SemaDeclCXX.cpp revision 6206d53f67613958ae1b023aba337ebb46f11a8b
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142        }
1143      }
1144
1145      // If no results were found, try to correct typos.
1146      if (R.empty() && BaseType.isNull() &&
1147          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1148          R.isSingleResult()) {
1149        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1150          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1151            // We have found a non-static data member with a similar
1152            // name to what was typed; complain and initialize that
1153            // member.
1154            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1155              << MemberOrBase << true << R.getLookupName()
1156              << FixItHint::CreateReplacement(R.getNameLoc(),
1157                                              R.getLookupName().getAsString());
1158            Diag(Member->getLocation(), diag::note_previous_decl)
1159              << Member->getDeclName();
1160
1161            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1162                                          LParenLoc, RParenLoc);
1163          }
1164        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1165          const CXXBaseSpecifier *DirectBaseSpec;
1166          const CXXBaseSpecifier *VirtualBaseSpec;
1167          if (FindBaseInitializer(*this, ClassDecl,
1168                                  Context.getTypeDeclType(Type),
1169                                  DirectBaseSpec, VirtualBaseSpec)) {
1170            // We have found a direct or virtual base class with a
1171            // similar name to what was typed; complain and initialize
1172            // that base class.
1173            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1174              << MemberOrBase << false << R.getLookupName()
1175              << FixItHint::CreateReplacement(R.getNameLoc(),
1176                                              R.getLookupName().getAsString());
1177
1178            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1179                                                             : VirtualBaseSpec;
1180            Diag(BaseSpec->getSourceRange().getBegin(),
1181                 diag::note_base_class_specified_here)
1182              << BaseSpec->getType()
1183              << BaseSpec->getSourceRange();
1184
1185            TyD = Type;
1186          }
1187        }
1188      }
1189
1190      if (!TyD && BaseType.isNull()) {
1191        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1192          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1193        return true;
1194      }
1195    }
1196
1197    if (BaseType.isNull()) {
1198      BaseType = Context.getTypeDeclType(TyD);
1199      if (SS.isSet()) {
1200        NestedNameSpecifier *Qualifier =
1201          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1202
1203        // FIXME: preserve source range information
1204        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1205      }
1206    }
1207  }
1208
1209  if (!TInfo)
1210    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1211
1212  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1213                              LParenLoc, RParenLoc, ClassDecl);
1214}
1215
1216/// Checks an initializer expression for use of uninitialized fields, such as
1217/// containing the field that is being initialized. Returns true if there is an
1218/// uninitialized field was used an updates the SourceLocation parameter; false
1219/// otherwise.
1220static bool InitExprContainsUninitializedFields(const Stmt* S,
1221                                                const FieldDecl* LhsField,
1222                                                SourceLocation* L) {
1223  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1224  if (ME) {
1225    const NamedDecl* RhsField = ME->getMemberDecl();
1226    if (RhsField == LhsField) {
1227      // Initializing a field with itself. Throw a warning.
1228      // But wait; there are exceptions!
1229      // Exception #1:  The field may not belong to this record.
1230      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1231      const Expr* base = ME->getBase();
1232      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1233        // Even though the field matches, it does not belong to this record.
1234        return false;
1235      }
1236      // None of the exceptions triggered; return true to indicate an
1237      // uninitialized field was used.
1238      *L = ME->getMemberLoc();
1239      return true;
1240    }
1241  }
1242  bool found = false;
1243  for (Stmt::const_child_iterator it = S->child_begin();
1244       it != S->child_end() && found == false;
1245       ++it) {
1246    if (isa<CallExpr>(S)) {
1247      // Do not descend into function calls or constructors, as the use
1248      // of an uninitialized field may be valid. One would have to inspect
1249      // the contents of the function/ctor to determine if it is safe or not.
1250      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1251      // may be safe, depending on what the function/ctor does.
1252      continue;
1253    }
1254    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1255  }
1256  return found;
1257}
1258
1259Sema::MemInitResult
1260Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1261                             unsigned NumArgs, SourceLocation IdLoc,
1262                             SourceLocation LParenLoc,
1263                             SourceLocation RParenLoc) {
1264  // Diagnose value-uses of fields to initialize themselves, e.g.
1265  //   foo(foo)
1266  // where foo is not also a parameter to the constructor.
1267  // TODO: implement -Wuninitialized and fold this into that framework.
1268  for (unsigned i = 0; i < NumArgs; ++i) {
1269    SourceLocation L;
1270    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1271      // FIXME: Return true in the case when other fields are used before being
1272      // uninitialized. For example, let this field be the i'th field. When
1273      // initializing the i'th field, throw a warning if any of the >= i'th
1274      // fields are used, as they are not yet initialized.
1275      // Right now we are only handling the case where the i'th field uses
1276      // itself in its initializer.
1277      Diag(L, diag::warn_field_is_uninit);
1278    }
1279  }
1280
1281  bool HasDependentArg = false;
1282  for (unsigned i = 0; i < NumArgs; i++)
1283    HasDependentArg |= Args[i]->isTypeDependent();
1284
1285  QualType FieldType = Member->getType();
1286  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1287    FieldType = Array->getElementType();
1288  if (FieldType->isDependentType() || HasDependentArg) {
1289    // Can't check initialization for a member of dependent type or when
1290    // any of the arguments are type-dependent expressions.
1291    OwningExprResult Init
1292      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1293                                          RParenLoc));
1294
1295    // Erase any temporaries within this evaluation context; we're not
1296    // going to track them in the AST, since we'll be rebuilding the
1297    // ASTs during template instantiation.
1298    ExprTemporaries.erase(
1299              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1300                          ExprTemporaries.end());
1301
1302    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1303                                                    LParenLoc,
1304                                                    Init.takeAs<Expr>(),
1305                                                    RParenLoc);
1306
1307  }
1308
1309  if (Member->isInvalidDecl())
1310    return true;
1311
1312  // Initialize the member.
1313  InitializedEntity MemberEntity =
1314    InitializedEntity::InitializeMember(Member, 0);
1315  InitializationKind Kind =
1316    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1317
1318  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1319
1320  OwningExprResult MemberInit =
1321    InitSeq.Perform(*this, MemberEntity, Kind,
1322                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1323  if (MemberInit.isInvalid())
1324    return true;
1325
1326  // C++0x [class.base.init]p7:
1327  //   The initialization of each base and member constitutes a
1328  //   full-expression.
1329  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1330  if (MemberInit.isInvalid())
1331    return true;
1332
1333  // If we are in a dependent context, template instantiation will
1334  // perform this type-checking again. Just save the arguments that we
1335  // received in a ParenListExpr.
1336  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1337  // of the information that we have about the member
1338  // initializer. However, deconstructing the ASTs is a dicey process,
1339  // and this approach is far more likely to get the corner cases right.
1340  if (CurContext->isDependentContext()) {
1341    // Bump the reference count of all of the arguments.
1342    for (unsigned I = 0; I != NumArgs; ++I)
1343      Args[I]->Retain();
1344
1345    OwningExprResult Init
1346      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1347                                          RParenLoc));
1348    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1349                                                    LParenLoc,
1350                                                    Init.takeAs<Expr>(),
1351                                                    RParenLoc);
1352  }
1353
1354  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1355                                                  LParenLoc,
1356                                                  MemberInit.takeAs<Expr>(),
1357                                                  RParenLoc);
1358}
1359
1360Sema::MemInitResult
1361Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1362                           Expr **Args, unsigned NumArgs,
1363                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1364                           CXXRecordDecl *ClassDecl) {
1365  bool HasDependentArg = false;
1366  for (unsigned i = 0; i < NumArgs; i++)
1367    HasDependentArg |= Args[i]->isTypeDependent();
1368
1369  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1370  if (BaseType->isDependentType() || HasDependentArg) {
1371    // Can't check initialization for a base of dependent type or when
1372    // any of the arguments are type-dependent expressions.
1373    OwningExprResult BaseInit
1374      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1375                                          RParenLoc));
1376
1377    // Erase any temporaries within this evaluation context; we're not
1378    // going to track them in the AST, since we'll be rebuilding the
1379    // ASTs during template instantiation.
1380    ExprTemporaries.erase(
1381              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1382                          ExprTemporaries.end());
1383
1384    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1385                                                    /*IsVirtual=*/false,
1386                                                    LParenLoc,
1387                                                    BaseInit.takeAs<Expr>(),
1388                                                    RParenLoc);
1389  }
1390
1391  if (!BaseType->isRecordType())
1392    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1393             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1394
1395  // C++ [class.base.init]p2:
1396  //   [...] Unless the mem-initializer-id names a nonstatic data
1397  //   member of the constructor’s class or a direct or virtual base
1398  //   of that class, the mem-initializer is ill-formed. A
1399  //   mem-initializer-list can initialize a base class using any
1400  //   name that denotes that base class type.
1401
1402  // Check for direct and virtual base classes.
1403  const CXXBaseSpecifier *DirectBaseSpec = 0;
1404  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1405  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1406                      VirtualBaseSpec);
1407
1408  // C++ [base.class.init]p2:
1409  //   If a mem-initializer-id is ambiguous because it designates both
1410  //   a direct non-virtual base class and an inherited virtual base
1411  //   class, the mem-initializer is ill-formed.
1412  if (DirectBaseSpec && VirtualBaseSpec)
1413    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1414      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1415  // C++ [base.class.init]p2:
1416  // Unless the mem-initializer-id names a nonstatic data membeer of the
1417  // constructor's class ot a direst or virtual base of that class, the
1418  // mem-initializer is ill-formed.
1419  if (!DirectBaseSpec && !VirtualBaseSpec)
1420    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1421      << BaseType << Context.getTypeDeclType(ClassDecl)
1422      << BaseTInfo->getTypeLoc().getLocalSourceRange();
1423
1424  CXXBaseSpecifier *BaseSpec
1425    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1426  if (!BaseSpec)
1427    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1428
1429  // Initialize the base.
1430  InitializedEntity BaseEntity =
1431    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1432  InitializationKind Kind =
1433    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1434
1435  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1436
1437  OwningExprResult BaseInit =
1438    InitSeq.Perform(*this, BaseEntity, Kind,
1439                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1440  if (BaseInit.isInvalid())
1441    return true;
1442
1443  // C++0x [class.base.init]p7:
1444  //   The initialization of each base and member constitutes a
1445  //   full-expression.
1446  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1447  if (BaseInit.isInvalid())
1448    return true;
1449
1450  // If we are in a dependent context, template instantiation will
1451  // perform this type-checking again. Just save the arguments that we
1452  // received in a ParenListExpr.
1453  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1454  // of the information that we have about the base
1455  // initializer. However, deconstructing the ASTs is a dicey process,
1456  // and this approach is far more likely to get the corner cases right.
1457  if (CurContext->isDependentContext()) {
1458    // Bump the reference count of all of the arguments.
1459    for (unsigned I = 0; I != NumArgs; ++I)
1460      Args[I]->Retain();
1461
1462    OwningExprResult Init
1463      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1464                                          RParenLoc));
1465    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1466                                                    BaseSpec->isVirtual(),
1467                                                    LParenLoc,
1468                                                    Init.takeAs<Expr>(),
1469                                                    RParenLoc);
1470  }
1471
1472  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1473                                                  BaseSpec->isVirtual(),
1474                                                  LParenLoc,
1475                                                  BaseInit.takeAs<Expr>(),
1476                                                  RParenLoc);
1477}
1478
1479/// ImplicitInitializerKind - How an implicit base or member initializer should
1480/// initialize its base or member.
1481enum ImplicitInitializerKind {
1482  IIK_Default,
1483  IIK_Copy,
1484  IIK_Move
1485};
1486
1487static bool
1488BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1489                             ImplicitInitializerKind ImplicitInitKind,
1490                             CXXBaseSpecifier *BaseSpec,
1491                             bool IsInheritedVirtualBase,
1492                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1493  InitializedEntity InitEntity
1494    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1495                                        IsInheritedVirtualBase);
1496
1497  Sema::OwningExprResult BaseInit(SemaRef);
1498
1499  switch (ImplicitInitKind) {
1500  case IIK_Default: {
1501    InitializationKind InitKind
1502      = InitializationKind::CreateDefault(Constructor->getLocation());
1503    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1504    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1505                               Sema::MultiExprArg(SemaRef, 0, 0));
1506    break;
1507  }
1508
1509  case IIK_Copy: {
1510    ParmVarDecl *Param = Constructor->getParamDecl(0);
1511    QualType ParamType = Param->getType().getNonReferenceType();
1512
1513    Expr *CopyCtorArg =
1514      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1515                          Constructor->getLocation(), ParamType, 0);
1516
1517    // Cast to the base class to avoid ambiguities.
1518    QualType ArgTy =
1519      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1520                                       ParamType.getQualifiers());
1521    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1522                              CastExpr::CK_UncheckedDerivedToBase,
1523                              /*isLvalue=*/true,
1524                              CXXBaseSpecifierArray(BaseSpec));
1525
1526    InitializationKind InitKind
1527      = InitializationKind::CreateDirect(Constructor->getLocation(),
1528                                         SourceLocation(), SourceLocation());
1529    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1530                                   &CopyCtorArg, 1);
1531    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1532                               Sema::MultiExprArg(SemaRef,
1533                                                  (void**)&CopyCtorArg, 1));
1534    break;
1535  }
1536
1537  case IIK_Move:
1538    assert(false && "Unhandled initializer kind!");
1539  }
1540
1541  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1542  if (BaseInit.isInvalid())
1543    return true;
1544
1545  CXXBaseInit =
1546    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1547               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1548                                                        SourceLocation()),
1549                                             BaseSpec->isVirtual(),
1550                                             SourceLocation(),
1551                                             BaseInit.takeAs<Expr>(),
1552                                             SourceLocation());
1553
1554  return false;
1555}
1556
1557static bool
1558BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1559                               ImplicitInitializerKind ImplicitInitKind,
1560                               FieldDecl *Field,
1561                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1562  if (Field->isInvalidDecl())
1563    return true;
1564
1565  if (ImplicitInitKind == IIK_Copy) {
1566    SourceLocation Loc = Constructor->getLocation();
1567    ParmVarDecl *Param = Constructor->getParamDecl(0);
1568    QualType ParamType = Param->getType().getNonReferenceType();
1569
1570    Expr *MemberExprBase =
1571      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1572                          Loc, ParamType, 0);
1573
1574    // Build a reference to this field within the parameter.
1575    CXXScopeSpec SS;
1576    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1577                              Sema::LookupMemberName);
1578    MemberLookup.addDecl(Field, AS_public);
1579    MemberLookup.resolveKind();
1580    Sema::OwningExprResult CopyCtorArg
1581      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1582                                         ParamType, Loc,
1583                                         /*IsArrow=*/false,
1584                                         SS,
1585                                         /*FirstQualifierInScope=*/0,
1586                                         MemberLookup,
1587                                         /*TemplateArgs=*/0);
1588    if (CopyCtorArg.isInvalid())
1589      return true;
1590
1591    // When the field we are copying is an array, create index variables for
1592    // each dimension of the array. We use these index variables to subscript
1593    // the source array, and other clients (e.g., CodeGen) will perform the
1594    // necessary iteration with these index variables.
1595    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1596    QualType BaseType = Field->getType();
1597    QualType SizeType = SemaRef.Context.getSizeType();
1598    while (const ConstantArrayType *Array
1599                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1600      // Create the iteration variable for this array index.
1601      IdentifierInfo *IterationVarName = 0;
1602      {
1603        llvm::SmallString<8> Str;
1604        llvm::raw_svector_ostream OS(Str);
1605        OS << "__i" << IndexVariables.size();
1606        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1607      }
1608      VarDecl *IterationVar
1609        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1610                          IterationVarName, SizeType,
1611                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1612                          VarDecl::None, VarDecl::None);
1613      IndexVariables.push_back(IterationVar);
1614
1615      // Create a reference to the iteration variable.
1616      Sema::OwningExprResult IterationVarRef
1617        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1618      assert(!IterationVarRef.isInvalid() &&
1619             "Reference to invented variable cannot fail!");
1620
1621      // Subscript the array with this iteration variable.
1622      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1623                                                            Loc,
1624                                                          move(IterationVarRef),
1625                                                            Loc);
1626      if (CopyCtorArg.isInvalid())
1627        return true;
1628
1629      BaseType = Array->getElementType();
1630    }
1631
1632    // Construct the entity that we will be initializing. For an array, this
1633    // will be first element in the array, which may require several levels
1634    // of array-subscript entities.
1635    llvm::SmallVector<InitializedEntity, 4> Entities;
1636    Entities.reserve(1 + IndexVariables.size());
1637    Entities.push_back(InitializedEntity::InitializeMember(Field));
1638    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1639      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1640                                                              0,
1641                                                              Entities.back()));
1642
1643    // Direct-initialize to use the copy constructor.
1644    InitializationKind InitKind =
1645      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1646
1647    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1648    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1649                                   &CopyCtorArgE, 1);
1650
1651    Sema::OwningExprResult MemberInit
1652      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1653                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1654    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1655    if (MemberInit.isInvalid())
1656      return true;
1657
1658    CXXMemberInit
1659      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1660                                           MemberInit.takeAs<Expr>(), Loc,
1661                                           IndexVariables.data(),
1662                                           IndexVariables.size());
1663    return false;
1664  }
1665
1666  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1667
1668  QualType FieldBaseElementType =
1669    SemaRef.Context.getBaseElementType(Field->getType());
1670
1671  if (FieldBaseElementType->isRecordType()) {
1672    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1673    InitializationKind InitKind =
1674      InitializationKind::CreateDefault(Constructor->getLocation());
1675
1676    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1677    Sema::OwningExprResult MemberInit =
1678      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1679                      Sema::MultiExprArg(SemaRef, 0, 0));
1680    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1681    if (MemberInit.isInvalid())
1682      return true;
1683
1684    CXXMemberInit =
1685      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1686                                                       Field, SourceLocation(),
1687                                                       SourceLocation(),
1688                                                      MemberInit.takeAs<Expr>(),
1689                                                       SourceLocation());
1690    return false;
1691  }
1692
1693  if (FieldBaseElementType->isReferenceType()) {
1694    SemaRef.Diag(Constructor->getLocation(),
1695                 diag::err_uninitialized_member_in_ctor)
1696    << (int)Constructor->isImplicit()
1697    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1698    << 0 << Field->getDeclName();
1699    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1700    return true;
1701  }
1702
1703  if (FieldBaseElementType.isConstQualified()) {
1704    SemaRef.Diag(Constructor->getLocation(),
1705                 diag::err_uninitialized_member_in_ctor)
1706    << (int)Constructor->isImplicit()
1707    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1708    << 1 << Field->getDeclName();
1709    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1710    return true;
1711  }
1712
1713  // Nothing to initialize.
1714  CXXMemberInit = 0;
1715  return false;
1716}
1717
1718namespace {
1719struct BaseAndFieldInfo {
1720  Sema &S;
1721  CXXConstructorDecl *Ctor;
1722  bool AnyErrorsInInits;
1723  ImplicitInitializerKind IIK;
1724  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1725  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1726
1727  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1728    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1729    // FIXME: Handle implicit move constructors.
1730    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1731      IIK = IIK_Copy;
1732    else
1733      IIK = IIK_Default;
1734  }
1735};
1736}
1737
1738static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1739                                    FieldDecl *Top, FieldDecl *Field) {
1740
1741  // Overwhelmingly common case:  we have a direct initializer for this field.
1742  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1743    Info.AllToInit.push_back(Init);
1744
1745    if (Field != Top) {
1746      Init->setMember(Top);
1747      Init->setAnonUnionMember(Field);
1748    }
1749    return false;
1750  }
1751
1752  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1753    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1754    assert(FieldClassType && "anonymous struct/union without record type");
1755
1756    // Walk through the members, tying in any initializers for fields
1757    // we find.  The earlier semantic checks should prevent redundant
1758    // initialization of union members, given the requirement that
1759    // union members never have non-trivial default constructors.
1760
1761    // TODO: in C++0x, it might be legal to have union members with
1762    // non-trivial default constructors in unions.  Revise this
1763    // implementation then with the appropriate semantics.
1764    CXXRecordDecl *FieldClassDecl
1765      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1766    for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1767           EA = FieldClassDecl->field_end(); FA != EA; FA++)
1768      if (CollectFieldInitializer(Info, Top, *FA))
1769        return true;
1770  }
1771
1772  // Don't try to build an implicit initializer if there were semantic
1773  // errors in any of the initializers (and therefore we might be
1774  // missing some that the user actually wrote).
1775  if (Info.AnyErrorsInInits)
1776    return false;
1777
1778  CXXBaseOrMemberInitializer *Init = 0;
1779  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1780    return true;
1781
1782  // If the member doesn't need to be initialized, Init will still be null.
1783  if (!Init) return false;
1784
1785  Info.AllToInit.push_back(Init);
1786  if (Top != Field) {
1787    Init->setMember(Top);
1788    Init->setAnonUnionMember(Field);
1789  }
1790  return false;
1791}
1792
1793bool
1794Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1795                                  CXXBaseOrMemberInitializer **Initializers,
1796                                  unsigned NumInitializers,
1797                                  bool AnyErrors) {
1798  if (Constructor->getDeclContext()->isDependentContext()) {
1799    // Just store the initializers as written, they will be checked during
1800    // instantiation.
1801    if (NumInitializers > 0) {
1802      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1803      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1804        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1805      memcpy(baseOrMemberInitializers, Initializers,
1806             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1807      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1808    }
1809
1810    return false;
1811  }
1812
1813  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1814
1815  // We need to build the initializer AST according to order of construction
1816  // and not what user specified in the Initializers list.
1817  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1818  if (!ClassDecl)
1819    return true;
1820
1821  bool HadError = false;
1822
1823  for (unsigned i = 0; i < NumInitializers; i++) {
1824    CXXBaseOrMemberInitializer *Member = Initializers[i];
1825
1826    if (Member->isBaseInitializer())
1827      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1828    else
1829      Info.AllBaseFields[Member->getMember()] = Member;
1830  }
1831
1832  // Keep track of the direct virtual bases.
1833  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1834  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1835       E = ClassDecl->bases_end(); I != E; ++I) {
1836    if (I->isVirtual())
1837      DirectVBases.insert(I);
1838  }
1839
1840  // Push virtual bases before others.
1841  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1842       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1843
1844    if (CXXBaseOrMemberInitializer *Value
1845        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1846      Info.AllToInit.push_back(Value);
1847    } else if (!AnyErrors) {
1848      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1849      CXXBaseOrMemberInitializer *CXXBaseInit;
1850      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1851                                       VBase, IsInheritedVirtualBase,
1852                                       CXXBaseInit)) {
1853        HadError = true;
1854        continue;
1855      }
1856
1857      Info.AllToInit.push_back(CXXBaseInit);
1858    }
1859  }
1860
1861  // Non-virtual bases.
1862  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1863       E = ClassDecl->bases_end(); Base != E; ++Base) {
1864    // Virtuals are in the virtual base list and already constructed.
1865    if (Base->isVirtual())
1866      continue;
1867
1868    if (CXXBaseOrMemberInitializer *Value
1869          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1870      Info.AllToInit.push_back(Value);
1871    } else if (!AnyErrors) {
1872      CXXBaseOrMemberInitializer *CXXBaseInit;
1873      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1874                                       Base, /*IsInheritedVirtualBase=*/false,
1875                                       CXXBaseInit)) {
1876        HadError = true;
1877        continue;
1878      }
1879
1880      Info.AllToInit.push_back(CXXBaseInit);
1881    }
1882  }
1883
1884  // Fields.
1885  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1886       E = ClassDecl->field_end(); Field != E; ++Field) {
1887    if ((*Field)->getType()->isIncompleteArrayType()) {
1888      assert(ClassDecl->hasFlexibleArrayMember() &&
1889             "Incomplete array type is not valid");
1890      continue;
1891    }
1892    if (CollectFieldInitializer(Info, *Field, *Field))
1893      HadError = true;
1894  }
1895
1896  NumInitializers = Info.AllToInit.size();
1897  if (NumInitializers > 0) {
1898    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1899    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1900      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1901    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1902           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1903    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1904
1905    // Constructors implicitly reference the base and member
1906    // destructors.
1907    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1908                                           Constructor->getParent());
1909  }
1910
1911  return HadError;
1912}
1913
1914static void *GetKeyForTopLevelField(FieldDecl *Field) {
1915  // For anonymous unions, use the class declaration as the key.
1916  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1917    if (RT->getDecl()->isAnonymousStructOrUnion())
1918      return static_cast<void *>(RT->getDecl());
1919  }
1920  return static_cast<void *>(Field);
1921}
1922
1923static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1924  return Context.getCanonicalType(BaseType).getTypePtr();
1925}
1926
1927static void *GetKeyForMember(ASTContext &Context,
1928                             CXXBaseOrMemberInitializer *Member,
1929                             bool MemberMaybeAnon = false) {
1930  if (!Member->isMemberInitializer())
1931    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1932
1933  // For fields injected into the class via declaration of an anonymous union,
1934  // use its anonymous union class declaration as the unique key.
1935  FieldDecl *Field = Member->getMember();
1936
1937  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1938  // data member of the class. Data member used in the initializer list is
1939  // in AnonUnionMember field.
1940  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1941    Field = Member->getAnonUnionMember();
1942
1943  // If the field is a member of an anonymous struct or union, our key
1944  // is the anonymous record decl that's a direct child of the class.
1945  RecordDecl *RD = Field->getParent();
1946  if (RD->isAnonymousStructOrUnion()) {
1947    while (true) {
1948      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1949      if (Parent->isAnonymousStructOrUnion())
1950        RD = Parent;
1951      else
1952        break;
1953    }
1954
1955    return static_cast<void *>(RD);
1956  }
1957
1958  return static_cast<void *>(Field);
1959}
1960
1961static void
1962DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1963                                  const CXXConstructorDecl *Constructor,
1964                                  CXXBaseOrMemberInitializer **Inits,
1965                                  unsigned NumInits) {
1966  if (Constructor->getDeclContext()->isDependentContext())
1967    return;
1968
1969  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1970        == Diagnostic::Ignored)
1971    return;
1972
1973  // Build the list of bases and members in the order that they'll
1974  // actually be initialized.  The explicit initializers should be in
1975  // this same order but may be missing things.
1976  llvm::SmallVector<const void*, 32> IdealInitKeys;
1977
1978  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1979
1980  // 1. Virtual bases.
1981  for (CXXRecordDecl::base_class_const_iterator VBase =
1982       ClassDecl->vbases_begin(),
1983       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1984    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1985
1986  // 2. Non-virtual bases.
1987  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1988       E = ClassDecl->bases_end(); Base != E; ++Base) {
1989    if (Base->isVirtual())
1990      continue;
1991    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1992  }
1993
1994  // 3. Direct fields.
1995  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1996       E = ClassDecl->field_end(); Field != E; ++Field)
1997    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1998
1999  unsigned NumIdealInits = IdealInitKeys.size();
2000  unsigned IdealIndex = 0;
2001
2002  CXXBaseOrMemberInitializer *PrevInit = 0;
2003  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2004    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2005    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2006
2007    // Scan forward to try to find this initializer in the idealized
2008    // initializers list.
2009    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2010      if (InitKey == IdealInitKeys[IdealIndex])
2011        break;
2012
2013    // If we didn't find this initializer, it must be because we
2014    // scanned past it on a previous iteration.  That can only
2015    // happen if we're out of order;  emit a warning.
2016    if (IdealIndex == NumIdealInits && PrevInit) {
2017      Sema::SemaDiagnosticBuilder D =
2018        SemaRef.Diag(PrevInit->getSourceLocation(),
2019                     diag::warn_initializer_out_of_order);
2020
2021      if (PrevInit->isMemberInitializer())
2022        D << 0 << PrevInit->getMember()->getDeclName();
2023      else
2024        D << 1 << PrevInit->getBaseClassInfo()->getType();
2025
2026      if (Init->isMemberInitializer())
2027        D << 0 << Init->getMember()->getDeclName();
2028      else
2029        D << 1 << Init->getBaseClassInfo()->getType();
2030
2031      // Move back to the initializer's location in the ideal list.
2032      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2033        if (InitKey == IdealInitKeys[IdealIndex])
2034          break;
2035
2036      assert(IdealIndex != NumIdealInits &&
2037             "initializer not found in initializer list");
2038    }
2039
2040    PrevInit = Init;
2041  }
2042}
2043
2044namespace {
2045bool CheckRedundantInit(Sema &S,
2046                        CXXBaseOrMemberInitializer *Init,
2047                        CXXBaseOrMemberInitializer *&PrevInit) {
2048  if (!PrevInit) {
2049    PrevInit = Init;
2050    return false;
2051  }
2052
2053  if (FieldDecl *Field = Init->getMember())
2054    S.Diag(Init->getSourceLocation(),
2055           diag::err_multiple_mem_initialization)
2056      << Field->getDeclName()
2057      << Init->getSourceRange();
2058  else {
2059    Type *BaseClass = Init->getBaseClass();
2060    assert(BaseClass && "neither field nor base");
2061    S.Diag(Init->getSourceLocation(),
2062           diag::err_multiple_base_initialization)
2063      << QualType(BaseClass, 0)
2064      << Init->getSourceRange();
2065  }
2066  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2067    << 0 << PrevInit->getSourceRange();
2068
2069  return true;
2070}
2071
2072typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2073typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2074
2075bool CheckRedundantUnionInit(Sema &S,
2076                             CXXBaseOrMemberInitializer *Init,
2077                             RedundantUnionMap &Unions) {
2078  FieldDecl *Field = Init->getMember();
2079  RecordDecl *Parent = Field->getParent();
2080  if (!Parent->isAnonymousStructOrUnion())
2081    return false;
2082
2083  NamedDecl *Child = Field;
2084  do {
2085    if (Parent->isUnion()) {
2086      UnionEntry &En = Unions[Parent];
2087      if (En.first && En.first != Child) {
2088        S.Diag(Init->getSourceLocation(),
2089               diag::err_multiple_mem_union_initialization)
2090          << Field->getDeclName()
2091          << Init->getSourceRange();
2092        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2093          << 0 << En.second->getSourceRange();
2094        return true;
2095      } else if (!En.first) {
2096        En.first = Child;
2097        En.second = Init;
2098      }
2099    }
2100
2101    Child = Parent;
2102    Parent = cast<RecordDecl>(Parent->getDeclContext());
2103  } while (Parent->isAnonymousStructOrUnion());
2104
2105  return false;
2106}
2107}
2108
2109/// ActOnMemInitializers - Handle the member initializers for a constructor.
2110void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2111                                SourceLocation ColonLoc,
2112                                MemInitTy **meminits, unsigned NumMemInits,
2113                                bool AnyErrors) {
2114  if (!ConstructorDecl)
2115    return;
2116
2117  AdjustDeclIfTemplate(ConstructorDecl);
2118
2119  CXXConstructorDecl *Constructor
2120    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2121
2122  if (!Constructor) {
2123    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2124    return;
2125  }
2126
2127  CXXBaseOrMemberInitializer **MemInits =
2128    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2129
2130  // Mapping for the duplicate initializers check.
2131  // For member initializers, this is keyed with a FieldDecl*.
2132  // For base initializers, this is keyed with a Type*.
2133  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2134
2135  // Mapping for the inconsistent anonymous-union initializers check.
2136  RedundantUnionMap MemberUnions;
2137
2138  bool HadError = false;
2139  for (unsigned i = 0; i < NumMemInits; i++) {
2140    CXXBaseOrMemberInitializer *Init = MemInits[i];
2141
2142    // Set the source order index.
2143    Init->setSourceOrder(i);
2144
2145    if (Init->isMemberInitializer()) {
2146      FieldDecl *Field = Init->getMember();
2147      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2148          CheckRedundantUnionInit(*this, Init, MemberUnions))
2149        HadError = true;
2150    } else {
2151      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2152      if (CheckRedundantInit(*this, Init, Members[Key]))
2153        HadError = true;
2154    }
2155  }
2156
2157  if (HadError)
2158    return;
2159
2160  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2161
2162  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2163}
2164
2165void
2166Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2167                                             CXXRecordDecl *ClassDecl) {
2168  // Ignore dependent contexts.
2169  if (ClassDecl->isDependentContext())
2170    return;
2171
2172  // FIXME: all the access-control diagnostics are positioned on the
2173  // field/base declaration.  That's probably good; that said, the
2174  // user might reasonably want to know why the destructor is being
2175  // emitted, and we currently don't say.
2176
2177  // Non-static data members.
2178  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2179       E = ClassDecl->field_end(); I != E; ++I) {
2180    FieldDecl *Field = *I;
2181    if (Field->isInvalidDecl())
2182      continue;
2183    QualType FieldType = Context.getBaseElementType(Field->getType());
2184
2185    const RecordType* RT = FieldType->getAs<RecordType>();
2186    if (!RT)
2187      continue;
2188
2189    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2190    if (FieldClassDecl->hasTrivialDestructor())
2191      continue;
2192
2193    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2194    CheckDestructorAccess(Field->getLocation(), Dtor,
2195                          PDiag(diag::err_access_dtor_field)
2196                            << Field->getDeclName()
2197                            << FieldType);
2198
2199    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2200  }
2201
2202  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2203
2204  // Bases.
2205  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2206       E = ClassDecl->bases_end(); Base != E; ++Base) {
2207    // Bases are always records in a well-formed non-dependent class.
2208    const RecordType *RT = Base->getType()->getAs<RecordType>();
2209
2210    // Remember direct virtual bases.
2211    if (Base->isVirtual())
2212      DirectVirtualBases.insert(RT);
2213
2214    // Ignore trivial destructors.
2215    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2216    if (BaseClassDecl->hasTrivialDestructor())
2217      continue;
2218
2219    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2220
2221    // FIXME: caret should be on the start of the class name
2222    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2223                          PDiag(diag::err_access_dtor_base)
2224                            << Base->getType()
2225                            << Base->getSourceRange());
2226
2227    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2228  }
2229
2230  // Virtual bases.
2231  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2232       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2233
2234    // Bases are always records in a well-formed non-dependent class.
2235    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2236
2237    // Ignore direct virtual bases.
2238    if (DirectVirtualBases.count(RT))
2239      continue;
2240
2241    // Ignore trivial destructors.
2242    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2243    if (BaseClassDecl->hasTrivialDestructor())
2244      continue;
2245
2246    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2247    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2248                          PDiag(diag::err_access_dtor_vbase)
2249                            << VBase->getType());
2250
2251    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2252  }
2253}
2254
2255void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2256  if (!CDtorDecl)
2257    return;
2258
2259  if (CXXConstructorDecl *Constructor
2260      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2261    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2262}
2263
2264bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2265                                  unsigned DiagID, AbstractDiagSelID SelID,
2266                                  const CXXRecordDecl *CurrentRD) {
2267  if (SelID == -1)
2268    return RequireNonAbstractType(Loc, T,
2269                                  PDiag(DiagID), CurrentRD);
2270  else
2271    return RequireNonAbstractType(Loc, T,
2272                                  PDiag(DiagID) << SelID, CurrentRD);
2273}
2274
2275bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2276                                  const PartialDiagnostic &PD,
2277                                  const CXXRecordDecl *CurrentRD) {
2278  if (!getLangOptions().CPlusPlus)
2279    return false;
2280
2281  if (const ArrayType *AT = Context.getAsArrayType(T))
2282    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2283                                  CurrentRD);
2284
2285  if (const PointerType *PT = T->getAs<PointerType>()) {
2286    // Find the innermost pointer type.
2287    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2288      PT = T;
2289
2290    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2291      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2292  }
2293
2294  const RecordType *RT = T->getAs<RecordType>();
2295  if (!RT)
2296    return false;
2297
2298  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2299
2300  if (CurrentRD && CurrentRD != RD)
2301    return false;
2302
2303  // FIXME: is this reasonable?  It matches current behavior, but....
2304  if (!RD->getDefinition())
2305    return false;
2306
2307  if (!RD->isAbstract())
2308    return false;
2309
2310  Diag(Loc, PD) << RD->getDeclName();
2311
2312  // Check if we've already emitted the list of pure virtual functions for this
2313  // class.
2314  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2315    return true;
2316
2317  CXXFinalOverriderMap FinalOverriders;
2318  RD->getFinalOverriders(FinalOverriders);
2319
2320  // Keep a set of seen pure methods so we won't diagnose the same method
2321  // more than once.
2322  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2323
2324  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2325                                   MEnd = FinalOverriders.end();
2326       M != MEnd;
2327       ++M) {
2328    for (OverridingMethods::iterator SO = M->second.begin(),
2329                                  SOEnd = M->second.end();
2330         SO != SOEnd; ++SO) {
2331      // C++ [class.abstract]p4:
2332      //   A class is abstract if it contains or inherits at least one
2333      //   pure virtual function for which the final overrider is pure
2334      //   virtual.
2335
2336      //
2337      if (SO->second.size() != 1)
2338        continue;
2339
2340      if (!SO->second.front().Method->isPure())
2341        continue;
2342
2343      if (!SeenPureMethods.insert(SO->second.front().Method))
2344        continue;
2345
2346      Diag(SO->second.front().Method->getLocation(),
2347           diag::note_pure_virtual_function)
2348        << SO->second.front().Method->getDeclName();
2349    }
2350  }
2351
2352  if (!PureVirtualClassDiagSet)
2353    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2354  PureVirtualClassDiagSet->insert(RD);
2355
2356  return true;
2357}
2358
2359namespace {
2360  class AbstractClassUsageDiagnoser
2361    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2362    Sema &SemaRef;
2363    CXXRecordDecl *AbstractClass;
2364
2365    bool VisitDeclContext(const DeclContext *DC) {
2366      bool Invalid = false;
2367
2368      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2369           E = DC->decls_end(); I != E; ++I)
2370        Invalid |= Visit(*I);
2371
2372      return Invalid;
2373    }
2374
2375  public:
2376    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2377      : SemaRef(SemaRef), AbstractClass(ac) {
2378        Visit(SemaRef.Context.getTranslationUnitDecl());
2379    }
2380
2381    bool VisitFunctionDecl(const FunctionDecl *FD) {
2382      if (FD->isThisDeclarationADefinition()) {
2383        // No need to do the check if we're in a definition, because it requires
2384        // that the return/param types are complete.
2385        // because that requires
2386        return VisitDeclContext(FD);
2387      }
2388
2389      // Check the return type.
2390      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2391      bool Invalid =
2392        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2393                                       diag::err_abstract_type_in_decl,
2394                                       Sema::AbstractReturnType,
2395                                       AbstractClass);
2396
2397      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2398           E = FD->param_end(); I != E; ++I) {
2399        const ParmVarDecl *VD = *I;
2400        Invalid |=
2401          SemaRef.RequireNonAbstractType(VD->getLocation(),
2402                                         VD->getOriginalType(),
2403                                         diag::err_abstract_type_in_decl,
2404                                         Sema::AbstractParamType,
2405                                         AbstractClass);
2406      }
2407
2408      return Invalid;
2409    }
2410
2411    bool VisitDecl(const Decl* D) {
2412      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2413        return VisitDeclContext(DC);
2414
2415      return false;
2416    }
2417  };
2418}
2419
2420/// \brief Perform semantic checks on a class definition that has been
2421/// completing, introducing implicitly-declared members, checking for
2422/// abstract types, etc.
2423void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2424  if (!Record || Record->isInvalidDecl())
2425    return;
2426
2427  if (!Record->isDependentType())
2428    AddImplicitlyDeclaredMembersToClass(S, Record);
2429
2430  if (Record->isInvalidDecl())
2431    return;
2432
2433  // Set access bits correctly on the directly-declared conversions.
2434  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2435  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2436    Convs->setAccess(I, (*I)->getAccess());
2437
2438  // Determine whether we need to check for final overriders. We do
2439  // this either when there are virtual base classes (in which case we
2440  // may end up finding multiple final overriders for a given virtual
2441  // function) or any of the base classes is abstract (in which case
2442  // we might detect that this class is abstract).
2443  bool CheckFinalOverriders = false;
2444  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2445      !Record->isDependentType()) {
2446    if (Record->getNumVBases())
2447      CheckFinalOverriders = true;
2448    else if (!Record->isAbstract()) {
2449      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2450                                                 BEnd = Record->bases_end();
2451           B != BEnd; ++B) {
2452        CXXRecordDecl *BaseDecl
2453          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2454        if (BaseDecl->isAbstract()) {
2455          CheckFinalOverriders = true;
2456          break;
2457        }
2458      }
2459    }
2460  }
2461
2462  if (CheckFinalOverriders) {
2463    CXXFinalOverriderMap FinalOverriders;
2464    Record->getFinalOverriders(FinalOverriders);
2465
2466    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2467                                     MEnd = FinalOverriders.end();
2468         M != MEnd; ++M) {
2469      for (OverridingMethods::iterator SO = M->second.begin(),
2470                                    SOEnd = M->second.end();
2471           SO != SOEnd; ++SO) {
2472        assert(SO->second.size() > 0 &&
2473               "All virtual functions have overridding virtual functions");
2474        if (SO->second.size() == 1) {
2475          // C++ [class.abstract]p4:
2476          //   A class is abstract if it contains or inherits at least one
2477          //   pure virtual function for which the final overrider is pure
2478          //   virtual.
2479          if (SO->second.front().Method->isPure())
2480            Record->setAbstract(true);
2481          continue;
2482        }
2483
2484        // C++ [class.virtual]p2:
2485        //   In a derived class, if a virtual member function of a base
2486        //   class subobject has more than one final overrider the
2487        //   program is ill-formed.
2488        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2489          << (NamedDecl *)M->first << Record;
2490        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2491        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2492                                                 OMEnd = SO->second.end();
2493             OM != OMEnd; ++OM)
2494          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2495            << (NamedDecl *)M->first << OM->Method->getParent();
2496
2497        Record->setInvalidDecl();
2498      }
2499    }
2500  }
2501
2502  if (Record->isAbstract() && !Record->isInvalidDecl())
2503    (void)AbstractClassUsageDiagnoser(*this, Record);
2504
2505  // If this is not an aggregate type and has no user-declared constructor,
2506  // complain about any non-static data members of reference or const scalar
2507  // type, since they will never get initializers.
2508  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2509      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2510    bool Complained = false;
2511    for (RecordDecl::field_iterator F = Record->field_begin(),
2512                                 FEnd = Record->field_end();
2513         F != FEnd; ++F) {
2514      if (F->getType()->isReferenceType() ||
2515          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2516        if (!Complained) {
2517          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2518            << Record->getTagKind() << Record;
2519          Complained = true;
2520        }
2521
2522        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2523          << F->getType()->isReferenceType()
2524          << F->getDeclName();
2525      }
2526    }
2527  }
2528
2529  if (Record->isDynamicClass())
2530    DynamicClasses.push_back(Record);
2531}
2532
2533void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2534                                             DeclPtrTy TagDecl,
2535                                             SourceLocation LBrac,
2536                                             SourceLocation RBrac,
2537                                             AttributeList *AttrList) {
2538  if (!TagDecl)
2539    return;
2540
2541  AdjustDeclIfTemplate(TagDecl);
2542
2543  ActOnFields(S, RLoc, TagDecl,
2544              (DeclPtrTy*)FieldCollector->getCurFields(),
2545              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2546
2547  CheckCompletedCXXClass(S,
2548                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2549}
2550
2551/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2552/// special functions, such as the default constructor, copy
2553/// constructor, or destructor, to the given C++ class (C++
2554/// [special]p1).  This routine can only be executed just before the
2555/// definition of the class is complete.
2556///
2557/// The scope, if provided, is the class scope.
2558void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2559                                               CXXRecordDecl *ClassDecl) {
2560  CanQualType ClassType
2561    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2562
2563  // FIXME: Implicit declarations have exception specifications, which are
2564  // the union of the specifications of the implicitly called functions.
2565
2566  if (!ClassDecl->hasUserDeclaredConstructor()) {
2567    // C++ [class.ctor]p5:
2568    //   A default constructor for a class X is a constructor of class X
2569    //   that can be called without an argument. If there is no
2570    //   user-declared constructor for class X, a default constructor is
2571    //   implicitly declared. An implicitly-declared default constructor
2572    //   is an inline public member of its class.
2573    DeclarationName Name
2574      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2575    CXXConstructorDecl *DefaultCon =
2576      CXXConstructorDecl::Create(Context, ClassDecl,
2577                                 ClassDecl->getLocation(), Name,
2578                                 Context.getFunctionType(Context.VoidTy,
2579                                                         0, 0, false, 0,
2580                                                         /*FIXME*/false, false,
2581                                                         0, 0,
2582                                                       FunctionType::ExtInfo()),
2583                                 /*TInfo=*/0,
2584                                 /*isExplicit=*/false,
2585                                 /*isInline=*/true,
2586                                 /*isImplicitlyDeclared=*/true);
2587    DefaultCon->setAccess(AS_public);
2588    DefaultCon->setImplicit();
2589    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2590    if (S)
2591      PushOnScopeChains(DefaultCon, S, true);
2592    else
2593      ClassDecl->addDecl(DefaultCon);
2594  }
2595
2596  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2597    // C++ [class.copy]p4:
2598    //   If the class definition does not explicitly declare a copy
2599    //   constructor, one is declared implicitly.
2600
2601    // C++ [class.copy]p5:
2602    //   The implicitly-declared copy constructor for a class X will
2603    //   have the form
2604    //
2605    //       X::X(const X&)
2606    //
2607    //   if
2608    bool HasConstCopyConstructor = true;
2609
2610    //     -- each direct or virtual base class B of X has a copy
2611    //        constructor whose first parameter is of type const B& or
2612    //        const volatile B&, and
2613    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2614         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2615      const CXXRecordDecl *BaseClassDecl
2616        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2617      HasConstCopyConstructor
2618        = BaseClassDecl->hasConstCopyConstructor(Context);
2619    }
2620
2621    //     -- for all the nonstatic data members of X that are of a
2622    //        class type M (or array thereof), each such class type
2623    //        has a copy constructor whose first parameter is of type
2624    //        const M& or const volatile M&.
2625    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2626         HasConstCopyConstructor && Field != ClassDecl->field_end();
2627         ++Field) {
2628      QualType FieldType = (*Field)->getType();
2629      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2630        FieldType = Array->getElementType();
2631      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2632        const CXXRecordDecl *FieldClassDecl
2633          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2634        HasConstCopyConstructor
2635          = FieldClassDecl->hasConstCopyConstructor(Context);
2636      }
2637    }
2638
2639    //   Otherwise, the implicitly declared copy constructor will have
2640    //   the form
2641    //
2642    //       X::X(X&)
2643    QualType ArgType = ClassType;
2644    if (HasConstCopyConstructor)
2645      ArgType = ArgType.withConst();
2646    ArgType = Context.getLValueReferenceType(ArgType);
2647
2648    //   An implicitly-declared copy constructor is an inline public
2649    //   member of its class.
2650    DeclarationName Name
2651      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2652    CXXConstructorDecl *CopyConstructor
2653      = CXXConstructorDecl::Create(Context, ClassDecl,
2654                                   ClassDecl->getLocation(), Name,
2655                                   Context.getFunctionType(Context.VoidTy,
2656                                                           &ArgType, 1,
2657                                                           false, 0,
2658                                               /*FIXME: hasExceptionSpec*/false,
2659                                                           false, 0, 0,
2660                                                       FunctionType::ExtInfo()),
2661                                   /*TInfo=*/0,
2662                                   /*isExplicit=*/false,
2663                                   /*isInline=*/true,
2664                                   /*isImplicitlyDeclared=*/true);
2665    CopyConstructor->setAccess(AS_public);
2666    CopyConstructor->setImplicit();
2667    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2668
2669    // Add the parameter to the constructor.
2670    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2671                                                 ClassDecl->getLocation(),
2672                                                 /*IdentifierInfo=*/0,
2673                                                 ArgType, /*TInfo=*/0,
2674                                                 VarDecl::None,
2675                                                 VarDecl::None, 0);
2676    CopyConstructor->setParams(&FromParam, 1);
2677    if (S)
2678      PushOnScopeChains(CopyConstructor, S, true);
2679    else
2680      ClassDecl->addDecl(CopyConstructor);
2681  }
2682
2683  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2684    // Note: The following rules are largely analoguous to the copy
2685    // constructor rules. Note that virtual bases are not taken into account
2686    // for determining the argument type of the operator. Note also that
2687    // operators taking an object instead of a reference are allowed.
2688    //
2689    // C++ [class.copy]p10:
2690    //   If the class definition does not explicitly declare a copy
2691    //   assignment operator, one is declared implicitly.
2692    //   The implicitly-defined copy assignment operator for a class X
2693    //   will have the form
2694    //
2695    //       X& X::operator=(const X&)
2696    //
2697    //   if
2698    bool HasConstCopyAssignment = true;
2699
2700    //       -- each direct base class B of X has a copy assignment operator
2701    //          whose parameter is of type const B&, const volatile B& or B,
2702    //          and
2703    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2704         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2705      assert(!Base->getType()->isDependentType() &&
2706            "Cannot generate implicit members for class with dependent bases.");
2707      const CXXRecordDecl *BaseClassDecl
2708        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2709      const CXXMethodDecl *MD = 0;
2710      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2711                                                                     MD);
2712    }
2713
2714    //       -- for all the nonstatic data members of X that are of a class
2715    //          type M (or array thereof), each such class type has a copy
2716    //          assignment operator whose parameter is of type const M&,
2717    //          const volatile M& or M.
2718    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2719         HasConstCopyAssignment && Field != ClassDecl->field_end();
2720         ++Field) {
2721      QualType FieldType = (*Field)->getType();
2722      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2723        FieldType = Array->getElementType();
2724      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2725        const CXXRecordDecl *FieldClassDecl
2726          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2727        const CXXMethodDecl *MD = 0;
2728        HasConstCopyAssignment
2729          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2730      }
2731    }
2732
2733    //   Otherwise, the implicitly declared copy assignment operator will
2734    //   have the form
2735    //
2736    //       X& X::operator=(X&)
2737    QualType ArgType = ClassType;
2738    QualType RetType = Context.getLValueReferenceType(ArgType);
2739    if (HasConstCopyAssignment)
2740      ArgType = ArgType.withConst();
2741    ArgType = Context.getLValueReferenceType(ArgType);
2742
2743    //   An implicitly-declared copy assignment operator is an inline public
2744    //   member of its class.
2745    DeclarationName Name =
2746      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2747    CXXMethodDecl *CopyAssignment =
2748      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2749                            Context.getFunctionType(RetType, &ArgType, 1,
2750                                                    false, 0,
2751                                              /*FIXME: hasExceptionSpec*/false,
2752                                                    false, 0, 0,
2753                                                    FunctionType::ExtInfo()),
2754                            /*TInfo=*/0, /*isStatic=*/false,
2755                            /*StorageClassAsWritten=*/FunctionDecl::None,
2756                            /*isInline=*/true);
2757    CopyAssignment->setAccess(AS_public);
2758    CopyAssignment->setImplicit();
2759    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2760    CopyAssignment->setCopyAssignment(true);
2761
2762    // Add the parameter to the operator.
2763    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2764                                                 ClassDecl->getLocation(),
2765                                                 /*Id=*/0,
2766                                                 ArgType, /*TInfo=*/0,
2767                                                 VarDecl::None,
2768                                                 VarDecl::None, 0);
2769    CopyAssignment->setParams(&FromParam, 1);
2770
2771    // Don't call addedAssignmentOperator. There is no way to distinguish an
2772    // implicit from an explicit assignment operator.
2773    if (S)
2774      PushOnScopeChains(CopyAssignment, S, true);
2775    else
2776      ClassDecl->addDecl(CopyAssignment);
2777    AddOverriddenMethods(ClassDecl, CopyAssignment);
2778  }
2779
2780  if (!ClassDecl->hasUserDeclaredDestructor()) {
2781    // C++ [class.dtor]p2:
2782    //   If a class has no user-declared destructor, a destructor is
2783    //   declared implicitly. An implicitly-declared destructor is an
2784    //   inline public member of its class.
2785    QualType Ty = Context.getFunctionType(Context.VoidTy,
2786                                          0, 0, false, 0,
2787                                          /*FIXME: hasExceptionSpec*/false,
2788                                          false, 0, 0, FunctionType::ExtInfo());
2789
2790    DeclarationName Name
2791      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2792    CXXDestructorDecl *Destructor
2793      = CXXDestructorDecl::Create(Context, ClassDecl,
2794                                  ClassDecl->getLocation(), Name, Ty,
2795                                  /*isInline=*/true,
2796                                  /*isImplicitlyDeclared=*/true);
2797    Destructor->setAccess(AS_public);
2798    Destructor->setImplicit();
2799    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2800    if (S)
2801      PushOnScopeChains(Destructor, S, true);
2802    else
2803      ClassDecl->addDecl(Destructor);
2804
2805    // This could be uniqued if it ever proves significant.
2806    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2807
2808    AddOverriddenMethods(ClassDecl, Destructor);
2809  }
2810}
2811
2812void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2813  Decl *D = TemplateD.getAs<Decl>();
2814  if (!D)
2815    return;
2816
2817  TemplateParameterList *Params = 0;
2818  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2819    Params = Template->getTemplateParameters();
2820  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2821           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2822    Params = PartialSpec->getTemplateParameters();
2823  else
2824    return;
2825
2826  for (TemplateParameterList::iterator Param = Params->begin(),
2827                                    ParamEnd = Params->end();
2828       Param != ParamEnd; ++Param) {
2829    NamedDecl *Named = cast<NamedDecl>(*Param);
2830    if (Named->getDeclName()) {
2831      S->AddDecl(DeclPtrTy::make(Named));
2832      IdResolver.AddDecl(Named);
2833    }
2834  }
2835}
2836
2837void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2838  if (!RecordD) return;
2839  AdjustDeclIfTemplate(RecordD);
2840  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2841  PushDeclContext(S, Record);
2842}
2843
2844void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2845  if (!RecordD) return;
2846  PopDeclContext();
2847}
2848
2849/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2850/// parsing a top-level (non-nested) C++ class, and we are now
2851/// parsing those parts of the given Method declaration that could
2852/// not be parsed earlier (C++ [class.mem]p2), such as default
2853/// arguments. This action should enter the scope of the given
2854/// Method declaration as if we had just parsed the qualified method
2855/// name. However, it should not bring the parameters into scope;
2856/// that will be performed by ActOnDelayedCXXMethodParameter.
2857void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2858}
2859
2860/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2861/// C++ method declaration. We're (re-)introducing the given
2862/// function parameter into scope for use in parsing later parts of
2863/// the method declaration. For example, we could see an
2864/// ActOnParamDefaultArgument event for this parameter.
2865void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2866  if (!ParamD)
2867    return;
2868
2869  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2870
2871  // If this parameter has an unparsed default argument, clear it out
2872  // to make way for the parsed default argument.
2873  if (Param->hasUnparsedDefaultArg())
2874    Param->setDefaultArg(0);
2875
2876  S->AddDecl(DeclPtrTy::make(Param));
2877  if (Param->getDeclName())
2878    IdResolver.AddDecl(Param);
2879}
2880
2881/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2882/// processing the delayed method declaration for Method. The method
2883/// declaration is now considered finished. There may be a separate
2884/// ActOnStartOfFunctionDef action later (not necessarily
2885/// immediately!) for this method, if it was also defined inside the
2886/// class body.
2887void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2888  if (!MethodD)
2889    return;
2890
2891  AdjustDeclIfTemplate(MethodD);
2892
2893  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2894
2895  // Now that we have our default arguments, check the constructor
2896  // again. It could produce additional diagnostics or affect whether
2897  // the class has implicitly-declared destructors, among other
2898  // things.
2899  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2900    CheckConstructor(Constructor);
2901
2902  // Check the default arguments, which we may have added.
2903  if (!Method->isInvalidDecl())
2904    CheckCXXDefaultArguments(Method);
2905}
2906
2907/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2908/// the well-formedness of the constructor declarator @p D with type @p
2909/// R. If there are any errors in the declarator, this routine will
2910/// emit diagnostics and set the invalid bit to true.  In any case, the type
2911/// will be updated to reflect a well-formed type for the constructor and
2912/// returned.
2913QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2914                                          FunctionDecl::StorageClass &SC) {
2915  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2916
2917  // C++ [class.ctor]p3:
2918  //   A constructor shall not be virtual (10.3) or static (9.4). A
2919  //   constructor can be invoked for a const, volatile or const
2920  //   volatile object. A constructor shall not be declared const,
2921  //   volatile, or const volatile (9.3.2).
2922  if (isVirtual) {
2923    if (!D.isInvalidType())
2924      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2925        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2926        << SourceRange(D.getIdentifierLoc());
2927    D.setInvalidType();
2928  }
2929  if (SC == FunctionDecl::Static) {
2930    if (!D.isInvalidType())
2931      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2932        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2933        << SourceRange(D.getIdentifierLoc());
2934    D.setInvalidType();
2935    SC = FunctionDecl::None;
2936  }
2937
2938  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2939  if (FTI.TypeQuals != 0) {
2940    if (FTI.TypeQuals & Qualifiers::Const)
2941      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2942        << "const" << SourceRange(D.getIdentifierLoc());
2943    if (FTI.TypeQuals & Qualifiers::Volatile)
2944      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2945        << "volatile" << SourceRange(D.getIdentifierLoc());
2946    if (FTI.TypeQuals & Qualifiers::Restrict)
2947      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2948        << "restrict" << SourceRange(D.getIdentifierLoc());
2949  }
2950
2951  // Rebuild the function type "R" without any type qualifiers (in
2952  // case any of the errors above fired) and with "void" as the
2953  // return type, since constructors don't have return types. We
2954  // *always* have to do this, because GetTypeForDeclarator will
2955  // put in a result type of "int" when none was specified.
2956  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2957  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2958                                 Proto->getNumArgs(),
2959                                 Proto->isVariadic(), 0,
2960                                 Proto->hasExceptionSpec(),
2961                                 Proto->hasAnyExceptionSpec(),
2962                                 Proto->getNumExceptions(),
2963                                 Proto->exception_begin(),
2964                                 Proto->getExtInfo());
2965}
2966
2967/// CheckConstructor - Checks a fully-formed constructor for
2968/// well-formedness, issuing any diagnostics required. Returns true if
2969/// the constructor declarator is invalid.
2970void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2971  CXXRecordDecl *ClassDecl
2972    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2973  if (!ClassDecl)
2974    return Constructor->setInvalidDecl();
2975
2976  // C++ [class.copy]p3:
2977  //   A declaration of a constructor for a class X is ill-formed if
2978  //   its first parameter is of type (optionally cv-qualified) X and
2979  //   either there are no other parameters or else all other
2980  //   parameters have default arguments.
2981  if (!Constructor->isInvalidDecl() &&
2982      ((Constructor->getNumParams() == 1) ||
2983       (Constructor->getNumParams() > 1 &&
2984        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2985      Constructor->getTemplateSpecializationKind()
2986                                              != TSK_ImplicitInstantiation) {
2987    QualType ParamType = Constructor->getParamDecl(0)->getType();
2988    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2989    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2990      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2991      const char *ConstRef
2992        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2993                                                        : " const &";
2994      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2995        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2996
2997      // FIXME: Rather that making the constructor invalid, we should endeavor
2998      // to fix the type.
2999      Constructor->setInvalidDecl();
3000    }
3001  }
3002
3003  // Notify the class that we've added a constructor.  In principle we
3004  // don't need to do this for out-of-line declarations; in practice
3005  // we only instantiate the most recent declaration of a method, so
3006  // we have to call this for everything but friends.
3007  if (!Constructor->getFriendObjectKind())
3008    ClassDecl->addedConstructor(Context, Constructor);
3009}
3010
3011/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3012/// issuing any diagnostics required. Returns true on error.
3013bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3014  CXXRecordDecl *RD = Destructor->getParent();
3015
3016  if (Destructor->isVirtual()) {
3017    SourceLocation Loc;
3018
3019    if (!Destructor->isImplicit())
3020      Loc = Destructor->getLocation();
3021    else
3022      Loc = RD->getLocation();
3023
3024    // If we have a virtual destructor, look up the deallocation function
3025    FunctionDecl *OperatorDelete = 0;
3026    DeclarationName Name =
3027    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3028    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3029      return true;
3030
3031    Destructor->setOperatorDelete(OperatorDelete);
3032  }
3033
3034  return false;
3035}
3036
3037static inline bool
3038FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3039  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3040          FTI.ArgInfo[0].Param &&
3041          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3042}
3043
3044/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3045/// the well-formednes of the destructor declarator @p D with type @p
3046/// R. If there are any errors in the declarator, this routine will
3047/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3048/// will be updated to reflect a well-formed type for the destructor and
3049/// returned.
3050QualType Sema::CheckDestructorDeclarator(Declarator &D,
3051                                         FunctionDecl::StorageClass& SC) {
3052  // C++ [class.dtor]p1:
3053  //   [...] A typedef-name that names a class is a class-name
3054  //   (7.1.3); however, a typedef-name that names a class shall not
3055  //   be used as the identifier in the declarator for a destructor
3056  //   declaration.
3057  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3058  if (isa<TypedefType>(DeclaratorType)) {
3059    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3060      << DeclaratorType;
3061    D.setInvalidType();
3062  }
3063
3064  // C++ [class.dtor]p2:
3065  //   A destructor is used to destroy objects of its class type. A
3066  //   destructor takes no parameters, and no return type can be
3067  //   specified for it (not even void). The address of a destructor
3068  //   shall not be taken. A destructor shall not be static. A
3069  //   destructor can be invoked for a const, volatile or const
3070  //   volatile object. A destructor shall not be declared const,
3071  //   volatile or const volatile (9.3.2).
3072  if (SC == FunctionDecl::Static) {
3073    if (!D.isInvalidType())
3074      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3075        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3076        << SourceRange(D.getIdentifierLoc());
3077    SC = FunctionDecl::None;
3078    D.setInvalidType();
3079  }
3080  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3081    // Destructors don't have return types, but the parser will
3082    // happily parse something like:
3083    //
3084    //   class X {
3085    //     float ~X();
3086    //   };
3087    //
3088    // The return type will be eliminated later.
3089    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3090      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3091      << SourceRange(D.getIdentifierLoc());
3092  }
3093
3094  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3095  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3096    if (FTI.TypeQuals & Qualifiers::Const)
3097      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3098        << "const" << SourceRange(D.getIdentifierLoc());
3099    if (FTI.TypeQuals & Qualifiers::Volatile)
3100      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3101        << "volatile" << SourceRange(D.getIdentifierLoc());
3102    if (FTI.TypeQuals & Qualifiers::Restrict)
3103      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3104        << "restrict" << SourceRange(D.getIdentifierLoc());
3105    D.setInvalidType();
3106  }
3107
3108  // Make sure we don't have any parameters.
3109  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3110    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3111
3112    // Delete the parameters.
3113    FTI.freeArgs();
3114    D.setInvalidType();
3115  }
3116
3117  // Make sure the destructor isn't variadic.
3118  if (FTI.isVariadic) {
3119    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3120    D.setInvalidType();
3121  }
3122
3123  // Rebuild the function type "R" without any type qualifiers or
3124  // parameters (in case any of the errors above fired) and with
3125  // "void" as the return type, since destructors don't have return
3126  // types. We *always* have to do this, because GetTypeForDeclarator
3127  // will put in a result type of "int" when none was specified.
3128  // FIXME: Exceptions!
3129  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3130                                 false, false, 0, 0, FunctionType::ExtInfo());
3131}
3132
3133/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3134/// well-formednes of the conversion function declarator @p D with
3135/// type @p R. If there are any errors in the declarator, this routine
3136/// will emit diagnostics and return true. Otherwise, it will return
3137/// false. Either way, the type @p R will be updated to reflect a
3138/// well-formed type for the conversion operator.
3139void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3140                                     FunctionDecl::StorageClass& SC) {
3141  // C++ [class.conv.fct]p1:
3142  //   Neither parameter types nor return type can be specified. The
3143  //   type of a conversion function (8.3.5) is "function taking no
3144  //   parameter returning conversion-type-id."
3145  if (SC == FunctionDecl::Static) {
3146    if (!D.isInvalidType())
3147      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3148        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3149        << SourceRange(D.getIdentifierLoc());
3150    D.setInvalidType();
3151    SC = FunctionDecl::None;
3152  }
3153
3154  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3155
3156  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3157    // Conversion functions don't have return types, but the parser will
3158    // happily parse something like:
3159    //
3160    //   class X {
3161    //     float operator bool();
3162    //   };
3163    //
3164    // The return type will be changed later anyway.
3165    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3166      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3167      << SourceRange(D.getIdentifierLoc());
3168    D.setInvalidType();
3169  }
3170
3171  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3172
3173  // Make sure we don't have any parameters.
3174  if (Proto->getNumArgs() > 0) {
3175    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3176
3177    // Delete the parameters.
3178    D.getTypeObject(0).Fun.freeArgs();
3179    D.setInvalidType();
3180  } else if (Proto->isVariadic()) {
3181    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3182    D.setInvalidType();
3183  }
3184
3185  // Diagnose "&operator bool()" and other such nonsense.  This
3186  // is actually a gcc extension which we don't support.
3187  if (Proto->getResultType() != ConvType) {
3188    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3189      << Proto->getResultType();
3190    D.setInvalidType();
3191    ConvType = Proto->getResultType();
3192  }
3193
3194  // C++ [class.conv.fct]p4:
3195  //   The conversion-type-id shall not represent a function type nor
3196  //   an array type.
3197  if (ConvType->isArrayType()) {
3198    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3199    ConvType = Context.getPointerType(ConvType);
3200    D.setInvalidType();
3201  } else if (ConvType->isFunctionType()) {
3202    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3203    ConvType = Context.getPointerType(ConvType);
3204    D.setInvalidType();
3205  }
3206
3207  // Rebuild the function type "R" without any parameters (in case any
3208  // of the errors above fired) and with the conversion type as the
3209  // return type.
3210  if (D.isInvalidType()) {
3211    R = Context.getFunctionType(ConvType, 0, 0, false,
3212                                Proto->getTypeQuals(),
3213                                Proto->hasExceptionSpec(),
3214                                Proto->hasAnyExceptionSpec(),
3215                                Proto->getNumExceptions(),
3216                                Proto->exception_begin(),
3217                                Proto->getExtInfo());
3218  }
3219
3220  // C++0x explicit conversion operators.
3221  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3222    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3223         diag::warn_explicit_conversion_functions)
3224      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3225}
3226
3227/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3228/// the declaration of the given C++ conversion function. This routine
3229/// is responsible for recording the conversion function in the C++
3230/// class, if possible.
3231Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3232  assert(Conversion && "Expected to receive a conversion function declaration");
3233
3234  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3235
3236  // Make sure we aren't redeclaring the conversion function.
3237  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3238
3239  // C++ [class.conv.fct]p1:
3240  //   [...] A conversion function is never used to convert a
3241  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3242  //   same object type (or a reference to it), to a (possibly
3243  //   cv-qualified) base class of that type (or a reference to it),
3244  //   or to (possibly cv-qualified) void.
3245  // FIXME: Suppress this warning if the conversion function ends up being a
3246  // virtual function that overrides a virtual function in a base class.
3247  QualType ClassType
3248    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3249  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3250    ConvType = ConvTypeRef->getPointeeType();
3251  if (ConvType->isRecordType()) {
3252    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3253    if (ConvType == ClassType)
3254      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3255        << ClassType;
3256    else if (IsDerivedFrom(ClassType, ConvType))
3257      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3258        <<  ClassType << ConvType;
3259  } else if (ConvType->isVoidType()) {
3260    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3261      << ClassType << ConvType;
3262  }
3263
3264  if (Conversion->getPrimaryTemplate()) {
3265    // ignore specializations
3266  } else if (Conversion->getPreviousDeclaration()) {
3267    if (FunctionTemplateDecl *ConversionTemplate
3268                                  = Conversion->getDescribedFunctionTemplate()) {
3269      if (ClassDecl->replaceConversion(
3270                                   ConversionTemplate->getPreviousDeclaration(),
3271                                       ConversionTemplate))
3272        return DeclPtrTy::make(ConversionTemplate);
3273    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3274                                            Conversion))
3275      return DeclPtrTy::make(Conversion);
3276    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3277  } else if (FunctionTemplateDecl *ConversionTemplate
3278               = Conversion->getDescribedFunctionTemplate())
3279    ClassDecl->addConversionFunction(ConversionTemplate);
3280  else
3281    ClassDecl->addConversionFunction(Conversion);
3282
3283  return DeclPtrTy::make(Conversion);
3284}
3285
3286//===----------------------------------------------------------------------===//
3287// Namespace Handling
3288//===----------------------------------------------------------------------===//
3289
3290/// ActOnStartNamespaceDef - This is called at the start of a namespace
3291/// definition.
3292Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3293                                             SourceLocation IdentLoc,
3294                                             IdentifierInfo *II,
3295                                             SourceLocation LBrace,
3296                                             AttributeList *AttrList) {
3297  NamespaceDecl *Namespc =
3298      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3299  Namespc->setLBracLoc(LBrace);
3300
3301  Scope *DeclRegionScope = NamespcScope->getParent();
3302
3303  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3304
3305  if (II) {
3306    // C++ [namespace.def]p2:
3307    // The identifier in an original-namespace-definition shall not have been
3308    // previously defined in the declarative region in which the
3309    // original-namespace-definition appears. The identifier in an
3310    // original-namespace-definition is the name of the namespace. Subsequently
3311    // in that declarative region, it is treated as an original-namespace-name.
3312
3313    NamedDecl *PrevDecl
3314      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3315                         ForRedeclaration);
3316
3317    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3318      // This is an extended namespace definition.
3319      // Attach this namespace decl to the chain of extended namespace
3320      // definitions.
3321      OrigNS->setNextNamespace(Namespc);
3322      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3323
3324      // Remove the previous declaration from the scope.
3325      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3326        IdResolver.RemoveDecl(OrigNS);
3327        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3328      }
3329    } else if (PrevDecl) {
3330      // This is an invalid name redefinition.
3331      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3332       << Namespc->getDeclName();
3333      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3334      Namespc->setInvalidDecl();
3335      // Continue on to push Namespc as current DeclContext and return it.
3336    } else if (II->isStr("std") &&
3337               CurContext->getLookupContext()->isTranslationUnit()) {
3338      // This is the first "real" definition of the namespace "std", so update
3339      // our cache of the "std" namespace to point at this definition.
3340      if (StdNamespace) {
3341        // We had already defined a dummy namespace "std". Link this new
3342        // namespace definition to the dummy namespace "std".
3343        StdNamespace->setNextNamespace(Namespc);
3344        StdNamespace->setLocation(IdentLoc);
3345        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3346      }
3347
3348      // Make our StdNamespace cache point at the first real definition of the
3349      // "std" namespace.
3350      StdNamespace = Namespc;
3351    }
3352
3353    PushOnScopeChains(Namespc, DeclRegionScope);
3354  } else {
3355    // Anonymous namespaces.
3356    assert(Namespc->isAnonymousNamespace());
3357
3358    // Link the anonymous namespace into its parent.
3359    NamespaceDecl *PrevDecl;
3360    DeclContext *Parent = CurContext->getLookupContext();
3361    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3362      PrevDecl = TU->getAnonymousNamespace();
3363      TU->setAnonymousNamespace(Namespc);
3364    } else {
3365      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3366      PrevDecl = ND->getAnonymousNamespace();
3367      ND->setAnonymousNamespace(Namespc);
3368    }
3369
3370    // Link the anonymous namespace with its previous declaration.
3371    if (PrevDecl) {
3372      assert(PrevDecl->isAnonymousNamespace());
3373      assert(!PrevDecl->getNextNamespace());
3374      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3375      PrevDecl->setNextNamespace(Namespc);
3376    }
3377
3378    CurContext->addDecl(Namespc);
3379
3380    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3381    //   behaves as if it were replaced by
3382    //     namespace unique { /* empty body */ }
3383    //     using namespace unique;
3384    //     namespace unique { namespace-body }
3385    //   where all occurrences of 'unique' in a translation unit are
3386    //   replaced by the same identifier and this identifier differs
3387    //   from all other identifiers in the entire program.
3388
3389    // We just create the namespace with an empty name and then add an
3390    // implicit using declaration, just like the standard suggests.
3391    //
3392    // CodeGen enforces the "universally unique" aspect by giving all
3393    // declarations semantically contained within an anonymous
3394    // namespace internal linkage.
3395
3396    if (!PrevDecl) {
3397      UsingDirectiveDecl* UD
3398        = UsingDirectiveDecl::Create(Context, CurContext,
3399                                     /* 'using' */ LBrace,
3400                                     /* 'namespace' */ SourceLocation(),
3401                                     /* qualifier */ SourceRange(),
3402                                     /* NNS */ NULL,
3403                                     /* identifier */ SourceLocation(),
3404                                     Namespc,
3405                                     /* Ancestor */ CurContext);
3406      UD->setImplicit();
3407      CurContext->addDecl(UD);
3408    }
3409  }
3410
3411  // Although we could have an invalid decl (i.e. the namespace name is a
3412  // redefinition), push it as current DeclContext and try to continue parsing.
3413  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3414  // for the namespace has the declarations that showed up in that particular
3415  // namespace definition.
3416  PushDeclContext(NamespcScope, Namespc);
3417  return DeclPtrTy::make(Namespc);
3418}
3419
3420/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3421/// is a namespace alias, returns the namespace it points to.
3422static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3423  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3424    return AD->getNamespace();
3425  return dyn_cast_or_null<NamespaceDecl>(D);
3426}
3427
3428/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3429/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3430void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3431  Decl *Dcl = D.getAs<Decl>();
3432  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3433  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3434  Namespc->setRBracLoc(RBrace);
3435  PopDeclContext();
3436}
3437
3438Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3439                                          SourceLocation UsingLoc,
3440                                          SourceLocation NamespcLoc,
3441                                          CXXScopeSpec &SS,
3442                                          SourceLocation IdentLoc,
3443                                          IdentifierInfo *NamespcName,
3444                                          AttributeList *AttrList) {
3445  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3446  assert(NamespcName && "Invalid NamespcName.");
3447  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3448  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3449
3450  UsingDirectiveDecl *UDir = 0;
3451
3452  // Lookup namespace name.
3453  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3454  LookupParsedName(R, S, &SS);
3455  if (R.isAmbiguous())
3456    return DeclPtrTy();
3457
3458  if (!R.empty()) {
3459    NamedDecl *Named = R.getFoundDecl();
3460    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3461        && "expected namespace decl");
3462    // C++ [namespace.udir]p1:
3463    //   A using-directive specifies that the names in the nominated
3464    //   namespace can be used in the scope in which the
3465    //   using-directive appears after the using-directive. During
3466    //   unqualified name lookup (3.4.1), the names appear as if they
3467    //   were declared in the nearest enclosing namespace which
3468    //   contains both the using-directive and the nominated
3469    //   namespace. [Note: in this context, "contains" means "contains
3470    //   directly or indirectly". ]
3471
3472    // Find enclosing context containing both using-directive and
3473    // nominated namespace.
3474    NamespaceDecl *NS = getNamespaceDecl(Named);
3475    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3476    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3477      CommonAncestor = CommonAncestor->getParent();
3478
3479    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3480                                      SS.getRange(),
3481                                      (NestedNameSpecifier *)SS.getScopeRep(),
3482                                      IdentLoc, Named, CommonAncestor);
3483    PushUsingDirective(S, UDir);
3484  } else {
3485    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3486  }
3487
3488  // FIXME: We ignore attributes for now.
3489  delete AttrList;
3490  return DeclPtrTy::make(UDir);
3491}
3492
3493void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3494  // If scope has associated entity, then using directive is at namespace
3495  // or translation unit scope. We add UsingDirectiveDecls, into
3496  // it's lookup structure.
3497  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3498    Ctx->addDecl(UDir);
3499  else
3500    // Otherwise it is block-sope. using-directives will affect lookup
3501    // only to the end of scope.
3502    S->PushUsingDirective(DeclPtrTy::make(UDir));
3503}
3504
3505
3506Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3507                                            AccessSpecifier AS,
3508                                            bool HasUsingKeyword,
3509                                            SourceLocation UsingLoc,
3510                                            CXXScopeSpec &SS,
3511                                            UnqualifiedId &Name,
3512                                            AttributeList *AttrList,
3513                                            bool IsTypeName,
3514                                            SourceLocation TypenameLoc) {
3515  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3516
3517  switch (Name.getKind()) {
3518  case UnqualifiedId::IK_Identifier:
3519  case UnqualifiedId::IK_OperatorFunctionId:
3520  case UnqualifiedId::IK_LiteralOperatorId:
3521  case UnqualifiedId::IK_ConversionFunctionId:
3522    break;
3523
3524  case UnqualifiedId::IK_ConstructorName:
3525  case UnqualifiedId::IK_ConstructorTemplateId:
3526    // C++0x inherited constructors.
3527    if (getLangOptions().CPlusPlus0x) break;
3528
3529    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3530      << SS.getRange();
3531    return DeclPtrTy();
3532
3533  case UnqualifiedId::IK_DestructorName:
3534    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3535      << SS.getRange();
3536    return DeclPtrTy();
3537
3538  case UnqualifiedId::IK_TemplateId:
3539    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3540      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3541    return DeclPtrTy();
3542  }
3543
3544  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3545  if (!TargetName)
3546    return DeclPtrTy();
3547
3548  // Warn about using declarations.
3549  // TODO: store that the declaration was written without 'using' and
3550  // talk about access decls instead of using decls in the
3551  // diagnostics.
3552  if (!HasUsingKeyword) {
3553    UsingLoc = Name.getSourceRange().getBegin();
3554
3555    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3556      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3557  }
3558
3559  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3560                                        Name.getSourceRange().getBegin(),
3561                                        TargetName, AttrList,
3562                                        /* IsInstantiation */ false,
3563                                        IsTypeName, TypenameLoc);
3564  if (UD)
3565    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3566
3567  return DeclPtrTy::make(UD);
3568}
3569
3570/// Determines whether to create a using shadow decl for a particular
3571/// decl, given the set of decls existing prior to this using lookup.
3572bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3573                                const LookupResult &Previous) {
3574  // Diagnose finding a decl which is not from a base class of the
3575  // current class.  We do this now because there are cases where this
3576  // function will silently decide not to build a shadow decl, which
3577  // will pre-empt further diagnostics.
3578  //
3579  // We don't need to do this in C++0x because we do the check once on
3580  // the qualifier.
3581  //
3582  // FIXME: diagnose the following if we care enough:
3583  //   struct A { int foo; };
3584  //   struct B : A { using A::foo; };
3585  //   template <class T> struct C : A {};
3586  //   template <class T> struct D : C<T> { using B::foo; } // <---
3587  // This is invalid (during instantiation) in C++03 because B::foo
3588  // resolves to the using decl in B, which is not a base class of D<T>.
3589  // We can't diagnose it immediately because C<T> is an unknown
3590  // specialization.  The UsingShadowDecl in D<T> then points directly
3591  // to A::foo, which will look well-formed when we instantiate.
3592  // The right solution is to not collapse the shadow-decl chain.
3593  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3594    DeclContext *OrigDC = Orig->getDeclContext();
3595
3596    // Handle enums and anonymous structs.
3597    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3598    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3599    while (OrigRec->isAnonymousStructOrUnion())
3600      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3601
3602    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3603      if (OrigDC == CurContext) {
3604        Diag(Using->getLocation(),
3605             diag::err_using_decl_nested_name_specifier_is_current_class)
3606          << Using->getNestedNameRange();
3607        Diag(Orig->getLocation(), diag::note_using_decl_target);
3608        return true;
3609      }
3610
3611      Diag(Using->getNestedNameRange().getBegin(),
3612           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3613        << Using->getTargetNestedNameDecl()
3614        << cast<CXXRecordDecl>(CurContext)
3615        << Using->getNestedNameRange();
3616      Diag(Orig->getLocation(), diag::note_using_decl_target);
3617      return true;
3618    }
3619  }
3620
3621  if (Previous.empty()) return false;
3622
3623  NamedDecl *Target = Orig;
3624  if (isa<UsingShadowDecl>(Target))
3625    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3626
3627  // If the target happens to be one of the previous declarations, we
3628  // don't have a conflict.
3629  //
3630  // FIXME: but we might be increasing its access, in which case we
3631  // should redeclare it.
3632  NamedDecl *NonTag = 0, *Tag = 0;
3633  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3634         I != E; ++I) {
3635    NamedDecl *D = (*I)->getUnderlyingDecl();
3636    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3637      return false;
3638
3639    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3640  }
3641
3642  if (Target->isFunctionOrFunctionTemplate()) {
3643    FunctionDecl *FD;
3644    if (isa<FunctionTemplateDecl>(Target))
3645      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3646    else
3647      FD = cast<FunctionDecl>(Target);
3648
3649    NamedDecl *OldDecl = 0;
3650    switch (CheckOverload(FD, Previous, OldDecl)) {
3651    case Ovl_Overload:
3652      return false;
3653
3654    case Ovl_NonFunction:
3655      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3656      break;
3657
3658    // We found a decl with the exact signature.
3659    case Ovl_Match:
3660      if (isa<UsingShadowDecl>(OldDecl)) {
3661        // Silently ignore the possible conflict.
3662        return false;
3663      }
3664
3665      // If we're in a record, we want to hide the target, so we
3666      // return true (without a diagnostic) to tell the caller not to
3667      // build a shadow decl.
3668      if (CurContext->isRecord())
3669        return true;
3670
3671      // If we're not in a record, this is an error.
3672      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3673      break;
3674    }
3675
3676    Diag(Target->getLocation(), diag::note_using_decl_target);
3677    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3678    return true;
3679  }
3680
3681  // Target is not a function.
3682
3683  if (isa<TagDecl>(Target)) {
3684    // No conflict between a tag and a non-tag.
3685    if (!Tag) return false;
3686
3687    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3688    Diag(Target->getLocation(), diag::note_using_decl_target);
3689    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3690    return true;
3691  }
3692
3693  // No conflict between a tag and a non-tag.
3694  if (!NonTag) return false;
3695
3696  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3697  Diag(Target->getLocation(), diag::note_using_decl_target);
3698  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3699  return true;
3700}
3701
3702/// Builds a shadow declaration corresponding to a 'using' declaration.
3703UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3704                                            UsingDecl *UD,
3705                                            NamedDecl *Orig) {
3706
3707  // If we resolved to another shadow declaration, just coalesce them.
3708  NamedDecl *Target = Orig;
3709  if (isa<UsingShadowDecl>(Target)) {
3710    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3711    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3712  }
3713
3714  UsingShadowDecl *Shadow
3715    = UsingShadowDecl::Create(Context, CurContext,
3716                              UD->getLocation(), UD, Target);
3717  UD->addShadowDecl(Shadow);
3718
3719  if (S)
3720    PushOnScopeChains(Shadow, S);
3721  else
3722    CurContext->addDecl(Shadow);
3723  Shadow->setAccess(UD->getAccess());
3724
3725  // Register it as a conversion if appropriate.
3726  if (Shadow->getDeclName().getNameKind()
3727        == DeclarationName::CXXConversionFunctionName)
3728    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3729
3730  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3731    Shadow->setInvalidDecl();
3732
3733  return Shadow;
3734}
3735
3736/// Hides a using shadow declaration.  This is required by the current
3737/// using-decl implementation when a resolvable using declaration in a
3738/// class is followed by a declaration which would hide or override
3739/// one or more of the using decl's targets; for example:
3740///
3741///   struct Base { void foo(int); };
3742///   struct Derived : Base {
3743///     using Base::foo;
3744///     void foo(int);
3745///   };
3746///
3747/// The governing language is C++03 [namespace.udecl]p12:
3748///
3749///   When a using-declaration brings names from a base class into a
3750///   derived class scope, member functions in the derived class
3751///   override and/or hide member functions with the same name and
3752///   parameter types in a base class (rather than conflicting).
3753///
3754/// There are two ways to implement this:
3755///   (1) optimistically create shadow decls when they're not hidden
3756///       by existing declarations, or
3757///   (2) don't create any shadow decls (or at least don't make them
3758///       visible) until we've fully parsed/instantiated the class.
3759/// The problem with (1) is that we might have to retroactively remove
3760/// a shadow decl, which requires several O(n) operations because the
3761/// decl structures are (very reasonably) not designed for removal.
3762/// (2) avoids this but is very fiddly and phase-dependent.
3763void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3764  if (Shadow->getDeclName().getNameKind() ==
3765        DeclarationName::CXXConversionFunctionName)
3766    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3767
3768  // Remove it from the DeclContext...
3769  Shadow->getDeclContext()->removeDecl(Shadow);
3770
3771  // ...and the scope, if applicable...
3772  if (S) {
3773    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3774    IdResolver.RemoveDecl(Shadow);
3775  }
3776
3777  // ...and the using decl.
3778  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3779
3780  // TODO: complain somehow if Shadow was used.  It shouldn't
3781  // be possible for this to happen, because...?
3782}
3783
3784/// Builds a using declaration.
3785///
3786/// \param IsInstantiation - Whether this call arises from an
3787///   instantiation of an unresolved using declaration.  We treat
3788///   the lookup differently for these declarations.
3789NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3790                                       SourceLocation UsingLoc,
3791                                       CXXScopeSpec &SS,
3792                                       SourceLocation IdentLoc,
3793                                       DeclarationName Name,
3794                                       AttributeList *AttrList,
3795                                       bool IsInstantiation,
3796                                       bool IsTypeName,
3797                                       SourceLocation TypenameLoc) {
3798  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3799  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3800
3801  // FIXME: We ignore attributes for now.
3802  delete AttrList;
3803
3804  if (SS.isEmpty()) {
3805    Diag(IdentLoc, diag::err_using_requires_qualname);
3806    return 0;
3807  }
3808
3809  // Do the redeclaration lookup in the current scope.
3810  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3811                        ForRedeclaration);
3812  Previous.setHideTags(false);
3813  if (S) {
3814    LookupName(Previous, S);
3815
3816    // It is really dumb that we have to do this.
3817    LookupResult::Filter F = Previous.makeFilter();
3818    while (F.hasNext()) {
3819      NamedDecl *D = F.next();
3820      if (!isDeclInScope(D, CurContext, S))
3821        F.erase();
3822    }
3823    F.done();
3824  } else {
3825    assert(IsInstantiation && "no scope in non-instantiation");
3826    assert(CurContext->isRecord() && "scope not record in instantiation");
3827    LookupQualifiedName(Previous, CurContext);
3828  }
3829
3830  NestedNameSpecifier *NNS =
3831    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3832
3833  // Check for invalid redeclarations.
3834  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3835    return 0;
3836
3837  // Check for bad qualifiers.
3838  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3839    return 0;
3840
3841  DeclContext *LookupContext = computeDeclContext(SS);
3842  NamedDecl *D;
3843  if (!LookupContext) {
3844    if (IsTypeName) {
3845      // FIXME: not all declaration name kinds are legal here
3846      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3847                                              UsingLoc, TypenameLoc,
3848                                              SS.getRange(), NNS,
3849                                              IdentLoc, Name);
3850    } else {
3851      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3852                                           UsingLoc, SS.getRange(), NNS,
3853                                           IdentLoc, Name);
3854    }
3855  } else {
3856    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3857                          SS.getRange(), UsingLoc, NNS, Name,
3858                          IsTypeName);
3859  }
3860  D->setAccess(AS);
3861  CurContext->addDecl(D);
3862
3863  if (!LookupContext) return D;
3864  UsingDecl *UD = cast<UsingDecl>(D);
3865
3866  if (RequireCompleteDeclContext(SS, LookupContext)) {
3867    UD->setInvalidDecl();
3868    return UD;
3869  }
3870
3871  // Look up the target name.
3872
3873  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3874
3875  // Unlike most lookups, we don't always want to hide tag
3876  // declarations: tag names are visible through the using declaration
3877  // even if hidden by ordinary names, *except* in a dependent context
3878  // where it's important for the sanity of two-phase lookup.
3879  if (!IsInstantiation)
3880    R.setHideTags(false);
3881
3882  LookupQualifiedName(R, LookupContext);
3883
3884  if (R.empty()) {
3885    Diag(IdentLoc, diag::err_no_member)
3886      << Name << LookupContext << SS.getRange();
3887    UD->setInvalidDecl();
3888    return UD;
3889  }
3890
3891  if (R.isAmbiguous()) {
3892    UD->setInvalidDecl();
3893    return UD;
3894  }
3895
3896  if (IsTypeName) {
3897    // If we asked for a typename and got a non-type decl, error out.
3898    if (!R.getAsSingle<TypeDecl>()) {
3899      Diag(IdentLoc, diag::err_using_typename_non_type);
3900      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3901        Diag((*I)->getUnderlyingDecl()->getLocation(),
3902             diag::note_using_decl_target);
3903      UD->setInvalidDecl();
3904      return UD;
3905    }
3906  } else {
3907    // If we asked for a non-typename and we got a type, error out,
3908    // but only if this is an instantiation of an unresolved using
3909    // decl.  Otherwise just silently find the type name.
3910    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3911      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3912      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3913      UD->setInvalidDecl();
3914      return UD;
3915    }
3916  }
3917
3918  // C++0x N2914 [namespace.udecl]p6:
3919  // A using-declaration shall not name a namespace.
3920  if (R.getAsSingle<NamespaceDecl>()) {
3921    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3922      << SS.getRange();
3923    UD->setInvalidDecl();
3924    return UD;
3925  }
3926
3927  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3928    if (!CheckUsingShadowDecl(UD, *I, Previous))
3929      BuildUsingShadowDecl(S, UD, *I);
3930  }
3931
3932  return UD;
3933}
3934
3935/// Checks that the given using declaration is not an invalid
3936/// redeclaration.  Note that this is checking only for the using decl
3937/// itself, not for any ill-formedness among the UsingShadowDecls.
3938bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3939                                       bool isTypeName,
3940                                       const CXXScopeSpec &SS,
3941                                       SourceLocation NameLoc,
3942                                       const LookupResult &Prev) {
3943  // C++03 [namespace.udecl]p8:
3944  // C++0x [namespace.udecl]p10:
3945  //   A using-declaration is a declaration and can therefore be used
3946  //   repeatedly where (and only where) multiple declarations are
3947  //   allowed.
3948  //
3949  // That's in non-member contexts.
3950  if (!CurContext->getLookupContext()->isRecord())
3951    return false;
3952
3953  NestedNameSpecifier *Qual
3954    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3955
3956  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3957    NamedDecl *D = *I;
3958
3959    bool DTypename;
3960    NestedNameSpecifier *DQual;
3961    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3962      DTypename = UD->isTypeName();
3963      DQual = UD->getTargetNestedNameDecl();
3964    } else if (UnresolvedUsingValueDecl *UD
3965                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3966      DTypename = false;
3967      DQual = UD->getTargetNestedNameSpecifier();
3968    } else if (UnresolvedUsingTypenameDecl *UD
3969                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3970      DTypename = true;
3971      DQual = UD->getTargetNestedNameSpecifier();
3972    } else continue;
3973
3974    // using decls differ if one says 'typename' and the other doesn't.
3975    // FIXME: non-dependent using decls?
3976    if (isTypeName != DTypename) continue;
3977
3978    // using decls differ if they name different scopes (but note that
3979    // template instantiation can cause this check to trigger when it
3980    // didn't before instantiation).
3981    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3982        Context.getCanonicalNestedNameSpecifier(DQual))
3983      continue;
3984
3985    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3986    Diag(D->getLocation(), diag::note_using_decl) << 1;
3987    return true;
3988  }
3989
3990  return false;
3991}
3992
3993
3994/// Checks that the given nested-name qualifier used in a using decl
3995/// in the current context is appropriately related to the current
3996/// scope.  If an error is found, diagnoses it and returns true.
3997bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3998                                   const CXXScopeSpec &SS,
3999                                   SourceLocation NameLoc) {
4000  DeclContext *NamedContext = computeDeclContext(SS);
4001
4002  if (!CurContext->isRecord()) {
4003    // C++03 [namespace.udecl]p3:
4004    // C++0x [namespace.udecl]p8:
4005    //   A using-declaration for a class member shall be a member-declaration.
4006
4007    // If we weren't able to compute a valid scope, it must be a
4008    // dependent class scope.
4009    if (!NamedContext || NamedContext->isRecord()) {
4010      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4011        << SS.getRange();
4012      return true;
4013    }
4014
4015    // Otherwise, everything is known to be fine.
4016    return false;
4017  }
4018
4019  // The current scope is a record.
4020
4021  // If the named context is dependent, we can't decide much.
4022  if (!NamedContext) {
4023    // FIXME: in C++0x, we can diagnose if we can prove that the
4024    // nested-name-specifier does not refer to a base class, which is
4025    // still possible in some cases.
4026
4027    // Otherwise we have to conservatively report that things might be
4028    // okay.
4029    return false;
4030  }
4031
4032  if (!NamedContext->isRecord()) {
4033    // Ideally this would point at the last name in the specifier,
4034    // but we don't have that level of source info.
4035    Diag(SS.getRange().getBegin(),
4036         diag::err_using_decl_nested_name_specifier_is_not_class)
4037      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4038    return true;
4039  }
4040
4041  if (getLangOptions().CPlusPlus0x) {
4042    // C++0x [namespace.udecl]p3:
4043    //   In a using-declaration used as a member-declaration, the
4044    //   nested-name-specifier shall name a base class of the class
4045    //   being defined.
4046
4047    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4048                                 cast<CXXRecordDecl>(NamedContext))) {
4049      if (CurContext == NamedContext) {
4050        Diag(NameLoc,
4051             diag::err_using_decl_nested_name_specifier_is_current_class)
4052          << SS.getRange();
4053        return true;
4054      }
4055
4056      Diag(SS.getRange().getBegin(),
4057           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4058        << (NestedNameSpecifier*) SS.getScopeRep()
4059        << cast<CXXRecordDecl>(CurContext)
4060        << SS.getRange();
4061      return true;
4062    }
4063
4064    return false;
4065  }
4066
4067  // C++03 [namespace.udecl]p4:
4068  //   A using-declaration used as a member-declaration shall refer
4069  //   to a member of a base class of the class being defined [etc.].
4070
4071  // Salient point: SS doesn't have to name a base class as long as
4072  // lookup only finds members from base classes.  Therefore we can
4073  // diagnose here only if we can prove that that can't happen,
4074  // i.e. if the class hierarchies provably don't intersect.
4075
4076  // TODO: it would be nice if "definitely valid" results were cached
4077  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4078  // need to be repeated.
4079
4080  struct UserData {
4081    llvm::DenseSet<const CXXRecordDecl*> Bases;
4082
4083    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4084      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4085      Data->Bases.insert(Base);
4086      return true;
4087    }
4088
4089    bool hasDependentBases(const CXXRecordDecl *Class) {
4090      return !Class->forallBases(collect, this);
4091    }
4092
4093    /// Returns true if the base is dependent or is one of the
4094    /// accumulated base classes.
4095    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4096      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4097      return !Data->Bases.count(Base);
4098    }
4099
4100    bool mightShareBases(const CXXRecordDecl *Class) {
4101      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4102    }
4103  };
4104
4105  UserData Data;
4106
4107  // Returns false if we find a dependent base.
4108  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4109    return false;
4110
4111  // Returns false if the class has a dependent base or if it or one
4112  // of its bases is present in the base set of the current context.
4113  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4114    return false;
4115
4116  Diag(SS.getRange().getBegin(),
4117       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4118    << (NestedNameSpecifier*) SS.getScopeRep()
4119    << cast<CXXRecordDecl>(CurContext)
4120    << SS.getRange();
4121
4122  return true;
4123}
4124
4125Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4126                                             SourceLocation NamespaceLoc,
4127                                             SourceLocation AliasLoc,
4128                                             IdentifierInfo *Alias,
4129                                             CXXScopeSpec &SS,
4130                                             SourceLocation IdentLoc,
4131                                             IdentifierInfo *Ident) {
4132
4133  // Lookup the namespace name.
4134  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4135  LookupParsedName(R, S, &SS);
4136
4137  // Check if we have a previous declaration with the same name.
4138  NamedDecl *PrevDecl
4139    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4140                       ForRedeclaration);
4141  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4142    PrevDecl = 0;
4143
4144  if (PrevDecl) {
4145    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4146      // We already have an alias with the same name that points to the same
4147      // namespace, so don't create a new one.
4148      // FIXME: At some point, we'll want to create the (redundant)
4149      // declaration to maintain better source information.
4150      if (!R.isAmbiguous() && !R.empty() &&
4151          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4152        return DeclPtrTy();
4153    }
4154
4155    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4156      diag::err_redefinition_different_kind;
4157    Diag(AliasLoc, DiagID) << Alias;
4158    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4159    return DeclPtrTy();
4160  }
4161
4162  if (R.isAmbiguous())
4163    return DeclPtrTy();
4164
4165  if (R.empty()) {
4166    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4167    return DeclPtrTy();
4168  }
4169
4170  NamespaceAliasDecl *AliasDecl =
4171    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4172                               Alias, SS.getRange(),
4173                               (NestedNameSpecifier *)SS.getScopeRep(),
4174                               IdentLoc, R.getFoundDecl());
4175
4176  PushOnScopeChains(AliasDecl, S);
4177  return DeclPtrTy::make(AliasDecl);
4178}
4179
4180namespace {
4181  /// \brief Scoped object used to handle the state changes required in Sema
4182  /// to implicitly define the body of a C++ member function;
4183  class ImplicitlyDefinedFunctionScope {
4184    Sema &S;
4185    DeclContext *PreviousContext;
4186
4187  public:
4188    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4189      : S(S), PreviousContext(S.CurContext)
4190    {
4191      S.CurContext = Method;
4192      S.PushFunctionScope();
4193      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4194    }
4195
4196    ~ImplicitlyDefinedFunctionScope() {
4197      S.PopExpressionEvaluationContext();
4198      S.PopFunctionOrBlockScope();
4199      S.CurContext = PreviousContext;
4200    }
4201  };
4202}
4203
4204void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4205                                            CXXConstructorDecl *Constructor) {
4206  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4207          !Constructor->isUsed()) &&
4208    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4209
4210  CXXRecordDecl *ClassDecl = Constructor->getParent();
4211  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4212
4213  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4214  ErrorTrap Trap(*this);
4215  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4216      Trap.hasErrorOccurred()) {
4217    Diag(CurrentLocation, diag::note_member_synthesized_at)
4218      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4219    Constructor->setInvalidDecl();
4220  } else {
4221    Constructor->setUsed();
4222    MarkVTableUsed(CurrentLocation, ClassDecl);
4223  }
4224}
4225
4226void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4227                                    CXXDestructorDecl *Destructor) {
4228  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4229         "DefineImplicitDestructor - call it for implicit default dtor");
4230  CXXRecordDecl *ClassDecl = Destructor->getParent();
4231  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4232
4233  if (Destructor->isInvalidDecl())
4234    return;
4235
4236  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4237
4238  ErrorTrap Trap(*this);
4239  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4240                                         Destructor->getParent());
4241
4242  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4243    Diag(CurrentLocation, diag::note_member_synthesized_at)
4244      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4245
4246    Destructor->setInvalidDecl();
4247    return;
4248  }
4249
4250  Destructor->setUsed();
4251  MarkVTableUsed(CurrentLocation, ClassDecl);
4252}
4253
4254/// \brief Builds a statement that copies the given entity from \p From to
4255/// \c To.
4256///
4257/// This routine is used to copy the members of a class with an
4258/// implicitly-declared copy assignment operator. When the entities being
4259/// copied are arrays, this routine builds for loops to copy them.
4260///
4261/// \param S The Sema object used for type-checking.
4262///
4263/// \param Loc The location where the implicit copy is being generated.
4264///
4265/// \param T The type of the expressions being copied. Both expressions must
4266/// have this type.
4267///
4268/// \param To The expression we are copying to.
4269///
4270/// \param From The expression we are copying from.
4271///
4272/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4273/// Otherwise, it's a non-static member subobject.
4274///
4275/// \param Depth Internal parameter recording the depth of the recursion.
4276///
4277/// \returns A statement or a loop that copies the expressions.
4278static Sema::OwningStmtResult
4279BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4280                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4281                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4282  typedef Sema::OwningStmtResult OwningStmtResult;
4283  typedef Sema::OwningExprResult OwningExprResult;
4284
4285  // C++0x [class.copy]p30:
4286  //   Each subobject is assigned in the manner appropriate to its type:
4287  //
4288  //     - if the subobject is of class type, the copy assignment operator
4289  //       for the class is used (as if by explicit qualification; that is,
4290  //       ignoring any possible virtual overriding functions in more derived
4291  //       classes);
4292  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4293    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4294
4295    // Look for operator=.
4296    DeclarationName Name
4297      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4298    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4299    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4300
4301    // Filter out any result that isn't a copy-assignment operator.
4302    LookupResult::Filter F = OpLookup.makeFilter();
4303    while (F.hasNext()) {
4304      NamedDecl *D = F.next();
4305      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4306        if (Method->isCopyAssignmentOperator())
4307          continue;
4308
4309      F.erase();
4310    }
4311    F.done();
4312
4313    // Suppress the protected check (C++ [class.protected]) for each of the
4314    // assignment operators we found. This strange dance is required when
4315    // we're assigning via a base classes's copy-assignment operator. To
4316    // ensure that we're getting the right base class subobject (without
4317    // ambiguities), we need to cast "this" to that subobject type; to
4318    // ensure that we don't go through the virtual call mechanism, we need
4319    // to qualify the operator= name with the base class (see below). However,
4320    // this means that if the base class has a protected copy assignment
4321    // operator, the protected member access check will fail. So, we
4322    // rewrite "protected" access to "public" access in this case, since we
4323    // know by construction that we're calling from a derived class.
4324    if (CopyingBaseSubobject) {
4325      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4326           L != LEnd; ++L) {
4327        if (L.getAccess() == AS_protected)
4328          L.setAccess(AS_public);
4329      }
4330    }
4331
4332    // Create the nested-name-specifier that will be used to qualify the
4333    // reference to operator=; this is required to suppress the virtual
4334    // call mechanism.
4335    CXXScopeSpec SS;
4336    SS.setRange(Loc);
4337    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4338                                               T.getTypePtr()));
4339
4340    // Create the reference to operator=.
4341    OwningExprResult OpEqualRef
4342      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4343                                   /*FirstQualifierInScope=*/0, OpLookup,
4344                                   /*TemplateArgs=*/0,
4345                                   /*SuppressQualifierCheck=*/true);
4346    if (OpEqualRef.isInvalid())
4347      return S.StmtError();
4348
4349    // Build the call to the assignment operator.
4350    Expr *FromE = From.takeAs<Expr>();
4351    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4352                                                      OpEqualRef.takeAs<Expr>(),
4353                                                        Loc, &FromE, 1, 0, Loc);
4354    if (Call.isInvalid())
4355      return S.StmtError();
4356
4357    return S.Owned(Call.takeAs<Stmt>());
4358  }
4359
4360  //     - if the subobject is of scalar type, the built-in assignment
4361  //       operator is used.
4362  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4363  if (!ArrayTy) {
4364    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4365                                                       BinaryOperator::Assign,
4366                                                       To.takeAs<Expr>(),
4367                                                       From.takeAs<Expr>());
4368    if (Assignment.isInvalid())
4369      return S.StmtError();
4370
4371    return S.Owned(Assignment.takeAs<Stmt>());
4372  }
4373
4374  //     - if the subobject is an array, each element is assigned, in the
4375  //       manner appropriate to the element type;
4376
4377  // Construct a loop over the array bounds, e.g.,
4378  //
4379  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4380  //
4381  // that will copy each of the array elements.
4382  QualType SizeType = S.Context.getSizeType();
4383
4384  // Create the iteration variable.
4385  IdentifierInfo *IterationVarName = 0;
4386  {
4387    llvm::SmallString<8> Str;
4388    llvm::raw_svector_ostream OS(Str);
4389    OS << "__i" << Depth;
4390    IterationVarName = &S.Context.Idents.get(OS.str());
4391  }
4392  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4393                                          IterationVarName, SizeType,
4394                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4395                                          VarDecl::None, VarDecl::None);
4396
4397  // Initialize the iteration variable to zero.
4398  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4399  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4400
4401  // Create a reference to the iteration variable; we'll use this several
4402  // times throughout.
4403  Expr *IterationVarRef
4404    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4405  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4406
4407  // Create the DeclStmt that holds the iteration variable.
4408  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4409
4410  // Create the comparison against the array bound.
4411  llvm::APInt Upper = ArrayTy->getSize();
4412  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4413  OwningExprResult Comparison
4414    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4415                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4416                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4417
4418  // Create the pre-increment of the iteration variable.
4419  OwningExprResult Increment
4420    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4421                                            UnaryOperator::PreInc,
4422                                            SizeType, Loc));
4423
4424  // Subscript the "from" and "to" expressions with the iteration variable.
4425  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4426                                           S.Owned(IterationVarRef->Retain()),
4427                                           Loc);
4428  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4429                                         S.Owned(IterationVarRef->Retain()),
4430                                         Loc);
4431  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4432  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4433
4434  // Build the copy for an individual element of the array.
4435  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4436                                                ArrayTy->getElementType(),
4437                                                move(To), move(From),
4438                                                CopyingBaseSubobject, Depth+1);
4439  if (Copy.isInvalid()) {
4440    InitStmt->Destroy(S.Context);
4441    return S.StmtError();
4442  }
4443
4444  // Construct the loop that copies all elements of this array.
4445  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4446                        S.MakeFullExpr(Comparison),
4447                        Sema::DeclPtrTy(),
4448                        S.MakeFullExpr(Increment),
4449                        Loc, move(Copy));
4450}
4451
4452void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4453                                        CXXMethodDecl *CopyAssignOperator) {
4454  assert((CopyAssignOperator->isImplicit() &&
4455          CopyAssignOperator->isOverloadedOperator() &&
4456          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4457          !CopyAssignOperator->isUsed()) &&
4458         "DefineImplicitCopyAssignment called for wrong function");
4459
4460  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4461
4462  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4463    CopyAssignOperator->setInvalidDecl();
4464    return;
4465  }
4466
4467  CopyAssignOperator->setUsed();
4468
4469  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4470  ErrorTrap Trap(*this);
4471
4472  // C++0x [class.copy]p30:
4473  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4474  //   for a non-union class X performs memberwise copy assignment of its
4475  //   subobjects. The direct base classes of X are assigned first, in the
4476  //   order of their declaration in the base-specifier-list, and then the
4477  //   immediate non-static data members of X are assigned, in the order in
4478  //   which they were declared in the class definition.
4479
4480  // The statements that form the synthesized function body.
4481  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4482
4483  // The parameter for the "other" object, which we are copying from.
4484  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4485  Qualifiers OtherQuals = Other->getType().getQualifiers();
4486  QualType OtherRefType = Other->getType();
4487  if (const LValueReferenceType *OtherRef
4488                                = OtherRefType->getAs<LValueReferenceType>()) {
4489    OtherRefType = OtherRef->getPointeeType();
4490    OtherQuals = OtherRefType.getQualifiers();
4491  }
4492
4493  // Our location for everything implicitly-generated.
4494  SourceLocation Loc = CopyAssignOperator->getLocation();
4495
4496  // Construct a reference to the "other" object. We'll be using this
4497  // throughout the generated ASTs.
4498  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4499  assert(OtherRef && "Reference to parameter cannot fail!");
4500
4501  // Construct the "this" pointer. We'll be using this throughout the generated
4502  // ASTs.
4503  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4504  assert(This && "Reference to this cannot fail!");
4505
4506  // Assign base classes.
4507  bool Invalid = false;
4508  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4509       E = ClassDecl->bases_end(); Base != E; ++Base) {
4510    // Form the assignment:
4511    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4512    QualType BaseType = Base->getType().getUnqualifiedType();
4513    CXXRecordDecl *BaseClassDecl = 0;
4514    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4515      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4516    else {
4517      Invalid = true;
4518      continue;
4519    }
4520
4521    // Construct the "from" expression, which is an implicit cast to the
4522    // appropriately-qualified base type.
4523    Expr *From = OtherRef->Retain();
4524    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4525                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4526                      CXXBaseSpecifierArray(Base));
4527
4528    // Dereference "this".
4529    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4530                                               Owned(This->Retain()));
4531
4532    // Implicitly cast "this" to the appropriately-qualified base type.
4533    Expr *ToE = To.takeAs<Expr>();
4534    ImpCastExprToType(ToE,
4535                      Context.getCVRQualifiedType(BaseType,
4536                                      CopyAssignOperator->getTypeQualifiers()),
4537                      CastExpr::CK_UncheckedDerivedToBase,
4538                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4539    To = Owned(ToE);
4540
4541    // Build the copy.
4542    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4543                                                  move(To), Owned(From),
4544                                                /*CopyingBaseSubobject=*/true);
4545    if (Copy.isInvalid()) {
4546      Diag(CurrentLocation, diag::note_member_synthesized_at)
4547        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4548      CopyAssignOperator->setInvalidDecl();
4549      return;
4550    }
4551
4552    // Success! Record the copy.
4553    Statements.push_back(Copy.takeAs<Expr>());
4554  }
4555
4556  // \brief Reference to the __builtin_memcpy function.
4557  Expr *BuiltinMemCpyRef = 0;
4558
4559  // Assign non-static members.
4560  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4561                                  FieldEnd = ClassDecl->field_end();
4562       Field != FieldEnd; ++Field) {
4563    // Check for members of reference type; we can't copy those.
4564    if (Field->getType()->isReferenceType()) {
4565      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4566        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4567      Diag(Field->getLocation(), diag::note_declared_at);
4568      Diag(CurrentLocation, diag::note_member_synthesized_at)
4569        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4570      Invalid = true;
4571      continue;
4572    }
4573
4574    // Check for members of const-qualified, non-class type.
4575    QualType BaseType = Context.getBaseElementType(Field->getType());
4576    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4577      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4578        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4579      Diag(Field->getLocation(), diag::note_declared_at);
4580      Diag(CurrentLocation, diag::note_member_synthesized_at)
4581        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4582      Invalid = true;
4583      continue;
4584    }
4585
4586    QualType FieldType = Field->getType().getNonReferenceType();
4587    if (FieldType->isIncompleteArrayType()) {
4588      assert(ClassDecl->hasFlexibleArrayMember() &&
4589             "Incomplete array type is not valid");
4590      continue;
4591    }
4592
4593    // Build references to the field in the object we're copying from and to.
4594    CXXScopeSpec SS; // Intentionally empty
4595    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4596                              LookupMemberName);
4597    MemberLookup.addDecl(*Field);
4598    MemberLookup.resolveKind();
4599    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4600                                                     OtherRefType,
4601                                                     Loc, /*IsArrow=*/false,
4602                                                     SS, 0, MemberLookup, 0);
4603    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4604                                                   This->getType(),
4605                                                   Loc, /*IsArrow=*/true,
4606                                                   SS, 0, MemberLookup, 0);
4607    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4608    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4609
4610    // If the field should be copied with __builtin_memcpy rather than via
4611    // explicit assignments, do so. This optimization only applies for arrays
4612    // of scalars and arrays of class type with trivial copy-assignment
4613    // operators.
4614    if (FieldType->isArrayType() &&
4615        (!BaseType->isRecordType() ||
4616         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4617           ->hasTrivialCopyAssignment())) {
4618      // Compute the size of the memory buffer to be copied.
4619      QualType SizeType = Context.getSizeType();
4620      llvm::APInt Size(Context.getTypeSize(SizeType),
4621                       Context.getTypeSizeInChars(BaseType).getQuantity());
4622      for (const ConstantArrayType *Array
4623              = Context.getAsConstantArrayType(FieldType);
4624           Array;
4625           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4626        llvm::APInt ArraySize = Array->getSize();
4627        ArraySize.zextOrTrunc(Size.getBitWidth());
4628        Size *= ArraySize;
4629      }
4630
4631      // Take the address of the field references for "from" and "to".
4632      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4633      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4634
4635      // Create a reference to the __builtin_memcpy builtin function.
4636      if (!BuiltinMemCpyRef) {
4637        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4638                       LookupOrdinaryName);
4639        LookupName(R, TUScope, true);
4640
4641        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4642        if (!BuiltinMemCpy) {
4643          // Something went horribly wrong earlier, and we will have complained
4644          // about it.
4645          Invalid = true;
4646          continue;
4647        }
4648
4649        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4650                                            BuiltinMemCpy->getType(),
4651                                            Loc, 0).takeAs<Expr>();
4652        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4653      }
4654
4655      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4656      CallArgs.push_back(To.takeAs<Expr>());
4657      CallArgs.push_back(From.takeAs<Expr>());
4658      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4659      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4660      Commas.push_back(Loc);
4661      Commas.push_back(Loc);
4662      OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
4663                                            Owned(BuiltinMemCpyRef->Retain()),
4664                                            Loc, move_arg(CallArgs),
4665                                            Commas.data(), Loc);
4666      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4667      Statements.push_back(Call.takeAs<Expr>());
4668      continue;
4669    }
4670
4671    // Build the copy of this field.
4672    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4673                                                  move(To), move(From),
4674                                              /*CopyingBaseSubobject=*/false);
4675    if (Copy.isInvalid()) {
4676      Diag(CurrentLocation, diag::note_member_synthesized_at)
4677        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4678      CopyAssignOperator->setInvalidDecl();
4679      return;
4680    }
4681
4682    // Success! Record the copy.
4683    Statements.push_back(Copy.takeAs<Stmt>());
4684  }
4685
4686  if (!Invalid) {
4687    // Add a "return *this;"
4688    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4689                                                    Owned(This->Retain()));
4690
4691    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4692    if (Return.isInvalid())
4693      Invalid = true;
4694    else {
4695      Statements.push_back(Return.takeAs<Stmt>());
4696
4697      if (Trap.hasErrorOccurred()) {
4698        Diag(CurrentLocation, diag::note_member_synthesized_at)
4699          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4700        Invalid = true;
4701      }
4702    }
4703  }
4704
4705  if (Invalid) {
4706    CopyAssignOperator->setInvalidDecl();
4707    return;
4708  }
4709
4710  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4711                                            /*isStmtExpr=*/false);
4712  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4713  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4714}
4715
4716void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4717                                   CXXConstructorDecl *CopyConstructor,
4718                                   unsigned TypeQuals) {
4719  assert((CopyConstructor->isImplicit() &&
4720          CopyConstructor->isCopyConstructor(TypeQuals) &&
4721          !CopyConstructor->isUsed()) &&
4722         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4723
4724  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4725  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4726
4727  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4728  ErrorTrap Trap(*this);
4729
4730  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4731      Trap.hasErrorOccurred()) {
4732    Diag(CurrentLocation, diag::note_member_synthesized_at)
4733      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4734    CopyConstructor->setInvalidDecl();
4735  }  else {
4736    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4737                                               CopyConstructor->getLocation(),
4738                                               MultiStmtArg(*this, 0, 0),
4739                                               /*isStmtExpr=*/false)
4740                                                              .takeAs<Stmt>());
4741  }
4742
4743  CopyConstructor->setUsed();
4744}
4745
4746Sema::OwningExprResult
4747Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4748                            CXXConstructorDecl *Constructor,
4749                            MultiExprArg ExprArgs,
4750                            bool RequiresZeroInit,
4751                            CXXConstructExpr::ConstructionKind ConstructKind) {
4752  bool Elidable = false;
4753
4754  // C++0x [class.copy]p34:
4755  //   When certain criteria are met, an implementation is allowed to
4756  //   omit the copy/move construction of a class object, even if the
4757  //   copy/move constructor and/or destructor for the object have
4758  //   side effects. [...]
4759  //     - when a temporary class object that has not been bound to a
4760  //       reference (12.2) would be copied/moved to a class object
4761  //       with the same cv-unqualified type, the copy/move operation
4762  //       can be omitted by constructing the temporary object
4763  //       directly into the target of the omitted copy/move
4764  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4765    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4766    Elidable = SubExpr->isTemporaryObject() &&
4767      Context.hasSameUnqualifiedType(SubExpr->getType(),
4768                           Context.getTypeDeclType(Constructor->getParent()));
4769  }
4770
4771  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4772                               Elidable, move(ExprArgs), RequiresZeroInit,
4773                               ConstructKind);
4774}
4775
4776/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4777/// including handling of its default argument expressions.
4778Sema::OwningExprResult
4779Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4780                            CXXConstructorDecl *Constructor, bool Elidable,
4781                            MultiExprArg ExprArgs,
4782                            bool RequiresZeroInit,
4783                            CXXConstructExpr::ConstructionKind ConstructKind) {
4784  unsigned NumExprs = ExprArgs.size();
4785  Expr **Exprs = (Expr **)ExprArgs.release();
4786
4787  MarkDeclarationReferenced(ConstructLoc, Constructor);
4788  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4789                                        Constructor, Elidable, Exprs, NumExprs,
4790                                        RequiresZeroInit, ConstructKind));
4791}
4792
4793bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4794                                        CXXConstructorDecl *Constructor,
4795                                        MultiExprArg Exprs) {
4796  OwningExprResult TempResult =
4797    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4798                          move(Exprs));
4799  if (TempResult.isInvalid())
4800    return true;
4801
4802  Expr *Temp = TempResult.takeAs<Expr>();
4803  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4804  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4805  VD->setInit(Temp);
4806
4807  return false;
4808}
4809
4810void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4811  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4812  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4813      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4814    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4815    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4816    CheckDestructorAccess(VD->getLocation(), Destructor,
4817                          PDiag(diag::err_access_dtor_var)
4818                            << VD->getDeclName()
4819                            << VD->getType());
4820  }
4821}
4822
4823/// AddCXXDirectInitializerToDecl - This action is called immediately after
4824/// ActOnDeclarator, when a C++ direct initializer is present.
4825/// e.g: "int x(1);"
4826void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4827                                         SourceLocation LParenLoc,
4828                                         MultiExprArg Exprs,
4829                                         SourceLocation *CommaLocs,
4830                                         SourceLocation RParenLoc) {
4831  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4832  Decl *RealDecl = Dcl.getAs<Decl>();
4833
4834  // If there is no declaration, there was an error parsing it.  Just ignore
4835  // the initializer.
4836  if (RealDecl == 0)
4837    return;
4838
4839  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4840  if (!VDecl) {
4841    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4842    RealDecl->setInvalidDecl();
4843    return;
4844  }
4845
4846  // We will represent direct-initialization similarly to copy-initialization:
4847  //    int x(1);  -as-> int x = 1;
4848  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4849  //
4850  // Clients that want to distinguish between the two forms, can check for
4851  // direct initializer using VarDecl::hasCXXDirectInitializer().
4852  // A major benefit is that clients that don't particularly care about which
4853  // exactly form was it (like the CodeGen) can handle both cases without
4854  // special case code.
4855
4856  // C++ 8.5p11:
4857  // The form of initialization (using parentheses or '=') is generally
4858  // insignificant, but does matter when the entity being initialized has a
4859  // class type.
4860  QualType DeclInitType = VDecl->getType();
4861  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4862    DeclInitType = Context.getBaseElementType(Array);
4863
4864  if (!VDecl->getType()->isDependentType() &&
4865      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4866                          diag::err_typecheck_decl_incomplete_type)) {
4867    VDecl->setInvalidDecl();
4868    return;
4869  }
4870
4871  // The variable can not have an abstract class type.
4872  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4873                             diag::err_abstract_type_in_decl,
4874                             AbstractVariableType))
4875    VDecl->setInvalidDecl();
4876
4877  const VarDecl *Def;
4878  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4879    Diag(VDecl->getLocation(), diag::err_redefinition)
4880    << VDecl->getDeclName();
4881    Diag(Def->getLocation(), diag::note_previous_definition);
4882    VDecl->setInvalidDecl();
4883    return;
4884  }
4885
4886  // If either the declaration has a dependent type or if any of the
4887  // expressions is type-dependent, we represent the initialization
4888  // via a ParenListExpr for later use during template instantiation.
4889  if (VDecl->getType()->isDependentType() ||
4890      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4891    // Let clients know that initialization was done with a direct initializer.
4892    VDecl->setCXXDirectInitializer(true);
4893
4894    // Store the initialization expressions as a ParenListExpr.
4895    unsigned NumExprs = Exprs.size();
4896    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4897                                               (Expr **)Exprs.release(),
4898                                               NumExprs, RParenLoc));
4899    return;
4900  }
4901
4902  // Capture the variable that is being initialized and the style of
4903  // initialization.
4904  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4905
4906  // FIXME: Poor source location information.
4907  InitializationKind Kind
4908    = InitializationKind::CreateDirect(VDecl->getLocation(),
4909                                       LParenLoc, RParenLoc);
4910
4911  InitializationSequence InitSeq(*this, Entity, Kind,
4912                                 (Expr**)Exprs.get(), Exprs.size());
4913  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4914  if (Result.isInvalid()) {
4915    VDecl->setInvalidDecl();
4916    return;
4917  }
4918
4919  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4920  VDecl->setInit(Result.takeAs<Expr>());
4921  VDecl->setCXXDirectInitializer(true);
4922
4923  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4924    FinalizeVarWithDestructor(VDecl, Record);
4925}
4926
4927/// \brief Given a constructor and the set of arguments provided for the
4928/// constructor, convert the arguments and add any required default arguments
4929/// to form a proper call to this constructor.
4930///
4931/// \returns true if an error occurred, false otherwise.
4932bool
4933Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4934                              MultiExprArg ArgsPtr,
4935                              SourceLocation Loc,
4936                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4937  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4938  unsigned NumArgs = ArgsPtr.size();
4939  Expr **Args = (Expr **)ArgsPtr.get();
4940
4941  const FunctionProtoType *Proto
4942    = Constructor->getType()->getAs<FunctionProtoType>();
4943  assert(Proto && "Constructor without a prototype?");
4944  unsigned NumArgsInProto = Proto->getNumArgs();
4945
4946  // If too few arguments are available, we'll fill in the rest with defaults.
4947  if (NumArgs < NumArgsInProto)
4948    ConvertedArgs.reserve(NumArgsInProto);
4949  else
4950    ConvertedArgs.reserve(NumArgs);
4951
4952  VariadicCallType CallType =
4953    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4954  llvm::SmallVector<Expr *, 8> AllArgs;
4955  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4956                                        Proto, 0, Args, NumArgs, AllArgs,
4957                                        CallType);
4958  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4959    ConvertedArgs.push_back(AllArgs[i]);
4960  return Invalid;
4961}
4962
4963static inline bool
4964CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4965                                       const FunctionDecl *FnDecl) {
4966  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4967  if (isa<NamespaceDecl>(DC)) {
4968    return SemaRef.Diag(FnDecl->getLocation(),
4969                        diag::err_operator_new_delete_declared_in_namespace)
4970      << FnDecl->getDeclName();
4971  }
4972
4973  if (isa<TranslationUnitDecl>(DC) &&
4974      FnDecl->getStorageClass() == FunctionDecl::Static) {
4975    return SemaRef.Diag(FnDecl->getLocation(),
4976                        diag::err_operator_new_delete_declared_static)
4977      << FnDecl->getDeclName();
4978  }
4979
4980  return false;
4981}
4982
4983static inline bool
4984CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4985                            CanQualType ExpectedResultType,
4986                            CanQualType ExpectedFirstParamType,
4987                            unsigned DependentParamTypeDiag,
4988                            unsigned InvalidParamTypeDiag) {
4989  QualType ResultType =
4990    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4991
4992  // Check that the result type is not dependent.
4993  if (ResultType->isDependentType())
4994    return SemaRef.Diag(FnDecl->getLocation(),
4995                        diag::err_operator_new_delete_dependent_result_type)
4996    << FnDecl->getDeclName() << ExpectedResultType;
4997
4998  // Check that the result type is what we expect.
4999  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5000    return SemaRef.Diag(FnDecl->getLocation(),
5001                        diag::err_operator_new_delete_invalid_result_type)
5002    << FnDecl->getDeclName() << ExpectedResultType;
5003
5004  // A function template must have at least 2 parameters.
5005  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5006    return SemaRef.Diag(FnDecl->getLocation(),
5007                      diag::err_operator_new_delete_template_too_few_parameters)
5008        << FnDecl->getDeclName();
5009
5010  // The function decl must have at least 1 parameter.
5011  if (FnDecl->getNumParams() == 0)
5012    return SemaRef.Diag(FnDecl->getLocation(),
5013                        diag::err_operator_new_delete_too_few_parameters)
5014      << FnDecl->getDeclName();
5015
5016  // Check the the first parameter type is not dependent.
5017  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5018  if (FirstParamType->isDependentType())
5019    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5020      << FnDecl->getDeclName() << ExpectedFirstParamType;
5021
5022  // Check that the first parameter type is what we expect.
5023  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5024      ExpectedFirstParamType)
5025    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5026    << FnDecl->getDeclName() << ExpectedFirstParamType;
5027
5028  return false;
5029}
5030
5031static bool
5032CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5033  // C++ [basic.stc.dynamic.allocation]p1:
5034  //   A program is ill-formed if an allocation function is declared in a
5035  //   namespace scope other than global scope or declared static in global
5036  //   scope.
5037  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5038    return true;
5039
5040  CanQualType SizeTy =
5041    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5042
5043  // C++ [basic.stc.dynamic.allocation]p1:
5044  //  The return type shall be void*. The first parameter shall have type
5045  //  std::size_t.
5046  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5047                                  SizeTy,
5048                                  diag::err_operator_new_dependent_param_type,
5049                                  diag::err_operator_new_param_type))
5050    return true;
5051
5052  // C++ [basic.stc.dynamic.allocation]p1:
5053  //  The first parameter shall not have an associated default argument.
5054  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5055    return SemaRef.Diag(FnDecl->getLocation(),
5056                        diag::err_operator_new_default_arg)
5057      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5058
5059  return false;
5060}
5061
5062static bool
5063CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5064  // C++ [basic.stc.dynamic.deallocation]p1:
5065  //   A program is ill-formed if deallocation functions are declared in a
5066  //   namespace scope other than global scope or declared static in global
5067  //   scope.
5068  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5069    return true;
5070
5071  // C++ [basic.stc.dynamic.deallocation]p2:
5072  //   Each deallocation function shall return void and its first parameter
5073  //   shall be void*.
5074  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5075                                  SemaRef.Context.VoidPtrTy,
5076                                 diag::err_operator_delete_dependent_param_type,
5077                                 diag::err_operator_delete_param_type))
5078    return true;
5079
5080  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5081  if (FirstParamType->isDependentType())
5082    return SemaRef.Diag(FnDecl->getLocation(),
5083                        diag::err_operator_delete_dependent_param_type)
5084    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5085
5086  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5087      SemaRef.Context.VoidPtrTy)
5088    return SemaRef.Diag(FnDecl->getLocation(),
5089                        diag::err_operator_delete_param_type)
5090      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5091
5092  return false;
5093}
5094
5095/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5096/// of this overloaded operator is well-formed. If so, returns false;
5097/// otherwise, emits appropriate diagnostics and returns true.
5098bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5099  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5100         "Expected an overloaded operator declaration");
5101
5102  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5103
5104  // C++ [over.oper]p5:
5105  //   The allocation and deallocation functions, operator new,
5106  //   operator new[], operator delete and operator delete[], are
5107  //   described completely in 3.7.3. The attributes and restrictions
5108  //   found in the rest of this subclause do not apply to them unless
5109  //   explicitly stated in 3.7.3.
5110  if (Op == OO_Delete || Op == OO_Array_Delete)
5111    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5112
5113  if (Op == OO_New || Op == OO_Array_New)
5114    return CheckOperatorNewDeclaration(*this, FnDecl);
5115
5116  // C++ [over.oper]p6:
5117  //   An operator function shall either be a non-static member
5118  //   function or be a non-member function and have at least one
5119  //   parameter whose type is a class, a reference to a class, an
5120  //   enumeration, or a reference to an enumeration.
5121  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5122    if (MethodDecl->isStatic())
5123      return Diag(FnDecl->getLocation(),
5124                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5125  } else {
5126    bool ClassOrEnumParam = false;
5127    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5128                                   ParamEnd = FnDecl->param_end();
5129         Param != ParamEnd; ++Param) {
5130      QualType ParamType = (*Param)->getType().getNonReferenceType();
5131      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5132          ParamType->isEnumeralType()) {
5133        ClassOrEnumParam = true;
5134        break;
5135      }
5136    }
5137
5138    if (!ClassOrEnumParam)
5139      return Diag(FnDecl->getLocation(),
5140                  diag::err_operator_overload_needs_class_or_enum)
5141        << FnDecl->getDeclName();
5142  }
5143
5144  // C++ [over.oper]p8:
5145  //   An operator function cannot have default arguments (8.3.6),
5146  //   except where explicitly stated below.
5147  //
5148  // Only the function-call operator allows default arguments
5149  // (C++ [over.call]p1).
5150  if (Op != OO_Call) {
5151    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5152         Param != FnDecl->param_end(); ++Param) {
5153      if ((*Param)->hasDefaultArg())
5154        return Diag((*Param)->getLocation(),
5155                    diag::err_operator_overload_default_arg)
5156          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5157    }
5158  }
5159
5160  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5161    { false, false, false }
5162#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5163    , { Unary, Binary, MemberOnly }
5164#include "clang/Basic/OperatorKinds.def"
5165  };
5166
5167  bool CanBeUnaryOperator = OperatorUses[Op][0];
5168  bool CanBeBinaryOperator = OperatorUses[Op][1];
5169  bool MustBeMemberOperator = OperatorUses[Op][2];
5170
5171  // C++ [over.oper]p8:
5172  //   [...] Operator functions cannot have more or fewer parameters
5173  //   than the number required for the corresponding operator, as
5174  //   described in the rest of this subclause.
5175  unsigned NumParams = FnDecl->getNumParams()
5176                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5177  if (Op != OO_Call &&
5178      ((NumParams == 1 && !CanBeUnaryOperator) ||
5179       (NumParams == 2 && !CanBeBinaryOperator) ||
5180       (NumParams < 1) || (NumParams > 2))) {
5181    // We have the wrong number of parameters.
5182    unsigned ErrorKind;
5183    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5184      ErrorKind = 2;  // 2 -> unary or binary.
5185    } else if (CanBeUnaryOperator) {
5186      ErrorKind = 0;  // 0 -> unary
5187    } else {
5188      assert(CanBeBinaryOperator &&
5189             "All non-call overloaded operators are unary or binary!");
5190      ErrorKind = 1;  // 1 -> binary
5191    }
5192
5193    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5194      << FnDecl->getDeclName() << NumParams << ErrorKind;
5195  }
5196
5197  // Overloaded operators other than operator() cannot be variadic.
5198  if (Op != OO_Call &&
5199      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5200    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5201      << FnDecl->getDeclName();
5202  }
5203
5204  // Some operators must be non-static member functions.
5205  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5206    return Diag(FnDecl->getLocation(),
5207                diag::err_operator_overload_must_be_member)
5208      << FnDecl->getDeclName();
5209  }
5210
5211  // C++ [over.inc]p1:
5212  //   The user-defined function called operator++ implements the
5213  //   prefix and postfix ++ operator. If this function is a member
5214  //   function with no parameters, or a non-member function with one
5215  //   parameter of class or enumeration type, it defines the prefix
5216  //   increment operator ++ for objects of that type. If the function
5217  //   is a member function with one parameter (which shall be of type
5218  //   int) or a non-member function with two parameters (the second
5219  //   of which shall be of type int), it defines the postfix
5220  //   increment operator ++ for objects of that type.
5221  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5222    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5223    bool ParamIsInt = false;
5224    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5225      ParamIsInt = BT->getKind() == BuiltinType::Int;
5226
5227    if (!ParamIsInt)
5228      return Diag(LastParam->getLocation(),
5229                  diag::err_operator_overload_post_incdec_must_be_int)
5230        << LastParam->getType() << (Op == OO_MinusMinus);
5231  }
5232
5233  // Notify the class if it got an assignment operator.
5234  if (Op == OO_Equal) {
5235    // Would have returned earlier otherwise.
5236    assert(isa<CXXMethodDecl>(FnDecl) &&
5237      "Overloaded = not member, but not filtered.");
5238    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5239    Method->getParent()->addedAssignmentOperator(Context, Method);
5240  }
5241
5242  return false;
5243}
5244
5245/// CheckLiteralOperatorDeclaration - Check whether the declaration
5246/// of this literal operator function is well-formed. If so, returns
5247/// false; otherwise, emits appropriate diagnostics and returns true.
5248bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5249  DeclContext *DC = FnDecl->getDeclContext();
5250  Decl::Kind Kind = DC->getDeclKind();
5251  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5252      Kind != Decl::LinkageSpec) {
5253    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5254      << FnDecl->getDeclName();
5255    return true;
5256  }
5257
5258  bool Valid = false;
5259
5260  // template <char...> type operator "" name() is the only valid template
5261  // signature, and the only valid signature with no parameters.
5262  if (FnDecl->param_size() == 0) {
5263    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5264      // Must have only one template parameter
5265      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5266      if (Params->size() == 1) {
5267        NonTypeTemplateParmDecl *PmDecl =
5268          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5269
5270        // The template parameter must be a char parameter pack.
5271        // FIXME: This test will always fail because non-type parameter packs
5272        //   have not been implemented.
5273        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5274            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5275          Valid = true;
5276      }
5277    }
5278  } else {
5279    // Check the first parameter
5280    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5281
5282    QualType T = (*Param)->getType();
5283
5284    // unsigned long long int, long double, and any character type are allowed
5285    // as the only parameters.
5286    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5287        Context.hasSameType(T, Context.LongDoubleTy) ||
5288        Context.hasSameType(T, Context.CharTy) ||
5289        Context.hasSameType(T, Context.WCharTy) ||
5290        Context.hasSameType(T, Context.Char16Ty) ||
5291        Context.hasSameType(T, Context.Char32Ty)) {
5292      if (++Param == FnDecl->param_end())
5293        Valid = true;
5294      goto FinishedParams;
5295    }
5296
5297    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5298    const PointerType *PT = T->getAs<PointerType>();
5299    if (!PT)
5300      goto FinishedParams;
5301    T = PT->getPointeeType();
5302    if (!T.isConstQualified())
5303      goto FinishedParams;
5304    T = T.getUnqualifiedType();
5305
5306    // Move on to the second parameter;
5307    ++Param;
5308
5309    // If there is no second parameter, the first must be a const char *
5310    if (Param == FnDecl->param_end()) {
5311      if (Context.hasSameType(T, Context.CharTy))
5312        Valid = true;
5313      goto FinishedParams;
5314    }
5315
5316    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5317    // are allowed as the first parameter to a two-parameter function
5318    if (!(Context.hasSameType(T, Context.CharTy) ||
5319          Context.hasSameType(T, Context.WCharTy) ||
5320          Context.hasSameType(T, Context.Char16Ty) ||
5321          Context.hasSameType(T, Context.Char32Ty)))
5322      goto FinishedParams;
5323
5324    // The second and final parameter must be an std::size_t
5325    T = (*Param)->getType().getUnqualifiedType();
5326    if (Context.hasSameType(T, Context.getSizeType()) &&
5327        ++Param == FnDecl->param_end())
5328      Valid = true;
5329  }
5330
5331  // FIXME: This diagnostic is absolutely terrible.
5332FinishedParams:
5333  if (!Valid) {
5334    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5335      << FnDecl->getDeclName();
5336    return true;
5337  }
5338
5339  return false;
5340}
5341
5342/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5343/// linkage specification, including the language and (if present)
5344/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5345/// the location of the language string literal, which is provided
5346/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5347/// the '{' brace. Otherwise, this linkage specification does not
5348/// have any braces.
5349Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5350                                                     SourceLocation ExternLoc,
5351                                                     SourceLocation LangLoc,
5352                                                     llvm::StringRef Lang,
5353                                                     SourceLocation LBraceLoc) {
5354  LinkageSpecDecl::LanguageIDs Language;
5355  if (Lang == "\"C\"")
5356    Language = LinkageSpecDecl::lang_c;
5357  else if (Lang == "\"C++\"")
5358    Language = LinkageSpecDecl::lang_cxx;
5359  else {
5360    Diag(LangLoc, diag::err_bad_language);
5361    return DeclPtrTy();
5362  }
5363
5364  // FIXME: Add all the various semantics of linkage specifications
5365
5366  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5367                                               LangLoc, Language,
5368                                               LBraceLoc.isValid());
5369  CurContext->addDecl(D);
5370  PushDeclContext(S, D);
5371  return DeclPtrTy::make(D);
5372}
5373
5374/// ActOnFinishLinkageSpecification - Completely the definition of
5375/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5376/// valid, it's the position of the closing '}' brace in a linkage
5377/// specification that uses braces.
5378Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5379                                                      DeclPtrTy LinkageSpec,
5380                                                      SourceLocation RBraceLoc) {
5381  if (LinkageSpec)
5382    PopDeclContext();
5383  return LinkageSpec;
5384}
5385
5386/// \brief Perform semantic analysis for the variable declaration that
5387/// occurs within a C++ catch clause, returning the newly-created
5388/// variable.
5389VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5390                                         TypeSourceInfo *TInfo,
5391                                         IdentifierInfo *Name,
5392                                         SourceLocation Loc,
5393                                         SourceRange Range) {
5394  bool Invalid = false;
5395
5396  // Arrays and functions decay.
5397  if (ExDeclType->isArrayType())
5398    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5399  else if (ExDeclType->isFunctionType())
5400    ExDeclType = Context.getPointerType(ExDeclType);
5401
5402  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5403  // The exception-declaration shall not denote a pointer or reference to an
5404  // incomplete type, other than [cv] void*.
5405  // N2844 forbids rvalue references.
5406  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5407    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5408    Invalid = true;
5409  }
5410
5411  // GCC allows catching pointers and references to incomplete types
5412  // as an extension; so do we, but we warn by default.
5413
5414  QualType BaseType = ExDeclType;
5415  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5416  unsigned DK = diag::err_catch_incomplete;
5417  bool IncompleteCatchIsInvalid = true;
5418  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5419    BaseType = Ptr->getPointeeType();
5420    Mode = 1;
5421    DK = diag::ext_catch_incomplete_ptr;
5422    IncompleteCatchIsInvalid = false;
5423  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5424    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5425    BaseType = Ref->getPointeeType();
5426    Mode = 2;
5427    DK = diag::ext_catch_incomplete_ref;
5428    IncompleteCatchIsInvalid = false;
5429  }
5430  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5431      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5432      IncompleteCatchIsInvalid)
5433    Invalid = true;
5434
5435  if (!Invalid && !ExDeclType->isDependentType() &&
5436      RequireNonAbstractType(Loc, ExDeclType,
5437                             diag::err_abstract_type_in_decl,
5438                             AbstractVariableType))
5439    Invalid = true;
5440
5441  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5442                                    Name, ExDeclType, TInfo, VarDecl::None,
5443                                    VarDecl::None);
5444  ExDecl->setExceptionVariable(true);
5445
5446  if (!Invalid) {
5447    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5448      // C++ [except.handle]p16:
5449      //   The object declared in an exception-declaration or, if the
5450      //   exception-declaration does not specify a name, a temporary (12.2) is
5451      //   copy-initialized (8.5) from the exception object. [...]
5452      //   The object is destroyed when the handler exits, after the destruction
5453      //   of any automatic objects initialized within the handler.
5454      //
5455      // We just pretend to initialize the object with itself, then make sure
5456      // it can be destroyed later.
5457      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5458      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5459                                            Loc, ExDeclType, 0);
5460      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5461                                                               SourceLocation());
5462      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5463      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5464                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5465      if (Result.isInvalid())
5466        Invalid = true;
5467      else
5468        FinalizeVarWithDestructor(ExDecl, RecordTy);
5469    }
5470  }
5471
5472  if (Invalid)
5473    ExDecl->setInvalidDecl();
5474
5475  return ExDecl;
5476}
5477
5478/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5479/// handler.
5480Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5481  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5482  QualType ExDeclType = TInfo->getType();
5483
5484  bool Invalid = D.isInvalidType();
5485  IdentifierInfo *II = D.getIdentifier();
5486  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5487                                             LookupOrdinaryName,
5488                                             ForRedeclaration)) {
5489    // The scope should be freshly made just for us. There is just no way
5490    // it contains any previous declaration.
5491    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5492    if (PrevDecl->isTemplateParameter()) {
5493      // Maybe we will complain about the shadowed template parameter.
5494      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5495    }
5496  }
5497
5498  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5499    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5500      << D.getCXXScopeSpec().getRange();
5501    Invalid = true;
5502  }
5503
5504  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5505                                              D.getIdentifier(),
5506                                              D.getIdentifierLoc(),
5507                                            D.getDeclSpec().getSourceRange());
5508
5509  if (Invalid)
5510    ExDecl->setInvalidDecl();
5511
5512  // Add the exception declaration into this scope.
5513  if (II)
5514    PushOnScopeChains(ExDecl, S);
5515  else
5516    CurContext->addDecl(ExDecl);
5517
5518  ProcessDeclAttributes(S, ExDecl, D);
5519  return DeclPtrTy::make(ExDecl);
5520}
5521
5522Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5523                                                   ExprArg assertexpr,
5524                                                   ExprArg assertmessageexpr) {
5525  Expr *AssertExpr = (Expr *)assertexpr.get();
5526  StringLiteral *AssertMessage =
5527    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5528
5529  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5530    llvm::APSInt Value(32);
5531    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5532      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5533        AssertExpr->getSourceRange();
5534      return DeclPtrTy();
5535    }
5536
5537    if (Value == 0) {
5538      Diag(AssertLoc, diag::err_static_assert_failed)
5539        << AssertMessage->getString() << AssertExpr->getSourceRange();
5540    }
5541  }
5542
5543  assertexpr.release();
5544  assertmessageexpr.release();
5545  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5546                                        AssertExpr, AssertMessage);
5547
5548  CurContext->addDecl(Decl);
5549  return DeclPtrTy::make(Decl);
5550}
5551
5552/// \brief Perform semantic analysis of the given friend type declaration.
5553///
5554/// \returns A friend declaration that.
5555FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5556                                      TypeSourceInfo *TSInfo) {
5557  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5558
5559  QualType T = TSInfo->getType();
5560  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5561
5562  if (!getLangOptions().CPlusPlus0x) {
5563    // C++03 [class.friend]p2:
5564    //   An elaborated-type-specifier shall be used in a friend declaration
5565    //   for a class.*
5566    //
5567    //   * The class-key of the elaborated-type-specifier is required.
5568    if (!ActiveTemplateInstantiations.empty()) {
5569      // Do not complain about the form of friend template types during
5570      // template instantiation; we will already have complained when the
5571      // template was declared.
5572    } else if (!T->isElaboratedTypeSpecifier()) {
5573      // If we evaluated the type to a record type, suggest putting
5574      // a tag in front.
5575      if (const RecordType *RT = T->getAs<RecordType>()) {
5576        RecordDecl *RD = RT->getDecl();
5577
5578        std::string InsertionText = std::string(" ") + RD->getKindName();
5579
5580        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5581          << (unsigned) RD->getTagKind()
5582          << T
5583          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5584                                        InsertionText);
5585      } else {
5586        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5587          << T
5588          << SourceRange(FriendLoc, TypeRange.getEnd());
5589      }
5590    } else if (T->getAs<EnumType>()) {
5591      Diag(FriendLoc, diag::ext_enum_friend)
5592        << T
5593        << SourceRange(FriendLoc, TypeRange.getEnd());
5594    }
5595  }
5596
5597  // C++0x [class.friend]p3:
5598  //   If the type specifier in a friend declaration designates a (possibly
5599  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5600  //   the friend declaration is ignored.
5601
5602  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5603  // in [class.friend]p3 that we do not implement.
5604
5605  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5606}
5607
5608/// Handle a friend type declaration.  This works in tandem with
5609/// ActOnTag.
5610///
5611/// Notes on friend class templates:
5612///
5613/// We generally treat friend class declarations as if they were
5614/// declaring a class.  So, for example, the elaborated type specifier
5615/// in a friend declaration is required to obey the restrictions of a
5616/// class-head (i.e. no typedefs in the scope chain), template
5617/// parameters are required to match up with simple template-ids, &c.
5618/// However, unlike when declaring a template specialization, it's
5619/// okay to refer to a template specialization without an empty
5620/// template parameter declaration, e.g.
5621///   friend class A<T>::B<unsigned>;
5622/// We permit this as a special case; if there are any template
5623/// parameters present at all, require proper matching, i.e.
5624///   template <> template <class T> friend class A<int>::B;
5625Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5626                                          MultiTemplateParamsArg TempParams) {
5627  SourceLocation Loc = DS.getSourceRange().getBegin();
5628
5629  assert(DS.isFriendSpecified());
5630  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5631
5632  // Try to convert the decl specifier to a type.  This works for
5633  // friend templates because ActOnTag never produces a ClassTemplateDecl
5634  // for a TUK_Friend.
5635  Declarator TheDeclarator(DS, Declarator::MemberContext);
5636  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
5637  QualType T = TSI->getType();
5638  if (TheDeclarator.isInvalidType())
5639    return DeclPtrTy();
5640
5641  // This is definitely an error in C++98.  It's probably meant to
5642  // be forbidden in C++0x, too, but the specification is just
5643  // poorly written.
5644  //
5645  // The problem is with declarations like the following:
5646  //   template <T> friend A<T>::foo;
5647  // where deciding whether a class C is a friend or not now hinges
5648  // on whether there exists an instantiation of A that causes
5649  // 'foo' to equal C.  There are restrictions on class-heads
5650  // (which we declare (by fiat) elaborated friend declarations to
5651  // be) that makes this tractable.
5652  //
5653  // FIXME: handle "template <> friend class A<T>;", which
5654  // is possibly well-formed?  Who even knows?
5655  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5656    Diag(Loc, diag::err_tagless_friend_type_template)
5657      << DS.getSourceRange();
5658    return DeclPtrTy();
5659  }
5660
5661  // C++98 [class.friend]p1: A friend of a class is a function
5662  //   or class that is not a member of the class . . .
5663  // This is fixed in DR77, which just barely didn't make the C++03
5664  // deadline.  It's also a very silly restriction that seriously
5665  // affects inner classes and which nobody else seems to implement;
5666  // thus we never diagnose it, not even in -pedantic.
5667  //
5668  // But note that we could warn about it: it's always useless to
5669  // friend one of your own members (it's not, however, worthless to
5670  // friend a member of an arbitrary specialization of your template).
5671
5672  Decl *D;
5673  if (unsigned NumTempParamLists = TempParams.size())
5674    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5675                                   NumTempParamLists,
5676                                 (TemplateParameterList**) TempParams.release(),
5677                                   TSI,
5678                                   DS.getFriendSpecLoc());
5679  else
5680    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5681
5682  if (!D)
5683    return DeclPtrTy();
5684
5685  D->setAccess(AS_public);
5686  CurContext->addDecl(D);
5687
5688  return DeclPtrTy::make(D);
5689}
5690
5691Sema::DeclPtrTy
5692Sema::ActOnFriendFunctionDecl(Scope *S,
5693                              Declarator &D,
5694                              bool IsDefinition,
5695                              MultiTemplateParamsArg TemplateParams) {
5696  const DeclSpec &DS = D.getDeclSpec();
5697
5698  assert(DS.isFriendSpecified());
5699  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5700
5701  SourceLocation Loc = D.getIdentifierLoc();
5702  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5703  QualType T = TInfo->getType();
5704
5705  // C++ [class.friend]p1
5706  //   A friend of a class is a function or class....
5707  // Note that this sees through typedefs, which is intended.
5708  // It *doesn't* see through dependent types, which is correct
5709  // according to [temp.arg.type]p3:
5710  //   If a declaration acquires a function type through a
5711  //   type dependent on a template-parameter and this causes
5712  //   a declaration that does not use the syntactic form of a
5713  //   function declarator to have a function type, the program
5714  //   is ill-formed.
5715  if (!T->isFunctionType()) {
5716    Diag(Loc, diag::err_unexpected_friend);
5717
5718    // It might be worthwhile to try to recover by creating an
5719    // appropriate declaration.
5720    return DeclPtrTy();
5721  }
5722
5723  // C++ [namespace.memdef]p3
5724  //  - If a friend declaration in a non-local class first declares a
5725  //    class or function, the friend class or function is a member
5726  //    of the innermost enclosing namespace.
5727  //  - The name of the friend is not found by simple name lookup
5728  //    until a matching declaration is provided in that namespace
5729  //    scope (either before or after the class declaration granting
5730  //    friendship).
5731  //  - If a friend function is called, its name may be found by the
5732  //    name lookup that considers functions from namespaces and
5733  //    classes associated with the types of the function arguments.
5734  //  - When looking for a prior declaration of a class or a function
5735  //    declared as a friend, scopes outside the innermost enclosing
5736  //    namespace scope are not considered.
5737
5738  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5739  DeclarationName Name = GetNameForDeclarator(D);
5740  assert(Name);
5741
5742  // The context we found the declaration in, or in which we should
5743  // create the declaration.
5744  DeclContext *DC;
5745
5746  // FIXME: handle local classes
5747
5748  // Recover from invalid scope qualifiers as if they just weren't there.
5749  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5750                        ForRedeclaration);
5751  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5752    DC = computeDeclContext(ScopeQual);
5753
5754    // FIXME: handle dependent contexts
5755    if (!DC) return DeclPtrTy();
5756    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5757
5758    LookupQualifiedName(Previous, DC);
5759
5760    // Ignore things found implicitly in the wrong scope.
5761    // TODO: better diagnostics for this case.  Suggesting the right
5762    // qualified scope would be nice...
5763    LookupResult::Filter F = Previous.makeFilter();
5764    while (F.hasNext()) {
5765      NamedDecl *D = F.next();
5766      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
5767        F.erase();
5768    }
5769    F.done();
5770
5771    if (Previous.empty()) {
5772      D.setInvalidType();
5773      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5774      return DeclPtrTy();
5775    }
5776
5777    // C++ [class.friend]p1: A friend of a class is a function or
5778    //   class that is not a member of the class . . .
5779    if (DC->Equals(CurContext))
5780      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5781
5782  // Otherwise walk out to the nearest namespace scope looking for matches.
5783  } else {
5784    // TODO: handle local class contexts.
5785
5786    DC = CurContext;
5787    while (true) {
5788      // Skip class contexts.  If someone can cite chapter and verse
5789      // for this behavior, that would be nice --- it's what GCC and
5790      // EDG do, and it seems like a reasonable intent, but the spec
5791      // really only says that checks for unqualified existing
5792      // declarations should stop at the nearest enclosing namespace,
5793      // not that they should only consider the nearest enclosing
5794      // namespace.
5795      while (DC->isRecord())
5796        DC = DC->getParent();
5797
5798      LookupQualifiedName(Previous, DC);
5799
5800      // TODO: decide what we think about using declarations.
5801      if (!Previous.empty())
5802        break;
5803
5804      if (DC->isFileContext()) break;
5805      DC = DC->getParent();
5806    }
5807
5808    // C++ [class.friend]p1: A friend of a class is a function or
5809    //   class that is not a member of the class . . .
5810    // C++0x changes this for both friend types and functions.
5811    // Most C++ 98 compilers do seem to give an error here, so
5812    // we do, too.
5813    if (!Previous.empty() && DC->Equals(CurContext)
5814        && !getLangOptions().CPlusPlus0x)
5815      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5816  }
5817
5818  if (DC->isFileContext()) {
5819    // This implies that it has to be an operator or function.
5820    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5821        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5822        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5823      Diag(Loc, diag::err_introducing_special_friend) <<
5824        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5825         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5826      return DeclPtrTy();
5827    }
5828  }
5829
5830  bool Redeclaration = false;
5831  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5832                                          move(TemplateParams),
5833                                          IsDefinition,
5834                                          Redeclaration);
5835  if (!ND) return DeclPtrTy();
5836
5837  assert(ND->getDeclContext() == DC);
5838  assert(ND->getLexicalDeclContext() == CurContext);
5839
5840  // Add the function declaration to the appropriate lookup tables,
5841  // adjusting the redeclarations list as necessary.  We don't
5842  // want to do this yet if the friending class is dependent.
5843  //
5844  // Also update the scope-based lookup if the target context's
5845  // lookup context is in lexical scope.
5846  if (!CurContext->isDependentContext()) {
5847    DC = DC->getLookupContext();
5848    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5849    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5850      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5851  }
5852
5853  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5854                                       D.getIdentifierLoc(), ND,
5855                                       DS.getFriendSpecLoc());
5856  FrD->setAccess(AS_public);
5857  CurContext->addDecl(FrD);
5858
5859  return DeclPtrTy::make(ND);
5860}
5861
5862void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5863  AdjustDeclIfTemplate(dcl);
5864
5865  Decl *Dcl = dcl.getAs<Decl>();
5866  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5867  if (!Fn) {
5868    Diag(DelLoc, diag::err_deleted_non_function);
5869    return;
5870  }
5871  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5872    Diag(DelLoc, diag::err_deleted_decl_not_first);
5873    Diag(Prev->getLocation(), diag::note_previous_declaration);
5874    // If the declaration wasn't the first, we delete the function anyway for
5875    // recovery.
5876  }
5877  Fn->setDeleted();
5878}
5879
5880static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5881  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5882       ++CI) {
5883    Stmt *SubStmt = *CI;
5884    if (!SubStmt)
5885      continue;
5886    if (isa<ReturnStmt>(SubStmt))
5887      Self.Diag(SubStmt->getSourceRange().getBegin(),
5888           diag::err_return_in_constructor_handler);
5889    if (!isa<Expr>(SubStmt))
5890      SearchForReturnInStmt(Self, SubStmt);
5891  }
5892}
5893
5894void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5895  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5896    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5897    SearchForReturnInStmt(*this, Handler);
5898  }
5899}
5900
5901bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5902                                             const CXXMethodDecl *Old) {
5903  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5904  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5905
5906  if (Context.hasSameType(NewTy, OldTy) ||
5907      NewTy->isDependentType() || OldTy->isDependentType())
5908    return false;
5909
5910  // Check if the return types are covariant
5911  QualType NewClassTy, OldClassTy;
5912
5913  /// Both types must be pointers or references to classes.
5914  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5915    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5916      NewClassTy = NewPT->getPointeeType();
5917      OldClassTy = OldPT->getPointeeType();
5918    }
5919  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5920    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5921      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5922        NewClassTy = NewRT->getPointeeType();
5923        OldClassTy = OldRT->getPointeeType();
5924      }
5925    }
5926  }
5927
5928  // The return types aren't either both pointers or references to a class type.
5929  if (NewClassTy.isNull()) {
5930    Diag(New->getLocation(),
5931         diag::err_different_return_type_for_overriding_virtual_function)
5932      << New->getDeclName() << NewTy << OldTy;
5933    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5934
5935    return true;
5936  }
5937
5938  // C++ [class.virtual]p6:
5939  //   If the return type of D::f differs from the return type of B::f, the
5940  //   class type in the return type of D::f shall be complete at the point of
5941  //   declaration of D::f or shall be the class type D.
5942  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5943    if (!RT->isBeingDefined() &&
5944        RequireCompleteType(New->getLocation(), NewClassTy,
5945                            PDiag(diag::err_covariant_return_incomplete)
5946                              << New->getDeclName()))
5947    return true;
5948  }
5949
5950  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5951    // Check if the new class derives from the old class.
5952    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5953      Diag(New->getLocation(),
5954           diag::err_covariant_return_not_derived)
5955      << New->getDeclName() << NewTy << OldTy;
5956      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5957      return true;
5958    }
5959
5960    // Check if we the conversion from derived to base is valid.
5961    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5962                    diag::err_covariant_return_inaccessible_base,
5963                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5964                    // FIXME: Should this point to the return type?
5965                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5966      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5967      return true;
5968    }
5969  }
5970
5971  // The qualifiers of the return types must be the same.
5972  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5973    Diag(New->getLocation(),
5974         diag::err_covariant_return_type_different_qualifications)
5975    << New->getDeclName() << NewTy << OldTy;
5976    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5977    return true;
5978  };
5979
5980
5981  // The new class type must have the same or less qualifiers as the old type.
5982  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5983    Diag(New->getLocation(),
5984         diag::err_covariant_return_type_class_type_more_qualified)
5985    << New->getDeclName() << NewTy << OldTy;
5986    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5987    return true;
5988  };
5989
5990  return false;
5991}
5992
5993bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5994                                             const CXXMethodDecl *Old)
5995{
5996  if (Old->hasAttr<FinalAttr>()) {
5997    Diag(New->getLocation(), diag::err_final_function_overridden)
5998      << New->getDeclName();
5999    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6000    return true;
6001  }
6002
6003  return false;
6004}
6005
6006/// \brief Mark the given method pure.
6007///
6008/// \param Method the method to be marked pure.
6009///
6010/// \param InitRange the source range that covers the "0" initializer.
6011bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6012  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6013    Method->setPure();
6014
6015    // A class is abstract if at least one function is pure virtual.
6016    Method->getParent()->setAbstract(true);
6017    return false;
6018  }
6019
6020  if (!Method->isInvalidDecl())
6021    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6022      << Method->getDeclName() << InitRange;
6023  return true;
6024}
6025
6026/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6027/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6028/// is a fresh scope pushed for just this purpose.
6029///
6030/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6031/// static data member of class X, names should be looked up in the scope of
6032/// class X.
6033void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6034  // If there is no declaration, there was an error parsing it.
6035  Decl *D = Dcl.getAs<Decl>();
6036  if (D == 0) return;
6037
6038  // We should only get called for declarations with scope specifiers, like:
6039  //   int foo::bar;
6040  assert(D->isOutOfLine());
6041  EnterDeclaratorContext(S, D->getDeclContext());
6042}
6043
6044/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6045/// initializer for the out-of-line declaration 'Dcl'.
6046void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6047  // If there is no declaration, there was an error parsing it.
6048  Decl *D = Dcl.getAs<Decl>();
6049  if (D == 0) return;
6050
6051  assert(D->isOutOfLine());
6052  ExitDeclaratorContext(S);
6053}
6054
6055/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6056/// C++ if/switch/while/for statement.
6057/// e.g: "if (int x = f()) {...}"
6058Action::DeclResult
6059Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6060  // C++ 6.4p2:
6061  // The declarator shall not specify a function or an array.
6062  // The type-specifier-seq shall not contain typedef and shall not declare a
6063  // new class or enumeration.
6064  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6065         "Parser allowed 'typedef' as storage class of condition decl.");
6066
6067  TagDecl *OwnedTag = 0;
6068  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6069  QualType Ty = TInfo->getType();
6070
6071  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6072                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6073                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6074    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6075      << D.getSourceRange();
6076    return DeclResult();
6077  } else if (OwnedTag && OwnedTag->isDefinition()) {
6078    // The type-specifier-seq shall not declare a new class or enumeration.
6079    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6080  }
6081
6082  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6083  if (!Dcl)
6084    return DeclResult();
6085
6086  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6087  VD->setDeclaredInCondition(true);
6088  return Dcl;
6089}
6090
6091void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6092                          bool DefinitionRequired) {
6093  // Ignore any vtable uses in unevaluated operands or for classes that do
6094  // not have a vtable.
6095  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6096      CurContext->isDependentContext() ||
6097      ExprEvalContexts.back().Context == Unevaluated)
6098    return;
6099
6100  // Try to insert this class into the map.
6101  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6102  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6103    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6104  if (!Pos.second) {
6105    // If we already had an entry, check to see if we are promoting this vtable
6106    // to required a definition. If so, we need to reappend to the VTableUses
6107    // list, since we may have already processed the first entry.
6108    if (DefinitionRequired && !Pos.first->second) {
6109      Pos.first->second = true;
6110    } else {
6111      // Otherwise, we can early exit.
6112      return;
6113    }
6114  }
6115
6116  // Local classes need to have their virtual members marked
6117  // immediately. For all other classes, we mark their virtual members
6118  // at the end of the translation unit.
6119  if (Class->isLocalClass())
6120    MarkVirtualMembersReferenced(Loc, Class);
6121  else
6122    VTableUses.push_back(std::make_pair(Class, Loc));
6123}
6124
6125bool Sema::DefineUsedVTables() {
6126  // If any dynamic classes have their key function defined within
6127  // this translation unit, then those vtables are considered "used" and must
6128  // be emitted.
6129  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6130    if (const CXXMethodDecl *KeyFunction
6131                             = Context.getKeyFunction(DynamicClasses[I])) {
6132      const FunctionDecl *Definition = 0;
6133      if (KeyFunction->getBody(Definition))
6134        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6135    }
6136  }
6137
6138  if (VTableUses.empty())
6139    return false;
6140
6141  // Note: The VTableUses vector could grow as a result of marking
6142  // the members of a class as "used", so we check the size each
6143  // time through the loop and prefer indices (with are stable) to
6144  // iterators (which are not).
6145  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6146    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6147    if (!Class)
6148      continue;
6149
6150    SourceLocation Loc = VTableUses[I].second;
6151
6152    // If this class has a key function, but that key function is
6153    // defined in another translation unit, we don't need to emit the
6154    // vtable even though we're using it.
6155    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6156    if (KeyFunction && !KeyFunction->getBody()) {
6157      switch (KeyFunction->getTemplateSpecializationKind()) {
6158      case TSK_Undeclared:
6159      case TSK_ExplicitSpecialization:
6160      case TSK_ExplicitInstantiationDeclaration:
6161        // The key function is in another translation unit.
6162        continue;
6163
6164      case TSK_ExplicitInstantiationDefinition:
6165      case TSK_ImplicitInstantiation:
6166        // We will be instantiating the key function.
6167        break;
6168      }
6169    } else if (!KeyFunction) {
6170      // If we have a class with no key function that is the subject
6171      // of an explicit instantiation declaration, suppress the
6172      // vtable; it will live with the explicit instantiation
6173      // definition.
6174      bool IsExplicitInstantiationDeclaration
6175        = Class->getTemplateSpecializationKind()
6176                                      == TSK_ExplicitInstantiationDeclaration;
6177      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6178                                 REnd = Class->redecls_end();
6179           R != REnd; ++R) {
6180        TemplateSpecializationKind TSK
6181          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6182        if (TSK == TSK_ExplicitInstantiationDeclaration)
6183          IsExplicitInstantiationDeclaration = true;
6184        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6185          IsExplicitInstantiationDeclaration = false;
6186          break;
6187        }
6188      }
6189
6190      if (IsExplicitInstantiationDeclaration)
6191        continue;
6192    }
6193
6194    // Mark all of the virtual members of this class as referenced, so
6195    // that we can build a vtable. Then, tell the AST consumer that a
6196    // vtable for this class is required.
6197    MarkVirtualMembersReferenced(Loc, Class);
6198    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6199    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6200
6201    // Optionally warn if we're emitting a weak vtable.
6202    if (Class->getLinkage() == ExternalLinkage &&
6203        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6204      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6205        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6206    }
6207  }
6208  VTableUses.clear();
6209
6210  return true;
6211}
6212
6213void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6214                                        const CXXRecordDecl *RD) {
6215  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6216       e = RD->method_end(); i != e; ++i) {
6217    CXXMethodDecl *MD = *i;
6218
6219    // C++ [basic.def.odr]p2:
6220    //   [...] A virtual member function is used if it is not pure. [...]
6221    if (MD->isVirtual() && !MD->isPure())
6222      MarkDeclarationReferenced(Loc, MD);
6223  }
6224
6225  // Only classes that have virtual bases need a VTT.
6226  if (RD->getNumVBases() == 0)
6227    return;
6228
6229  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6230           e = RD->bases_end(); i != e; ++i) {
6231    const CXXRecordDecl *Base =
6232        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6233    if (i->isVirtual())
6234      continue;
6235    if (Base->getNumVBases() == 0)
6236      continue;
6237    MarkVirtualMembersReferenced(Loc, Base);
6238  }
6239}
6240
6241/// SetIvarInitializers - This routine builds initialization ASTs for the
6242/// Objective-C implementation whose ivars need be initialized.
6243void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6244  if (!getLangOptions().CPlusPlus)
6245    return;
6246  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6247    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6248    CollectIvarsToConstructOrDestruct(OID, ivars);
6249    if (ivars.empty())
6250      return;
6251    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6252    for (unsigned i = 0; i < ivars.size(); i++) {
6253      FieldDecl *Field = ivars[i];
6254      if (Field->isInvalidDecl())
6255        continue;
6256
6257      CXXBaseOrMemberInitializer *Member;
6258      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6259      InitializationKind InitKind =
6260        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6261
6262      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6263      Sema::OwningExprResult MemberInit =
6264        InitSeq.Perform(*this, InitEntity, InitKind,
6265                        Sema::MultiExprArg(*this, 0, 0));
6266      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6267      // Note, MemberInit could actually come back empty if no initialization
6268      // is required (e.g., because it would call a trivial default constructor)
6269      if (!MemberInit.get() || MemberInit.isInvalid())
6270        continue;
6271
6272      Member =
6273        new (Context) CXXBaseOrMemberInitializer(Context,
6274                                                 Field, SourceLocation(),
6275                                                 SourceLocation(),
6276                                                 MemberInit.takeAs<Expr>(),
6277                                                 SourceLocation());
6278      AllToInit.push_back(Member);
6279
6280      // Be sure that the destructor is accessible and is marked as referenced.
6281      if (const RecordType *RecordTy
6282                  = Context.getBaseElementType(Field->getType())
6283                                                        ->getAs<RecordType>()) {
6284                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6285        if (CXXDestructorDecl *Destructor
6286              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6287          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6288          CheckDestructorAccess(Field->getLocation(), Destructor,
6289                            PDiag(diag::err_access_dtor_ivar)
6290                              << Context.getBaseElementType(Field->getType()));
6291        }
6292      }
6293    }
6294    ObjCImplementation->setIvarInitializers(Context,
6295                                            AllToInit.data(), AllToInit.size());
6296  }
6297}
6298