SemaDeclCXX.cpp revision 64540d71b4aaab07d93cb3593ce462d26a83d326
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  // Create the base specifier.
373  // FIXME: Allocate via ASTContext?
374  return new CXXBaseSpecifier(SpecifierRange, Virtual,
375                              Class->getTagKind() == RecordDecl::TK_class,
376                              Access, BaseType);
377}
378
379/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
380/// one entry in the base class list of a class specifier, for
381/// example:
382///    class foo : public bar, virtual private baz {
383/// 'public bar' and 'virtual private baz' are each base-specifiers.
384Sema::BaseResult
385Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
386                         bool Virtual, AccessSpecifier Access,
387                         TypeTy *basetype, SourceLocation BaseLoc) {
388  AdjustDeclIfTemplate(classdecl);
389  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
390  QualType BaseType = QualType::getFromOpaquePtr(basetype);
391  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
392                                                      Virtual, Access,
393                                                      BaseType, BaseLoc))
394    return BaseSpec;
395
396  return true;
397}
398
399/// \brief Performs the actual work of attaching the given base class
400/// specifiers to a C++ class.
401bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
402                                unsigned NumBases) {
403 if (NumBases == 0)
404    return false;
405
406  // Used to keep track of which base types we have already seen, so
407  // that we can properly diagnose redundant direct base types. Note
408  // that the key is always the unqualified canonical type of the base
409  // class.
410  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
411
412  // Copy non-redundant base specifiers into permanent storage.
413  unsigned NumGoodBases = 0;
414  bool Invalid = false;
415  for (unsigned idx = 0; idx < NumBases; ++idx) {
416    QualType NewBaseType
417      = Context.getCanonicalType(Bases[idx]->getType());
418    NewBaseType = NewBaseType.getUnqualifiedType();
419
420    if (KnownBaseTypes[NewBaseType]) {
421      // C++ [class.mi]p3:
422      //   A class shall not be specified as a direct base class of a
423      //   derived class more than once.
424      Diag(Bases[idx]->getSourceRange().getBegin(),
425           diag::err_duplicate_base_class)
426        << KnownBaseTypes[NewBaseType]->getType()
427        << Bases[idx]->getSourceRange();
428
429      // Delete the duplicate base class specifier; we're going to
430      // overwrite its pointer later.
431      delete Bases[idx];
432
433      Invalid = true;
434    } else {
435      // Okay, add this new base class.
436      KnownBaseTypes[NewBaseType] = Bases[idx];
437      Bases[NumGoodBases++] = Bases[idx];
438    }
439  }
440
441  // Attach the remaining base class specifiers to the derived class.
442  Class->setBases(Bases, NumGoodBases);
443
444  // Delete the remaining (good) base class specifiers, since their
445  // data has been copied into the CXXRecordDecl.
446  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
447    delete Bases[idx];
448
449  return Invalid;
450}
451
452/// ActOnBaseSpecifiers - Attach the given base specifiers to the
453/// class, after checking whether there are any duplicate base
454/// classes.
455void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
456                               unsigned NumBases) {
457  if (!ClassDecl || !Bases || !NumBases)
458    return;
459
460  AdjustDeclIfTemplate(ClassDecl);
461  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
462                       (CXXBaseSpecifier**)(Bases), NumBases);
463}
464
465//===----------------------------------------------------------------------===//
466// C++ class member Handling
467//===----------------------------------------------------------------------===//
468
469/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
470/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
471/// bitfield width if there is one and 'InitExpr' specifies the initializer if
472/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
473/// declarators on it.
474Sema::DeclPtrTy
475Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
476                               ExprTy *BW, ExprTy *InitExpr,
477                               DeclPtrTy LastInGroup) {
478  const DeclSpec &DS = D.getDeclSpec();
479  DeclarationName Name = GetNameForDeclarator(D);
480  Expr *BitWidth = static_cast<Expr*>(BW);
481  Expr *Init = static_cast<Expr*>(InitExpr);
482  SourceLocation Loc = D.getIdentifierLoc();
483
484  bool isFunc = D.isFunctionDeclarator();
485
486  // C++ 9.2p6: A member shall not be declared to have automatic storage
487  // duration (auto, register) or with the extern storage-class-specifier.
488  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
489  // data members and cannot be applied to names declared const or static,
490  // and cannot be applied to reference members.
491  switch (DS.getStorageClassSpec()) {
492    case DeclSpec::SCS_unspecified:
493    case DeclSpec::SCS_typedef:
494    case DeclSpec::SCS_static:
495      // FALL THROUGH.
496      break;
497    case DeclSpec::SCS_mutable:
498      if (isFunc) {
499        if (DS.getStorageClassSpecLoc().isValid())
500          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
501        else
502          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
503
504        // FIXME: It would be nicer if the keyword was ignored only for this
505        // declarator. Otherwise we could get follow-up errors.
506        D.getMutableDeclSpec().ClearStorageClassSpecs();
507      } else {
508        QualType T = GetTypeForDeclarator(D, S);
509        diag::kind err = static_cast<diag::kind>(0);
510        if (T->isReferenceType())
511          err = diag::err_mutable_reference;
512        else if (T.isConstQualified())
513          err = diag::err_mutable_const;
514        if (err != 0) {
515          if (DS.getStorageClassSpecLoc().isValid())
516            Diag(DS.getStorageClassSpecLoc(), err);
517          else
518            Diag(DS.getThreadSpecLoc(), err);
519          // FIXME: It would be nicer if the keyword was ignored only for this
520          // declarator. Otherwise we could get follow-up errors.
521          D.getMutableDeclSpec().ClearStorageClassSpecs();
522        }
523      }
524      break;
525    default:
526      if (DS.getStorageClassSpecLoc().isValid())
527        Diag(DS.getStorageClassSpecLoc(),
528             diag::err_storageclass_invalid_for_member);
529      else
530        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
531      D.getMutableDeclSpec().ClearStorageClassSpecs();
532  }
533
534  if (!isFunc &&
535      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
536      D.getNumTypeObjects() == 0) {
537    // Check also for this case:
538    //
539    // typedef int f();
540    // f a;
541    //
542    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
543    isFunc = TDType->isFunctionType();
544  }
545
546  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
547                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
548                      !isFunc);
549
550  Decl *Member;
551  if (isInstField) {
552    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
553                         AS);
554    assert(Member && "HandleField never returns null");
555  } else {
556    Member = ActOnDeclarator(S, D, LastInGroup).getAs<Decl>();
557    if (!Member) {
558      if (BitWidth) DeleteExpr(BitWidth);
559      return LastInGroup;
560    }
561
562    // Non-instance-fields can't have a bitfield.
563    if (BitWidth) {
564      if (Member->isInvalidDecl()) {
565        // don't emit another diagnostic.
566      } else if (isa<VarDecl>(Member)) {
567        // C++ 9.6p3: A bit-field shall not be a static member.
568        // "static member 'A' cannot be a bit-field"
569        Diag(Loc, diag::err_static_not_bitfield)
570          << Name << BitWidth->getSourceRange();
571      } else if (isa<TypedefDecl>(Member)) {
572        // "typedef member 'x' cannot be a bit-field"
573        Diag(Loc, diag::err_typedef_not_bitfield)
574          << Name << BitWidth->getSourceRange();
575      } else {
576        // A function typedef ("typedef int f(); f a;").
577        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
578        Diag(Loc, diag::err_not_integral_type_bitfield)
579          << Name << cast<ValueDecl>(Member)->getType()
580          << BitWidth->getSourceRange();
581      }
582
583      DeleteExpr(BitWidth);
584      BitWidth = 0;
585      Member->setInvalidDecl();
586    }
587
588    Member->setAccess(AS);
589  }
590
591  assert((Name || isInstField) && "No identifier for non-field ?");
592
593  if (Init)
594    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
595
596  if (isInstField) {
597    FieldCollector->Add(cast<FieldDecl>(Member));
598    return LastInGroup;
599  }
600  return DeclPtrTy::make(Member);
601}
602
603/// ActOnMemInitializer - Handle a C++ member initializer.
604Sema::MemInitResult
605Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
606                          Scope *S,
607                          IdentifierInfo *MemberOrBase,
608                          SourceLocation IdLoc,
609                          SourceLocation LParenLoc,
610                          ExprTy **Args, unsigned NumArgs,
611                          SourceLocation *CommaLocs,
612                          SourceLocation RParenLoc) {
613  CXXConstructorDecl *Constructor
614    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
615  if (!Constructor) {
616    // The user wrote a constructor initializer on a function that is
617    // not a C++ constructor. Ignore the error for now, because we may
618    // have more member initializers coming; we'll diagnose it just
619    // once in ActOnMemInitializers.
620    return true;
621  }
622
623  CXXRecordDecl *ClassDecl = Constructor->getParent();
624
625  // C++ [class.base.init]p2:
626  //   Names in a mem-initializer-id are looked up in the scope of the
627  //   constructor’s class and, if not found in that scope, are looked
628  //   up in the scope containing the constructor’s
629  //   definition. [Note: if the constructor’s class contains a member
630  //   with the same name as a direct or virtual base class of the
631  //   class, a mem-initializer-id naming the member or base class and
632  //   composed of a single identifier refers to the class member. A
633  //   mem-initializer-id for the hidden base class may be specified
634  //   using a qualified name. ]
635  // Look for a member, first.
636  FieldDecl *Member = 0;
637  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
638  if (Result.first != Result.second)
639    Member = dyn_cast<FieldDecl>(*Result.first);
640
641  // FIXME: Handle members of an anonymous union.
642
643  if (Member) {
644    // FIXME: Perform direct initialization of the member.
645    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
646  }
647
648  // It didn't name a member, so see if it names a class.
649  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
650  if (!BaseTy)
651    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
652      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
653
654  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
655  if (!BaseType->isRecordType())
656    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
657      << BaseType << SourceRange(IdLoc, RParenLoc);
658
659  // C++ [class.base.init]p2:
660  //   [...] Unless the mem-initializer-id names a nonstatic data
661  //   member of the constructor’s class or a direct or virtual base
662  //   of that class, the mem-initializer is ill-formed. A
663  //   mem-initializer-list can initialize a base class using any
664  //   name that denotes that base class type.
665
666  // First, check for a direct base class.
667  const CXXBaseSpecifier *DirectBaseSpec = 0;
668  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
669       Base != ClassDecl->bases_end(); ++Base) {
670    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
671        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
672      // We found a direct base of this type. That's what we're
673      // initializing.
674      DirectBaseSpec = &*Base;
675      break;
676    }
677  }
678
679  // Check for a virtual base class.
680  // FIXME: We might be able to short-circuit this if we know in
681  // advance that there are no virtual bases.
682  const CXXBaseSpecifier *VirtualBaseSpec = 0;
683  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
684    // We haven't found a base yet; search the class hierarchy for a
685    // virtual base class.
686    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
687                    /*DetectVirtual=*/false);
688    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
689      for (BasePaths::paths_iterator Path = Paths.begin();
690           Path != Paths.end(); ++Path) {
691        if (Path->back().Base->isVirtual()) {
692          VirtualBaseSpec = Path->back().Base;
693          break;
694        }
695      }
696    }
697  }
698
699  // C++ [base.class.init]p2:
700  //   If a mem-initializer-id is ambiguous because it designates both
701  //   a direct non-virtual base class and an inherited virtual base
702  //   class, the mem-initializer is ill-formed.
703  if (DirectBaseSpec && VirtualBaseSpec)
704    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
705      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
706
707  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
708}
709
710void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
711                                SourceLocation ColonLoc,
712                                MemInitTy **MemInits, unsigned NumMemInits) {
713  CXXConstructorDecl *Constructor =
714  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
715
716  if (!Constructor) {
717    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
718    return;
719  }
720}
721
722namespace {
723  /// PureVirtualMethodCollector - traverses a class and its superclasses
724  /// and determines if it has any pure virtual methods.
725  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
726    ASTContext &Context;
727
728  public:
729    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
730
731  private:
732    MethodList Methods;
733
734    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
735
736  public:
737    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
738      : Context(Ctx) {
739
740      MethodList List;
741      Collect(RD, List);
742
743      // Copy the temporary list to methods, and make sure to ignore any
744      // null entries.
745      for (size_t i = 0, e = List.size(); i != e; ++i) {
746        if (List[i])
747          Methods.push_back(List[i]);
748      }
749    }
750
751    bool empty() const { return Methods.empty(); }
752
753    MethodList::const_iterator methods_begin() { return Methods.begin(); }
754    MethodList::const_iterator methods_end() { return Methods.end(); }
755  };
756
757  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
758                                           MethodList& Methods) {
759    // First, collect the pure virtual methods for the base classes.
760    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
761         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
762      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
763        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
764        if (BaseDecl && BaseDecl->isAbstract())
765          Collect(BaseDecl, Methods);
766      }
767    }
768
769    // Next, zero out any pure virtual methods that this class overrides.
770    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
771      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
772      if (!VMD)
773        continue;
774
775      DeclContext::lookup_const_iterator I, E;
776      for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) {
777        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
778          if (Context.getCanonicalType(MD->getType()) ==
779              Context.getCanonicalType(VMD->getType())) {
780            // We did find a matching method, which means that this is not a
781            // pure virtual method in the current class. Zero it out.
782            Methods[i] = 0;
783          }
784        }
785      }
786    }
787
788    // Finally, add pure virtual methods from this class.
789    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
790         i != e; ++i) {
791      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
792        if (MD->isPure())
793          Methods.push_back(MD);
794      }
795    }
796  }
797}
798
799bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
800                                  unsigned DiagID, AbstractDiagSelID SelID,
801                                  const CXXRecordDecl *CurrentRD) {
802
803  if (!getLangOptions().CPlusPlus)
804    return false;
805
806  if (const ArrayType *AT = Context.getAsArrayType(T))
807    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
808                                  CurrentRD);
809
810  if (const PointerType *PT = T->getAsPointerType()) {
811    // Find the innermost pointer type.
812    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
813      PT = T;
814
815    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
816      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
817                                    CurrentRD);
818  }
819
820  const RecordType *RT = T->getAsRecordType();
821  if (!RT)
822    return false;
823
824  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
825  if (!RD)
826    return false;
827
828  if (CurrentRD && CurrentRD != RD)
829    return false;
830
831  if (!RD->isAbstract())
832    return false;
833
834  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
835
836  // Check if we've already emitted the list of pure virtual functions for this
837  // class.
838  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
839    return true;
840
841  PureVirtualMethodCollector Collector(Context, RD);
842
843  for (PureVirtualMethodCollector::MethodList::const_iterator I =
844       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
845    const CXXMethodDecl *MD = *I;
846
847    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
848      MD->getDeclName();
849  }
850
851  if (!PureVirtualClassDiagSet)
852    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
853  PureVirtualClassDiagSet->insert(RD);
854
855  return true;
856}
857
858namespace {
859  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
860    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
861    Sema &SemaRef;
862    CXXRecordDecl *AbstractClass;
863
864    bool VisitDeclContext(const DeclContext *DC) {
865      bool Invalid = false;
866
867      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
868           E = DC->decls_end(); I != E; ++I)
869        Invalid |= Visit(*I);
870
871      return Invalid;
872    }
873
874  public:
875    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
876      : SemaRef(SemaRef), AbstractClass(ac) {
877        Visit(SemaRef.Context.getTranslationUnitDecl());
878    }
879
880    bool VisitFunctionDecl(const FunctionDecl *FD) {
881      if (FD->isThisDeclarationADefinition()) {
882        // No need to do the check if we're in a definition, because it requires
883        // that the return/param types are complete.
884        // because that requires
885        return VisitDeclContext(FD);
886      }
887
888      // Check the return type.
889      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
890      bool Invalid =
891        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
892                                       diag::err_abstract_type_in_decl,
893                                       Sema::AbstractReturnType,
894                                       AbstractClass);
895
896      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
897           E = FD->param_end(); I != E; ++I) {
898        const ParmVarDecl *VD = *I;
899        Invalid |=
900          SemaRef.RequireNonAbstractType(VD->getLocation(),
901                                         VD->getOriginalType(),
902                                         diag::err_abstract_type_in_decl,
903                                         Sema::AbstractParamType,
904                                         AbstractClass);
905      }
906
907      return Invalid;
908    }
909
910    bool VisitDecl(const Decl* D) {
911      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
912        return VisitDeclContext(DC);
913
914      return false;
915    }
916  };
917}
918
919void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
920                                             DeclPtrTy TagDecl,
921                                             SourceLocation LBrac,
922                                             SourceLocation RBrac) {
923  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
924  ActOnFields(S, RLoc, TagDecl,
925              (DeclPtrTy*)FieldCollector->getCurFields(),
926              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
927
928  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
929  if (!RD->isAbstract()) {
930    // Collect all the pure virtual methods and see if this is an abstract
931    // class after all.
932    PureVirtualMethodCollector Collector(Context, RD);
933    if (!Collector.empty())
934      RD->setAbstract(true);
935  }
936
937  if (RD->isAbstract())
938    AbstractClassUsageDiagnoser(*this, RD);
939
940  if (!Template)
941    AddImplicitlyDeclaredMembersToClass(RD);
942}
943
944/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
945/// special functions, such as the default constructor, copy
946/// constructor, or destructor, to the given C++ class (C++
947/// [special]p1).  This routine can only be executed just before the
948/// definition of the class is complete.
949void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
950  QualType ClassType = Context.getTypeDeclType(ClassDecl);
951  ClassType = Context.getCanonicalType(ClassType);
952
953  if (!ClassDecl->hasUserDeclaredConstructor()) {
954    // C++ [class.ctor]p5:
955    //   A default constructor for a class X is a constructor of class X
956    //   that can be called without an argument. If there is no
957    //   user-declared constructor for class X, a default constructor is
958    //   implicitly declared. An implicitly-declared default constructor
959    //   is an inline public member of its class.
960    DeclarationName Name
961      = Context.DeclarationNames.getCXXConstructorName(ClassType);
962    CXXConstructorDecl *DefaultCon =
963      CXXConstructorDecl::Create(Context, ClassDecl,
964                                 ClassDecl->getLocation(), Name,
965                                 Context.getFunctionType(Context.VoidTy,
966                                                         0, 0, false, 0),
967                                 /*isExplicit=*/false,
968                                 /*isInline=*/true,
969                                 /*isImplicitlyDeclared=*/true);
970    DefaultCon->setAccess(AS_public);
971    DefaultCon->setImplicit();
972    ClassDecl->addDecl(DefaultCon);
973
974    // Notify the class that we've added a constructor.
975    ClassDecl->addedConstructor(Context, DefaultCon);
976  }
977
978  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
979    // C++ [class.copy]p4:
980    //   If the class definition does not explicitly declare a copy
981    //   constructor, one is declared implicitly.
982
983    // C++ [class.copy]p5:
984    //   The implicitly-declared copy constructor for a class X will
985    //   have the form
986    //
987    //       X::X(const X&)
988    //
989    //   if
990    bool HasConstCopyConstructor = true;
991
992    //     -- each direct or virtual base class B of X has a copy
993    //        constructor whose first parameter is of type const B& or
994    //        const volatile B&, and
995    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
996         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
997      const CXXRecordDecl *BaseClassDecl
998        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
999      HasConstCopyConstructor
1000        = BaseClassDecl->hasConstCopyConstructor(Context);
1001    }
1002
1003    //     -- for all the nonstatic data members of X that are of a
1004    //        class type M (or array thereof), each such class type
1005    //        has a copy constructor whose first parameter is of type
1006    //        const M& or const volatile M&.
1007    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1008         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
1009      QualType FieldType = (*Field)->getType();
1010      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1011        FieldType = Array->getElementType();
1012      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1013        const CXXRecordDecl *FieldClassDecl
1014          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1015        HasConstCopyConstructor
1016          = FieldClassDecl->hasConstCopyConstructor(Context);
1017      }
1018    }
1019
1020    //   Otherwise, the implicitly declared copy constructor will have
1021    //   the form
1022    //
1023    //       X::X(X&)
1024    QualType ArgType = ClassType;
1025    if (HasConstCopyConstructor)
1026      ArgType = ArgType.withConst();
1027    ArgType = Context.getLValueReferenceType(ArgType);
1028
1029    //   An implicitly-declared copy constructor is an inline public
1030    //   member of its class.
1031    DeclarationName Name
1032      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1033    CXXConstructorDecl *CopyConstructor
1034      = CXXConstructorDecl::Create(Context, ClassDecl,
1035                                   ClassDecl->getLocation(), Name,
1036                                   Context.getFunctionType(Context.VoidTy,
1037                                                           &ArgType, 1,
1038                                                           false, 0),
1039                                   /*isExplicit=*/false,
1040                                   /*isInline=*/true,
1041                                   /*isImplicitlyDeclared=*/true);
1042    CopyConstructor->setAccess(AS_public);
1043    CopyConstructor->setImplicit();
1044
1045    // Add the parameter to the constructor.
1046    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1047                                                 ClassDecl->getLocation(),
1048                                                 /*IdentifierInfo=*/0,
1049                                                 ArgType, VarDecl::None, 0);
1050    CopyConstructor->setParams(Context, &FromParam, 1);
1051
1052    ClassDecl->addedConstructor(Context, CopyConstructor);
1053    ClassDecl->addDecl(CopyConstructor);
1054  }
1055
1056  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1057    // Note: The following rules are largely analoguous to the copy
1058    // constructor rules. Note that virtual bases are not taken into account
1059    // for determining the argument type of the operator. Note also that
1060    // operators taking an object instead of a reference are allowed.
1061    //
1062    // C++ [class.copy]p10:
1063    //   If the class definition does not explicitly declare a copy
1064    //   assignment operator, one is declared implicitly.
1065    //   The implicitly-defined copy assignment operator for a class X
1066    //   will have the form
1067    //
1068    //       X& X::operator=(const X&)
1069    //
1070    //   if
1071    bool HasConstCopyAssignment = true;
1072
1073    //       -- each direct base class B of X has a copy assignment operator
1074    //          whose parameter is of type const B&, const volatile B& or B,
1075    //          and
1076    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1077         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1078      const CXXRecordDecl *BaseClassDecl
1079        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1080      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1081    }
1082
1083    //       -- for all the nonstatic data members of X that are of a class
1084    //          type M (or array thereof), each such class type has a copy
1085    //          assignment operator whose parameter is of type const M&,
1086    //          const volatile M& or M.
1087    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1088         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
1089      QualType FieldType = (*Field)->getType();
1090      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1091        FieldType = Array->getElementType();
1092      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1093        const CXXRecordDecl *FieldClassDecl
1094          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1095        HasConstCopyAssignment
1096          = FieldClassDecl->hasConstCopyAssignment(Context);
1097      }
1098    }
1099
1100    //   Otherwise, the implicitly declared copy assignment operator will
1101    //   have the form
1102    //
1103    //       X& X::operator=(X&)
1104    QualType ArgType = ClassType;
1105    QualType RetType = Context.getLValueReferenceType(ArgType);
1106    if (HasConstCopyAssignment)
1107      ArgType = ArgType.withConst();
1108    ArgType = Context.getLValueReferenceType(ArgType);
1109
1110    //   An implicitly-declared copy assignment operator is an inline public
1111    //   member of its class.
1112    DeclarationName Name =
1113      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1114    CXXMethodDecl *CopyAssignment =
1115      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1116                            Context.getFunctionType(RetType, &ArgType, 1,
1117                                                    false, 0),
1118                            /*isStatic=*/false, /*isInline=*/true);
1119    CopyAssignment->setAccess(AS_public);
1120    CopyAssignment->setImplicit();
1121
1122    // Add the parameter to the operator.
1123    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1124                                                 ClassDecl->getLocation(),
1125                                                 /*IdentifierInfo=*/0,
1126                                                 ArgType, VarDecl::None, 0);
1127    CopyAssignment->setParams(Context, &FromParam, 1);
1128
1129    // Don't call addedAssignmentOperator. There is no way to distinguish an
1130    // implicit from an explicit assignment operator.
1131    ClassDecl->addDecl(CopyAssignment);
1132  }
1133
1134  if (!ClassDecl->hasUserDeclaredDestructor()) {
1135    // C++ [class.dtor]p2:
1136    //   If a class has no user-declared destructor, a destructor is
1137    //   declared implicitly. An implicitly-declared destructor is an
1138    //   inline public member of its class.
1139    DeclarationName Name
1140      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1141    CXXDestructorDecl *Destructor
1142      = CXXDestructorDecl::Create(Context, ClassDecl,
1143                                  ClassDecl->getLocation(), Name,
1144                                  Context.getFunctionType(Context.VoidTy,
1145                                                          0, 0, false, 0),
1146                                  /*isInline=*/true,
1147                                  /*isImplicitlyDeclared=*/true);
1148    Destructor->setAccess(AS_public);
1149    Destructor->setImplicit();
1150    ClassDecl->addDecl(Destructor);
1151  }
1152}
1153
1154/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1155/// parsing a top-level (non-nested) C++ class, and we are now
1156/// parsing those parts of the given Method declaration that could
1157/// not be parsed earlier (C++ [class.mem]p2), such as default
1158/// arguments. This action should enter the scope of the given
1159/// Method declaration as if we had just parsed the qualified method
1160/// name. However, it should not bring the parameters into scope;
1161/// that will be performed by ActOnDelayedCXXMethodParameter.
1162void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1163  CXXScopeSpec SS;
1164  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1165  QualType ClassTy
1166    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1167  SS.setScopeRep(
1168    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1169  ActOnCXXEnterDeclaratorScope(S, SS);
1170}
1171
1172/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1173/// C++ method declaration. We're (re-)introducing the given
1174/// function parameter into scope for use in parsing later parts of
1175/// the method declaration. For example, we could see an
1176/// ActOnParamDefaultArgument event for this parameter.
1177void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1178  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1179
1180  // If this parameter has an unparsed default argument, clear it out
1181  // to make way for the parsed default argument.
1182  if (Param->hasUnparsedDefaultArg())
1183    Param->setDefaultArg(0);
1184
1185  S->AddDecl(DeclPtrTy::make(Param));
1186  if (Param->getDeclName())
1187    IdResolver.AddDecl(Param);
1188}
1189
1190/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1191/// processing the delayed method declaration for Method. The method
1192/// declaration is now considered finished. There may be a separate
1193/// ActOnStartOfFunctionDef action later (not necessarily
1194/// immediately!) for this method, if it was also defined inside the
1195/// class body.
1196void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1197  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1198  CXXScopeSpec SS;
1199  QualType ClassTy
1200    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1201  SS.setScopeRep(
1202    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1203  ActOnCXXExitDeclaratorScope(S, SS);
1204
1205  // Now that we have our default arguments, check the constructor
1206  // again. It could produce additional diagnostics or affect whether
1207  // the class has implicitly-declared destructors, among other
1208  // things.
1209  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1210    if (CheckConstructor(Constructor))
1211      Constructor->setInvalidDecl();
1212  }
1213
1214  // Check the default arguments, which we may have added.
1215  if (!Method->isInvalidDecl())
1216    CheckCXXDefaultArguments(Method);
1217}
1218
1219/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1220/// the well-formedness of the constructor declarator @p D with type @p
1221/// R. If there are any errors in the declarator, this routine will
1222/// emit diagnostics and return true. Otherwise, it will return
1223/// false. Either way, the type @p R will be updated to reflect a
1224/// well-formed type for the constructor.
1225bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1226                                      FunctionDecl::StorageClass& SC) {
1227  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1228  bool isInvalid = false;
1229
1230  // C++ [class.ctor]p3:
1231  //   A constructor shall not be virtual (10.3) or static (9.4). A
1232  //   constructor can be invoked for a const, volatile or const
1233  //   volatile object. A constructor shall not be declared const,
1234  //   volatile, or const volatile (9.3.2).
1235  if (isVirtual) {
1236    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1237      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1238      << SourceRange(D.getIdentifierLoc());
1239    isInvalid = true;
1240  }
1241  if (SC == FunctionDecl::Static) {
1242    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1243      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1244      << SourceRange(D.getIdentifierLoc());
1245    isInvalid = true;
1246    SC = FunctionDecl::None;
1247  }
1248  if (D.getDeclSpec().hasTypeSpecifier()) {
1249    // Constructors don't have return types, but the parser will
1250    // happily parse something like:
1251    //
1252    //   class X {
1253    //     float X(float);
1254    //   };
1255    //
1256    // The return type will be eliminated later.
1257    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1258      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1259      << SourceRange(D.getIdentifierLoc());
1260  }
1261  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1262    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1263    if (FTI.TypeQuals & QualType::Const)
1264      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1265        << "const" << SourceRange(D.getIdentifierLoc());
1266    if (FTI.TypeQuals & QualType::Volatile)
1267      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1268        << "volatile" << SourceRange(D.getIdentifierLoc());
1269    if (FTI.TypeQuals & QualType::Restrict)
1270      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1271        << "restrict" << SourceRange(D.getIdentifierLoc());
1272  }
1273
1274  // Rebuild the function type "R" without any type qualifiers (in
1275  // case any of the errors above fired) and with "void" as the
1276  // return type, since constructors don't have return types. We
1277  // *always* have to do this, because GetTypeForDeclarator will
1278  // put in a result type of "int" when none was specified.
1279  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1280  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1281                              Proto->getNumArgs(),
1282                              Proto->isVariadic(),
1283                              0);
1284
1285  return isInvalid;
1286}
1287
1288/// CheckConstructor - Checks a fully-formed constructor for
1289/// well-formedness, issuing any diagnostics required. Returns true if
1290/// the constructor declarator is invalid.
1291bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1292  CXXRecordDecl *ClassDecl
1293    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1294  if (!ClassDecl)
1295    return true;
1296
1297  bool Invalid = Constructor->isInvalidDecl();
1298
1299  // C++ [class.copy]p3:
1300  //   A declaration of a constructor for a class X is ill-formed if
1301  //   its first parameter is of type (optionally cv-qualified) X and
1302  //   either there are no other parameters or else all other
1303  //   parameters have default arguments.
1304  if (!Constructor->isInvalidDecl() &&
1305      ((Constructor->getNumParams() == 1) ||
1306       (Constructor->getNumParams() > 1 &&
1307        Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
1308    QualType ParamType = Constructor->getParamDecl(0)->getType();
1309    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1310    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1311      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1312        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1313      Invalid = true;
1314    }
1315  }
1316
1317  // Notify the class that we've added a constructor.
1318  ClassDecl->addedConstructor(Context, Constructor);
1319
1320  return Invalid;
1321}
1322
1323/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1324/// the well-formednes of the destructor declarator @p D with type @p
1325/// R. If there are any errors in the declarator, this routine will
1326/// emit diagnostics and return true. Otherwise, it will return
1327/// false. Either way, the type @p R will be updated to reflect a
1328/// well-formed type for the destructor.
1329bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1330                                     FunctionDecl::StorageClass& SC) {
1331  bool isInvalid = false;
1332
1333  // C++ [class.dtor]p1:
1334  //   [...] A typedef-name that names a class is a class-name
1335  //   (7.1.3); however, a typedef-name that names a class shall not
1336  //   be used as the identifier in the declarator for a destructor
1337  //   declaration.
1338  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1339  if (DeclaratorType->getAsTypedefType()) {
1340    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1341      << DeclaratorType;
1342    isInvalid = true;
1343  }
1344
1345  // C++ [class.dtor]p2:
1346  //   A destructor is used to destroy objects of its class type. A
1347  //   destructor takes no parameters, and no return type can be
1348  //   specified for it (not even void). The address of a destructor
1349  //   shall not be taken. A destructor shall not be static. A
1350  //   destructor can be invoked for a const, volatile or const
1351  //   volatile object. A destructor shall not be declared const,
1352  //   volatile or const volatile (9.3.2).
1353  if (SC == FunctionDecl::Static) {
1354    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1355      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1356      << SourceRange(D.getIdentifierLoc());
1357    isInvalid = true;
1358    SC = FunctionDecl::None;
1359  }
1360  if (D.getDeclSpec().hasTypeSpecifier()) {
1361    // Destructors don't have return types, but the parser will
1362    // happily parse something like:
1363    //
1364    //   class X {
1365    //     float ~X();
1366    //   };
1367    //
1368    // The return type will be eliminated later.
1369    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1370      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1371      << SourceRange(D.getIdentifierLoc());
1372  }
1373  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1374    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1375    if (FTI.TypeQuals & QualType::Const)
1376      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1377        << "const" << SourceRange(D.getIdentifierLoc());
1378    if (FTI.TypeQuals & QualType::Volatile)
1379      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1380        << "volatile" << SourceRange(D.getIdentifierLoc());
1381    if (FTI.TypeQuals & QualType::Restrict)
1382      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1383        << "restrict" << SourceRange(D.getIdentifierLoc());
1384  }
1385
1386  // Make sure we don't have any parameters.
1387  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1388    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1389
1390    // Delete the parameters.
1391    D.getTypeObject(0).Fun.freeArgs();
1392  }
1393
1394  // Make sure the destructor isn't variadic.
1395  if (R->getAsFunctionProtoType()->isVariadic())
1396    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1397
1398  // Rebuild the function type "R" without any type qualifiers or
1399  // parameters (in case any of the errors above fired) and with
1400  // "void" as the return type, since destructors don't have return
1401  // types. We *always* have to do this, because GetTypeForDeclarator
1402  // will put in a result type of "int" when none was specified.
1403  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1404
1405  return isInvalid;
1406}
1407
1408/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1409/// well-formednes of the conversion function declarator @p D with
1410/// type @p R. If there are any errors in the declarator, this routine
1411/// will emit diagnostics and return true. Otherwise, it will return
1412/// false. Either way, the type @p R will be updated to reflect a
1413/// well-formed type for the conversion operator.
1414bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1415                                     FunctionDecl::StorageClass& SC) {
1416  bool isInvalid = false;
1417
1418  // C++ [class.conv.fct]p1:
1419  //   Neither parameter types nor return type can be specified. The
1420  //   type of a conversion function (8.3.5) is “function taking no
1421  //   parameter returning conversion-type-id.”
1422  if (SC == FunctionDecl::Static) {
1423    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1424      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1425      << SourceRange(D.getIdentifierLoc());
1426    isInvalid = true;
1427    SC = FunctionDecl::None;
1428  }
1429  if (D.getDeclSpec().hasTypeSpecifier()) {
1430    // Conversion functions don't have return types, but the parser will
1431    // happily parse something like:
1432    //
1433    //   class X {
1434    //     float operator bool();
1435    //   };
1436    //
1437    // The return type will be changed later anyway.
1438    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1439      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1440      << SourceRange(D.getIdentifierLoc());
1441  }
1442
1443  // Make sure we don't have any parameters.
1444  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1445    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1446
1447    // Delete the parameters.
1448    D.getTypeObject(0).Fun.freeArgs();
1449  }
1450
1451  // Make sure the conversion function isn't variadic.
1452  if (R->getAsFunctionProtoType()->isVariadic())
1453    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1454
1455  // C++ [class.conv.fct]p4:
1456  //   The conversion-type-id shall not represent a function type nor
1457  //   an array type.
1458  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1459  if (ConvType->isArrayType()) {
1460    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1461    ConvType = Context.getPointerType(ConvType);
1462  } else if (ConvType->isFunctionType()) {
1463    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1464    ConvType = Context.getPointerType(ConvType);
1465  }
1466
1467  // Rebuild the function type "R" without any parameters (in case any
1468  // of the errors above fired) and with the conversion type as the
1469  // return type.
1470  R = Context.getFunctionType(ConvType, 0, 0, false,
1471                              R->getAsFunctionProtoType()->getTypeQuals());
1472
1473  // C++0x explicit conversion operators.
1474  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1475    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1476         diag::warn_explicit_conversion_functions)
1477      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1478
1479  return isInvalid;
1480}
1481
1482/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1483/// the declaration of the given C++ conversion function. This routine
1484/// is responsible for recording the conversion function in the C++
1485/// class, if possible.
1486Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1487  assert(Conversion && "Expected to receive a conversion function declaration");
1488
1489  // Set the lexical context of this conversion function
1490  Conversion->setLexicalDeclContext(CurContext);
1491
1492  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1493
1494  // Make sure we aren't redeclaring the conversion function.
1495  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1496
1497  // C++ [class.conv.fct]p1:
1498  //   [...] A conversion function is never used to convert a
1499  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1500  //   same object type (or a reference to it), to a (possibly
1501  //   cv-qualified) base class of that type (or a reference to it),
1502  //   or to (possibly cv-qualified) void.
1503  // FIXME: Suppress this warning if the conversion function ends up
1504  // being a virtual function that overrides a virtual function in a
1505  // base class.
1506  QualType ClassType
1507    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1508  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1509    ConvType = ConvTypeRef->getPointeeType();
1510  if (ConvType->isRecordType()) {
1511    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1512    if (ConvType == ClassType)
1513      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1514        << ClassType;
1515    else if (IsDerivedFrom(ClassType, ConvType))
1516      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1517        <<  ClassType << ConvType;
1518  } else if (ConvType->isVoidType()) {
1519    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1520      << ClassType << ConvType;
1521  }
1522
1523  if (Conversion->getPreviousDeclaration()) {
1524    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1525    for (OverloadedFunctionDecl::function_iterator
1526           Conv = Conversions->function_begin(),
1527           ConvEnd = Conversions->function_end();
1528         Conv != ConvEnd; ++Conv) {
1529      if (*Conv == Conversion->getPreviousDeclaration()) {
1530        *Conv = Conversion;
1531        return DeclPtrTy::make(Conversion);
1532      }
1533    }
1534    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1535  } else
1536    ClassDecl->addConversionFunction(Context, Conversion);
1537
1538  return DeclPtrTy::make(Conversion);
1539}
1540
1541//===----------------------------------------------------------------------===//
1542// Namespace Handling
1543//===----------------------------------------------------------------------===//
1544
1545/// ActOnStartNamespaceDef - This is called at the start of a namespace
1546/// definition.
1547Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1548                                             SourceLocation IdentLoc,
1549                                             IdentifierInfo *II,
1550                                             SourceLocation LBrace) {
1551  NamespaceDecl *Namespc =
1552      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1553  Namespc->setLBracLoc(LBrace);
1554
1555  Scope *DeclRegionScope = NamespcScope->getParent();
1556
1557  if (II) {
1558    // C++ [namespace.def]p2:
1559    // The identifier in an original-namespace-definition shall not have been
1560    // previously defined in the declarative region in which the
1561    // original-namespace-definition appears. The identifier in an
1562    // original-namespace-definition is the name of the namespace. Subsequently
1563    // in that declarative region, it is treated as an original-namespace-name.
1564
1565    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1566                                     true);
1567
1568    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1569      // This is an extended namespace definition.
1570      // Attach this namespace decl to the chain of extended namespace
1571      // definitions.
1572      OrigNS->setNextNamespace(Namespc);
1573      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1574
1575      // Remove the previous declaration from the scope.
1576      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1577        IdResolver.RemoveDecl(OrigNS);
1578        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1579      }
1580    } else if (PrevDecl) {
1581      // This is an invalid name redefinition.
1582      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1583       << Namespc->getDeclName();
1584      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1585      Namespc->setInvalidDecl();
1586      // Continue on to push Namespc as current DeclContext and return it.
1587    }
1588
1589    PushOnScopeChains(Namespc, DeclRegionScope);
1590  } else {
1591    // FIXME: Handle anonymous namespaces
1592  }
1593
1594  // Although we could have an invalid decl (i.e. the namespace name is a
1595  // redefinition), push it as current DeclContext and try to continue parsing.
1596  // FIXME: We should be able to push Namespc here, so that the
1597  // each DeclContext for the namespace has the declarations
1598  // that showed up in that particular namespace definition.
1599  PushDeclContext(NamespcScope, Namespc);
1600  return DeclPtrTy::make(Namespc);
1601}
1602
1603/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1604/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1605void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1606  Decl *Dcl = D.getAs<Decl>();
1607  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1608  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1609  Namespc->setRBracLoc(RBrace);
1610  PopDeclContext();
1611}
1612
1613Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1614                                          SourceLocation UsingLoc,
1615                                          SourceLocation NamespcLoc,
1616                                          const CXXScopeSpec &SS,
1617                                          SourceLocation IdentLoc,
1618                                          IdentifierInfo *NamespcName,
1619                                          AttributeList *AttrList) {
1620  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1621  assert(NamespcName && "Invalid NamespcName.");
1622  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1623  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1624
1625  UsingDirectiveDecl *UDir = 0;
1626
1627  // Lookup namespace name.
1628  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1629                                    LookupNamespaceName, false);
1630  if (R.isAmbiguous()) {
1631    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1632    return DeclPtrTy();
1633  }
1634  if (NamedDecl *NS = R) {
1635    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1636    // C++ [namespace.udir]p1:
1637    //   A using-directive specifies that the names in the nominated
1638    //   namespace can be used in the scope in which the
1639    //   using-directive appears after the using-directive. During
1640    //   unqualified name lookup (3.4.1), the names appear as if they
1641    //   were declared in the nearest enclosing namespace which
1642    //   contains both the using-directive and the nominated
1643    //   namespace. [Note: in this context, “contains” means “contains
1644    //   directly or indirectly”. ]
1645
1646    // Find enclosing context containing both using-directive and
1647    // nominated namespace.
1648    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1649    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1650      CommonAncestor = CommonAncestor->getParent();
1651
1652    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1653                                      NamespcLoc, IdentLoc,
1654                                      cast<NamespaceDecl>(NS),
1655                                      CommonAncestor);
1656    PushUsingDirective(S, UDir);
1657  } else {
1658    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1659  }
1660
1661  // FIXME: We ignore attributes for now.
1662  delete AttrList;
1663  return DeclPtrTy::make(UDir);
1664}
1665
1666void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1667  // If scope has associated entity, then using directive is at namespace
1668  // or translation unit scope. We add UsingDirectiveDecls, into
1669  // it's lookup structure.
1670  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1671    Ctx->addDecl(UDir);
1672  else
1673    // Otherwise it is block-sope. using-directives will affect lookup
1674    // only to the end of scope.
1675    S->PushUsingDirective(DeclPtrTy::make(UDir));
1676}
1677
1678/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1679/// is a namespace alias, returns the namespace it points to.
1680static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1681  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1682    return AD->getNamespace();
1683  return dyn_cast_or_null<NamespaceDecl>(D);
1684}
1685
1686Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1687                                             SourceLocation NamespaceLoc,
1688                                             SourceLocation AliasLoc,
1689                                             IdentifierInfo *Alias,
1690                                             const CXXScopeSpec &SS,
1691                                             SourceLocation IdentLoc,
1692                                             IdentifierInfo *Ident) {
1693
1694  // Lookup the namespace name.
1695  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1696
1697  // Check if we have a previous declaration with the same name.
1698  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1699    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1700      // We already have an alias with the same name that points to the same
1701      // namespace, so don't create a new one.
1702      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1703        return DeclPtrTy();
1704    }
1705
1706    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1707      diag::err_redefinition_different_kind;
1708    Diag(AliasLoc, DiagID) << Alias;
1709    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1710    return DeclPtrTy();
1711  }
1712
1713  if (R.isAmbiguous()) {
1714    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1715    return DeclPtrTy();
1716  }
1717
1718  if (!R) {
1719    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1720    return DeclPtrTy();
1721  }
1722
1723  NamespaceAliasDecl *AliasDecl =
1724    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias,
1725                               IdentLoc, R);
1726
1727  CurContext->addDecl(AliasDecl);
1728  return DeclPtrTy::make(AliasDecl);
1729}
1730
1731/// AddCXXDirectInitializerToDecl - This action is called immediately after
1732/// ActOnDeclarator, when a C++ direct initializer is present.
1733/// e.g: "int x(1);"
1734void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1735                                         SourceLocation LParenLoc,
1736                                         MultiExprArg Exprs,
1737                                         SourceLocation *CommaLocs,
1738                                         SourceLocation RParenLoc) {
1739  unsigned NumExprs = Exprs.size();
1740  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1741  Decl *RealDecl = Dcl.getAs<Decl>();
1742
1743  // If there is no declaration, there was an error parsing it.  Just ignore
1744  // the initializer.
1745  if (RealDecl == 0)
1746    return;
1747
1748  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1749  if (!VDecl) {
1750    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1751    RealDecl->setInvalidDecl();
1752    return;
1753  }
1754
1755  // FIXME: Need to handle dependent types and expressions here.
1756
1757  // We will treat direct-initialization as a copy-initialization:
1758  //    int x(1);  -as-> int x = 1;
1759  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1760  //
1761  // Clients that want to distinguish between the two forms, can check for
1762  // direct initializer using VarDecl::hasCXXDirectInitializer().
1763  // A major benefit is that clients that don't particularly care about which
1764  // exactly form was it (like the CodeGen) can handle both cases without
1765  // special case code.
1766
1767  // C++ 8.5p11:
1768  // The form of initialization (using parentheses or '=') is generally
1769  // insignificant, but does matter when the entity being initialized has a
1770  // class type.
1771  QualType DeclInitType = VDecl->getType();
1772  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1773    DeclInitType = Array->getElementType();
1774
1775  // FIXME: This isn't the right place to complete the type.
1776  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1777                          diag::err_typecheck_decl_incomplete_type)) {
1778    VDecl->setInvalidDecl();
1779    return;
1780  }
1781
1782  if (VDecl->getType()->isRecordType()) {
1783    CXXConstructorDecl *Constructor
1784      = PerformInitializationByConstructor(DeclInitType,
1785                                           (Expr **)Exprs.get(), NumExprs,
1786                                           VDecl->getLocation(),
1787                                           SourceRange(VDecl->getLocation(),
1788                                                       RParenLoc),
1789                                           VDecl->getDeclName(),
1790                                           IK_Direct);
1791    if (!Constructor)
1792      RealDecl->setInvalidDecl();
1793    else
1794      Exprs.release();
1795
1796    // Let clients know that initialization was done with a direct
1797    // initializer.
1798    VDecl->setCXXDirectInitializer(true);
1799
1800    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1801    // the initializer.
1802    return;
1803  }
1804
1805  if (NumExprs > 1) {
1806    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1807      << SourceRange(VDecl->getLocation(), RParenLoc);
1808    RealDecl->setInvalidDecl();
1809    return;
1810  }
1811
1812  // Let clients know that initialization was done with a direct initializer.
1813  VDecl->setCXXDirectInitializer(true);
1814
1815  assert(NumExprs == 1 && "Expected 1 expression");
1816  // Set the init expression, handles conversions.
1817  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1818                       /*DirectInit=*/true);
1819}
1820
1821/// PerformInitializationByConstructor - Perform initialization by
1822/// constructor (C++ [dcl.init]p14), which may occur as part of
1823/// direct-initialization or copy-initialization. We are initializing
1824/// an object of type @p ClassType with the given arguments @p
1825/// Args. @p Loc is the location in the source code where the
1826/// initializer occurs (e.g., a declaration, member initializer,
1827/// functional cast, etc.) while @p Range covers the whole
1828/// initialization. @p InitEntity is the entity being initialized,
1829/// which may by the name of a declaration or a type. @p Kind is the
1830/// kind of initialization we're performing, which affects whether
1831/// explicit constructors will be considered. When successful, returns
1832/// the constructor that will be used to perform the initialization;
1833/// when the initialization fails, emits a diagnostic and returns
1834/// null.
1835CXXConstructorDecl *
1836Sema::PerformInitializationByConstructor(QualType ClassType,
1837                                         Expr **Args, unsigned NumArgs,
1838                                         SourceLocation Loc, SourceRange Range,
1839                                         DeclarationName InitEntity,
1840                                         InitializationKind Kind) {
1841  const RecordType *ClassRec = ClassType->getAsRecordType();
1842  assert(ClassRec && "Can only initialize a class type here");
1843
1844  // C++ [dcl.init]p14:
1845  //
1846  //   If the initialization is direct-initialization, or if it is
1847  //   copy-initialization where the cv-unqualified version of the
1848  //   source type is the same class as, or a derived class of, the
1849  //   class of the destination, constructors are considered. The
1850  //   applicable constructors are enumerated (13.3.1.3), and the
1851  //   best one is chosen through overload resolution (13.3). The
1852  //   constructor so selected is called to initialize the object,
1853  //   with the initializer expression(s) as its argument(s). If no
1854  //   constructor applies, or the overload resolution is ambiguous,
1855  //   the initialization is ill-formed.
1856  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1857  OverloadCandidateSet CandidateSet;
1858
1859  // Add constructors to the overload set.
1860  DeclarationName ConstructorName
1861    = Context.DeclarationNames.getCXXConstructorName(
1862                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1863  DeclContext::lookup_const_iterator Con, ConEnd;
1864  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1865       Con != ConEnd; ++Con) {
1866    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1867    if ((Kind == IK_Direct) ||
1868        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1869        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1870      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1871  }
1872
1873  // FIXME: When we decide not to synthesize the implicitly-declared
1874  // constructors, we'll need to make them appear here.
1875
1876  OverloadCandidateSet::iterator Best;
1877  switch (BestViableFunction(CandidateSet, Best)) {
1878  case OR_Success:
1879    // We found a constructor. Return it.
1880    return cast<CXXConstructorDecl>(Best->Function);
1881
1882  case OR_No_Viable_Function:
1883    if (InitEntity)
1884      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1885        << InitEntity << Range;
1886    else
1887      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1888        << ClassType << Range;
1889    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1890    return 0;
1891
1892  case OR_Ambiguous:
1893    if (InitEntity)
1894      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1895    else
1896      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1897    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1898    return 0;
1899
1900  case OR_Deleted:
1901    if (InitEntity)
1902      Diag(Loc, diag::err_ovl_deleted_init)
1903        << Best->Function->isDeleted()
1904        << InitEntity << Range;
1905    else
1906      Diag(Loc, diag::err_ovl_deleted_init)
1907        << Best->Function->isDeleted()
1908        << InitEntity << Range;
1909    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1910    return 0;
1911  }
1912
1913  return 0;
1914}
1915
1916/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1917/// determine whether they are reference-related,
1918/// reference-compatible, reference-compatible with added
1919/// qualification, or incompatible, for use in C++ initialization by
1920/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1921/// type, and the first type (T1) is the pointee type of the reference
1922/// type being initialized.
1923Sema::ReferenceCompareResult
1924Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1925                                   bool& DerivedToBase) {
1926  assert(!T1->isReferenceType() &&
1927    "T1 must be the pointee type of the reference type");
1928  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1929
1930  T1 = Context.getCanonicalType(T1);
1931  T2 = Context.getCanonicalType(T2);
1932  QualType UnqualT1 = T1.getUnqualifiedType();
1933  QualType UnqualT2 = T2.getUnqualifiedType();
1934
1935  // C++ [dcl.init.ref]p4:
1936  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1937  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1938  //   T1 is a base class of T2.
1939  if (UnqualT1 == UnqualT2)
1940    DerivedToBase = false;
1941  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1942    DerivedToBase = true;
1943  else
1944    return Ref_Incompatible;
1945
1946  // At this point, we know that T1 and T2 are reference-related (at
1947  // least).
1948
1949  // C++ [dcl.init.ref]p4:
1950  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1951  //   reference-related to T2 and cv1 is the same cv-qualification
1952  //   as, or greater cv-qualification than, cv2. For purposes of
1953  //   overload resolution, cases for which cv1 is greater
1954  //   cv-qualification than cv2 are identified as
1955  //   reference-compatible with added qualification (see 13.3.3.2).
1956  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1957    return Ref_Compatible;
1958  else if (T1.isMoreQualifiedThan(T2))
1959    return Ref_Compatible_With_Added_Qualification;
1960  else
1961    return Ref_Related;
1962}
1963
1964/// CheckReferenceInit - Check the initialization of a reference
1965/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1966/// the initializer (either a simple initializer or an initializer
1967/// list), and DeclType is the type of the declaration. When ICS is
1968/// non-null, this routine will compute the implicit conversion
1969/// sequence according to C++ [over.ics.ref] and will not produce any
1970/// diagnostics; when ICS is null, it will emit diagnostics when any
1971/// errors are found. Either way, a return value of true indicates
1972/// that there was a failure, a return value of false indicates that
1973/// the reference initialization succeeded.
1974///
1975/// When @p SuppressUserConversions, user-defined conversions are
1976/// suppressed.
1977/// When @p AllowExplicit, we also permit explicit user-defined
1978/// conversion functions.
1979bool
1980Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1981                         ImplicitConversionSequence *ICS,
1982                         bool SuppressUserConversions,
1983                         bool AllowExplicit) {
1984  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1985
1986  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1987  QualType T2 = Init->getType();
1988
1989  // If the initializer is the address of an overloaded function, try
1990  // to resolve the overloaded function. If all goes well, T2 is the
1991  // type of the resulting function.
1992  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1993    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1994                                                          ICS != 0);
1995    if (Fn) {
1996      // Since we're performing this reference-initialization for
1997      // real, update the initializer with the resulting function.
1998      if (!ICS) {
1999        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2000          return true;
2001
2002        FixOverloadedFunctionReference(Init, Fn);
2003      }
2004
2005      T2 = Fn->getType();
2006    }
2007  }
2008
2009  // Compute some basic properties of the types and the initializer.
2010  bool isRValRef = DeclType->isRValueReferenceType();
2011  bool DerivedToBase = false;
2012  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
2013  ReferenceCompareResult RefRelationship
2014    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2015
2016  // Most paths end in a failed conversion.
2017  if (ICS)
2018    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2019
2020  // C++ [dcl.init.ref]p5:
2021  //   A reference to type “cv1 T1” is initialized by an expression
2022  //   of type “cv2 T2” as follows:
2023
2024  //     -- If the initializer expression
2025
2026  bool BindsDirectly = false;
2027  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2028  //          reference-compatible with “cv2 T2,” or
2029  //
2030  // Note that the bit-field check is skipped if we are just computing
2031  // the implicit conversion sequence (C++ [over.best.ics]p2).
2032  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
2033      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2034    BindsDirectly = true;
2035
2036    // Rvalue references cannot bind to lvalues (N2812).
2037    if (isRValRef) {
2038      if (!ICS)
2039        Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2040          << Init->getSourceRange();
2041      return true;
2042    }
2043
2044    if (ICS) {
2045      // C++ [over.ics.ref]p1:
2046      //   When a parameter of reference type binds directly (8.5.3)
2047      //   to an argument expression, the implicit conversion sequence
2048      //   is the identity conversion, unless the argument expression
2049      //   has a type that is a derived class of the parameter type,
2050      //   in which case the implicit conversion sequence is a
2051      //   derived-to-base Conversion (13.3.3.1).
2052      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2053      ICS->Standard.First = ICK_Identity;
2054      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2055      ICS->Standard.Third = ICK_Identity;
2056      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2057      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2058      ICS->Standard.ReferenceBinding = true;
2059      ICS->Standard.DirectBinding = true;
2060
2061      // Nothing more to do: the inaccessibility/ambiguity check for
2062      // derived-to-base conversions is suppressed when we're
2063      // computing the implicit conversion sequence (C++
2064      // [over.best.ics]p2).
2065      return false;
2066    } else {
2067      // Perform the conversion.
2068      // FIXME: Binding to a subobject of the lvalue is going to require
2069      // more AST annotation than this.
2070      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2071    }
2072  }
2073
2074  //       -- has a class type (i.e., T2 is a class type) and can be
2075  //          implicitly converted to an lvalue of type “cv3 T3,”
2076  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2077  //          92) (this conversion is selected by enumerating the
2078  //          applicable conversion functions (13.3.1.6) and choosing
2079  //          the best one through overload resolution (13.3)),
2080  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2081    // FIXME: Look for conversions in base classes!
2082    CXXRecordDecl *T2RecordDecl
2083      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2084
2085    OverloadCandidateSet CandidateSet;
2086    OverloadedFunctionDecl *Conversions
2087      = T2RecordDecl->getConversionFunctions();
2088    for (OverloadedFunctionDecl::function_iterator Func
2089           = Conversions->function_begin();
2090         Func != Conversions->function_end(); ++Func) {
2091      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2092
2093      // If the conversion function doesn't return a reference type,
2094      // it can't be considered for this conversion.
2095      if (Conv->getConversionType()->isLValueReferenceType() &&
2096          (AllowExplicit || !Conv->isExplicit()))
2097        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2098    }
2099
2100    OverloadCandidateSet::iterator Best;
2101    switch (BestViableFunction(CandidateSet, Best)) {
2102    case OR_Success:
2103      // This is a direct binding.
2104      BindsDirectly = true;
2105
2106      if (ICS) {
2107        // C++ [over.ics.ref]p1:
2108        //
2109        //   [...] If the parameter binds directly to the result of
2110        //   applying a conversion function to the argument
2111        //   expression, the implicit conversion sequence is a
2112        //   user-defined conversion sequence (13.3.3.1.2), with the
2113        //   second standard conversion sequence either an identity
2114        //   conversion or, if the conversion function returns an
2115        //   entity of a type that is a derived class of the parameter
2116        //   type, a derived-to-base Conversion.
2117        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2118        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2119        ICS->UserDefined.After = Best->FinalConversion;
2120        ICS->UserDefined.ConversionFunction = Best->Function;
2121        assert(ICS->UserDefined.After.ReferenceBinding &&
2122               ICS->UserDefined.After.DirectBinding &&
2123               "Expected a direct reference binding!");
2124        return false;
2125      } else {
2126        // Perform the conversion.
2127        // FIXME: Binding to a subobject of the lvalue is going to require
2128        // more AST annotation than this.
2129        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2130      }
2131      break;
2132
2133    case OR_Ambiguous:
2134      assert(false && "Ambiguous reference binding conversions not implemented.");
2135      return true;
2136
2137    case OR_No_Viable_Function:
2138    case OR_Deleted:
2139      // There was no suitable conversion, or we found a deleted
2140      // conversion; continue with other checks.
2141      break;
2142    }
2143  }
2144
2145  if (BindsDirectly) {
2146    // C++ [dcl.init.ref]p4:
2147    //   [...] In all cases where the reference-related or
2148    //   reference-compatible relationship of two types is used to
2149    //   establish the validity of a reference binding, and T1 is a
2150    //   base class of T2, a program that necessitates such a binding
2151    //   is ill-formed if T1 is an inaccessible (clause 11) or
2152    //   ambiguous (10.2) base class of T2.
2153    //
2154    // Note that we only check this condition when we're allowed to
2155    // complain about errors, because we should not be checking for
2156    // ambiguity (or inaccessibility) unless the reference binding
2157    // actually happens.
2158    if (DerivedToBase)
2159      return CheckDerivedToBaseConversion(T2, T1,
2160                                          Init->getSourceRange().getBegin(),
2161                                          Init->getSourceRange());
2162    else
2163      return false;
2164  }
2165
2166  //     -- Otherwise, the reference shall be to a non-volatile const
2167  //        type (i.e., cv1 shall be const), or shall be an rvalue reference.
2168  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2169    if (!ICS)
2170      Diag(Init->getSourceRange().getBegin(),
2171           diag::err_not_reference_to_const_init)
2172        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2173        << T2 << Init->getSourceRange();
2174    return true;
2175  }
2176
2177  //       -- If the initializer expression is an rvalue, with T2 a
2178  //          class type, and “cv1 T1” is reference-compatible with
2179  //          “cv2 T2,” the reference is bound in one of the
2180  //          following ways (the choice is implementation-defined):
2181  //
2182  //          -- The reference is bound to the object represented by
2183  //             the rvalue (see 3.10) or to a sub-object within that
2184  //             object.
2185  //
2186  //          -- A temporary of type “cv1 T2” [sic] is created, and
2187  //             a constructor is called to copy the entire rvalue
2188  //             object into the temporary. The reference is bound to
2189  //             the temporary or to a sub-object within the
2190  //             temporary.
2191  //
2192  //          The constructor that would be used to make the copy
2193  //          shall be callable whether or not the copy is actually
2194  //          done.
2195  //
2196  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
2197  // freedom, so we will always take the first option and never build
2198  // a temporary in this case. FIXME: We will, however, have to check
2199  // for the presence of a copy constructor in C++98/03 mode.
2200  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2201      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2202    if (ICS) {
2203      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2204      ICS->Standard.First = ICK_Identity;
2205      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2206      ICS->Standard.Third = ICK_Identity;
2207      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2208      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2209      ICS->Standard.ReferenceBinding = true;
2210      ICS->Standard.DirectBinding = false;
2211    } else {
2212      // FIXME: Binding to a subobject of the rvalue is going to require
2213      // more AST annotation than this.
2214      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2215    }
2216    return false;
2217  }
2218
2219  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2220  //          initialized from the initializer expression using the
2221  //          rules for a non-reference copy initialization (8.5). The
2222  //          reference is then bound to the temporary. If T1 is
2223  //          reference-related to T2, cv1 must be the same
2224  //          cv-qualification as, or greater cv-qualification than,
2225  //          cv2; otherwise, the program is ill-formed.
2226  if (RefRelationship == Ref_Related) {
2227    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2228    // we would be reference-compatible or reference-compatible with
2229    // added qualification. But that wasn't the case, so the reference
2230    // initialization fails.
2231    if (!ICS)
2232      Diag(Init->getSourceRange().getBegin(),
2233           diag::err_reference_init_drops_quals)
2234        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2235        << T2 << Init->getSourceRange();
2236    return true;
2237  }
2238
2239  // If at least one of the types is a class type, the types are not
2240  // related, and we aren't allowed any user conversions, the
2241  // reference binding fails. This case is important for breaking
2242  // recursion, since TryImplicitConversion below will attempt to
2243  // create a temporary through the use of a copy constructor.
2244  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2245      (T1->isRecordType() || T2->isRecordType())) {
2246    if (!ICS)
2247      Diag(Init->getSourceRange().getBegin(),
2248           diag::err_typecheck_convert_incompatible)
2249        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2250    return true;
2251  }
2252
2253  // Actually try to convert the initializer to T1.
2254  if (ICS) {
2255    /// C++ [over.ics.ref]p2:
2256    ///
2257    ///   When a parameter of reference type is not bound directly to
2258    ///   an argument expression, the conversion sequence is the one
2259    ///   required to convert the argument expression to the
2260    ///   underlying type of the reference according to
2261    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2262    ///   to copy-initializing a temporary of the underlying type with
2263    ///   the argument expression. Any difference in top-level
2264    ///   cv-qualification is subsumed by the initialization itself
2265    ///   and does not constitute a conversion.
2266    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2267    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2268  } else {
2269    return PerformImplicitConversion(Init, T1, "initializing");
2270  }
2271}
2272
2273/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2274/// of this overloaded operator is well-formed. If so, returns false;
2275/// otherwise, emits appropriate diagnostics and returns true.
2276bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2277  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2278         "Expected an overloaded operator declaration");
2279
2280  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2281
2282  // C++ [over.oper]p5:
2283  //   The allocation and deallocation functions, operator new,
2284  //   operator new[], operator delete and operator delete[], are
2285  //   described completely in 3.7.3. The attributes and restrictions
2286  //   found in the rest of this subclause do not apply to them unless
2287  //   explicitly stated in 3.7.3.
2288  // FIXME: Write a separate routine for checking this. For now, just
2289  // allow it.
2290  if (Op == OO_New || Op == OO_Array_New ||
2291      Op == OO_Delete || Op == OO_Array_Delete)
2292    return false;
2293
2294  // C++ [over.oper]p6:
2295  //   An operator function shall either be a non-static member
2296  //   function or be a non-member function and have at least one
2297  //   parameter whose type is a class, a reference to a class, an
2298  //   enumeration, or a reference to an enumeration.
2299  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2300    if (MethodDecl->isStatic())
2301      return Diag(FnDecl->getLocation(),
2302                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2303  } else {
2304    bool ClassOrEnumParam = false;
2305    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2306                                   ParamEnd = FnDecl->param_end();
2307         Param != ParamEnd; ++Param) {
2308      QualType ParamType = (*Param)->getType().getNonReferenceType();
2309      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2310        ClassOrEnumParam = true;
2311        break;
2312      }
2313    }
2314
2315    if (!ClassOrEnumParam)
2316      return Diag(FnDecl->getLocation(),
2317                  diag::err_operator_overload_needs_class_or_enum)
2318        << FnDecl->getDeclName();
2319  }
2320
2321  // C++ [over.oper]p8:
2322  //   An operator function cannot have default arguments (8.3.6),
2323  //   except where explicitly stated below.
2324  //
2325  // Only the function-call operator allows default arguments
2326  // (C++ [over.call]p1).
2327  if (Op != OO_Call) {
2328    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2329         Param != FnDecl->param_end(); ++Param) {
2330      if ((*Param)->hasUnparsedDefaultArg())
2331        return Diag((*Param)->getLocation(),
2332                    diag::err_operator_overload_default_arg)
2333          << FnDecl->getDeclName();
2334      else if (Expr *DefArg = (*Param)->getDefaultArg())
2335        return Diag((*Param)->getLocation(),
2336                    diag::err_operator_overload_default_arg)
2337          << FnDecl->getDeclName() << DefArg->getSourceRange();
2338    }
2339  }
2340
2341  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2342    { false, false, false }
2343#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2344    , { Unary, Binary, MemberOnly }
2345#include "clang/Basic/OperatorKinds.def"
2346  };
2347
2348  bool CanBeUnaryOperator = OperatorUses[Op][0];
2349  bool CanBeBinaryOperator = OperatorUses[Op][1];
2350  bool MustBeMemberOperator = OperatorUses[Op][2];
2351
2352  // C++ [over.oper]p8:
2353  //   [...] Operator functions cannot have more or fewer parameters
2354  //   than the number required for the corresponding operator, as
2355  //   described in the rest of this subclause.
2356  unsigned NumParams = FnDecl->getNumParams()
2357                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2358  if (Op != OO_Call &&
2359      ((NumParams == 1 && !CanBeUnaryOperator) ||
2360       (NumParams == 2 && !CanBeBinaryOperator) ||
2361       (NumParams < 1) || (NumParams > 2))) {
2362    // We have the wrong number of parameters.
2363    unsigned ErrorKind;
2364    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2365      ErrorKind = 2;  // 2 -> unary or binary.
2366    } else if (CanBeUnaryOperator) {
2367      ErrorKind = 0;  // 0 -> unary
2368    } else {
2369      assert(CanBeBinaryOperator &&
2370             "All non-call overloaded operators are unary or binary!");
2371      ErrorKind = 1;  // 1 -> binary
2372    }
2373
2374    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2375      << FnDecl->getDeclName() << NumParams << ErrorKind;
2376  }
2377
2378  // Overloaded operators other than operator() cannot be variadic.
2379  if (Op != OO_Call &&
2380      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2381    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2382      << FnDecl->getDeclName();
2383  }
2384
2385  // Some operators must be non-static member functions.
2386  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2387    return Diag(FnDecl->getLocation(),
2388                diag::err_operator_overload_must_be_member)
2389      << FnDecl->getDeclName();
2390  }
2391
2392  // C++ [over.inc]p1:
2393  //   The user-defined function called operator++ implements the
2394  //   prefix and postfix ++ operator. If this function is a member
2395  //   function with no parameters, or a non-member function with one
2396  //   parameter of class or enumeration type, it defines the prefix
2397  //   increment operator ++ for objects of that type. If the function
2398  //   is a member function with one parameter (which shall be of type
2399  //   int) or a non-member function with two parameters (the second
2400  //   of which shall be of type int), it defines the postfix
2401  //   increment operator ++ for objects of that type.
2402  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2403    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2404    bool ParamIsInt = false;
2405    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2406      ParamIsInt = BT->getKind() == BuiltinType::Int;
2407
2408    if (!ParamIsInt)
2409      return Diag(LastParam->getLocation(),
2410                  diag::err_operator_overload_post_incdec_must_be_int)
2411        << LastParam->getType() << (Op == OO_MinusMinus);
2412  }
2413
2414  // Notify the class if it got an assignment operator.
2415  if (Op == OO_Equal) {
2416    // Would have returned earlier otherwise.
2417    assert(isa<CXXMethodDecl>(FnDecl) &&
2418      "Overloaded = not member, but not filtered.");
2419    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2420    Method->getParent()->addedAssignmentOperator(Context, Method);
2421  }
2422
2423  return false;
2424}
2425
2426/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2427/// linkage specification, including the language and (if present)
2428/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2429/// the location of the language string literal, which is provided
2430/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2431/// the '{' brace. Otherwise, this linkage specification does not
2432/// have any braces.
2433Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2434                                                     SourceLocation ExternLoc,
2435                                                     SourceLocation LangLoc,
2436                                                     const char *Lang,
2437                                                     unsigned StrSize,
2438                                                     SourceLocation LBraceLoc) {
2439  LinkageSpecDecl::LanguageIDs Language;
2440  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2441    Language = LinkageSpecDecl::lang_c;
2442  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2443    Language = LinkageSpecDecl::lang_cxx;
2444  else {
2445    Diag(LangLoc, diag::err_bad_language);
2446    return DeclPtrTy();
2447  }
2448
2449  // FIXME: Add all the various semantics of linkage specifications
2450
2451  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2452                                               LangLoc, Language,
2453                                               LBraceLoc.isValid());
2454  CurContext->addDecl(D);
2455  PushDeclContext(S, D);
2456  return DeclPtrTy::make(D);
2457}
2458
2459/// ActOnFinishLinkageSpecification - Completely the definition of
2460/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2461/// valid, it's the position of the closing '}' brace in a linkage
2462/// specification that uses braces.
2463Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2464                                                      DeclPtrTy LinkageSpec,
2465                                                      SourceLocation RBraceLoc) {
2466  if (LinkageSpec)
2467    PopDeclContext();
2468  return LinkageSpec;
2469}
2470
2471/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2472/// handler.
2473Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2474  QualType ExDeclType = GetTypeForDeclarator(D, S);
2475  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2476
2477  bool Invalid = false;
2478
2479  // Arrays and functions decay.
2480  if (ExDeclType->isArrayType())
2481    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2482  else if (ExDeclType->isFunctionType())
2483    ExDeclType = Context.getPointerType(ExDeclType);
2484
2485  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2486  // The exception-declaration shall not denote a pointer or reference to an
2487  // incomplete type, other than [cv] void*.
2488  // N2844 forbids rvalue references.
2489  if(ExDeclType->isRValueReferenceType()) {
2490    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2491    Invalid = true;
2492  }
2493  QualType BaseType = ExDeclType;
2494  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2495  unsigned DK = diag::err_catch_incomplete;
2496  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2497    BaseType = Ptr->getPointeeType();
2498    Mode = 1;
2499    DK = diag::err_catch_incomplete_ptr;
2500  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2501    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2502    BaseType = Ref->getPointeeType();
2503    Mode = 2;
2504    DK = diag::err_catch_incomplete_ref;
2505  }
2506  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2507      RequireCompleteType(Begin, BaseType, DK))
2508    Invalid = true;
2509
2510  // FIXME: Need to test for ability to copy-construct and destroy the
2511  // exception variable.
2512  // FIXME: Need to check for abstract classes.
2513
2514  IdentifierInfo *II = D.getIdentifier();
2515  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2516    // The scope should be freshly made just for us. There is just no way
2517    // it contains any previous declaration.
2518    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2519    if (PrevDecl->isTemplateParameter()) {
2520      // Maybe we will complain about the shadowed template parameter.
2521      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2522    }
2523  }
2524
2525  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2526                                    II, ExDeclType, VarDecl::None, Begin);
2527  if (D.getInvalidType() || Invalid)
2528    ExDecl->setInvalidDecl();
2529
2530  if (D.getCXXScopeSpec().isSet()) {
2531    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2532      << D.getCXXScopeSpec().getRange();
2533    ExDecl->setInvalidDecl();
2534  }
2535
2536  // Add the exception declaration into this scope.
2537  S->AddDecl(DeclPtrTy::make(ExDecl));
2538  if (II)
2539    IdResolver.AddDecl(ExDecl);
2540
2541  ProcessDeclAttributes(ExDecl, D);
2542  return DeclPtrTy::make(ExDecl);
2543}
2544
2545Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2546                                                   ExprArg assertexpr,
2547                                                   ExprArg assertmessageexpr) {
2548  Expr *AssertExpr = (Expr *)assertexpr.get();
2549  StringLiteral *AssertMessage =
2550    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2551
2552  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2553    llvm::APSInt Value(32);
2554    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2555      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2556        AssertExpr->getSourceRange();
2557      return DeclPtrTy();
2558    }
2559
2560    if (Value == 0) {
2561      std::string str(AssertMessage->getStrData(),
2562                      AssertMessage->getByteLength());
2563      Diag(AssertLoc, diag::err_static_assert_failed)
2564        << str << AssertExpr->getSourceRange();
2565    }
2566  }
2567
2568  assertexpr.release();
2569  assertmessageexpr.release();
2570  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2571                                        AssertExpr, AssertMessage);
2572
2573  CurContext->addDecl(Decl);
2574  return DeclPtrTy::make(Decl);
2575}
2576
2577void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2578  Decl *Dcl = dcl.getAs<Decl>();
2579  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2580  if (!Fn) {
2581    Diag(DelLoc, diag::err_deleted_non_function);
2582    return;
2583  }
2584  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2585    Diag(DelLoc, diag::err_deleted_decl_not_first);
2586    Diag(Prev->getLocation(), diag::note_previous_declaration);
2587    // If the declaration wasn't the first, we delete the function anyway for
2588    // recovery.
2589  }
2590  Fn->setDeleted();
2591}
2592