SemaDeclCXX.cpp revision 5fe8c04009eff540ebaa0cceb2e75c3908322e11
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(Old, New))
360    Invalid = true;
361
362  return Invalid;
363}
364
365/// CheckCXXDefaultArguments - Verify that the default arguments for a
366/// function declaration are well-formed according to C++
367/// [dcl.fct.default].
368void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
369  unsigned NumParams = FD->getNumParams();
370  unsigned p;
371
372  // Find first parameter with a default argument
373  for (p = 0; p < NumParams; ++p) {
374    ParmVarDecl *Param = FD->getParamDecl(p);
375    if (Param->hasDefaultArg())
376      break;
377  }
378
379  // C++ [dcl.fct.default]p4:
380  //   In a given function declaration, all parameters
381  //   subsequent to a parameter with a default argument shall
382  //   have default arguments supplied in this or previous
383  //   declarations. A default argument shall not be redefined
384  //   by a later declaration (not even to the same value).
385  unsigned LastMissingDefaultArg = 0;
386  for (; p < NumParams; ++p) {
387    ParmVarDecl *Param = FD->getParamDecl(p);
388    if (!Param->hasDefaultArg()) {
389      if (Param->isInvalidDecl())
390        /* We already complained about this parameter. */;
391      else if (Param->getIdentifier())
392        Diag(Param->getLocation(),
393             diag::err_param_default_argument_missing_name)
394          << Param->getIdentifier();
395      else
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing);
398
399      LastMissingDefaultArg = p;
400    }
401  }
402
403  if (LastMissingDefaultArg > 0) {
404    // Some default arguments were missing. Clear out all of the
405    // default arguments up to (and including) the last missing
406    // default argument, so that we leave the function parameters
407    // in a semantically valid state.
408    for (p = 0; p <= LastMissingDefaultArg; ++p) {
409      ParmVarDecl *Param = FD->getParamDecl(p);
410      if (Param->hasDefaultArg()) {
411        if (!Param->hasUnparsedDefaultArg())
412          Param->getDefaultArg()->Destroy(Context);
413        Param->setDefaultArg(0);
414      }
415    }
416  }
417}
418
419/// isCurrentClassName - Determine whether the identifier II is the
420/// name of the class type currently being defined. In the case of
421/// nested classes, this will only return true if II is the name of
422/// the innermost class.
423bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
424                              const CXXScopeSpec *SS) {
425  assert(getLangOptions().CPlusPlus && "No class names in C!");
426
427  CXXRecordDecl *CurDecl;
428  if (SS && SS->isSet() && !SS->isInvalid()) {
429    DeclContext *DC = computeDeclContext(*SS, true);
430    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
431  } else
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
433
434  if (CurDecl && CurDecl->getIdentifier())
435    return &II == CurDecl->getIdentifier();
436  else
437    return false;
438}
439
440/// \brief Check the validity of a C++ base class specifier.
441///
442/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
443/// and returns NULL otherwise.
444CXXBaseSpecifier *
445Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
446                         SourceRange SpecifierRange,
447                         bool Virtual, AccessSpecifier Access,
448                         QualType BaseType,
449                         SourceLocation BaseLoc) {
450  // C++ [class.union]p1:
451  //   A union shall not have base classes.
452  if (Class->isUnion()) {
453    Diag(Class->getLocation(), diag::err_base_clause_on_union)
454      << SpecifierRange;
455    return 0;
456  }
457
458  if (BaseType->isDependentType())
459    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
460                                Class->getTagKind() == RecordDecl::TK_class,
461                                Access, BaseType);
462
463  // Base specifiers must be record types.
464  if (!BaseType->isRecordType()) {
465    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
466    return 0;
467  }
468
469  // C++ [class.union]p1:
470  //   A union shall not be used as a base class.
471  if (BaseType->isUnionType()) {
472    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
473    return 0;
474  }
475
476  // C++ [class.derived]p2:
477  //   The class-name in a base-specifier shall not be an incompletely
478  //   defined class.
479  if (RequireCompleteType(BaseLoc, BaseType,
480                          PDiag(diag::err_incomplete_base_class)
481                            << SpecifierRange))
482    return 0;
483
484  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
485  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
486  assert(BaseDecl && "Record type has no declaration");
487  BaseDecl = BaseDecl->getDefinition();
488  assert(BaseDecl && "Base type is not incomplete, but has no definition");
489  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
490  assert(CXXBaseDecl && "Base type is not a C++ type");
491
492  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
493  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
494    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
495    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
496      << BaseType;
497    return 0;
498  }
499
500  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
501
502  // Create the base specifier.
503  // FIXME: Allocate via ASTContext?
504  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
505                              Class->getTagKind() == RecordDecl::TK_class,
506                              Access, BaseType);
507}
508
509void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
510                                          const CXXRecordDecl *BaseClass,
511                                          bool BaseIsVirtual) {
512  // A class with a non-empty base class is not empty.
513  // FIXME: Standard ref?
514  if (!BaseClass->isEmpty())
515    Class->setEmpty(false);
516
517  // C++ [class.virtual]p1:
518  //   A class that [...] inherits a virtual function is called a polymorphic
519  //   class.
520  if (BaseClass->isPolymorphic())
521    Class->setPolymorphic(true);
522
523  // C++ [dcl.init.aggr]p1:
524  //   An aggregate is [...] a class with [...] no base classes [...].
525  Class->setAggregate(false);
526
527  // C++ [class]p4:
528  //   A POD-struct is an aggregate class...
529  Class->setPOD(false);
530
531  if (BaseIsVirtual) {
532    // C++ [class.ctor]p5:
533    //   A constructor is trivial if its class has no virtual base classes.
534    Class->setHasTrivialConstructor(false);
535
536    // C++ [class.copy]p6:
537    //   A copy constructor is trivial if its class has no virtual base classes.
538    Class->setHasTrivialCopyConstructor(false);
539
540    // C++ [class.copy]p11:
541    //   A copy assignment operator is trivial if its class has no virtual
542    //   base classes.
543    Class->setHasTrivialCopyAssignment(false);
544
545    // C++0x [meta.unary.prop] is_empty:
546    //    T is a class type, but not a union type, with ... no virtual base
547    //    classes
548    Class->setEmpty(false);
549  } else {
550    // C++ [class.ctor]p5:
551    //   A constructor is trivial if all the direct base classes of its
552    //   class have trivial constructors.
553    if (!BaseClass->hasTrivialConstructor())
554      Class->setHasTrivialConstructor(false);
555
556    // C++ [class.copy]p6:
557    //   A copy constructor is trivial if all the direct base classes of its
558    //   class have trivial copy constructors.
559    if (!BaseClass->hasTrivialCopyConstructor())
560      Class->setHasTrivialCopyConstructor(false);
561
562    // C++ [class.copy]p11:
563    //   A copy assignment operator is trivial if all the direct base classes
564    //   of its class have trivial copy assignment operators.
565    if (!BaseClass->hasTrivialCopyAssignment())
566      Class->setHasTrivialCopyAssignment(false);
567  }
568
569  // C++ [class.ctor]p3:
570  //   A destructor is trivial if all the direct base classes of its class
571  //   have trivial destructors.
572  if (!BaseClass->hasTrivialDestructor())
573    Class->setHasTrivialDestructor(false);
574}
575
576/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
577/// one entry in the base class list of a class specifier, for
578/// example:
579///    class foo : public bar, virtual private baz {
580/// 'public bar' and 'virtual private baz' are each base-specifiers.
581Sema::BaseResult
582Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
583                         bool Virtual, AccessSpecifier Access,
584                         TypeTy *basetype, SourceLocation BaseLoc) {
585  if (!classdecl)
586    return true;
587
588  AdjustDeclIfTemplate(classdecl);
589  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
590  if (!Class)
591    return true;
592
593  QualType BaseType = GetTypeFromParser(basetype);
594  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
595                                                      Virtual, Access,
596                                                      BaseType, BaseLoc))
597    return BaseSpec;
598
599  return true;
600}
601
602/// \brief Performs the actual work of attaching the given base class
603/// specifiers to a C++ class.
604bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
605                                unsigned NumBases) {
606 if (NumBases == 0)
607    return false;
608
609  // Used to keep track of which base types we have already seen, so
610  // that we can properly diagnose redundant direct base types. Note
611  // that the key is always the unqualified canonical type of the base
612  // class.
613  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
614
615  // Copy non-redundant base specifiers into permanent storage.
616  unsigned NumGoodBases = 0;
617  bool Invalid = false;
618  for (unsigned idx = 0; idx < NumBases; ++idx) {
619    QualType NewBaseType
620      = Context.getCanonicalType(Bases[idx]->getType());
621    NewBaseType = NewBaseType.getLocalUnqualifiedType();
622
623    if (KnownBaseTypes[NewBaseType]) {
624      // C++ [class.mi]p3:
625      //   A class shall not be specified as a direct base class of a
626      //   derived class more than once.
627      Diag(Bases[idx]->getSourceRange().getBegin(),
628           diag::err_duplicate_base_class)
629        << KnownBaseTypes[NewBaseType]->getType()
630        << Bases[idx]->getSourceRange();
631
632      // Delete the duplicate base class specifier; we're going to
633      // overwrite its pointer later.
634      Context.Deallocate(Bases[idx]);
635
636      Invalid = true;
637    } else {
638      // Okay, add this new base class.
639      KnownBaseTypes[NewBaseType] = Bases[idx];
640      Bases[NumGoodBases++] = Bases[idx];
641    }
642  }
643
644  // Attach the remaining base class specifiers to the derived class.
645  Class->setBases(Bases, NumGoodBases);
646
647  // Delete the remaining (good) base class specifiers, since their
648  // data has been copied into the CXXRecordDecl.
649  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
650    Context.Deallocate(Bases[idx]);
651
652  return Invalid;
653}
654
655/// ActOnBaseSpecifiers - Attach the given base specifiers to the
656/// class, after checking whether there are any duplicate base
657/// classes.
658void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
659                               unsigned NumBases) {
660  if (!ClassDecl || !Bases || !NumBases)
661    return;
662
663  AdjustDeclIfTemplate(ClassDecl);
664  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
665                       (CXXBaseSpecifier**)(Bases), NumBases);
666}
667
668/// \brief Determine whether the type \p Derived is a C++ class that is
669/// derived from the type \p Base.
670bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
671  if (!getLangOptions().CPlusPlus)
672    return false;
673
674  const RecordType *DerivedRT = Derived->getAs<RecordType>();
675  if (!DerivedRT)
676    return false;
677
678  const RecordType *BaseRT = Base->getAs<RecordType>();
679  if (!BaseRT)
680    return false;
681
682  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
683  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
684  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
685  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
686}
687
688/// \brief Determine whether the type \p Derived is a C++ class that is
689/// derived from the type \p Base.
690bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
691  if (!getLangOptions().CPlusPlus)
692    return false;
693
694  const RecordType *DerivedRT = Derived->getAs<RecordType>();
695  if (!DerivedRT)
696    return false;
697
698  const RecordType *BaseRT = Base->getAs<RecordType>();
699  if (!BaseRT)
700    return false;
701
702  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
703  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
704  return DerivedRD->isDerivedFrom(BaseRD, Paths);
705}
706
707/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
708/// conversion (where Derived and Base are class types) is
709/// well-formed, meaning that the conversion is unambiguous (and
710/// that all of the base classes are accessible). Returns true
711/// and emits a diagnostic if the code is ill-formed, returns false
712/// otherwise. Loc is the location where this routine should point to
713/// if there is an error, and Range is the source range to highlight
714/// if there is an error.
715bool
716Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
717                                   AccessDiagnosticsKind ADK,
718                                   unsigned AmbigiousBaseConvID,
719                                   SourceLocation Loc, SourceRange Range,
720                                   DeclarationName Name) {
721  // First, determine whether the path from Derived to Base is
722  // ambiguous. This is slightly more expensive than checking whether
723  // the Derived to Base conversion exists, because here we need to
724  // explore multiple paths to determine if there is an ambiguity.
725  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
726                     /*DetectVirtual=*/false);
727  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
728  assert(DerivationOkay &&
729         "Can only be used with a derived-to-base conversion");
730  (void)DerivationOkay;
731
732  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
733    if (ADK == ADK_quiet)
734      return false;
735
736    // Check that the base class can be accessed.
737    switch (CheckBaseClassAccess(Loc, /*IsBaseToDerived*/ false,
738                                 Base, Derived, Paths.front(),
739                                 /*force*/ false,
740                                 /*unprivileged*/ false,
741                                 ADK)) {
742    case AR_accessible: return false;
743    case AR_inaccessible: return true;
744    case AR_dependent: return false;
745    case AR_delayed: return false;
746    }
747  }
748
749  // We know that the derived-to-base conversion is ambiguous, and
750  // we're going to produce a diagnostic. Perform the derived-to-base
751  // search just one more time to compute all of the possible paths so
752  // that we can print them out. This is more expensive than any of
753  // the previous derived-to-base checks we've done, but at this point
754  // performance isn't as much of an issue.
755  Paths.clear();
756  Paths.setRecordingPaths(true);
757  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
758  assert(StillOkay && "Can only be used with a derived-to-base conversion");
759  (void)StillOkay;
760
761  // Build up a textual representation of the ambiguous paths, e.g.,
762  // D -> B -> A, that will be used to illustrate the ambiguous
763  // conversions in the diagnostic. We only print one of the paths
764  // to each base class subobject.
765  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
766
767  Diag(Loc, AmbigiousBaseConvID)
768  << Derived << Base << PathDisplayStr << Range << Name;
769  return true;
770}
771
772bool
773Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
774                                   SourceLocation Loc, SourceRange Range,
775                                   bool IgnoreAccess) {
776  return CheckDerivedToBaseConversion(Derived, Base,
777                                      IgnoreAccess ? ADK_quiet : ADK_normal,
778                                      diag::err_ambiguous_derived_to_base_conv,
779                                      Loc, Range, DeclarationName());
780}
781
782
783/// @brief Builds a string representing ambiguous paths from a
784/// specific derived class to different subobjects of the same base
785/// class.
786///
787/// This function builds a string that can be used in error messages
788/// to show the different paths that one can take through the
789/// inheritance hierarchy to go from the derived class to different
790/// subobjects of a base class. The result looks something like this:
791/// @code
792/// struct D -> struct B -> struct A
793/// struct D -> struct C -> struct A
794/// @endcode
795std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
796  std::string PathDisplayStr;
797  std::set<unsigned> DisplayedPaths;
798  for (CXXBasePaths::paths_iterator Path = Paths.begin();
799       Path != Paths.end(); ++Path) {
800    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
801      // We haven't displayed a path to this particular base
802      // class subobject yet.
803      PathDisplayStr += "\n    ";
804      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
805      for (CXXBasePath::const_iterator Element = Path->begin();
806           Element != Path->end(); ++Element)
807        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
808    }
809  }
810
811  return PathDisplayStr;
812}
813
814//===----------------------------------------------------------------------===//
815// C++ class member Handling
816//===----------------------------------------------------------------------===//
817
818/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
819/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
820/// bitfield width if there is one and 'InitExpr' specifies the initializer if
821/// any.
822Sema::DeclPtrTy
823Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
824                               MultiTemplateParamsArg TemplateParameterLists,
825                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
826                               bool Deleted) {
827  const DeclSpec &DS = D.getDeclSpec();
828  DeclarationName Name = GetNameForDeclarator(D);
829  Expr *BitWidth = static_cast<Expr*>(BW);
830  Expr *Init = static_cast<Expr*>(InitExpr);
831  SourceLocation Loc = D.getIdentifierLoc();
832
833  bool isFunc = D.isFunctionDeclarator();
834
835  assert(!DS.isFriendSpecified());
836
837  // C++ 9.2p6: A member shall not be declared to have automatic storage
838  // duration (auto, register) or with the extern storage-class-specifier.
839  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
840  // data members and cannot be applied to names declared const or static,
841  // and cannot be applied to reference members.
842  switch (DS.getStorageClassSpec()) {
843    case DeclSpec::SCS_unspecified:
844    case DeclSpec::SCS_typedef:
845    case DeclSpec::SCS_static:
846      // FALL THROUGH.
847      break;
848    case DeclSpec::SCS_mutable:
849      if (isFunc) {
850        if (DS.getStorageClassSpecLoc().isValid())
851          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
852        else
853          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
854
855        // FIXME: It would be nicer if the keyword was ignored only for this
856        // declarator. Otherwise we could get follow-up errors.
857        D.getMutableDeclSpec().ClearStorageClassSpecs();
858      } else {
859        QualType T = GetTypeForDeclarator(D, S);
860        diag::kind err = static_cast<diag::kind>(0);
861        if (T->isReferenceType())
862          err = diag::err_mutable_reference;
863        else if (T.isConstQualified())
864          err = diag::err_mutable_const;
865        if (err != 0) {
866          if (DS.getStorageClassSpecLoc().isValid())
867            Diag(DS.getStorageClassSpecLoc(), err);
868          else
869            Diag(DS.getThreadSpecLoc(), err);
870          // FIXME: It would be nicer if the keyword was ignored only for this
871          // declarator. Otherwise we could get follow-up errors.
872          D.getMutableDeclSpec().ClearStorageClassSpecs();
873        }
874      }
875      break;
876    default:
877      if (DS.getStorageClassSpecLoc().isValid())
878        Diag(DS.getStorageClassSpecLoc(),
879             diag::err_storageclass_invalid_for_member);
880      else
881        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
882      D.getMutableDeclSpec().ClearStorageClassSpecs();
883  }
884
885  if (!isFunc &&
886      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
887      D.getNumTypeObjects() == 0) {
888    // Check also for this case:
889    //
890    // typedef int f();
891    // f a;
892    //
893    QualType TDType = GetTypeFromParser(DS.getTypeRep());
894    isFunc = TDType->isFunctionType();
895  }
896
897  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
898                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
899                      !isFunc);
900
901  Decl *Member;
902  if (isInstField) {
903    // FIXME: Check for template parameters!
904    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
905                         AS);
906    assert(Member && "HandleField never returns null");
907  } else {
908    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
909               .getAs<Decl>();
910    if (!Member) {
911      if (BitWidth) DeleteExpr(BitWidth);
912      return DeclPtrTy();
913    }
914
915    // Non-instance-fields can't have a bitfield.
916    if (BitWidth) {
917      if (Member->isInvalidDecl()) {
918        // don't emit another diagnostic.
919      } else if (isa<VarDecl>(Member)) {
920        // C++ 9.6p3: A bit-field shall not be a static member.
921        // "static member 'A' cannot be a bit-field"
922        Diag(Loc, diag::err_static_not_bitfield)
923          << Name << BitWidth->getSourceRange();
924      } else if (isa<TypedefDecl>(Member)) {
925        // "typedef member 'x' cannot be a bit-field"
926        Diag(Loc, diag::err_typedef_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else {
929        // A function typedef ("typedef int f(); f a;").
930        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
931        Diag(Loc, diag::err_not_integral_type_bitfield)
932          << Name << cast<ValueDecl>(Member)->getType()
933          << BitWidth->getSourceRange();
934      }
935
936      DeleteExpr(BitWidth);
937      BitWidth = 0;
938      Member->setInvalidDecl();
939    }
940
941    Member->setAccess(AS);
942
943    // If we have declared a member function template, set the access of the
944    // templated declaration as well.
945    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
946      FunTmpl->getTemplatedDecl()->setAccess(AS);
947  }
948
949  assert((Name || isInstField) && "No identifier for non-field ?");
950
951  if (Init)
952    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
953  if (Deleted) // FIXME: Source location is not very good.
954    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
955
956  if (isInstField) {
957    FieldCollector->Add(cast<FieldDecl>(Member));
958    return DeclPtrTy();
959  }
960  return DeclPtrTy::make(Member);
961}
962
963/// \brief Find the direct and/or virtual base specifiers that
964/// correspond to the given base type, for use in base initialization
965/// within a constructor.
966static bool FindBaseInitializer(Sema &SemaRef,
967                                CXXRecordDecl *ClassDecl,
968                                QualType BaseType,
969                                const CXXBaseSpecifier *&DirectBaseSpec,
970                                const CXXBaseSpecifier *&VirtualBaseSpec) {
971  // First, check for a direct base class.
972  DirectBaseSpec = 0;
973  for (CXXRecordDecl::base_class_const_iterator Base
974         = ClassDecl->bases_begin();
975       Base != ClassDecl->bases_end(); ++Base) {
976    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
977      // We found a direct base of this type. That's what we're
978      // initializing.
979      DirectBaseSpec = &*Base;
980      break;
981    }
982  }
983
984  // Check for a virtual base class.
985  // FIXME: We might be able to short-circuit this if we know in advance that
986  // there are no virtual bases.
987  VirtualBaseSpec = 0;
988  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
989    // We haven't found a base yet; search the class hierarchy for a
990    // virtual base class.
991    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
992                       /*DetectVirtual=*/false);
993    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
994                              BaseType, Paths)) {
995      for (CXXBasePaths::paths_iterator Path = Paths.begin();
996           Path != Paths.end(); ++Path) {
997        if (Path->back().Base->isVirtual()) {
998          VirtualBaseSpec = Path->back().Base;
999          break;
1000        }
1001      }
1002    }
1003  }
1004
1005  return DirectBaseSpec || VirtualBaseSpec;
1006}
1007
1008/// ActOnMemInitializer - Handle a C++ member initializer.
1009Sema::MemInitResult
1010Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1011                          Scope *S,
1012                          const CXXScopeSpec &SS,
1013                          IdentifierInfo *MemberOrBase,
1014                          TypeTy *TemplateTypeTy,
1015                          SourceLocation IdLoc,
1016                          SourceLocation LParenLoc,
1017                          ExprTy **Args, unsigned NumArgs,
1018                          SourceLocation *CommaLocs,
1019                          SourceLocation RParenLoc) {
1020  if (!ConstructorD)
1021    return true;
1022
1023  AdjustDeclIfTemplate(ConstructorD);
1024
1025  CXXConstructorDecl *Constructor
1026    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1027  if (!Constructor) {
1028    // The user wrote a constructor initializer on a function that is
1029    // not a C++ constructor. Ignore the error for now, because we may
1030    // have more member initializers coming; we'll diagnose it just
1031    // once in ActOnMemInitializers.
1032    return true;
1033  }
1034
1035  CXXRecordDecl *ClassDecl = Constructor->getParent();
1036
1037  // C++ [class.base.init]p2:
1038  //   Names in a mem-initializer-id are looked up in the scope of the
1039  //   constructor’s class and, if not found in that scope, are looked
1040  //   up in the scope containing the constructor’s
1041  //   definition. [Note: if the constructor’s class contains a member
1042  //   with the same name as a direct or virtual base class of the
1043  //   class, a mem-initializer-id naming the member or base class and
1044  //   composed of a single identifier refers to the class member. A
1045  //   mem-initializer-id for the hidden base class may be specified
1046  //   using a qualified name. ]
1047  if (!SS.getScopeRep() && !TemplateTypeTy) {
1048    // Look for a member, first.
1049    FieldDecl *Member = 0;
1050    DeclContext::lookup_result Result
1051      = ClassDecl->lookup(MemberOrBase);
1052    if (Result.first != Result.second)
1053      Member = dyn_cast<FieldDecl>(*Result.first);
1054
1055    // FIXME: Handle members of an anonymous union.
1056
1057    if (Member)
1058      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1059                                    LParenLoc, RParenLoc);
1060  }
1061  // It didn't name a member, so see if it names a class.
1062  QualType BaseType;
1063  TypeSourceInfo *TInfo = 0;
1064
1065  if (TemplateTypeTy) {
1066    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1067  } else {
1068    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1069    LookupParsedName(R, S, &SS);
1070
1071    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1072    if (!TyD) {
1073      if (R.isAmbiguous()) return true;
1074
1075      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1076        bool NotUnknownSpecialization = false;
1077        DeclContext *DC = computeDeclContext(SS, false);
1078        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1079          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1080
1081        if (!NotUnknownSpecialization) {
1082          // When the scope specifier can refer to a member of an unknown
1083          // specialization, we take it as a type name.
1084          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1085                                       *MemberOrBase, SS.getRange());
1086          R.clear();
1087        }
1088      }
1089
1090      // If no results were found, try to correct typos.
1091      if (R.empty() && BaseType.isNull() &&
1092          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1093        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1094          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1095            // We have found a non-static data member with a similar
1096            // name to what was typed; complain and initialize that
1097            // member.
1098            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1099              << MemberOrBase << true << R.getLookupName()
1100              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1101                                               R.getLookupName().getAsString());
1102            Diag(Member->getLocation(), diag::note_previous_decl)
1103              << Member->getDeclName();
1104
1105            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                          LParenLoc, RParenLoc);
1107          }
1108        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1109          const CXXBaseSpecifier *DirectBaseSpec;
1110          const CXXBaseSpecifier *VirtualBaseSpec;
1111          if (FindBaseInitializer(*this, ClassDecl,
1112                                  Context.getTypeDeclType(Type),
1113                                  DirectBaseSpec, VirtualBaseSpec)) {
1114            // We have found a direct or virtual base class with a
1115            // similar name to what was typed; complain and initialize
1116            // that base class.
1117            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1118              << MemberOrBase << false << R.getLookupName()
1119              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1120                                               R.getLookupName().getAsString());
1121
1122            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1123                                                             : VirtualBaseSpec;
1124            Diag(BaseSpec->getSourceRange().getBegin(),
1125                 diag::note_base_class_specified_here)
1126              << BaseSpec->getType()
1127              << BaseSpec->getSourceRange();
1128
1129            TyD = Type;
1130          }
1131        }
1132      }
1133
1134      if (!TyD && BaseType.isNull()) {
1135        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1136          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1137        return true;
1138      }
1139    }
1140
1141    if (BaseType.isNull()) {
1142      BaseType = Context.getTypeDeclType(TyD);
1143      if (SS.isSet()) {
1144        NestedNameSpecifier *Qualifier =
1145          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1146
1147        // FIXME: preserve source range information
1148        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1149      }
1150    }
1151  }
1152
1153  if (!TInfo)
1154    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1155
1156  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1157                              LParenLoc, RParenLoc, ClassDecl);
1158}
1159
1160/// Checks an initializer expression for use of uninitialized fields, such as
1161/// containing the field that is being initialized. Returns true if there is an
1162/// uninitialized field was used an updates the SourceLocation parameter; false
1163/// otherwise.
1164static bool InitExprContainsUninitializedFields(const Stmt* S,
1165                                                const FieldDecl* LhsField,
1166                                                SourceLocation* L) {
1167  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1168  if (ME) {
1169    const NamedDecl* RhsField = ME->getMemberDecl();
1170    if (RhsField == LhsField) {
1171      // Initializing a field with itself. Throw a warning.
1172      // But wait; there are exceptions!
1173      // Exception #1:  The field may not belong to this record.
1174      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1175      const Expr* base = ME->getBase();
1176      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1177        // Even though the field matches, it does not belong to this record.
1178        return false;
1179      }
1180      // None of the exceptions triggered; return true to indicate an
1181      // uninitialized field was used.
1182      *L = ME->getMemberLoc();
1183      return true;
1184    }
1185  }
1186  bool found = false;
1187  for (Stmt::const_child_iterator it = S->child_begin();
1188       it != S->child_end() && found == false;
1189       ++it) {
1190    if (isa<CallExpr>(S)) {
1191      // Do not descend into function calls or constructors, as the use
1192      // of an uninitialized field may be valid. One would have to inspect
1193      // the contents of the function/ctor to determine if it is safe or not.
1194      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1195      // may be safe, depending on what the function/ctor does.
1196      continue;
1197    }
1198    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1199  }
1200  return found;
1201}
1202
1203Sema::MemInitResult
1204Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1205                             unsigned NumArgs, SourceLocation IdLoc,
1206                             SourceLocation LParenLoc,
1207                             SourceLocation RParenLoc) {
1208  // Diagnose value-uses of fields to initialize themselves, e.g.
1209  //   foo(foo)
1210  // where foo is not also a parameter to the constructor.
1211  // TODO: implement -Wuninitialized and fold this into that framework.
1212  for (unsigned i = 0; i < NumArgs; ++i) {
1213    SourceLocation L;
1214    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1215      // FIXME: Return true in the case when other fields are used before being
1216      // uninitialized. For example, let this field be the i'th field. When
1217      // initializing the i'th field, throw a warning if any of the >= i'th
1218      // fields are used, as they are not yet initialized.
1219      // Right now we are only handling the case where the i'th field uses
1220      // itself in its initializer.
1221      Diag(L, diag::warn_field_is_uninit);
1222    }
1223  }
1224
1225  bool HasDependentArg = false;
1226  for (unsigned i = 0; i < NumArgs; i++)
1227    HasDependentArg |= Args[i]->isTypeDependent();
1228
1229  QualType FieldType = Member->getType();
1230  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1231    FieldType = Array->getElementType();
1232  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1233  if (FieldType->isDependentType() || HasDependentArg) {
1234    // Can't check initialization for a member of dependent type or when
1235    // any of the arguments are type-dependent expressions.
1236    OwningExprResult Init
1237      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1238                                          RParenLoc));
1239
1240    // Erase any temporaries within this evaluation context; we're not
1241    // going to track them in the AST, since we'll be rebuilding the
1242    // ASTs during template instantiation.
1243    ExprTemporaries.erase(
1244              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1245                          ExprTemporaries.end());
1246
1247    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1248                                                    LParenLoc,
1249                                                    Init.takeAs<Expr>(),
1250                                                    RParenLoc);
1251
1252  }
1253
1254  if (Member->isInvalidDecl())
1255    return true;
1256
1257  // Initialize the member.
1258  InitializedEntity MemberEntity =
1259    InitializedEntity::InitializeMember(Member, 0);
1260  InitializationKind Kind =
1261    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1262
1263  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1264
1265  OwningExprResult MemberInit =
1266    InitSeq.Perform(*this, MemberEntity, Kind,
1267                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1268  if (MemberInit.isInvalid())
1269    return true;
1270
1271  // C++0x [class.base.init]p7:
1272  //   The initialization of each base and member constitutes a
1273  //   full-expression.
1274  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // If we are in a dependent context, template instantiation will
1279  // perform this type-checking again. Just save the arguments that we
1280  // received in a ParenListExpr.
1281  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1282  // of the information that we have about the member
1283  // initializer. However, deconstructing the ASTs is a dicey process,
1284  // and this approach is far more likely to get the corner cases right.
1285  if (CurContext->isDependentContext()) {
1286    // Bump the reference count of all of the arguments.
1287    for (unsigned I = 0; I != NumArgs; ++I)
1288      Args[I]->Retain();
1289
1290    OwningExprResult Init
1291      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1292                                          RParenLoc));
1293    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1294                                                    LParenLoc,
1295                                                    Init.takeAs<Expr>(),
1296                                                    RParenLoc);
1297  }
1298
1299  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1300                                                  LParenLoc,
1301                                                  MemberInit.takeAs<Expr>(),
1302                                                  RParenLoc);
1303}
1304
1305Sema::MemInitResult
1306Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1307                           Expr **Args, unsigned NumArgs,
1308                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1309                           CXXRecordDecl *ClassDecl) {
1310  bool HasDependentArg = false;
1311  for (unsigned i = 0; i < NumArgs; i++)
1312    HasDependentArg |= Args[i]->isTypeDependent();
1313
1314  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1315  if (BaseType->isDependentType() || HasDependentArg) {
1316    // Can't check initialization for a base of dependent type or when
1317    // any of the arguments are type-dependent expressions.
1318    OwningExprResult BaseInit
1319      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1320                                          RParenLoc));
1321
1322    // Erase any temporaries within this evaluation context; we're not
1323    // going to track them in the AST, since we'll be rebuilding the
1324    // ASTs during template instantiation.
1325    ExprTemporaries.erase(
1326              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1327                          ExprTemporaries.end());
1328
1329    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1330                                                    LParenLoc,
1331                                                    BaseInit.takeAs<Expr>(),
1332                                                    RParenLoc);
1333  }
1334
1335  if (!BaseType->isRecordType())
1336    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1337             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1338
1339  // C++ [class.base.init]p2:
1340  //   [...] Unless the mem-initializer-id names a nonstatic data
1341  //   member of the constructor’s class or a direct or virtual base
1342  //   of that class, the mem-initializer is ill-formed. A
1343  //   mem-initializer-list can initialize a base class using any
1344  //   name that denotes that base class type.
1345
1346  // Check for direct and virtual base classes.
1347  const CXXBaseSpecifier *DirectBaseSpec = 0;
1348  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1349  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1350                      VirtualBaseSpec);
1351
1352  // C++ [base.class.init]p2:
1353  //   If a mem-initializer-id is ambiguous because it designates both
1354  //   a direct non-virtual base class and an inherited virtual base
1355  //   class, the mem-initializer is ill-formed.
1356  if (DirectBaseSpec && VirtualBaseSpec)
1357    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1358      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1359  // C++ [base.class.init]p2:
1360  // Unless the mem-initializer-id names a nonstatic data membeer of the
1361  // constructor's class ot a direst or virtual base of that class, the
1362  // mem-initializer is ill-formed.
1363  if (!DirectBaseSpec && !VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1365      << BaseType << ClassDecl->getNameAsCString()
1366      << BaseTInfo->getTypeLoc().getSourceRange();
1367
1368  CXXBaseSpecifier *BaseSpec
1369    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1370  if (!BaseSpec)
1371    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1372
1373  // Initialize the base.
1374  InitializedEntity BaseEntity =
1375    InitializedEntity::InitializeBase(Context, BaseSpec);
1376  InitializationKind Kind =
1377    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1378
1379  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1380
1381  OwningExprResult BaseInit =
1382    InitSeq.Perform(*this, BaseEntity, Kind,
1383                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1384  if (BaseInit.isInvalid())
1385    return true;
1386
1387  // C++0x [class.base.init]p7:
1388  //   The initialization of each base and member constitutes a
1389  //   full-expression.
1390  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // If we are in a dependent context, template instantiation will
1395  // perform this type-checking again. Just save the arguments that we
1396  // received in a ParenListExpr.
1397  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1398  // of the information that we have about the base
1399  // initializer. However, deconstructing the ASTs is a dicey process,
1400  // and this approach is far more likely to get the corner cases right.
1401  if (CurContext->isDependentContext()) {
1402    // Bump the reference count of all of the arguments.
1403    for (unsigned I = 0; I != NumArgs; ++I)
1404      Args[I]->Retain();
1405
1406    OwningExprResult Init
1407      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1408                                          RParenLoc));
1409    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1410                                                    LParenLoc,
1411                                                    Init.takeAs<Expr>(),
1412                                                    RParenLoc);
1413  }
1414
1415  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1416                                                  LParenLoc,
1417                                                  BaseInit.takeAs<Expr>(),
1418                                                  RParenLoc);
1419}
1420
1421bool
1422Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1423                                  CXXBaseOrMemberInitializer **Initializers,
1424                                  unsigned NumInitializers,
1425                                  bool IsImplicitConstructor,
1426                                  bool AnyErrors) {
1427  // We need to build the initializer AST according to order of construction
1428  // and not what user specified in the Initializers list.
1429  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1430  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1431  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1432  bool HasDependentBaseInit = false;
1433  bool HadError = false;
1434
1435  for (unsigned i = 0; i < NumInitializers; i++) {
1436    CXXBaseOrMemberInitializer *Member = Initializers[i];
1437    if (Member->isBaseInitializer()) {
1438      if (Member->getBaseClass()->isDependentType())
1439        HasDependentBaseInit = true;
1440      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1441    } else {
1442      AllBaseFields[Member->getMember()] = Member;
1443    }
1444  }
1445
1446  if (HasDependentBaseInit) {
1447    // FIXME. This does not preserve the ordering of the initializers.
1448    // Try (with -Wreorder)
1449    // template<class X> struct A {};
1450    // template<class X> struct B : A<X> {
1451    //   B() : x1(10), A<X>() {}
1452    //   int x1;
1453    // };
1454    // B<int> x;
1455    // On seeing one dependent type, we should essentially exit this routine
1456    // while preserving user-declared initializer list. When this routine is
1457    // called during instantiatiation process, this routine will rebuild the
1458    // ordered initializer list correctly.
1459
1460    // If we have a dependent base initialization, we can't determine the
1461    // association between initializers and bases; just dump the known
1462    // initializers into the list, and don't try to deal with other bases.
1463    for (unsigned i = 0; i < NumInitializers; i++) {
1464      CXXBaseOrMemberInitializer *Member = Initializers[i];
1465      if (Member->isBaseInitializer())
1466        AllToInit.push_back(Member);
1467    }
1468  } else {
1469    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1470
1471    // Push virtual bases before others.
1472    for (CXXRecordDecl::base_class_iterator VBase =
1473         ClassDecl->vbases_begin(),
1474         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1475      if (VBase->getType()->isDependentType())
1476        continue;
1477      if (CXXBaseOrMemberInitializer *Value
1478            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1479        AllToInit.push_back(Value);
1480      } else if (!AnyErrors) {
1481        InitializedEntity InitEntity
1482          = InitializedEntity::InitializeBase(Context, VBase);
1483        InitializationKind InitKind
1484          = InitializationKind::CreateDefault(Constructor->getLocation());
1485        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1486        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1487                                                    MultiExprArg(*this, 0, 0));
1488        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1489        if (BaseInit.isInvalid()) {
1490          HadError = true;
1491          continue;
1492        }
1493
1494        // Don't attach synthesized base initializers in a dependent
1495        // context; they'll be checked again at template instantiation
1496        // time.
1497        if (CurContext->isDependentContext())
1498          continue;
1499
1500        CXXBaseOrMemberInitializer *CXXBaseInit =
1501          new (Context) CXXBaseOrMemberInitializer(Context,
1502                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1503                                                              SourceLocation()),
1504                                                   SourceLocation(),
1505                                                   BaseInit.takeAs<Expr>(),
1506                                                   SourceLocation());
1507        AllToInit.push_back(CXXBaseInit);
1508      }
1509    }
1510
1511    for (CXXRecordDecl::base_class_iterator Base =
1512         ClassDecl->bases_begin(),
1513         E = ClassDecl->bases_end(); Base != E; ++Base) {
1514      // Virtuals are in the virtual base list and already constructed.
1515      if (Base->isVirtual())
1516        continue;
1517      // Skip dependent types.
1518      if (Base->getType()->isDependentType())
1519        continue;
1520      if (CXXBaseOrMemberInitializer *Value
1521            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1522        AllToInit.push_back(Value);
1523      }
1524      else if (!AnyErrors) {
1525        InitializedEntity InitEntity
1526          = InitializedEntity::InitializeBase(Context, Base);
1527        InitializationKind InitKind
1528          = InitializationKind::CreateDefault(Constructor->getLocation());
1529        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1530        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1531                                                    MultiExprArg(*this, 0, 0));
1532        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1533        if (BaseInit.isInvalid()) {
1534          HadError = true;
1535          continue;
1536        }
1537
1538        // Don't attach synthesized base initializers in a dependent
1539        // context; they'll be regenerated at template instantiation
1540        // time.
1541        if (CurContext->isDependentContext())
1542          continue;
1543
1544        CXXBaseOrMemberInitializer *CXXBaseInit =
1545          new (Context) CXXBaseOrMemberInitializer(Context,
1546                             Context.getTrivialTypeSourceInfo(Base->getType(),
1547                                                              SourceLocation()),
1548                                                   SourceLocation(),
1549                                                   BaseInit.takeAs<Expr>(),
1550                                                   SourceLocation());
1551        AllToInit.push_back(CXXBaseInit);
1552      }
1553    }
1554  }
1555
1556  // non-static data members.
1557  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1558       E = ClassDecl->field_end(); Field != E; ++Field) {
1559    if ((*Field)->isAnonymousStructOrUnion()) {
1560      if (const RecordType *FieldClassType =
1561          Field->getType()->getAs<RecordType>()) {
1562        CXXRecordDecl *FieldClassDecl
1563          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1564        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1565            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1566          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1567            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1568            // set to the anonymous union data member used in the initializer
1569            // list.
1570            Value->setMember(*Field);
1571            Value->setAnonUnionMember(*FA);
1572            AllToInit.push_back(Value);
1573            break;
1574          }
1575        }
1576      }
1577      continue;
1578    }
1579    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1580      AllToInit.push_back(Value);
1581      continue;
1582    }
1583
1584    if ((*Field)->getType()->isDependentType() || AnyErrors)
1585      continue;
1586
1587    QualType FT = Context.getBaseElementType((*Field)->getType());
1588    if (FT->getAs<RecordType>()) {
1589      InitializedEntity InitEntity
1590        = InitializedEntity::InitializeMember(*Field);
1591      InitializationKind InitKind
1592        = InitializationKind::CreateDefault(Constructor->getLocation());
1593
1594      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1595      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1596                                                    MultiExprArg(*this, 0, 0));
1597      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1598      if (MemberInit.isInvalid()) {
1599        HadError = true;
1600        continue;
1601      }
1602
1603      // Don't attach synthesized member initializers in a dependent
1604      // context; they'll be regenerated a template instantiation
1605      // time.
1606      if (CurContext->isDependentContext())
1607        continue;
1608
1609      CXXBaseOrMemberInitializer *Member =
1610        new (Context) CXXBaseOrMemberInitializer(Context,
1611                                                 *Field, SourceLocation(),
1612                                                 SourceLocation(),
1613                                                 MemberInit.takeAs<Expr>(),
1614                                                 SourceLocation());
1615
1616      AllToInit.push_back(Member);
1617    }
1618    else if (FT->isReferenceType()) {
1619      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1620        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1621        << 0 << (*Field)->getDeclName();
1622      Diag((*Field)->getLocation(), diag::note_declared_at);
1623      HadError = true;
1624    }
1625    else if (FT.isConstQualified()) {
1626      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1627        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1628        << 1 << (*Field)->getDeclName();
1629      Diag((*Field)->getLocation(), diag::note_declared_at);
1630      HadError = true;
1631    }
1632  }
1633
1634  NumInitializers = AllToInit.size();
1635  if (NumInitializers > 0) {
1636    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1637    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1638      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1639
1640    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1641    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1642      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1643  }
1644
1645  return HadError;
1646}
1647
1648static void *GetKeyForTopLevelField(FieldDecl *Field) {
1649  // For anonymous unions, use the class declaration as the key.
1650  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1651    if (RT->getDecl()->isAnonymousStructOrUnion())
1652      return static_cast<void *>(RT->getDecl());
1653  }
1654  return static_cast<void *>(Field);
1655}
1656
1657static void *GetKeyForBase(QualType BaseType) {
1658  if (const RecordType *RT = BaseType->getAs<RecordType>())
1659    return (void *)RT;
1660
1661  assert(0 && "Unexpected base type!");
1662  return 0;
1663}
1664
1665static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1666                             bool MemberMaybeAnon = false) {
1667  // For fields injected into the class via declaration of an anonymous union,
1668  // use its anonymous union class declaration as the unique key.
1669  if (Member->isMemberInitializer()) {
1670    FieldDecl *Field = Member->getMember();
1671
1672    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1673    // data member of the class. Data member used in the initializer list is
1674    // in AnonUnionMember field.
1675    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1676      Field = Member->getAnonUnionMember();
1677    if (Field->getDeclContext()->isRecord()) {
1678      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1679      if (RD->isAnonymousStructOrUnion())
1680        return static_cast<void *>(RD);
1681    }
1682    return static_cast<void *>(Field);
1683  }
1684
1685  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1686}
1687
1688/// ActOnMemInitializers - Handle the member initializers for a constructor.
1689void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1690                                SourceLocation ColonLoc,
1691                                MemInitTy **MemInits, unsigned NumMemInits,
1692                                bool AnyErrors) {
1693  if (!ConstructorDecl)
1694    return;
1695
1696  AdjustDeclIfTemplate(ConstructorDecl);
1697
1698  CXXConstructorDecl *Constructor
1699    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1700
1701  if (!Constructor) {
1702    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1703    return;
1704  }
1705
1706  if (!Constructor->isDependentContext()) {
1707    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1708    bool err = false;
1709    for (unsigned i = 0; i < NumMemInits; i++) {
1710      CXXBaseOrMemberInitializer *Member =
1711        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1712      void *KeyToMember = GetKeyForMember(Member);
1713      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1714      if (!PrevMember) {
1715        PrevMember = Member;
1716        continue;
1717      }
1718      if (FieldDecl *Field = Member->getMember())
1719        Diag(Member->getSourceLocation(),
1720             diag::error_multiple_mem_initialization)
1721          << Field->getNameAsString()
1722          << Member->getSourceRange();
1723      else {
1724        Type *BaseClass = Member->getBaseClass();
1725        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1726        Diag(Member->getSourceLocation(),
1727             diag::error_multiple_base_initialization)
1728          << QualType(BaseClass, 0)
1729          << Member->getSourceRange();
1730      }
1731      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1732        << 0;
1733      err = true;
1734    }
1735
1736    if (err)
1737      return;
1738  }
1739
1740  SetBaseOrMemberInitializers(Constructor,
1741                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1742                      NumMemInits, false, AnyErrors);
1743
1744  if (Constructor->isDependentContext())
1745    return;
1746
1747  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1748      Diagnostic::Ignored &&
1749      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1750      Diagnostic::Ignored)
1751    return;
1752
1753  // Also issue warning if order of ctor-initializer list does not match order
1754  // of 1) base class declarations and 2) order of non-static data members.
1755  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1756
1757  CXXRecordDecl *ClassDecl
1758    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1759  // Push virtual bases before others.
1760  for (CXXRecordDecl::base_class_iterator VBase =
1761       ClassDecl->vbases_begin(),
1762       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1763    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1764
1765  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1766       E = ClassDecl->bases_end(); Base != E; ++Base) {
1767    // Virtuals are alread in the virtual base list and are constructed
1768    // first.
1769    if (Base->isVirtual())
1770      continue;
1771    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1772  }
1773
1774  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1775       E = ClassDecl->field_end(); Field != E; ++Field)
1776    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1777
1778  int Last = AllBaseOrMembers.size();
1779  int curIndex = 0;
1780  CXXBaseOrMemberInitializer *PrevMember = 0;
1781  for (unsigned i = 0; i < NumMemInits; i++) {
1782    CXXBaseOrMemberInitializer *Member =
1783      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1784    void *MemberInCtorList = GetKeyForMember(Member, true);
1785
1786    for (; curIndex < Last; curIndex++)
1787      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1788        break;
1789    if (curIndex == Last) {
1790      assert(PrevMember && "Member not in member list?!");
1791      // Initializer as specified in ctor-initializer list is out of order.
1792      // Issue a warning diagnostic.
1793      if (PrevMember->isBaseInitializer()) {
1794        // Diagnostics is for an initialized base class.
1795        Type *BaseClass = PrevMember->getBaseClass();
1796        Diag(PrevMember->getSourceLocation(),
1797             diag::warn_base_initialized)
1798          << QualType(BaseClass, 0);
1799      } else {
1800        FieldDecl *Field = PrevMember->getMember();
1801        Diag(PrevMember->getSourceLocation(),
1802             diag::warn_field_initialized)
1803          << Field->getNameAsString();
1804      }
1805      // Also the note!
1806      if (FieldDecl *Field = Member->getMember())
1807        Diag(Member->getSourceLocation(),
1808             diag::note_fieldorbase_initialized_here) << 0
1809          << Field->getNameAsString();
1810      else {
1811        Type *BaseClass = Member->getBaseClass();
1812        Diag(Member->getSourceLocation(),
1813             diag::note_fieldorbase_initialized_here) << 1
1814          << QualType(BaseClass, 0);
1815      }
1816      for (curIndex = 0; curIndex < Last; curIndex++)
1817        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1818          break;
1819    }
1820    PrevMember = Member;
1821  }
1822}
1823
1824void
1825Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1826  // Ignore dependent destructors.
1827  if (Destructor->isDependentContext())
1828    return;
1829
1830  CXXRecordDecl *ClassDecl = Destructor->getParent();
1831
1832  // Non-static data members.
1833  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1834       E = ClassDecl->field_end(); I != E; ++I) {
1835    FieldDecl *Field = *I;
1836
1837    QualType FieldType = Context.getBaseElementType(Field->getType());
1838
1839    const RecordType* RT = FieldType->getAs<RecordType>();
1840    if (!RT)
1841      continue;
1842
1843    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1844    if (FieldClassDecl->hasTrivialDestructor())
1845      continue;
1846
1847    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1848    MarkDeclarationReferenced(Destructor->getLocation(),
1849                              const_cast<CXXDestructorDecl*>(Dtor));
1850  }
1851
1852  // Bases.
1853  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1854       E = ClassDecl->bases_end(); Base != E; ++Base) {
1855    // Ignore virtual bases.
1856    if (Base->isVirtual())
1857      continue;
1858
1859    // Ignore trivial destructors.
1860    CXXRecordDecl *BaseClassDecl
1861      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1862    if (BaseClassDecl->hasTrivialDestructor())
1863      continue;
1864
1865    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1866    MarkDeclarationReferenced(Destructor->getLocation(),
1867                              const_cast<CXXDestructorDecl*>(Dtor));
1868  }
1869
1870  // Virtual bases.
1871  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1872       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1873    // Ignore trivial destructors.
1874    CXXRecordDecl *BaseClassDecl
1875      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1876    if (BaseClassDecl->hasTrivialDestructor())
1877      continue;
1878
1879    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1880    MarkDeclarationReferenced(Destructor->getLocation(),
1881                              const_cast<CXXDestructorDecl*>(Dtor));
1882  }
1883}
1884
1885void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1886  if (!CDtorDecl)
1887    return;
1888
1889  AdjustDeclIfTemplate(CDtorDecl);
1890
1891  if (CXXConstructorDecl *Constructor
1892      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1893    SetBaseOrMemberInitializers(Constructor, 0, 0, false, false);
1894}
1895
1896namespace {
1897  /// PureVirtualMethodCollector - traverses a class and its superclasses
1898  /// and determines if it has any pure virtual methods.
1899  class PureVirtualMethodCollector {
1900    ASTContext &Context;
1901
1902  public:
1903    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1904
1905  private:
1906    MethodList Methods;
1907
1908    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1909
1910  public:
1911    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1912      : Context(Ctx) {
1913
1914      MethodList List;
1915      Collect(RD, List);
1916
1917      // Copy the temporary list to methods, and make sure to ignore any
1918      // null entries.
1919      for (size_t i = 0, e = List.size(); i != e; ++i) {
1920        if (List[i])
1921          Methods.push_back(List[i]);
1922      }
1923    }
1924
1925    bool empty() const { return Methods.empty(); }
1926
1927    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1928    MethodList::const_iterator methods_end() { return Methods.end(); }
1929  };
1930
1931  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1932                                           MethodList& Methods) {
1933    // First, collect the pure virtual methods for the base classes.
1934    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1935         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1936      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1937        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1938        if (BaseDecl && BaseDecl->isAbstract())
1939          Collect(BaseDecl, Methods);
1940      }
1941    }
1942
1943    // Next, zero out any pure virtual methods that this class overrides.
1944    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1945
1946    MethodSetTy OverriddenMethods;
1947    size_t MethodsSize = Methods.size();
1948
1949    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1950         i != e; ++i) {
1951      // Traverse the record, looking for methods.
1952      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1953        // If the method is pure virtual, add it to the methods vector.
1954        if (MD->isPure())
1955          Methods.push_back(MD);
1956
1957        // Record all the overridden methods in our set.
1958        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1959             E = MD->end_overridden_methods(); I != E; ++I) {
1960          // Keep track of the overridden methods.
1961          OverriddenMethods.insert(*I);
1962        }
1963      }
1964    }
1965
1966    // Now go through the methods and zero out all the ones we know are
1967    // overridden.
1968    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1969      if (OverriddenMethods.count(Methods[i]))
1970        Methods[i] = 0;
1971    }
1972
1973  }
1974}
1975
1976
1977bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1978                                  unsigned DiagID, AbstractDiagSelID SelID,
1979                                  const CXXRecordDecl *CurrentRD) {
1980  if (SelID == -1)
1981    return RequireNonAbstractType(Loc, T,
1982                                  PDiag(DiagID), CurrentRD);
1983  else
1984    return RequireNonAbstractType(Loc, T,
1985                                  PDiag(DiagID) << SelID, CurrentRD);
1986}
1987
1988bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1989                                  const PartialDiagnostic &PD,
1990                                  const CXXRecordDecl *CurrentRD) {
1991  if (!getLangOptions().CPlusPlus)
1992    return false;
1993
1994  if (const ArrayType *AT = Context.getAsArrayType(T))
1995    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1996                                  CurrentRD);
1997
1998  if (const PointerType *PT = T->getAs<PointerType>()) {
1999    // Find the innermost pointer type.
2000    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2001      PT = T;
2002
2003    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2004      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2005  }
2006
2007  const RecordType *RT = T->getAs<RecordType>();
2008  if (!RT)
2009    return false;
2010
2011  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2012
2013  if (CurrentRD && CurrentRD != RD)
2014    return false;
2015
2016  // FIXME: is this reasonable?  It matches current behavior, but....
2017  if (!RD->getDefinition())
2018    return false;
2019
2020  if (!RD->isAbstract())
2021    return false;
2022
2023  Diag(Loc, PD) << RD->getDeclName();
2024
2025  // Check if we've already emitted the list of pure virtual functions for this
2026  // class.
2027  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2028    return true;
2029
2030  PureVirtualMethodCollector Collector(Context, RD);
2031
2032  for (PureVirtualMethodCollector::MethodList::const_iterator I =
2033       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
2034    const CXXMethodDecl *MD = *I;
2035
2036    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
2037      MD->getDeclName();
2038  }
2039
2040  if (!PureVirtualClassDiagSet)
2041    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2042  PureVirtualClassDiagSet->insert(RD);
2043
2044  return true;
2045}
2046
2047namespace {
2048  class AbstractClassUsageDiagnoser
2049    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2050    Sema &SemaRef;
2051    CXXRecordDecl *AbstractClass;
2052
2053    bool VisitDeclContext(const DeclContext *DC) {
2054      bool Invalid = false;
2055
2056      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2057           E = DC->decls_end(); I != E; ++I)
2058        Invalid |= Visit(*I);
2059
2060      return Invalid;
2061    }
2062
2063  public:
2064    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2065      : SemaRef(SemaRef), AbstractClass(ac) {
2066        Visit(SemaRef.Context.getTranslationUnitDecl());
2067    }
2068
2069    bool VisitFunctionDecl(const FunctionDecl *FD) {
2070      if (FD->isThisDeclarationADefinition()) {
2071        // No need to do the check if we're in a definition, because it requires
2072        // that the return/param types are complete.
2073        // because that requires
2074        return VisitDeclContext(FD);
2075      }
2076
2077      // Check the return type.
2078      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2079      bool Invalid =
2080        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2081                                       diag::err_abstract_type_in_decl,
2082                                       Sema::AbstractReturnType,
2083                                       AbstractClass);
2084
2085      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2086           E = FD->param_end(); I != E; ++I) {
2087        const ParmVarDecl *VD = *I;
2088        Invalid |=
2089          SemaRef.RequireNonAbstractType(VD->getLocation(),
2090                                         VD->getOriginalType(),
2091                                         diag::err_abstract_type_in_decl,
2092                                         Sema::AbstractParamType,
2093                                         AbstractClass);
2094      }
2095
2096      return Invalid;
2097    }
2098
2099    bool VisitDecl(const Decl* D) {
2100      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2101        return VisitDeclContext(DC);
2102
2103      return false;
2104    }
2105  };
2106}
2107
2108/// \brief Perform semantic checks on a class definition that has been
2109/// completing, introducing implicitly-declared members, checking for
2110/// abstract types, etc.
2111void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2112  if (!Record || Record->isInvalidDecl())
2113    return;
2114
2115  if (!Record->isDependentType())
2116    AddImplicitlyDeclaredMembersToClass(Record);
2117
2118  if (Record->isInvalidDecl())
2119    return;
2120
2121  // Set access bits correctly on the directly-declared conversions.
2122  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2123  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2124    Convs->setAccess(I, (*I)->getAccess());
2125
2126  if (!Record->isAbstract()) {
2127    // Collect all the pure virtual methods and see if this is an abstract
2128    // class after all.
2129    PureVirtualMethodCollector Collector(Context, Record);
2130    if (!Collector.empty())
2131      Record->setAbstract(true);
2132  }
2133
2134  if (Record->isAbstract())
2135    (void)AbstractClassUsageDiagnoser(*this, Record);
2136}
2137
2138void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2139                                             DeclPtrTy TagDecl,
2140                                             SourceLocation LBrac,
2141                                             SourceLocation RBrac) {
2142  if (!TagDecl)
2143    return;
2144
2145  AdjustDeclIfTemplate(TagDecl);
2146
2147  ActOnFields(S, RLoc, TagDecl,
2148              (DeclPtrTy*)FieldCollector->getCurFields(),
2149              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2150
2151  CheckCompletedCXXClass(
2152                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2153}
2154
2155/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2156/// special functions, such as the default constructor, copy
2157/// constructor, or destructor, to the given C++ class (C++
2158/// [special]p1).  This routine can only be executed just before the
2159/// definition of the class is complete.
2160void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2161  CanQualType ClassType
2162    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2163
2164  // FIXME: Implicit declarations have exception specifications, which are
2165  // the union of the specifications of the implicitly called functions.
2166
2167  if (!ClassDecl->hasUserDeclaredConstructor()) {
2168    // C++ [class.ctor]p5:
2169    //   A default constructor for a class X is a constructor of class X
2170    //   that can be called without an argument. If there is no
2171    //   user-declared constructor for class X, a default constructor is
2172    //   implicitly declared. An implicitly-declared default constructor
2173    //   is an inline public member of its class.
2174    DeclarationName Name
2175      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2176    CXXConstructorDecl *DefaultCon =
2177      CXXConstructorDecl::Create(Context, ClassDecl,
2178                                 ClassDecl->getLocation(), Name,
2179                                 Context.getFunctionType(Context.VoidTy,
2180                                                         0, 0, false, 0,
2181                                                         /*FIXME*/false, false,
2182                                                         0, 0, false,
2183                                                         CC_Default),
2184                                 /*TInfo=*/0,
2185                                 /*isExplicit=*/false,
2186                                 /*isInline=*/true,
2187                                 /*isImplicitlyDeclared=*/true);
2188    DefaultCon->setAccess(AS_public);
2189    DefaultCon->setImplicit();
2190    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2191    ClassDecl->addDecl(DefaultCon);
2192  }
2193
2194  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2195    // C++ [class.copy]p4:
2196    //   If the class definition does not explicitly declare a copy
2197    //   constructor, one is declared implicitly.
2198
2199    // C++ [class.copy]p5:
2200    //   The implicitly-declared copy constructor for a class X will
2201    //   have the form
2202    //
2203    //       X::X(const X&)
2204    //
2205    //   if
2206    bool HasConstCopyConstructor = true;
2207
2208    //     -- each direct or virtual base class B of X has a copy
2209    //        constructor whose first parameter is of type const B& or
2210    //        const volatile B&, and
2211    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2212         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2213      const CXXRecordDecl *BaseClassDecl
2214        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2215      HasConstCopyConstructor
2216        = BaseClassDecl->hasConstCopyConstructor(Context);
2217    }
2218
2219    //     -- for all the nonstatic data members of X that are of a
2220    //        class type M (or array thereof), each such class type
2221    //        has a copy constructor whose first parameter is of type
2222    //        const M& or const volatile M&.
2223    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2224         HasConstCopyConstructor && Field != ClassDecl->field_end();
2225         ++Field) {
2226      QualType FieldType = (*Field)->getType();
2227      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2228        FieldType = Array->getElementType();
2229      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2230        const CXXRecordDecl *FieldClassDecl
2231          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2232        HasConstCopyConstructor
2233          = FieldClassDecl->hasConstCopyConstructor(Context);
2234      }
2235    }
2236
2237    //   Otherwise, the implicitly declared copy constructor will have
2238    //   the form
2239    //
2240    //       X::X(X&)
2241    QualType ArgType = ClassType;
2242    if (HasConstCopyConstructor)
2243      ArgType = ArgType.withConst();
2244    ArgType = Context.getLValueReferenceType(ArgType);
2245
2246    //   An implicitly-declared copy constructor is an inline public
2247    //   member of its class.
2248    DeclarationName Name
2249      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2250    CXXConstructorDecl *CopyConstructor
2251      = CXXConstructorDecl::Create(Context, ClassDecl,
2252                                   ClassDecl->getLocation(), Name,
2253                                   Context.getFunctionType(Context.VoidTy,
2254                                                           &ArgType, 1,
2255                                                           false, 0,
2256                                                           /*FIXME:*/false,
2257                                                           false, 0, 0, false,
2258                                                           CC_Default),
2259                                   /*TInfo=*/0,
2260                                   /*isExplicit=*/false,
2261                                   /*isInline=*/true,
2262                                   /*isImplicitlyDeclared=*/true);
2263    CopyConstructor->setAccess(AS_public);
2264    CopyConstructor->setImplicit();
2265    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2266
2267    // Add the parameter to the constructor.
2268    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2269                                                 ClassDecl->getLocation(),
2270                                                 /*IdentifierInfo=*/0,
2271                                                 ArgType, /*TInfo=*/0,
2272                                                 VarDecl::None, 0);
2273    CopyConstructor->setParams(&FromParam, 1);
2274    ClassDecl->addDecl(CopyConstructor);
2275  }
2276
2277  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2278    // Note: The following rules are largely analoguous to the copy
2279    // constructor rules. Note that virtual bases are not taken into account
2280    // for determining the argument type of the operator. Note also that
2281    // operators taking an object instead of a reference are allowed.
2282    //
2283    // C++ [class.copy]p10:
2284    //   If the class definition does not explicitly declare a copy
2285    //   assignment operator, one is declared implicitly.
2286    //   The implicitly-defined copy assignment operator for a class X
2287    //   will have the form
2288    //
2289    //       X& X::operator=(const X&)
2290    //
2291    //   if
2292    bool HasConstCopyAssignment = true;
2293
2294    //       -- each direct base class B of X has a copy assignment operator
2295    //          whose parameter is of type const B&, const volatile B& or B,
2296    //          and
2297    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2298         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2299      assert(!Base->getType()->isDependentType() &&
2300            "Cannot generate implicit members for class with dependent bases.");
2301      const CXXRecordDecl *BaseClassDecl
2302        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2303      const CXXMethodDecl *MD = 0;
2304      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2305                                                                     MD);
2306    }
2307
2308    //       -- for all the nonstatic data members of X that are of a class
2309    //          type M (or array thereof), each such class type has a copy
2310    //          assignment operator whose parameter is of type const M&,
2311    //          const volatile M& or M.
2312    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2313         HasConstCopyAssignment && Field != ClassDecl->field_end();
2314         ++Field) {
2315      QualType FieldType = (*Field)->getType();
2316      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2317        FieldType = Array->getElementType();
2318      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2319        const CXXRecordDecl *FieldClassDecl
2320          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2321        const CXXMethodDecl *MD = 0;
2322        HasConstCopyAssignment
2323          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2324      }
2325    }
2326
2327    //   Otherwise, the implicitly declared copy assignment operator will
2328    //   have the form
2329    //
2330    //       X& X::operator=(X&)
2331    QualType ArgType = ClassType;
2332    QualType RetType = Context.getLValueReferenceType(ArgType);
2333    if (HasConstCopyAssignment)
2334      ArgType = ArgType.withConst();
2335    ArgType = Context.getLValueReferenceType(ArgType);
2336
2337    //   An implicitly-declared copy assignment operator is an inline public
2338    //   member of its class.
2339    DeclarationName Name =
2340      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2341    CXXMethodDecl *CopyAssignment =
2342      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2343                            Context.getFunctionType(RetType, &ArgType, 1,
2344                                                    false, 0,
2345                                                    /*FIXME:*/false,
2346                                                    false, 0, 0, false,
2347                                                    CC_Default),
2348                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2349    CopyAssignment->setAccess(AS_public);
2350    CopyAssignment->setImplicit();
2351    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2352    CopyAssignment->setCopyAssignment(true);
2353
2354    // Add the parameter to the operator.
2355    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2356                                                 ClassDecl->getLocation(),
2357                                                 /*IdentifierInfo=*/0,
2358                                                 ArgType, /*TInfo=*/0,
2359                                                 VarDecl::None, 0);
2360    CopyAssignment->setParams(&FromParam, 1);
2361
2362    // Don't call addedAssignmentOperator. There is no way to distinguish an
2363    // implicit from an explicit assignment operator.
2364    ClassDecl->addDecl(CopyAssignment);
2365    AddOverriddenMethods(ClassDecl, CopyAssignment);
2366  }
2367
2368  if (!ClassDecl->hasUserDeclaredDestructor()) {
2369    // C++ [class.dtor]p2:
2370    //   If a class has no user-declared destructor, a destructor is
2371    //   declared implicitly. An implicitly-declared destructor is an
2372    //   inline public member of its class.
2373    DeclarationName Name
2374      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2375    CXXDestructorDecl *Destructor
2376      = CXXDestructorDecl::Create(Context, ClassDecl,
2377                                  ClassDecl->getLocation(), Name,
2378                                  Context.getFunctionType(Context.VoidTy,
2379                                                          0, 0, false, 0,
2380                                                           /*FIXME:*/false,
2381                                                           false, 0, 0, false,
2382                                                           CC_Default),
2383                                  /*isInline=*/true,
2384                                  /*isImplicitlyDeclared=*/true);
2385    Destructor->setAccess(AS_public);
2386    Destructor->setImplicit();
2387    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2388    ClassDecl->addDecl(Destructor);
2389
2390    AddOverriddenMethods(ClassDecl, Destructor);
2391  }
2392}
2393
2394void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2395  Decl *D = TemplateD.getAs<Decl>();
2396  if (!D)
2397    return;
2398
2399  TemplateParameterList *Params = 0;
2400  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2401    Params = Template->getTemplateParameters();
2402  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2403           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2404    Params = PartialSpec->getTemplateParameters();
2405  else
2406    return;
2407
2408  for (TemplateParameterList::iterator Param = Params->begin(),
2409                                    ParamEnd = Params->end();
2410       Param != ParamEnd; ++Param) {
2411    NamedDecl *Named = cast<NamedDecl>(*Param);
2412    if (Named->getDeclName()) {
2413      S->AddDecl(DeclPtrTy::make(Named));
2414      IdResolver.AddDecl(Named);
2415    }
2416  }
2417}
2418
2419void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2420  if (!RecordD) return;
2421  AdjustDeclIfTemplate(RecordD);
2422  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2423  PushDeclContext(S, Record);
2424}
2425
2426void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2427  if (!RecordD) return;
2428  PopDeclContext();
2429}
2430
2431/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2432/// parsing a top-level (non-nested) C++ class, and we are now
2433/// parsing those parts of the given Method declaration that could
2434/// not be parsed earlier (C++ [class.mem]p2), such as default
2435/// arguments. This action should enter the scope of the given
2436/// Method declaration as if we had just parsed the qualified method
2437/// name. However, it should not bring the parameters into scope;
2438/// that will be performed by ActOnDelayedCXXMethodParameter.
2439void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2440}
2441
2442/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2443/// C++ method declaration. We're (re-)introducing the given
2444/// function parameter into scope for use in parsing later parts of
2445/// the method declaration. For example, we could see an
2446/// ActOnParamDefaultArgument event for this parameter.
2447void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2448  if (!ParamD)
2449    return;
2450
2451  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2452
2453  // If this parameter has an unparsed default argument, clear it out
2454  // to make way for the parsed default argument.
2455  if (Param->hasUnparsedDefaultArg())
2456    Param->setDefaultArg(0);
2457
2458  S->AddDecl(DeclPtrTy::make(Param));
2459  if (Param->getDeclName())
2460    IdResolver.AddDecl(Param);
2461}
2462
2463/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2464/// processing the delayed method declaration for Method. The method
2465/// declaration is now considered finished. There may be a separate
2466/// ActOnStartOfFunctionDef action later (not necessarily
2467/// immediately!) for this method, if it was also defined inside the
2468/// class body.
2469void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2470  if (!MethodD)
2471    return;
2472
2473  AdjustDeclIfTemplate(MethodD);
2474
2475  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2476
2477  // Now that we have our default arguments, check the constructor
2478  // again. It could produce additional diagnostics or affect whether
2479  // the class has implicitly-declared destructors, among other
2480  // things.
2481  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2482    CheckConstructor(Constructor);
2483
2484  // Check the default arguments, which we may have added.
2485  if (!Method->isInvalidDecl())
2486    CheckCXXDefaultArguments(Method);
2487}
2488
2489/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2490/// the well-formedness of the constructor declarator @p D with type @p
2491/// R. If there are any errors in the declarator, this routine will
2492/// emit diagnostics and set the invalid bit to true.  In any case, the type
2493/// will be updated to reflect a well-formed type for the constructor and
2494/// returned.
2495QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2496                                          FunctionDecl::StorageClass &SC) {
2497  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2498
2499  // C++ [class.ctor]p3:
2500  //   A constructor shall not be virtual (10.3) or static (9.4). A
2501  //   constructor can be invoked for a const, volatile or const
2502  //   volatile object. A constructor shall not be declared const,
2503  //   volatile, or const volatile (9.3.2).
2504  if (isVirtual) {
2505    if (!D.isInvalidType())
2506      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2507        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2508        << SourceRange(D.getIdentifierLoc());
2509    D.setInvalidType();
2510  }
2511  if (SC == FunctionDecl::Static) {
2512    if (!D.isInvalidType())
2513      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2514        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2515        << SourceRange(D.getIdentifierLoc());
2516    D.setInvalidType();
2517    SC = FunctionDecl::None;
2518  }
2519
2520  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2521  if (FTI.TypeQuals != 0) {
2522    if (FTI.TypeQuals & Qualifiers::Const)
2523      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2524        << "const" << SourceRange(D.getIdentifierLoc());
2525    if (FTI.TypeQuals & Qualifiers::Volatile)
2526      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2527        << "volatile" << SourceRange(D.getIdentifierLoc());
2528    if (FTI.TypeQuals & Qualifiers::Restrict)
2529      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2530        << "restrict" << SourceRange(D.getIdentifierLoc());
2531  }
2532
2533  // Rebuild the function type "R" without any type qualifiers (in
2534  // case any of the errors above fired) and with "void" as the
2535  // return type, since constructors don't have return types. We
2536  // *always* have to do this, because GetTypeForDeclarator will
2537  // put in a result type of "int" when none was specified.
2538  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2539  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2540                                 Proto->getNumArgs(),
2541                                 Proto->isVariadic(), 0,
2542                                 Proto->hasExceptionSpec(),
2543                                 Proto->hasAnyExceptionSpec(),
2544                                 Proto->getNumExceptions(),
2545                                 Proto->exception_begin(),
2546                                 Proto->getNoReturnAttr(),
2547                                 Proto->getCallConv());
2548}
2549
2550/// CheckConstructor - Checks a fully-formed constructor for
2551/// well-formedness, issuing any diagnostics required. Returns true if
2552/// the constructor declarator is invalid.
2553void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2554  CXXRecordDecl *ClassDecl
2555    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2556  if (!ClassDecl)
2557    return Constructor->setInvalidDecl();
2558
2559  // C++ [class.copy]p3:
2560  //   A declaration of a constructor for a class X is ill-formed if
2561  //   its first parameter is of type (optionally cv-qualified) X and
2562  //   either there are no other parameters or else all other
2563  //   parameters have default arguments.
2564  if (!Constructor->isInvalidDecl() &&
2565      ((Constructor->getNumParams() == 1) ||
2566       (Constructor->getNumParams() > 1 &&
2567        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2568      Constructor->getTemplateSpecializationKind()
2569                                              != TSK_ImplicitInstantiation) {
2570    QualType ParamType = Constructor->getParamDecl(0)->getType();
2571    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2572    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2573      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2574      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2575        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2576
2577      // FIXME: Rather that making the constructor invalid, we should endeavor
2578      // to fix the type.
2579      Constructor->setInvalidDecl();
2580    }
2581  }
2582
2583  // Notify the class that we've added a constructor.
2584  ClassDecl->addedConstructor(Context, Constructor);
2585}
2586
2587/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2588/// issuing any diagnostics required. Returns true on error.
2589bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2590  CXXRecordDecl *RD = Destructor->getParent();
2591
2592  if (Destructor->isVirtual()) {
2593    SourceLocation Loc;
2594
2595    if (!Destructor->isImplicit())
2596      Loc = Destructor->getLocation();
2597    else
2598      Loc = RD->getLocation();
2599
2600    // If we have a virtual destructor, look up the deallocation function
2601    FunctionDecl *OperatorDelete = 0;
2602    DeclarationName Name =
2603    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2604    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2605      return true;
2606
2607    Destructor->setOperatorDelete(OperatorDelete);
2608  }
2609
2610  return false;
2611}
2612
2613static inline bool
2614FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2615  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2616          FTI.ArgInfo[0].Param &&
2617          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2618}
2619
2620/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2621/// the well-formednes of the destructor declarator @p D with type @p
2622/// R. If there are any errors in the declarator, this routine will
2623/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2624/// will be updated to reflect a well-formed type for the destructor and
2625/// returned.
2626QualType Sema::CheckDestructorDeclarator(Declarator &D,
2627                                         FunctionDecl::StorageClass& SC) {
2628  // C++ [class.dtor]p1:
2629  //   [...] A typedef-name that names a class is a class-name
2630  //   (7.1.3); however, a typedef-name that names a class shall not
2631  //   be used as the identifier in the declarator for a destructor
2632  //   declaration.
2633  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2634  if (isa<TypedefType>(DeclaratorType)) {
2635    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2636      << DeclaratorType;
2637    D.setInvalidType();
2638  }
2639
2640  // C++ [class.dtor]p2:
2641  //   A destructor is used to destroy objects of its class type. A
2642  //   destructor takes no parameters, and no return type can be
2643  //   specified for it (not even void). The address of a destructor
2644  //   shall not be taken. A destructor shall not be static. A
2645  //   destructor can be invoked for a const, volatile or const
2646  //   volatile object. A destructor shall not be declared const,
2647  //   volatile or const volatile (9.3.2).
2648  if (SC == FunctionDecl::Static) {
2649    if (!D.isInvalidType())
2650      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2651        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2652        << SourceRange(D.getIdentifierLoc());
2653    SC = FunctionDecl::None;
2654    D.setInvalidType();
2655  }
2656  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2657    // Destructors don't have return types, but the parser will
2658    // happily parse something like:
2659    //
2660    //   class X {
2661    //     float ~X();
2662    //   };
2663    //
2664    // The return type will be eliminated later.
2665    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2666      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2667      << SourceRange(D.getIdentifierLoc());
2668  }
2669
2670  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2671  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2672    if (FTI.TypeQuals & Qualifiers::Const)
2673      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2674        << "const" << SourceRange(D.getIdentifierLoc());
2675    if (FTI.TypeQuals & Qualifiers::Volatile)
2676      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2677        << "volatile" << SourceRange(D.getIdentifierLoc());
2678    if (FTI.TypeQuals & Qualifiers::Restrict)
2679      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2680        << "restrict" << SourceRange(D.getIdentifierLoc());
2681    D.setInvalidType();
2682  }
2683
2684  // Make sure we don't have any parameters.
2685  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2686    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2687
2688    // Delete the parameters.
2689    FTI.freeArgs();
2690    D.setInvalidType();
2691  }
2692
2693  // Make sure the destructor isn't variadic.
2694  if (FTI.isVariadic) {
2695    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2696    D.setInvalidType();
2697  }
2698
2699  // Rebuild the function type "R" without any type qualifiers or
2700  // parameters (in case any of the errors above fired) and with
2701  // "void" as the return type, since destructors don't have return
2702  // types. We *always* have to do this, because GetTypeForDeclarator
2703  // will put in a result type of "int" when none was specified.
2704  // FIXME: Exceptions!
2705  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2706                                 false, false, 0, 0, false, CC_Default);
2707}
2708
2709/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2710/// well-formednes of the conversion function declarator @p D with
2711/// type @p R. If there are any errors in the declarator, this routine
2712/// will emit diagnostics and return true. Otherwise, it will return
2713/// false. Either way, the type @p R will be updated to reflect a
2714/// well-formed type for the conversion operator.
2715void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2716                                     FunctionDecl::StorageClass& SC) {
2717  // C++ [class.conv.fct]p1:
2718  //   Neither parameter types nor return type can be specified. The
2719  //   type of a conversion function (8.3.5) is "function taking no
2720  //   parameter returning conversion-type-id."
2721  if (SC == FunctionDecl::Static) {
2722    if (!D.isInvalidType())
2723      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2724        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2725        << SourceRange(D.getIdentifierLoc());
2726    D.setInvalidType();
2727    SC = FunctionDecl::None;
2728  }
2729  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2730    // Conversion functions don't have return types, but the parser will
2731    // happily parse something like:
2732    //
2733    //   class X {
2734    //     float operator bool();
2735    //   };
2736    //
2737    // The return type will be changed later anyway.
2738    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2739      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2740      << SourceRange(D.getIdentifierLoc());
2741  }
2742
2743  // Make sure we don't have any parameters.
2744  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2745    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2746
2747    // Delete the parameters.
2748    D.getTypeObject(0).Fun.freeArgs();
2749    D.setInvalidType();
2750  }
2751
2752  // Make sure the conversion function isn't variadic.
2753  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2754    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2755    D.setInvalidType();
2756  }
2757
2758  // C++ [class.conv.fct]p4:
2759  //   The conversion-type-id shall not represent a function type nor
2760  //   an array type.
2761  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2762  if (ConvType->isArrayType()) {
2763    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2764    ConvType = Context.getPointerType(ConvType);
2765    D.setInvalidType();
2766  } else if (ConvType->isFunctionType()) {
2767    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2768    ConvType = Context.getPointerType(ConvType);
2769    D.setInvalidType();
2770  }
2771
2772  // Rebuild the function type "R" without any parameters (in case any
2773  // of the errors above fired) and with the conversion type as the
2774  // return type.
2775  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2776  R = Context.getFunctionType(ConvType, 0, 0, false,
2777                              Proto->getTypeQuals(),
2778                              Proto->hasExceptionSpec(),
2779                              Proto->hasAnyExceptionSpec(),
2780                              Proto->getNumExceptions(),
2781                              Proto->exception_begin(),
2782                              Proto->getNoReturnAttr(),
2783                              Proto->getCallConv());
2784
2785  // C++0x explicit conversion operators.
2786  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2787    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2788         diag::warn_explicit_conversion_functions)
2789      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2790}
2791
2792/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2793/// the declaration of the given C++ conversion function. This routine
2794/// is responsible for recording the conversion function in the C++
2795/// class, if possible.
2796Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2797  assert(Conversion && "Expected to receive a conversion function declaration");
2798
2799  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2800
2801  // Make sure we aren't redeclaring the conversion function.
2802  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2803
2804  // C++ [class.conv.fct]p1:
2805  //   [...] A conversion function is never used to convert a
2806  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2807  //   same object type (or a reference to it), to a (possibly
2808  //   cv-qualified) base class of that type (or a reference to it),
2809  //   or to (possibly cv-qualified) void.
2810  // FIXME: Suppress this warning if the conversion function ends up being a
2811  // virtual function that overrides a virtual function in a base class.
2812  QualType ClassType
2813    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2814  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2815    ConvType = ConvTypeRef->getPointeeType();
2816  if (ConvType->isRecordType()) {
2817    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2818    if (ConvType == ClassType)
2819      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2820        << ClassType;
2821    else if (IsDerivedFrom(ClassType, ConvType))
2822      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2823        <<  ClassType << ConvType;
2824  } else if (ConvType->isVoidType()) {
2825    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2826      << ClassType << ConvType;
2827  }
2828
2829  if (Conversion->getPrimaryTemplate()) {
2830    // ignore specializations
2831  } else if (Conversion->getPreviousDeclaration()) {
2832    if (FunctionTemplateDecl *ConversionTemplate
2833                                  = Conversion->getDescribedFunctionTemplate()) {
2834      if (ClassDecl->replaceConversion(
2835                                   ConversionTemplate->getPreviousDeclaration(),
2836                                       ConversionTemplate))
2837        return DeclPtrTy::make(ConversionTemplate);
2838    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2839                                            Conversion))
2840      return DeclPtrTy::make(Conversion);
2841    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2842  } else if (FunctionTemplateDecl *ConversionTemplate
2843               = Conversion->getDescribedFunctionTemplate())
2844    ClassDecl->addConversionFunction(ConversionTemplate);
2845  else
2846    ClassDecl->addConversionFunction(Conversion);
2847
2848  return DeclPtrTy::make(Conversion);
2849}
2850
2851//===----------------------------------------------------------------------===//
2852// Namespace Handling
2853//===----------------------------------------------------------------------===//
2854
2855/// ActOnStartNamespaceDef - This is called at the start of a namespace
2856/// definition.
2857Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2858                                             SourceLocation IdentLoc,
2859                                             IdentifierInfo *II,
2860                                             SourceLocation LBrace,
2861                                             AttributeList *AttrList) {
2862  NamespaceDecl *Namespc =
2863      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2864  Namespc->setLBracLoc(LBrace);
2865
2866  Scope *DeclRegionScope = NamespcScope->getParent();
2867
2868  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2869
2870  if (II) {
2871    // C++ [namespace.def]p2:
2872    // The identifier in an original-namespace-definition shall not have been
2873    // previously defined in the declarative region in which the
2874    // original-namespace-definition appears. The identifier in an
2875    // original-namespace-definition is the name of the namespace. Subsequently
2876    // in that declarative region, it is treated as an original-namespace-name.
2877
2878    NamedDecl *PrevDecl
2879      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2880                         ForRedeclaration);
2881
2882    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2883      // This is an extended namespace definition.
2884      // Attach this namespace decl to the chain of extended namespace
2885      // definitions.
2886      OrigNS->setNextNamespace(Namespc);
2887      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2888
2889      // Remove the previous declaration from the scope.
2890      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2891        IdResolver.RemoveDecl(OrigNS);
2892        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2893      }
2894    } else if (PrevDecl) {
2895      // This is an invalid name redefinition.
2896      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2897       << Namespc->getDeclName();
2898      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2899      Namespc->setInvalidDecl();
2900      // Continue on to push Namespc as current DeclContext and return it.
2901    } else if (II->isStr("std") &&
2902               CurContext->getLookupContext()->isTranslationUnit()) {
2903      // This is the first "real" definition of the namespace "std", so update
2904      // our cache of the "std" namespace to point at this definition.
2905      if (StdNamespace) {
2906        // We had already defined a dummy namespace "std". Link this new
2907        // namespace definition to the dummy namespace "std".
2908        StdNamespace->setNextNamespace(Namespc);
2909        StdNamespace->setLocation(IdentLoc);
2910        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2911      }
2912
2913      // Make our StdNamespace cache point at the first real definition of the
2914      // "std" namespace.
2915      StdNamespace = Namespc;
2916    }
2917
2918    PushOnScopeChains(Namespc, DeclRegionScope);
2919  } else {
2920    // Anonymous namespaces.
2921    assert(Namespc->isAnonymousNamespace());
2922    CurContext->addDecl(Namespc);
2923
2924    // Link the anonymous namespace into its parent.
2925    NamespaceDecl *PrevDecl;
2926    DeclContext *Parent = CurContext->getLookupContext();
2927    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2928      PrevDecl = TU->getAnonymousNamespace();
2929      TU->setAnonymousNamespace(Namespc);
2930    } else {
2931      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2932      PrevDecl = ND->getAnonymousNamespace();
2933      ND->setAnonymousNamespace(Namespc);
2934    }
2935
2936    // Link the anonymous namespace with its previous declaration.
2937    if (PrevDecl) {
2938      assert(PrevDecl->isAnonymousNamespace());
2939      assert(!PrevDecl->getNextNamespace());
2940      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2941      PrevDecl->setNextNamespace(Namespc);
2942    }
2943
2944    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2945    //   behaves as if it were replaced by
2946    //     namespace unique { /* empty body */ }
2947    //     using namespace unique;
2948    //     namespace unique { namespace-body }
2949    //   where all occurrences of 'unique' in a translation unit are
2950    //   replaced by the same identifier and this identifier differs
2951    //   from all other identifiers in the entire program.
2952
2953    // We just create the namespace with an empty name and then add an
2954    // implicit using declaration, just like the standard suggests.
2955    //
2956    // CodeGen enforces the "universally unique" aspect by giving all
2957    // declarations semantically contained within an anonymous
2958    // namespace internal linkage.
2959
2960    if (!PrevDecl) {
2961      UsingDirectiveDecl* UD
2962        = UsingDirectiveDecl::Create(Context, CurContext,
2963                                     /* 'using' */ LBrace,
2964                                     /* 'namespace' */ SourceLocation(),
2965                                     /* qualifier */ SourceRange(),
2966                                     /* NNS */ NULL,
2967                                     /* identifier */ SourceLocation(),
2968                                     Namespc,
2969                                     /* Ancestor */ CurContext);
2970      UD->setImplicit();
2971      CurContext->addDecl(UD);
2972    }
2973  }
2974
2975  // Although we could have an invalid decl (i.e. the namespace name is a
2976  // redefinition), push it as current DeclContext and try to continue parsing.
2977  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2978  // for the namespace has the declarations that showed up in that particular
2979  // namespace definition.
2980  PushDeclContext(NamespcScope, Namespc);
2981  return DeclPtrTy::make(Namespc);
2982}
2983
2984/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2985/// is a namespace alias, returns the namespace it points to.
2986static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2987  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2988    return AD->getNamespace();
2989  return dyn_cast_or_null<NamespaceDecl>(D);
2990}
2991
2992/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2993/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2994void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2995  Decl *Dcl = D.getAs<Decl>();
2996  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2997  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2998  Namespc->setRBracLoc(RBrace);
2999  PopDeclContext();
3000}
3001
3002Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3003                                          SourceLocation UsingLoc,
3004                                          SourceLocation NamespcLoc,
3005                                          const CXXScopeSpec &SS,
3006                                          SourceLocation IdentLoc,
3007                                          IdentifierInfo *NamespcName,
3008                                          AttributeList *AttrList) {
3009  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3010  assert(NamespcName && "Invalid NamespcName.");
3011  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3012  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3013
3014  UsingDirectiveDecl *UDir = 0;
3015
3016  // Lookup namespace name.
3017  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3018  LookupParsedName(R, S, &SS);
3019  if (R.isAmbiguous())
3020    return DeclPtrTy();
3021
3022  if (!R.empty()) {
3023    NamedDecl *Named = R.getFoundDecl();
3024    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3025        && "expected namespace decl");
3026    // C++ [namespace.udir]p1:
3027    //   A using-directive specifies that the names in the nominated
3028    //   namespace can be used in the scope in which the
3029    //   using-directive appears after the using-directive. During
3030    //   unqualified name lookup (3.4.1), the names appear as if they
3031    //   were declared in the nearest enclosing namespace which
3032    //   contains both the using-directive and the nominated
3033    //   namespace. [Note: in this context, "contains" means "contains
3034    //   directly or indirectly". ]
3035
3036    // Find enclosing context containing both using-directive and
3037    // nominated namespace.
3038    NamespaceDecl *NS = getNamespaceDecl(Named);
3039    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3040    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3041      CommonAncestor = CommonAncestor->getParent();
3042
3043    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3044                                      SS.getRange(),
3045                                      (NestedNameSpecifier *)SS.getScopeRep(),
3046                                      IdentLoc, Named, CommonAncestor);
3047    PushUsingDirective(S, UDir);
3048  } else {
3049    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3050  }
3051
3052  // FIXME: We ignore attributes for now.
3053  delete AttrList;
3054  return DeclPtrTy::make(UDir);
3055}
3056
3057void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3058  // If scope has associated entity, then using directive is at namespace
3059  // or translation unit scope. We add UsingDirectiveDecls, into
3060  // it's lookup structure.
3061  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3062    Ctx->addDecl(UDir);
3063  else
3064    // Otherwise it is block-sope. using-directives will affect lookup
3065    // only to the end of scope.
3066    S->PushUsingDirective(DeclPtrTy::make(UDir));
3067}
3068
3069
3070Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3071                                            AccessSpecifier AS,
3072                                            bool HasUsingKeyword,
3073                                            SourceLocation UsingLoc,
3074                                            const CXXScopeSpec &SS,
3075                                            UnqualifiedId &Name,
3076                                            AttributeList *AttrList,
3077                                            bool IsTypeName,
3078                                            SourceLocation TypenameLoc) {
3079  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3080
3081  switch (Name.getKind()) {
3082  case UnqualifiedId::IK_Identifier:
3083  case UnqualifiedId::IK_OperatorFunctionId:
3084  case UnqualifiedId::IK_LiteralOperatorId:
3085  case UnqualifiedId::IK_ConversionFunctionId:
3086    break;
3087
3088  case UnqualifiedId::IK_ConstructorName:
3089  case UnqualifiedId::IK_ConstructorTemplateId:
3090    // C++0x inherited constructors.
3091    if (getLangOptions().CPlusPlus0x) break;
3092
3093    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3094      << SS.getRange();
3095    return DeclPtrTy();
3096
3097  case UnqualifiedId::IK_DestructorName:
3098    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3099      << SS.getRange();
3100    return DeclPtrTy();
3101
3102  case UnqualifiedId::IK_TemplateId:
3103    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3104      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3105    return DeclPtrTy();
3106  }
3107
3108  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3109  if (!TargetName)
3110    return DeclPtrTy();
3111
3112  // Warn about using declarations.
3113  // TODO: store that the declaration was written without 'using' and
3114  // talk about access decls instead of using decls in the
3115  // diagnostics.
3116  if (!HasUsingKeyword) {
3117    UsingLoc = Name.getSourceRange().getBegin();
3118
3119    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3120      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3121                                               "using ");
3122  }
3123
3124  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3125                                        Name.getSourceRange().getBegin(),
3126                                        TargetName, AttrList,
3127                                        /* IsInstantiation */ false,
3128                                        IsTypeName, TypenameLoc);
3129  if (UD)
3130    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3131
3132  return DeclPtrTy::make(UD);
3133}
3134
3135/// Determines whether to create a using shadow decl for a particular
3136/// decl, given the set of decls existing prior to this using lookup.
3137bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3138                                const LookupResult &Previous) {
3139  // Diagnose finding a decl which is not from a base class of the
3140  // current class.  We do this now because there are cases where this
3141  // function will silently decide not to build a shadow decl, which
3142  // will pre-empt further diagnostics.
3143  //
3144  // We don't need to do this in C++0x because we do the check once on
3145  // the qualifier.
3146  //
3147  // FIXME: diagnose the following if we care enough:
3148  //   struct A { int foo; };
3149  //   struct B : A { using A::foo; };
3150  //   template <class T> struct C : A {};
3151  //   template <class T> struct D : C<T> { using B::foo; } // <---
3152  // This is invalid (during instantiation) in C++03 because B::foo
3153  // resolves to the using decl in B, which is not a base class of D<T>.
3154  // We can't diagnose it immediately because C<T> is an unknown
3155  // specialization.  The UsingShadowDecl in D<T> then points directly
3156  // to A::foo, which will look well-formed when we instantiate.
3157  // The right solution is to not collapse the shadow-decl chain.
3158  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3159    DeclContext *OrigDC = Orig->getDeclContext();
3160
3161    // Handle enums and anonymous structs.
3162    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3163    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3164    while (OrigRec->isAnonymousStructOrUnion())
3165      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3166
3167    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3168      if (OrigDC == CurContext) {
3169        Diag(Using->getLocation(),
3170             diag::err_using_decl_nested_name_specifier_is_current_class)
3171          << Using->getNestedNameRange();
3172        Diag(Orig->getLocation(), diag::note_using_decl_target);
3173        return true;
3174      }
3175
3176      Diag(Using->getNestedNameRange().getBegin(),
3177           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3178        << Using->getTargetNestedNameDecl()
3179        << cast<CXXRecordDecl>(CurContext)
3180        << Using->getNestedNameRange();
3181      Diag(Orig->getLocation(), diag::note_using_decl_target);
3182      return true;
3183    }
3184  }
3185
3186  if (Previous.empty()) return false;
3187
3188  NamedDecl *Target = Orig;
3189  if (isa<UsingShadowDecl>(Target))
3190    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3191
3192  // If the target happens to be one of the previous declarations, we
3193  // don't have a conflict.
3194  //
3195  // FIXME: but we might be increasing its access, in which case we
3196  // should redeclare it.
3197  NamedDecl *NonTag = 0, *Tag = 0;
3198  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3199         I != E; ++I) {
3200    NamedDecl *D = (*I)->getUnderlyingDecl();
3201    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3202      return false;
3203
3204    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3205  }
3206
3207  if (Target->isFunctionOrFunctionTemplate()) {
3208    FunctionDecl *FD;
3209    if (isa<FunctionTemplateDecl>(Target))
3210      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3211    else
3212      FD = cast<FunctionDecl>(Target);
3213
3214    NamedDecl *OldDecl = 0;
3215    switch (CheckOverload(FD, Previous, OldDecl)) {
3216    case Ovl_Overload:
3217      return false;
3218
3219    case Ovl_NonFunction:
3220      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3221      break;
3222
3223    // We found a decl with the exact signature.
3224    case Ovl_Match:
3225      if (isa<UsingShadowDecl>(OldDecl)) {
3226        // Silently ignore the possible conflict.
3227        return false;
3228      }
3229
3230      // If we're in a record, we want to hide the target, so we
3231      // return true (without a diagnostic) to tell the caller not to
3232      // build a shadow decl.
3233      if (CurContext->isRecord())
3234        return true;
3235
3236      // If we're not in a record, this is an error.
3237      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3238      break;
3239    }
3240
3241    Diag(Target->getLocation(), diag::note_using_decl_target);
3242    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3243    return true;
3244  }
3245
3246  // Target is not a function.
3247
3248  if (isa<TagDecl>(Target)) {
3249    // No conflict between a tag and a non-tag.
3250    if (!Tag) return false;
3251
3252    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3253    Diag(Target->getLocation(), diag::note_using_decl_target);
3254    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3255    return true;
3256  }
3257
3258  // No conflict between a tag and a non-tag.
3259  if (!NonTag) return false;
3260
3261  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3262  Diag(Target->getLocation(), diag::note_using_decl_target);
3263  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3264  return true;
3265}
3266
3267/// Builds a shadow declaration corresponding to a 'using' declaration.
3268UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3269                                            UsingDecl *UD,
3270                                            NamedDecl *Orig) {
3271
3272  // If we resolved to another shadow declaration, just coalesce them.
3273  NamedDecl *Target = Orig;
3274  if (isa<UsingShadowDecl>(Target)) {
3275    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3276    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3277  }
3278
3279  UsingShadowDecl *Shadow
3280    = UsingShadowDecl::Create(Context, CurContext,
3281                              UD->getLocation(), UD, Target);
3282  UD->addShadowDecl(Shadow);
3283
3284  if (S)
3285    PushOnScopeChains(Shadow, S);
3286  else
3287    CurContext->addDecl(Shadow);
3288  Shadow->setAccess(UD->getAccess());
3289
3290  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3291    Shadow->setInvalidDecl();
3292
3293  return Shadow;
3294}
3295
3296/// Hides a using shadow declaration.  This is required by the current
3297/// using-decl implementation when a resolvable using declaration in a
3298/// class is followed by a declaration which would hide or override
3299/// one or more of the using decl's targets; for example:
3300///
3301///   struct Base { void foo(int); };
3302///   struct Derived : Base {
3303///     using Base::foo;
3304///     void foo(int);
3305///   };
3306///
3307/// The governing language is C++03 [namespace.udecl]p12:
3308///
3309///   When a using-declaration brings names from a base class into a
3310///   derived class scope, member functions in the derived class
3311///   override and/or hide member functions with the same name and
3312///   parameter types in a base class (rather than conflicting).
3313///
3314/// There are two ways to implement this:
3315///   (1) optimistically create shadow decls when they're not hidden
3316///       by existing declarations, or
3317///   (2) don't create any shadow decls (or at least don't make them
3318///       visible) until we've fully parsed/instantiated the class.
3319/// The problem with (1) is that we might have to retroactively remove
3320/// a shadow decl, which requires several O(n) operations because the
3321/// decl structures are (very reasonably) not designed for removal.
3322/// (2) avoids this but is very fiddly and phase-dependent.
3323void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3324  // Remove it from the DeclContext...
3325  Shadow->getDeclContext()->removeDecl(Shadow);
3326
3327  // ...and the scope, if applicable...
3328  if (S) {
3329    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3330    IdResolver.RemoveDecl(Shadow);
3331  }
3332
3333  // ...and the using decl.
3334  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3335
3336  // TODO: complain somehow if Shadow was used.  It shouldn't
3337  // be possible for this to happen, because
3338}
3339
3340/// Builds a using declaration.
3341///
3342/// \param IsInstantiation - Whether this call arises from an
3343///   instantiation of an unresolved using declaration.  We treat
3344///   the lookup differently for these declarations.
3345NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3346                                       SourceLocation UsingLoc,
3347                                       const CXXScopeSpec &SS,
3348                                       SourceLocation IdentLoc,
3349                                       DeclarationName Name,
3350                                       AttributeList *AttrList,
3351                                       bool IsInstantiation,
3352                                       bool IsTypeName,
3353                                       SourceLocation TypenameLoc) {
3354  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3355  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3356
3357  // FIXME: We ignore attributes for now.
3358  delete AttrList;
3359
3360  if (SS.isEmpty()) {
3361    Diag(IdentLoc, diag::err_using_requires_qualname);
3362    return 0;
3363  }
3364
3365  // Do the redeclaration lookup in the current scope.
3366  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3367                        ForRedeclaration);
3368  Previous.setHideTags(false);
3369  if (S) {
3370    LookupName(Previous, S);
3371
3372    // It is really dumb that we have to do this.
3373    LookupResult::Filter F = Previous.makeFilter();
3374    while (F.hasNext()) {
3375      NamedDecl *D = F.next();
3376      if (!isDeclInScope(D, CurContext, S))
3377        F.erase();
3378    }
3379    F.done();
3380  } else {
3381    assert(IsInstantiation && "no scope in non-instantiation");
3382    assert(CurContext->isRecord() && "scope not record in instantiation");
3383    LookupQualifiedName(Previous, CurContext);
3384  }
3385
3386  NestedNameSpecifier *NNS =
3387    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3388
3389  // Check for invalid redeclarations.
3390  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3391    return 0;
3392
3393  // Check for bad qualifiers.
3394  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3395    return 0;
3396
3397  DeclContext *LookupContext = computeDeclContext(SS);
3398  NamedDecl *D;
3399  if (!LookupContext) {
3400    if (IsTypeName) {
3401      // FIXME: not all declaration name kinds are legal here
3402      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3403                                              UsingLoc, TypenameLoc,
3404                                              SS.getRange(), NNS,
3405                                              IdentLoc, Name);
3406    } else {
3407      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3408                                           UsingLoc, SS.getRange(), NNS,
3409                                           IdentLoc, Name);
3410    }
3411  } else {
3412    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3413                          SS.getRange(), UsingLoc, NNS, Name,
3414                          IsTypeName);
3415  }
3416  D->setAccess(AS);
3417  CurContext->addDecl(D);
3418
3419  if (!LookupContext) return D;
3420  UsingDecl *UD = cast<UsingDecl>(D);
3421
3422  if (RequireCompleteDeclContext(SS)) {
3423    UD->setInvalidDecl();
3424    return UD;
3425  }
3426
3427  // Look up the target name.
3428
3429  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3430
3431  // Unlike most lookups, we don't always want to hide tag
3432  // declarations: tag names are visible through the using declaration
3433  // even if hidden by ordinary names, *except* in a dependent context
3434  // where it's important for the sanity of two-phase lookup.
3435  if (!IsInstantiation)
3436    R.setHideTags(false);
3437
3438  LookupQualifiedName(R, LookupContext);
3439
3440  if (R.empty()) {
3441    Diag(IdentLoc, diag::err_no_member)
3442      << Name << LookupContext << SS.getRange();
3443    UD->setInvalidDecl();
3444    return UD;
3445  }
3446
3447  if (R.isAmbiguous()) {
3448    UD->setInvalidDecl();
3449    return UD;
3450  }
3451
3452  if (IsTypeName) {
3453    // If we asked for a typename and got a non-type decl, error out.
3454    if (!R.getAsSingle<TypeDecl>()) {
3455      Diag(IdentLoc, diag::err_using_typename_non_type);
3456      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3457        Diag((*I)->getUnderlyingDecl()->getLocation(),
3458             diag::note_using_decl_target);
3459      UD->setInvalidDecl();
3460      return UD;
3461    }
3462  } else {
3463    // If we asked for a non-typename and we got a type, error out,
3464    // but only if this is an instantiation of an unresolved using
3465    // decl.  Otherwise just silently find the type name.
3466    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3467      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3468      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3469      UD->setInvalidDecl();
3470      return UD;
3471    }
3472  }
3473
3474  // C++0x N2914 [namespace.udecl]p6:
3475  // A using-declaration shall not name a namespace.
3476  if (R.getAsSingle<NamespaceDecl>()) {
3477    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3478      << SS.getRange();
3479    UD->setInvalidDecl();
3480    return UD;
3481  }
3482
3483  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3484    if (!CheckUsingShadowDecl(UD, *I, Previous))
3485      BuildUsingShadowDecl(S, UD, *I);
3486  }
3487
3488  return UD;
3489}
3490
3491/// Checks that the given using declaration is not an invalid
3492/// redeclaration.  Note that this is checking only for the using decl
3493/// itself, not for any ill-formedness among the UsingShadowDecls.
3494bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3495                                       bool isTypeName,
3496                                       const CXXScopeSpec &SS,
3497                                       SourceLocation NameLoc,
3498                                       const LookupResult &Prev) {
3499  // C++03 [namespace.udecl]p8:
3500  // C++0x [namespace.udecl]p10:
3501  //   A using-declaration is a declaration and can therefore be used
3502  //   repeatedly where (and only where) multiple declarations are
3503  //   allowed.
3504  // That's only in file contexts.
3505  if (CurContext->getLookupContext()->isFileContext())
3506    return false;
3507
3508  NestedNameSpecifier *Qual
3509    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3510
3511  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3512    NamedDecl *D = *I;
3513
3514    bool DTypename;
3515    NestedNameSpecifier *DQual;
3516    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3517      DTypename = UD->isTypeName();
3518      DQual = UD->getTargetNestedNameDecl();
3519    } else if (UnresolvedUsingValueDecl *UD
3520                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3521      DTypename = false;
3522      DQual = UD->getTargetNestedNameSpecifier();
3523    } else if (UnresolvedUsingTypenameDecl *UD
3524                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3525      DTypename = true;
3526      DQual = UD->getTargetNestedNameSpecifier();
3527    } else continue;
3528
3529    // using decls differ if one says 'typename' and the other doesn't.
3530    // FIXME: non-dependent using decls?
3531    if (isTypeName != DTypename) continue;
3532
3533    // using decls differ if they name different scopes (but note that
3534    // template instantiation can cause this check to trigger when it
3535    // didn't before instantiation).
3536    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3537        Context.getCanonicalNestedNameSpecifier(DQual))
3538      continue;
3539
3540    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3541    Diag(D->getLocation(), diag::note_using_decl) << 1;
3542    return true;
3543  }
3544
3545  return false;
3546}
3547
3548
3549/// Checks that the given nested-name qualifier used in a using decl
3550/// in the current context is appropriately related to the current
3551/// scope.  If an error is found, diagnoses it and returns true.
3552bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3553                                   const CXXScopeSpec &SS,
3554                                   SourceLocation NameLoc) {
3555  DeclContext *NamedContext = computeDeclContext(SS);
3556
3557  if (!CurContext->isRecord()) {
3558    // C++03 [namespace.udecl]p3:
3559    // C++0x [namespace.udecl]p8:
3560    //   A using-declaration for a class member shall be a member-declaration.
3561
3562    // If we weren't able to compute a valid scope, it must be a
3563    // dependent class scope.
3564    if (!NamedContext || NamedContext->isRecord()) {
3565      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3566        << SS.getRange();
3567      return true;
3568    }
3569
3570    // Otherwise, everything is known to be fine.
3571    return false;
3572  }
3573
3574  // The current scope is a record.
3575
3576  // If the named context is dependent, we can't decide much.
3577  if (!NamedContext) {
3578    // FIXME: in C++0x, we can diagnose if we can prove that the
3579    // nested-name-specifier does not refer to a base class, which is
3580    // still possible in some cases.
3581
3582    // Otherwise we have to conservatively report that things might be
3583    // okay.
3584    return false;
3585  }
3586
3587  if (!NamedContext->isRecord()) {
3588    // Ideally this would point at the last name in the specifier,
3589    // but we don't have that level of source info.
3590    Diag(SS.getRange().getBegin(),
3591         diag::err_using_decl_nested_name_specifier_is_not_class)
3592      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3593    return true;
3594  }
3595
3596  if (getLangOptions().CPlusPlus0x) {
3597    // C++0x [namespace.udecl]p3:
3598    //   In a using-declaration used as a member-declaration, the
3599    //   nested-name-specifier shall name a base class of the class
3600    //   being defined.
3601
3602    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3603                                 cast<CXXRecordDecl>(NamedContext))) {
3604      if (CurContext == NamedContext) {
3605        Diag(NameLoc,
3606             diag::err_using_decl_nested_name_specifier_is_current_class)
3607          << SS.getRange();
3608        return true;
3609      }
3610
3611      Diag(SS.getRange().getBegin(),
3612           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3613        << (NestedNameSpecifier*) SS.getScopeRep()
3614        << cast<CXXRecordDecl>(CurContext)
3615        << SS.getRange();
3616      return true;
3617    }
3618
3619    return false;
3620  }
3621
3622  // C++03 [namespace.udecl]p4:
3623  //   A using-declaration used as a member-declaration shall refer
3624  //   to a member of a base class of the class being defined [etc.].
3625
3626  // Salient point: SS doesn't have to name a base class as long as
3627  // lookup only finds members from base classes.  Therefore we can
3628  // diagnose here only if we can prove that that can't happen,
3629  // i.e. if the class hierarchies provably don't intersect.
3630
3631  // TODO: it would be nice if "definitely valid" results were cached
3632  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3633  // need to be repeated.
3634
3635  struct UserData {
3636    llvm::DenseSet<const CXXRecordDecl*> Bases;
3637
3638    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3639      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3640      Data->Bases.insert(Base);
3641      return true;
3642    }
3643
3644    bool hasDependentBases(const CXXRecordDecl *Class) {
3645      return !Class->forallBases(collect, this);
3646    }
3647
3648    /// Returns true if the base is dependent or is one of the
3649    /// accumulated base classes.
3650    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3651      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3652      return !Data->Bases.count(Base);
3653    }
3654
3655    bool mightShareBases(const CXXRecordDecl *Class) {
3656      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3657    }
3658  };
3659
3660  UserData Data;
3661
3662  // Returns false if we find a dependent base.
3663  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3664    return false;
3665
3666  // Returns false if the class has a dependent base or if it or one
3667  // of its bases is present in the base set of the current context.
3668  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3669    return false;
3670
3671  Diag(SS.getRange().getBegin(),
3672       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3673    << (NestedNameSpecifier*) SS.getScopeRep()
3674    << cast<CXXRecordDecl>(CurContext)
3675    << SS.getRange();
3676
3677  return true;
3678}
3679
3680Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3681                                             SourceLocation NamespaceLoc,
3682                                             SourceLocation AliasLoc,
3683                                             IdentifierInfo *Alias,
3684                                             const CXXScopeSpec &SS,
3685                                             SourceLocation IdentLoc,
3686                                             IdentifierInfo *Ident) {
3687
3688  // Lookup the namespace name.
3689  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3690  LookupParsedName(R, S, &SS);
3691
3692  // Check if we have a previous declaration with the same name.
3693  if (NamedDecl *PrevDecl
3694        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3695    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3696      // We already have an alias with the same name that points to the same
3697      // namespace, so don't create a new one.
3698      if (!R.isAmbiguous() && !R.empty() &&
3699          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3700        return DeclPtrTy();
3701    }
3702
3703    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3704      diag::err_redefinition_different_kind;
3705    Diag(AliasLoc, DiagID) << Alias;
3706    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3707    return DeclPtrTy();
3708  }
3709
3710  if (R.isAmbiguous())
3711    return DeclPtrTy();
3712
3713  if (R.empty()) {
3714    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3715    return DeclPtrTy();
3716  }
3717
3718  NamespaceAliasDecl *AliasDecl =
3719    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3720                               Alias, SS.getRange(),
3721                               (NestedNameSpecifier *)SS.getScopeRep(),
3722                               IdentLoc, R.getFoundDecl());
3723
3724  PushOnScopeChains(AliasDecl, S);
3725  return DeclPtrTy::make(AliasDecl);
3726}
3727
3728void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3729                                            CXXConstructorDecl *Constructor) {
3730  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3731          !Constructor->isUsed()) &&
3732    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3733
3734  CXXRecordDecl *ClassDecl
3735    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3736  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3737
3738  DeclContext *PreviousContext = CurContext;
3739  CurContext = Constructor;
3740  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true, false)) {
3741    Diag(CurrentLocation, diag::note_member_synthesized_at)
3742      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3743    Constructor->setInvalidDecl();
3744  } else {
3745    Constructor->setUsed();
3746  }
3747  CurContext = PreviousContext;
3748}
3749
3750void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3751                                    CXXDestructorDecl *Destructor) {
3752  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3753         "DefineImplicitDestructor - call it for implicit default dtor");
3754  CXXRecordDecl *ClassDecl = Destructor->getParent();
3755  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3756
3757  DeclContext *PreviousContext = CurContext;
3758  CurContext = Destructor;
3759
3760  // C++ [class.dtor] p5
3761  // Before the implicitly-declared default destructor for a class is
3762  // implicitly defined, all the implicitly-declared default destructors
3763  // for its base class and its non-static data members shall have been
3764  // implicitly defined.
3765  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3766       E = ClassDecl->bases_end(); Base != E; ++Base) {
3767    CXXRecordDecl *BaseClassDecl
3768      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3769    if (!BaseClassDecl->hasTrivialDestructor()) {
3770      if (CXXDestructorDecl *BaseDtor =
3771          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3772        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3773      else
3774        assert(false &&
3775               "DefineImplicitDestructor - missing dtor in a base class");
3776    }
3777  }
3778
3779  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3780       E = ClassDecl->field_end(); Field != E; ++Field) {
3781    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3782    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3783      FieldType = Array->getElementType();
3784    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3785      CXXRecordDecl *FieldClassDecl
3786        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3787      if (!FieldClassDecl->hasTrivialDestructor()) {
3788        if (CXXDestructorDecl *FieldDtor =
3789            const_cast<CXXDestructorDecl*>(
3790                                        FieldClassDecl->getDestructor(Context)))
3791          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3792        else
3793          assert(false &&
3794          "DefineImplicitDestructor - missing dtor in class of a data member");
3795      }
3796    }
3797  }
3798
3799  // FIXME: If CheckDestructor fails, we should emit a note about where the
3800  // implicit destructor was needed.
3801  if (CheckDestructor(Destructor)) {
3802    Diag(CurrentLocation, diag::note_member_synthesized_at)
3803      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3804
3805    Destructor->setInvalidDecl();
3806    CurContext = PreviousContext;
3807
3808    return;
3809  }
3810  CurContext = PreviousContext;
3811
3812  Destructor->setUsed();
3813}
3814
3815void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3816                                          CXXMethodDecl *MethodDecl) {
3817  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3818          MethodDecl->getOverloadedOperator() == OO_Equal &&
3819          !MethodDecl->isUsed()) &&
3820         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3821
3822  CXXRecordDecl *ClassDecl
3823    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3824
3825  DeclContext *PreviousContext = CurContext;
3826  CurContext = MethodDecl;
3827
3828  // C++[class.copy] p12
3829  // Before the implicitly-declared copy assignment operator for a class is
3830  // implicitly defined, all implicitly-declared copy assignment operators
3831  // for its direct base classes and its nonstatic data members shall have
3832  // been implicitly defined.
3833  bool err = false;
3834  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3835       E = ClassDecl->bases_end(); Base != E; ++Base) {
3836    CXXRecordDecl *BaseClassDecl
3837      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3838    if (CXXMethodDecl *BaseAssignOpMethod =
3839          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3840                                  BaseClassDecl))
3841      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3842  }
3843  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3844       E = ClassDecl->field_end(); Field != E; ++Field) {
3845    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3846    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3847      FieldType = Array->getElementType();
3848    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3849      CXXRecordDecl *FieldClassDecl
3850        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3851      if (CXXMethodDecl *FieldAssignOpMethod =
3852          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3853                                  FieldClassDecl))
3854        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3855    } else if (FieldType->isReferenceType()) {
3856      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3857      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3858      Diag(Field->getLocation(), diag::note_declared_at);
3859      Diag(CurrentLocation, diag::note_first_required_here);
3860      err = true;
3861    } else if (FieldType.isConstQualified()) {
3862      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3863      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3864      Diag(Field->getLocation(), diag::note_declared_at);
3865      Diag(CurrentLocation, diag::note_first_required_here);
3866      err = true;
3867    }
3868  }
3869  if (!err)
3870    MethodDecl->setUsed();
3871
3872  CurContext = PreviousContext;
3873}
3874
3875CXXMethodDecl *
3876Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3877                              ParmVarDecl *ParmDecl,
3878                              CXXRecordDecl *ClassDecl) {
3879  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3880  QualType RHSType(LHSType);
3881  // If class's assignment operator argument is const/volatile qualified,
3882  // look for operator = (const/volatile B&). Otherwise, look for
3883  // operator = (B&).
3884  RHSType = Context.getCVRQualifiedType(RHSType,
3885                                     ParmDecl->getType().getCVRQualifiers());
3886  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3887                                                           LHSType,
3888                                                           SourceLocation()));
3889  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3890                                                           RHSType,
3891                                                           CurrentLocation));
3892  Expr *Args[2] = { &*LHS, &*RHS };
3893  OverloadCandidateSet CandidateSet(CurrentLocation);
3894  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3895                              CandidateSet);
3896  OverloadCandidateSet::iterator Best;
3897  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3898    return cast<CXXMethodDecl>(Best->Function);
3899  assert(false &&
3900         "getAssignOperatorMethod - copy assignment operator method not found");
3901  return 0;
3902}
3903
3904void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3905                                   CXXConstructorDecl *CopyConstructor,
3906                                   unsigned TypeQuals) {
3907  assert((CopyConstructor->isImplicit() &&
3908          CopyConstructor->isCopyConstructor(TypeQuals) &&
3909          !CopyConstructor->isUsed()) &&
3910         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3911
3912  CXXRecordDecl *ClassDecl
3913    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3914  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3915
3916  DeclContext *PreviousContext = CurContext;
3917  CurContext = CopyConstructor;
3918
3919  // C++ [class.copy] p209
3920  // Before the implicitly-declared copy constructor for a class is
3921  // implicitly defined, all the implicitly-declared copy constructors
3922  // for its base class and its non-static data members shall have been
3923  // implicitly defined.
3924  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3925       Base != ClassDecl->bases_end(); ++Base) {
3926    CXXRecordDecl *BaseClassDecl
3927      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3928    if (CXXConstructorDecl *BaseCopyCtor =
3929        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3930      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3931  }
3932  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3933                                  FieldEnd = ClassDecl->field_end();
3934       Field != FieldEnd; ++Field) {
3935    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3936    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3937      FieldType = Array->getElementType();
3938    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3939      CXXRecordDecl *FieldClassDecl
3940        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3941      if (CXXConstructorDecl *FieldCopyCtor =
3942          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3943        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3944    }
3945  }
3946  CopyConstructor->setUsed();
3947
3948  CurContext = PreviousContext;
3949}
3950
3951Sema::OwningExprResult
3952Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3953                            CXXConstructorDecl *Constructor,
3954                            MultiExprArg ExprArgs,
3955                            bool RequiresZeroInit,
3956                            bool BaseInitialization) {
3957  bool Elidable = false;
3958
3959  // C++ [class.copy]p15:
3960  //   Whenever a temporary class object is copied using a copy constructor, and
3961  //   this object and the copy have the same cv-unqualified type, an
3962  //   implementation is permitted to treat the original and the copy as two
3963  //   different ways of referring to the same object and not perform a copy at
3964  //   all, even if the class copy constructor or destructor have side effects.
3965
3966  // FIXME: Is this enough?
3967  if (Constructor->isCopyConstructor()) {
3968    Expr *E = ((Expr **)ExprArgs.get())[0];
3969    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3970      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3971        E = ICE->getSubExpr();
3972    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3973      E = FCE->getSubExpr();
3974    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3975      E = BE->getSubExpr();
3976    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3977      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3978        E = ICE->getSubExpr();
3979
3980    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3981      Elidable = !CE->getCallReturnType()->isReferenceType();
3982    else if (isa<CXXTemporaryObjectExpr>(E))
3983      Elidable = true;
3984    else if (isa<CXXConstructExpr>(E))
3985      Elidable = true;
3986  }
3987
3988  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3989                               Elidable, move(ExprArgs), RequiresZeroInit,
3990                               BaseInitialization);
3991}
3992
3993/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3994/// including handling of its default argument expressions.
3995Sema::OwningExprResult
3996Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3997                            CXXConstructorDecl *Constructor, bool Elidable,
3998                            MultiExprArg ExprArgs,
3999                            bool RequiresZeroInit,
4000                            bool BaseInitialization) {
4001  unsigned NumExprs = ExprArgs.size();
4002  Expr **Exprs = (Expr **)ExprArgs.release();
4003
4004  MarkDeclarationReferenced(ConstructLoc, Constructor);
4005  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4006                                        Constructor, Elidable, Exprs, NumExprs,
4007                                        RequiresZeroInit, BaseInitialization));
4008}
4009
4010bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4011                                        CXXConstructorDecl *Constructor,
4012                                        MultiExprArg Exprs) {
4013  OwningExprResult TempResult =
4014    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4015                          move(Exprs));
4016  if (TempResult.isInvalid())
4017    return true;
4018
4019  Expr *Temp = TempResult.takeAs<Expr>();
4020  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4021  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4022  VD->setInit(Temp);
4023
4024  return false;
4025}
4026
4027void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4028  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4029  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4030      !ClassDecl->hasTrivialDestructor()) {
4031    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4032    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4033    CheckDestructorAccess(VD->getLocation(), Record);
4034  }
4035}
4036
4037/// AddCXXDirectInitializerToDecl - This action is called immediately after
4038/// ActOnDeclarator, when a C++ direct initializer is present.
4039/// e.g: "int x(1);"
4040void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4041                                         SourceLocation LParenLoc,
4042                                         MultiExprArg Exprs,
4043                                         SourceLocation *CommaLocs,
4044                                         SourceLocation RParenLoc) {
4045  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4046  Decl *RealDecl = Dcl.getAs<Decl>();
4047
4048  // If there is no declaration, there was an error parsing it.  Just ignore
4049  // the initializer.
4050  if (RealDecl == 0)
4051    return;
4052
4053  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4054  if (!VDecl) {
4055    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4056    RealDecl->setInvalidDecl();
4057    return;
4058  }
4059
4060  // We will represent direct-initialization similarly to copy-initialization:
4061  //    int x(1);  -as-> int x = 1;
4062  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4063  //
4064  // Clients that want to distinguish between the two forms, can check for
4065  // direct initializer using VarDecl::hasCXXDirectInitializer().
4066  // A major benefit is that clients that don't particularly care about which
4067  // exactly form was it (like the CodeGen) can handle both cases without
4068  // special case code.
4069
4070  // C++ 8.5p11:
4071  // The form of initialization (using parentheses or '=') is generally
4072  // insignificant, but does matter when the entity being initialized has a
4073  // class type.
4074  QualType DeclInitType = VDecl->getType();
4075  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4076    DeclInitType = Context.getBaseElementType(Array);
4077
4078  if (!VDecl->getType()->isDependentType() &&
4079      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4080                          diag::err_typecheck_decl_incomplete_type)) {
4081    VDecl->setInvalidDecl();
4082    return;
4083  }
4084
4085  // The variable can not have an abstract class type.
4086  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4087                             diag::err_abstract_type_in_decl,
4088                             AbstractVariableType))
4089    VDecl->setInvalidDecl();
4090
4091  const VarDecl *Def;
4092  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4093    Diag(VDecl->getLocation(), diag::err_redefinition)
4094    << VDecl->getDeclName();
4095    Diag(Def->getLocation(), diag::note_previous_definition);
4096    VDecl->setInvalidDecl();
4097    return;
4098  }
4099
4100  // If either the declaration has a dependent type or if any of the
4101  // expressions is type-dependent, we represent the initialization
4102  // via a ParenListExpr for later use during template instantiation.
4103  if (VDecl->getType()->isDependentType() ||
4104      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4105    // Let clients know that initialization was done with a direct initializer.
4106    VDecl->setCXXDirectInitializer(true);
4107
4108    // Store the initialization expressions as a ParenListExpr.
4109    unsigned NumExprs = Exprs.size();
4110    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4111                                               (Expr **)Exprs.release(),
4112                                               NumExprs, RParenLoc));
4113    return;
4114  }
4115
4116  // Capture the variable that is being initialized and the style of
4117  // initialization.
4118  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4119
4120  // FIXME: Poor source location information.
4121  InitializationKind Kind
4122    = InitializationKind::CreateDirect(VDecl->getLocation(),
4123                                       LParenLoc, RParenLoc);
4124
4125  InitializationSequence InitSeq(*this, Entity, Kind,
4126                                 (Expr**)Exprs.get(), Exprs.size());
4127  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4128  if (Result.isInvalid()) {
4129    VDecl->setInvalidDecl();
4130    return;
4131  }
4132
4133  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4134  VDecl->setInit(Result.takeAs<Expr>());
4135  VDecl->setCXXDirectInitializer(true);
4136
4137  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4138    FinalizeVarWithDestructor(VDecl, Record);
4139}
4140
4141/// \brief Add the applicable constructor candidates for an initialization
4142/// by constructor.
4143static void AddConstructorInitializationCandidates(Sema &SemaRef,
4144                                                   QualType ClassType,
4145                                                   Expr **Args,
4146                                                   unsigned NumArgs,
4147                                                   InitializationKind Kind,
4148                                           OverloadCandidateSet &CandidateSet) {
4149  // C++ [dcl.init]p14:
4150  //   If the initialization is direct-initialization, or if it is
4151  //   copy-initialization where the cv-unqualified version of the
4152  //   source type is the same class as, or a derived class of, the
4153  //   class of the destination, constructors are considered. The
4154  //   applicable constructors are enumerated (13.3.1.3), and the
4155  //   best one is chosen through overload resolution (13.3). The
4156  //   constructor so selected is called to initialize the object,
4157  //   with the initializer expression(s) as its argument(s). If no
4158  //   constructor applies, or the overload resolution is ambiguous,
4159  //   the initialization is ill-formed.
4160  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4161  assert(ClassRec && "Can only initialize a class type here");
4162
4163  // FIXME: When we decide not to synthesize the implicitly-declared
4164  // constructors, we'll need to make them appear here.
4165
4166  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4167  DeclarationName ConstructorName
4168    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4169              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4170  DeclContext::lookup_const_iterator Con, ConEnd;
4171  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4172       Con != ConEnd; ++Con) {
4173    // Find the constructor (which may be a template).
4174    CXXConstructorDecl *Constructor = 0;
4175    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4176    if (ConstructorTmpl)
4177      Constructor
4178      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4179    else
4180      Constructor = cast<CXXConstructorDecl>(*Con);
4181
4182    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4183        (Kind.getKind() == InitializationKind::IK_Value) ||
4184        (Kind.getKind() == InitializationKind::IK_Copy &&
4185         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4186        ((Kind.getKind() == InitializationKind::IK_Default) &&
4187         Constructor->isDefaultConstructor())) {
4188      if (ConstructorTmpl)
4189        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4190                                             ConstructorTmpl->getAccess(),
4191                                             /*ExplicitArgs*/ 0,
4192                                             Args, NumArgs, CandidateSet);
4193      else
4194        SemaRef.AddOverloadCandidate(Constructor, Constructor->getAccess(),
4195                                     Args, NumArgs, CandidateSet);
4196    }
4197  }
4198}
4199
4200/// \brief Attempt to perform initialization by constructor
4201/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4202/// copy-initialization.
4203///
4204/// This routine determines whether initialization by constructor is possible,
4205/// but it does not emit any diagnostics in the case where the initialization
4206/// is ill-formed.
4207///
4208/// \param ClassType the type of the object being initialized, which must have
4209/// class type.
4210///
4211/// \param Args the arguments provided to initialize the object
4212///
4213/// \param NumArgs the number of arguments provided to initialize the object
4214///
4215/// \param Kind the type of initialization being performed
4216///
4217/// \returns the constructor used to initialize the object, if successful.
4218/// Otherwise, emits a diagnostic and returns NULL.
4219CXXConstructorDecl *
4220Sema::TryInitializationByConstructor(QualType ClassType,
4221                                     Expr **Args, unsigned NumArgs,
4222                                     SourceLocation Loc,
4223                                     InitializationKind Kind) {
4224  // Build the overload candidate set
4225  OverloadCandidateSet CandidateSet(Loc);
4226  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4227                                         CandidateSet);
4228
4229  // Determine whether we found a constructor we can use.
4230  OverloadCandidateSet::iterator Best;
4231  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4232    case OR_Success:
4233    case OR_Deleted:
4234      // We found a constructor. Return it.
4235      return cast<CXXConstructorDecl>(Best->Function);
4236
4237    case OR_No_Viable_Function:
4238    case OR_Ambiguous:
4239      // Overload resolution failed. Return nothing.
4240      return 0;
4241  }
4242
4243  // Silence GCC warning
4244  return 0;
4245}
4246
4247/// \brief Given a constructor and the set of arguments provided for the
4248/// constructor, convert the arguments and add any required default arguments
4249/// to form a proper call to this constructor.
4250///
4251/// \returns true if an error occurred, false otherwise.
4252bool
4253Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4254                              MultiExprArg ArgsPtr,
4255                              SourceLocation Loc,
4256                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4257  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4258  unsigned NumArgs = ArgsPtr.size();
4259  Expr **Args = (Expr **)ArgsPtr.get();
4260
4261  const FunctionProtoType *Proto
4262    = Constructor->getType()->getAs<FunctionProtoType>();
4263  assert(Proto && "Constructor without a prototype?");
4264  unsigned NumArgsInProto = Proto->getNumArgs();
4265
4266  // If too few arguments are available, we'll fill in the rest with defaults.
4267  if (NumArgs < NumArgsInProto)
4268    ConvertedArgs.reserve(NumArgsInProto);
4269  else
4270    ConvertedArgs.reserve(NumArgs);
4271
4272  VariadicCallType CallType =
4273    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4274  llvm::SmallVector<Expr *, 8> AllArgs;
4275  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4276                                        Proto, 0, Args, NumArgs, AllArgs,
4277                                        CallType);
4278  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4279    ConvertedArgs.push_back(AllArgs[i]);
4280  return Invalid;
4281}
4282
4283/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4284/// determine whether they are reference-related,
4285/// reference-compatible, reference-compatible with added
4286/// qualification, or incompatible, for use in C++ initialization by
4287/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4288/// type, and the first type (T1) is the pointee type of the reference
4289/// type being initialized.
4290Sema::ReferenceCompareResult
4291Sema::CompareReferenceRelationship(SourceLocation Loc,
4292                                   QualType OrigT1, QualType OrigT2,
4293                                   bool& DerivedToBase) {
4294  assert(!OrigT1->isReferenceType() &&
4295    "T1 must be the pointee type of the reference type");
4296  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4297
4298  QualType T1 = Context.getCanonicalType(OrigT1);
4299  QualType T2 = Context.getCanonicalType(OrigT2);
4300  Qualifiers T1Quals, T2Quals;
4301  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4302  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4303
4304  // C++ [dcl.init.ref]p4:
4305  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4306  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4307  //   T1 is a base class of T2.
4308  if (UnqualT1 == UnqualT2)
4309    DerivedToBase = false;
4310  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4311           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4312           IsDerivedFrom(UnqualT2, UnqualT1))
4313    DerivedToBase = true;
4314  else
4315    return Ref_Incompatible;
4316
4317  // At this point, we know that T1 and T2 are reference-related (at
4318  // least).
4319
4320  // If the type is an array type, promote the element qualifiers to the type
4321  // for comparison.
4322  if (isa<ArrayType>(T1) && T1Quals)
4323    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4324  if (isa<ArrayType>(T2) && T2Quals)
4325    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4326
4327  // C++ [dcl.init.ref]p4:
4328  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4329  //   reference-related to T2 and cv1 is the same cv-qualification
4330  //   as, or greater cv-qualification than, cv2. For purposes of
4331  //   overload resolution, cases for which cv1 is greater
4332  //   cv-qualification than cv2 are identified as
4333  //   reference-compatible with added qualification (see 13.3.3.2).
4334  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4335    return Ref_Compatible;
4336  else if (T1.isMoreQualifiedThan(T2))
4337    return Ref_Compatible_With_Added_Qualification;
4338  else
4339    return Ref_Related;
4340}
4341
4342/// CheckReferenceInit - Check the initialization of a reference
4343/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4344/// the initializer (either a simple initializer or an initializer
4345/// list), and DeclType is the type of the declaration. When ICS is
4346/// non-null, this routine will compute the implicit conversion
4347/// sequence according to C++ [over.ics.ref] and will not produce any
4348/// diagnostics; when ICS is null, it will emit diagnostics when any
4349/// errors are found. Either way, a return value of true indicates
4350/// that there was a failure, a return value of false indicates that
4351/// the reference initialization succeeded.
4352///
4353/// When @p SuppressUserConversions, user-defined conversions are
4354/// suppressed.
4355/// When @p AllowExplicit, we also permit explicit user-defined
4356/// conversion functions.
4357/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4358/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4359/// This is used when this is called from a C-style cast.
4360bool
4361Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4362                         SourceLocation DeclLoc,
4363                         bool SuppressUserConversions,
4364                         bool AllowExplicit, bool ForceRValue,
4365                         ImplicitConversionSequence *ICS,
4366                         bool IgnoreBaseAccess) {
4367  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4368
4369  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4370  QualType T2 = Init->getType();
4371
4372  // If the initializer is the address of an overloaded function, try
4373  // to resolve the overloaded function. If all goes well, T2 is the
4374  // type of the resulting function.
4375  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4376    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4377                                                          ICS != 0);
4378    if (Fn) {
4379      // Since we're performing this reference-initialization for
4380      // real, update the initializer with the resulting function.
4381      if (!ICS) {
4382        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4383          return true;
4384
4385        Init = FixOverloadedFunctionReference(Init, Fn);
4386      }
4387
4388      T2 = Fn->getType();
4389    }
4390  }
4391
4392  // Compute some basic properties of the types and the initializer.
4393  bool isRValRef = DeclType->isRValueReferenceType();
4394  bool DerivedToBase = false;
4395  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4396                                                  Init->isLvalue(Context);
4397  ReferenceCompareResult RefRelationship
4398    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4399
4400  // Most paths end in a failed conversion.
4401  if (ICS) {
4402    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4403  }
4404
4405  // C++ [dcl.init.ref]p5:
4406  //   A reference to type "cv1 T1" is initialized by an expression
4407  //   of type "cv2 T2" as follows:
4408
4409  //     -- If the initializer expression
4410
4411  // Rvalue references cannot bind to lvalues (N2812).
4412  // There is absolutely no situation where they can. In particular, note that
4413  // this is ill-formed, even if B has a user-defined conversion to A&&:
4414  //   B b;
4415  //   A&& r = b;
4416  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4417    if (!ICS)
4418      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4419        << Init->getSourceRange();
4420    return true;
4421  }
4422
4423  bool BindsDirectly = false;
4424  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4425  //          reference-compatible with "cv2 T2," or
4426  //
4427  // Note that the bit-field check is skipped if we are just computing
4428  // the implicit conversion sequence (C++ [over.best.ics]p2).
4429  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4430      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4431    BindsDirectly = true;
4432
4433    if (ICS) {
4434      // C++ [over.ics.ref]p1:
4435      //   When a parameter of reference type binds directly (8.5.3)
4436      //   to an argument expression, the implicit conversion sequence
4437      //   is the identity conversion, unless the argument expression
4438      //   has a type that is a derived class of the parameter type,
4439      //   in which case the implicit conversion sequence is a
4440      //   derived-to-base Conversion (13.3.3.1).
4441      ICS->setStandard();
4442      ICS->Standard.First = ICK_Identity;
4443      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4444      ICS->Standard.Third = ICK_Identity;
4445      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4446      ICS->Standard.setToType(0, T2);
4447      ICS->Standard.setToType(1, T1);
4448      ICS->Standard.setToType(2, T1);
4449      ICS->Standard.ReferenceBinding = true;
4450      ICS->Standard.DirectBinding = true;
4451      ICS->Standard.RRefBinding = false;
4452      ICS->Standard.CopyConstructor = 0;
4453
4454      // Nothing more to do: the inaccessibility/ambiguity check for
4455      // derived-to-base conversions is suppressed when we're
4456      // computing the implicit conversion sequence (C++
4457      // [over.best.ics]p2).
4458      return false;
4459    } else {
4460      // Perform the conversion.
4461      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4462      if (DerivedToBase)
4463        CK = CastExpr::CK_DerivedToBase;
4464      else if(CheckExceptionSpecCompatibility(Init, T1))
4465        return true;
4466      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4467    }
4468  }
4469
4470  //       -- has a class type (i.e., T2 is a class type) and can be
4471  //          implicitly converted to an lvalue of type "cv3 T3,"
4472  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4473  //          92) (this conversion is selected by enumerating the
4474  //          applicable conversion functions (13.3.1.6) and choosing
4475  //          the best one through overload resolution (13.3)),
4476  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4477      !RequireCompleteType(DeclLoc, T2, 0)) {
4478    CXXRecordDecl *T2RecordDecl
4479      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4480
4481    OverloadCandidateSet CandidateSet(DeclLoc);
4482    const UnresolvedSetImpl *Conversions
4483      = T2RecordDecl->getVisibleConversionFunctions();
4484    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4485           E = Conversions->end(); I != E; ++I) {
4486      NamedDecl *D = *I;
4487      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4488      if (isa<UsingShadowDecl>(D))
4489        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4490
4491      FunctionTemplateDecl *ConvTemplate
4492        = dyn_cast<FunctionTemplateDecl>(D);
4493      CXXConversionDecl *Conv;
4494      if (ConvTemplate)
4495        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4496      else
4497        Conv = cast<CXXConversionDecl>(D);
4498
4499      // If the conversion function doesn't return a reference type,
4500      // it can't be considered for this conversion.
4501      if (Conv->getConversionType()->isLValueReferenceType() &&
4502          (AllowExplicit || !Conv->isExplicit())) {
4503        if (ConvTemplate)
4504          AddTemplateConversionCandidate(ConvTemplate, I.getAccess(), ActingDC,
4505                                         Init, DeclType, CandidateSet);
4506        else
4507          AddConversionCandidate(Conv, I.getAccess(), ActingDC, Init,
4508                                 DeclType, CandidateSet);
4509      }
4510    }
4511
4512    OverloadCandidateSet::iterator Best;
4513    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4514    case OR_Success:
4515      // This is a direct binding.
4516      BindsDirectly = true;
4517
4518      if (ICS) {
4519        // C++ [over.ics.ref]p1:
4520        //
4521        //   [...] If the parameter binds directly to the result of
4522        //   applying a conversion function to the argument
4523        //   expression, the implicit conversion sequence is a
4524        //   user-defined conversion sequence (13.3.3.1.2), with the
4525        //   second standard conversion sequence either an identity
4526        //   conversion or, if the conversion function returns an
4527        //   entity of a type that is a derived class of the parameter
4528        //   type, a derived-to-base Conversion.
4529        ICS->setUserDefined();
4530        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4531        ICS->UserDefined.After = Best->FinalConversion;
4532        ICS->UserDefined.ConversionFunction = Best->Function;
4533        ICS->UserDefined.EllipsisConversion = false;
4534        assert(ICS->UserDefined.After.ReferenceBinding &&
4535               ICS->UserDefined.After.DirectBinding &&
4536               "Expected a direct reference binding!");
4537        return false;
4538      } else {
4539        OwningExprResult InitConversion =
4540          BuildCXXCastArgument(DeclLoc, QualType(),
4541                               CastExpr::CK_UserDefinedConversion,
4542                               cast<CXXMethodDecl>(Best->Function),
4543                               Owned(Init));
4544        Init = InitConversion.takeAs<Expr>();
4545
4546        if (CheckExceptionSpecCompatibility(Init, T1))
4547          return true;
4548        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4549                          /*isLvalue=*/true);
4550      }
4551      break;
4552
4553    case OR_Ambiguous:
4554      if (ICS) {
4555        ICS->setAmbiguous();
4556        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4557             Cand != CandidateSet.end(); ++Cand)
4558          if (Cand->Viable)
4559            ICS->Ambiguous.addConversion(Cand->Function);
4560        break;
4561      }
4562      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4563            << Init->getSourceRange();
4564      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4565      return true;
4566
4567    case OR_No_Viable_Function:
4568    case OR_Deleted:
4569      // There was no suitable conversion, or we found a deleted
4570      // conversion; continue with other checks.
4571      break;
4572    }
4573  }
4574
4575  if (BindsDirectly) {
4576    // C++ [dcl.init.ref]p4:
4577    //   [...] In all cases where the reference-related or
4578    //   reference-compatible relationship of two types is used to
4579    //   establish the validity of a reference binding, and T1 is a
4580    //   base class of T2, a program that necessitates such a binding
4581    //   is ill-formed if T1 is an inaccessible (clause 11) or
4582    //   ambiguous (10.2) base class of T2.
4583    //
4584    // Note that we only check this condition when we're allowed to
4585    // complain about errors, because we should not be checking for
4586    // ambiguity (or inaccessibility) unless the reference binding
4587    // actually happens.
4588    if (DerivedToBase)
4589      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4590                                          Init->getSourceRange(),
4591                                          IgnoreBaseAccess);
4592    else
4593      return false;
4594  }
4595
4596  //     -- Otherwise, the reference shall be to a non-volatile const
4597  //        type (i.e., cv1 shall be const), or the reference shall be an
4598  //        rvalue reference and the initializer expression shall be an rvalue.
4599  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4600    if (!ICS)
4601      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4602        << T1.isVolatileQualified()
4603        << T1 << int(InitLvalue != Expr::LV_Valid)
4604        << T2 << Init->getSourceRange();
4605    return true;
4606  }
4607
4608  //       -- If the initializer expression is an rvalue, with T2 a
4609  //          class type, and "cv1 T1" is reference-compatible with
4610  //          "cv2 T2," the reference is bound in one of the
4611  //          following ways (the choice is implementation-defined):
4612  //
4613  //          -- The reference is bound to the object represented by
4614  //             the rvalue (see 3.10) or to a sub-object within that
4615  //             object.
4616  //
4617  //          -- A temporary of type "cv1 T2" [sic] is created, and
4618  //             a constructor is called to copy the entire rvalue
4619  //             object into the temporary. The reference is bound to
4620  //             the temporary or to a sub-object within the
4621  //             temporary.
4622  //
4623  //          The constructor that would be used to make the copy
4624  //          shall be callable whether or not the copy is actually
4625  //          done.
4626  //
4627  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4628  // freedom, so we will always take the first option and never build
4629  // a temporary in this case. FIXME: We will, however, have to check
4630  // for the presence of a copy constructor in C++98/03 mode.
4631  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4632      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4633    if (ICS) {
4634      ICS->setStandard();
4635      ICS->Standard.First = ICK_Identity;
4636      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4637      ICS->Standard.Third = ICK_Identity;
4638      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4639      ICS->Standard.setToType(0, T2);
4640      ICS->Standard.setToType(1, T1);
4641      ICS->Standard.setToType(2, T1);
4642      ICS->Standard.ReferenceBinding = true;
4643      ICS->Standard.DirectBinding = false;
4644      ICS->Standard.RRefBinding = isRValRef;
4645      ICS->Standard.CopyConstructor = 0;
4646    } else {
4647      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4648      if (DerivedToBase)
4649        CK = CastExpr::CK_DerivedToBase;
4650      else if(CheckExceptionSpecCompatibility(Init, T1))
4651        return true;
4652      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4653    }
4654    return false;
4655  }
4656
4657  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4658  //          initialized from the initializer expression using the
4659  //          rules for a non-reference copy initialization (8.5). The
4660  //          reference is then bound to the temporary. If T1 is
4661  //          reference-related to T2, cv1 must be the same
4662  //          cv-qualification as, or greater cv-qualification than,
4663  //          cv2; otherwise, the program is ill-formed.
4664  if (RefRelationship == Ref_Related) {
4665    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4666    // we would be reference-compatible or reference-compatible with
4667    // added qualification. But that wasn't the case, so the reference
4668    // initialization fails.
4669    if (!ICS)
4670      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4671        << T1 << int(InitLvalue != Expr::LV_Valid)
4672        << T2 << Init->getSourceRange();
4673    return true;
4674  }
4675
4676  // If at least one of the types is a class type, the types are not
4677  // related, and we aren't allowed any user conversions, the
4678  // reference binding fails. This case is important for breaking
4679  // recursion, since TryImplicitConversion below will attempt to
4680  // create a temporary through the use of a copy constructor.
4681  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4682      (T1->isRecordType() || T2->isRecordType())) {
4683    if (!ICS)
4684      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4685        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4686    return true;
4687  }
4688
4689  // Actually try to convert the initializer to T1.
4690  if (ICS) {
4691    // C++ [over.ics.ref]p2:
4692    //
4693    //   When a parameter of reference type is not bound directly to
4694    //   an argument expression, the conversion sequence is the one
4695    //   required to convert the argument expression to the
4696    //   underlying type of the reference according to
4697    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4698    //   to copy-initializing a temporary of the underlying type with
4699    //   the argument expression. Any difference in top-level
4700    //   cv-qualification is subsumed by the initialization itself
4701    //   and does not constitute a conversion.
4702    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4703                                 /*AllowExplicit=*/false,
4704                                 /*ForceRValue=*/false,
4705                                 /*InOverloadResolution=*/false);
4706
4707    // Of course, that's still a reference binding.
4708    if (ICS->isStandard()) {
4709      ICS->Standard.ReferenceBinding = true;
4710      ICS->Standard.RRefBinding = isRValRef;
4711    } else if (ICS->isUserDefined()) {
4712      ICS->UserDefined.After.ReferenceBinding = true;
4713      ICS->UserDefined.After.RRefBinding = isRValRef;
4714    }
4715    return ICS->isBad();
4716  } else {
4717    ImplicitConversionSequence Conversions;
4718    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4719                                                   false, false,
4720                                                   Conversions);
4721    if (badConversion) {
4722      if (Conversions.isAmbiguous()) {
4723        Diag(DeclLoc,
4724             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4725        for (int j = Conversions.Ambiguous.conversions().size()-1;
4726             j >= 0; j--) {
4727          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4728          NoteOverloadCandidate(Func);
4729        }
4730      }
4731      else {
4732        if (isRValRef)
4733          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4734            << Init->getSourceRange();
4735        else
4736          Diag(DeclLoc, diag::err_invalid_initialization)
4737            << DeclType << Init->getType() << Init->getSourceRange();
4738      }
4739    }
4740    return badConversion;
4741  }
4742}
4743
4744static inline bool
4745CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4746                                       const FunctionDecl *FnDecl) {
4747  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4748  if (isa<NamespaceDecl>(DC)) {
4749    return SemaRef.Diag(FnDecl->getLocation(),
4750                        diag::err_operator_new_delete_declared_in_namespace)
4751      << FnDecl->getDeclName();
4752  }
4753
4754  if (isa<TranslationUnitDecl>(DC) &&
4755      FnDecl->getStorageClass() == FunctionDecl::Static) {
4756    return SemaRef.Diag(FnDecl->getLocation(),
4757                        diag::err_operator_new_delete_declared_static)
4758      << FnDecl->getDeclName();
4759  }
4760
4761  return false;
4762}
4763
4764static inline bool
4765CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4766                            CanQualType ExpectedResultType,
4767                            CanQualType ExpectedFirstParamType,
4768                            unsigned DependentParamTypeDiag,
4769                            unsigned InvalidParamTypeDiag) {
4770  QualType ResultType =
4771    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4772
4773  // Check that the result type is not dependent.
4774  if (ResultType->isDependentType())
4775    return SemaRef.Diag(FnDecl->getLocation(),
4776                        diag::err_operator_new_delete_dependent_result_type)
4777    << FnDecl->getDeclName() << ExpectedResultType;
4778
4779  // Check that the result type is what we expect.
4780  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4781    return SemaRef.Diag(FnDecl->getLocation(),
4782                        diag::err_operator_new_delete_invalid_result_type)
4783    << FnDecl->getDeclName() << ExpectedResultType;
4784
4785  // A function template must have at least 2 parameters.
4786  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4787    return SemaRef.Diag(FnDecl->getLocation(),
4788                      diag::err_operator_new_delete_template_too_few_parameters)
4789        << FnDecl->getDeclName();
4790
4791  // The function decl must have at least 1 parameter.
4792  if (FnDecl->getNumParams() == 0)
4793    return SemaRef.Diag(FnDecl->getLocation(),
4794                        diag::err_operator_new_delete_too_few_parameters)
4795      << FnDecl->getDeclName();
4796
4797  // Check the the first parameter type is not dependent.
4798  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4799  if (FirstParamType->isDependentType())
4800    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4801      << FnDecl->getDeclName() << ExpectedFirstParamType;
4802
4803  // Check that the first parameter type is what we expect.
4804  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4805      ExpectedFirstParamType)
4806    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4807    << FnDecl->getDeclName() << ExpectedFirstParamType;
4808
4809  return false;
4810}
4811
4812static bool
4813CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4814  // C++ [basic.stc.dynamic.allocation]p1:
4815  //   A program is ill-formed if an allocation function is declared in a
4816  //   namespace scope other than global scope or declared static in global
4817  //   scope.
4818  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4819    return true;
4820
4821  CanQualType SizeTy =
4822    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4823
4824  // C++ [basic.stc.dynamic.allocation]p1:
4825  //  The return type shall be void*. The first parameter shall have type
4826  //  std::size_t.
4827  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4828                                  SizeTy,
4829                                  diag::err_operator_new_dependent_param_type,
4830                                  diag::err_operator_new_param_type))
4831    return true;
4832
4833  // C++ [basic.stc.dynamic.allocation]p1:
4834  //  The first parameter shall not have an associated default argument.
4835  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4836    return SemaRef.Diag(FnDecl->getLocation(),
4837                        diag::err_operator_new_default_arg)
4838      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4839
4840  return false;
4841}
4842
4843static bool
4844CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4845  // C++ [basic.stc.dynamic.deallocation]p1:
4846  //   A program is ill-formed if deallocation functions are declared in a
4847  //   namespace scope other than global scope or declared static in global
4848  //   scope.
4849  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4850    return true;
4851
4852  // C++ [basic.stc.dynamic.deallocation]p2:
4853  //   Each deallocation function shall return void and its first parameter
4854  //   shall be void*.
4855  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4856                                  SemaRef.Context.VoidPtrTy,
4857                                 diag::err_operator_delete_dependent_param_type,
4858                                 diag::err_operator_delete_param_type))
4859    return true;
4860
4861  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4862  if (FirstParamType->isDependentType())
4863    return SemaRef.Diag(FnDecl->getLocation(),
4864                        diag::err_operator_delete_dependent_param_type)
4865    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4866
4867  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4868      SemaRef.Context.VoidPtrTy)
4869    return SemaRef.Diag(FnDecl->getLocation(),
4870                        diag::err_operator_delete_param_type)
4871      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4872
4873  return false;
4874}
4875
4876/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4877/// of this overloaded operator is well-formed. If so, returns false;
4878/// otherwise, emits appropriate diagnostics and returns true.
4879bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4880  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4881         "Expected an overloaded operator declaration");
4882
4883  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4884
4885  // C++ [over.oper]p5:
4886  //   The allocation and deallocation functions, operator new,
4887  //   operator new[], operator delete and operator delete[], are
4888  //   described completely in 3.7.3. The attributes and restrictions
4889  //   found in the rest of this subclause do not apply to them unless
4890  //   explicitly stated in 3.7.3.
4891  if (Op == OO_Delete || Op == OO_Array_Delete)
4892    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4893
4894  if (Op == OO_New || Op == OO_Array_New)
4895    return CheckOperatorNewDeclaration(*this, FnDecl);
4896
4897  // C++ [over.oper]p6:
4898  //   An operator function shall either be a non-static member
4899  //   function or be a non-member function and have at least one
4900  //   parameter whose type is a class, a reference to a class, an
4901  //   enumeration, or a reference to an enumeration.
4902  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4903    if (MethodDecl->isStatic())
4904      return Diag(FnDecl->getLocation(),
4905                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4906  } else {
4907    bool ClassOrEnumParam = false;
4908    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4909                                   ParamEnd = FnDecl->param_end();
4910         Param != ParamEnd; ++Param) {
4911      QualType ParamType = (*Param)->getType().getNonReferenceType();
4912      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4913          ParamType->isEnumeralType()) {
4914        ClassOrEnumParam = true;
4915        break;
4916      }
4917    }
4918
4919    if (!ClassOrEnumParam)
4920      return Diag(FnDecl->getLocation(),
4921                  diag::err_operator_overload_needs_class_or_enum)
4922        << FnDecl->getDeclName();
4923  }
4924
4925  // C++ [over.oper]p8:
4926  //   An operator function cannot have default arguments (8.3.6),
4927  //   except where explicitly stated below.
4928  //
4929  // Only the function-call operator allows default arguments
4930  // (C++ [over.call]p1).
4931  if (Op != OO_Call) {
4932    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4933         Param != FnDecl->param_end(); ++Param) {
4934      if ((*Param)->hasDefaultArg())
4935        return Diag((*Param)->getLocation(),
4936                    diag::err_operator_overload_default_arg)
4937          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4938    }
4939  }
4940
4941  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4942    { false, false, false }
4943#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4944    , { Unary, Binary, MemberOnly }
4945#include "clang/Basic/OperatorKinds.def"
4946  };
4947
4948  bool CanBeUnaryOperator = OperatorUses[Op][0];
4949  bool CanBeBinaryOperator = OperatorUses[Op][1];
4950  bool MustBeMemberOperator = OperatorUses[Op][2];
4951
4952  // C++ [over.oper]p8:
4953  //   [...] Operator functions cannot have more or fewer parameters
4954  //   than the number required for the corresponding operator, as
4955  //   described in the rest of this subclause.
4956  unsigned NumParams = FnDecl->getNumParams()
4957                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4958  if (Op != OO_Call &&
4959      ((NumParams == 1 && !CanBeUnaryOperator) ||
4960       (NumParams == 2 && !CanBeBinaryOperator) ||
4961       (NumParams < 1) || (NumParams > 2))) {
4962    // We have the wrong number of parameters.
4963    unsigned ErrorKind;
4964    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4965      ErrorKind = 2;  // 2 -> unary or binary.
4966    } else if (CanBeUnaryOperator) {
4967      ErrorKind = 0;  // 0 -> unary
4968    } else {
4969      assert(CanBeBinaryOperator &&
4970             "All non-call overloaded operators are unary or binary!");
4971      ErrorKind = 1;  // 1 -> binary
4972    }
4973
4974    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4975      << FnDecl->getDeclName() << NumParams << ErrorKind;
4976  }
4977
4978  // Overloaded operators other than operator() cannot be variadic.
4979  if (Op != OO_Call &&
4980      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4981    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4982      << FnDecl->getDeclName();
4983  }
4984
4985  // Some operators must be non-static member functions.
4986  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4987    return Diag(FnDecl->getLocation(),
4988                diag::err_operator_overload_must_be_member)
4989      << FnDecl->getDeclName();
4990  }
4991
4992  // C++ [over.inc]p1:
4993  //   The user-defined function called operator++ implements the
4994  //   prefix and postfix ++ operator. If this function is a member
4995  //   function with no parameters, or a non-member function with one
4996  //   parameter of class or enumeration type, it defines the prefix
4997  //   increment operator ++ for objects of that type. If the function
4998  //   is a member function with one parameter (which shall be of type
4999  //   int) or a non-member function with two parameters (the second
5000  //   of which shall be of type int), it defines the postfix
5001  //   increment operator ++ for objects of that type.
5002  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5003    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5004    bool ParamIsInt = false;
5005    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5006      ParamIsInt = BT->getKind() == BuiltinType::Int;
5007
5008    if (!ParamIsInt)
5009      return Diag(LastParam->getLocation(),
5010                  diag::err_operator_overload_post_incdec_must_be_int)
5011        << LastParam->getType() << (Op == OO_MinusMinus);
5012  }
5013
5014  // Notify the class if it got an assignment operator.
5015  if (Op == OO_Equal) {
5016    // Would have returned earlier otherwise.
5017    assert(isa<CXXMethodDecl>(FnDecl) &&
5018      "Overloaded = not member, but not filtered.");
5019    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5020    Method->getParent()->addedAssignmentOperator(Context, Method);
5021  }
5022
5023  return false;
5024}
5025
5026/// CheckLiteralOperatorDeclaration - Check whether the declaration
5027/// of this literal operator function is well-formed. If so, returns
5028/// false; otherwise, emits appropriate diagnostics and returns true.
5029bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5030  DeclContext *DC = FnDecl->getDeclContext();
5031  Decl::Kind Kind = DC->getDeclKind();
5032  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5033      Kind != Decl::LinkageSpec) {
5034    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5035      << FnDecl->getDeclName();
5036    return true;
5037  }
5038
5039  bool Valid = false;
5040
5041  // FIXME: Check for the one valid template signature
5042  // template <char...> type operator "" name();
5043
5044  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5045    // Check the first parameter
5046    QualType T = (*Param)->getType();
5047
5048    // unsigned long long int and long double are allowed, but only
5049    // alone.
5050    // We also allow any character type; their omission seems to be a bug
5051    // in n3000
5052    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5053        Context.hasSameType(T, Context.LongDoubleTy) ||
5054        Context.hasSameType(T, Context.CharTy) ||
5055        Context.hasSameType(T, Context.WCharTy) ||
5056        Context.hasSameType(T, Context.Char16Ty) ||
5057        Context.hasSameType(T, Context.Char32Ty)) {
5058      if (++Param == FnDecl->param_end())
5059        Valid = true;
5060      goto FinishedParams;
5061    }
5062
5063    // Otherwise it must be a pointer to const; let's strip those.
5064    const PointerType *PT = T->getAs<PointerType>();
5065    if (!PT)
5066      goto FinishedParams;
5067    T = PT->getPointeeType();
5068    if (!T.isConstQualified())
5069      goto FinishedParams;
5070    T = T.getUnqualifiedType();
5071
5072    // Move on to the second parameter;
5073    ++Param;
5074
5075    // If there is no second parameter, the first must be a const char *
5076    if (Param == FnDecl->param_end()) {
5077      if (Context.hasSameType(T, Context.CharTy))
5078        Valid = true;
5079      goto FinishedParams;
5080    }
5081
5082    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5083    // are allowed as the first parameter to a two-parameter function
5084    if (!(Context.hasSameType(T, Context.CharTy) ||
5085          Context.hasSameType(T, Context.WCharTy) ||
5086          Context.hasSameType(T, Context.Char16Ty) ||
5087          Context.hasSameType(T, Context.Char32Ty)))
5088      goto FinishedParams;
5089
5090    // The second and final parameter must be an std::size_t
5091    T = (*Param)->getType().getUnqualifiedType();
5092    if (Context.hasSameType(T, Context.getSizeType()) &&
5093        ++Param == FnDecl->param_end())
5094      Valid = true;
5095  }
5096
5097  // FIXME: This diagnostic is absolutely terrible.
5098FinishedParams:
5099  if (!Valid) {
5100    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5101      << FnDecl->getDeclName();
5102    return true;
5103  }
5104
5105  return false;
5106}
5107
5108/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5109/// linkage specification, including the language and (if present)
5110/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5111/// the location of the language string literal, which is provided
5112/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5113/// the '{' brace. Otherwise, this linkage specification does not
5114/// have any braces.
5115Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5116                                                     SourceLocation ExternLoc,
5117                                                     SourceLocation LangLoc,
5118                                                     const char *Lang,
5119                                                     unsigned StrSize,
5120                                                     SourceLocation LBraceLoc) {
5121  LinkageSpecDecl::LanguageIDs Language;
5122  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5123    Language = LinkageSpecDecl::lang_c;
5124  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5125    Language = LinkageSpecDecl::lang_cxx;
5126  else {
5127    Diag(LangLoc, diag::err_bad_language);
5128    return DeclPtrTy();
5129  }
5130
5131  // FIXME: Add all the various semantics of linkage specifications
5132
5133  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5134                                               LangLoc, Language,
5135                                               LBraceLoc.isValid());
5136  CurContext->addDecl(D);
5137  PushDeclContext(S, D);
5138  return DeclPtrTy::make(D);
5139}
5140
5141/// ActOnFinishLinkageSpecification - Completely the definition of
5142/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5143/// valid, it's the position of the closing '}' brace in a linkage
5144/// specification that uses braces.
5145Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5146                                                      DeclPtrTy LinkageSpec,
5147                                                      SourceLocation RBraceLoc) {
5148  if (LinkageSpec)
5149    PopDeclContext();
5150  return LinkageSpec;
5151}
5152
5153/// \brief Perform semantic analysis for the variable declaration that
5154/// occurs within a C++ catch clause, returning the newly-created
5155/// variable.
5156VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5157                                         TypeSourceInfo *TInfo,
5158                                         IdentifierInfo *Name,
5159                                         SourceLocation Loc,
5160                                         SourceRange Range) {
5161  bool Invalid = false;
5162
5163  // Arrays and functions decay.
5164  if (ExDeclType->isArrayType())
5165    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5166  else if (ExDeclType->isFunctionType())
5167    ExDeclType = Context.getPointerType(ExDeclType);
5168
5169  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5170  // The exception-declaration shall not denote a pointer or reference to an
5171  // incomplete type, other than [cv] void*.
5172  // N2844 forbids rvalue references.
5173  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5174    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5175    Invalid = true;
5176  }
5177
5178  QualType BaseType = ExDeclType;
5179  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5180  unsigned DK = diag::err_catch_incomplete;
5181  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5182    BaseType = Ptr->getPointeeType();
5183    Mode = 1;
5184    DK = diag::err_catch_incomplete_ptr;
5185  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5186    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5187    BaseType = Ref->getPointeeType();
5188    Mode = 2;
5189    DK = diag::err_catch_incomplete_ref;
5190  }
5191  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5192      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5193    Invalid = true;
5194
5195  if (!Invalid && !ExDeclType->isDependentType() &&
5196      RequireNonAbstractType(Loc, ExDeclType,
5197                             diag::err_abstract_type_in_decl,
5198                             AbstractVariableType))
5199    Invalid = true;
5200
5201  // FIXME: Need to test for ability to copy-construct and destroy the
5202  // exception variable.
5203
5204  // FIXME: Need to check for abstract classes.
5205
5206  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5207                                    Name, ExDeclType, TInfo, VarDecl::None);
5208
5209  if (Invalid)
5210    ExDecl->setInvalidDecl();
5211
5212  return ExDecl;
5213}
5214
5215/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5216/// handler.
5217Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5218  TypeSourceInfo *TInfo = 0;
5219  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5220
5221  bool Invalid = D.isInvalidType();
5222  IdentifierInfo *II = D.getIdentifier();
5223  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5224    // The scope should be freshly made just for us. There is just no way
5225    // it contains any previous declaration.
5226    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5227    if (PrevDecl->isTemplateParameter()) {
5228      // Maybe we will complain about the shadowed template parameter.
5229      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5230    }
5231  }
5232
5233  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5234    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5235      << D.getCXXScopeSpec().getRange();
5236    Invalid = true;
5237  }
5238
5239  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5240                                              D.getIdentifier(),
5241                                              D.getIdentifierLoc(),
5242                                            D.getDeclSpec().getSourceRange());
5243
5244  if (Invalid)
5245    ExDecl->setInvalidDecl();
5246
5247  // Add the exception declaration into this scope.
5248  if (II)
5249    PushOnScopeChains(ExDecl, S);
5250  else
5251    CurContext->addDecl(ExDecl);
5252
5253  ProcessDeclAttributes(S, ExDecl, D);
5254  return DeclPtrTy::make(ExDecl);
5255}
5256
5257Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5258                                                   ExprArg assertexpr,
5259                                                   ExprArg assertmessageexpr) {
5260  Expr *AssertExpr = (Expr *)assertexpr.get();
5261  StringLiteral *AssertMessage =
5262    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5263
5264  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5265    llvm::APSInt Value(32);
5266    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5267      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5268        AssertExpr->getSourceRange();
5269      return DeclPtrTy();
5270    }
5271
5272    if (Value == 0) {
5273      Diag(AssertLoc, diag::err_static_assert_failed)
5274        << AssertMessage->getString() << AssertExpr->getSourceRange();
5275    }
5276  }
5277
5278  assertexpr.release();
5279  assertmessageexpr.release();
5280  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5281                                        AssertExpr, AssertMessage);
5282
5283  CurContext->addDecl(Decl);
5284  return DeclPtrTy::make(Decl);
5285}
5286
5287/// Handle a friend type declaration.  This works in tandem with
5288/// ActOnTag.
5289///
5290/// Notes on friend class templates:
5291///
5292/// We generally treat friend class declarations as if they were
5293/// declaring a class.  So, for example, the elaborated type specifier
5294/// in a friend declaration is required to obey the restrictions of a
5295/// class-head (i.e. no typedefs in the scope chain), template
5296/// parameters are required to match up with simple template-ids, &c.
5297/// However, unlike when declaring a template specialization, it's
5298/// okay to refer to a template specialization without an empty
5299/// template parameter declaration, e.g.
5300///   friend class A<T>::B<unsigned>;
5301/// We permit this as a special case; if there are any template
5302/// parameters present at all, require proper matching, i.e.
5303///   template <> template <class T> friend class A<int>::B;
5304Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5305                                          MultiTemplateParamsArg TempParams) {
5306  SourceLocation Loc = DS.getSourceRange().getBegin();
5307
5308  assert(DS.isFriendSpecified());
5309  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5310
5311  // Try to convert the decl specifier to a type.  This works for
5312  // friend templates because ActOnTag never produces a ClassTemplateDecl
5313  // for a TUK_Friend.
5314  Declarator TheDeclarator(DS, Declarator::MemberContext);
5315  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5316  if (TheDeclarator.isInvalidType())
5317    return DeclPtrTy();
5318
5319  // This is definitely an error in C++98.  It's probably meant to
5320  // be forbidden in C++0x, too, but the specification is just
5321  // poorly written.
5322  //
5323  // The problem is with declarations like the following:
5324  //   template <T> friend A<T>::foo;
5325  // where deciding whether a class C is a friend or not now hinges
5326  // on whether there exists an instantiation of A that causes
5327  // 'foo' to equal C.  There are restrictions on class-heads
5328  // (which we declare (by fiat) elaborated friend declarations to
5329  // be) that makes this tractable.
5330  //
5331  // FIXME: handle "template <> friend class A<T>;", which
5332  // is possibly well-formed?  Who even knows?
5333  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5334    Diag(Loc, diag::err_tagless_friend_type_template)
5335      << DS.getSourceRange();
5336    return DeclPtrTy();
5337  }
5338
5339  // C++ [class.friend]p2:
5340  //   An elaborated-type-specifier shall be used in a friend declaration
5341  //   for a class.*
5342  //   * The class-key of the elaborated-type-specifier is required.
5343  // This is one of the rare places in Clang where it's legitimate to
5344  // ask about the "spelling" of the type.
5345  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5346    // If we evaluated the type to a record type, suggest putting
5347    // a tag in front.
5348    if (const RecordType *RT = T->getAs<RecordType>()) {
5349      RecordDecl *RD = RT->getDecl();
5350
5351      std::string InsertionText = std::string(" ") + RD->getKindName();
5352
5353      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5354        << (unsigned) RD->getTagKind()
5355        << T
5356        << SourceRange(DS.getFriendSpecLoc())
5357        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5358                                                 InsertionText);
5359      return DeclPtrTy();
5360    }else {
5361      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5362          << DS.getSourceRange();
5363      return DeclPtrTy();
5364    }
5365  }
5366
5367  // Enum types cannot be friends.
5368  if (T->getAs<EnumType>()) {
5369    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5370      << SourceRange(DS.getFriendSpecLoc());
5371    return DeclPtrTy();
5372  }
5373
5374  // C++98 [class.friend]p1: A friend of a class is a function
5375  //   or class that is not a member of the class . . .
5376  // This is fixed in DR77, which just barely didn't make the C++03
5377  // deadline.  It's also a very silly restriction that seriously
5378  // affects inner classes and which nobody else seems to implement;
5379  // thus we never diagnose it, not even in -pedantic.
5380
5381  Decl *D;
5382  if (TempParams.size())
5383    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5384                                   TempParams.size(),
5385                                 (TemplateParameterList**) TempParams.release(),
5386                                   T.getTypePtr(),
5387                                   DS.getFriendSpecLoc());
5388  else
5389    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5390                           DS.getFriendSpecLoc());
5391  D->setAccess(AS_public);
5392  CurContext->addDecl(D);
5393
5394  return DeclPtrTy::make(D);
5395}
5396
5397Sema::DeclPtrTy
5398Sema::ActOnFriendFunctionDecl(Scope *S,
5399                              Declarator &D,
5400                              bool IsDefinition,
5401                              MultiTemplateParamsArg TemplateParams) {
5402  const DeclSpec &DS = D.getDeclSpec();
5403
5404  assert(DS.isFriendSpecified());
5405  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5406
5407  SourceLocation Loc = D.getIdentifierLoc();
5408  TypeSourceInfo *TInfo = 0;
5409  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5410
5411  // C++ [class.friend]p1
5412  //   A friend of a class is a function or class....
5413  // Note that this sees through typedefs, which is intended.
5414  // It *doesn't* see through dependent types, which is correct
5415  // according to [temp.arg.type]p3:
5416  //   If a declaration acquires a function type through a
5417  //   type dependent on a template-parameter and this causes
5418  //   a declaration that does not use the syntactic form of a
5419  //   function declarator to have a function type, the program
5420  //   is ill-formed.
5421  if (!T->isFunctionType()) {
5422    Diag(Loc, diag::err_unexpected_friend);
5423
5424    // It might be worthwhile to try to recover by creating an
5425    // appropriate declaration.
5426    return DeclPtrTy();
5427  }
5428
5429  // C++ [namespace.memdef]p3
5430  //  - If a friend declaration in a non-local class first declares a
5431  //    class or function, the friend class or function is a member
5432  //    of the innermost enclosing namespace.
5433  //  - The name of the friend is not found by simple name lookup
5434  //    until a matching declaration is provided in that namespace
5435  //    scope (either before or after the class declaration granting
5436  //    friendship).
5437  //  - If a friend function is called, its name may be found by the
5438  //    name lookup that considers functions from namespaces and
5439  //    classes associated with the types of the function arguments.
5440  //  - When looking for a prior declaration of a class or a function
5441  //    declared as a friend, scopes outside the innermost enclosing
5442  //    namespace scope are not considered.
5443
5444  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5445  DeclarationName Name = GetNameForDeclarator(D);
5446  assert(Name);
5447
5448  // The context we found the declaration in, or in which we should
5449  // create the declaration.
5450  DeclContext *DC;
5451
5452  // FIXME: handle local classes
5453
5454  // Recover from invalid scope qualifiers as if they just weren't there.
5455  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5456                        ForRedeclaration);
5457  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5458    // FIXME: RequireCompleteDeclContext
5459    DC = computeDeclContext(ScopeQual);
5460
5461    // FIXME: handle dependent contexts
5462    if (!DC) return DeclPtrTy();
5463
5464    LookupQualifiedName(Previous, DC);
5465
5466    // If searching in that context implicitly found a declaration in
5467    // a different context, treat it like it wasn't found at all.
5468    // TODO: better diagnostics for this case.  Suggesting the right
5469    // qualified scope would be nice...
5470    // FIXME: getRepresentativeDecl() is not right here at all
5471    if (Previous.empty() ||
5472        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5473      D.setInvalidType();
5474      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5475      return DeclPtrTy();
5476    }
5477
5478    // C++ [class.friend]p1: A friend of a class is a function or
5479    //   class that is not a member of the class . . .
5480    if (DC->Equals(CurContext))
5481      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5482
5483  // Otherwise walk out to the nearest namespace scope looking for matches.
5484  } else {
5485    // TODO: handle local class contexts.
5486
5487    DC = CurContext;
5488    while (true) {
5489      // Skip class contexts.  If someone can cite chapter and verse
5490      // for this behavior, that would be nice --- it's what GCC and
5491      // EDG do, and it seems like a reasonable intent, but the spec
5492      // really only says that checks for unqualified existing
5493      // declarations should stop at the nearest enclosing namespace,
5494      // not that they should only consider the nearest enclosing
5495      // namespace.
5496      while (DC->isRecord())
5497        DC = DC->getParent();
5498
5499      LookupQualifiedName(Previous, DC);
5500
5501      // TODO: decide what we think about using declarations.
5502      if (!Previous.empty())
5503        break;
5504
5505      if (DC->isFileContext()) break;
5506      DC = DC->getParent();
5507    }
5508
5509    // C++ [class.friend]p1: A friend of a class is a function or
5510    //   class that is not a member of the class . . .
5511    // C++0x changes this for both friend types and functions.
5512    // Most C++ 98 compilers do seem to give an error here, so
5513    // we do, too.
5514    if (!Previous.empty() && DC->Equals(CurContext)
5515        && !getLangOptions().CPlusPlus0x)
5516      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5517  }
5518
5519  if (DC->isFileContext()) {
5520    // This implies that it has to be an operator or function.
5521    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5522        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5523        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5524      Diag(Loc, diag::err_introducing_special_friend) <<
5525        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5526         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5527      return DeclPtrTy();
5528    }
5529  }
5530
5531  bool Redeclaration = false;
5532  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5533                                          move(TemplateParams),
5534                                          IsDefinition,
5535                                          Redeclaration);
5536  if (!ND) return DeclPtrTy();
5537
5538  assert(ND->getDeclContext() == DC);
5539  assert(ND->getLexicalDeclContext() == CurContext);
5540
5541  // Add the function declaration to the appropriate lookup tables,
5542  // adjusting the redeclarations list as necessary.  We don't
5543  // want to do this yet if the friending class is dependent.
5544  //
5545  // Also update the scope-based lookup if the target context's
5546  // lookup context is in lexical scope.
5547  if (!CurContext->isDependentContext()) {
5548    DC = DC->getLookupContext();
5549    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5550    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5551      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5552  }
5553
5554  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5555                                       D.getIdentifierLoc(), ND,
5556                                       DS.getFriendSpecLoc());
5557  FrD->setAccess(AS_public);
5558  CurContext->addDecl(FrD);
5559
5560  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5561    FrD->setSpecialization(true);
5562
5563  return DeclPtrTy::make(ND);
5564}
5565
5566void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5567  AdjustDeclIfTemplate(dcl);
5568
5569  Decl *Dcl = dcl.getAs<Decl>();
5570  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5571  if (!Fn) {
5572    Diag(DelLoc, diag::err_deleted_non_function);
5573    return;
5574  }
5575  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5576    Diag(DelLoc, diag::err_deleted_decl_not_first);
5577    Diag(Prev->getLocation(), diag::note_previous_declaration);
5578    // If the declaration wasn't the first, we delete the function anyway for
5579    // recovery.
5580  }
5581  Fn->setDeleted();
5582}
5583
5584static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5585  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5586       ++CI) {
5587    Stmt *SubStmt = *CI;
5588    if (!SubStmt)
5589      continue;
5590    if (isa<ReturnStmt>(SubStmt))
5591      Self.Diag(SubStmt->getSourceRange().getBegin(),
5592           diag::err_return_in_constructor_handler);
5593    if (!isa<Expr>(SubStmt))
5594      SearchForReturnInStmt(Self, SubStmt);
5595  }
5596}
5597
5598void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5599  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5600    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5601    SearchForReturnInStmt(*this, Handler);
5602  }
5603}
5604
5605bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5606                                             const CXXMethodDecl *Old) {
5607  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5608  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5609
5610  if (Context.hasSameType(NewTy, OldTy) ||
5611      NewTy->isDependentType() || OldTy->isDependentType())
5612    return false;
5613
5614  // Check if the return types are covariant
5615  QualType NewClassTy, OldClassTy;
5616
5617  /// Both types must be pointers or references to classes.
5618  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5619    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5620      NewClassTy = NewPT->getPointeeType();
5621      OldClassTy = OldPT->getPointeeType();
5622    }
5623  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5624    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5625      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5626        NewClassTy = NewRT->getPointeeType();
5627        OldClassTy = OldRT->getPointeeType();
5628      }
5629    }
5630  }
5631
5632  // The return types aren't either both pointers or references to a class type.
5633  if (NewClassTy.isNull()) {
5634    Diag(New->getLocation(),
5635         diag::err_different_return_type_for_overriding_virtual_function)
5636      << New->getDeclName() << NewTy << OldTy;
5637    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5638
5639    return true;
5640  }
5641
5642  // C++ [class.virtual]p6:
5643  //   If the return type of D::f differs from the return type of B::f, the
5644  //   class type in the return type of D::f shall be complete at the point of
5645  //   declaration of D::f or shall be the class type D.
5646  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5647    if (!RT->isBeingDefined() &&
5648        RequireCompleteType(New->getLocation(), NewClassTy,
5649                            PDiag(diag::err_covariant_return_incomplete)
5650                              << New->getDeclName()))
5651    return true;
5652  }
5653
5654  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5655    // Check if the new class derives from the old class.
5656    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5657      Diag(New->getLocation(),
5658           diag::err_covariant_return_not_derived)
5659      << New->getDeclName() << NewTy << OldTy;
5660      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5661      return true;
5662    }
5663
5664    // Check if we the conversion from derived to base is valid.
5665    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, ADK_covariance,
5666                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5667                      // FIXME: Should this point to the return type?
5668                      New->getLocation(), SourceRange(), New->getDeclName())) {
5669      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5670      return true;
5671    }
5672  }
5673
5674  // The qualifiers of the return types must be the same.
5675  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5676    Diag(New->getLocation(),
5677         diag::err_covariant_return_type_different_qualifications)
5678    << New->getDeclName() << NewTy << OldTy;
5679    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5680    return true;
5681  };
5682
5683
5684  // The new class type must have the same or less qualifiers as the old type.
5685  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5686    Diag(New->getLocation(),
5687         diag::err_covariant_return_type_class_type_more_qualified)
5688    << New->getDeclName() << NewTy << OldTy;
5689    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5690    return true;
5691  };
5692
5693  return false;
5694}
5695
5696bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5697                                             const CXXMethodDecl *Old)
5698{
5699  if (Old->hasAttr<FinalAttr>()) {
5700    Diag(New->getLocation(), diag::err_final_function_overridden)
5701      << New->getDeclName();
5702    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5703    return true;
5704  }
5705
5706  return false;
5707}
5708
5709/// \brief Mark the given method pure.
5710///
5711/// \param Method the method to be marked pure.
5712///
5713/// \param InitRange the source range that covers the "0" initializer.
5714bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5715  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5716    Method->setPure();
5717
5718    // A class is abstract if at least one function is pure virtual.
5719    Method->getParent()->setAbstract(true);
5720    return false;
5721  }
5722
5723  if (!Method->isInvalidDecl())
5724    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5725      << Method->getDeclName() << InitRange;
5726  return true;
5727}
5728
5729/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5730/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5731/// is a fresh scope pushed for just this purpose.
5732///
5733/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5734/// static data member of class X, names should be looked up in the scope of
5735/// class X.
5736void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5737  // If there is no declaration, there was an error parsing it.
5738  Decl *D = Dcl.getAs<Decl>();
5739  if (D == 0) return;
5740
5741  // We should only get called for declarations with scope specifiers, like:
5742  //   int foo::bar;
5743  assert(D->isOutOfLine());
5744  EnterDeclaratorContext(S, D->getDeclContext());
5745}
5746
5747/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5748/// initializer for the out-of-line declaration 'Dcl'.
5749void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5750  // If there is no declaration, there was an error parsing it.
5751  Decl *D = Dcl.getAs<Decl>();
5752  if (D == 0) return;
5753
5754  assert(D->isOutOfLine());
5755  ExitDeclaratorContext(S);
5756}
5757
5758/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5759/// C++ if/switch/while/for statement.
5760/// e.g: "if (int x = f()) {...}"
5761Action::DeclResult
5762Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5763  // C++ 6.4p2:
5764  // The declarator shall not specify a function or an array.
5765  // The type-specifier-seq shall not contain typedef and shall not declare a
5766  // new class or enumeration.
5767  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5768         "Parser allowed 'typedef' as storage class of condition decl.");
5769
5770  TypeSourceInfo *TInfo = 0;
5771  TagDecl *OwnedTag = 0;
5772  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5773
5774  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5775                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5776                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5777    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5778      << D.getSourceRange();
5779    return DeclResult();
5780  } else if (OwnedTag && OwnedTag->isDefinition()) {
5781    // The type-specifier-seq shall not declare a new class or enumeration.
5782    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5783  }
5784
5785  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5786  if (!Dcl)
5787    return DeclResult();
5788
5789  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5790  VD->setDeclaredInCondition(true);
5791  return Dcl;
5792}
5793
5794void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5795                                             CXXMethodDecl *MD) {
5796  // Ignore dependent types.
5797  if (MD->isDependentContext())
5798    return;
5799
5800  CXXRecordDecl *RD = MD->getParent();
5801
5802  // Ignore classes without a vtable.
5803  if (!RD->isDynamicClass())
5804    return;
5805
5806  // Ignore declarations that are not definitions.
5807  if (!MD->isThisDeclarationADefinition())
5808    return;
5809
5810  if (isa<CXXConstructorDecl>(MD)) {
5811    switch (MD->getParent()->getTemplateSpecializationKind()) {
5812    case TSK_Undeclared:
5813    case TSK_ExplicitSpecialization:
5814      // Classes that aren't instantiations of templates don't need their
5815      // virtual methods marked until we see the definition of the key
5816      // function.
5817      return;
5818
5819    case TSK_ImplicitInstantiation:
5820    case TSK_ExplicitInstantiationDeclaration:
5821    case TSK_ExplicitInstantiationDefinition:
5822      // This is a constructor of a class template; mark all of the virtual
5823      // members as referenced to ensure that they get instantiatied.
5824      break;
5825    }
5826  } else if (!MD->isOutOfLine()) {
5827    // Consider only out-of-line definitions of member functions. When we see
5828    // an inline definition, it's too early to compute the key function.
5829    return;
5830  } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) {
5831    // If this is not the key function, we don't need to mark virtual members.
5832    if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl())
5833      return;
5834  } else {
5835    // The class has no key function, so we've already noted that we need to
5836    // mark the virtual members of this class.
5837    return;
5838  }
5839
5840  // We will need to mark all of the virtual members as referenced to build the
5841  // vtable.
5842  ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5843}
5844
5845bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5846  if (ClassesWithUnmarkedVirtualMembers.empty())
5847    return false;
5848
5849  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5850    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5851    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5852    ClassesWithUnmarkedVirtualMembers.pop_back();
5853    MarkVirtualMembersReferenced(Loc, RD);
5854  }
5855
5856  return true;
5857}
5858
5859void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5860  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5861       e = RD->method_end(); i != e; ++i) {
5862    CXXMethodDecl *MD = *i;
5863
5864    // C++ [basic.def.odr]p2:
5865    //   [...] A virtual member function is used if it is not pure. [...]
5866    if (MD->isVirtual() && !MD->isPure())
5867      MarkDeclarationReferenced(Loc, MD);
5868  }
5869}
5870
5871