SemaDeclCXX.cpp revision 66e3067d9821c75f3119e07f087cfb0d30f9c2ed
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // Check that the default argument is well-formed
128  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
129  if (DefaultArgChecker.Visit(DefaultArg.get())) {
130    Param->setInvalidDecl();
131    return;
132  }
133
134  // C++ [dcl.fct.default]p5
135  //   A default argument expression is implicitly converted (clause
136  //   4) to the parameter type. The default argument expression has
137  //   the same semantic constraints as the initializer expression in
138  //   a declaration of a variable of the parameter type, using the
139  //   copy-initialization semantics (8.5).
140  Expr *DefaultArgPtr = DefaultArg.get();
141  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
142                                                 EqualLoc,
143                                                 Param->getDeclName(),
144                                                 /*DirectInit=*/false);
145  if (DefaultArgPtr != DefaultArg.get()) {
146    DefaultArg.take();
147    DefaultArg.reset(DefaultArgPtr);
148  }
149  if (DefaultInitFailed) {
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS, true);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
392  assert(CXXBaseDecl && "Base type is not a C++ type");
393  if (!CXXBaseDecl->isEmpty())
394    Class->setEmpty(false);
395  if (CXXBaseDecl->isPolymorphic())
396    Class->setPolymorphic(true);
397
398  // C++ [dcl.init.aggr]p1:
399  //   An aggregate is [...] a class with [...] no base classes [...].
400  Class->setAggregate(false);
401  Class->setPOD(false);
402
403  if (Virtual) {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialConstructor(false);
407
408    // C++ [class.copy]p6:
409    //   A copy constructor is trivial if its class has no virtual base classes.
410    Class->setHasTrivialCopyConstructor(false);
411
412    // C++ [class.copy]p11:
413    //   A copy assignment operator is trivial if its class has no virtual
414    //   base classes.
415    Class->setHasTrivialCopyAssignment(false);
416
417    // C++0x [meta.unary.prop] is_empty:
418    //    T is a class type, but not a union type, with ... no virtual base
419    //    classes
420    Class->setEmpty(false);
421  } else {
422    // C++ [class.ctor]p5:
423    //   A constructor is trivial if all the direct base classes of its
424    //   class have trivial constructors.
425    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
426      Class->setHasTrivialConstructor(false);
427
428    // C++ [class.copy]p6:
429    //   A copy constructor is trivial if all the direct base classes of its
430    //   class have trivial copy constructors.
431    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
432      Class->setHasTrivialCopyConstructor(false);
433
434    // C++ [class.copy]p11:
435    //   A copy assignment operator is trivial if all the direct base classes
436    //   of its class have trivial copy assignment operators.
437    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
438      Class->setHasTrivialCopyAssignment(false);
439  }
440
441  // C++ [class.ctor]p3:
442  //   A destructor is trivial if all the direct base classes of its class
443  //   have trivial destructors.
444  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
445    Class->setHasTrivialDestructor(false);
446
447  // Create the base specifier.
448  // FIXME: Allocate via ASTContext?
449  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
450                              Class->getTagKind() == RecordDecl::TK_class,
451                              Access, BaseType);
452}
453
454/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
455/// one entry in the base class list of a class specifier, for
456/// example:
457///    class foo : public bar, virtual private baz {
458/// 'public bar' and 'virtual private baz' are each base-specifiers.
459Sema::BaseResult
460Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
461                         bool Virtual, AccessSpecifier Access,
462                         TypeTy *basetype, SourceLocation BaseLoc) {
463  if (!classdecl)
464    return true;
465
466  AdjustDeclIfTemplate(classdecl);
467  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
468  QualType BaseType = GetTypeFromParser(basetype);
469  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
470                                                      Virtual, Access,
471                                                      BaseType, BaseLoc))
472    return BaseSpec;
473
474  return true;
475}
476
477/// \brief Performs the actual work of attaching the given base class
478/// specifiers to a C++ class.
479bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
480                                unsigned NumBases) {
481 if (NumBases == 0)
482    return false;
483
484  // Used to keep track of which base types we have already seen, so
485  // that we can properly diagnose redundant direct base types. Note
486  // that the key is always the unqualified canonical type of the base
487  // class.
488  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
489
490  // Copy non-redundant base specifiers into permanent storage.
491  unsigned NumGoodBases = 0;
492  bool Invalid = false;
493  for (unsigned idx = 0; idx < NumBases; ++idx) {
494    QualType NewBaseType
495      = Context.getCanonicalType(Bases[idx]->getType());
496    NewBaseType = NewBaseType.getUnqualifiedType();
497
498    if (KnownBaseTypes[NewBaseType]) {
499      // C++ [class.mi]p3:
500      //   A class shall not be specified as a direct base class of a
501      //   derived class more than once.
502      Diag(Bases[idx]->getSourceRange().getBegin(),
503           diag::err_duplicate_base_class)
504        << KnownBaseTypes[NewBaseType]->getType()
505        << Bases[idx]->getSourceRange();
506
507      // Delete the duplicate base class specifier; we're going to
508      // overwrite its pointer later.
509      Context.Deallocate(Bases[idx]);
510
511      Invalid = true;
512    } else {
513      // Okay, add this new base class.
514      KnownBaseTypes[NewBaseType] = Bases[idx];
515      Bases[NumGoodBases++] = Bases[idx];
516    }
517  }
518
519  // Attach the remaining base class specifiers to the derived class.
520  Class->setBases(Context, Bases, NumGoodBases);
521
522  // Delete the remaining (good) base class specifiers, since their
523  // data has been copied into the CXXRecordDecl.
524  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
525    Context.Deallocate(Bases[idx]);
526
527  return Invalid;
528}
529
530/// ActOnBaseSpecifiers - Attach the given base specifiers to the
531/// class, after checking whether there are any duplicate base
532/// classes.
533void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
534                               unsigned NumBases) {
535  if (!ClassDecl || !Bases || !NumBases)
536    return;
537
538  AdjustDeclIfTemplate(ClassDecl);
539  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
540                       (CXXBaseSpecifier**)(Bases), NumBases);
541}
542
543//===----------------------------------------------------------------------===//
544// C++ class member Handling
545//===----------------------------------------------------------------------===//
546
547/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
548/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
549/// bitfield width if there is one and 'InitExpr' specifies the initializer if
550/// any.
551Sema::DeclPtrTy
552Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
553                               MultiTemplateParamsArg TemplateParameterLists,
554                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
555  const DeclSpec &DS = D.getDeclSpec();
556  DeclarationName Name = GetNameForDeclarator(D);
557  Expr *BitWidth = static_cast<Expr*>(BW);
558  Expr *Init = static_cast<Expr*>(InitExpr);
559  SourceLocation Loc = D.getIdentifierLoc();
560
561  bool isFunc = D.isFunctionDeclarator();
562
563  assert(!DS.isFriendSpecified());
564
565  // C++ 9.2p6: A member shall not be declared to have automatic storage
566  // duration (auto, register) or with the extern storage-class-specifier.
567  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
568  // data members and cannot be applied to names declared const or static,
569  // and cannot be applied to reference members.
570  switch (DS.getStorageClassSpec()) {
571    case DeclSpec::SCS_unspecified:
572    case DeclSpec::SCS_typedef:
573    case DeclSpec::SCS_static:
574      // FALL THROUGH.
575      break;
576    case DeclSpec::SCS_mutable:
577      if (isFunc) {
578        if (DS.getStorageClassSpecLoc().isValid())
579          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
580        else
581          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
582
583        // FIXME: It would be nicer if the keyword was ignored only for this
584        // declarator. Otherwise we could get follow-up errors.
585        D.getMutableDeclSpec().ClearStorageClassSpecs();
586      } else {
587        QualType T = GetTypeForDeclarator(D, S);
588        diag::kind err = static_cast<diag::kind>(0);
589        if (T->isReferenceType())
590          err = diag::err_mutable_reference;
591        else if (T.isConstQualified())
592          err = diag::err_mutable_const;
593        if (err != 0) {
594          if (DS.getStorageClassSpecLoc().isValid())
595            Diag(DS.getStorageClassSpecLoc(), err);
596          else
597            Diag(DS.getThreadSpecLoc(), err);
598          // FIXME: It would be nicer if the keyword was ignored only for this
599          // declarator. Otherwise we could get follow-up errors.
600          D.getMutableDeclSpec().ClearStorageClassSpecs();
601        }
602      }
603      break;
604    default:
605      if (DS.getStorageClassSpecLoc().isValid())
606        Diag(DS.getStorageClassSpecLoc(),
607             diag::err_storageclass_invalid_for_member);
608      else
609        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
610      D.getMutableDeclSpec().ClearStorageClassSpecs();
611  }
612
613  if (!isFunc &&
614      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
615      D.getNumTypeObjects() == 0) {
616    // Check also for this case:
617    //
618    // typedef int f();
619    // f a;
620    //
621    QualType TDType = GetTypeFromParser(DS.getTypeRep());
622    isFunc = TDType->isFunctionType();
623  }
624
625  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
626                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
627                      !isFunc);
628
629  Decl *Member;
630  if (isInstField) {
631    // FIXME: Check for template parameters!
632    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
633                         AS);
634    assert(Member && "HandleField never returns null");
635  } else {
636    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
637               .getAs<Decl>();
638    if (!Member) {
639      if (BitWidth) DeleteExpr(BitWidth);
640      return DeclPtrTy();
641    }
642
643    // Non-instance-fields can't have a bitfield.
644    if (BitWidth) {
645      if (Member->isInvalidDecl()) {
646        // don't emit another diagnostic.
647      } else if (isa<VarDecl>(Member)) {
648        // C++ 9.6p3: A bit-field shall not be a static member.
649        // "static member 'A' cannot be a bit-field"
650        Diag(Loc, diag::err_static_not_bitfield)
651          << Name << BitWidth->getSourceRange();
652      } else if (isa<TypedefDecl>(Member)) {
653        // "typedef member 'x' cannot be a bit-field"
654        Diag(Loc, diag::err_typedef_not_bitfield)
655          << Name << BitWidth->getSourceRange();
656      } else {
657        // A function typedef ("typedef int f(); f a;").
658        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
659        Diag(Loc, diag::err_not_integral_type_bitfield)
660          << Name << cast<ValueDecl>(Member)->getType()
661          << BitWidth->getSourceRange();
662      }
663
664      DeleteExpr(BitWidth);
665      BitWidth = 0;
666      Member->setInvalidDecl();
667    }
668
669    Member->setAccess(AS);
670
671    // If we have declared a member function template, set the access of the
672    // templated declaration as well.
673    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
674      FunTmpl->getTemplatedDecl()->setAccess(AS);
675  }
676
677  assert((Name || isInstField) && "No identifier for non-field ?");
678
679  if (Init)
680    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
681  if (Deleted) // FIXME: Source location is not very good.
682    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
683
684  if (isInstField) {
685    FieldCollector->Add(cast<FieldDecl>(Member));
686    return DeclPtrTy();
687  }
688  return DeclPtrTy::make(Member);
689}
690
691/// ActOnMemInitializer - Handle a C++ member initializer.
692Sema::MemInitResult
693Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
694                          Scope *S,
695                          const CXXScopeSpec &SS,
696                          IdentifierInfo *MemberOrBase,
697                          TypeTy *TemplateTypeTy,
698                          SourceLocation IdLoc,
699                          SourceLocation LParenLoc,
700                          ExprTy **Args, unsigned NumArgs,
701                          SourceLocation *CommaLocs,
702                          SourceLocation RParenLoc) {
703  if (!ConstructorD)
704    return true;
705
706  AdjustDeclIfTemplate(ConstructorD);
707
708  CXXConstructorDecl *Constructor
709    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
710  if (!Constructor) {
711    // The user wrote a constructor initializer on a function that is
712    // not a C++ constructor. Ignore the error for now, because we may
713    // have more member initializers coming; we'll diagnose it just
714    // once in ActOnMemInitializers.
715    return true;
716  }
717
718  CXXRecordDecl *ClassDecl = Constructor->getParent();
719
720  // C++ [class.base.init]p2:
721  //   Names in a mem-initializer-id are looked up in the scope of the
722  //   constructor’s class and, if not found in that scope, are looked
723  //   up in the scope containing the constructor’s
724  //   definition. [Note: if the constructor’s class contains a member
725  //   with the same name as a direct or virtual base class of the
726  //   class, a mem-initializer-id naming the member or base class and
727  //   composed of a single identifier refers to the class member. A
728  //   mem-initializer-id for the hidden base class may be specified
729  //   using a qualified name. ]
730  if (!SS.getScopeRep() && !TemplateTypeTy) {
731    // Look for a member, first.
732    FieldDecl *Member = 0;
733    DeclContext::lookup_result Result
734      = ClassDecl->lookup(MemberOrBase);
735    if (Result.first != Result.second)
736      Member = dyn_cast<FieldDecl>(*Result.first);
737
738    // FIXME: Handle members of an anonymous union.
739
740    if (Member)
741      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
742                                    RParenLoc);
743  }
744  // It didn't name a member, so see if it names a class.
745  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
746                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
747  if (!BaseTy)
748    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
749      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
750
751  QualType BaseType = GetTypeFromParser(BaseTy);
752
753  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
754                              RParenLoc, ClassDecl);
755}
756
757Sema::MemInitResult
758Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
759                             unsigned NumArgs, SourceLocation IdLoc,
760                             SourceLocation RParenLoc) {
761  bool HasDependentArg = false;
762  for (unsigned i = 0; i < NumArgs; i++)
763    HasDependentArg |= Args[i]->isTypeDependent();
764
765  CXXConstructorDecl *C = 0;
766  QualType FieldType = Member->getType();
767  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
768    FieldType = Array->getElementType();
769  if (FieldType->isDependentType()) {
770    // Can't check init for dependent type.
771  } else if (FieldType->getAs<RecordType>()) {
772    if (!HasDependentArg)
773      C = PerformInitializationByConstructor(
774            FieldType, (Expr **)Args, NumArgs, IdLoc,
775            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
776  } else if (NumArgs != 1) {
777    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
778                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
779  } else if (!HasDependentArg) {
780    Expr *NewExp = (Expr*)Args[0];
781    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
782      return true;
783    Args[0] = NewExp;
784  }
785  // FIXME: Perform direct initialization of the member.
786  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
787                                                  NumArgs, C, IdLoc);
788}
789
790Sema::MemInitResult
791Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
792                           unsigned NumArgs, SourceLocation IdLoc,
793                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
794  bool HasDependentArg = false;
795  for (unsigned i = 0; i < NumArgs; i++)
796    HasDependentArg |= Args[i]->isTypeDependent();
797
798  if (!BaseType->isDependentType()) {
799    if (!BaseType->isRecordType())
800      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
801        << BaseType << SourceRange(IdLoc, RParenLoc);
802
803    // C++ [class.base.init]p2:
804    //   [...] Unless the mem-initializer-id names a nonstatic data
805    //   member of the constructor’s class or a direct or virtual base
806    //   of that class, the mem-initializer is ill-formed. A
807    //   mem-initializer-list can initialize a base class using any
808    //   name that denotes that base class type.
809
810    // First, check for a direct base class.
811    const CXXBaseSpecifier *DirectBaseSpec = 0;
812    for (CXXRecordDecl::base_class_const_iterator Base =
813         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
814      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
815          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
816        // We found a direct base of this type. That's what we're
817        // initializing.
818        DirectBaseSpec = &*Base;
819        break;
820      }
821    }
822
823    // Check for a virtual base class.
824    // FIXME: We might be able to short-circuit this if we know in advance that
825    // there are no virtual bases.
826    const CXXBaseSpecifier *VirtualBaseSpec = 0;
827    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
828      // We haven't found a base yet; search the class hierarchy for a
829      // virtual base class.
830      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
831                      /*DetectVirtual=*/false);
832      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
833        for (BasePaths::paths_iterator Path = Paths.begin();
834             Path != Paths.end(); ++Path) {
835          if (Path->back().Base->isVirtual()) {
836            VirtualBaseSpec = Path->back().Base;
837            break;
838          }
839        }
840      }
841    }
842
843    // C++ [base.class.init]p2:
844    //   If a mem-initializer-id is ambiguous because it designates both
845    //   a direct non-virtual base class and an inherited virtual base
846    //   class, the mem-initializer is ill-formed.
847    if (DirectBaseSpec && VirtualBaseSpec)
848      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
849        << BaseType << SourceRange(IdLoc, RParenLoc);
850    // C++ [base.class.init]p2:
851    // Unless the mem-initializer-id names a nonstatic data membeer of the
852    // constructor's class ot a direst or virtual base of that class, the
853    // mem-initializer is ill-formed.
854    if (!DirectBaseSpec && !VirtualBaseSpec)
855      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
856      << BaseType << ClassDecl->getNameAsCString()
857      << SourceRange(IdLoc, RParenLoc);
858  }
859
860  CXXConstructorDecl *C = 0;
861  if (!BaseType->isDependentType() && !HasDependentArg) {
862    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
863                                            Context.getCanonicalType(BaseType));
864    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
865                                           IdLoc, SourceRange(IdLoc, RParenLoc),
866                                           Name, IK_Direct);
867  }
868
869  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
870                                                  NumArgs, C, IdLoc);
871}
872
873void
874Sema::BuildBaseOrMemberInitializers(ASTContext &C,
875                                 CXXConstructorDecl *Constructor,
876                                 CXXBaseOrMemberInitializer **Initializers,
877                                 unsigned NumInitializers
878                                 ) {
879  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
880  llvm::SmallVector<FieldDecl *, 4>Members;
881
882  Constructor->setBaseOrMemberInitializers(C,
883                                           Initializers, NumInitializers,
884                                           Bases, Members);
885  for (unsigned int i = 0; i < Bases.size(); i++)
886    Diag(Bases[i]->getSourceRange().getBegin(),
887         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
888  for (unsigned int i = 0; i < Members.size(); i++)
889    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
890          << 1 << Members[i]->getType();
891}
892
893static void *GetKeyForTopLevelField(FieldDecl *Field) {
894  // For anonymous unions, use the class declaration as the key.
895  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
896    if (RT->getDecl()->isAnonymousStructOrUnion())
897      return static_cast<void *>(RT->getDecl());
898  }
899  return static_cast<void *>(Field);
900}
901
902static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
903                             bool MemberMaybeAnon=false) {
904  // For fields injected into the class via declaration of an anonymous union,
905  // use its anonymous union class declaration as the unique key.
906  if (FieldDecl *Field = Member->getMember()) {
907    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
908    // data member of the class. Data member used in the initializer list is
909    // in AnonUnionMember field.
910    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
911      Field = Member->getAnonUnionMember();
912    if (Field->getDeclContext()->isRecord()) {
913      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
914      if (RD->isAnonymousStructOrUnion())
915        return static_cast<void *>(RD);
916    }
917    return static_cast<void *>(Field);
918  }
919  return static_cast<RecordType *>(Member->getBaseClass());
920}
921
922void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
923                                SourceLocation ColonLoc,
924                                MemInitTy **MemInits, unsigned NumMemInits) {
925  if (!ConstructorDecl)
926    return;
927
928  AdjustDeclIfTemplate(ConstructorDecl);
929
930  CXXConstructorDecl *Constructor
931    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
932
933  if (!Constructor) {
934    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
935    return;
936  }
937  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
938  bool err = false;
939  for (unsigned i = 0; i < NumMemInits; i++) {
940    CXXBaseOrMemberInitializer *Member =
941      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
942    void *KeyToMember = GetKeyForMember(Member);
943    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
944    if (!PrevMember) {
945      PrevMember = Member;
946      continue;
947    }
948    if (FieldDecl *Field = Member->getMember())
949      Diag(Member->getSourceLocation(),
950           diag::error_multiple_mem_initialization)
951      << Field->getNameAsString();
952    else {
953      Type *BaseClass = Member->getBaseClass();
954      assert(BaseClass && "ActOnMemInitializers - neither field or base");
955      Diag(Member->getSourceLocation(),
956           diag::error_multiple_base_initialization)
957        << BaseClass->getDesugaredType(true);
958    }
959    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
960      << 0;
961    err = true;
962  }
963  if (!err)
964    BuildBaseOrMemberInitializers(Context, Constructor,
965                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
966                      NumMemInits);
967
968  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
969               != Diagnostic::Ignored ||
970               Diags.getDiagnosticLevel(diag::warn_field_initialized)
971               != Diagnostic::Ignored)) {
972    // Also issue warning if order of ctor-initializer list does not match order
973    // of 1) base class declarations and 2) order of non-static data members.
974    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
975
976    CXXRecordDecl *ClassDecl
977      = cast<CXXRecordDecl>(Constructor->getDeclContext());
978    // Push virtual bases before others.
979    for (CXXRecordDecl::base_class_iterator VBase =
980         ClassDecl->vbases_begin(),
981         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
982      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
983
984    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
985         E = ClassDecl->bases_end(); Base != E; ++Base) {
986      // Virtuals are alread in the virtual base list and are constructed
987      // first.
988      if (Base->isVirtual())
989        continue;
990      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
991    }
992
993    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
994         E = ClassDecl->field_end(); Field != E; ++Field)
995      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
996
997    int Last = AllBaseOrMembers.size();
998    int curIndex = 0;
999    CXXBaseOrMemberInitializer *PrevMember = 0;
1000    for (unsigned i = 0; i < NumMemInits; i++) {
1001      CXXBaseOrMemberInitializer *Member =
1002        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1003      void *MemberInCtorList = GetKeyForMember(Member, true);
1004
1005      for (; curIndex < Last; curIndex++)
1006        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1007          break;
1008      if (curIndex == Last) {
1009        assert(PrevMember && "Member not in member list?!");
1010        // Initializer as specified in ctor-initializer list is out of order.
1011        // Issue a warning diagnostic.
1012        if (PrevMember->isBaseInitializer()) {
1013          // Diagnostics is for an initialized base class.
1014          Type *BaseClass = PrevMember->getBaseClass();
1015          Diag(PrevMember->getSourceLocation(),
1016               diag::warn_base_initialized)
1017                << BaseClass->getDesugaredType(true);
1018        } else {
1019          FieldDecl *Field = PrevMember->getMember();
1020          Diag(PrevMember->getSourceLocation(),
1021               diag::warn_field_initialized)
1022            << Field->getNameAsString();
1023        }
1024        // Also the note!
1025        if (FieldDecl *Field = Member->getMember())
1026          Diag(Member->getSourceLocation(),
1027               diag::note_fieldorbase_initialized_here) << 0
1028            << Field->getNameAsString();
1029        else {
1030          Type *BaseClass = Member->getBaseClass();
1031          Diag(Member->getSourceLocation(),
1032               diag::note_fieldorbase_initialized_here) << 1
1033            << BaseClass->getDesugaredType(true);
1034        }
1035        for (curIndex = 0; curIndex < Last; curIndex++)
1036          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1037            break;
1038      }
1039      PrevMember = Member;
1040    }
1041  }
1042}
1043
1044void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1045  if (!CDtorDecl)
1046    return;
1047
1048  AdjustDeclIfTemplate(CDtorDecl);
1049
1050  if (CXXConstructorDecl *Constructor
1051      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1052    BuildBaseOrMemberInitializers(Context,
1053                                     Constructor,
1054                                     (CXXBaseOrMemberInitializer **)0, 0);
1055}
1056
1057namespace {
1058  /// PureVirtualMethodCollector - traverses a class and its superclasses
1059  /// and determines if it has any pure virtual methods.
1060  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1061    ASTContext &Context;
1062
1063  public:
1064    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1065
1066  private:
1067    MethodList Methods;
1068
1069    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1070
1071  public:
1072    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1073      : Context(Ctx) {
1074
1075      MethodList List;
1076      Collect(RD, List);
1077
1078      // Copy the temporary list to methods, and make sure to ignore any
1079      // null entries.
1080      for (size_t i = 0, e = List.size(); i != e; ++i) {
1081        if (List[i])
1082          Methods.push_back(List[i]);
1083      }
1084    }
1085
1086    bool empty() const { return Methods.empty(); }
1087
1088    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1089    MethodList::const_iterator methods_end() { return Methods.end(); }
1090  };
1091
1092  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1093                                           MethodList& Methods) {
1094    // First, collect the pure virtual methods for the base classes.
1095    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1096         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1097      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1098        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1099        if (BaseDecl && BaseDecl->isAbstract())
1100          Collect(BaseDecl, Methods);
1101      }
1102    }
1103
1104    // Next, zero out any pure virtual methods that this class overrides.
1105    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1106
1107    MethodSetTy OverriddenMethods;
1108    size_t MethodsSize = Methods.size();
1109
1110    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1111         i != e; ++i) {
1112      // Traverse the record, looking for methods.
1113      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1114        // If the method is pure virtual, add it to the methods vector.
1115        if (MD->isPure()) {
1116          Methods.push_back(MD);
1117          continue;
1118        }
1119
1120        // Otherwise, record all the overridden methods in our set.
1121        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1122             E = MD->end_overridden_methods(); I != E; ++I) {
1123          // Keep track of the overridden methods.
1124          OverriddenMethods.insert(*I);
1125        }
1126      }
1127    }
1128
1129    // Now go through the methods and zero out all the ones we know are
1130    // overridden.
1131    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1132      if (OverriddenMethods.count(Methods[i]))
1133        Methods[i] = 0;
1134    }
1135
1136  }
1137}
1138
1139bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1140                                  unsigned DiagID, AbstractDiagSelID SelID,
1141                                  const CXXRecordDecl *CurrentRD) {
1142
1143  if (!getLangOptions().CPlusPlus)
1144    return false;
1145
1146  if (const ArrayType *AT = Context.getAsArrayType(T))
1147    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1148                                  CurrentRD);
1149
1150  if (const PointerType *PT = T->getAs<PointerType>()) {
1151    // Find the innermost pointer type.
1152    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1153      PT = T;
1154
1155    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1156      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1157                                    CurrentRD);
1158  }
1159
1160  const RecordType *RT = T->getAs<RecordType>();
1161  if (!RT)
1162    return false;
1163
1164  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1165  if (!RD)
1166    return false;
1167
1168  if (CurrentRD && CurrentRD != RD)
1169    return false;
1170
1171  if (!RD->isAbstract())
1172    return false;
1173
1174  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1175
1176  // Check if we've already emitted the list of pure virtual functions for this
1177  // class.
1178  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1179    return true;
1180
1181  PureVirtualMethodCollector Collector(Context, RD);
1182
1183  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1184       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1185    const CXXMethodDecl *MD = *I;
1186
1187    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1188      MD->getDeclName();
1189  }
1190
1191  if (!PureVirtualClassDiagSet)
1192    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1193  PureVirtualClassDiagSet->insert(RD);
1194
1195  return true;
1196}
1197
1198namespace {
1199  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1200    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1201    Sema &SemaRef;
1202    CXXRecordDecl *AbstractClass;
1203
1204    bool VisitDeclContext(const DeclContext *DC) {
1205      bool Invalid = false;
1206
1207      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1208           E = DC->decls_end(); I != E; ++I)
1209        Invalid |= Visit(*I);
1210
1211      return Invalid;
1212    }
1213
1214  public:
1215    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1216      : SemaRef(SemaRef), AbstractClass(ac) {
1217        Visit(SemaRef.Context.getTranslationUnitDecl());
1218    }
1219
1220    bool VisitFunctionDecl(const FunctionDecl *FD) {
1221      if (FD->isThisDeclarationADefinition()) {
1222        // No need to do the check if we're in a definition, because it requires
1223        // that the return/param types are complete.
1224        // because that requires
1225        return VisitDeclContext(FD);
1226      }
1227
1228      // Check the return type.
1229      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1230      bool Invalid =
1231        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1232                                       diag::err_abstract_type_in_decl,
1233                                       Sema::AbstractReturnType,
1234                                       AbstractClass);
1235
1236      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1237           E = FD->param_end(); I != E; ++I) {
1238        const ParmVarDecl *VD = *I;
1239        Invalid |=
1240          SemaRef.RequireNonAbstractType(VD->getLocation(),
1241                                         VD->getOriginalType(),
1242                                         diag::err_abstract_type_in_decl,
1243                                         Sema::AbstractParamType,
1244                                         AbstractClass);
1245      }
1246
1247      return Invalid;
1248    }
1249
1250    bool VisitDecl(const Decl* D) {
1251      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1252        return VisitDeclContext(DC);
1253
1254      return false;
1255    }
1256  };
1257}
1258
1259void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1260                                             DeclPtrTy TagDecl,
1261                                             SourceLocation LBrac,
1262                                             SourceLocation RBrac) {
1263  if (!TagDecl)
1264    return;
1265
1266  AdjustDeclIfTemplate(TagDecl);
1267  ActOnFields(S, RLoc, TagDecl,
1268              (DeclPtrTy*)FieldCollector->getCurFields(),
1269              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1270
1271  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1272  if (!RD->isAbstract()) {
1273    // Collect all the pure virtual methods and see if this is an abstract
1274    // class after all.
1275    PureVirtualMethodCollector Collector(Context, RD);
1276    if (!Collector.empty())
1277      RD->setAbstract(true);
1278  }
1279
1280  if (RD->isAbstract())
1281    AbstractClassUsageDiagnoser(*this, RD);
1282
1283  if (!RD->isDependentType())
1284    AddImplicitlyDeclaredMembersToClass(RD);
1285}
1286
1287/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1288/// special functions, such as the default constructor, copy
1289/// constructor, or destructor, to the given C++ class (C++
1290/// [special]p1).  This routine can only be executed just before the
1291/// definition of the class is complete.
1292void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1293  CanQualType ClassType
1294    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1295
1296  // FIXME: Implicit declarations have exception specifications, which are
1297  // the union of the specifications of the implicitly called functions.
1298
1299  if (!ClassDecl->hasUserDeclaredConstructor()) {
1300    // C++ [class.ctor]p5:
1301    //   A default constructor for a class X is a constructor of class X
1302    //   that can be called without an argument. If there is no
1303    //   user-declared constructor for class X, a default constructor is
1304    //   implicitly declared. An implicitly-declared default constructor
1305    //   is an inline public member of its class.
1306    DeclarationName Name
1307      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1308    CXXConstructorDecl *DefaultCon =
1309      CXXConstructorDecl::Create(Context, ClassDecl,
1310                                 ClassDecl->getLocation(), Name,
1311                                 Context.getFunctionType(Context.VoidTy,
1312                                                         0, 0, false, 0),
1313                                 /*DInfo=*/0,
1314                                 /*isExplicit=*/false,
1315                                 /*isInline=*/true,
1316                                 /*isImplicitlyDeclared=*/true);
1317    DefaultCon->setAccess(AS_public);
1318    DefaultCon->setImplicit();
1319    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1320    ClassDecl->addDecl(DefaultCon);
1321  }
1322
1323  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1324    // C++ [class.copy]p4:
1325    //   If the class definition does not explicitly declare a copy
1326    //   constructor, one is declared implicitly.
1327
1328    // C++ [class.copy]p5:
1329    //   The implicitly-declared copy constructor for a class X will
1330    //   have the form
1331    //
1332    //       X::X(const X&)
1333    //
1334    //   if
1335    bool HasConstCopyConstructor = true;
1336
1337    //     -- each direct or virtual base class B of X has a copy
1338    //        constructor whose first parameter is of type const B& or
1339    //        const volatile B&, and
1340    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1341         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1342      const CXXRecordDecl *BaseClassDecl
1343        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1344      HasConstCopyConstructor
1345        = BaseClassDecl->hasConstCopyConstructor(Context);
1346    }
1347
1348    //     -- for all the nonstatic data members of X that are of a
1349    //        class type M (or array thereof), each such class type
1350    //        has a copy constructor whose first parameter is of type
1351    //        const M& or const volatile M&.
1352    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1353         HasConstCopyConstructor && Field != ClassDecl->field_end();
1354         ++Field) {
1355      QualType FieldType = (*Field)->getType();
1356      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1357        FieldType = Array->getElementType();
1358      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1359        const CXXRecordDecl *FieldClassDecl
1360          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1361        HasConstCopyConstructor
1362          = FieldClassDecl->hasConstCopyConstructor(Context);
1363      }
1364    }
1365
1366    //   Otherwise, the implicitly declared copy constructor will have
1367    //   the form
1368    //
1369    //       X::X(X&)
1370    QualType ArgType = ClassType;
1371    if (HasConstCopyConstructor)
1372      ArgType = ArgType.withConst();
1373    ArgType = Context.getLValueReferenceType(ArgType);
1374
1375    //   An implicitly-declared copy constructor is an inline public
1376    //   member of its class.
1377    DeclarationName Name
1378      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1379    CXXConstructorDecl *CopyConstructor
1380      = CXXConstructorDecl::Create(Context, ClassDecl,
1381                                   ClassDecl->getLocation(), Name,
1382                                   Context.getFunctionType(Context.VoidTy,
1383                                                           &ArgType, 1,
1384                                                           false, 0),
1385                                   /*DInfo=*/0,
1386                                   /*isExplicit=*/false,
1387                                   /*isInline=*/true,
1388                                   /*isImplicitlyDeclared=*/true);
1389    CopyConstructor->setAccess(AS_public);
1390    CopyConstructor->setImplicit();
1391    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1392
1393    // Add the parameter to the constructor.
1394    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1395                                                 ClassDecl->getLocation(),
1396                                                 /*IdentifierInfo=*/0,
1397                                                 ArgType, /*DInfo=*/0,
1398                                                 VarDecl::None, 0);
1399    CopyConstructor->setParams(Context, &FromParam, 1);
1400    ClassDecl->addDecl(CopyConstructor);
1401  }
1402
1403  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1404    // Note: The following rules are largely analoguous to the copy
1405    // constructor rules. Note that virtual bases are not taken into account
1406    // for determining the argument type of the operator. Note also that
1407    // operators taking an object instead of a reference are allowed.
1408    //
1409    // C++ [class.copy]p10:
1410    //   If the class definition does not explicitly declare a copy
1411    //   assignment operator, one is declared implicitly.
1412    //   The implicitly-defined copy assignment operator for a class X
1413    //   will have the form
1414    //
1415    //       X& X::operator=(const X&)
1416    //
1417    //   if
1418    bool HasConstCopyAssignment = true;
1419
1420    //       -- each direct base class B of X has a copy assignment operator
1421    //          whose parameter is of type const B&, const volatile B& or B,
1422    //          and
1423    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1424         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1425      const CXXRecordDecl *BaseClassDecl
1426        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1427      const CXXMethodDecl *MD = 0;
1428      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1429                                                                     MD);
1430    }
1431
1432    //       -- for all the nonstatic data members of X that are of a class
1433    //          type M (or array thereof), each such class type has a copy
1434    //          assignment operator whose parameter is of type const M&,
1435    //          const volatile M& or M.
1436    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1437         HasConstCopyAssignment && Field != ClassDecl->field_end();
1438         ++Field) {
1439      QualType FieldType = (*Field)->getType();
1440      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1441        FieldType = Array->getElementType();
1442      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1443        const CXXRecordDecl *FieldClassDecl
1444          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1445        const CXXMethodDecl *MD = 0;
1446        HasConstCopyAssignment
1447          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1448      }
1449    }
1450
1451    //   Otherwise, the implicitly declared copy assignment operator will
1452    //   have the form
1453    //
1454    //       X& X::operator=(X&)
1455    QualType ArgType = ClassType;
1456    QualType RetType = Context.getLValueReferenceType(ArgType);
1457    if (HasConstCopyAssignment)
1458      ArgType = ArgType.withConst();
1459    ArgType = Context.getLValueReferenceType(ArgType);
1460
1461    //   An implicitly-declared copy assignment operator is an inline public
1462    //   member of its class.
1463    DeclarationName Name =
1464      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1465    CXXMethodDecl *CopyAssignment =
1466      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1467                            Context.getFunctionType(RetType, &ArgType, 1,
1468                                                    false, 0),
1469                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1470    CopyAssignment->setAccess(AS_public);
1471    CopyAssignment->setImplicit();
1472    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1473    CopyAssignment->setCopyAssignment(true);
1474
1475    // Add the parameter to the operator.
1476    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1477                                                 ClassDecl->getLocation(),
1478                                                 /*IdentifierInfo=*/0,
1479                                                 ArgType, /*DInfo=*/0,
1480                                                 VarDecl::None, 0);
1481    CopyAssignment->setParams(Context, &FromParam, 1);
1482
1483    // Don't call addedAssignmentOperator. There is no way to distinguish an
1484    // implicit from an explicit assignment operator.
1485    ClassDecl->addDecl(CopyAssignment);
1486  }
1487
1488  if (!ClassDecl->hasUserDeclaredDestructor()) {
1489    // C++ [class.dtor]p2:
1490    //   If a class has no user-declared destructor, a destructor is
1491    //   declared implicitly. An implicitly-declared destructor is an
1492    //   inline public member of its class.
1493    DeclarationName Name
1494      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1495    CXXDestructorDecl *Destructor
1496      = CXXDestructorDecl::Create(Context, ClassDecl,
1497                                  ClassDecl->getLocation(), Name,
1498                                  Context.getFunctionType(Context.VoidTy,
1499                                                          0, 0, false, 0),
1500                                  /*isInline=*/true,
1501                                  /*isImplicitlyDeclared=*/true);
1502    Destructor->setAccess(AS_public);
1503    Destructor->setImplicit();
1504    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1505    ClassDecl->addDecl(Destructor);
1506  }
1507}
1508
1509void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1510  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1511  if (!Template)
1512    return;
1513
1514  TemplateParameterList *Params = Template->getTemplateParameters();
1515  for (TemplateParameterList::iterator Param = Params->begin(),
1516                                    ParamEnd = Params->end();
1517       Param != ParamEnd; ++Param) {
1518    NamedDecl *Named = cast<NamedDecl>(*Param);
1519    if (Named->getDeclName()) {
1520      S->AddDecl(DeclPtrTy::make(Named));
1521      IdResolver.AddDecl(Named);
1522    }
1523  }
1524}
1525
1526/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1527/// parsing a top-level (non-nested) C++ class, and we are now
1528/// parsing those parts of the given Method declaration that could
1529/// not be parsed earlier (C++ [class.mem]p2), such as default
1530/// arguments. This action should enter the scope of the given
1531/// Method declaration as if we had just parsed the qualified method
1532/// name. However, it should not bring the parameters into scope;
1533/// that will be performed by ActOnDelayedCXXMethodParameter.
1534void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1535  if (!MethodD)
1536    return;
1537
1538  AdjustDeclIfTemplate(MethodD);
1539
1540  CXXScopeSpec SS;
1541  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1542  QualType ClassTy
1543    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1544  SS.setScopeRep(
1545    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1546  ActOnCXXEnterDeclaratorScope(S, SS);
1547}
1548
1549/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1550/// C++ method declaration. We're (re-)introducing the given
1551/// function parameter into scope for use in parsing later parts of
1552/// the method declaration. For example, we could see an
1553/// ActOnParamDefaultArgument event for this parameter.
1554void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1555  if (!ParamD)
1556    return;
1557
1558  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1559
1560  // If this parameter has an unparsed default argument, clear it out
1561  // to make way for the parsed default argument.
1562  if (Param->hasUnparsedDefaultArg())
1563    Param->setDefaultArg(0);
1564
1565  S->AddDecl(DeclPtrTy::make(Param));
1566  if (Param->getDeclName())
1567    IdResolver.AddDecl(Param);
1568}
1569
1570/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1571/// processing the delayed method declaration for Method. The method
1572/// declaration is now considered finished. There may be a separate
1573/// ActOnStartOfFunctionDef action later (not necessarily
1574/// immediately!) for this method, if it was also defined inside the
1575/// class body.
1576void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1577  if (!MethodD)
1578    return;
1579
1580  AdjustDeclIfTemplate(MethodD);
1581
1582  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1583  CXXScopeSpec SS;
1584  QualType ClassTy
1585    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1586  SS.setScopeRep(
1587    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1588  ActOnCXXExitDeclaratorScope(S, SS);
1589
1590  // Now that we have our default arguments, check the constructor
1591  // again. It could produce additional diagnostics or affect whether
1592  // the class has implicitly-declared destructors, among other
1593  // things.
1594  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1595    CheckConstructor(Constructor);
1596
1597  // Check the default arguments, which we may have added.
1598  if (!Method->isInvalidDecl())
1599    CheckCXXDefaultArguments(Method);
1600}
1601
1602/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1603/// the well-formedness of the constructor declarator @p D with type @p
1604/// R. If there are any errors in the declarator, this routine will
1605/// emit diagnostics and set the invalid bit to true.  In any case, the type
1606/// will be updated to reflect a well-formed type for the constructor and
1607/// returned.
1608QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1609                                          FunctionDecl::StorageClass &SC) {
1610  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1611
1612  // C++ [class.ctor]p3:
1613  //   A constructor shall not be virtual (10.3) or static (9.4). A
1614  //   constructor can be invoked for a const, volatile or const
1615  //   volatile object. A constructor shall not be declared const,
1616  //   volatile, or const volatile (9.3.2).
1617  if (isVirtual) {
1618    if (!D.isInvalidType())
1619      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1620        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1621        << SourceRange(D.getIdentifierLoc());
1622    D.setInvalidType();
1623  }
1624  if (SC == FunctionDecl::Static) {
1625    if (!D.isInvalidType())
1626      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1627        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1628        << SourceRange(D.getIdentifierLoc());
1629    D.setInvalidType();
1630    SC = FunctionDecl::None;
1631  }
1632
1633  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1634  if (FTI.TypeQuals != 0) {
1635    if (FTI.TypeQuals & QualType::Const)
1636      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1637        << "const" << SourceRange(D.getIdentifierLoc());
1638    if (FTI.TypeQuals & QualType::Volatile)
1639      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1640        << "volatile" << SourceRange(D.getIdentifierLoc());
1641    if (FTI.TypeQuals & QualType::Restrict)
1642      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1643        << "restrict" << SourceRange(D.getIdentifierLoc());
1644  }
1645
1646  // Rebuild the function type "R" without any type qualifiers (in
1647  // case any of the errors above fired) and with "void" as the
1648  // return type, since constructors don't have return types. We
1649  // *always* have to do this, because GetTypeForDeclarator will
1650  // put in a result type of "int" when none was specified.
1651  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1652  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1653                                 Proto->getNumArgs(),
1654                                 Proto->isVariadic(), 0);
1655}
1656
1657/// CheckConstructor - Checks a fully-formed constructor for
1658/// well-formedness, issuing any diagnostics required. Returns true if
1659/// the constructor declarator is invalid.
1660void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1661  CXXRecordDecl *ClassDecl
1662    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1663  if (!ClassDecl)
1664    return Constructor->setInvalidDecl();
1665
1666  // C++ [class.copy]p3:
1667  //   A declaration of a constructor for a class X is ill-formed if
1668  //   its first parameter is of type (optionally cv-qualified) X and
1669  //   either there are no other parameters or else all other
1670  //   parameters have default arguments.
1671  if (!Constructor->isInvalidDecl() &&
1672      ((Constructor->getNumParams() == 1) ||
1673       (Constructor->getNumParams() > 1 &&
1674        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1675    QualType ParamType = Constructor->getParamDecl(0)->getType();
1676    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1677    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1678      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1679      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1680        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1681      Constructor->setInvalidDecl();
1682    }
1683  }
1684
1685  // Notify the class that we've added a constructor.
1686  ClassDecl->addedConstructor(Context, Constructor);
1687}
1688
1689static inline bool
1690FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1691  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1692          FTI.ArgInfo[0].Param &&
1693          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1694}
1695
1696/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1697/// the well-formednes of the destructor declarator @p D with type @p
1698/// R. If there are any errors in the declarator, this routine will
1699/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1700/// will be updated to reflect a well-formed type for the destructor and
1701/// returned.
1702QualType Sema::CheckDestructorDeclarator(Declarator &D,
1703                                         FunctionDecl::StorageClass& SC) {
1704  // C++ [class.dtor]p1:
1705  //   [...] A typedef-name that names a class is a class-name
1706  //   (7.1.3); however, a typedef-name that names a class shall not
1707  //   be used as the identifier in the declarator for a destructor
1708  //   declaration.
1709  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1710  if (isa<TypedefType>(DeclaratorType)) {
1711    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1712      << DeclaratorType;
1713    D.setInvalidType();
1714  }
1715
1716  // C++ [class.dtor]p2:
1717  //   A destructor is used to destroy objects of its class type. A
1718  //   destructor takes no parameters, and no return type can be
1719  //   specified for it (not even void). The address of a destructor
1720  //   shall not be taken. A destructor shall not be static. A
1721  //   destructor can be invoked for a const, volatile or const
1722  //   volatile object. A destructor shall not be declared const,
1723  //   volatile or const volatile (9.3.2).
1724  if (SC == FunctionDecl::Static) {
1725    if (!D.isInvalidType())
1726      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1727        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1728        << SourceRange(D.getIdentifierLoc());
1729    SC = FunctionDecl::None;
1730    D.setInvalidType();
1731  }
1732  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1733    // Destructors don't have return types, but the parser will
1734    // happily parse something like:
1735    //
1736    //   class X {
1737    //     float ~X();
1738    //   };
1739    //
1740    // The return type will be eliminated later.
1741    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1742      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1743      << SourceRange(D.getIdentifierLoc());
1744  }
1745
1746  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1747  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1748    if (FTI.TypeQuals & QualType::Const)
1749      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1750        << "const" << SourceRange(D.getIdentifierLoc());
1751    if (FTI.TypeQuals & QualType::Volatile)
1752      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1753        << "volatile" << SourceRange(D.getIdentifierLoc());
1754    if (FTI.TypeQuals & QualType::Restrict)
1755      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1756        << "restrict" << SourceRange(D.getIdentifierLoc());
1757    D.setInvalidType();
1758  }
1759
1760  // Make sure we don't have any parameters.
1761  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1762    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1763
1764    // Delete the parameters.
1765    FTI.freeArgs();
1766    D.setInvalidType();
1767  }
1768
1769  // Make sure the destructor isn't variadic.
1770  if (FTI.isVariadic) {
1771    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1772    D.setInvalidType();
1773  }
1774
1775  // Rebuild the function type "R" without any type qualifiers or
1776  // parameters (in case any of the errors above fired) and with
1777  // "void" as the return type, since destructors don't have return
1778  // types. We *always* have to do this, because GetTypeForDeclarator
1779  // will put in a result type of "int" when none was specified.
1780  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1781}
1782
1783/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1784/// well-formednes of the conversion function declarator @p D with
1785/// type @p R. If there are any errors in the declarator, this routine
1786/// will emit diagnostics and return true. Otherwise, it will return
1787/// false. Either way, the type @p R will be updated to reflect a
1788/// well-formed type for the conversion operator.
1789void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1790                                     FunctionDecl::StorageClass& SC) {
1791  // C++ [class.conv.fct]p1:
1792  //   Neither parameter types nor return type can be specified. The
1793  //   type of a conversion function (8.3.5) is "function taking no
1794  //   parameter returning conversion-type-id."
1795  if (SC == FunctionDecl::Static) {
1796    if (!D.isInvalidType())
1797      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1798        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1799        << SourceRange(D.getIdentifierLoc());
1800    D.setInvalidType();
1801    SC = FunctionDecl::None;
1802  }
1803  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1804    // Conversion functions don't have return types, but the parser will
1805    // happily parse something like:
1806    //
1807    //   class X {
1808    //     float operator bool();
1809    //   };
1810    //
1811    // The return type will be changed later anyway.
1812    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1813      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1814      << SourceRange(D.getIdentifierLoc());
1815  }
1816
1817  // Make sure we don't have any parameters.
1818  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1819    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1820
1821    // Delete the parameters.
1822    D.getTypeObject(0).Fun.freeArgs();
1823    D.setInvalidType();
1824  }
1825
1826  // Make sure the conversion function isn't variadic.
1827  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1828    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1829    D.setInvalidType();
1830  }
1831
1832  // C++ [class.conv.fct]p4:
1833  //   The conversion-type-id shall not represent a function type nor
1834  //   an array type.
1835  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1836  if (ConvType->isArrayType()) {
1837    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1838    ConvType = Context.getPointerType(ConvType);
1839    D.setInvalidType();
1840  } else if (ConvType->isFunctionType()) {
1841    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1842    ConvType = Context.getPointerType(ConvType);
1843    D.setInvalidType();
1844  }
1845
1846  // Rebuild the function type "R" without any parameters (in case any
1847  // of the errors above fired) and with the conversion type as the
1848  // return type.
1849  R = Context.getFunctionType(ConvType, 0, 0, false,
1850                              R->getAsFunctionProtoType()->getTypeQuals());
1851
1852  // C++0x explicit conversion operators.
1853  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1854    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1855         diag::warn_explicit_conversion_functions)
1856      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1857}
1858
1859/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1860/// the declaration of the given C++ conversion function. This routine
1861/// is responsible for recording the conversion function in the C++
1862/// class, if possible.
1863Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1864  assert(Conversion && "Expected to receive a conversion function declaration");
1865
1866  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1867
1868  // Make sure we aren't redeclaring the conversion function.
1869  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1870
1871  // C++ [class.conv.fct]p1:
1872  //   [...] A conversion function is never used to convert a
1873  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1874  //   same object type (or a reference to it), to a (possibly
1875  //   cv-qualified) base class of that type (or a reference to it),
1876  //   or to (possibly cv-qualified) void.
1877  // FIXME: Suppress this warning if the conversion function ends up being a
1878  // virtual function that overrides a virtual function in a base class.
1879  QualType ClassType
1880    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1881  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1882    ConvType = ConvTypeRef->getPointeeType();
1883  if (ConvType->isRecordType()) {
1884    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1885    if (ConvType == ClassType)
1886      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1887        << ClassType;
1888    else if (IsDerivedFrom(ClassType, ConvType))
1889      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1890        <<  ClassType << ConvType;
1891  } else if (ConvType->isVoidType()) {
1892    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1893      << ClassType << ConvType;
1894  }
1895
1896  if (Conversion->getPreviousDeclaration()) {
1897    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
1898    if (FunctionTemplateDecl *ConversionTemplate
1899          = Conversion->getDescribedFunctionTemplate())
1900      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
1901    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1902    for (OverloadedFunctionDecl::function_iterator
1903           Conv = Conversions->function_begin(),
1904           ConvEnd = Conversions->function_end();
1905         Conv != ConvEnd; ++Conv) {
1906      if (*Conv == ExpectedPrevDecl) {
1907        *Conv = Conversion;
1908        return DeclPtrTy::make(Conversion);
1909      }
1910    }
1911    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1912  } else if (FunctionTemplateDecl *ConversionTemplate
1913               = Conversion->getDescribedFunctionTemplate())
1914    ClassDecl->addConversionFunction(Context, ConversionTemplate);
1915  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
1916    ClassDecl->addConversionFunction(Context, Conversion);
1917
1918  return DeclPtrTy::make(Conversion);
1919}
1920
1921//===----------------------------------------------------------------------===//
1922// Namespace Handling
1923//===----------------------------------------------------------------------===//
1924
1925/// ActOnStartNamespaceDef - This is called at the start of a namespace
1926/// definition.
1927Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1928                                             SourceLocation IdentLoc,
1929                                             IdentifierInfo *II,
1930                                             SourceLocation LBrace) {
1931  NamespaceDecl *Namespc =
1932      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1933  Namespc->setLBracLoc(LBrace);
1934
1935  Scope *DeclRegionScope = NamespcScope->getParent();
1936
1937  if (II) {
1938    // C++ [namespace.def]p2:
1939    // The identifier in an original-namespace-definition shall not have been
1940    // previously defined in the declarative region in which the
1941    // original-namespace-definition appears. The identifier in an
1942    // original-namespace-definition is the name of the namespace. Subsequently
1943    // in that declarative region, it is treated as an original-namespace-name.
1944
1945    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1946                                     true);
1947
1948    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1949      // This is an extended namespace definition.
1950      // Attach this namespace decl to the chain of extended namespace
1951      // definitions.
1952      OrigNS->setNextNamespace(Namespc);
1953      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1954
1955      // Remove the previous declaration from the scope.
1956      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1957        IdResolver.RemoveDecl(OrigNS);
1958        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1959      }
1960    } else if (PrevDecl) {
1961      // This is an invalid name redefinition.
1962      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1963       << Namespc->getDeclName();
1964      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1965      Namespc->setInvalidDecl();
1966      // Continue on to push Namespc as current DeclContext and return it.
1967    }
1968
1969    PushOnScopeChains(Namespc, DeclRegionScope);
1970  } else {
1971    // FIXME: Handle anonymous namespaces
1972  }
1973
1974  // Although we could have an invalid decl (i.e. the namespace name is a
1975  // redefinition), push it as current DeclContext and try to continue parsing.
1976  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1977  // for the namespace has the declarations that showed up in that particular
1978  // namespace definition.
1979  PushDeclContext(NamespcScope, Namespc);
1980  return DeclPtrTy::make(Namespc);
1981}
1982
1983/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1984/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1985void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1986  Decl *Dcl = D.getAs<Decl>();
1987  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1988  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1989  Namespc->setRBracLoc(RBrace);
1990  PopDeclContext();
1991}
1992
1993Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1994                                          SourceLocation UsingLoc,
1995                                          SourceLocation NamespcLoc,
1996                                          const CXXScopeSpec &SS,
1997                                          SourceLocation IdentLoc,
1998                                          IdentifierInfo *NamespcName,
1999                                          AttributeList *AttrList) {
2000  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2001  assert(NamespcName && "Invalid NamespcName.");
2002  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2003  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2004
2005  UsingDirectiveDecl *UDir = 0;
2006
2007  // Lookup namespace name.
2008  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2009                                    LookupNamespaceName, false);
2010  if (R.isAmbiguous()) {
2011    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2012    return DeclPtrTy();
2013  }
2014  if (NamedDecl *NS = R) {
2015    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2016    // C++ [namespace.udir]p1:
2017    //   A using-directive specifies that the names in the nominated
2018    //   namespace can be used in the scope in which the
2019    //   using-directive appears after the using-directive. During
2020    //   unqualified name lookup (3.4.1), the names appear as if they
2021    //   were declared in the nearest enclosing namespace which
2022    //   contains both the using-directive and the nominated
2023    //   namespace. [Note: in this context, "contains" means "contains
2024    //   directly or indirectly". ]
2025
2026    // Find enclosing context containing both using-directive and
2027    // nominated namespace.
2028    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2029    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2030      CommonAncestor = CommonAncestor->getParent();
2031
2032    UDir = UsingDirectiveDecl::Create(Context,
2033                                      CurContext, UsingLoc,
2034                                      NamespcLoc,
2035                                      SS.getRange(),
2036                                      (NestedNameSpecifier *)SS.getScopeRep(),
2037                                      IdentLoc,
2038                                      cast<NamespaceDecl>(NS),
2039                                      CommonAncestor);
2040    PushUsingDirective(S, UDir);
2041  } else {
2042    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2043  }
2044
2045  // FIXME: We ignore attributes for now.
2046  delete AttrList;
2047  return DeclPtrTy::make(UDir);
2048}
2049
2050void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2051  // If scope has associated entity, then using directive is at namespace
2052  // or translation unit scope. We add UsingDirectiveDecls, into
2053  // it's lookup structure.
2054  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2055    Ctx->addDecl(UDir);
2056  else
2057    // Otherwise it is block-sope. using-directives will affect lookup
2058    // only to the end of scope.
2059    S->PushUsingDirective(DeclPtrTy::make(UDir));
2060}
2061
2062
2063Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2064                                          SourceLocation UsingLoc,
2065                                          const CXXScopeSpec &SS,
2066                                          SourceLocation IdentLoc,
2067                                          IdentifierInfo *TargetName,
2068                                          OverloadedOperatorKind Op,
2069                                          AttributeList *AttrList,
2070                                          bool IsTypeName) {
2071  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2072  assert((TargetName || Op) && "Invalid TargetName.");
2073  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2074  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2075
2076  UsingDecl *UsingAlias = 0;
2077
2078  DeclarationName Name;
2079  if (TargetName)
2080    Name = TargetName;
2081  else
2082    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2083
2084  // Lookup target name.
2085  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2086
2087  if (NamedDecl *NS = R) {
2088    if (IsTypeName && !isa<TypeDecl>(NS)) {
2089      Diag(IdentLoc, diag::err_using_typename_non_type);
2090    }
2091    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2092        NS->getLocation(), UsingLoc, NS,
2093        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2094        IsTypeName);
2095    PushOnScopeChains(UsingAlias, S);
2096  } else {
2097    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2098  }
2099
2100  // FIXME: We ignore attributes for now.
2101  delete AttrList;
2102  return DeclPtrTy::make(UsingAlias);
2103}
2104
2105/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2106/// is a namespace alias, returns the namespace it points to.
2107static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2108  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2109    return AD->getNamespace();
2110  return dyn_cast_or_null<NamespaceDecl>(D);
2111}
2112
2113Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2114                                             SourceLocation NamespaceLoc,
2115                                             SourceLocation AliasLoc,
2116                                             IdentifierInfo *Alias,
2117                                             const CXXScopeSpec &SS,
2118                                             SourceLocation IdentLoc,
2119                                             IdentifierInfo *Ident) {
2120
2121  // Lookup the namespace name.
2122  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2123
2124  // Check if we have a previous declaration with the same name.
2125  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2126    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2127      // We already have an alias with the same name that points to the same
2128      // namespace, so don't create a new one.
2129      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2130        return DeclPtrTy();
2131    }
2132
2133    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2134      diag::err_redefinition_different_kind;
2135    Diag(AliasLoc, DiagID) << Alias;
2136    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2137    return DeclPtrTy();
2138  }
2139
2140  if (R.isAmbiguous()) {
2141    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2142    return DeclPtrTy();
2143  }
2144
2145  if (!R) {
2146    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2147    return DeclPtrTy();
2148  }
2149
2150  NamespaceAliasDecl *AliasDecl =
2151    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2152                               Alias, SS.getRange(),
2153                               (NestedNameSpecifier *)SS.getScopeRep(),
2154                               IdentLoc, R);
2155
2156  CurContext->addDecl(AliasDecl);
2157  return DeclPtrTy::make(AliasDecl);
2158}
2159
2160void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2161                                            CXXConstructorDecl *Constructor) {
2162  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2163          !Constructor->isUsed()) &&
2164    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2165
2166  CXXRecordDecl *ClassDecl
2167    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2168  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2169  // Before the implicitly-declared default constructor for a class is
2170  // implicitly defined, all the implicitly-declared default constructors
2171  // for its base class and its non-static data members shall have been
2172  // implicitly defined.
2173  bool err = false;
2174  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2175       E = ClassDecl->bases_end(); Base != E; ++Base) {
2176    CXXRecordDecl *BaseClassDecl
2177      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2178    if (!BaseClassDecl->hasTrivialConstructor()) {
2179      if (CXXConstructorDecl *BaseCtor =
2180            BaseClassDecl->getDefaultConstructor(Context))
2181        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2182      else {
2183        Diag(CurrentLocation, diag::err_defining_default_ctor)
2184          << Context.getTagDeclType(ClassDecl) << 1
2185          << Context.getTagDeclType(BaseClassDecl);
2186        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2187              << Context.getTagDeclType(BaseClassDecl);
2188        err = true;
2189      }
2190    }
2191  }
2192  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2193       E = ClassDecl->field_end(); Field != E; ++Field) {
2194    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2195    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2196      FieldType = Array->getElementType();
2197    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2198      CXXRecordDecl *FieldClassDecl
2199        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2200      if (!FieldClassDecl->hasTrivialConstructor()) {
2201        if (CXXConstructorDecl *FieldCtor =
2202            FieldClassDecl->getDefaultConstructor(Context))
2203          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2204        else {
2205          Diag(CurrentLocation, diag::err_defining_default_ctor)
2206          << Context.getTagDeclType(ClassDecl) << 0 <<
2207              Context.getTagDeclType(FieldClassDecl);
2208          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2209          << Context.getTagDeclType(FieldClassDecl);
2210          err = true;
2211        }
2212      }
2213    } else if (FieldType->isReferenceType()) {
2214      Diag(CurrentLocation, diag::err_unintialized_member)
2215        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2216      Diag((*Field)->getLocation(), diag::note_declared_at);
2217      err = true;
2218    } else if (FieldType.isConstQualified()) {
2219      Diag(CurrentLocation, diag::err_unintialized_member)
2220        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2221       Diag((*Field)->getLocation(), diag::note_declared_at);
2222      err = true;
2223    }
2224  }
2225  if (!err)
2226    Constructor->setUsed();
2227  else
2228    Constructor->setInvalidDecl();
2229}
2230
2231void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2232                                            CXXDestructorDecl *Destructor) {
2233  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2234         "DefineImplicitDestructor - call it for implicit default dtor");
2235
2236  CXXRecordDecl *ClassDecl
2237  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2238  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2239  // C++ [class.dtor] p5
2240  // Before the implicitly-declared default destructor for a class is
2241  // implicitly defined, all the implicitly-declared default destructors
2242  // for its base class and its non-static data members shall have been
2243  // implicitly defined.
2244  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2245       E = ClassDecl->bases_end(); Base != E; ++Base) {
2246    CXXRecordDecl *BaseClassDecl
2247      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2248    if (!BaseClassDecl->hasTrivialDestructor()) {
2249      if (CXXDestructorDecl *BaseDtor =
2250          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2251        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2252      else
2253        assert(false &&
2254               "DefineImplicitDestructor - missing dtor in a base class");
2255    }
2256  }
2257
2258  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2259       E = ClassDecl->field_end(); Field != E; ++Field) {
2260    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2261    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2262      FieldType = Array->getElementType();
2263    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2264      CXXRecordDecl *FieldClassDecl
2265        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2266      if (!FieldClassDecl->hasTrivialDestructor()) {
2267        if (CXXDestructorDecl *FieldDtor =
2268            const_cast<CXXDestructorDecl*>(
2269                                        FieldClassDecl->getDestructor(Context)))
2270          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2271        else
2272          assert(false &&
2273          "DefineImplicitDestructor - missing dtor in class of a data member");
2274      }
2275    }
2276  }
2277  Destructor->setUsed();
2278}
2279
2280void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2281                                          CXXMethodDecl *MethodDecl) {
2282  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2283          MethodDecl->getOverloadedOperator() == OO_Equal &&
2284          !MethodDecl->isUsed()) &&
2285         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2286
2287  CXXRecordDecl *ClassDecl
2288    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2289
2290  // C++[class.copy] p12
2291  // Before the implicitly-declared copy assignment operator for a class is
2292  // implicitly defined, all implicitly-declared copy assignment operators
2293  // for its direct base classes and its nonstatic data members shall have
2294  // been implicitly defined.
2295  bool err = false;
2296  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2297       E = ClassDecl->bases_end(); Base != E; ++Base) {
2298    CXXRecordDecl *BaseClassDecl
2299      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2300    if (CXXMethodDecl *BaseAssignOpMethod =
2301          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2302      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2303  }
2304  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2305       E = ClassDecl->field_end(); Field != E; ++Field) {
2306    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2307    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2308      FieldType = Array->getElementType();
2309    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2310      CXXRecordDecl *FieldClassDecl
2311        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2312      if (CXXMethodDecl *FieldAssignOpMethod =
2313          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2314        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2315    } else if (FieldType->isReferenceType()) {
2316      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2317      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2318      Diag(Field->getLocation(), diag::note_declared_at);
2319      Diag(CurrentLocation, diag::note_first_required_here);
2320      err = true;
2321    } else if (FieldType.isConstQualified()) {
2322      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2323      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2324      Diag(Field->getLocation(), diag::note_declared_at);
2325      Diag(CurrentLocation, diag::note_first_required_here);
2326      err = true;
2327    }
2328  }
2329  if (!err)
2330    MethodDecl->setUsed();
2331}
2332
2333CXXMethodDecl *
2334Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2335                              CXXRecordDecl *ClassDecl) {
2336  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2337  QualType RHSType(LHSType);
2338  // If class's assignment operator argument is const/volatile qualified,
2339  // look for operator = (const/volatile B&). Otherwise, look for
2340  // operator = (B&).
2341  if (ParmDecl->getType().isConstQualified())
2342    RHSType.addConst();
2343  if (ParmDecl->getType().isVolatileQualified())
2344    RHSType.addVolatile();
2345  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2346                                                          LHSType,
2347                                                          SourceLocation()));
2348  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2349                                                          RHSType,
2350                                                          SourceLocation()));
2351  Expr *Args[2] = { &*LHS, &*RHS };
2352  OverloadCandidateSet CandidateSet;
2353  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2354                              CandidateSet);
2355  OverloadCandidateSet::iterator Best;
2356  if (BestViableFunction(CandidateSet,
2357                         ClassDecl->getLocation(), Best) == OR_Success)
2358    return cast<CXXMethodDecl>(Best->Function);
2359  assert(false &&
2360         "getAssignOperatorMethod - copy assignment operator method not found");
2361  return 0;
2362}
2363
2364void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2365                                   CXXConstructorDecl *CopyConstructor,
2366                                   unsigned TypeQuals) {
2367  assert((CopyConstructor->isImplicit() &&
2368          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2369          !CopyConstructor->isUsed()) &&
2370         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2371
2372  CXXRecordDecl *ClassDecl
2373    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2374  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2375  // C++ [class.copy] p209
2376  // Before the implicitly-declared copy constructor for a class is
2377  // implicitly defined, all the implicitly-declared copy constructors
2378  // for its base class and its non-static data members shall have been
2379  // implicitly defined.
2380  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2381       Base != ClassDecl->bases_end(); ++Base) {
2382    CXXRecordDecl *BaseClassDecl
2383      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2384    if (CXXConstructorDecl *BaseCopyCtor =
2385        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2386      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2387  }
2388  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2389                                  FieldEnd = ClassDecl->field_end();
2390       Field != FieldEnd; ++Field) {
2391    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2392    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2393      FieldType = Array->getElementType();
2394    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2395      CXXRecordDecl *FieldClassDecl
2396        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2397      if (CXXConstructorDecl *FieldCopyCtor =
2398          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2399        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2400    }
2401  }
2402  CopyConstructor->setUsed();
2403}
2404
2405Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2406                                  CXXConstructorDecl *Constructor,
2407                                  Expr **Exprs, unsigned NumExprs) {
2408  bool Elidable = false;
2409
2410  // [class.copy]p15:
2411  // Whenever a temporary class object is copied using a copy constructor, and
2412  // this object and the copy have the same cv-unqualified type, an
2413  // implementation is permitted to treat the original and the copy as two
2414  // different ways of referring to the same object and not perform a copy at
2415  //all, even if the class copy constructor or destructor have side effects.
2416
2417  // FIXME: Is this enough?
2418  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2419    Expr *E = Exprs[0];
2420    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2421      E = BE->getSubExpr();
2422
2423    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2424      Elidable = true;
2425  }
2426
2427  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2428                               Exprs, NumExprs);
2429}
2430
2431/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2432/// including handling of its default argument expressions.
2433Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2434                                  CXXConstructorDecl *Constructor,
2435                                  bool Elidable,
2436                                  Expr **Exprs, unsigned NumExprs) {
2437  CXXConstructExpr *Temp = CXXConstructExpr::Create(Context, DeclInitType,
2438                                                    Constructor,
2439                                                    Elidable, Exprs, NumExprs);
2440  // default arguments must be added to constructor call expression.
2441  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2442  unsigned NumArgsInProto = FDecl->param_size();
2443  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2444    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2445
2446    // If the default expression creates temporaries, we need to
2447    // push them to the current stack of expression temporaries so they'll
2448    // be properly destroyed.
2449    if (CXXExprWithTemporaries *E
2450        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2451      assert(!E->shouldDestroyTemporaries() &&
2452             "Can't destroy temporaries in a default argument expr!");
2453      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2454        ExprTemporaries.push_back(E->getTemporary(I));
2455    }
2456    Expr *Arg = CXXDefaultArgExpr::Create(Context, FDecl->getParamDecl(j));
2457    Temp->setArg(j, Arg);
2458  }
2459  return Temp;
2460}
2461
2462void Sema::InitializeVarWithConstructor(VarDecl *VD,
2463                                        CXXConstructorDecl *Constructor,
2464                                        QualType DeclInitType,
2465                                        Expr **Exprs, unsigned NumExprs) {
2466  Expr *Temp = BuildCXXConstructExpr(DeclInitType, Constructor,
2467                                     Exprs, NumExprs);
2468  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2469  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2470  VD->setInit(Context, Temp);
2471}
2472
2473void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2474{
2475  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2476                                  DeclInitType->getAs<RecordType>()->getDecl());
2477  if (!ClassDecl->hasTrivialDestructor())
2478    if (CXXDestructorDecl *Destructor =
2479        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2480      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2481}
2482
2483/// AddCXXDirectInitializerToDecl - This action is called immediately after
2484/// ActOnDeclarator, when a C++ direct initializer is present.
2485/// e.g: "int x(1);"
2486void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2487                                         SourceLocation LParenLoc,
2488                                         MultiExprArg Exprs,
2489                                         SourceLocation *CommaLocs,
2490                                         SourceLocation RParenLoc) {
2491  unsigned NumExprs = Exprs.size();
2492  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2493  Decl *RealDecl = Dcl.getAs<Decl>();
2494
2495  // If there is no declaration, there was an error parsing it.  Just ignore
2496  // the initializer.
2497  if (RealDecl == 0)
2498    return;
2499
2500  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2501  if (!VDecl) {
2502    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2503    RealDecl->setInvalidDecl();
2504    return;
2505  }
2506
2507  // FIXME: Need to handle dependent types and expressions here.
2508
2509  // We will treat direct-initialization as a copy-initialization:
2510  //    int x(1);  -as-> int x = 1;
2511  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2512  //
2513  // Clients that want to distinguish between the two forms, can check for
2514  // direct initializer using VarDecl::hasCXXDirectInitializer().
2515  // A major benefit is that clients that don't particularly care about which
2516  // exactly form was it (like the CodeGen) can handle both cases without
2517  // special case code.
2518
2519  // C++ 8.5p11:
2520  // The form of initialization (using parentheses or '=') is generally
2521  // insignificant, but does matter when the entity being initialized has a
2522  // class type.
2523  QualType DeclInitType = VDecl->getType();
2524  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2525    DeclInitType = Array->getElementType();
2526
2527  // FIXME: This isn't the right place to complete the type.
2528  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2529                          diag::err_typecheck_decl_incomplete_type)) {
2530    VDecl->setInvalidDecl();
2531    return;
2532  }
2533
2534  if (VDecl->getType()->isRecordType()) {
2535    CXXConstructorDecl *Constructor
2536      = PerformInitializationByConstructor(DeclInitType,
2537                                           (Expr **)Exprs.get(), NumExprs,
2538                                           VDecl->getLocation(),
2539                                           SourceRange(VDecl->getLocation(),
2540                                                       RParenLoc),
2541                                           VDecl->getDeclName(),
2542                                           IK_Direct);
2543    if (!Constructor)
2544      RealDecl->setInvalidDecl();
2545    else {
2546      VDecl->setCXXDirectInitializer(true);
2547      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2548                                   (Expr**)Exprs.release(), NumExprs);
2549      FinalizeVarWithDestructor(VDecl, DeclInitType);
2550    }
2551    return;
2552  }
2553
2554  if (NumExprs > 1) {
2555    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2556      << SourceRange(VDecl->getLocation(), RParenLoc);
2557    RealDecl->setInvalidDecl();
2558    return;
2559  }
2560
2561  // Let clients know that initialization was done with a direct initializer.
2562  VDecl->setCXXDirectInitializer(true);
2563
2564  assert(NumExprs == 1 && "Expected 1 expression");
2565  // Set the init expression, handles conversions.
2566  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2567                       /*DirectInit=*/true);
2568}
2569
2570/// PerformInitializationByConstructor - Perform initialization by
2571/// constructor (C++ [dcl.init]p14), which may occur as part of
2572/// direct-initialization or copy-initialization. We are initializing
2573/// an object of type @p ClassType with the given arguments @p
2574/// Args. @p Loc is the location in the source code where the
2575/// initializer occurs (e.g., a declaration, member initializer,
2576/// functional cast, etc.) while @p Range covers the whole
2577/// initialization. @p InitEntity is the entity being initialized,
2578/// which may by the name of a declaration or a type. @p Kind is the
2579/// kind of initialization we're performing, which affects whether
2580/// explicit constructors will be considered. When successful, returns
2581/// the constructor that will be used to perform the initialization;
2582/// when the initialization fails, emits a diagnostic and returns
2583/// null.
2584CXXConstructorDecl *
2585Sema::PerformInitializationByConstructor(QualType ClassType,
2586                                         Expr **Args, unsigned NumArgs,
2587                                         SourceLocation Loc, SourceRange Range,
2588                                         DeclarationName InitEntity,
2589                                         InitializationKind Kind) {
2590  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2591  assert(ClassRec && "Can only initialize a class type here");
2592
2593  // C++ [dcl.init]p14:
2594  //
2595  //   If the initialization is direct-initialization, or if it is
2596  //   copy-initialization where the cv-unqualified version of the
2597  //   source type is the same class as, or a derived class of, the
2598  //   class of the destination, constructors are considered. The
2599  //   applicable constructors are enumerated (13.3.1.3), and the
2600  //   best one is chosen through overload resolution (13.3). The
2601  //   constructor so selected is called to initialize the object,
2602  //   with the initializer expression(s) as its argument(s). If no
2603  //   constructor applies, or the overload resolution is ambiguous,
2604  //   the initialization is ill-formed.
2605  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2606  OverloadCandidateSet CandidateSet;
2607
2608  // Add constructors to the overload set.
2609  DeclarationName ConstructorName
2610    = Context.DeclarationNames.getCXXConstructorName(
2611                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2612  DeclContext::lookup_const_iterator Con, ConEnd;
2613  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2614       Con != ConEnd; ++Con) {
2615    // Find the constructor (which may be a template).
2616    CXXConstructorDecl *Constructor = 0;
2617    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
2618    if (ConstructorTmpl)
2619      Constructor
2620        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2621    else
2622      Constructor = cast<CXXConstructorDecl>(*Con);
2623
2624    if ((Kind == IK_Direct) ||
2625        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2626        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
2627      if (ConstructorTmpl)
2628        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
2629                                     Args, NumArgs, CandidateSet);
2630      else
2631        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2632    }
2633  }
2634
2635  // FIXME: When we decide not to synthesize the implicitly-declared
2636  // constructors, we'll need to make them appear here.
2637
2638  OverloadCandidateSet::iterator Best;
2639  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2640  case OR_Success:
2641    // We found a constructor. Return it.
2642    return cast<CXXConstructorDecl>(Best->Function);
2643
2644  case OR_No_Viable_Function:
2645    if (InitEntity)
2646      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2647        << InitEntity << Range;
2648    else
2649      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2650        << ClassType << Range;
2651    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2652    return 0;
2653
2654  case OR_Ambiguous:
2655    if (InitEntity)
2656      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2657    else
2658      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2659    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2660    return 0;
2661
2662  case OR_Deleted:
2663    if (InitEntity)
2664      Diag(Loc, diag::err_ovl_deleted_init)
2665        << Best->Function->isDeleted()
2666        << InitEntity << Range;
2667    else
2668      Diag(Loc, diag::err_ovl_deleted_init)
2669        << Best->Function->isDeleted()
2670        << InitEntity << Range;
2671    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2672    return 0;
2673  }
2674
2675  return 0;
2676}
2677
2678/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2679/// determine whether they are reference-related,
2680/// reference-compatible, reference-compatible with added
2681/// qualification, or incompatible, for use in C++ initialization by
2682/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2683/// type, and the first type (T1) is the pointee type of the reference
2684/// type being initialized.
2685Sema::ReferenceCompareResult
2686Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2687                                   bool& DerivedToBase) {
2688  assert(!T1->isReferenceType() &&
2689    "T1 must be the pointee type of the reference type");
2690  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2691
2692  T1 = Context.getCanonicalType(T1);
2693  T2 = Context.getCanonicalType(T2);
2694  QualType UnqualT1 = T1.getUnqualifiedType();
2695  QualType UnqualT2 = T2.getUnqualifiedType();
2696
2697  // C++ [dcl.init.ref]p4:
2698  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2699  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2700  //   T1 is a base class of T2.
2701  if (UnqualT1 == UnqualT2)
2702    DerivedToBase = false;
2703  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2704    DerivedToBase = true;
2705  else
2706    return Ref_Incompatible;
2707
2708  // At this point, we know that T1 and T2 are reference-related (at
2709  // least).
2710
2711  // C++ [dcl.init.ref]p4:
2712  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2713  //   reference-related to T2 and cv1 is the same cv-qualification
2714  //   as, or greater cv-qualification than, cv2. For purposes of
2715  //   overload resolution, cases for which cv1 is greater
2716  //   cv-qualification than cv2 are identified as
2717  //   reference-compatible with added qualification (see 13.3.3.2).
2718  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2719    return Ref_Compatible;
2720  else if (T1.isMoreQualifiedThan(T2))
2721    return Ref_Compatible_With_Added_Qualification;
2722  else
2723    return Ref_Related;
2724}
2725
2726/// CheckReferenceInit - Check the initialization of a reference
2727/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2728/// the initializer (either a simple initializer or an initializer
2729/// list), and DeclType is the type of the declaration. When ICS is
2730/// non-null, this routine will compute the implicit conversion
2731/// sequence according to C++ [over.ics.ref] and will not produce any
2732/// diagnostics; when ICS is null, it will emit diagnostics when any
2733/// errors are found. Either way, a return value of true indicates
2734/// that there was a failure, a return value of false indicates that
2735/// the reference initialization succeeded.
2736///
2737/// When @p SuppressUserConversions, user-defined conversions are
2738/// suppressed.
2739/// When @p AllowExplicit, we also permit explicit user-defined
2740/// conversion functions.
2741/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2742bool
2743Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2744                         ImplicitConversionSequence *ICS,
2745                         bool SuppressUserConversions,
2746                         bool AllowExplicit, bool ForceRValue) {
2747  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2748
2749  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2750  QualType T2 = Init->getType();
2751
2752  // If the initializer is the address of an overloaded function, try
2753  // to resolve the overloaded function. If all goes well, T2 is the
2754  // type of the resulting function.
2755  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2756    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2757                                                          ICS != 0);
2758    if (Fn) {
2759      // Since we're performing this reference-initialization for
2760      // real, update the initializer with the resulting function.
2761      if (!ICS) {
2762        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2763          return true;
2764
2765        FixOverloadedFunctionReference(Init, Fn);
2766      }
2767
2768      T2 = Fn->getType();
2769    }
2770  }
2771
2772  // Compute some basic properties of the types and the initializer.
2773  bool isRValRef = DeclType->isRValueReferenceType();
2774  bool DerivedToBase = false;
2775  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2776                                                  Init->isLvalue(Context);
2777  ReferenceCompareResult RefRelationship
2778    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2779
2780  // Most paths end in a failed conversion.
2781  if (ICS)
2782    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2783
2784  // C++ [dcl.init.ref]p5:
2785  //   A reference to type "cv1 T1" is initialized by an expression
2786  //   of type "cv2 T2" as follows:
2787
2788  //     -- If the initializer expression
2789
2790  // Rvalue references cannot bind to lvalues (N2812).
2791  // There is absolutely no situation where they can. In particular, note that
2792  // this is ill-formed, even if B has a user-defined conversion to A&&:
2793  //   B b;
2794  //   A&& r = b;
2795  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2796    if (!ICS)
2797      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2798        << Init->getSourceRange();
2799    return true;
2800  }
2801
2802  bool BindsDirectly = false;
2803  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2804  //          reference-compatible with "cv2 T2," or
2805  //
2806  // Note that the bit-field check is skipped if we are just computing
2807  // the implicit conversion sequence (C++ [over.best.ics]p2).
2808  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2809      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2810    BindsDirectly = true;
2811
2812    if (ICS) {
2813      // C++ [over.ics.ref]p1:
2814      //   When a parameter of reference type binds directly (8.5.3)
2815      //   to an argument expression, the implicit conversion sequence
2816      //   is the identity conversion, unless the argument expression
2817      //   has a type that is a derived class of the parameter type,
2818      //   in which case the implicit conversion sequence is a
2819      //   derived-to-base Conversion (13.3.3.1).
2820      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2821      ICS->Standard.First = ICK_Identity;
2822      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2823      ICS->Standard.Third = ICK_Identity;
2824      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2825      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2826      ICS->Standard.ReferenceBinding = true;
2827      ICS->Standard.DirectBinding = true;
2828      ICS->Standard.RRefBinding = false;
2829      ICS->Standard.CopyConstructor = 0;
2830
2831      // Nothing more to do: the inaccessibility/ambiguity check for
2832      // derived-to-base conversions is suppressed when we're
2833      // computing the implicit conversion sequence (C++
2834      // [over.best.ics]p2).
2835      return false;
2836    } else {
2837      // Perform the conversion.
2838      // FIXME: Binding to a subobject of the lvalue is going to require more
2839      // AST annotation than this.
2840      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2841    }
2842  }
2843
2844  //       -- has a class type (i.e., T2 is a class type) and can be
2845  //          implicitly converted to an lvalue of type "cv3 T3,"
2846  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2847  //          92) (this conversion is selected by enumerating the
2848  //          applicable conversion functions (13.3.1.6) and choosing
2849  //          the best one through overload resolution (13.3)),
2850  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2851      !RequireCompleteType(SourceLocation(), T2, 0)) {
2852    // FIXME: Look for conversions in base classes!
2853    CXXRecordDecl *T2RecordDecl
2854      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2855
2856    OverloadCandidateSet CandidateSet;
2857    OverloadedFunctionDecl *Conversions
2858      = T2RecordDecl->getConversionFunctions();
2859    for (OverloadedFunctionDecl::function_iterator Func
2860           = Conversions->function_begin();
2861         Func != Conversions->function_end(); ++Func) {
2862      FunctionTemplateDecl *ConvTemplate
2863        = dyn_cast<FunctionTemplateDecl>(*Func);
2864      CXXConversionDecl *Conv;
2865      if (ConvTemplate)
2866        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2867      else
2868        Conv = cast<CXXConversionDecl>(*Func);
2869
2870      // If the conversion function doesn't return a reference type,
2871      // it can't be considered for this conversion.
2872      if (Conv->getConversionType()->isLValueReferenceType() &&
2873          (AllowExplicit || !Conv->isExplicit())) {
2874        if (ConvTemplate)
2875          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
2876                                         CandidateSet);
2877        else
2878          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2879      }
2880    }
2881
2882    OverloadCandidateSet::iterator Best;
2883    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2884    case OR_Success:
2885      // This is a direct binding.
2886      BindsDirectly = true;
2887
2888      if (ICS) {
2889        // C++ [over.ics.ref]p1:
2890        //
2891        //   [...] If the parameter binds directly to the result of
2892        //   applying a conversion function to the argument
2893        //   expression, the implicit conversion sequence is a
2894        //   user-defined conversion sequence (13.3.3.1.2), with the
2895        //   second standard conversion sequence either an identity
2896        //   conversion or, if the conversion function returns an
2897        //   entity of a type that is a derived class of the parameter
2898        //   type, a derived-to-base Conversion.
2899        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2900        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2901        ICS->UserDefined.After = Best->FinalConversion;
2902        ICS->UserDefined.ConversionFunction = Best->Function;
2903        assert(ICS->UserDefined.After.ReferenceBinding &&
2904               ICS->UserDefined.After.DirectBinding &&
2905               "Expected a direct reference binding!");
2906        return false;
2907      } else {
2908        // Perform the conversion.
2909        // FIXME: Binding to a subobject of the lvalue is going to require more
2910        // AST annotation than this.
2911        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2912      }
2913      break;
2914
2915    case OR_Ambiguous:
2916      assert(false && "Ambiguous reference binding conversions not implemented.");
2917      return true;
2918
2919    case OR_No_Viable_Function:
2920    case OR_Deleted:
2921      // There was no suitable conversion, or we found a deleted
2922      // conversion; continue with other checks.
2923      break;
2924    }
2925  }
2926
2927  if (BindsDirectly) {
2928    // C++ [dcl.init.ref]p4:
2929    //   [...] In all cases where the reference-related or
2930    //   reference-compatible relationship of two types is used to
2931    //   establish the validity of a reference binding, and T1 is a
2932    //   base class of T2, a program that necessitates such a binding
2933    //   is ill-formed if T1 is an inaccessible (clause 11) or
2934    //   ambiguous (10.2) base class of T2.
2935    //
2936    // Note that we only check this condition when we're allowed to
2937    // complain about errors, because we should not be checking for
2938    // ambiguity (or inaccessibility) unless the reference binding
2939    // actually happens.
2940    if (DerivedToBase)
2941      return CheckDerivedToBaseConversion(T2, T1,
2942                                          Init->getSourceRange().getBegin(),
2943                                          Init->getSourceRange());
2944    else
2945      return false;
2946  }
2947
2948  //     -- Otherwise, the reference shall be to a non-volatile const
2949  //        type (i.e., cv1 shall be const), or the reference shall be an
2950  //        rvalue reference and the initializer expression shall be an rvalue.
2951  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2952    if (!ICS)
2953      Diag(Init->getSourceRange().getBegin(),
2954           diag::err_not_reference_to_const_init)
2955        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2956        << T2 << Init->getSourceRange();
2957    return true;
2958  }
2959
2960  //       -- If the initializer expression is an rvalue, with T2 a
2961  //          class type, and "cv1 T1" is reference-compatible with
2962  //          "cv2 T2," the reference is bound in one of the
2963  //          following ways (the choice is implementation-defined):
2964  //
2965  //          -- The reference is bound to the object represented by
2966  //             the rvalue (see 3.10) or to a sub-object within that
2967  //             object.
2968  //
2969  //          -- A temporary of type "cv1 T2" [sic] is created, and
2970  //             a constructor is called to copy the entire rvalue
2971  //             object into the temporary. The reference is bound to
2972  //             the temporary or to a sub-object within the
2973  //             temporary.
2974  //
2975  //          The constructor that would be used to make the copy
2976  //          shall be callable whether or not the copy is actually
2977  //          done.
2978  //
2979  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2980  // freedom, so we will always take the first option and never build
2981  // a temporary in this case. FIXME: We will, however, have to check
2982  // for the presence of a copy constructor in C++98/03 mode.
2983  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2984      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2985    if (ICS) {
2986      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2987      ICS->Standard.First = ICK_Identity;
2988      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2989      ICS->Standard.Third = ICK_Identity;
2990      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2991      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2992      ICS->Standard.ReferenceBinding = true;
2993      ICS->Standard.DirectBinding = false;
2994      ICS->Standard.RRefBinding = isRValRef;
2995      ICS->Standard.CopyConstructor = 0;
2996    } else {
2997      // FIXME: Binding to a subobject of the rvalue is going to require more
2998      // AST annotation than this.
2999      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3000    }
3001    return false;
3002  }
3003
3004  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3005  //          initialized from the initializer expression using the
3006  //          rules for a non-reference copy initialization (8.5). The
3007  //          reference is then bound to the temporary. If T1 is
3008  //          reference-related to T2, cv1 must be the same
3009  //          cv-qualification as, or greater cv-qualification than,
3010  //          cv2; otherwise, the program is ill-formed.
3011  if (RefRelationship == Ref_Related) {
3012    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3013    // we would be reference-compatible or reference-compatible with
3014    // added qualification. But that wasn't the case, so the reference
3015    // initialization fails.
3016    if (!ICS)
3017      Diag(Init->getSourceRange().getBegin(),
3018           diag::err_reference_init_drops_quals)
3019        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3020        << T2 << Init->getSourceRange();
3021    return true;
3022  }
3023
3024  // If at least one of the types is a class type, the types are not
3025  // related, and we aren't allowed any user conversions, the
3026  // reference binding fails. This case is important for breaking
3027  // recursion, since TryImplicitConversion below will attempt to
3028  // create a temporary through the use of a copy constructor.
3029  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3030      (T1->isRecordType() || T2->isRecordType())) {
3031    if (!ICS)
3032      Diag(Init->getSourceRange().getBegin(),
3033           diag::err_typecheck_convert_incompatible)
3034        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3035    return true;
3036  }
3037
3038  // Actually try to convert the initializer to T1.
3039  if (ICS) {
3040    // C++ [over.ics.ref]p2:
3041    //
3042    //   When a parameter of reference type is not bound directly to
3043    //   an argument expression, the conversion sequence is the one
3044    //   required to convert the argument expression to the
3045    //   underlying type of the reference according to
3046    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3047    //   to copy-initializing a temporary of the underlying type with
3048    //   the argument expression. Any difference in top-level
3049    //   cv-qualification is subsumed by the initialization itself
3050    //   and does not constitute a conversion.
3051    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
3052    // Of course, that's still a reference binding.
3053    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3054      ICS->Standard.ReferenceBinding = true;
3055      ICS->Standard.RRefBinding = isRValRef;
3056    } else if(ICS->ConversionKind ==
3057              ImplicitConversionSequence::UserDefinedConversion) {
3058      ICS->UserDefined.After.ReferenceBinding = true;
3059      ICS->UserDefined.After.RRefBinding = isRValRef;
3060    }
3061    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3062  } else {
3063    return PerformImplicitConversion(Init, T1, "initializing");
3064  }
3065}
3066
3067/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3068/// of this overloaded operator is well-formed. If so, returns false;
3069/// otherwise, emits appropriate diagnostics and returns true.
3070bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3071  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3072         "Expected an overloaded operator declaration");
3073
3074  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3075
3076  // C++ [over.oper]p5:
3077  //   The allocation and deallocation functions, operator new,
3078  //   operator new[], operator delete and operator delete[], are
3079  //   described completely in 3.7.3. The attributes and restrictions
3080  //   found in the rest of this subclause do not apply to them unless
3081  //   explicitly stated in 3.7.3.
3082  // FIXME: Write a separate routine for checking this. For now, just allow it.
3083  if (Op == OO_New || Op == OO_Array_New ||
3084      Op == OO_Delete || Op == OO_Array_Delete)
3085    return false;
3086
3087  // C++ [over.oper]p6:
3088  //   An operator function shall either be a non-static member
3089  //   function or be a non-member function and have at least one
3090  //   parameter whose type is a class, a reference to a class, an
3091  //   enumeration, or a reference to an enumeration.
3092  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3093    if (MethodDecl->isStatic())
3094      return Diag(FnDecl->getLocation(),
3095                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3096  } else {
3097    bool ClassOrEnumParam = false;
3098    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3099                                   ParamEnd = FnDecl->param_end();
3100         Param != ParamEnd; ++Param) {
3101      QualType ParamType = (*Param)->getType().getNonReferenceType();
3102      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3103          ParamType->isEnumeralType()) {
3104        ClassOrEnumParam = true;
3105        break;
3106      }
3107    }
3108
3109    if (!ClassOrEnumParam)
3110      return Diag(FnDecl->getLocation(),
3111                  diag::err_operator_overload_needs_class_or_enum)
3112        << FnDecl->getDeclName();
3113  }
3114
3115  // C++ [over.oper]p8:
3116  //   An operator function cannot have default arguments (8.3.6),
3117  //   except where explicitly stated below.
3118  //
3119  // Only the function-call operator allows default arguments
3120  // (C++ [over.call]p1).
3121  if (Op != OO_Call) {
3122    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3123         Param != FnDecl->param_end(); ++Param) {
3124      if ((*Param)->hasUnparsedDefaultArg())
3125        return Diag((*Param)->getLocation(),
3126                    diag::err_operator_overload_default_arg)
3127          << FnDecl->getDeclName();
3128      else if (Expr *DefArg = (*Param)->getDefaultArg())
3129        return Diag((*Param)->getLocation(),
3130                    diag::err_operator_overload_default_arg)
3131          << FnDecl->getDeclName() << DefArg->getSourceRange();
3132    }
3133  }
3134
3135  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3136    { false, false, false }
3137#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3138    , { Unary, Binary, MemberOnly }
3139#include "clang/Basic/OperatorKinds.def"
3140  };
3141
3142  bool CanBeUnaryOperator = OperatorUses[Op][0];
3143  bool CanBeBinaryOperator = OperatorUses[Op][1];
3144  bool MustBeMemberOperator = OperatorUses[Op][2];
3145
3146  // C++ [over.oper]p8:
3147  //   [...] Operator functions cannot have more or fewer parameters
3148  //   than the number required for the corresponding operator, as
3149  //   described in the rest of this subclause.
3150  unsigned NumParams = FnDecl->getNumParams()
3151                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3152  if (Op != OO_Call &&
3153      ((NumParams == 1 && !CanBeUnaryOperator) ||
3154       (NumParams == 2 && !CanBeBinaryOperator) ||
3155       (NumParams < 1) || (NumParams > 2))) {
3156    // We have the wrong number of parameters.
3157    unsigned ErrorKind;
3158    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3159      ErrorKind = 2;  // 2 -> unary or binary.
3160    } else if (CanBeUnaryOperator) {
3161      ErrorKind = 0;  // 0 -> unary
3162    } else {
3163      assert(CanBeBinaryOperator &&
3164             "All non-call overloaded operators are unary or binary!");
3165      ErrorKind = 1;  // 1 -> binary
3166    }
3167
3168    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3169      << FnDecl->getDeclName() << NumParams << ErrorKind;
3170  }
3171
3172  // Overloaded operators other than operator() cannot be variadic.
3173  if (Op != OO_Call &&
3174      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3175    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3176      << FnDecl->getDeclName();
3177  }
3178
3179  // Some operators must be non-static member functions.
3180  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3181    return Diag(FnDecl->getLocation(),
3182                diag::err_operator_overload_must_be_member)
3183      << FnDecl->getDeclName();
3184  }
3185
3186  // C++ [over.inc]p1:
3187  //   The user-defined function called operator++ implements the
3188  //   prefix and postfix ++ operator. If this function is a member
3189  //   function with no parameters, or a non-member function with one
3190  //   parameter of class or enumeration type, it defines the prefix
3191  //   increment operator ++ for objects of that type. If the function
3192  //   is a member function with one parameter (which shall be of type
3193  //   int) or a non-member function with two parameters (the second
3194  //   of which shall be of type int), it defines the postfix
3195  //   increment operator ++ for objects of that type.
3196  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3197    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3198    bool ParamIsInt = false;
3199    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3200      ParamIsInt = BT->getKind() == BuiltinType::Int;
3201
3202    if (!ParamIsInt)
3203      return Diag(LastParam->getLocation(),
3204                  diag::err_operator_overload_post_incdec_must_be_int)
3205        << LastParam->getType() << (Op == OO_MinusMinus);
3206  }
3207
3208  // Notify the class if it got an assignment operator.
3209  if (Op == OO_Equal) {
3210    // Would have returned earlier otherwise.
3211    assert(isa<CXXMethodDecl>(FnDecl) &&
3212      "Overloaded = not member, but not filtered.");
3213    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3214    Method->setCopyAssignment(true);
3215    Method->getParent()->addedAssignmentOperator(Context, Method);
3216  }
3217
3218  return false;
3219}
3220
3221/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3222/// linkage specification, including the language and (if present)
3223/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3224/// the location of the language string literal, which is provided
3225/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3226/// the '{' brace. Otherwise, this linkage specification does not
3227/// have any braces.
3228Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3229                                                     SourceLocation ExternLoc,
3230                                                     SourceLocation LangLoc,
3231                                                     const char *Lang,
3232                                                     unsigned StrSize,
3233                                                     SourceLocation LBraceLoc) {
3234  LinkageSpecDecl::LanguageIDs Language;
3235  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3236    Language = LinkageSpecDecl::lang_c;
3237  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3238    Language = LinkageSpecDecl::lang_cxx;
3239  else {
3240    Diag(LangLoc, diag::err_bad_language);
3241    return DeclPtrTy();
3242  }
3243
3244  // FIXME: Add all the various semantics of linkage specifications
3245
3246  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3247                                               LangLoc, Language,
3248                                               LBraceLoc.isValid());
3249  CurContext->addDecl(D);
3250  PushDeclContext(S, D);
3251  return DeclPtrTy::make(D);
3252}
3253
3254/// ActOnFinishLinkageSpecification - Completely the definition of
3255/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3256/// valid, it's the position of the closing '}' brace in a linkage
3257/// specification that uses braces.
3258Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3259                                                      DeclPtrTy LinkageSpec,
3260                                                      SourceLocation RBraceLoc) {
3261  if (LinkageSpec)
3262    PopDeclContext();
3263  return LinkageSpec;
3264}
3265
3266/// \brief Perform semantic analysis for the variable declaration that
3267/// occurs within a C++ catch clause, returning the newly-created
3268/// variable.
3269VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3270                                         DeclaratorInfo *DInfo,
3271                                         IdentifierInfo *Name,
3272                                         SourceLocation Loc,
3273                                         SourceRange Range) {
3274  bool Invalid = false;
3275
3276  // Arrays and functions decay.
3277  if (ExDeclType->isArrayType())
3278    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3279  else if (ExDeclType->isFunctionType())
3280    ExDeclType = Context.getPointerType(ExDeclType);
3281
3282  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3283  // The exception-declaration shall not denote a pointer or reference to an
3284  // incomplete type, other than [cv] void*.
3285  // N2844 forbids rvalue references.
3286  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3287    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3288    Invalid = true;
3289  }
3290
3291  QualType BaseType = ExDeclType;
3292  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3293  unsigned DK = diag::err_catch_incomplete;
3294  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3295    BaseType = Ptr->getPointeeType();
3296    Mode = 1;
3297    DK = diag::err_catch_incomplete_ptr;
3298  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3299    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3300    BaseType = Ref->getPointeeType();
3301    Mode = 2;
3302    DK = diag::err_catch_incomplete_ref;
3303  }
3304  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3305      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3306    Invalid = true;
3307
3308  if (!Invalid && !ExDeclType->isDependentType() &&
3309      RequireNonAbstractType(Loc, ExDeclType,
3310                             diag::err_abstract_type_in_decl,
3311                             AbstractVariableType))
3312    Invalid = true;
3313
3314  // FIXME: Need to test for ability to copy-construct and destroy the
3315  // exception variable.
3316
3317  // FIXME: Need to check for abstract classes.
3318
3319  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3320                                    Name, ExDeclType, DInfo, VarDecl::None);
3321
3322  if (Invalid)
3323    ExDecl->setInvalidDecl();
3324
3325  return ExDecl;
3326}
3327
3328/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3329/// handler.
3330Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3331  DeclaratorInfo *DInfo = 0;
3332  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3333
3334  bool Invalid = D.isInvalidType();
3335  IdentifierInfo *II = D.getIdentifier();
3336  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3337    // The scope should be freshly made just for us. There is just no way
3338    // it contains any previous declaration.
3339    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3340    if (PrevDecl->isTemplateParameter()) {
3341      // Maybe we will complain about the shadowed template parameter.
3342      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3343    }
3344  }
3345
3346  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3347    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3348      << D.getCXXScopeSpec().getRange();
3349    Invalid = true;
3350  }
3351
3352  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3353                                              D.getIdentifier(),
3354                                              D.getIdentifierLoc(),
3355                                            D.getDeclSpec().getSourceRange());
3356
3357  if (Invalid)
3358    ExDecl->setInvalidDecl();
3359
3360  // Add the exception declaration into this scope.
3361  if (II)
3362    PushOnScopeChains(ExDecl, S);
3363  else
3364    CurContext->addDecl(ExDecl);
3365
3366  ProcessDeclAttributes(S, ExDecl, D);
3367  return DeclPtrTy::make(ExDecl);
3368}
3369
3370Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3371                                                   ExprArg assertexpr,
3372                                                   ExprArg assertmessageexpr) {
3373  Expr *AssertExpr = (Expr *)assertexpr.get();
3374  StringLiteral *AssertMessage =
3375    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3376
3377  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3378    llvm::APSInt Value(32);
3379    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3380      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3381        AssertExpr->getSourceRange();
3382      return DeclPtrTy();
3383    }
3384
3385    if (Value == 0) {
3386      std::string str(AssertMessage->getStrData(),
3387                      AssertMessage->getByteLength());
3388      Diag(AssertLoc, diag::err_static_assert_failed)
3389        << str << AssertExpr->getSourceRange();
3390    }
3391  }
3392
3393  assertexpr.release();
3394  assertmessageexpr.release();
3395  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3396                                        AssertExpr, AssertMessage);
3397
3398  CurContext->addDecl(Decl);
3399  return DeclPtrTy::make(Decl);
3400}
3401
3402Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3403                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3404                                      bool IsDefinition) {
3405  Declarator *D = DU.dyn_cast<Declarator*>();
3406  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3407
3408  assert(DS.isFriendSpecified());
3409  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3410
3411  // If there's no declarator, then this can only be a friend class
3412  // declaration (or else it's just syntactically invalid).
3413  if (!D) {
3414    SourceLocation Loc = DS.getSourceRange().getBegin();
3415
3416    QualType T;
3417    DeclContext *DC;
3418
3419    // In C++0x, we just accept any old type.
3420    if (getLangOptions().CPlusPlus0x) {
3421      bool invalid = false;
3422      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3423      if (invalid)
3424        return DeclPtrTy();
3425
3426      // The semantic context in which to create the decl.  If it's not
3427      // a record decl (or we don't yet know if it is), create it in the
3428      // current context.
3429      DC = CurContext;
3430      if (const RecordType *RT = T->getAs<RecordType>())
3431        DC = RT->getDecl()->getDeclContext();
3432
3433    // The C++98 rules are somewhat more complex.
3434    } else {
3435      // C++ [class.friend]p2:
3436      //   An elaborated-type-specifier shall be used in a friend declaration
3437      //   for a class.*
3438      //   * The class-key of the elaborated-type-specifier is required.
3439      CXXRecordDecl *RD = 0;
3440
3441      switch (DS.getTypeSpecType()) {
3442      case DeclSpec::TST_class:
3443      case DeclSpec::TST_struct:
3444      case DeclSpec::TST_union:
3445        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3446        if (!RD) return DeclPtrTy();
3447        break;
3448
3449      case DeclSpec::TST_typename:
3450        if (const RecordType *RT =
3451            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3452          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3453        // fallthrough
3454      default:
3455        if (RD) {
3456          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3457            << (RD->isUnion())
3458            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3459                                         RD->isUnion() ? " union" : " class");
3460          return DeclPtrTy::make(RD);
3461        }
3462
3463        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3464          << DS.getSourceRange();
3465        return DeclPtrTy();
3466      }
3467
3468      // The record declaration we get from friend declarations is not
3469      // canonicalized; see ActOnTag.
3470
3471      // C++ [class.friend]p2: A class shall not be defined inside
3472      //   a friend declaration.
3473      if (RD->isDefinition())
3474        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3475          << RD->getSourceRange();
3476
3477      // C++98 [class.friend]p1: A friend of a class is a function
3478      //   or class that is not a member of the class . . .
3479      // But that's a silly restriction which nobody implements for
3480      // inner classes, and C++0x removes it anyway, so we only report
3481      // this (as a warning) if we're being pedantic.
3482      //
3483      // Also, definitions currently get treated in a way that causes
3484      // this error, so only report it if we didn't see a definition.
3485      else if (RD->getDeclContext() == CurContext &&
3486               !getLangOptions().CPlusPlus0x)
3487        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3488
3489      T = QualType(RD->getTypeForDecl(), 0);
3490      DC = RD->getDeclContext();
3491    }
3492
3493    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3494                                                   DS.getFriendSpecLoc());
3495    FCD->setLexicalDeclContext(CurContext);
3496
3497    if (CurContext->isDependentContext())
3498      CurContext->addHiddenDecl(FCD);
3499    else
3500      CurContext->addDecl(FCD);
3501
3502    return DeclPtrTy::make(FCD);
3503  }
3504
3505  // We have a declarator.
3506  assert(D);
3507
3508  SourceLocation Loc = D->getIdentifierLoc();
3509  DeclaratorInfo *DInfo = 0;
3510  QualType T = GetTypeForDeclarator(*D, S, &DInfo);
3511
3512  // C++ [class.friend]p1
3513  //   A friend of a class is a function or class....
3514  // Note that this sees through typedefs, which is intended.
3515  if (!T->isFunctionType()) {
3516    Diag(Loc, diag::err_unexpected_friend);
3517
3518    // It might be worthwhile to try to recover by creating an
3519    // appropriate declaration.
3520    return DeclPtrTy();
3521  }
3522
3523  // C++ [namespace.memdef]p3
3524  //  - If a friend declaration in a non-local class first declares a
3525  //    class or function, the friend class or function is a member
3526  //    of the innermost enclosing namespace.
3527  //  - The name of the friend is not found by simple name lookup
3528  //    until a matching declaration is provided in that namespace
3529  //    scope (either before or after the class declaration granting
3530  //    friendship).
3531  //  - If a friend function is called, its name may be found by the
3532  //    name lookup that considers functions from namespaces and
3533  //    classes associated with the types of the function arguments.
3534  //  - When looking for a prior declaration of a class or a function
3535  //    declared as a friend, scopes outside the innermost enclosing
3536  //    namespace scope are not considered.
3537
3538  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3539  DeclarationName Name = GetNameForDeclarator(*D);
3540  assert(Name);
3541
3542  // The existing declaration we found.
3543  FunctionDecl *FD = NULL;
3544
3545  // The context we found the declaration in, or in which we should
3546  // create the declaration.
3547  DeclContext *DC;
3548
3549  // FIXME: handle local classes
3550
3551  // Recover from invalid scope qualifiers as if they just weren't there.
3552  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3553    DC = computeDeclContext(ScopeQual);
3554
3555    // FIXME: handle dependent contexts
3556    if (!DC) return DeclPtrTy();
3557
3558    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3559
3560    // If searching in that context implicitly found a declaration in
3561    // a different context, treat it like it wasn't found at all.
3562    // TODO: better diagnostics for this case.  Suggesting the right
3563    // qualified scope would be nice...
3564    if (!Dec || Dec->getDeclContext() != DC) {
3565      D->setInvalidType();
3566      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3567      return DeclPtrTy();
3568    }
3569
3570    // C++ [class.friend]p1: A friend of a class is a function or
3571    //   class that is not a member of the class . . .
3572    if (DC == CurContext)
3573      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3574
3575    FD = cast<FunctionDecl>(Dec);
3576
3577  // Otherwise walk out to the nearest namespace scope looking for matches.
3578  } else {
3579    // TODO: handle local class contexts.
3580
3581    DC = CurContext;
3582    while (true) {
3583      // Skip class contexts.  If someone can cite chapter and verse
3584      // for this behavior, that would be nice --- it's what GCC and
3585      // EDG do, and it seems like a reasonable intent, but the spec
3586      // really only says that checks for unqualified existing
3587      // declarations should stop at the nearest enclosing namespace,
3588      // not that they should only consider the nearest enclosing
3589      // namespace.
3590      while (DC->isRecord()) DC = DC->getParent();
3591
3592      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3593
3594      // TODO: decide what we think about using declarations.
3595      if (Dec) {
3596        FD = cast<FunctionDecl>(Dec);
3597        break;
3598      }
3599      if (DC->isFileContext()) break;
3600      DC = DC->getParent();
3601    }
3602
3603    // C++ [class.friend]p1: A friend of a class is a function or
3604    //   class that is not a member of the class . . .
3605    // C++0x changes this for both friend types and functions.
3606    // Most C++ 98 compilers do seem to give an error here, so
3607    // we do, too.
3608    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3609      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3610  }
3611
3612  bool Redeclaration = (FD != 0);
3613
3614  // If we found a match, create a friend function declaration with
3615  // that function as the previous declaration.
3616  if (Redeclaration) {
3617    // Create it in the semantic context of the original declaration.
3618    DC = FD->getDeclContext();
3619
3620  // If we didn't find something matching the type exactly, create
3621  // a declaration.  This declaration should only be findable via
3622  // argument-dependent lookup.
3623  } else {
3624    assert(DC->isFileContext());
3625
3626    // This implies that it has to be an operator or function.
3627    if (D->getKind() == Declarator::DK_Constructor ||
3628        D->getKind() == Declarator::DK_Destructor ||
3629        D->getKind() == Declarator::DK_Conversion) {
3630      Diag(Loc, diag::err_introducing_special_friend) <<
3631        (D->getKind() == Declarator::DK_Constructor ? 0 :
3632         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3633      return DeclPtrTy();
3634    }
3635  }
3636
3637  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T, DInfo,
3638                                          /* PrevDecl = */ FD,
3639                                          MultiTemplateParamsArg(*this),
3640                                          IsDefinition,
3641                                          Redeclaration);
3642  FD = cast_or_null<FriendFunctionDecl>(ND);
3643
3644  assert(FD->getDeclContext() == DC);
3645  assert(FD->getLexicalDeclContext() == CurContext);
3646
3647  // If this is a dependent context, just add the decl to the
3648  // class's decl list and don't both with the lookup tables.  This
3649  // doesn't affect lookup because any call that might find this
3650  // function via ADL necessarily has to involve dependently-typed
3651  // arguments and hence can't be resolved until
3652  // template-instantiation anyway.
3653  if (CurContext->isDependentContext())
3654    CurContext->addHiddenDecl(FD);
3655  else
3656    CurContext->addDecl(FD);
3657
3658  return DeclPtrTy::make(FD);
3659}
3660
3661void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3662  AdjustDeclIfTemplate(dcl);
3663
3664  Decl *Dcl = dcl.getAs<Decl>();
3665  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3666  if (!Fn) {
3667    Diag(DelLoc, diag::err_deleted_non_function);
3668    return;
3669  }
3670  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3671    Diag(DelLoc, diag::err_deleted_decl_not_first);
3672    Diag(Prev->getLocation(), diag::note_previous_declaration);
3673    // If the declaration wasn't the first, we delete the function anyway for
3674    // recovery.
3675  }
3676  Fn->setDeleted();
3677}
3678
3679static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3680  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3681       ++CI) {
3682    Stmt *SubStmt = *CI;
3683    if (!SubStmt)
3684      continue;
3685    if (isa<ReturnStmt>(SubStmt))
3686      Self.Diag(SubStmt->getSourceRange().getBegin(),
3687           diag::err_return_in_constructor_handler);
3688    if (!isa<Expr>(SubStmt))
3689      SearchForReturnInStmt(Self, SubStmt);
3690  }
3691}
3692
3693void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3694  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3695    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3696    SearchForReturnInStmt(*this, Handler);
3697  }
3698}
3699
3700bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3701                                             const CXXMethodDecl *Old) {
3702  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3703  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3704
3705  QualType CNewTy = Context.getCanonicalType(NewTy);
3706  QualType COldTy = Context.getCanonicalType(OldTy);
3707
3708  if (CNewTy == COldTy &&
3709      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3710    return false;
3711
3712  // Check if the return types are covariant
3713  QualType NewClassTy, OldClassTy;
3714
3715  /// Both types must be pointers or references to classes.
3716  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3717    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3718      NewClassTy = NewPT->getPointeeType();
3719      OldClassTy = OldPT->getPointeeType();
3720    }
3721  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3722    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3723      NewClassTy = NewRT->getPointeeType();
3724      OldClassTy = OldRT->getPointeeType();
3725    }
3726  }
3727
3728  // The return types aren't either both pointers or references to a class type.
3729  if (NewClassTy.isNull()) {
3730    Diag(New->getLocation(),
3731         diag::err_different_return_type_for_overriding_virtual_function)
3732      << New->getDeclName() << NewTy << OldTy;
3733    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3734
3735    return true;
3736  }
3737
3738  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3739    // Check if the new class derives from the old class.
3740    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3741      Diag(New->getLocation(),
3742           diag::err_covariant_return_not_derived)
3743      << New->getDeclName() << NewTy << OldTy;
3744      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3745      return true;
3746    }
3747
3748    // Check if we the conversion from derived to base is valid.
3749    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3750                      diag::err_covariant_return_inaccessible_base,
3751                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3752                      // FIXME: Should this point to the return type?
3753                      New->getLocation(), SourceRange(), New->getDeclName())) {
3754      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3755      return true;
3756    }
3757  }
3758
3759  // The qualifiers of the return types must be the same.
3760  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3761    Diag(New->getLocation(),
3762         diag::err_covariant_return_type_different_qualifications)
3763    << New->getDeclName() << NewTy << OldTy;
3764    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3765    return true;
3766  };
3767
3768
3769  // The new class type must have the same or less qualifiers as the old type.
3770  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3771    Diag(New->getLocation(),
3772         diag::err_covariant_return_type_class_type_more_qualified)
3773    << New->getDeclName() << NewTy << OldTy;
3774    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3775    return true;
3776  };
3777
3778  return false;
3779}
3780
3781bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3782                                                const CXXMethodDecl *Old)
3783{
3784  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3785                                  diag::note_overridden_virtual_function,
3786                                  Old->getType()->getAsFunctionProtoType(),
3787                                  Old->getLocation(),
3788                                  New->getType()->getAsFunctionProtoType(),
3789                                  New->getLocation());
3790}
3791
3792/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3793/// initializer for the declaration 'Dcl'.
3794/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3795/// static data member of class X, names should be looked up in the scope of
3796/// class X.
3797void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3798  AdjustDeclIfTemplate(Dcl);
3799
3800  Decl *D = Dcl.getAs<Decl>();
3801  // If there is no declaration, there was an error parsing it.
3802  if (D == 0)
3803    return;
3804
3805  // Check whether it is a declaration with a nested name specifier like
3806  // int foo::bar;
3807  if (!D->isOutOfLine())
3808    return;
3809
3810  // C++ [basic.lookup.unqual]p13
3811  //
3812  // A name used in the definition of a static data member of class X
3813  // (after the qualified-id of the static member) is looked up as if the name
3814  // was used in a member function of X.
3815
3816  // Change current context into the context of the initializing declaration.
3817  EnterDeclaratorContext(S, D->getDeclContext());
3818}
3819
3820/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3821/// initializer for the declaration 'Dcl'.
3822void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3823  AdjustDeclIfTemplate(Dcl);
3824
3825  Decl *D = Dcl.getAs<Decl>();
3826  // If there is no declaration, there was an error parsing it.
3827  if (D == 0)
3828    return;
3829
3830  // Check whether it is a declaration with a nested name specifier like
3831  // int foo::bar;
3832  if (!D->isOutOfLine())
3833    return;
3834
3835  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3836  ExitDeclaratorContext(S);
3837}
3838