SemaDeclCXX.cpp revision 64bffa9a6f40e5a3d5556f994f09f7bf45eecd4c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param,
78                     Param->getName(), DefaultArg->getSourceRange());
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local,
86                       VDecl->getName(), DefaultArg->getSourceRange());
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this,
99                   ThisE->getSourceRange());
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument,
116         DefaultArg->getSourceRange());
117    return;
118  }
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  Expr *DefaultArgPtr = DefaultArg.get();
127  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
128                                                     "in default argument");
129  if (DefaultArgPtr != DefaultArg.get()) {
130    DefaultArg.take();
131    DefaultArg.reset(DefaultArgPtr);
132  }
133  if (DefaultInitFailed) {
134    return;
135  }
136
137  // Check that the default argument is well-formed
138  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
139  if (DefaultArgChecker.Visit(DefaultArg.get()))
140    return;
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(DefaultArg.take());
144}
145
146/// CheckExtraCXXDefaultArguments - Check for any extra default
147/// arguments in the declarator, which is not a function declaration
148/// or definition and therefore is not permitted to have default
149/// arguments. This routine should be invoked for every declarator
150/// that is not a function declaration or definition.
151void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
152  // C++ [dcl.fct.default]p3
153  //   A default argument expression shall be specified only in the
154  //   parameter-declaration-clause of a function declaration or in a
155  //   template-parameter (14.1). It shall not be specified for a
156  //   parameter pack. If it is specified in a
157  //   parameter-declaration-clause, it shall not occur within a
158  //   declarator or abstract-declarator of a parameter-declaration.
159  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
160    DeclaratorChunk &chunk = D.getTypeObject(i);
161    if (chunk.Kind == DeclaratorChunk::Function) {
162      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
163        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
164        if (Param->getDefaultArg()) {
165          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc,
166               Param->getDefaultArg()->getSourceRange());
167          Param->setDefaultArg(0);
168        }
169      }
170    }
171  }
172}
173
174// MergeCXXFunctionDecl - Merge two declarations of the same C++
175// function, once we already know that they have the same
176// type. Subroutine of MergeFunctionDecl.
177FunctionDecl *
178Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
179  // C++ [dcl.fct.default]p4:
180  //
181  //   For non-template functions, default arguments can be added in
182  //   later declarations of a function in the same
183  //   scope. Declarations in different scopes have completely
184  //   distinct sets of default arguments. That is, declarations in
185  //   inner scopes do not acquire default arguments from
186  //   declarations in outer scopes, and vice versa. In a given
187  //   function declaration, all parameters subsequent to a
188  //   parameter with a default argument shall have default
189  //   arguments supplied in this or previous declarations. A
190  //   default argument shall not be redefined by a later
191  //   declaration (not even to the same value).
192  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
193    ParmVarDecl *OldParam = Old->getParamDecl(p);
194    ParmVarDecl *NewParam = New->getParamDecl(p);
195
196    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
197      Diag(NewParam->getLocation(),
198           diag::err_param_default_argument_redefinition,
199           NewParam->getDefaultArg()->getSourceRange());
200      Diag(OldParam->getLocation(), diag::err_previous_definition);
201    } else if (OldParam->getDefaultArg()) {
202      // Merge the old default argument into the new parameter
203      NewParam->setDefaultArg(OldParam->getDefaultArg());
204    }
205  }
206
207  return New;
208}
209
210/// CheckCXXDefaultArguments - Verify that the default arguments for a
211/// function declaration are well-formed according to C++
212/// [dcl.fct.default].
213void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
214  unsigned NumParams = FD->getNumParams();
215  unsigned p;
216
217  // Find first parameter with a default argument
218  for (p = 0; p < NumParams; ++p) {
219    ParmVarDecl *Param = FD->getParamDecl(p);
220    if (Param->getDefaultArg())
221      break;
222  }
223
224  // C++ [dcl.fct.default]p4:
225  //   In a given function declaration, all parameters
226  //   subsequent to a parameter with a default argument shall
227  //   have default arguments supplied in this or previous
228  //   declarations. A default argument shall not be redefined
229  //   by a later declaration (not even to the same value).
230  unsigned LastMissingDefaultArg = 0;
231  for(; p < NumParams; ++p) {
232    ParmVarDecl *Param = FD->getParamDecl(p);
233    if (!Param->getDefaultArg()) {
234      if (Param->getIdentifier())
235        Diag(Param->getLocation(),
236             diag::err_param_default_argument_missing_name,
237             Param->getIdentifier()->getName());
238      else
239        Diag(Param->getLocation(),
240             diag::err_param_default_argument_missing);
241
242      LastMissingDefaultArg = p;
243    }
244  }
245
246  if (LastMissingDefaultArg > 0) {
247    // Some default arguments were missing. Clear out all of the
248    // default arguments up to (and including) the last missing
249    // default argument, so that we leave the function parameters
250    // in a semantically valid state.
251    for (p = 0; p <= LastMissingDefaultArg; ++p) {
252      ParmVarDecl *Param = FD->getParamDecl(p);
253      if (Param->getDefaultArg()) {
254        delete Param->getDefaultArg();
255        Param->setDefaultArg(0);
256      }
257    }
258  }
259}
260
261/// isCurrentClassName - Determine whether the identifier II is the
262/// name of the class type currently being defined. In the case of
263/// nested classes, this will only return true if II is the name of
264/// the innermost class.
265bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *) {
266  if (CXXRecordDecl *CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext))
267    return &II == CurDecl->getIdentifier();
268  else
269    return false;
270}
271
272/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
273/// one entry in the base class list of a class specifier, for
274/// example:
275///    class foo : public bar, virtual private baz {
276/// 'public bar' and 'virtual private baz' are each base-specifiers.
277Sema::BaseResult
278Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
279                         bool Virtual, AccessSpecifier Access,
280                         TypeTy *basetype, SourceLocation BaseLoc) {
281  RecordDecl *Decl = (RecordDecl*)classdecl;
282  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
283
284  // Base specifiers must be record types.
285  if (!BaseType->isRecordType()) {
286    Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange);
287    return true;
288  }
289
290  // C++ [class.union]p1:
291  //   A union shall not be used as a base class.
292  if (BaseType->isUnionType()) {
293    Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange);
294    return true;
295  }
296
297  // C++ [class.union]p1:
298  //   A union shall not have base classes.
299  if (Decl->isUnion()) {
300    Diag(Decl->getLocation(), diag::err_base_clause_on_union,
301         SpecifierRange);
302    return true;
303  }
304
305  // C++ [class.derived]p2:
306  //   The class-name in a base-specifier shall not be an incompletely
307  //   defined class.
308  if (BaseType->isIncompleteType()) {
309    Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange);
310    return true;
311  }
312
313  // Create the base specifier.
314  return new CXXBaseSpecifier(SpecifierRange, Virtual,
315                              BaseType->isClassType(), Access, BaseType);
316}
317
318/// ActOnBaseSpecifiers - Attach the given base specifiers to the
319/// class, after checking whether there are any duplicate base
320/// classes.
321void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
322                               unsigned NumBases) {
323  if (NumBases == 0)
324    return;
325
326  // Used to keep track of which base types we have already seen, so
327  // that we can properly diagnose redundant direct base types. Note
328  // that the key is always the unqualified canonical type of the base
329  // class.
330  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
331
332  // Copy non-redundant base specifiers into permanent storage.
333  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
334  unsigned NumGoodBases = 0;
335  for (unsigned idx = 0; idx < NumBases; ++idx) {
336    QualType NewBaseType
337      = Context.getCanonicalType(BaseSpecs[idx]->getType());
338    NewBaseType = NewBaseType.getUnqualifiedType();
339
340    if (KnownBaseTypes[NewBaseType]) {
341      // C++ [class.mi]p3:
342      //   A class shall not be specified as a direct base class of a
343      //   derived class more than once.
344      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
345           diag::err_duplicate_base_class,
346           KnownBaseTypes[NewBaseType]->getType().getAsString(),
347           BaseSpecs[idx]->getSourceRange());
348
349      // Delete the duplicate base class specifier; we're going to
350      // overwrite its pointer later.
351      delete BaseSpecs[idx];
352    } else {
353      // Okay, add this new base class.
354      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
355      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
356    }
357  }
358
359  // Attach the remaining base class specifiers to the derived class.
360  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
361  Decl->setBases(BaseSpecs, NumGoodBases);
362
363  // Delete the remaining (good) base class specifiers, since their
364  // data has been copied into the CXXRecordDecl.
365  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
366    delete BaseSpecs[idx];
367}
368
369//===----------------------------------------------------------------------===//
370// C++ class member Handling
371//===----------------------------------------------------------------------===//
372
373/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
374/// definition, when on C++.
375void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
376  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
377  PushDeclContext(Dcl);
378  FieldCollector->StartClass();
379
380  if (Dcl->getIdentifier()) {
381    // C++ [class]p2:
382    //   [...] The class-name is also inserted into the scope of the
383    //   class itself; this is known as the injected-class-name. For
384    //   purposes of access checking, the injected-class-name is treated
385    //   as if it were a public member name.
386    TypedefDecl *InjectedClassName
387      = TypedefDecl::Create(Context, Dcl, LBrace, Dcl->getIdentifier(),
388                            Context.getTypeDeclType(Dcl), /*PrevDecl=*/0);
389    PushOnScopeChains(InjectedClassName, S);
390  }
391}
392
393/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
394/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
395/// bitfield width if there is one and 'InitExpr' specifies the initializer if
396/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
397/// declarators on it.
398///
399/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
400/// an instance field is declared, a new CXXFieldDecl is created but the method
401/// does *not* return it; it returns LastInGroup instead. The other C++ members
402/// (which are all ScopedDecls) are returned after appending them to
403/// LastInGroup.
404Sema::DeclTy *
405Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
406                               ExprTy *BW, ExprTy *InitExpr,
407                               DeclTy *LastInGroup) {
408  const DeclSpec &DS = D.getDeclSpec();
409  IdentifierInfo *II = D.getIdentifier();
410  Expr *BitWidth = static_cast<Expr*>(BW);
411  Expr *Init = static_cast<Expr*>(InitExpr);
412  SourceLocation Loc = D.getIdentifierLoc();
413
414  // C++ 9.2p6: A member shall not be declared to have automatic storage
415  // duration (auto, register) or with the extern storage-class-specifier.
416  switch (DS.getStorageClassSpec()) {
417    case DeclSpec::SCS_unspecified:
418    case DeclSpec::SCS_typedef:
419    case DeclSpec::SCS_static:
420      // FALL THROUGH.
421      break;
422    default:
423      if (DS.getStorageClassSpecLoc().isValid())
424        Diag(DS.getStorageClassSpecLoc(),
425             diag::err_storageclass_invalid_for_member);
426      else
427        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
428      D.getMutableDeclSpec().ClearStorageClassSpecs();
429  }
430
431  bool isFunc = D.isFunctionDeclarator();
432  if (!isFunc &&
433      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
434      D.getNumTypeObjects() == 0) {
435    // Check also for this case:
436    //
437    // typedef int f();
438    // f a;
439    //
440    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
441    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
442  }
443
444  bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified &&
445                      !isFunc);
446
447  Decl *Member;
448  bool InvalidDecl = false;
449
450  if (isInstField)
451    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
452  else
453    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
454
455  if (!Member) return LastInGroup;
456
457  assert((II || isInstField) && "No identifier for non-field ?");
458
459  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
460  // specific methods. Use a wrapper class that can be used with all C++ class
461  // member decls.
462  CXXClassMemberWrapper(Member).setAccess(AS);
463
464  // C++ [dcl.init.aggr]p1:
465  //   An aggregate is an array or a class (clause 9) with [...] no
466  //   private or protected non-static data members (clause 11).
467  if (isInstField && (AS == AS_private || AS == AS_protected))
468    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
469
470  // FIXME: If the member is a virtual function, mark it its class as
471  // a non-aggregate.
472
473  if (BitWidth) {
474    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
475    // constant-expression be a value equal to zero.
476    // FIXME: Check this.
477
478    if (D.isFunctionDeclarator()) {
479      // FIXME: Emit diagnostic about only constructors taking base initializers
480      // or something similar, when constructor support is in place.
481      Diag(Loc, diag::err_not_bitfield_type,
482           II->getName(), BitWidth->getSourceRange());
483      InvalidDecl = true;
484
485    } else if (isInstField) {
486      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
487      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
488        Diag(Loc, diag::err_not_integral_type_bitfield,
489             II->getName(), BitWidth->getSourceRange());
490        InvalidDecl = true;
491      }
492
493    } else if (isa<FunctionDecl>(Member)) {
494      // A function typedef ("typedef int f(); f a;").
495      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
496      Diag(Loc, diag::err_not_integral_type_bitfield,
497           II->getName(), BitWidth->getSourceRange());
498      InvalidDecl = true;
499
500    } else if (isa<TypedefDecl>(Member)) {
501      // "cannot declare 'A' to be a bit-field type"
502      Diag(Loc, diag::err_not_bitfield_type, II->getName(),
503           BitWidth->getSourceRange());
504      InvalidDecl = true;
505
506    } else {
507      assert(isa<CXXClassVarDecl>(Member) &&
508             "Didn't we cover all member kinds?");
509      // C++ 9.6p3: A bit-field shall not be a static member.
510      // "static member 'A' cannot be a bit-field"
511      Diag(Loc, diag::err_static_not_bitfield, II->getName(),
512           BitWidth->getSourceRange());
513      InvalidDecl = true;
514    }
515  }
516
517  if (Init) {
518    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
519    // if it declares a static member of const integral or const enumeration
520    // type.
521    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
522      // ...static member of...
523      CVD->setInit(Init);
524      // ...const integral or const enumeration type.
525      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
526          CVD->getType()->isIntegralType()) {
527        // constant-initializer
528        if (CheckForConstantInitializer(Init, CVD->getType()))
529          InvalidDecl = true;
530
531      } else {
532        // not const integral.
533        Diag(Loc, diag::err_member_initialization,
534             II->getName(), Init->getSourceRange());
535        InvalidDecl = true;
536      }
537
538    } else {
539      // not static member.
540      Diag(Loc, diag::err_member_initialization,
541           II->getName(), Init->getSourceRange());
542      InvalidDecl = true;
543    }
544  }
545
546  if (InvalidDecl)
547    Member->setInvalidDecl();
548
549  if (isInstField) {
550    FieldCollector->Add(cast<CXXFieldDecl>(Member));
551    return LastInGroup;
552  }
553  return Member;
554}
555
556/// ActOnMemInitializer - Handle a C++ member initializer.
557Sema::MemInitResult
558Sema::ActOnMemInitializer(DeclTy *ConstructorD,
559                          Scope *S,
560                          IdentifierInfo *MemberOrBase,
561                          SourceLocation IdLoc,
562                          SourceLocation LParenLoc,
563                          ExprTy **Args, unsigned NumArgs,
564                          SourceLocation *CommaLocs,
565                          SourceLocation RParenLoc) {
566  CXXConstructorDecl *Constructor
567    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
568  if (!Constructor) {
569    // The user wrote a constructor initializer on a function that is
570    // not a C++ constructor. Ignore the error for now, because we may
571    // have more member initializers coming; we'll diagnose it just
572    // once in ActOnMemInitializers.
573    return true;
574  }
575
576  CXXRecordDecl *ClassDecl = Constructor->getParent();
577
578  // C++ [class.base.init]p2:
579  //   Names in a mem-initializer-id are looked up in the scope of the
580  //   constructor’s class and, if not found in that scope, are looked
581  //   up in the scope containing the constructor’s
582  //   definition. [Note: if the constructor’s class contains a member
583  //   with the same name as a direct or virtual base class of the
584  //   class, a mem-initializer-id naming the member or base class and
585  //   composed of a single identifier refers to the class member. A
586  //   mem-initializer-id for the hidden base class may be specified
587  //   using a qualified name. ]
588  // Look for a member, first.
589  CXXFieldDecl *Member = ClassDecl->getMember(MemberOrBase);
590
591  // FIXME: Handle members of an anonymous union.
592
593  if (Member) {
594    // FIXME: Perform direct initialization of the member.
595    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
596  }
597
598  // It didn't name a member, so see if it names a class.
599  TypeTy *BaseTy = isTypeName(*MemberOrBase, S);
600  if (!BaseTy)
601    return Diag(IdLoc, diag::err_mem_init_not_member_or_class,
602                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
603
604  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
605  if (!BaseType->isRecordType())
606    return Diag(IdLoc, diag::err_base_init_does_not_name_class,
607                BaseType.getAsString(), SourceRange(IdLoc, RParenLoc));
608
609  // C++ [class.base.init]p2:
610  //   [...] Unless the mem-initializer-id names a nonstatic data
611  //   member of the constructor’s class or a direct or virtual base
612  //   of that class, the mem-initializer is ill-formed. A
613  //   mem-initializer-list can initialize a base class using any
614  //   name that denotes that base class type.
615
616  // First, check for a direct base class.
617  const CXXBaseSpecifier *DirectBaseSpec = 0;
618  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
619       Base != ClassDecl->bases_end(); ++Base) {
620    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
621        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
622      // We found a direct base of this type. That's what we're
623      // initializing.
624      DirectBaseSpec = &*Base;
625      break;
626    }
627  }
628
629  // Check for a virtual base class.
630  // FIXME: We might be able to short-circuit this if we know in
631  // advance that there are no virtual bases.
632  const CXXBaseSpecifier *VirtualBaseSpec = 0;
633  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
634    // We haven't found a base yet; search the class hierarchy for a
635    // virtual base class.
636    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
637                    /*DetectVirtual=*/false);
638    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
639      for (BasePaths::paths_iterator Path = Paths.begin();
640           Path != Paths.end(); ++Path) {
641        if (Path->back().Base->isVirtual()) {
642          VirtualBaseSpec = Path->back().Base;
643          break;
644        }
645      }
646    }
647  }
648
649  // C++ [base.class.init]p2:
650  //   If a mem-initializer-id is ambiguous because it designates both
651  //   a direct non-virtual base class and an inherited virtual base
652  //   class, the mem-initializer is ill-formed.
653  if (DirectBaseSpec && VirtualBaseSpec)
654    return Diag(IdLoc, diag::err_base_init_direct_and_virtual,
655                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
656
657  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
658}
659
660
661void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
662                                             DeclTy *TagDecl,
663                                             SourceLocation LBrac,
664                                             SourceLocation RBrac) {
665  ActOnFields(S, RLoc, TagDecl,
666              (DeclTy**)FieldCollector->getCurFields(),
667              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
668}
669
670/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
671/// special functions, such as the default constructor, copy
672/// constructor, or destructor, to the given C++ class (C++
673/// [special]p1).  This routine can only be executed just before the
674/// definition of the class is complete.
675void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
676  if (!ClassDecl->hasUserDeclaredConstructor()) {
677    // C++ [class.ctor]p5:
678    //   A default constructor for a class X is a constructor of class X
679    //   that can be called without an argument. If there is no
680    //   user-declared constructor for class X, a default constructor is
681    //   implicitly declared. An implicitly-declared default constructor
682    //   is an inline public member of its class.
683    CXXConstructorDecl *DefaultCon =
684      CXXConstructorDecl::Create(Context, ClassDecl,
685                                 ClassDecl->getLocation(),
686                                 ClassDecl->getIdentifier(),
687                                 Context.getFunctionType(Context.VoidTy,
688                                                         0, 0, false, 0),
689                                 /*isExplicit=*/false,
690                                 /*isInline=*/true,
691                                 /*isImplicitlyDeclared=*/true);
692    DefaultCon->setAccess(AS_public);
693    ClassDecl->addConstructor(Context, DefaultCon);
694  }
695
696  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
697    // C++ [class.copy]p4:
698    //   If the class definition does not explicitly declare a copy
699    //   constructor, one is declared implicitly.
700
701    // C++ [class.copy]p5:
702    //   The implicitly-declared copy constructor for a class X will
703    //   have the form
704    //
705    //       X::X(const X&)
706    //
707    //   if
708    bool HasConstCopyConstructor = true;
709
710    //     -- each direct or virtual base class B of X has a copy
711    //        constructor whose first parameter is of type const B& or
712    //        const volatile B&, and
713    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
714         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
715      const CXXRecordDecl *BaseClassDecl
716        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
717      HasConstCopyConstructor
718        = BaseClassDecl->hasConstCopyConstructor(Context);
719    }
720
721    //     -- for all the nonstatic data members of X that are of a
722    //        class type M (or array thereof), each such class type
723    //        has a copy constructor whose first parameter is of type
724    //        const M& or const volatile M&.
725    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
726         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
727      QualType FieldType = (*Field)->getType();
728      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
729        FieldType = Array->getElementType();
730      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
731        const CXXRecordDecl *FieldClassDecl
732          = cast<CXXRecordDecl>(FieldClassType->getDecl());
733        HasConstCopyConstructor
734          = FieldClassDecl->hasConstCopyConstructor(Context);
735      }
736    }
737
738    //  Otherwise, the implicitly declared copy constructor will have
739    //  the form
740    //
741    //       X::X(X&)
742    QualType ArgType = Context.getTypeDeclType(ClassDecl);
743    if (HasConstCopyConstructor)
744      ArgType = ArgType.withConst();
745    ArgType = Context.getReferenceType(ArgType);
746
747    //  An implicitly-declared copy constructor is an inline public
748    //  member of its class.
749    CXXConstructorDecl *CopyConstructor
750      = CXXConstructorDecl::Create(Context, ClassDecl,
751                                   ClassDecl->getLocation(),
752                                   ClassDecl->getIdentifier(),
753                                   Context.getFunctionType(Context.VoidTy,
754                                                           &ArgType, 1,
755                                                           false, 0),
756                                   /*isExplicit=*/false,
757                                   /*isInline=*/true,
758                                   /*isImplicitlyDeclared=*/true);
759    CopyConstructor->setAccess(AS_public);
760
761    // Add the parameter to the constructor.
762    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
763                                                 ClassDecl->getLocation(),
764                                                 /*IdentifierInfo=*/0,
765                                                 ArgType, VarDecl::None, 0, 0);
766    CopyConstructor->setParams(&FromParam, 1);
767
768    ClassDecl->addConstructor(Context, CopyConstructor);
769  }
770
771  // FIXME: Implicit destructor
772  // FIXME: Implicit copy assignment operator
773}
774
775void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
776  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
777  FieldCollector->FinishClass();
778  AddImplicitlyDeclaredMembersToClass(Rec);
779  PopDeclContext();
780
781  // Everything, including inline method definitions, have been parsed.
782  // Let the consumer know of the new TagDecl definition.
783  Consumer.HandleTagDeclDefinition(Rec);
784}
785
786/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
787/// the declaration of the given C++ constructor ConDecl that was
788/// built from declarator D. This routine is responsible for checking
789/// that the newly-created constructor declaration is well-formed and
790/// for recording it in the C++ class. Example:
791///
792/// @code
793/// class X {
794///   X(); // X::X() will be the ConDecl.
795/// };
796/// @endcode
797Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
798  assert(ConDecl && "Expected to receive a constructor declaration");
799
800  // Check default arguments on the constructor
801  CheckCXXDefaultArguments(ConDecl);
802
803  CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
804  if (!ClassDecl) {
805    ConDecl->setInvalidDecl();
806    return ConDecl;
807  }
808
809  // Make sure this constructor is an overload of the existing
810  // constructors.
811  OverloadedFunctionDecl::function_iterator MatchedDecl;
812  if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
813    Diag(ConDecl->getLocation(),
814         diag::err_constructor_redeclared,
815         SourceRange(ConDecl->getLocation()));
816    Diag((*MatchedDecl)->getLocation(),
817         diag::err_previous_declaration,
818         SourceRange((*MatchedDecl)->getLocation()));
819    ConDecl->setInvalidDecl();
820    return ConDecl;
821  }
822
823
824  // C++ [class.copy]p3:
825  //   A declaration of a constructor for a class X is ill-formed if
826  //   its first parameter is of type (optionally cv-qualified) X and
827  //   either there are no other parameters or else all other
828  //   parameters have default arguments.
829  if ((ConDecl->getNumParams() == 1) ||
830      (ConDecl->getNumParams() > 1 &&
831       ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
832    QualType ParamType = ConDecl->getParamDecl(0)->getType();
833    QualType ClassTy = Context.getTagDeclType(
834                         const_cast<CXXRecordDecl*>(ConDecl->getParent()));
835    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
836      Diag(ConDecl->getLocation(),
837           diag::err_constructor_byvalue_arg,
838           SourceRange(ConDecl->getParamDecl(0)->getLocation()));
839      ConDecl->setInvalidDecl();
840      return 0;
841    }
842  }
843
844  // Add this constructor to the set of constructors of the current
845  // class.
846  ClassDecl->addConstructor(Context, ConDecl);
847  return (DeclTy *)ConDecl;
848}
849
850//===----------------------------------------------------------------------===//
851// Namespace Handling
852//===----------------------------------------------------------------------===//
853
854/// ActOnStartNamespaceDef - This is called at the start of a namespace
855/// definition.
856Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
857                                           SourceLocation IdentLoc,
858                                           IdentifierInfo *II,
859                                           SourceLocation LBrace) {
860  NamespaceDecl *Namespc =
861      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
862  Namespc->setLBracLoc(LBrace);
863
864  Scope *DeclRegionScope = NamespcScope->getParent();
865
866  if (II) {
867    // C++ [namespace.def]p2:
868    // The identifier in an original-namespace-definition shall not have been
869    // previously defined in the declarative region in which the
870    // original-namespace-definition appears. The identifier in an
871    // original-namespace-definition is the name of the namespace. Subsequently
872    // in that declarative region, it is treated as an original-namespace-name.
873
874    Decl *PrevDecl =
875        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope,
876                   /*enableLazyBuiltinCreation=*/false);
877
878    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
879      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
880        // This is an extended namespace definition.
881        // Attach this namespace decl to the chain of extended namespace
882        // definitions.
883        NamespaceDecl *NextNS = OrigNS;
884        while (NextNS->getNextNamespace())
885          NextNS = NextNS->getNextNamespace();
886
887        NextNS->setNextNamespace(Namespc);
888        Namespc->setOriginalNamespace(OrigNS);
889
890        // We won't add this decl to the current scope. We want the namespace
891        // name to return the original namespace decl during a name lookup.
892      } else {
893        // This is an invalid name redefinition.
894        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
895          Namespc->getName());
896        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
897        Namespc->setInvalidDecl();
898        // Continue on to push Namespc as current DeclContext and return it.
899      }
900    } else {
901      // This namespace name is declared for the first time.
902      PushOnScopeChains(Namespc, DeclRegionScope);
903    }
904  }
905  else {
906    // FIXME: Handle anonymous namespaces
907  }
908
909  // Although we could have an invalid decl (i.e. the namespace name is a
910  // redefinition), push it as current DeclContext and try to continue parsing.
911  PushDeclContext(Namespc->getOriginalNamespace());
912  return Namespc;
913}
914
915/// ActOnFinishNamespaceDef - This callback is called after a namespace is
916/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
917void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
918  Decl *Dcl = static_cast<Decl *>(D);
919  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
920  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
921  Namespc->setRBracLoc(RBrace);
922  PopDeclContext();
923}
924
925
926/// AddCXXDirectInitializerToDecl - This action is called immediately after
927/// ActOnDeclarator, when a C++ direct initializer is present.
928/// e.g: "int x(1);"
929void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
930                                         ExprTy **ExprTys, unsigned NumExprs,
931                                         SourceLocation *CommaLocs,
932                                         SourceLocation RParenLoc) {
933  assert(NumExprs != 0 && ExprTys && "missing expressions");
934  Decl *RealDecl = static_cast<Decl *>(Dcl);
935
936  // If there is no declaration, there was an error parsing it.  Just ignore
937  // the initializer.
938  if (RealDecl == 0) {
939    for (unsigned i = 0; i != NumExprs; ++i)
940      delete static_cast<Expr *>(ExprTys[i]);
941    return;
942  }
943
944  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
945  if (!VDecl) {
946    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
947    RealDecl->setInvalidDecl();
948    return;
949  }
950
951  // We will treat direct-initialization as a copy-initialization:
952  //    int x(1);  -as-> int x = 1;
953  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
954  //
955  // Clients that want to distinguish between the two forms, can check for
956  // direct initializer using VarDecl::hasCXXDirectInitializer().
957  // A major benefit is that clients that don't particularly care about which
958  // exactly form was it (like the CodeGen) can handle both cases without
959  // special case code.
960
961  // C++ 8.5p11:
962  // The form of initialization (using parentheses or '=') is generally
963  // insignificant, but does matter when the entity being initialized has a
964  // class type.
965  QualType DeclInitType = VDecl->getType();
966  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
967    DeclInitType = Array->getElementType();
968
969  if (VDecl->getType()->isRecordType()) {
970    CXXConstructorDecl *Constructor
971      = PerformInitializationByConstructor(DeclInitType,
972                                           (Expr **)ExprTys, NumExprs,
973                                           VDecl->getLocation(),
974                                           SourceRange(VDecl->getLocation(),
975                                                       RParenLoc),
976                                           VDecl->getName(),
977                                           IK_Direct);
978    if (!Constructor) {
979      RealDecl->setInvalidDecl();
980    }
981
982    // Let clients know that initialization was done with a direct
983    // initializer.
984    VDecl->setCXXDirectInitializer(true);
985
986    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
987    // the initializer.
988    return;
989  }
990
991  if (NumExprs > 1) {
992    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg,
993         SourceRange(VDecl->getLocation(), RParenLoc));
994    RealDecl->setInvalidDecl();
995    return;
996  }
997
998  // Let clients know that initialization was done with a direct initializer.
999  VDecl->setCXXDirectInitializer(true);
1000
1001  assert(NumExprs == 1 && "Expected 1 expression");
1002  // Set the init expression, handles conversions.
1003  AddInitializerToDecl(Dcl, ExprTys[0]);
1004}
1005
1006/// PerformInitializationByConstructor - Perform initialization by
1007/// constructor (C++ [dcl.init]p14), which may occur as part of
1008/// direct-initialization or copy-initialization. We are initializing
1009/// an object of type @p ClassType with the given arguments @p
1010/// Args. @p Loc is the location in the source code where the
1011/// initializer occurs (e.g., a declaration, member initializer,
1012/// functional cast, etc.) while @p Range covers the whole
1013/// initialization. @p InitEntity is the entity being initialized,
1014/// which may by the name of a declaration or a type. @p Kind is the
1015/// kind of initialization we're performing, which affects whether
1016/// explicit constructors will be considered. When successful, returns
1017/// the constructor that will be used to perform the initialization;
1018/// when the initialization fails, emits a diagnostic and returns
1019/// null.
1020CXXConstructorDecl *
1021Sema::PerformInitializationByConstructor(QualType ClassType,
1022                                         Expr **Args, unsigned NumArgs,
1023                                         SourceLocation Loc, SourceRange Range,
1024                                         std::string InitEntity,
1025                                         InitializationKind Kind) {
1026  const RecordType *ClassRec = ClassType->getAsRecordType();
1027  assert(ClassRec && "Can only initialize a class type here");
1028
1029  // C++ [dcl.init]p14:
1030  //
1031  //   If the initialization is direct-initialization, or if it is
1032  //   copy-initialization where the cv-unqualified version of the
1033  //   source type is the same class as, or a derived class of, the
1034  //   class of the destination, constructors are considered. The
1035  //   applicable constructors are enumerated (13.3.1.3), and the
1036  //   best one is chosen through overload resolution (13.3). The
1037  //   constructor so selected is called to initialize the object,
1038  //   with the initializer expression(s) as its argument(s). If no
1039  //   constructor applies, or the overload resolution is ambiguous,
1040  //   the initialization is ill-formed.
1041  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1042  OverloadCandidateSet CandidateSet;
1043
1044  // Add constructors to the overload set.
1045  OverloadedFunctionDecl *Constructors
1046    = const_cast<OverloadedFunctionDecl *>(ClassDecl->getConstructors());
1047  for (OverloadedFunctionDecl::function_iterator Con
1048         = Constructors->function_begin();
1049       Con != Constructors->function_end(); ++Con) {
1050    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1051    if ((Kind == IK_Direct) ||
1052        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1053        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1054      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1055  }
1056
1057  OverloadCandidateSet::iterator Best;
1058  switch (BestViableFunction(CandidateSet, Best)) {
1059  case OR_Success:
1060    // We found a constructor. Return it.
1061    return cast<CXXConstructorDecl>(Best->Function);
1062
1063  case OR_No_Viable_Function:
1064    if (CandidateSet.empty())
1065      Diag(Loc, diag::err_ovl_no_viable_function_in_init,
1066           InitEntity, Range);
1067    else {
1068      Diag(Loc, diag::err_ovl_no_viable_function_in_init_with_cands,
1069           InitEntity, Range);
1070      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1071    }
1072    return 0;
1073
1074  case OR_Ambiguous:
1075    Diag(Loc, diag::err_ovl_ambiguous_init,
1076         InitEntity, Range);
1077    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1078    return 0;
1079  }
1080
1081  return 0;
1082}
1083
1084/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1085/// determine whether they are reference-related,
1086/// reference-compatible, reference-compatible with added
1087/// qualification, or incompatible, for use in C++ initialization by
1088/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1089/// type, and the first type (T1) is the pointee type of the reference
1090/// type being initialized.
1091Sema::ReferenceCompareResult
1092Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1093                                   bool& DerivedToBase) {
1094  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1095  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1096
1097  T1 = Context.getCanonicalType(T1);
1098  T2 = Context.getCanonicalType(T2);
1099  QualType UnqualT1 = T1.getUnqualifiedType();
1100  QualType UnqualT2 = T2.getUnqualifiedType();
1101
1102  // C++ [dcl.init.ref]p4:
1103  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1104  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1105  //   T1 is a base class of T2.
1106  if (UnqualT1 == UnqualT2)
1107    DerivedToBase = false;
1108  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1109    DerivedToBase = true;
1110  else
1111    return Ref_Incompatible;
1112
1113  // At this point, we know that T1 and T2 are reference-related (at
1114  // least).
1115
1116  // C++ [dcl.init.ref]p4:
1117  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1118  //   reference-related to T2 and cv1 is the same cv-qualification
1119  //   as, or greater cv-qualification than, cv2. For purposes of
1120  //   overload resolution, cases for which cv1 is greater
1121  //   cv-qualification than cv2 are identified as
1122  //   reference-compatible with added qualification (see 13.3.3.2).
1123  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1124    return Ref_Compatible;
1125  else if (T1.isMoreQualifiedThan(T2))
1126    return Ref_Compatible_With_Added_Qualification;
1127  else
1128    return Ref_Related;
1129}
1130
1131/// CheckReferenceInit - Check the initialization of a reference
1132/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1133/// the initializer (either a simple initializer or an initializer
1134/// list), and DeclType is the type of the declaration. When ICS is
1135/// non-null, this routine will compute the implicit conversion
1136/// sequence according to C++ [over.ics.ref] and will not produce any
1137/// diagnostics; when ICS is null, it will emit diagnostics when any
1138/// errors are found. Either way, a return value of true indicates
1139/// that there was a failure, a return value of false indicates that
1140/// the reference initialization succeeded.
1141///
1142/// When @p SuppressUserConversions, user-defined conversions are
1143/// suppressed.
1144bool
1145Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1146                         ImplicitConversionSequence *ICS,
1147                         bool SuppressUserConversions) {
1148  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1149
1150  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1151  QualType T2 = Init->getType();
1152
1153  // Compute some basic properties of the types and the initializer.
1154  bool DerivedToBase = false;
1155  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1156  ReferenceCompareResult RefRelationship
1157    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1158
1159  // Most paths end in a failed conversion.
1160  if (ICS)
1161    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1162
1163  // C++ [dcl.init.ref]p5:
1164  //   A reference to type “cv1 T1” is initialized by an expression
1165  //   of type “cv2 T2” as follows:
1166
1167  //     -- If the initializer expression
1168
1169  bool BindsDirectly = false;
1170  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1171  //          reference-compatible with “cv2 T2,” or
1172  //
1173  // Note that the bit-field check is skipped if we are just computing
1174  // the implicit conversion sequence (C++ [over.best.ics]p2).
1175  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1176      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1177    BindsDirectly = true;
1178
1179    if (ICS) {
1180      // C++ [over.ics.ref]p1:
1181      //   When a parameter of reference type binds directly (8.5.3)
1182      //   to an argument expression, the implicit conversion sequence
1183      //   is the identity conversion, unless the argument expression
1184      //   has a type that is a derived class of the parameter type,
1185      //   in which case the implicit conversion sequence is a
1186      //   derived-to-base Conversion (13.3.3.1).
1187      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1188      ICS->Standard.First = ICK_Identity;
1189      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1190      ICS->Standard.Third = ICK_Identity;
1191      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1192      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1193      ICS->Standard.ReferenceBinding = true;
1194      ICS->Standard.DirectBinding = true;
1195
1196      // Nothing more to do: the inaccessibility/ambiguity check for
1197      // derived-to-base conversions is suppressed when we're
1198      // computing the implicit conversion sequence (C++
1199      // [over.best.ics]p2).
1200      return false;
1201    } else {
1202      // Perform the conversion.
1203      // FIXME: Binding to a subobject of the lvalue is going to require
1204      // more AST annotation than this.
1205      ImpCastExprToType(Init, T1);
1206    }
1207  }
1208
1209  //       -- has a class type (i.e., T2 is a class type) and can be
1210  //          implicitly converted to an lvalue of type “cv3 T3,”
1211  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1212  //          92) (this conversion is selected by enumerating the
1213  //          applicable conversion functions (13.3.1.6) and choosing
1214  //          the best one through overload resolution (13.3)),
1215  // FIXME: Implement this second bullet, once we have conversion
1216  //        functions. Also remember C++ [over.ics.ref]p1, second part.
1217
1218  if (BindsDirectly) {
1219    // C++ [dcl.init.ref]p4:
1220    //   [...] In all cases where the reference-related or
1221    //   reference-compatible relationship of two types is used to
1222    //   establish the validity of a reference binding, and T1 is a
1223    //   base class of T2, a program that necessitates such a binding
1224    //   is ill-formed if T1 is an inaccessible (clause 11) or
1225    //   ambiguous (10.2) base class of T2.
1226    //
1227    // Note that we only check this condition when we're allowed to
1228    // complain about errors, because we should not be checking for
1229    // ambiguity (or inaccessibility) unless the reference binding
1230    // actually happens.
1231    if (DerivedToBase)
1232      return CheckDerivedToBaseConversion(T2, T1,
1233                                          Init->getSourceRange().getBegin(),
1234                                          Init->getSourceRange());
1235    else
1236      return false;
1237  }
1238
1239  //     -- Otherwise, the reference shall be to a non-volatile const
1240  //        type (i.e., cv1 shall be const).
1241  if (T1.getCVRQualifiers() != QualType::Const) {
1242    if (!ICS)
1243      Diag(Init->getSourceRange().getBegin(),
1244           diag::err_not_reference_to_const_init,
1245           T1.getAsString(),
1246           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1247           T2.getAsString(), Init->getSourceRange());
1248    return true;
1249  }
1250
1251  //       -- If the initializer expression is an rvalue, with T2 a
1252  //          class type, and “cv1 T1” is reference-compatible with
1253  //          “cv2 T2,” the reference is bound in one of the
1254  //          following ways (the choice is implementation-defined):
1255  //
1256  //          -- The reference is bound to the object represented by
1257  //             the rvalue (see 3.10) or to a sub-object within that
1258  //             object.
1259  //
1260  //          -- A temporary of type “cv1 T2” [sic] is created, and
1261  //             a constructor is called to copy the entire rvalue
1262  //             object into the temporary. The reference is bound to
1263  //             the temporary or to a sub-object within the
1264  //             temporary.
1265  //
1266  //
1267  //          The constructor that would be used to make the copy
1268  //          shall be callable whether or not the copy is actually
1269  //          done.
1270  //
1271  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1272  // freedom, so we will always take the first option and never build
1273  // a temporary in this case. FIXME: We will, however, have to check
1274  // for the presence of a copy constructor in C++98/03 mode.
1275  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1276      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1277    if (ICS) {
1278      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1279      ICS->Standard.First = ICK_Identity;
1280      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1281      ICS->Standard.Third = ICK_Identity;
1282      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1283      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1284      ICS->Standard.ReferenceBinding = true;
1285      ICS->Standard.DirectBinding = false;
1286    } else {
1287      // FIXME: Binding to a subobject of the rvalue is going to require
1288      // more AST annotation than this.
1289      ImpCastExprToType(Init, T1);
1290    }
1291    return false;
1292  }
1293
1294  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1295  //          initialized from the initializer expression using the
1296  //          rules for a non-reference copy initialization (8.5). The
1297  //          reference is then bound to the temporary. If T1 is
1298  //          reference-related to T2, cv1 must be the same
1299  //          cv-qualification as, or greater cv-qualification than,
1300  //          cv2; otherwise, the program is ill-formed.
1301  if (RefRelationship == Ref_Related) {
1302    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1303    // we would be reference-compatible or reference-compatible with
1304    // added qualification. But that wasn't the case, so the reference
1305    // initialization fails.
1306    if (!ICS)
1307      Diag(Init->getSourceRange().getBegin(),
1308           diag::err_reference_init_drops_quals,
1309           T1.getAsString(),
1310           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1311           T2.getAsString(), Init->getSourceRange());
1312    return true;
1313  }
1314
1315  // Actually try to convert the initializer to T1.
1316  if (ICS) {
1317    /// C++ [over.ics.ref]p2:
1318    ///
1319    ///   When a parameter of reference type is not bound directly to
1320    ///   an argument expression, the conversion sequence is the one
1321    ///   required to convert the argument expression to the
1322    ///   underlying type of the reference according to
1323    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1324    ///   to copy-initializing a temporary of the underlying type with
1325    ///   the argument expression. Any difference in top-level
1326    ///   cv-qualification is subsumed by the initialization itself
1327    ///   and does not constitute a conversion.
1328    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1329    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1330  } else {
1331    return PerformImplicitConversion(Init, T1);
1332  }
1333}
1334