases_end();
7371       B != BEnd; ++B) {
7372    if (B->isVirtual()) // Handled below.
7373      continue;
7374
7375    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7376      ExceptSpec.CalledDecl(
7377                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7378  }
7379
7380  // Virtual base-class destructors.
7381  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7382                                       BEnd = ClassDecl->vbases_end();
7383       B != BEnd; ++B) {
7384    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7385      ExceptSpec.CalledDecl(
7386                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7387  }
7388
7389  // Field destructors.
7390  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7391                               FEnd = ClassDecl->field_end();
7392       F != FEnd; ++F) {
7393    if (const RecordType *RecordTy
7394        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7395      ExceptSpec.CalledDecl(
7396                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7397  }
7398
7399  return ExceptSpec;
7400}
7401
7402CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7403  // C++ [class.dtor]p2:
7404  //   If a class has no user-declared destructor, a destructor is
7405  //   declared implicitly. An implicitly-declared destructor is an
7406  //   inline public member of its class.
7407
7408  ImplicitExceptionSpecification Spec =
7409      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7410  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7411
7412  // Create the actual destructor declaration.
7413  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7414
7415  CanQualType ClassType
7416    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7417  SourceLocation ClassLoc = ClassDecl->getLocation();
7418  DeclarationName Name
7419    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7420  DeclarationNameInfo NameInfo(Name, ClassLoc);
7421  CXXDestructorDecl *Destructor
7422      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7423                                  /*isInline=*/true,
7424                                  /*isImplicitlyDeclared=*/true);
7425  Destructor->setAccess(AS_public);
7426  Destructor->setDefaulted();
7427  Destructor->setImplicit();
7428  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7429
7430  // Note that we have declared this destructor.
7431  ++ASTContext::NumImplicitDestructorsDeclared;
7432
7433  // Introduce this destructor into its scope.
7434  if (Scope *S = getScopeForContext(ClassDecl))
7435    PushOnScopeChains(Destructor, S, false);
7436  ClassDecl->addDecl(Destructor);
7437
7438  // This could be uniqued if it ever proves significant.
7439  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7440
7441  if (ShouldDeleteDestructor(Destructor))
7442    Destructor->setDeletedAsWritten();
7443
7444  AddOverriddenMethods(ClassDecl, Destructor);
7445
7446  return Destructor;
7447}
7448
7449void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7450                                    CXXDestructorDecl *Destructor) {
7451  assert((Destructor->isDefaulted() &&
7452          !Destructor->doesThisDeclarationHaveABody()) &&
7453         "DefineImplicitDestructor - call it for implicit default dtor");
7454  CXXRecordDecl *ClassDecl = Destructor->getParent();
7455  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7456
7457  if (Destructor->isInvalidDecl())
7458    return;
7459
7460  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7461
7462  DiagnosticErrorTrap Trap(Diags);
7463  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7464                                         Destructor->getParent());
7465
7466  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7467    Diag(CurrentLocation, diag::note_member_synthesized_at)
7468      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7469
7470    Destructor->setInvalidDecl();
7471    return;
7472  }
7473
7474  SourceLocation Loc = Destructor->getLocation();
7475  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7476  Destructor->setImplicitlyDefined(true);
7477  Destructor->setUsed();
7478  MarkVTableUsed(CurrentLocation, ClassDecl);
7479
7480  if (ASTMutationListener *L = getASTMutationListener()) {
7481    L->CompletedImplicitDefinition(Destructor);
7482  }
7483}
7484
7485void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7486                                         CXXDestructorDecl *destructor) {
7487  // C++11 [class.dtor]p3:
7488  //   A declaration of a destructor that does not have an exception-
7489  //   specification is implicitly considered to have the same exception-
7490  //   specification as an implicit declaration.
7491  const FunctionProtoType *dtorType = destructor->getType()->
7492                                        getAs<FunctionProtoType>();
7493  if (dtorType->hasExceptionSpec())
7494    return;
7495
7496  ImplicitExceptionSpecification exceptSpec =
7497      ComputeDefaultedDtorExceptionSpec(classDecl);
7498
7499  // Replace the destructor's type, building off the existing one. Fortunately,
7500  // the only thing of interest in the destructor type is its extended info.
7501  // The return and arguments are fixed.
7502  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7503  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7504  epi.NumExceptions = exceptSpec.size();
7505  epi.Exceptions = exceptSpec.data();
7506  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7507
7508  destructor->setType(ty);
7509
7510  // FIXME: If the destructor has a body that could throw, and the newly created
7511  // spec doesn't allow exceptions, we should emit a warning, because this
7512  // change in behavior can break conforming C++03 programs at runtime.
7513  // However, we don't have a body yet, so it needs to be done somewhere else.
7514}
7515
7516/// \brief Builds a statement that copies/moves the given entity from \p From to
7517/// \c To.
7518///
7519/// This routine is used to copy/move the members of a class with an
7520/// implicitly-declared copy/move assignment operator. When the entities being
7521/// copied are arrays, this routine builds for loops to copy them.
7522///
7523/// \param S The Sema object used for type-checking.
7524///
7525/// \param Loc The location where the implicit copy/move is being generated.
7526///
7527/// \param T The type of the expressions being copied/moved. Both expressions
7528/// must have this type.
7529///
7530/// \param To The expression we are copying/moving to.
7531///
7532/// \param From The expression we are copying/moving from.
7533///
7534/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7535/// Otherwise, it's a non-static member subobject.
7536///
7537/// \param Copying Whether we're copying or moving.
7538///
7539/// \param Depth Internal parameter recording the depth of the recursion.
7540///
7541/// \returns A statement or a loop that copies the expressions.
7542static StmtResult
7543BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7544                      Expr *To, Expr *From,
7545                      bool CopyingBaseSubobject, bool Copying,
7546                      unsigned Depth = 0) {
7547  // C++0x [class.copy]p28:
7548  //   Each subobject is assigned in the manner appropriate to its type:
7549  //
7550  //     - if the subobject is of class type, as if by a call to operator= with
7551  //       the subobject as the object expression and the corresponding
7552  //       subobject of x as a single function argument (as if by explicit
7553  //       qualification; that is, ignoring any possible virtual overriding
7554  //       functions in more derived classes);
7555  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7556    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7557
7558    // Look for operator=.
7559    DeclarationName Name
7560      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7561    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7562    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7563
7564    // Filter out any result that isn't a copy/move-assignment operator.
7565    LookupResult::Filter F = OpLookup.makeFilter();
7566    while (F.hasNext()) {
7567      NamedDecl *D = F.next();
7568      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7569        if (Copying ? Method->isCopyAssignmentOperator() :
7570                      Method->isMoveAssignmentOperator())
7571          continue;
7572
7573      F.erase();
7574    }
7575    F.done();
7576
7577    // Suppress the protected check (C++ [class.protected]) for each of the
7578    // assignment operators we found. This strange dance is required when
7579    // we're assigning via a base classes's copy-assignment operator. To
7580    // ensure that we're getting the right base class subobject (without
7581    // ambiguities), we need to cast "this" to that subobject type; to
7582    // ensure that we don't go through the virtual call mechanism, we need
7583    // to qualify the operator= name with the base class (see below). However,
7584    // this means that if the base class has a protected copy assignment
7585    // operator, the protected member access check will fail. So, we
7586    // rewrite "protected" access to "public" access in this case, since we
7587    // know by construction that we're calling from a derived class.
7588    if (CopyingBaseSubobject) {
7589      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7590           L != LEnd; ++L) {
7591        if (L.getAccess() == AS_protected)
7592          L.setAccess(AS_public);
7593      }
7594    }
7595
7596    // Create the nested-name-specifier that will be used to qualify the
7597    // reference to operator=; this is required to suppress the virtual
7598    // call mechanism.
7599    CXXScopeSpec SS;
7600    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7601    SS.MakeTrivial(S.Context,
7602                   NestedNameSpecifier::Create(S.Context, 0, false,
7603                                               CanonicalT),
7604                   Loc);
7605
7606    // Create the reference to operator=.
7607    ExprResult OpEqualRef
7608      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7609                                   /*TemplateKWLoc=*/SourceLocation(),
7610                                   /*FirstQualifierInScope=*/0,
7611                                   OpLookup,
7612                                   /*TemplateArgs=*/0,
7613                                   /*SuppressQualifierCheck=*/true);
7614    if (OpEqualRef.isInvalid())
7615      return StmtError();
7616
7617    // Build the call to the assignment operator.
7618
7619    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7620                                                  OpEqualRef.takeAs<Expr>(),
7621                                                  Loc, &From, 1, Loc);
7622    if (Call.isInvalid())
7623      return StmtError();
7624
7625    return S.Owned(Call.takeAs<Stmt>());
7626  }
7627
7628  //     - if the subobject is of scalar type, the built-in assignment
7629  //       operator is used.
7630  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7631  if (!ArrayTy) {
7632    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7633    if (Assignment.isInvalid())
7634      return StmtError();
7635
7636    return S.Owned(Assignment.takeAs<Stmt>());
7637  }
7638
7639  //     - if the subobject is an array, each element is assigned, in the
7640  //       manner appropriate to the element type;
7641
7642  // Construct a loop over the array bounds, e.g.,
7643  //
7644  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7645  //
7646  // that will copy each of the array elements.
7647  QualType SizeType = S.Context.getSizeType();
7648
7649  // Create the iteration variable.
7650  IdentifierInfo *IterationVarName = 0;
7651  {
7652    SmallString<8> Str;
7653    llvm::raw_svector_ostream OS(Str);
7654    OS << "__i" << Depth;
7655    IterationVarName = &S.Context.Idents.get(OS.str());
7656  }
7657  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7658                                          IterationVarName, SizeType,
7659                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7660                                          SC_None, SC_None);
7661
7662  // Initialize the iteration variable to zero.
7663  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7664  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7665
7666  // Create a reference to the iteration variable; we'll use this several
7667  // times throughout.
7668  Expr *IterationVarRef
7669    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7670  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7671  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7672  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7673
7674  // Create the DeclStmt that holds the iteration variable.
7675  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7676
7677  // Create the comparison against the array bound.
7678  llvm::APInt Upper
7679    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7680  Expr *Comparison
7681    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7682                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7683                                     BO_NE, S.Context.BoolTy,
7684                                     VK_RValue, OK_Ordinary, Loc);
7685
7686  // Create the pre-increment of the iteration variable.
7687  Expr *Increment
7688    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7689                                    VK_LValue, OK_Ordinary, Loc);
7690
7691  // Subscript the "from" and "to" expressions with the iteration variable.
7692  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7693                                                         IterationVarRefRVal,
7694                                                         Loc));
7695  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7696                                                       IterationVarRefRVal,
7697                                                       Loc));
7698  if (!Copying) // Cast to rvalue
7699    From = CastForMoving(S, From);
7700
7701  // Build the copy/move for an individual element of the array.
7702  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7703                                          To, From, CopyingBaseSubobject,
7704                                          Copying, Depth + 1);
7705  if (Copy.isInvalid())
7706    return StmtError();
7707
7708  // Construct the loop that copies all elements of this array.
7709  return S.ActOnForStmt(Loc, Loc, InitStmt,
7710                        S.MakeFullExpr(Comparison),
7711                        0, S.MakeFullExpr(Increment),
7712                        Loc, Copy.take());
7713}
7714
7715std::pair<Sema::ImplicitExceptionSpecification, bool>
7716Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7717                                                   CXXRecordDecl *ClassDecl) {
7718  if (ClassDecl->isInvalidDecl())
7719    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7720
7721  // C++ [class.copy]p10:
7722  //   If the class definition does not explicitly declare a copy
7723  //   assignment operator, one is declared implicitly.
7724  //   The implicitly-defined copy assignment operator for a class X
7725  //   will have the form
7726  //
7727  //       X& X::operator=(const X&)
7728  //
7729  //   if
7730  bool HasConstCopyAssignment = true;
7731
7732  //       -- each direct base class B of X has a copy assignment operator
7733  //          whose parameter is of type const B&, const volatile B& or B,
7734  //          and
7735  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7736                                       BaseEnd = ClassDecl->bases_end();
7737       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7738    // We'll handle this below
7739    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7740      continue;
7741
7742    assert(!Base->getType()->isDependentType() &&
7743           "Cannot generate implicit members for class with dependent bases.");
7744    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7745    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7746                            &HasConstCopyAssignment);
7747  }
7748
7749  // In C++11, the above citation has "or virtual" added
7750  if (LangOpts.CPlusPlus0x) {
7751    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7752                                         BaseEnd = ClassDecl->vbases_end();
7753         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7754      assert(!Base->getType()->isDependentType() &&
7755             "Cannot generate implicit members for class with dependent bases.");
7756      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7757      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7758                              &HasConstCopyAssignment);
7759    }
7760  }
7761
7762  //       -- for all the nonstatic data members of X that are of a class
7763  //          type M (or array thereof), each such class type has a copy
7764  //          assignment operator whose parameter is of type const M&,
7765  //          const volatile M& or M.
7766  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7767                                  FieldEnd = ClassDecl->field_end();
7768       HasConstCopyAssignment && Field != FieldEnd;
7769       ++Field) {
7770    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7771    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7772      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7773                              &HasConstCopyAssignment);
7774    }
7775  }
7776
7777  //   Otherwise, the implicitly declared copy assignment operator will
7778  //   have the form
7779  //
7780  //       X& X::operator=(X&)
7781
7782  // C++ [except.spec]p14:
7783  //   An implicitly declared special member function (Clause 12) shall have an
7784  //   exception-specification. [...]
7785
7786  // It is unspecified whether or not an implicit copy assignment operator
7787  // attempts to deduplicate calls to assignment operators of virtual bases are
7788  // made. As such, this exception specification is effectively unspecified.
7789  // Based on a similar decision made for constness in C++0x, we're erring on
7790  // the side of assuming such calls to be made regardless of whether they
7791  // actually happen.
7792  ImplicitExceptionSpecification ExceptSpec(Context);
7793  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7794  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7795                                       BaseEnd = ClassDecl->bases_end();
7796       Base != BaseEnd; ++Base) {
7797    if (Base->isVirtual())
7798      continue;
7799
7800    CXXRecordDecl *BaseClassDecl
7801      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7802    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7803                                                            ArgQuals, false, 0))
7804      ExceptSpec.CalledDecl(CopyAssign);
7805  }
7806
7807  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7808                                       BaseEnd = ClassDecl->vbases_end();
7809       Base != BaseEnd; ++Base) {
7810    CXXRecordDecl *BaseClassDecl
7811      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7812    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7813                                                            ArgQuals, false, 0))
7814      ExceptSpec.CalledDecl(CopyAssign);
7815  }
7816
7817  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7818                                  FieldEnd = ClassDecl->field_end();
7819       Field != FieldEnd;
7820       ++Field) {
7821    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7822    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7823      if (CXXMethodDecl *CopyAssign =
7824          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7825        ExceptSpec.CalledDecl(CopyAssign);
7826    }
7827  }
7828
7829  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7830}
7831
7832CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7833  // Note: The following rules are largely analoguous to the copy
7834  // constructor rules. Note that virtual bases are not taken into account
7835  // for determining the argument type of the operator. Note also that
7836  // operators taking an object instead of a reference are allowed.
7837
7838  ImplicitExceptionSpecification Spec(Context);
7839  bool Const;
7840  llvm::tie(Spec, Const) =
7841    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7842
7843  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7844  QualType RetType = Context.getLValueReferenceType(ArgType);
7845  if (Const)
7846    ArgType = ArgType.withConst();
7847  ArgType = Context.getLValueReferenceType(ArgType);
7848
7849  //   An implicitly-declared copy assignment operator is an inline public
7850  //   member of its class.
7851  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7852  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7853  SourceLocation ClassLoc = ClassDecl->getLocation();
7854  DeclarationNameInfo NameInfo(Name, ClassLoc);
7855  CXXMethodDecl *CopyAssignment
7856    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7857                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7858                            /*TInfo=*/0, /*isStatic=*/false,
7859                            /*StorageClassAsWritten=*/SC_None,
7860                            /*isInline=*/true, /*isConstexpr=*/false,
7861                            SourceLocation());
7862  CopyAssignment->setAccess(AS_public);
7863  CopyAssignment->setDefaulted();
7864  CopyAssignment->setImplicit();
7865  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7866
7867  // Add the parameter to the operator.
7868  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7869                                               ClassLoc, ClassLoc, /*Id=*/0,
7870                                               ArgType, /*TInfo=*/0,
7871                                               SC_None,
7872                                               SC_None, 0);
7873  CopyAssignment->setParams(FromParam);
7874
7875  // Note that we have added this copy-assignment operator.
7876  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7877
7878  if (Scope *S = getScopeForContext(ClassDecl))
7879    PushOnScopeChains(CopyAssignment, S, false);
7880  ClassDecl->addDecl(CopyAssignment);
7881
7882  // C++0x [class.copy]p19:
7883  //   ....  If the class definition does not explicitly declare a copy
7884  //   assignment operator, there is no user-declared move constructor, and
7885  //   there is no user-declared move assignment operator, a copy assignment
7886  //   operator is implicitly declared as defaulted.
7887  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7888          !getLangOptions().MicrosoftMode) ||
7889      ClassDecl->hasUserDeclaredMoveAssignment() ||
7890      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7891    CopyAssignment->setDeletedAsWritten();
7892
7893  AddOverriddenMethods(ClassDecl, CopyAssignment);
7894  return CopyAssignment;
7895}
7896
7897void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7898                                        CXXMethodDecl *CopyAssignOperator) {
7899  assert((CopyAssignOperator->isDefaulted() &&
7900          CopyAssignOperator->isOverloadedOperator() &&
7901          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7902          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7903         "DefineImplicitCopyAssignment called for wrong function");
7904
7905  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7906
7907  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7908    CopyAssignOperator->setInvalidDecl();
7909    return;
7910  }
7911
7912  CopyAssignOperator->setUsed();
7913
7914  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7915  DiagnosticErrorTrap Trap(Diags);
7916
7917  // C++0x [class.copy]p30:
7918  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7919  //   for a non-union class X performs memberwise copy assignment of its
7920  //   subobjects. The direct base classes of X are assigned first, in the
7921  //   order of their declaration in the base-specifier-list, and then the
7922  //   immediate non-static data members of X are assigned, in the order in
7923  //   which they were declared in the class definition.
7924
7925  // The statements that form the synthesized function body.
7926  ASTOwningVector<Stmt*> Statements(*this);
7927
7928  // The parameter for the "other" object, which we are copying from.
7929  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7930  Qualifiers OtherQuals = Other->getType().getQualifiers();
7931  QualType OtherRefType = Other->getType();
7932  if (const LValueReferenceType *OtherRef
7933                                = OtherRefType->getAs<LValueReferenceType>()) {
7934    OtherRefType = OtherRef->getPointeeType();
7935    OtherQuals = OtherRefType.getQualifiers();
7936  }
7937
7938  // Our location for everything implicitly-generated.
7939  SourceLocation Loc = CopyAssignOperator->getLocation();
7940
7941  // Construct a reference to the "other" object. We'll be using this
7942  // throughout the generated ASTs.
7943  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7944  assert(OtherRef && "Reference to parameter cannot fail!");
7945
7946  // Construct the "this" pointer. We'll be using this throughout the generated
7947  // ASTs.
7948  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7949  assert(This && "Reference to this cannot fail!");
7950
7951  // Assign base classes.
7952  bool Invalid = false;
7953  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7954       E = ClassDecl->bases_end(); Base != E; ++Base) {
7955    // Form the assignment:
7956    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7957    QualType BaseType = Base->getType().getUnqualifiedType();
7958    if (!BaseType->isRecordType()) {
7959      Invalid = true;
7960      continue;
7961    }
7962
7963    CXXCastPath BasePath;
7964    BasePath.push_back(Base);
7965
7966    // Construct the "from" expression, which is an implicit cast to the
7967    // appropriately-qualified base type.
7968    Expr *From = OtherRef;
7969    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7970                             CK_UncheckedDerivedToBase,
7971                             VK_LValue, &BasePath).take();
7972
7973    // Dereference "this".
7974    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7975
7976    // Implicitly cast "this" to the appropriately-qualified base type.
7977    To = ImpCastExprToType(To.take(),
7978                           Context.getCVRQualifiedType(BaseType,
7979                                     CopyAssignOperator->getTypeQualifiers()),
7980                           CK_UncheckedDerivedToBase,
7981                           VK_LValue, &BasePath);
7982
7983    // Build the copy.
7984    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7985                                            To.get(), From,
7986                                            /*CopyingBaseSubobject=*/true,
7987                                            /*Copying=*/true);
7988    if (Copy.isInvalid()) {
7989      Diag(CurrentLocation, diag::note_member_synthesized_at)
7990        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7991      CopyAssignOperator->setInvalidDecl();
7992      return;
7993    }
7994
7995    // Success! Record the copy.
7996    Statements.push_back(Copy.takeAs<Expr>());
7997  }
7998
7999  // \brief Reference to the __builtin_memcpy function.
8000  Expr *BuiltinMemCpyRef = 0;
8001  // \brief Reference to the __builtin_objc_memmove_collectable function.
8002  Expr *CollectableMemCpyRef = 0;
8003
8004  // Assign non-static members.
8005  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8006                                  FieldEnd = ClassDecl->field_end();
8007       Field != FieldEnd; ++Field) {
8008    if (Field->isUnnamedBitfield())
8009      continue;
8010
8011    // Check for members of reference type; we can't copy those.
8012    if (Field->getType()->isReferenceType()) {
8013      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8014        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8015      Diag(Field->getLocation(), diag::note_declared_at);
8016      Diag(CurrentLocation, diag::note_member_synthesized_at)
8017        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8018      Invalid = true;
8019      continue;
8020    }
8021
8022    // Check for members of const-qualified, non-class type.
8023    QualType BaseType = Context.getBaseElementType(Field->getType());
8024    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8025      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8026        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8027      Diag(Field->getLocation(), diag::note_declared_at);
8028      Diag(CurrentLocation, diag::note_member_synthesized_at)
8029        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8030      Invalid = true;
8031      continue;
8032    }
8033
8034    // Suppress assigning zero-width bitfields.
8035    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8036      continue;
8037
8038    QualType FieldType = Field->getType().getNonReferenceType();
8039    if (FieldType->isIncompleteArrayType()) {
8040      assert(ClassDecl->hasFlexibleArrayMember() &&
8041             "Incomplete array type is not valid");
8042      continue;
8043    }
8044
8045    // Build references to the field in the object we're copying from and to.
8046    CXXScopeSpec SS; // Intentionally empty
8047    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8048                              LookupMemberName);
8049    MemberLookup.addDecl(*Field);
8050    MemberLookup.resolveKind();
8051    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8052                                               Loc, /*IsArrow=*/false,
8053                                               SS, SourceLocation(), 0,
8054                                               MemberLookup, 0);
8055    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8056                                             Loc, /*IsArrow=*/true,
8057                                             SS, SourceLocation(), 0,
8058                                             MemberLookup, 0);
8059    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8060    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8061
8062    // If the field should be copied with __builtin_memcpy rather than via
8063    // explicit assignments, do so. This optimization only applies for arrays
8064    // of scalars and arrays of class type with trivial copy-assignment
8065    // operators.
8066    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8067        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8068      // Compute the size of the memory buffer to be copied.
8069      QualType SizeType = Context.getSizeType();
8070      llvm::APInt Size(Context.getTypeSize(SizeType),
8071                       Context.getTypeSizeInChars(BaseType).getQuantity());
8072      for (const ConstantArrayType *Array
8073              = Context.getAsConstantArrayType(FieldType);
8074           Array;
8075           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8076        llvm::APInt ArraySize
8077          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8078        Size *= ArraySize;
8079      }
8080
8081      // Take the address of the field references for "from" and "to".
8082      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8083      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8084
8085      bool NeedsCollectableMemCpy =
8086          (BaseType->isRecordType() &&
8087           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8088
8089      if (NeedsCollectableMemCpy) {
8090        if (!CollectableMemCpyRef) {
8091          // Create a reference to the __builtin_objc_memmove_collectable function.
8092          LookupResult R(*this,
8093                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8094                         Loc, LookupOrdinaryName);
8095          LookupName(R, TUScope, true);
8096
8097          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8098          if (!CollectableMemCpy) {
8099            // Something went horribly wrong earlier, and we will have
8100            // complained about it.
8101            Invalid = true;
8102            continue;
8103          }
8104
8105          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8106                                                  CollectableMemCpy->getType(),
8107                                                  VK_LValue, Loc, 0).take();
8108          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8109        }
8110      }
8111      // Create a reference to the __builtin_memcpy builtin function.
8112      else if (!BuiltinMemCpyRef) {
8113        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8114                       LookupOrdinaryName);
8115        LookupName(R, TUScope, true);
8116
8117        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8118        if (!BuiltinMemCpy) {
8119          // Something went horribly wrong earlier, and we will have complained
8120          // about it.
8121          Invalid = true;
8122          continue;
8123        }
8124
8125        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8126                                            BuiltinMemCpy->getType(),
8127                                            VK_LValue, Loc, 0).take();
8128        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8129      }
8130
8131      ASTOwningVector<Expr*> CallArgs(*this);
8132      CallArgs.push_back(To.takeAs<Expr>());
8133      CallArgs.push_back(From.takeAs<Expr>());
8134      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8135      ExprResult Call = ExprError();
8136      if (NeedsCollectableMemCpy)
8137        Call = ActOnCallExpr(/*Scope=*/0,
8138                             CollectableMemCpyRef,
8139                             Loc, move_arg(CallArgs),
8140                             Loc);
8141      else
8142        Call = ActOnCallExpr(/*Scope=*/0,
8143                             BuiltinMemCpyRef,
8144                             Loc, move_arg(CallArgs),
8145                             Loc);
8146
8147      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8148      Statements.push_back(Call.takeAs<Expr>());
8149      continue;
8150    }
8151
8152    // Build the copy of this field.
8153    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8154                                            To.get(), From.get(),
8155                                            /*CopyingBaseSubobject=*/false,
8156                                            /*Copying=*/true);
8157    if (Copy.isInvalid()) {
8158      Diag(CurrentLocation, diag::note_member_synthesized_at)
8159        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8160      CopyAssignOperator->setInvalidDecl();
8161      return;
8162    }
8163
8164    // Success! Record the copy.
8165    Statements.push_back(Copy.takeAs<Stmt>());
8166  }
8167
8168  if (!Invalid) {
8169    // Add a "return *this;"
8170    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8171
8172    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8173    if (Return.isInvalid())
8174      Invalid = true;
8175    else {
8176      Statements.push_back(Return.takeAs<Stmt>());
8177
8178      if (Trap.hasErrorOccurred()) {
8179        Diag(CurrentLocation, diag::note_member_synthesized_at)
8180          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8181        Invalid = true;
8182      }
8183    }
8184  }
8185
8186  if (Invalid) {
8187    CopyAssignOperator->setInvalidDecl();
8188    return;
8189  }
8190
8191  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8192                                            /*isStmtExpr=*/false);
8193  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8194  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8195
8196  if (ASTMutationListener *L = getASTMutationListener()) {
8197    L->CompletedImplicitDefinition(CopyAssignOperator);
8198  }
8199}
8200
8201Sema::ImplicitExceptionSpecification
8202Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8203  ImplicitExceptionSpecification ExceptSpec(Context);
8204
8205  if (ClassDecl->isInvalidDecl())
8206    return ExceptSpec;
8207
8208  // C++0x [except.spec]p14:
8209  //   An implicitly declared special member function (Clause 12) shall have an
8210  //   exception-specification. [...]
8211
8212  // It is unspecified whether or not an implicit move assignment operator
8213  // attempts to deduplicate calls to assignment operators of virtual bases are
8214  // made. As such, this exception specification is effectively unspecified.
8215  // Based on a similar decision made for constness in C++0x, we're erring on
8216  // the side of assuming such calls to be made regardless of whether they
8217  // actually happen.
8218  // Note that a move constructor is not implicitly declared when there are
8219  // virtual bases, but it can still be user-declared and explicitly defaulted.
8220  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8221                                       BaseEnd = ClassDecl->bases_end();
8222       Base != BaseEnd; ++Base) {
8223    if (Base->isVirtual())
8224      continue;
8225
8226    CXXRecordDecl *BaseClassDecl
8227      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8228    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8229                                                           false, 0))
8230      ExceptSpec.CalledDecl(MoveAssign);
8231  }
8232
8233  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8234                                       BaseEnd = ClassDecl->vbases_end();
8235       Base != BaseEnd; ++Base) {
8236    CXXRecordDecl *BaseClassDecl
8237      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8238    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8239                                                           false, 0))
8240      ExceptSpec.CalledDecl(MoveAssign);
8241  }
8242
8243  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8244                                  FieldEnd = ClassDecl->field_end();
8245       Field != FieldEnd;
8246       ++Field) {
8247    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8248    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8249      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8250                                                             false, 0))
8251        ExceptSpec.CalledDecl(MoveAssign);
8252    }
8253  }
8254
8255  return ExceptSpec;
8256}
8257
8258CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8259  // Note: The following rules are largely analoguous to the move
8260  // constructor rules.
8261
8262  ImplicitExceptionSpecification Spec(
8263      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8264
8265  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8266  QualType RetType = Context.getLValueReferenceType(ArgType);
8267  ArgType = Context.getRValueReferenceType(ArgType);
8268
8269  //   An implicitly-declared move assignment operator is an inline public
8270  //   member of its class.
8271  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8272  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8273  SourceLocation ClassLoc = ClassDecl->getLocation();
8274  DeclarationNameInfo NameInfo(Name, ClassLoc);
8275  CXXMethodDecl *MoveAssignment
8276    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8277                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8278                            /*TInfo=*/0, /*isStatic=*/false,
8279                            /*StorageClassAsWritten=*/SC_None,
8280                            /*isInline=*/true,
8281                            /*isConstexpr=*/false,
8282                            SourceLocation());
8283  MoveAssignment->setAccess(AS_public);
8284  MoveAssignment->setDefaulted();
8285  MoveAssignment->setImplicit();
8286  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8287
8288  // Add the parameter to the operator.
8289  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8290                                               ClassLoc, ClassLoc, /*Id=*/0,
8291                                               ArgType, /*TInfo=*/0,
8292                                               SC_None,
8293                                               SC_None, 0);
8294  MoveAssignment->setParams(FromParam);
8295
8296  // Note that we have added this copy-assignment operator.
8297  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8298
8299  // C++0x [class.copy]p9:
8300  //   If the definition of a class X does not explicitly declare a move
8301  //   assignment operator, one will be implicitly declared as defaulted if and
8302  //   only if:
8303  //   [...]
8304  //   - the move assignment operator would not be implicitly defined as
8305  //     deleted.
8306  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8307    // Cache this result so that we don't try to generate this over and over
8308    // on every lookup, leaking memory and wasting time.
8309    ClassDecl->setFailedImplicitMoveAssignment();
8310    return 0;
8311  }
8312
8313  if (Scope *S = getScopeForContext(ClassDecl))
8314    PushOnScopeChains(MoveAssignment, S, false);
8315  ClassDecl->addDecl(MoveAssignment);
8316
8317  AddOverriddenMethods(ClassDecl, MoveAssignment);
8318  return MoveAssignment;
8319}
8320
8321void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8322                                        CXXMethodDecl *MoveAssignOperator) {
8323  assert((MoveAssignOperator->isDefaulted() &&
8324          MoveAssignOperator->isOverloadedOperator() &&
8325          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8326          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8327         "DefineImplicitMoveAssignment called for wrong function");
8328
8329  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8330
8331  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8332    MoveAssignOperator->setInvalidDecl();
8333    return;
8334  }
8335
8336  MoveAssignOperator->setUsed();
8337
8338  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8339  DiagnosticErrorTrap Trap(Diags);
8340
8341  // C++0x [class.copy]p28:
8342  //   The implicitly-defined or move assignment operator for a non-union class
8343  //   X performs memberwise move assignment of its subobjects. The direct base
8344  //   classes of X are assigned first, in the order of their declaration in the
8345  //   base-specifier-list, and then the immediate non-static data members of X
8346  //   are assigned, in the order in which they were declared in the class
8347  //   definition.
8348
8349  // The statements that form the synthesized function body.
8350  ASTOwningVector<Stmt*> Statements(*this);
8351
8352  // The parameter for the "other" object, which we are move from.
8353  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8354  QualType OtherRefType = Other->getType()->
8355      getAs<RValueReferenceType>()->getPointeeType();
8356  assert(OtherRefType.getQualifiers() == 0 &&
8357         "Bad argument type of defaulted move assignment");
8358
8359  // Our location for everything implicitly-generated.
8360  SourceLocation Loc = MoveAssignOperator->getLocation();
8361
8362  // Construct a reference to the "other" object. We'll be using this
8363  // throughout the generated ASTs.
8364  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8365  assert(OtherRef && "Reference to parameter cannot fail!");
8366  // Cast to rvalue.
8367  OtherRef = CastForMoving(*this, OtherRef);
8368
8369  // Construct the "this" pointer. We'll be using this throughout the generated
8370  // ASTs.
8371  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8372  assert(This && "Reference to this cannot fail!");
8373
8374  // Assign base classes.
8375  bool Invalid = false;
8376  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8377       E = ClassDecl->bases_end(); Base != E; ++Base) {
8378    // Form the assignment:
8379    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8380    QualType BaseType = Base->getType().getUnqualifiedType();
8381    if (!BaseType->isRecordType()) {
8382      Invalid = true;
8383      continue;
8384    }
8385
8386    CXXCastPath BasePath;
8387    BasePath.push_back(Base);
8388
8389    // Construct the "from" expression, which is an implicit cast to the
8390    // appropriately-qualified base type.
8391    Expr *From = OtherRef;
8392    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8393                             VK_XValue, &BasePath).take();
8394
8395    // Dereference "this".
8396    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8397
8398    // Implicitly cast "this" to the appropriately-qualified base type.
8399    To = ImpCastExprToType(To.take(),
8400                           Context.getCVRQualifiedType(BaseType,
8401                                     MoveAssignOperator->getTypeQualifiers()),
8402                           CK_UncheckedDerivedToBase,
8403                           VK_LValue, &BasePath);
8404
8405    // Build the move.
8406    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8407                                            To.get(), From,
8408                                            /*CopyingBaseSubobject=*/true,
8409                                            /*Copying=*/false);
8410    if (Move.isInvalid()) {
8411      Diag(CurrentLocation, diag::note_member_synthesized_at)
8412        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8413      MoveAssignOperator->setInvalidDecl();
8414      return;
8415    }
8416
8417    // Success! Record the move.
8418    Statements.push_back(Move.takeAs<Expr>());
8419  }
8420
8421  // \brief Reference to the __builtin_memcpy function.
8422  Expr *BuiltinMemCpyRef = 0;
8423  // \brief Reference to the __builtin_objc_memmove_collectable function.
8424  Expr *CollectableMemCpyRef = 0;
8425
8426  // Assign non-static members.
8427  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8428                                  FieldEnd = ClassDecl->field_end();
8429       Field != FieldEnd; ++Field) {
8430    if (Field->isUnnamedBitfield())
8431      continue;
8432
8433    // Check for members of reference type; we can't move those.
8434    if (Field->getType()->isReferenceType()) {
8435      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8436        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8437      Diag(Field->getLocation(), diag::note_declared_at);
8438      Diag(CurrentLocation, diag::note_member_synthesized_at)
8439        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8440      Invalid = true;
8441      continue;
8442    }
8443
8444    // Check for members of const-qualified, non-class type.
8445    QualType BaseType = Context.getBaseElementType(Field->getType());
8446    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8447      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8448        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8449      Diag(Field->getLocation(), diag::note_declared_at);
8450      Diag(CurrentLocation, diag::note_member_synthesized_at)
8451        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8452      Invalid = true;
8453      continue;
8454    }
8455
8456    // Suppress assigning zero-width bitfields.
8457    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8458      continue;
8459
8460    QualType FieldType = Field->getType().getNonReferenceType();
8461    if (FieldType->isIncompleteArrayType()) {
8462      assert(ClassDecl->hasFlexibleArrayMember() &&
8463             "Incomplete array type is not valid");
8464      continue;
8465    }
8466
8467    // Build references to the field in the object we're copying from and to.
8468    CXXScopeSpec SS; // Intentionally empty
8469    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8470                              LookupMemberName);
8471    MemberLookup.addDecl(*Field);
8472    MemberLookup.resolveKind();
8473    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8474                                               Loc, /*IsArrow=*/false,
8475                                               SS, SourceLocation(), 0,
8476                                               MemberLookup, 0);
8477    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8478                                             Loc, /*IsArrow=*/true,
8479                                             SS, SourceLocation(), 0,
8480                                             MemberLookup, 0);
8481    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8482    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8483
8484    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8485        "Member reference with rvalue base must be rvalue except for reference "
8486        "members, which aren't allowed for move assignment.");
8487
8488    // If the field should be copied with __builtin_memcpy rather than via
8489    // explicit assignments, do so. This optimization only applies for arrays
8490    // of scalars and arrays of class type with trivial move-assignment
8491    // operators.
8492    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8493        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8494      // Compute the size of the memory buffer to be copied.
8495      QualType SizeType = Context.getSizeType();
8496      llvm::APInt Size(Context.getTypeSize(SizeType),
8497                       Context.getTypeSizeInChars(BaseType).getQuantity());
8498      for (const ConstantArrayType *Array
8499              = Context.getAsConstantArrayType(FieldType);
8500           Array;
8501           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8502        llvm::APInt ArraySize
8503          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8504        Size *= ArraySize;
8505      }
8506
8507      // Take the address of the field references for "from" and "to". We
8508      // directly construct UnaryOperators here because semantic analysis
8509      // does not permit us to take the address of an xvalue.
8510      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8511                             Context.getPointerType(From.get()->getType()),
8512                             VK_RValue, OK_Ordinary, Loc);
8513      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8514                           Context.getPointerType(To.get()->getType()),
8515                           VK_RValue, OK_Ordinary, Loc);
8516
8517      bool NeedsCollectableMemCpy =
8518          (BaseType->isRecordType() &&
8519           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8520
8521      if (NeedsCollectableMemCpy) {
8522        if (!CollectableMemCpyRef) {
8523          // Create a reference to the __builtin_objc_memmove_collectable function.
8524          LookupResult R(*this,
8525                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8526                         Loc, LookupOrdinaryName);
8527          LookupName(R, TUScope, true);
8528
8529          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8530          if (!CollectableMemCpy) {
8531            // Something went horribly wrong earlier, and we will have
8532            // complained about it.
8533            Invalid = true;
8534            continue;
8535          }
8536
8537          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8538                                                  CollectableMemCpy->getType(),
8539                                                  VK_LValue, Loc, 0).take();
8540          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8541        }
8542      }
8543      // Create a reference to the __builtin_memcpy builtin function.
8544      else if (!BuiltinMemCpyRef) {
8545        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8546                       LookupOrdinaryName);
8547        LookupName(R, TUScope, true);
8548
8549        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8550        if (!BuiltinMemCpy) {
8551          // Something went horribly wrong earlier, and we will have complained
8552          // about it.
8553          Invalid = true;
8554          continue;
8555        }
8556
8557        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8558                                            BuiltinMemCpy->getType(),
8559                                            VK_LValue, Loc, 0).take();
8560        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8561      }
8562
8563      ASTOwningVector<Expr*> CallArgs(*this);
8564      CallArgs.push_back(To.takeAs<Expr>());
8565      CallArgs.push_back(From.takeAs<Expr>());
8566      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8567      ExprResult Call = ExprError();
8568      if (NeedsCollectableMemCpy)
8569        Call = ActOnCallExpr(/*Scope=*/0,
8570                             CollectableMemCpyRef,
8571                             Loc, move_arg(CallArgs),
8572                             Loc);
8573      else
8574        Call = ActOnCallExpr(/*Scope=*/0,
8575                             BuiltinMemCpyRef,
8576                             Loc, move_arg(CallArgs),
8577                             Loc);
8578
8579      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8580      Statements.push_back(Call.takeAs<Expr>());
8581      continue;
8582    }
8583
8584    // Build the move of this field.
8585    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8586                                            To.get(), From.get(),
8587                                            /*CopyingBaseSubobject=*/false,
8588                                            /*Copying=*/false);
8589    if (Move.isInvalid()) {
8590      Diag(CurrentLocation, diag::note_member_synthesized_at)
8591        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8592      MoveAssignOperator->setInvalidDecl();
8593      return;
8594    }
8595
8596    // Success! Record the copy.
8597    Statements.push_back(Move.takeAs<Stmt>());
8598  }
8599
8600  if (!Invalid) {
8601    // Add a "return *this;"
8602    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8603
8604    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8605    if (Return.isInvalid())
8606      Invalid = true;
8607    else {
8608      Statements.push_back(Return.takeAs<Stmt>());
8609
8610      if (Trap.hasErrorOccurred()) {
8611        Diag(CurrentLocation, diag::note_member_synthesized_at)
8612          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8613        Invalid = true;
8614      }
8615    }
8616  }
8617
8618  if (Invalid) {
8619    MoveAssignOperator->setInvalidDecl();
8620    return;
8621  }
8622
8623  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8624                                            /*isStmtExpr=*/false);
8625  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8626  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8627
8628  if (ASTMutationListener *L = getASTMutationListener()) {
8629    L->CompletedImplicitDefinition(MoveAssignOperator);
8630  }
8631}
8632
8633std::pair<Sema::ImplicitExceptionSpecification, bool>
8634Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8635  if (ClassDecl->isInvalidDecl())
8636    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8637
8638  // C++ [class.copy]p5:
8639  //   The implicitly-declared copy constructor for a class X will
8640  //   have the form
8641  //
8642  //       X::X(const X&)
8643  //
8644  //   if
8645  // FIXME: It ought to be possible to store this on the record.
8646  bool HasConstCopyConstructor = true;
8647
8648  //     -- each direct or virtual base class B of X has a copy
8649  //        constructor whose first parameter is of type const B& or
8650  //        const volatile B&, and
8651  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8652                                       BaseEnd = ClassDecl->bases_end();
8653       HasConstCopyConstructor && Base != BaseEnd;
8654       ++Base) {
8655    // Virtual bases are handled below.
8656    if (Base->isVirtual())
8657      continue;
8658
8659    CXXRecordDecl *BaseClassDecl
8660      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8661    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8662                             &HasConstCopyConstructor);
8663  }
8664
8665  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8666                                       BaseEnd = ClassDecl->vbases_end();
8667       HasConstCopyConstructor && Base != BaseEnd;
8668       ++Base) {
8669    CXXRecordDecl *BaseClassDecl
8670      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8671    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8672                             &HasConstCopyConstructor);
8673  }
8674
8675  //     -- for all the nonstatic data members of X that are of a
8676  //        class type M (or array thereof), each such class type
8677  //        has a copy constructor whose first parameter is of type
8678  //        const M& or const volatile M&.
8679  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8680                                  FieldEnd = ClassDecl->field_end();
8681       HasConstCopyConstructor && Field != FieldEnd;
8682       ++Field) {
8683    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8684    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8685      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8686                               &HasConstCopyConstructor);
8687    }
8688  }
8689  //   Otherwise, the implicitly declared copy constructor will have
8690  //   the form
8691  //
8692  //       X::X(X&)
8693
8694  // C++ [except.spec]p14:
8695  //   An implicitly declared special member function (Clause 12) shall have an
8696  //   exception-specification. [...]
8697  ImplicitExceptionSpecification ExceptSpec(Context);
8698  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8699  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8700                                       BaseEnd = ClassDecl->bases_end();
8701       Base != BaseEnd;
8702       ++Base) {
8703    // Virtual bases are handled below.
8704    if (Base->isVirtual())
8705      continue;
8706
8707    CXXRecordDecl *BaseClassDecl
8708      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8709    if (CXXConstructorDecl *CopyConstructor =
8710          LookupCopyingConstructor(BaseClassDecl, Quals))
8711      ExceptSpec.CalledDecl(CopyConstructor);
8712  }
8713  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8714                                       BaseEnd = ClassDecl->vbases_end();
8715       Base != BaseEnd;
8716       ++Base) {
8717    CXXRecordDecl *BaseClassDecl
8718      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8719    if (CXXConstructorDecl *CopyConstructor =
8720          LookupCopyingConstructor(BaseClassDecl, Quals))
8721      ExceptSpec.CalledDecl(CopyConstructor);
8722  }
8723  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8724                                  FieldEnd = ClassDecl->field_end();
8725       Field != FieldEnd;
8726       ++Field) {
8727    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8728    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8729      if (CXXConstructorDecl *CopyConstructor =
8730        LookupCopyingConstructor(FieldClassDecl, Quals))
8731      ExceptSpec.CalledDecl(CopyConstructor);
8732    }
8733  }
8734
8735  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8736}
8737
8738CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8739                                                    CXXRecordDecl *ClassDecl) {
8740  // C++ [class.copy]p4:
8741  //   If the class definition does not explicitly declare a copy
8742  //   constructor, one is declared implicitly.
8743
8744  ImplicitExceptionSpecification Spec(Context);
8745  bool Const;
8746  llvm::tie(Spec, Const) =
8747    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8748
8749  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8750  QualType ArgType = ClassType;
8751  if (Const)
8752    ArgType = ArgType.withConst();
8753  ArgType = Context.getLValueReferenceType(ArgType);
8754
8755  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8756
8757  DeclarationName Name
8758    = Context.DeclarationNames.getCXXConstructorName(
8759                                           Context.getCanonicalType(ClassType));
8760  SourceLocation ClassLoc = ClassDecl->getLocation();
8761  DeclarationNameInfo NameInfo(Name, ClassLoc);
8762
8763  //   An implicitly-declared copy constructor is an inline public
8764  //   member of its class.
8765  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8766      Context, ClassDecl, ClassLoc, NameInfo,
8767      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8768      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8769      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8770        getLangOptions().CPlusPlus0x);
8771  CopyConstructor->setAccess(AS_public);
8772  CopyConstructor->setDefaulted();
8773  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8774
8775  // Note that we have declared this constructor.
8776  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8777
8778  // Add the parameter to the constructor.
8779  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8780                                               ClassLoc, ClassLoc,
8781                                               /*IdentifierInfo=*/0,
8782                                               ArgType, /*TInfo=*/0,
8783                                               SC_None,
8784                                               SC_None, 0);
8785  CopyConstructor->setParams(FromParam);
8786
8787  if (Scope *S = getScopeForContext(ClassDecl))
8788    PushOnScopeChains(CopyConstructor, S, false);
8789  ClassDecl->addDecl(CopyConstructor);
8790
8791  // C++11 [class.copy]p8:
8792  //   ... If the class definition does not explicitly declare a copy
8793  //   constructor, there is no user-declared move constructor, and there is no
8794  //   user-declared move assignment operator, a copy constructor is implicitly
8795  //   declared as defaulted.
8796  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8797      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8798          !getLangOptions().MicrosoftMode) ||
8799      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8800    CopyConstructor->setDeletedAsWritten();
8801
8802  return CopyConstructor;
8803}
8804
8805void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8806                                   CXXConstructorDecl *CopyConstructor) {
8807  assert((CopyConstructor->isDefaulted() &&
8808          CopyConstructor->isCopyConstructor() &&
8809          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8810         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8811
8812  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8813  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8814
8815  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8816  DiagnosticErrorTrap Trap(Diags);
8817
8818  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8819      Trap.hasErrorOccurred()) {
8820    Diag(CurrentLocation, diag::note_member_synthesized_at)
8821      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8822    CopyConstructor->setInvalidDecl();
8823  }  else {
8824    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8825                                               CopyConstructor->getLocation(),
8826                                               MultiStmtArg(*this, 0, 0),
8827                                               /*isStmtExpr=*/false)
8828                                                              .takeAs<Stmt>());
8829    CopyConstructor->setImplicitlyDefined(true);
8830  }
8831
8832  CopyConstructor->setUsed();
8833  if (ASTMutationListener *L = getASTMutationListener()) {
8834    L->CompletedImplicitDefinition(CopyConstructor);
8835  }
8836}
8837
8838Sema::ImplicitExceptionSpecification
8839Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8840  // C++ [except.spec]p14:
8841  //   An implicitly declared special member function (Clause 12) shall have an
8842  //   exception-specification. [...]
8843  ImplicitExceptionSpecification ExceptSpec(Context);
8844  if (ClassDecl->isInvalidDecl())
8845    return ExceptSpec;
8846
8847  // Direct base-class constructors.
8848  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8849                                       BEnd = ClassDecl->bases_end();
8850       B != BEnd; ++B) {
8851    if (B->isVirtual()) // Handled below.
8852      continue;
8853
8854    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8855      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8856      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8857      // If this is a deleted function, add it anyway. This might be conformant
8858      // with the standard. This might not. I'm not sure. It might not matter.
8859      if (Constructor)
8860        ExceptSpec.CalledDecl(Constructor);
8861    }
8862  }
8863
8864  // Virtual base-class constructors.
8865  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8866                                       BEnd = ClassDecl->vbases_end();
8867       B != BEnd; ++B) {
8868    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8869      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8870      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8871      // If this is a deleted function, add it anyway. This might be conformant
8872      // with the standard. This might not. I'm not sure. It might not matter.
8873      if (Constructor)
8874        ExceptSpec.CalledDecl(Constructor);
8875    }
8876  }
8877
8878  // Field constructors.
8879  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8880                               FEnd = ClassDecl->field_end();
8881       F != FEnd; ++F) {
8882    if (const RecordType *RecordTy
8883              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8884      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8885      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8886      // If this is a deleted function, add it anyway. This might be conformant
8887      // with the standard. This might not. I'm not sure. It might not matter.
8888      // In particular, the problem is that this function never gets called. It
8889      // might just be ill-formed because this function attempts to refer to
8890      // a deleted function here.
8891      if (Constructor)
8892        ExceptSpec.CalledDecl(Constructor);
8893    }
8894  }
8895
8896  return ExceptSpec;
8897}
8898
8899CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8900                                                    CXXRecordDecl *ClassDecl) {
8901  ImplicitExceptionSpecification Spec(
8902      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8903
8904  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8905  QualType ArgType = Context.getRValueReferenceType(ClassType);
8906
8907  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8908
8909  DeclarationName Name
8910    = Context.DeclarationNames.getCXXConstructorName(
8911                                           Context.getCanonicalType(ClassType));
8912  SourceLocation ClassLoc = ClassDecl->getLocation();
8913  DeclarationNameInfo NameInfo(Name, ClassLoc);
8914
8915  // C++0x [class.copy]p11:
8916  //   An implicitly-declared copy/move constructor is an inline public
8917  //   member of its class.
8918  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8919      Context, ClassDecl, ClassLoc, NameInfo,
8920      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8921      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8922      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8923        getLangOptions().CPlusPlus0x);
8924  MoveConstructor->setAccess(AS_public);
8925  MoveConstructor->setDefaulted();
8926  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8927
8928  // Add the parameter to the constructor.
8929  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8930                                               ClassLoc, ClassLoc,
8931                                               /*IdentifierInfo=*/0,
8932                                               ArgType, /*TInfo=*/0,
8933                                               SC_None,
8934                                               SC_None, 0);
8935  MoveConstructor->setParams(FromParam);
8936
8937  // C++0x [class.copy]p9:
8938  //   If the definition of a class X does not explicitly declare a move
8939  //   constructor, one will be implicitly declared as defaulted if and only if:
8940  //   [...]
8941  //   - the move constructor would not be implicitly defined as deleted.
8942  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8943    // Cache this result so that we don't try to generate this over and over
8944    // on every lookup, leaking memory and wasting time.
8945    ClassDecl->setFailedImplicitMoveConstructor();
8946    return 0;
8947  }
8948
8949  // Note that we have declared this constructor.
8950  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8951
8952  if (Scope *S = getScopeForContext(ClassDecl))
8953    PushOnScopeChains(MoveConstructor, S, false);
8954  ClassDecl->addDecl(MoveConstructor);
8955
8956  return MoveConstructor;
8957}
8958
8959void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8960                                   CXXConstructorDecl *MoveConstructor) {
8961  assert((MoveConstructor->isDefaulted() &&
8962          MoveConstructor->isMoveConstructor() &&
8963          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8964         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8965
8966  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8967  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8968
8969  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8970  DiagnosticErrorTrap Trap(Diags);
8971
8972  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8973      Trap.hasErrorOccurred()) {
8974    Diag(CurrentLocation, diag::note_member_synthesized_at)
8975      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8976    MoveConstructor->setInvalidDecl();
8977  }  else {
8978    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8979                                               MoveConstructor->getLocation(),
8980                                               MultiStmtArg(*this, 0, 0),
8981                                               /*isStmtExpr=*/false)
8982                                                              .takeAs<Stmt>());
8983    MoveConstructor->setImplicitlyDefined(true);
8984  }
8985
8986  MoveConstructor->setUsed();
8987
8988  if (ASTMutationListener *L = getASTMutationListener()) {
8989    L->CompletedImplicitDefinition(MoveConstructor);
8990  }
8991}
8992
8993ExprResult
8994Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8995                            CXXConstructorDecl *Constructor,
8996                            MultiExprArg ExprArgs,
8997                            bool HadMultipleCandidates,
8998                            bool RequiresZeroInit,
8999                            unsigned ConstructKind,
9000                            SourceRange ParenRange) {
9001  bool Elidable = false;
9002
9003  // C++0x [class.copy]p34:
9004  //   When certain criteria are met, an implementation is allowed to
9005  //   omit the copy/move construction of a class object, even if the
9006  //   copy/move constructor and/or destructor for the object have
9007  //   side effects. [...]
9008  //     - when a temporary class object that has not been bound to a
9009  //       reference (12.2) would be copied/moved to a class object
9010  //       with the same cv-unqualified type, the copy/move operation
9011  //       can be omitted by constructing the temporary object
9012  //       directly into the target of the omitted copy/move
9013  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9014      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9015    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9016    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9017  }
9018
9019  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9020                               Elidable, move(ExprArgs), HadMultipleCandidates,
9021                               RequiresZeroInit, ConstructKind, ParenRange);
9022}
9023
9024/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9025/// including handling of its default argument expressions.
9026ExprResult
9027Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9028                            CXXConstructorDecl *Constructor, bool Elidable,
9029                            MultiExprArg ExprArgs,
9030                            bool HadMultipleCandidates,
9031                            bool RequiresZeroInit,
9032                            unsigned ConstructKind,
9033                            SourceRange ParenRange) {
9034  unsigned NumExprs = ExprArgs.size();
9035  Expr **Exprs = (Expr **)ExprArgs.release();
9036
9037  for (specific_attr_iterator<NonNullAttr>
9038           i = Constructor->specific_attr_begin<NonNullAttr>(),
9039           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9040    const NonNullAttr *NonNull = *i;
9041    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9042  }
9043
9044  MarkFunctionReferenced(ConstructLoc, Constructor);
9045  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9046                                        Constructor, Elidable, Exprs, NumExprs,
9047                                        HadMultipleCandidates, RequiresZeroInit,
9048              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9049                                        ParenRange));
9050}
9051
9052bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9053                                        CXXConstructorDecl *Constructor,
9054                                        MultiExprArg Exprs,
9055                                        bool HadMultipleCandidates) {
9056  // FIXME: Provide the correct paren SourceRange when available.
9057  ExprResult TempResult =
9058    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9059                          move(Exprs), HadMultipleCandidates, false,
9060                          CXXConstructExpr::CK_Complete, SourceRange());
9061  if (TempResult.isInvalid())
9062    return true;
9063
9064  Expr *Temp = TempResult.takeAs<Expr>();
9065  CheckImplicitConversions(Temp, VD->getLocation());
9066  MarkFunctionReferenced(VD->getLocation(), Constructor);
9067  Temp = MaybeCreateExprWithCleanups(Temp);
9068  VD->setInit(Temp);
9069
9070  return false;
9071}
9072
9073void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9074  if (VD->isInvalidDecl()) return;
9075
9076  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9077  if (ClassDecl->isInvalidDecl()) return;
9078  if (ClassDecl->hasTrivialDestructor()) return;
9079  if (ClassDecl->isDependentContext()) return;
9080
9081  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9082  MarkFunctionReferenced(VD->getLocation(), Destructor);
9083  CheckDestructorAccess(VD->getLocation(), Destructor,
9084                        PDiag(diag::err_access_dtor_var)
9085                        << VD->getDeclName()
9086                        << VD->getType());
9087
9088  if (!VD->hasGlobalStorage()) return;
9089
9090  // Emit warning for non-trivial dtor in global scope (a real global,
9091  // class-static, function-static).
9092  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9093
9094  // TODO: this should be re-enabled for static locals by !CXAAtExit
9095  if (!VD->isStaticLocal())
9096    Diag(VD->getLocation(), diag::warn_global_destructor);
9097}
9098
9099/// AddCXXDirectInitializerToDecl - This action is called immediately after
9100/// ActOnDeclarator, when a C++ direct initializer is present.
9101/// e.g: "int x(1);"
9102void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9103                                         SourceLocation LParenLoc,
9104                                         MultiExprArg Exprs,
9105                                         SourceLocation RParenLoc,
9106                                         bool TypeMayContainAuto) {
9107  // If there is no declaration, there was an error parsing it.  Just ignore
9108  // the initializer.
9109  if (RealDecl == 0)
9110    return;
9111
9112  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9113  if (!VDecl) {
9114    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9115    RealDecl->setInvalidDecl();
9116    return;
9117  }
9118
9119  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9120  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9121    if (Exprs.size() == 0) {
9122      // It isn't possible to write this directly, but it is possible to
9123      // end up in this situation with "auto x(some_pack...);"
9124      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9125        << VDecl->getDeclName() << VDecl->getType()
9126        << VDecl->getSourceRange();
9127      RealDecl->setInvalidDecl();
9128      return;
9129    }
9130
9131    if (Exprs.size() > 1) {
9132      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9133           diag::err_auto_var_init_multiple_expressions)
9134        << VDecl->getDeclName() << VDecl->getType()
9135        << VDecl->getSourceRange();
9136      RealDecl->setInvalidDecl();
9137      return;
9138    }
9139
9140    Expr *Init = Exprs.get()[0];
9141    TypeSourceInfo *DeducedType = 0;
9142    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9143            DAR_Failed)
9144      DiagnoseAutoDeductionFailure(VDecl, Init);
9145    if (!DeducedType) {
9146      RealDecl->setInvalidDecl();
9147      return;
9148    }
9149    VDecl->setTypeSourceInfo(DeducedType);
9150    VDecl->setType(DeducedType->getType());
9151
9152    // In ARC, infer lifetime.
9153    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9154      VDecl->setInvalidDecl();
9155
9156    // If this is a redeclaration, check that the type we just deduced matches
9157    // the previously declared type.
9158    if (VarDecl *Old = VDecl->getPreviousDecl())
9159      MergeVarDeclTypes(VDecl, Old);
9160  }
9161
9162  // We will represent direct-initialization similarly to copy-initialization:
9163  //    int x(1);  -as-> int x = 1;
9164  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9165  //
9166  // Clients that want to distinguish between the two forms, can check for
9167  // direct initializer using VarDecl::hasCXXDirectInitializer().
9168  // A major benefit is that clients that don't particularly care about which
9169  // exactly form was it (like the CodeGen) can handle both cases without
9170  // special case code.
9171
9172  // C++ 8.5p11:
9173  // The form of initialization (using parentheses or '=') is generally
9174  // insignificant, but does matter when the entity being initialized has a
9175  // class type.
9176
9177  if (!VDecl->getType()->isDependentType() &&
9178      !VDecl->getType()->isIncompleteArrayType() &&
9179      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9180                          diag::err_typecheck_decl_incomplete_type)) {
9181    VDecl->setInvalidDecl();
9182    return;
9183  }
9184
9185  // The variable can not have an abstract class type.
9186  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9187                             diag::err_abstract_type_in_decl,
9188                             AbstractVariableType))
9189    VDecl->setInvalidDecl();
9190
9191  const VarDecl *Def;
9192  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9193    Diag(VDecl->getLocation(), diag::err_redefinition)
9194    << VDecl->getDeclName();
9195    Diag(Def->getLocation(), diag::note_previous_definition);
9196    VDecl->setInvalidDecl();
9197    return;
9198  }
9199
9200  // C++ [class.static.data]p4
9201  //   If a static data member is of const integral or const
9202  //   enumeration type, its declaration in the class definition can
9203  //   specify a constant-initializer which shall be an integral
9204  //   constant expression (5.19). In that case, the member can appear
9205  //   in integral constant expressions. The member shall still be
9206  //   defined in a namespace scope if it is used in the program and the
9207  //   namespace scope definition shall not contain an initializer.
9208  //
9209  // We already performed a redefinition check above, but for static
9210  // data members we also need to check whether there was an in-class
9211  // declaration with an initializer.
9212  const VarDecl* PrevInit = 0;
9213  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9214    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9215    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9216    return;
9217  }
9218
9219  bool IsDependent = false;
9220  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9221    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9222      VDecl->setInvalidDecl();
9223      return;
9224    }
9225
9226    if (Exprs.get()[I]->isTypeDependent())
9227      IsDependent = true;
9228  }
9229
9230  // If either the declaration has a dependent type or if any of the
9231  // expressions is type-dependent, we represent the initialization
9232  // via a ParenListExpr for later use during template instantiation.
9233  if (VDecl->getType()->isDependentType() || IsDependent) {
9234    // Let clients know that initialization was done with a direct initializer.
9235    VDecl->setCXXDirectInitializer(true);
9236
9237    // Store the initialization expressions as a ParenListExpr.
9238    unsigned NumExprs = Exprs.size();
9239    VDecl->setInit(new (Context) ParenListExpr(
9240        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9241        VDecl->getType().getNonReferenceType()));
9242    return;
9243  }
9244
9245  // Capture the variable that is being initialized and the style of
9246  // initialization.
9247  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9248
9249  // FIXME: Poor source location information.
9250  InitializationKind Kind
9251    = InitializationKind::CreateDirect(VDecl->getLocation(),
9252                                       LParenLoc, RParenLoc);
9253
9254  QualType T = VDecl->getType();
9255  InitializationSequence InitSeq(*this, Entity, Kind,
9256                                 Exprs.get(), Exprs.size());
9257  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9258  if (Result.isInvalid()) {
9259    VDecl->setInvalidDecl();
9260    return;
9261  } else if (T != VDecl->getType()) {
9262    VDecl->setType(T);
9263    Result.get()->setType(T);
9264  }
9265
9266
9267  Expr *Init = Result.get();
9268  CheckImplicitConversions(Init, LParenLoc);
9269
9270  Init = MaybeCreateExprWithCleanups(Init);
9271  VDecl->setInit(Init);
9272  VDecl->setCXXDirectInitializer(true);
9273
9274  CheckCompleteVariableDeclaration(VDecl);
9275}
9276
9277/// \brief Given a constructor and the set of arguments provided for the
9278/// constructor, convert the arguments and add any required default arguments
9279/// to form a proper call to this constructor.
9280///
9281/// \returns true if an error occurred, false otherwise.
9282bool
9283Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9284                              MultiExprArg ArgsPtr,
9285                              SourceLocation Loc,
9286                              ASTOwningVector<Expr*> &ConvertedArgs) {
9287  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9288  unsigned NumArgs = ArgsPtr.size();
9289  Expr **Args = (Expr **)ArgsPtr.get();
9290
9291  const FunctionProtoType *Proto
9292    = Constructor->getType()->getAs<FunctionProtoType>();
9293  assert(Proto && "Constructor without a prototype?");
9294  unsigned NumArgsInProto = Proto->getNumArgs();
9295
9296  // If too few arguments are available, we'll fill in the rest with defaults.
9297  if (NumArgs < NumArgsInProto)
9298    ConvertedArgs.reserve(NumArgsInProto);
9299  else
9300    ConvertedArgs.reserve(NumArgs);
9301
9302  VariadicCallType CallType =
9303    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9304  SmallVector<Expr *, 8> AllArgs;
9305  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9306                                        Proto, 0, Args, NumArgs, AllArgs,
9307                                        CallType);
9308  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9309    ConvertedArgs.push_back(AllArgs[i]);
9310  return Invalid;
9311}
9312
9313static inline bool
9314CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9315                                       const FunctionDecl *FnDecl) {
9316  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9317  if (isa<NamespaceDecl>(DC)) {
9318    return SemaRef.Diag(FnDecl->getLocation(),
9319                        diag::err_operator_new_delete_declared_in_namespace)
9320      << FnDecl->getDeclName();
9321  }
9322
9323  if (isa<TranslationUnitDecl>(DC) &&
9324      FnDecl->getStorageClass() == SC_Static) {
9325    return SemaRef.Diag(FnDecl->getLocation(),
9326                        diag::err_operator_new_delete_declared_static)
9327      << FnDecl->getDeclName();
9328  }
9329
9330  return false;
9331}
9332
9333static inline bool
9334CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9335                            CanQualType ExpectedResultType,
9336                            CanQualType ExpectedFirstParamType,
9337                            unsigned DependentParamTypeDiag,
9338                            unsigned InvalidParamTypeDiag) {
9339  QualType ResultType =
9340    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9341
9342  // Check that the result type is not dependent.
9343  if (ResultType->isDependentType())
9344    return SemaRef.Diag(FnDecl->getLocation(),
9345                        diag::err_operator_new_delete_dependent_result_type)
9346    << FnDecl->getDeclName() << ExpectedResultType;
9347
9348  // Check that the result type is what we expect.
9349  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9350    return SemaRef.Diag(FnDecl->getLocation(),
9351                        diag::err_operator_new_delete_invalid_result_type)
9352    << FnDecl->getDeclName() << ExpectedResultType;
9353
9354  // A function template must have at least 2 parameters.
9355  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9356    return SemaRef.Diag(FnDecl->getLocation(),
9357                      diag::err_operator_new_delete_template_too_few_parameters)
9358        << FnDecl->getDeclName();
9359
9360  // The function decl must have at least 1 parameter.
9361  if (FnDecl->getNumParams() == 0)
9362    return SemaRef.Diag(FnDecl->getLocation(),
9363                        diag::err_operator_new_delete_too_few_parameters)
9364      << FnDecl->getDeclName();
9365
9366  // Check the the first parameter type is not dependent.
9367  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9368  if (FirstParamType->isDependentType())
9369    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9370      << FnDecl->getDeclName() << ExpectedFirstParamType;
9371
9372  // Check that the first parameter type is what we expect.
9373  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9374      ExpectedFirstParamType)
9375    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9376    << FnDecl->getDeclName() << ExpectedFirstParamType;
9377
9378  return false;
9379}
9380
9381static bool
9382CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9383  // C++ [basic.stc.dynamic.allocation]p1:
9384  //   A program is ill-formed if an allocation function is declared in a
9385  //   namespace scope other than global scope or declared static in global
9386  //   scope.
9387  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9388    return true;
9389
9390  CanQualType SizeTy =
9391    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9392
9393  // C++ [basic.stc.dynamic.allocation]p1:
9394  //  The return type shall be void*. The first parameter shall have type
9395  //  std::size_t.
9396  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9397                                  SizeTy,
9398                                  diag::err_operator_new_dependent_param_type,
9399                                  diag::err_operator_new_param_type))
9400    return true;
9401
9402  // C++ [basic.stc.dynamic.allocation]p1:
9403  //  The first parameter shall not have an associated default argument.
9404  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9405    return SemaRef.Diag(FnDecl->getLocation(),
9406                        diag::err_operator_new_default_arg)
9407      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9408
9409  return false;
9410}
9411
9412static bool
9413CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9414  // C++ [basic.stc.dynamic.deallocation]p1:
9415  //   A program is ill-formed if deallocation functions are declared in a
9416  //   namespace scope other than global scope or declared static in global
9417  //   scope.
9418  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9419    return true;
9420
9421  // C++ [basic.stc.dynamic.deallocation]p2:
9422  //   Each deallocation function shall return void and its first parameter
9423  //   shall be void*.
9424  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9425                                  SemaRef.Context.VoidPtrTy,
9426                                 diag::err_operator_delete_dependent_param_type,
9427                                 diag::err_operator_delete_param_type))
9428    return true;
9429
9430  return false;
9431}
9432
9433/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9434/// of this overloaded operator is well-formed. If so, returns false;
9435/// otherwise, emits appropriate diagnostics and returns true.
9436bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9437  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9438         "Expected an overloaded operator declaration");
9439
9440  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9441
9442  // C++ [over.oper]p5:
9443  //   The allocation and deallocation functions, operator new,
9444  //   operator new[], operator delete and operator delete[], are
9445  //   described completely in 3.7.3. The attributes and restrictions
9446  //   found in the rest of this subclause do not apply to them unless
9447  //   explicitly stated in 3.7.3.
9448  if (Op == OO_Delete || Op == OO_Array_Delete)
9449    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9450
9451  if (Op == OO_New || Op == OO_Array_New)
9452    return CheckOperatorNewDeclaration(*this, FnDecl);
9453
9454  // C++ [over.oper]p6:
9455  //   An operator function shall either be a non-static member
9456  //   function or be a non-member function and have at least one
9457  //   parameter whose type is a class, a reference to a class, an
9458  //   enumeration, or a reference to an enumeration.
9459  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9460    if (MethodDecl->isStatic())
9461      return Diag(FnDecl->getLocation(),
9462                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9463  } else {
9464    bool ClassOrEnumParam = false;
9465    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9466                                   ParamEnd = FnDecl->param_end();
9467         Param != ParamEnd; ++Param) {
9468      QualType ParamType = (*Param)->getType().getNonReferenceType();
9469      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9470          ParamType->isEnumeralType()) {
9471        ClassOrEnumParam = true;
9472        break;
9473      }
9474    }
9475
9476    if (!ClassOrEnumParam)
9477      return Diag(FnDecl->getLocation(),
9478                  diag::err_operator_overload_needs_class_or_enum)
9479        << FnDecl->getDeclName();
9480  }
9481
9482  // C++ [over.oper]p8:
9483  //   An operator function cannot have default arguments (8.3.6),
9484  //   except where explicitly stated below.
9485  //
9486  // Only the function-call operator allows default arguments
9487  // (C++ [over.call]p1).
9488  if (Op != OO_Call) {
9489    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9490         Param != FnDecl->param_end(); ++Param) {
9491      if ((*Param)->hasDefaultArg())
9492        return Diag((*Param)->getLocation(),
9493                    diag::err_operator_overload_default_arg)
9494          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9495    }
9496  }
9497
9498  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9499    { false, false, false }
9500#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9501    , { Unary, Binary, MemberOnly }
9502#include "clang/Basic/OperatorKinds.def"
9503  };
9504
9505  bool CanBeUnaryOperator = OperatorUses[Op][0];
9506  bool CanBeBinaryOperator = OperatorUses[Op][1];
9507  bool MustBeMemberOperator = OperatorUses[Op][2];
9508
9509  // C++ [over.oper]p8:
9510  //   [...] Operator functions cannot have more or fewer parameters
9511  //   than the number required for the corresponding operator, as
9512  //   described in the rest of this subclause.
9513  unsigned NumParams = FnDecl->getNumParams()
9514                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9515  if (Op != OO_Call &&
9516      ((NumParams == 1 && !CanBeUnaryOperator) ||
9517       (NumParams == 2 && !CanBeBinaryOperator) ||
9518       (NumParams < 1) || (NumParams > 2))) {
9519    // We have the wrong number of parameters.
9520    unsigned ErrorKind;
9521    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9522      ErrorKind = 2;  // 2 -> unary or binary.
9523    } else if (CanBeUnaryOperator) {
9524      ErrorKind = 0;  // 0 -> unary
9525    } else {
9526      assert(CanBeBinaryOperator &&
9527             "All non-call overloaded operators are unary or binary!");
9528      ErrorKind = 1;  // 1 -> binary
9529    }
9530
9531    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9532      << FnDecl->getDeclName() << NumParams << ErrorKind;
9533  }
9534
9535  // Overloaded operators other than operator() cannot be variadic.
9536  if (Op != OO_Call &&
9537      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9538    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9539      << FnDecl->getDeclName();
9540  }
9541
9542  // Some operators must be non-static member functions.
9543  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9544    return Diag(FnDecl->getLocation(),
9545                diag::err_operator_overload_must_be_member)
9546      << FnDecl->getDeclName();
9547  }
9548
9549  // C++ [over.inc]p1:
9550  //   The user-defined function called operator++ implements the
9551  //   prefix and postfix ++ operator. If this function is a member
9552  //   function with no parameters, or a non-member function with one
9553  //   parameter of class or enumeration type, it defines the prefix
9554  //   increment operator ++ for objects of that type. If the function
9555  //   is a member function with one parameter (which shall be of type
9556  //   int) or a non-member function with two parameters (the second
9557  //   of which shall be of type int), it defines the postfix
9558  //   increment operator ++ for objects of that type.
9559  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9560    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9561    bool ParamIsInt = false;
9562    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9563      ParamIsInt = BT->getKind() == BuiltinType::Int;
9564
9565    if (!ParamIsInt)
9566      return Diag(LastParam->getLocation(),
9567                  diag::err_operator_overload_post_incdec_must_be_int)
9568        << LastParam->getType() << (Op == OO_MinusMinus);
9569  }
9570
9571  return false;
9572}
9573
9574/// CheckLiteralOperatorDeclaration - Check whether the declaration
9575/// of this literal operator function is well-formed. If so, returns
9576/// false; otherwise, emits appropriate diagnostics and returns true.
9577bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9578  DeclContext *DC = FnDecl->getDeclContext();
9579  Decl::Kind Kind = DC->getDeclKind();
9580  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9581      Kind != Decl::LinkageSpec) {
9582    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9583      << FnDecl->getDeclName();
9584    return true;
9585  }
9586
9587  bool Valid = false;
9588
9589  // template <char...> type operator "" name() is the only valid template
9590  // signature, and the only valid signature with no parameters.
9591  if (FnDecl->param_size() == 0) {
9592    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9593      // Must have only one template parameter
9594      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9595      if (Params->size() == 1) {
9596        NonTypeTemplateParmDecl *PmDecl =
9597          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9598
9599        // The template parameter must be a char parameter pack.
9600        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9601            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9602          Valid = true;
9603      }
9604    }
9605  } else {
9606    // Check the first parameter
9607    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9608
9609    QualType T = (*Param)->getType();
9610
9611    // unsigned long long int, long double, and any character type are allowed
9612    // as the only parameters.
9613    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9614        Context.hasSameType(T, Context.LongDoubleTy) ||
9615        Context.hasSameType(T, Context.CharTy) ||
9616        Context.hasSameType(T, Context.WCharTy) ||
9617        Context.hasSameType(T, Context.Char16Ty) ||
9618        Context.hasSameType(T, Context.Char32Ty)) {
9619      if (++Param == FnDecl->param_end())
9620        Valid = true;
9621      goto FinishedParams;
9622    }
9623
9624    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9625    const PointerType *PT = T->getAs<PointerType>();
9626    if (!PT)
9627      goto FinishedParams;
9628    T = PT->getPointeeType();
9629    if (!T.isConstQualified())
9630      goto FinishedParams;
9631    T = T.getUnqualifiedType();
9632
9633    // Move on to the second parameter;
9634    ++Param;
9635
9636    // If there is no second parameter, the first must be a const char *
9637    if (Param == FnDecl->param_end()) {
9638      if (Context.hasSameType(T, Context.CharTy))
9639        Valid = true;
9640      goto FinishedParams;
9641    }
9642
9643    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9644    // are allowed as the first parameter to a two-parameter function
9645    if (!(Context.hasSameType(T, Context.CharTy) ||
9646          Context.hasSameType(T, Context.WCharTy) ||
9647          Context.hasSameType(T, Context.Char16Ty) ||
9648          Context.hasSameType(T, Context.Char32Ty)))
9649      goto FinishedParams;
9650
9651    // The second and final parameter must be an std::size_t
9652    T = (*Param)->getType().getUnqualifiedType();
9653    if (Context.hasSameType(T, Context.getSizeType()) &&
9654        ++Param == FnDecl->param_end())
9655      Valid = true;
9656  }
9657
9658  // FIXME: This diagnostic is absolutely terrible.
9659FinishedParams:
9660  if (!Valid) {
9661    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9662      << FnDecl->getDeclName();
9663    return true;
9664  }
9665
9666  StringRef LiteralName
9667    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9668  if (LiteralName[0] != '_') {
9669    // C++0x [usrlit.suffix]p1:
9670    //   Literal suffix identifiers that do not start with an underscore are
9671    //   reserved for future standardization.
9672    bool IsHexFloat = true;
9673    if (LiteralName.size() > 1 &&
9674        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9675      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9676        if (!isdigit(LiteralName[I])) {
9677          IsHexFloat = false;
9678          break;
9679        }
9680      }
9681    }
9682
9683    if (IsHexFloat)
9684      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9685        << LiteralName;
9686    else
9687      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9688  }
9689
9690  return false;
9691}
9692
9693/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9694/// linkage specification, including the language and (if present)
9695/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9696/// the location of the language string literal, which is provided
9697/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9698/// the '{' brace. Otherwise, this linkage specification does not
9699/// have any braces.
9700Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9701                                           SourceLocation LangLoc,
9702                                           StringRef Lang,
9703                                           SourceLocation LBraceLoc) {
9704  LinkageSpecDecl::LanguageIDs Language;
9705  if (Lang == "\"C\"")
9706    Language = LinkageSpecDecl::lang_c;
9707  else if (Lang == "\"C++\"")
9708    Language = LinkageSpecDecl::lang_cxx;
9709  else {
9710    Diag(LangLoc, diag::err_bad_language);
9711    return 0;
9712  }
9713
9714  // FIXME: Add all the various semantics of linkage specifications
9715
9716  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9717                                               ExternLoc, LangLoc, Language);
9718  CurContext->addDecl(D);
9719  PushDeclContext(S, D);
9720  return D;
9721}
9722
9723/// ActOnFinishLinkageSpecification - Complete the definition of
9724/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9725/// valid, it's the position of the closing '}' brace in a linkage
9726/// specification that uses braces.
9727Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9728                                            Decl *LinkageSpec,
9729                                            SourceLocation RBraceLoc) {
9730  if (LinkageSpec) {
9731    if (RBraceLoc.isValid()) {
9732      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9733      LSDecl->setRBraceLoc(RBraceLoc);
9734    }
9735    PopDeclContext();
9736  }
9737  return LinkageSpec;
9738}
9739
9740/// \brief Perform semantic analysis for the variable declaration that
9741/// occurs within a C++ catch clause, returning the newly-created
9742/// variable.
9743VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9744                                         TypeSourceInfo *TInfo,
9745                                         SourceLocation StartLoc,
9746                                         SourceLocation Loc,
9747                                         IdentifierInfo *Name) {
9748  bool Invalid = false;
9749  QualType ExDeclType = TInfo->getType();
9750
9751  // Arrays and functions decay.
9752  if (ExDeclType->isArrayType())
9753    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9754  else if (ExDeclType->isFunctionType())
9755    ExDeclType = Context.getPointerType(ExDeclType);
9756
9757  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9758  // The exception-declaration shall not denote a pointer or reference to an
9759  // incomplete type, other than [cv] void*.
9760  // N2844 forbids rvalue references.
9761  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9762    Diag(Loc, diag::err_catch_rvalue_ref);
9763    Invalid = true;
9764  }
9765
9766  QualType BaseType = ExDeclType;
9767  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9768  unsigned DK = diag::err_catch_incomplete;
9769  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9770    BaseType = Ptr->getPointeeType();
9771    Mode = 1;
9772    DK = diag::err_catch_incomplete_ptr;
9773  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9774    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9775    BaseType = Ref->getPointeeType();
9776    Mode = 2;
9777    DK = diag::err_catch_incomplete_ref;
9778  }
9779  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9780      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9781    Invalid = true;
9782
9783  if (!Invalid && !ExDeclType->isDependentType() &&
9784      RequireNonAbstractType(Loc, ExDeclType,
9785                             diag::err_abstract_type_in_decl,
9786                             AbstractVariableType))
9787    Invalid = true;
9788
9789  // Only the non-fragile NeXT runtime currently supports C++ catches
9790  // of ObjC types, and no runtime supports catching ObjC types by value.
9791  if (!Invalid && getLangOptions().ObjC1) {
9792    QualType T = ExDeclType;
9793    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9794      T = RT->getPointeeType();
9795
9796    if (T->isObjCObjectType()) {
9797      Diag(Loc, diag::err_objc_object_catch);
9798      Invalid = true;
9799    } else if (T->isObjCObjectPointerType()) {
9800      if (!getLangOptions().ObjCNonFragileABI)
9801        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9802    }
9803  }
9804
9805  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9806                                    ExDeclType, TInfo, SC_None, SC_None);
9807  ExDecl->setExceptionVariable(true);
9808
9809  // In ARC, infer 'retaining' for variables of retainable type.
9810  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9811    Invalid = true;
9812
9813  if (!Invalid && !ExDeclType->isDependentType()) {
9814    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9815      // C++ [except.handle]p16:
9816      //   The object declared in an exception-declaration or, if the
9817      //   exception-declaration does not specify a name, a temporary (12.2) is
9818      //   copy-initialized (8.5) from the exception object. [...]
9819      //   The object is destroyed when the handler exits, after the destruction
9820      //   of any automatic objects initialized within the handler.
9821      //
9822      // We just pretend to initialize the object with itself, then make sure
9823      // it can be destroyed later.
9824      QualType initType = ExDeclType;
9825
9826      InitializedEntity entity =
9827        InitializedEntity::InitializeVariable(ExDecl);
9828      InitializationKind initKind =
9829        InitializationKind::CreateCopy(Loc, SourceLocation());
9830
9831      Expr *opaqueValue =
9832        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9833      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9834      ExprResult result = sequence.Perform(*this, entity, initKind,
9835                                           MultiExprArg(&opaqueValue, 1));
9836      if (result.isInvalid())
9837        Invalid = true;
9838      else {
9839        // If the constructor used was non-trivial, set this as the
9840        // "initializer".
9841        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9842        if (!construct->getConstructor()->isTrivial()) {
9843          Expr *init = MaybeCreateExprWithCleanups(construct);
9844          ExDecl->setInit(init);
9845        }
9846
9847        // And make sure it's destructable.
9848        FinalizeVarWithDestructor(ExDecl, recordType);
9849      }
9850    }
9851  }
9852
9853  if (Invalid)
9854    ExDecl->setInvalidDecl();
9855
9856  return ExDecl;
9857}
9858
9859/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9860/// handler.
9861Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9862  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9863  bool Invalid = D.isInvalidType();
9864
9865  // Check for unexpanded parameter packs.
9866  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9867                                               UPPC_ExceptionType)) {
9868    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9869                                             D.getIdentifierLoc());
9870    Invalid = true;
9871  }
9872
9873  IdentifierInfo *II = D.getIdentifier();
9874  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9875                                             LookupOrdinaryName,
9876                                             ForRedeclaration)) {
9877    // The scope should be freshly made just for us. There is just no way
9878    // it contains any previous declaration.
9879    assert(!S->isDeclScope(PrevDecl));
9880    if (PrevDecl->isTemplateParameter()) {
9881      // Maybe we will complain about the shadowed template parameter.
9882      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9883      PrevDecl = 0;
9884    }
9885  }
9886
9887  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9888    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9889      << D.getCXXScopeSpec().getRange();
9890    Invalid = true;
9891  }
9892
9893  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9894                                              D.getSourceRange().getBegin(),
9895                                              D.getIdentifierLoc(),
9896                                              D.getIdentifier());
9897  if (Invalid)
9898    ExDecl->setInvalidDecl();
9899
9900  // Add the exception declaration into this scope.
9901  if (II)
9902    PushOnScopeChains(ExDecl, S);
9903  else
9904    CurContext->addDecl(ExDecl);
9905
9906  ProcessDeclAttributes(S, ExDecl, D);
9907  return ExDecl;
9908}
9909
9910Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9911                                         Expr *AssertExpr,
9912                                         Expr *AssertMessageExpr_,
9913                                         SourceLocation RParenLoc) {
9914  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9915
9916  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9917    // In a static_assert-declaration, the constant-expression shall be a
9918    // constant expression that can be contextually converted to bool.
9919    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9920    if (Converted.isInvalid())
9921      return 0;
9922
9923    llvm::APSInt Cond;
9924    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9925          PDiag(diag::err_static_assert_expression_is_not_constant),
9926          /*AllowFold=*/false).isInvalid())
9927      return 0;
9928
9929    if (!Cond)
9930      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9931        << AssertMessage->getString() << AssertExpr->getSourceRange();
9932  }
9933
9934  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9935    return 0;
9936
9937  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9938                                        AssertExpr, AssertMessage, RParenLoc);
9939
9940  CurContext->addDecl(Decl);
9941  return Decl;
9942}
9943
9944/// \brief Perform semantic analysis of the given friend type declaration.
9945///
9946/// \returns A friend declaration that.
9947FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9948                                      SourceLocation FriendLoc,
9949                                      TypeSourceInfo *TSInfo) {
9950  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9951
9952  QualType T = TSInfo->getType();
9953  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9954
9955  // C++03 [class.friend]p2:
9956  //   An elaborated-type-specifier shall be used in a friend declaration
9957  //   for a class.*
9958  //
9959  //   * The class-key of the elaborated-type-specifier is required.
9960  if (!ActiveTemplateInstantiations.empty()) {
9961    // Do not complain about the form of friend template types during
9962    // template instantiation; we will already have complained when the
9963    // template was declared.
9964  } else if (!T->isElaboratedTypeSpecifier()) {
9965    // If we evaluated the type to a record type, suggest putting
9966    // a tag in front.
9967    if (const RecordType *RT = T->getAs<RecordType>()) {
9968      RecordDecl *RD = RT->getDecl();
9969
9970      std::string InsertionText = std::string(" ") + RD->getKindName();
9971
9972      Diag(TypeRange.getBegin(),
9973           getLangOptions().CPlusPlus0x ?
9974             diag::warn_cxx98_compat_unelaborated_friend_type :
9975             diag::ext_unelaborated_friend_type)
9976        << (unsigned) RD->getTagKind()
9977        << T
9978        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9979                                      InsertionText);
9980    } else {
9981      Diag(FriendLoc,
9982           getLangOptions().CPlusPlus0x ?
9983             diag::warn_cxx98_compat_nonclass_type_friend :
9984             diag::ext_nonclass_type_friend)
9985        << T
9986        << SourceRange(FriendLoc, TypeRange.getEnd());
9987    }
9988  } else if (T->getAs<EnumType>()) {
9989    Diag(FriendLoc,
9990         getLangOptions().CPlusPlus0x ?
9991           diag::warn_cxx98_compat_enum_friend :
9992           diag::ext_enum_friend)
9993      << T
9994      << SourceRange(FriendLoc, TypeRange.getEnd());
9995  }
9996
9997  // C++0x [class.friend]p3:
9998  //   If the type specifier in a friend declaration designates a (possibly
9999  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10000  //   the friend declaration is ignored.
10001
10002  // FIXME: C++0x has some syntactic restrictions on friend type declarations
10003  // in [class.friend]p3 that we do not implement.
10004
10005  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
10006}
10007
10008/// Handle a friend tag declaration where the scope specifier was
10009/// templated.
10010Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10011                                    unsigned TagSpec, SourceLocation TagLoc,
10012                                    CXXScopeSpec &SS,
10013                                    IdentifierInfo *Name, SourceLocation NameLoc,
10014                                    AttributeList *Attr,
10015                                    MultiTemplateParamsArg TempParamLists) {
10016  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10017
10018  bool isExplicitSpecialization = false;
10019  bool Invalid = false;
10020
10021  if (TemplateParameterList *TemplateParams
10022        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10023                                                  TempParamLists.get(),
10024                                                  TempParamLists.size(),
10025                                                  /*friend*/ true,
10026                                                  isExplicitSpecialization,
10027                                                  Invalid)) {
10028    if (TemplateParams->size() > 0) {
10029      // This is a declaration of a class template.
10030      if (Invalid)
10031        return 0;
10032
10033      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10034                                SS, Name, NameLoc, Attr,
10035                                TemplateParams, AS_public,
10036                                /*ModulePrivateLoc=*/SourceLocation(),
10037                                TempParamLists.size() - 1,
10038                   (TemplateParameterList**) TempParamLists.release()).take();
10039    } else {
10040      // The "template<>" header is extraneous.
10041      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10042        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10043      isExplicitSpecialization = true;
10044    }
10045  }
10046
10047  if (Invalid) return 0;
10048
10049  bool isAllExplicitSpecializations = true;
10050  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10051    if (TempParamLists.get()[I]->size()) {
10052      isAllExplicitSpecializations = false;
10053      break;
10054    }
10055  }
10056
10057  // FIXME: don't ignore attributes.
10058
10059  // If it's explicit specializations all the way down, just forget
10060  // about the template header and build an appropriate non-templated
10061  // friend.  TODO: for source fidelity, remember the headers.
10062  if (isAllExplicitSpecializations) {
10063    if (SS.isEmpty()) {
10064      bool Owned = false;
10065      bool IsDependent = false;
10066      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10067                      Attr, AS_public,
10068                      /*ModulePrivateLoc=*/SourceLocation(),
10069                      MultiTemplateParamsArg(), Owned, IsDependent,
10070                      /*ScopedEnumKWLoc=*/SourceLocation(),
10071                      /*ScopedEnumUsesClassTag=*/false,
10072                      /*UnderlyingType=*/TypeResult());
10073    }
10074
10075    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10076    ElaboratedTypeKeyword Keyword
10077      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10078    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10079                                   *Name, NameLoc);
10080    if (T.isNull())
10081      return 0;
10082
10083    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10084    if (isa<DependentNameType>(T)) {
10085      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10086      TL.setElaboratedKeywordLoc(TagLoc);
10087      TL.setQualifierLoc(QualifierLoc);
10088      TL.setNameLoc(NameLoc);
10089    } else {
10090      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10091      TL.setElaboratedKeywordLoc(TagLoc);
10092      TL.setQualifierLoc(QualifierLoc);
10093      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10094    }
10095
10096    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10097                                            TSI, FriendLoc);
10098    Friend->setAccess(AS_public);
10099    CurContext->addDecl(Friend);
10100    return Friend;
10101  }
10102
10103  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10104
10105
10106
10107  // Handle the case of a templated-scope friend class.  e.g.
10108  //   template <class T> class A<T>::B;
10109  // FIXME: we don't support these right now.
10110  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10111  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10112  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10113  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10114  TL.setElaboratedKeywordLoc(TagLoc);
10115  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10116  TL.setNameLoc(NameLoc);
10117
10118  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10119                                          TSI, FriendLoc);
10120  Friend->setAccess(AS_public);
10121  Friend->setUnsupportedFriend(true);
10122  CurContext->addDecl(Friend);
10123  return Friend;
10124}
10125
10126
10127/// Handle a friend type declaration.  This works in tandem with
10128/// ActOnTag.
10129///
10130/// Notes on friend class templates:
10131///
10132/// We generally treat friend class declarations as if they were
10133/// declaring a class.  So, for example, the elaborated type specifier
10134/// in a friend declaration is required to obey the restrictions of a
10135/// class-head (i.e. no typedefs in the scope chain), template
10136/// parameters are required to match up with simple template-ids, &c.
10137/// However, unlike when declaring a template specialization, it's
10138/// okay to refer to a template specialization without an empty
10139/// template parameter declaration, e.g.
10140///   friend class A<T>::B<unsigned>;
10141/// We permit this as a special case; if there are any template
10142/// parameters present at all, require proper matching, i.e.
10143///   template <> template <class T> friend class A<int>::B;
10144Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10145                                MultiTemplateParamsArg TempParams) {
10146  SourceLocation Loc = DS.getSourceRange().getBegin();
10147
10148  assert(DS.isFriendSpecified());
10149  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10150
10151  // Try to convert the decl specifier to a type.  This works for
10152  // friend templates because ActOnTag never produces a ClassTemplateDecl
10153  // for a TUK_Friend.
10154  Declarator TheDeclarator(DS, Declarator::MemberContext);
10155  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10156  QualType T = TSI->getType();
10157  if (TheDeclarator.isInvalidType())
10158    return 0;
10159
10160  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10161    return 0;
10162
10163  // This is definitely an error in C++98.  It's probably meant to
10164  // be forbidden in C++0x, too, but the specification is just
10165  // poorly written.
10166  //
10167  // The problem is with declarations like the following:
10168  //   template <T> friend A<T>::foo;
10169  // where deciding whether a class C is a friend or not now hinges
10170  // on whether there exists an instantiation of A that causes
10171  // 'foo' to equal C.  There are restrictions on class-heads
10172  // (which we declare (by fiat) elaborated friend declarations to
10173  // be) that makes this tractable.
10174  //
10175  // FIXME: handle "template <> friend class A<T>;", which
10176  // is possibly well-formed?  Who even knows?
10177  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10178    Diag(Loc, diag::err_tagless_friend_type_template)
10179      << DS.getSourceRange();
10180    return 0;
10181  }
10182
10183  // C++98 [class.friend]p1: A friend of a class is a function
10184  //   or class that is not a member of the class . . .
10185  // This is fixed in DR77, which just barely didn't make the C++03
10186  // deadline.  It's also a very silly restriction that seriously
10187  // affects inner classes and which nobody else seems to implement;
10188  // thus we never diagnose it, not even in -pedantic.
10189  //
10190  // But note that we could warn about it: it's always useless to
10191  // friend one of your own members (it's not, however, worthless to
10192  // friend a member of an arbitrary specialization of your template).
10193
10194  Decl *D;
10195  if (unsigned NumTempParamLists = TempParams.size())
10196    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10197                                   NumTempParamLists,
10198                                   TempParams.release(),
10199                                   TSI,
10200                                   DS.getFriendSpecLoc());
10201  else
10202    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10203
10204  if (!D)
10205    return 0;
10206
10207  D->setAccess(AS_public);
10208  CurContext->addDecl(D);
10209
10210  return D;
10211}
10212
10213Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10214                                    MultiTemplateParamsArg TemplateParams) {
10215  const DeclSpec &DS = D.getDeclSpec();
10216
10217  assert(DS.isFriendSpecified());
10218  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10219
10220  SourceLocation Loc = D.getIdentifierLoc();
10221  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10222
10223  // C++ [class.friend]p1
10224  //   A friend of a class is a function or class....
10225  // Note that this sees through typedefs, which is intended.
10226  // It *doesn't* see through dependent types, which is correct
10227  // according to [temp.arg.type]p3:
10228  //   If a declaration acquires a function type through a
10229  //   type dependent on a template-parameter and this causes
10230  //   a declaration that does not use the syntactic form of a
10231  //   function declarator to have a function type, the program
10232  //   is ill-formed.
10233  if (!TInfo->getType()->isFunctionType()) {
10234    Diag(Loc, diag::err_unexpected_friend);
10235
10236    // It might be worthwhile to try to recover by creating an
10237    // appropriate declaration.
10238    return 0;
10239  }
10240
10241  // C++ [namespace.memdef]p3
10242  //  - If a friend declaration in a non-local class first declares a
10243  //    class or function, the friend class or function is a member
10244  //    of the innermost enclosing namespace.
10245  //  - The name of the friend is not found by simple name lookup
10246  //    until a matching declaration is provided in that namespace
10247  //    scope (either before or after the class declaration granting
10248  //    friendship).
10249  //  - If a friend function is called, its name may be found by the
10250  //    name lookup that considers functions from namespaces and
10251  //    classes associated with the types of the function arguments.
10252  //  - When looking for a prior declaration of a class or a function
10253  //    declared as a friend, scopes outside the innermost enclosing
10254  //    namespace scope are not considered.
10255
10256  CXXScopeSpec &SS = D.getCXXScopeSpec();
10257  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10258  DeclarationName Name = NameInfo.getName();
10259  assert(Name);
10260
10261  // Check for unexpanded parameter packs.
10262  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10263      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10264      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10265    return 0;
10266
10267  // The context we found the declaration in, or in which we should
10268  // create the declaration.
10269  DeclContext *DC;
10270  Scope *DCScope = S;
10271  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10272                        ForRedeclaration);
10273
10274  // FIXME: there are different rules in local classes
10275
10276  // There are four cases here.
10277  //   - There's no scope specifier, in which case we just go to the
10278  //     appropriate scope and look for a function or function template
10279  //     there as appropriate.
10280  // Recover from invalid scope qualifiers as if they just weren't there.
10281  if (SS.isInvalid() || !SS.isSet()) {
10282    // C++0x [namespace.memdef]p3:
10283    //   If the name in a friend declaration is neither qualified nor
10284    //   a template-id and the declaration is a function or an
10285    //   elaborated-type-specifier, the lookup to determine whether
10286    //   the entity has been previously declared shall not consider
10287    //   any scopes outside the innermost enclosing namespace.
10288    // C++0x [class.friend]p11:
10289    //   If a friend declaration appears in a local class and the name
10290    //   specified is an unqualified name, a prior declaration is
10291    //   looked up without considering scopes that are outside the
10292    //   innermost enclosing non-class scope. For a friend function
10293    //   declaration, if there is no prior declaration, the program is
10294    //   ill-formed.
10295    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10296    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10297
10298    // Find the appropriate context according to the above.
10299    DC = CurContext;
10300    while (true) {
10301      // Skip class contexts.  If someone can cite chapter and verse
10302      // for this behavior, that would be nice --- it's what GCC and
10303      // EDG do, and it seems like a reasonable intent, but the spec
10304      // really only says that checks for unqualified existing
10305      // declarations should stop at the nearest enclosing namespace,
10306      // not that they should only consider the nearest enclosing
10307      // namespace.
10308      while (DC->isRecord())
10309        DC = DC->getParent();
10310
10311      LookupQualifiedName(Previous, DC);
10312
10313      // TODO: decide what we think about using declarations.
10314      if (isLocal || !Previous.empty())
10315        break;
10316
10317      if (isTemplateId) {
10318        if (isa<TranslationUnitDecl>(DC)) break;
10319      } else {
10320        if (DC->isFileContext()) break;
10321      }
10322      DC = DC->getParent();
10323    }
10324
10325    // C++ [class.friend]p1: A friend of a class is a function or
10326    //   class that is not a member of the class . . .
10327    // C++11 changes this for both friend types and functions.
10328    // Most C++ 98 compilers do seem to give an error here, so
10329    // we do, too.
10330    if (!Previous.empty() && DC->Equals(CurContext))
10331      Diag(DS.getFriendSpecLoc(),
10332           getLangOptions().CPlusPlus0x ?
10333             diag::warn_cxx98_compat_friend_is_member :
10334             diag::err_friend_is_member);
10335
10336    DCScope = getScopeForDeclContext(S, DC);
10337
10338    // C++ [class.friend]p6:
10339    //   A function can be defined in a friend declaration of a class if and
10340    //   only if the class is a non-local class (9.8), the function name is
10341    //   unqualified, and the function has namespace scope.
10342    if (isLocal && D.isFunctionDefinition()) {
10343      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10344    }
10345
10346  //   - There's a non-dependent scope specifier, in which case we
10347  //     compute it and do a previous lookup there for a function
10348  //     or function template.
10349  } else if (!SS.getScopeRep()->isDependent()) {
10350    DC = computeDeclContext(SS);
10351    if (!DC) return 0;
10352
10353    if (RequireCompleteDeclContext(SS, DC)) return 0;
10354
10355    LookupQualifiedName(Previous, DC);
10356
10357    // Ignore things found implicitly in the wrong scope.
10358    // TODO: better diagnostics for this case.  Suggesting the right
10359    // qualified scope would be nice...
10360    LookupResult::Filter F = Previous.makeFilter();
10361    while (F.hasNext()) {
10362      NamedDecl *D = F.next();
10363      if (!DC->InEnclosingNamespaceSetOf(
10364              D->getDeclContext()->getRedeclContext()))
10365        F.erase();
10366    }
10367    F.done();
10368
10369    if (Previous.empty()) {
10370      D.setInvalidType();
10371      Diag(Loc, diag::err_qualified_friend_not_found)
10372          << Name << TInfo->getType();
10373      return 0;
10374    }
10375
10376    // C++ [class.friend]p1: A friend of a class is a function or
10377    //   class that is not a member of the class . . .
10378    if (DC->Equals(CurContext))
10379      Diag(DS.getFriendSpecLoc(),
10380           getLangOptions().CPlusPlus0x ?
10381             diag::warn_cxx98_compat_friend_is_member :
10382             diag::err_friend_is_member);
10383
10384    if (D.isFunctionDefinition()) {
10385      // C++ [class.friend]p6:
10386      //   A function can be defined in a friend declaration of a class if and
10387      //   only if the class is a non-local class (9.8), the function name is
10388      //   unqualified, and the function has namespace scope.
10389      SemaDiagnosticBuilder DB
10390        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10391
10392      DB << SS.getScopeRep();
10393      if (DC->isFileContext())
10394        DB << FixItHint::CreateRemoval(SS.getRange());
10395      SS.clear();
10396    }
10397
10398  //   - There's a scope specifier that does not match any template
10399  //     parameter lists, in which case we use some arbitrary context,
10400  //     create a method or method template, and wait for instantiation.
10401  //   - There's a scope specifier that does match some template
10402  //     parameter lists, which we don't handle right now.
10403  } else {
10404    if (D.isFunctionDefinition()) {
10405      // C++ [class.friend]p6:
10406      //   A function can be defined in a friend declaration of a class if and
10407      //   only if the class is a non-local class (9.8), the function name is
10408      //   unqualified, and the function has namespace scope.
10409      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10410        << SS.getScopeRep();
10411    }
10412
10413    DC = CurContext;
10414    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10415  }
10416
10417  if (!DC->isRecord()) {
10418    // This implies that it has to be an operator or function.
10419    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10420        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10421        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10422      Diag(Loc, diag::err_introducing_special_friend) <<
10423        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10424         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10425      return 0;
10426    }
10427  }
10428
10429  // FIXME: This is an egregious hack to cope with cases where the scope stack
10430  // does not contain the declaration context, i.e., in an out-of-line
10431  // definition of a class.
10432  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10433  if (!DCScope) {
10434    FakeDCScope.setEntity(DC);
10435    DCScope = &FakeDCScope;
10436  }
10437
10438  bool AddToScope = true;
10439  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10440                                          move(TemplateParams), AddToScope);
10441  if (!ND) return 0;
10442
10443  assert(ND->getDeclContext() == DC);
10444  assert(ND->getLexicalDeclContext() == CurContext);
10445
10446  // Add the function declaration to the appropriate lookup tables,
10447  // adjusting the redeclarations list as necessary.  We don't
10448  // want to do this yet if the friending class is dependent.
10449  //
10450  // Also update the scope-based lookup if the target context's
10451  // lookup context is in lexical scope.
10452  if (!CurContext->isDependentContext()) {
10453    DC = DC->getRedeclContext();
10454    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10455    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10456      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10457  }
10458
10459  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10460                                       D.getIdentifierLoc(), ND,
10461                                       DS.getFriendSpecLoc());
10462  FrD->setAccess(AS_public);
10463  CurContext->addDecl(FrD);
10464
10465  if (ND->isInvalidDecl())
10466    FrD->setInvalidDecl();
10467  else {
10468    FunctionDecl *FD;
10469    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10470      FD = FTD->getTemplatedDecl();
10471    else
10472      FD = cast<FunctionDecl>(ND);
10473
10474    // Mark templated-scope function declarations as unsupported.
10475    if (FD->getNumTemplateParameterLists())
10476      FrD->setUnsupportedFriend(true);
10477  }
10478
10479  return ND;
10480}
10481
10482void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10483  AdjustDeclIfTemplate(Dcl);
10484
10485  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10486  if (!Fn) {
10487    Diag(DelLoc, diag::err_deleted_non_function);
10488    return;
10489  }
10490  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10491    Diag(DelLoc, diag::err_deleted_decl_not_first);
10492    Diag(Prev->getLocation(), diag::note_previous_declaration);
10493    // If the declaration wasn't the first, we delete the function anyway for
10494    // recovery.
10495  }
10496  Fn->setDeletedAsWritten();
10497}
10498
10499void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10500  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10501
10502  if (MD) {
10503    if (MD->getParent()->isDependentType()) {
10504      MD->setDefaulted();
10505      MD->setExplicitlyDefaulted();
10506      return;
10507    }
10508
10509    CXXSpecialMember Member = getSpecialMember(MD);
10510    if (Member == CXXInvalid) {
10511      Diag(DefaultLoc, diag::err_default_special_members);
10512      return;
10513    }
10514
10515    MD->setDefaulted();
10516    MD->setExplicitlyDefaulted();
10517
10518    // If this definition appears within the record, do the checking when
10519    // the record is complete.
10520    const FunctionDecl *Primary = MD;
10521    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10522      // Find the uninstantiated declaration that actually had the '= default'
10523      // on it.
10524      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10525
10526    if (Primary == Primary->getCanonicalDecl())
10527      return;
10528
10529    switch (Member) {
10530    case CXXDefaultConstructor: {
10531      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10532      CheckExplicitlyDefaultedDefaultConstructor(CD);
10533      if (!CD->isInvalidDecl())
10534        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10535      break;
10536    }
10537
10538    case CXXCopyConstructor: {
10539      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10540      CheckExplicitlyDefaultedCopyConstructor(CD);
10541      if (!CD->isInvalidDecl())
10542        DefineImplicitCopyConstructor(DefaultLoc, CD);
10543      break;
10544    }
10545
10546    case CXXCopyAssignment: {
10547      CheckExplicitlyDefaultedCopyAssignment(MD);
10548      if (!MD->isInvalidDecl())
10549        DefineImplicitCopyAssignment(DefaultLoc, MD);
10550      break;
10551    }
10552
10553    case CXXDestructor: {
10554      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10555      CheckExplicitlyDefaultedDestructor(DD);
10556      if (!DD->isInvalidDecl())
10557        DefineImplicitDestructor(DefaultLoc, DD);
10558      break;
10559    }
10560
10561    case CXXMoveConstructor: {
10562      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10563      CheckExplicitlyDefaultedMoveConstructor(CD);
10564      if (!CD->isInvalidDecl())
10565        DefineImplicitMoveConstructor(DefaultLoc, CD);
10566      break;
10567    }
10568
10569    case CXXMoveAssignment: {
10570      CheckExplicitlyDefaultedMoveAssignment(MD);
10571      if (!MD->isInvalidDecl())
10572        DefineImplicitMoveAssignment(DefaultLoc, MD);
10573      break;
10574    }
10575
10576    case CXXInvalid:
10577      llvm_unreachable("Invalid special member.");
10578    }
10579  } else {
10580    Diag(DefaultLoc, diag::err_default_special_members);
10581  }
10582}
10583
10584static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10585  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10586    Stmt *SubStmt = *CI;
10587    if (!SubStmt)
10588      continue;
10589    if (isa<ReturnStmt>(SubStmt))
10590      Self.Diag(SubStmt->getSourceRange().getBegin(),
10591           diag::err_return_in_constructor_handler);
10592    if (!isa<Expr>(SubStmt))
10593      SearchForReturnInStmt(Self, SubStmt);
10594  }
10595}
10596
10597void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10598  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10599    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10600    SearchForReturnInStmt(*this, Handler);
10601  }
10602}
10603
10604bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10605                                             const CXXMethodDecl *Old) {
10606  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10607  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10608
10609  if (Context.hasSameType(NewTy, OldTy) ||
10610      NewTy->isDependentType() || OldTy->isDependentType())
10611    return false;
10612
10613  // Check if the return types are covariant
10614  QualType NewClassTy, OldClassTy;
10615
10616  /// Both types must be pointers or references to classes.
10617  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10618    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10619      NewClassTy = NewPT->getPointeeType();
10620      OldClassTy = OldPT->getPointeeType();
10621    }
10622  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10623    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10624      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10625        NewClassTy = NewRT->getPointeeType();
10626        OldClassTy = OldRT->getPointeeType();
10627      }
10628    }
10629  }
10630
10631  // The return types aren't either both pointers or references to a class type.
10632  if (NewClassTy.isNull()) {
10633    Diag(New->getLocation(),
10634         diag::err_different_return_type_for_overriding_virtual_function)
10635      << New->getDeclName() << NewTy << OldTy;
10636    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10637
10638    return true;
10639  }
10640
10641  // C++ [class.virtual]p6:
10642  //   If the return type of D::f differs from the return type of B::f, the
10643  //   class type in the return type of D::f shall be complete at the point of
10644  //   declaration of D::f or shall be the class type D.
10645  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10646    if (!RT->isBeingDefined() &&
10647        RequireCompleteType(New->getLocation(), NewClassTy,
10648                            PDiag(diag::err_covariant_return_incomplete)
10649                              << New->getDeclName()))
10650    return true;
10651  }
10652
10653  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10654    // Check if the new class derives from the old class.
10655    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10656      Diag(New->getLocation(),
10657           diag::err_covariant_return_not_derived)
10658      << New->getDeclName() << NewTy << OldTy;
10659      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10660      return true;
10661    }
10662
10663    // Check if we the conversion from derived to base is valid.
10664    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10665                    diag::err_covariant_return_inaccessible_base,
10666                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10667                    // FIXME: Should this point to the return type?
10668                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10669      // FIXME: this note won't trigger for delayed access control
10670      // diagnostics, and it's impossible to get an undelayed error
10671      // here from access control during the original parse because
10672      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10673      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10674      return true;
10675    }
10676  }
10677
10678  // The qualifiers of the return types must be the same.
10679  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10680    Diag(New->getLocation(),
10681         diag::err_covariant_return_type_different_qualifications)
10682    << New->getDeclName() << NewTy << OldTy;
10683    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10684    return true;
10685  };
10686
10687
10688  // The new class type must have the same or less qualifiers as the old type.
10689  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10690    Diag(New->getLocation(),
10691         diag::err_covariant_return_type_class_type_more_qualified)
10692    << New->getDeclName() << NewTy << OldTy;
10693    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10694    return true;
10695  };
10696
10697  return false;
10698}
10699
10700/// \brief Mark the given method pure.
10701///
10702/// \param Method the method to be marked pure.
10703///
10704/// \param InitRange the source range that covers the "0" initializer.
10705bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10706  SourceLocation EndLoc = InitRange.getEnd();
10707  if (EndLoc.isValid())
10708    Method->setRangeEnd(EndLoc);
10709
10710  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10711    Method->setPure();
10712    return false;
10713  }
10714
10715  if (!Method->isInvalidDecl())
10716    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10717      << Method->getDeclName() << InitRange;
10718  return true;
10719}
10720
10721/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10722/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10723/// is a fresh scope pushed for just this purpose.
10724///
10725/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10726/// static data member of class X, names should be looked up in the scope of
10727/// class X.
10728void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10729  // If there is no declaration, there was an error parsing it.
10730  if (D == 0 || D->isInvalidDecl()) return;
10731
10732  // We should only get called for declarations with scope specifiers, like:
10733  //   int foo::bar;
10734  assert(D->isOutOfLine());
10735  EnterDeclaratorContext(S, D->getDeclContext());
10736}
10737
10738/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10739/// initializer for the out-of-line declaration 'D'.
10740void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10741  // If there is no declaration, there was an error parsing it.
10742  if (D == 0 || D->isInvalidDecl()) return;
10743
10744  assert(D->isOutOfLine());
10745  ExitDeclaratorContext(S);
10746}
10747
10748/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10749/// C++ if/switch/while/for statement.
10750/// e.g: "if (int x = f()) {...}"
10751DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10752  // C++ 6.4p2:
10753  // The declarator shall not specify a function or an array.
10754  // The type-specifier-seq shall not contain typedef and shall not declare a
10755  // new class or enumeration.
10756  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10757         "Parser allowed 'typedef' as storage class of condition decl.");
10758
10759  Decl *Dcl = ActOnDeclarator(S, D);
10760  if (!Dcl)
10761    return true;
10762
10763  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10764    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10765      << D.getSourceRange();
10766    return true;
10767  }
10768
10769  return Dcl;
10770}
10771
10772void Sema::LoadExternalVTableUses() {
10773  if (!ExternalSource)
10774    return;
10775
10776  SmallVector<ExternalVTableUse, 4> VTables;
10777  ExternalSource->ReadUsedVTables(VTables);
10778  SmallVector<VTableUse, 4> NewUses;
10779  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10780    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10781      = VTablesUsed.find(VTables[I].Record);
10782    // Even if a definition wasn't required before, it may be required now.
10783    if (Pos != VTablesUsed.end()) {
10784      if (!Pos->second && VTables[I].DefinitionRequired)
10785        Pos->second = true;
10786      continue;
10787    }
10788
10789    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10790    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10791  }
10792
10793  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10794}
10795
10796void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10797                          bool DefinitionRequired) {
10798  // Ignore any vtable uses in unevaluated operands or for classes that do
10799  // not have a vtable.
10800  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10801      CurContext->isDependentContext() ||
10802      ExprEvalContexts.back().Context == Unevaluated)
10803    return;
10804
10805  // Try to insert this class into the map.
10806  LoadExternalVTableUses();
10807  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10808  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10809    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10810  if (!Pos.second) {
10811    // If we already had an entry, check to see if we are promoting this vtable
10812    // to required a definition. If so, we need to reappend to the VTableUses
10813    // list, since we may have already processed the first entry.
10814    if (DefinitionRequired && !Pos.first->second) {
10815      Pos.first->second = true;
10816    } else {
10817      // Otherwise, we can early exit.
10818      return;
10819    }
10820  }
10821
10822  // Local classes need to have their virtual members marked
10823  // immediately. For all other classes, we mark their virtual members
10824  // at the end of the translation unit.
10825  if (Class->isLocalClass())
10826    MarkVirtualMembersReferenced(Loc, Class);
10827  else
10828    VTableUses.push_back(std::make_pair(Class, Loc));
10829}
10830
10831bool Sema::DefineUsedVTables() {
10832  LoadExternalVTableUses();
10833  if (VTableUses.empty())
10834    return false;
10835
10836  // Note: The VTableUses vector could grow as a result of marking
10837  // the members of a class as "used", so we check the size each
10838  // time through the loop and prefer indices (with are stable) to
10839  // iterators (which are not).
10840  bool DefinedAnything = false;
10841  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10842    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10843    if (!Class)
10844      continue;
10845
10846    SourceLocation Loc = VTableUses[I].second;
10847
10848    // If this class has a key function, but that key function is
10849    // defined in another translation unit, we don't need to emit the
10850    // vtable even though we're using it.
10851    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10852    if (KeyFunction && !KeyFunction->hasBody()) {
10853      switch (KeyFunction->getTemplateSpecializationKind()) {
10854      case TSK_Undeclared:
10855      case TSK_ExplicitSpecialization:
10856      case TSK_ExplicitInstantiationDeclaration:
10857        // The key function is in another translation unit.
10858        continue;
10859
10860      case TSK_ExplicitInstantiationDefinition:
10861      case TSK_ImplicitInstantiation:
10862        // We will be instantiating the key function.
10863        break;
10864      }
10865    } else if (!KeyFunction) {
10866      // If we have a class with no key function that is the subject
10867      // of an explicit instantiation declaration, suppress the
10868      // vtable; it will live with the explicit instantiation
10869      // definition.
10870      bool IsExplicitInstantiationDeclaration
10871        = Class->getTemplateSpecializationKind()
10872                                      == TSK_ExplicitInstantiationDeclaration;
10873      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10874                                 REnd = Class->redecls_end();
10875           R != REnd; ++R) {
10876        TemplateSpecializationKind TSK
10877          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10878        if (TSK == TSK_ExplicitInstantiationDeclaration)
10879          IsExplicitInstantiationDeclaration = true;
10880        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10881          IsExplicitInstantiationDeclaration = false;
10882          break;
10883        }
10884      }
10885
10886      if (IsExplicitInstantiationDeclaration)
10887        continue;
10888    }
10889
10890    // Mark all of the virtual members of this class as referenced, so
10891    // that we can build a vtable. Then, tell the AST consumer that a
10892    // vtable for this class is required.
10893    DefinedAnything = true;
10894    MarkVirtualMembersReferenced(Loc, Class);
10895    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10896    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10897
10898    // Optionally warn if we're emitting a weak vtable.
10899    if (Class->getLinkage() == ExternalLinkage &&
10900        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10901      const FunctionDecl *KeyFunctionDef = 0;
10902      if (!KeyFunction ||
10903          (KeyFunction->hasBody(KeyFunctionDef) &&
10904           KeyFunctionDef->isInlined()))
10905        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10906             TSK_ExplicitInstantiationDefinition
10907             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10908          << Class;
10909    }
10910  }
10911  VTableUses.clear();
10912
10913  return DefinedAnything;
10914}
10915
10916void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10917                                        const CXXRecordDecl *RD) {
10918  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10919       e = RD->method_end(); i != e; ++i) {
10920    CXXMethodDecl *MD = *i;
10921
10922    // C++ [basic.def.odr]p2:
10923    //   [...] A virtual member function is used if it is not pure. [...]
10924    if (MD->isVirtual() && !MD->isPure())
10925      MarkFunctionReferenced(Loc, MD);
10926  }
10927
10928  // Only classes that have virtual bases need a VTT.
10929  if (RD->getNumVBases() == 0)
10930    return;
10931
10932  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10933           e = RD->bases_end(); i != e; ++i) {
10934    const CXXRecordDecl *Base =
10935        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10936    if (Base->getNumVBases() == 0)
10937      continue;
10938    MarkVirtualMembersReferenced(Loc, Base);
10939  }
10940}
10941
10942/// SetIvarInitializers - This routine builds initialization ASTs for the
10943/// Objective-C implementation whose ivars need be initialized.
10944void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10945  if (!getLangOptions().CPlusPlus)
10946    return;
10947  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10948    SmallVector<ObjCIvarDecl*, 8> ivars;
10949    CollectIvarsToConstructOrDestruct(OID, ivars);
10950    if (ivars.empty())
10951      return;
10952    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10953    for (unsigned i = 0; i < ivars.size(); i++) {
10954      FieldDecl *Field = ivars[i];
10955      if (Field->isInvalidDecl())
10956        continue;
10957
10958      CXXCtorInitializer *Member;
10959      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10960      InitializationKind InitKind =
10961        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10962
10963      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10964      ExprResult MemberInit =
10965        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10966      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10967      // Note, MemberInit could actually come back empty if no initialization
10968      // is required (e.g., because it would call a trivial default constructor)
10969      if (!MemberInit.get() || MemberInit.isInvalid())
10970        continue;
10971
10972      Member =
10973        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10974                                         SourceLocation(),
10975                                         MemberInit.takeAs<Expr>(),
10976                                         SourceLocation());
10977      AllToInit.push_back(Member);
10978
10979      // Be sure that the destructor is accessible and is marked as referenced.
10980      if (const RecordType *RecordTy
10981                  = Context.getBaseElementType(Field->getType())
10982                                                        ->getAs<RecordType>()) {
10983                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10984        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10985          MarkFunctionReferenced(Field->getLocation(), Destructor);
10986          CheckDestructorAccess(Field->getLocation(), Destructor,
10987                            PDiag(diag::err_access_dtor_ivar)
10988                              << Context.getBaseElementType(Field->getType()));
10989        }
10990      }
10991    }
10992    ObjCImplementation->setIvarInitializers(Context,
10993                                            AllToInit.data(), AllToInit.size());
10994  }
10995}
10996
10997static
10998void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10999                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11000                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11001                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11002                           Sema &S) {
11003  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11004                                                   CE = Current.end();
11005  if (Ctor->isInvalidDecl())
11006    return;
11007
11008  const FunctionDecl *FNTarget = 0;
11009  CXXConstructorDecl *Target;
11010
11011  // We ignore the result here since if we don't have a body, Target will be
11012  // null below.
11013  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11014  Target
11015= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11016
11017  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11018                     // Avoid dereferencing a null pointer here.
11019                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11020
11021  if (!Current.insert(Canonical))
11022    return;
11023
11024  // We know that beyond here, we aren't chaining into a cycle.
11025  if (!Target || !Target->isDelegatingConstructor() ||
11026      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11027    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11028      Valid.insert(*CI);
11029    Current.clear();
11030  // We've hit a cycle.
11031  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11032             Current.count(TCanonical)) {
11033    // If we haven't diagnosed this cycle yet, do so now.
11034    if (!Invalid.count(TCanonical)) {
11035      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11036             diag::warn_delegating_ctor_cycle)
11037        << Ctor;
11038
11039      // Don't add a note for a function delegating directo to itself.
11040      if (TCanonical != Canonical)
11041        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11042
11043      CXXConstructorDecl *C = Target;
11044      while (C->getCanonicalDecl() != Canonical) {
11045        (void)C->getTargetConstructor()->hasBody(FNTarget);
11046        assert(FNTarget && "Ctor cycle through bodiless function");
11047
11048        C
11049       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11050        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11051      }
11052    }
11053
11054    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11055      Invalid.insert(*CI);
11056    Current.clear();
11057  } else {
11058    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11059  }
11060}
11061
11062
11063void Sema::CheckDelegatingCtorCycles() {
11064  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11065
11066  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11067                                                   CE = Current.end();
11068
11069  for (DelegatingCtorDeclsType::iterator
11070         I = DelegatingCtorDecls.begin(ExternalSource),
11071         E = DelegatingCtorDecls.end();
11072       I != E; ++I) {
11073   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11074  }
11075
11076  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11077    (*CI)->setInvalidDecl();
11078}
11079
11080/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11081Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11082  // Implicitly declared functions (e.g. copy constructors) are
11083  // __host__ __device__
11084  if (D->isImplicit())
11085    return CFT_HostDevice;
11086
11087  if (D->hasAttr<CUDAGlobalAttr>())
11088    return CFT_Global;
11089
11090  if (D->hasAttr<CUDADeviceAttr>()) {
11091    if (D->hasAttr<CUDAHostAttr>())
11092      return CFT_HostDevice;
11093    else
11094      return CFT_Device;
11095  }
11096
11097  return CFT_Host;
11098}
11099
11100bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11101                           CUDAFunctionTarget CalleeTarget) {
11102  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11103  // Callable from the device only."
11104  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11105    return true;
11106
11107  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11108  // Callable from the host only."
11109  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11110  // Callable from the host only."
11111  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11112      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11113    return true;
11114
11115  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11116    return true;
11117
11118  return false;
11119}
11120