SemaDeclCXX.cpp revision 67310745f32be49d85aca83b47a7707f63a82adf
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537          << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer.
1749MemInitResult
1750Sema::BuildMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          SourceLocation IdLoc,
1756                          const MultiInitializer &Args,
1757                          SourceLocation EllipsisLoc) {
1758  if (!ConstructorD)
1759    return true;
1760
1761  AdjustDeclIfTemplate(ConstructorD);
1762
1763  CXXConstructorDecl *Constructor
1764    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1765  if (!Constructor) {
1766    // The user wrote a constructor initializer on a function that is
1767    // not a C++ constructor. Ignore the error for now, because we may
1768    // have more member initializers coming; we'll diagnose it just
1769    // once in ActOnMemInitializers.
1770    return true;
1771  }
1772
1773  CXXRecordDecl *ClassDecl = Constructor->getParent();
1774
1775  // C++ [class.base.init]p2:
1776  //   Names in a mem-initializer-id are looked up in the scope of the
1777  //   constructor's class and, if not found in that scope, are looked
1778  //   up in the scope containing the constructor's definition.
1779  //   [Note: if the constructor's class contains a member with the
1780  //   same name as a direct or virtual base class of the class, a
1781  //   mem-initializer-id naming the member or base class and composed
1782  //   of a single identifier refers to the class member. A
1783  //   mem-initializer-id for the hidden base class may be specified
1784  //   using a qualified name. ]
1785  if (!SS.getScopeRep() && !TemplateTypeTy) {
1786    // Look for a member, first.
1787    DeclContext::lookup_result Result
1788      = ClassDecl->lookup(MemberOrBase);
1789    if (Result.first != Result.second) {
1790      ValueDecl *Member;
1791      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1792          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1793        if (EllipsisLoc.isValid())
1794          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1795            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1796
1797        return BuildMemberInitializer(Member, Args, IdLoc);
1798      }
1799    }
1800  }
1801  // It didn't name a member, so see if it names a class.
1802  QualType BaseType;
1803  TypeSourceInfo *TInfo = 0;
1804
1805  if (TemplateTypeTy) {
1806    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1807  } else {
1808    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1809    LookupParsedName(R, S, &SS);
1810
1811    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1812    if (!TyD) {
1813      if (R.isAmbiguous()) return true;
1814
1815      // We don't want access-control diagnostics here.
1816      R.suppressDiagnostics();
1817
1818      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1819        bool NotUnknownSpecialization = false;
1820        DeclContext *DC = computeDeclContext(SS, false);
1821        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1822          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1823
1824        if (!NotUnknownSpecialization) {
1825          // When the scope specifier can refer to a member of an unknown
1826          // specialization, we take it as a type name.
1827          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1828                                       SS.getWithLocInContext(Context),
1829                                       *MemberOrBase, IdLoc);
1830          if (BaseType.isNull())
1831            return true;
1832
1833          R.clear();
1834          R.setLookupName(MemberOrBase);
1835        }
1836      }
1837
1838      // If no results were found, try to correct typos.
1839      TypoCorrection Corr;
1840      if (R.empty() && BaseType.isNull() &&
1841          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1842                              ClassDecl, false, CTC_NoKeywords))) {
1843        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1844        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1845        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1846          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1847            // We have found a non-static data member with a similar
1848            // name to what was typed; complain and initialize that
1849            // member.
1850            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1851              << MemberOrBase << true << CorrectedQuotedStr
1852              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1853            Diag(Member->getLocation(), diag::note_previous_decl)
1854              << CorrectedQuotedStr;
1855
1856            return BuildMemberInitializer(Member, Args, IdLoc);
1857          }
1858        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1859          const CXXBaseSpecifier *DirectBaseSpec;
1860          const CXXBaseSpecifier *VirtualBaseSpec;
1861          if (FindBaseInitializer(*this, ClassDecl,
1862                                  Context.getTypeDeclType(Type),
1863                                  DirectBaseSpec, VirtualBaseSpec)) {
1864            // We have found a direct or virtual base class with a
1865            // similar name to what was typed; complain and initialize
1866            // that base class.
1867            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1868              << MemberOrBase << false << CorrectedQuotedStr
1869              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1870
1871            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1872                                                             : VirtualBaseSpec;
1873            Diag(BaseSpec->getSourceRange().getBegin(),
1874                 diag::note_base_class_specified_here)
1875              << BaseSpec->getType()
1876              << BaseSpec->getSourceRange();
1877
1878            TyD = Type;
1879          }
1880        }
1881      }
1882
1883      if (!TyD && BaseType.isNull()) {
1884        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1885          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1886        return true;
1887      }
1888    }
1889
1890    if (BaseType.isNull()) {
1891      BaseType = Context.getTypeDeclType(TyD);
1892      if (SS.isSet()) {
1893        NestedNameSpecifier *Qualifier =
1894          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1895
1896        // FIXME: preserve source range information
1897        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1898      }
1899    }
1900  }
1901
1902  if (!TInfo)
1903    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1904
1905  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1906}
1907
1908/// Checks a member initializer expression for cases where reference (or
1909/// pointer) members are bound to by-value parameters (or their addresses).
1910static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1911                                               Expr *Init,
1912                                               SourceLocation IdLoc) {
1913  QualType MemberTy = Member->getType();
1914
1915  // We only handle pointers and references currently.
1916  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1917  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1918    return;
1919
1920  const bool IsPointer = MemberTy->isPointerType();
1921  if (IsPointer) {
1922    if (const UnaryOperator *Op
1923          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1924      // The only case we're worried about with pointers requires taking the
1925      // address.
1926      if (Op->getOpcode() != UO_AddrOf)
1927        return;
1928
1929      Init = Op->getSubExpr();
1930    } else {
1931      // We only handle address-of expression initializers for pointers.
1932      return;
1933    }
1934  }
1935
1936  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1937    // Taking the address of a temporary will be diagnosed as a hard error.
1938    if (IsPointer)
1939      return;
1940
1941    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1942      << Member << Init->getSourceRange();
1943  } else if (const DeclRefExpr *DRE
1944               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1945    // We only warn when referring to a non-reference parameter declaration.
1946    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1947    if (!Parameter || Parameter->getType()->isReferenceType())
1948      return;
1949
1950    S.Diag(Init->getExprLoc(),
1951           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1952                     : diag::warn_bind_ref_member_to_parameter)
1953      << Member << Parameter << Init->getSourceRange();
1954  } else {
1955    // Other initializers are fine.
1956    return;
1957  }
1958
1959  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1960    << (unsigned)IsPointer;
1961}
1962
1963/// Checks an initializer expression for use of uninitialized fields, such as
1964/// containing the field that is being initialized. Returns true if there is an
1965/// uninitialized field was used an updates the SourceLocation parameter; false
1966/// otherwise.
1967static bool InitExprContainsUninitializedFields(const Stmt *S,
1968                                                const ValueDecl *LhsField,
1969                                                SourceLocation *L) {
1970  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1971
1972  if (isa<CallExpr>(S)) {
1973    // Do not descend into function calls or constructors, as the use
1974    // of an uninitialized field may be valid. One would have to inspect
1975    // the contents of the function/ctor to determine if it is safe or not.
1976    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1977    // may be safe, depending on what the function/ctor does.
1978    return false;
1979  }
1980  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1981    const NamedDecl *RhsField = ME->getMemberDecl();
1982
1983    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1984      // The member expression points to a static data member.
1985      assert(VD->isStaticDataMember() &&
1986             "Member points to non-static data member!");
1987      (void)VD;
1988      return false;
1989    }
1990
1991    if (isa<EnumConstantDecl>(RhsField)) {
1992      // The member expression points to an enum.
1993      return false;
1994    }
1995
1996    if (RhsField == LhsField) {
1997      // Initializing a field with itself. Throw a warning.
1998      // But wait; there are exceptions!
1999      // Exception #1:  The field may not belong to this record.
2000      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2001      const Expr *base = ME->getBase();
2002      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2003        // Even though the field matches, it does not belong to this record.
2004        return false;
2005      }
2006      // None of the exceptions triggered; return true to indicate an
2007      // uninitialized field was used.
2008      *L = ME->getMemberLoc();
2009      return true;
2010    }
2011  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2012    // sizeof/alignof doesn't reference contents, do not warn.
2013    return false;
2014  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2015    // address-of doesn't reference contents (the pointer may be dereferenced
2016    // in the same expression but it would be rare; and weird).
2017    if (UOE->getOpcode() == UO_AddrOf)
2018      return false;
2019  }
2020  for (Stmt::const_child_range it = S->children(); it; ++it) {
2021    if (!*it) {
2022      // An expression such as 'member(arg ?: "")' may trigger this.
2023      continue;
2024    }
2025    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2026      return true;
2027  }
2028  return false;
2029}
2030
2031MemInitResult
2032Sema::BuildMemberInitializer(ValueDecl *Member,
2033                             const MultiInitializer &Args,
2034                             SourceLocation IdLoc) {
2035  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2036  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2037  assert((DirectMember || IndirectMember) &&
2038         "Member must be a FieldDecl or IndirectFieldDecl");
2039
2040  if (Args.DiagnoseUnexpandedParameterPack(*this))
2041    return true;
2042
2043  if (Member->isInvalidDecl())
2044    return true;
2045
2046  // Diagnose value-uses of fields to initialize themselves, e.g.
2047  //   foo(foo)
2048  // where foo is not also a parameter to the constructor.
2049  // TODO: implement -Wuninitialized and fold this into that framework.
2050  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2051       I != E; ++I) {
2052    SourceLocation L;
2053    Expr *Arg = *I;
2054    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2055      Arg = DIE->getInit();
2056    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2057      // FIXME: Return true in the case when other fields are used before being
2058      // uninitialized. For example, let this field be the i'th field. When
2059      // initializing the i'th field, throw a warning if any of the >= i'th
2060      // fields are used, as they are not yet initialized.
2061      // Right now we are only handling the case where the i'th field uses
2062      // itself in its initializer.
2063      Diag(L, diag::warn_field_is_uninit);
2064    }
2065  }
2066
2067  bool HasDependentArg = Args.isTypeDependent();
2068
2069  Expr *Init;
2070  if (Member->getType()->isDependentType() || HasDependentArg) {
2071    // Can't check initialization for a member of dependent type or when
2072    // any of the arguments are type-dependent expressions.
2073    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2074
2075    DiscardCleanupsInEvaluationContext();
2076  } else {
2077    // Initialize the member.
2078    InitializedEntity MemberEntity =
2079      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2080                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2081    InitializationKind Kind =
2082      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2083                                       Args.getEndLoc());
2084
2085    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2086    if (MemberInit.isInvalid())
2087      return true;
2088
2089    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2090
2091    // C++0x [class.base.init]p7:
2092    //   The initialization of each base and member constitutes a
2093    //   full-expression.
2094    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2095    if (MemberInit.isInvalid())
2096      return true;
2097
2098    // If we are in a dependent context, template instantiation will
2099    // perform this type-checking again. Just save the arguments that we
2100    // received in a ParenListExpr.
2101    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2102    // of the information that we have about the member
2103    // initializer. However, deconstructing the ASTs is a dicey process,
2104    // and this approach is far more likely to get the corner cases right.
2105    if (CurContext->isDependentContext()) {
2106      Init = Args.CreateInitExpr(Context,
2107                                 Member->getType().getNonReferenceType());
2108    } else {
2109      Init = MemberInit.get();
2110      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2111    }
2112  }
2113
2114  if (DirectMember) {
2115    return new (Context) CXXCtorInitializer(Context, DirectMember,
2116                                                    IdLoc, Args.getStartLoc(),
2117                                                    Init, Args.getEndLoc());
2118  } else {
2119    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  }
2123}
2124
2125MemInitResult
2126Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2127                                 const MultiInitializer &Args,
2128                                 CXXRecordDecl *ClassDecl) {
2129  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2130  if (!LangOpts.CPlusPlus0x)
2131    return Diag(NameLoc, diag::err_delegating_ctor)
2132      << TInfo->getTypeLoc().getLocalSourceRange();
2133  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2134
2135  // Initialize the object.
2136  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2137                                     QualType(ClassDecl->getTypeForDecl(), 0));
2138  InitializationKind Kind =
2139    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2140                                     Args.getEndLoc());
2141
2142  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2143  if (DelegationInit.isInvalid())
2144    return true;
2145
2146  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2147         "Delegating constructor with no target?");
2148
2149  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2150
2151  // C++0x [class.base.init]p7:
2152  //   The initialization of each base and member constitutes a
2153  //   full-expression.
2154  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2155  if (DelegationInit.isInvalid())
2156    return true;
2157
2158  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2159                                          DelegationInit.takeAs<Expr>(),
2160                                          Args.getEndLoc());
2161}
2162
2163MemInitResult
2164Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2165                           const MultiInitializer &Args,
2166                           CXXRecordDecl *ClassDecl,
2167                           SourceLocation EllipsisLoc) {
2168  bool HasDependentArg = Args.isTypeDependent();
2169
2170  SourceLocation BaseLoc
2171    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2172
2173  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2174    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2175             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2176
2177  // C++ [class.base.init]p2:
2178  //   [...] Unless the mem-initializer-id names a nonstatic data
2179  //   member of the constructor's class or a direct or virtual base
2180  //   of that class, the mem-initializer is ill-formed. A
2181  //   mem-initializer-list can initialize a base class using any
2182  //   name that denotes that base class type.
2183  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2184
2185  if (EllipsisLoc.isValid()) {
2186    // This is a pack expansion.
2187    if (!BaseType->containsUnexpandedParameterPack())  {
2188      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2189        << SourceRange(BaseLoc, Args.getEndLoc());
2190
2191      EllipsisLoc = SourceLocation();
2192    }
2193  } else {
2194    // Check for any unexpanded parameter packs.
2195    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2196      return true;
2197
2198    if (Args.DiagnoseUnexpandedParameterPack(*this))
2199      return true;
2200  }
2201
2202  // Check for direct and virtual base classes.
2203  const CXXBaseSpecifier *DirectBaseSpec = 0;
2204  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2205  if (!Dependent) {
2206    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2207                                       BaseType))
2208      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2209
2210    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2211                        VirtualBaseSpec);
2212
2213    // C++ [base.class.init]p2:
2214    // Unless the mem-initializer-id names a nonstatic data member of the
2215    // constructor's class or a direct or virtual base of that class, the
2216    // mem-initializer is ill-formed.
2217    if (!DirectBaseSpec && !VirtualBaseSpec) {
2218      // If the class has any dependent bases, then it's possible that
2219      // one of those types will resolve to the same type as
2220      // BaseType. Therefore, just treat this as a dependent base
2221      // class initialization.  FIXME: Should we try to check the
2222      // initialization anyway? It seems odd.
2223      if (ClassDecl->hasAnyDependentBases())
2224        Dependent = true;
2225      else
2226        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2227          << BaseType << Context.getTypeDeclType(ClassDecl)
2228          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229    }
2230  }
2231
2232  if (Dependent) {
2233    // Can't check initialization for a base of dependent type or when
2234    // any of the arguments are type-dependent expressions.
2235    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2236
2237    DiscardCleanupsInEvaluationContext();
2238
2239    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2240                                            /*IsVirtual=*/false,
2241                                            Args.getStartLoc(), BaseInit,
2242                                            Args.getEndLoc(), EllipsisLoc);
2243  }
2244
2245  // C++ [base.class.init]p2:
2246  //   If a mem-initializer-id is ambiguous because it designates both
2247  //   a direct non-virtual base class and an inherited virtual base
2248  //   class, the mem-initializer is ill-formed.
2249  if (DirectBaseSpec && VirtualBaseSpec)
2250    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2251      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  CXXBaseSpecifier *BaseSpec
2254    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2255  if (!BaseSpec)
2256    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2257
2258  // Initialize the base.
2259  InitializedEntity BaseEntity =
2260    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2261  InitializationKind Kind =
2262    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2263                                     Args.getEndLoc());
2264
2265  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2266  if (BaseInit.isInvalid())
2267    return true;
2268
2269  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2270
2271  // C++0x [class.base.init]p7:
2272  //   The initialization of each base and member constitutes a
2273  //   full-expression.
2274  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2275  if (BaseInit.isInvalid())
2276    return true;
2277
2278  // If we are in a dependent context, template instantiation will
2279  // perform this type-checking again. Just save the arguments that we
2280  // received in a ParenListExpr.
2281  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2282  // of the information that we have about the base
2283  // initializer. However, deconstructing the ASTs is a dicey process,
2284  // and this approach is far more likely to get the corner cases right.
2285  if (CurContext->isDependentContext())
2286    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2287
2288  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2289                                          BaseSpec->isVirtual(),
2290                                          Args.getStartLoc(),
2291                                          BaseInit.takeAs<Expr>(),
2292                                          Args.getEndLoc(), EllipsisLoc);
2293}
2294
2295// Create a static_cast\<T&&>(expr).
2296static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2297  QualType ExprType = E->getType();
2298  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2299  SourceLocation ExprLoc = E->getLocStart();
2300  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2301      TargetType, ExprLoc);
2302
2303  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2304                                   SourceRange(ExprLoc, ExprLoc),
2305                                   E->getSourceRange()).take();
2306}
2307
2308/// ImplicitInitializerKind - How an implicit base or member initializer should
2309/// initialize its base or member.
2310enum ImplicitInitializerKind {
2311  IIK_Default,
2312  IIK_Copy,
2313  IIK_Move
2314};
2315
2316static bool
2317BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2318                             ImplicitInitializerKind ImplicitInitKind,
2319                             CXXBaseSpecifier *BaseSpec,
2320                             bool IsInheritedVirtualBase,
2321                             CXXCtorInitializer *&CXXBaseInit) {
2322  InitializedEntity InitEntity
2323    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2324                                        IsInheritedVirtualBase);
2325
2326  ExprResult BaseInit;
2327
2328  switch (ImplicitInitKind) {
2329  case IIK_Default: {
2330    InitializationKind InitKind
2331      = InitializationKind::CreateDefault(Constructor->getLocation());
2332    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2333    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2334                               MultiExprArg(SemaRef, 0, 0));
2335    break;
2336  }
2337
2338  case IIK_Move:
2339  case IIK_Copy: {
2340    bool Moving = ImplicitInitKind == IIK_Move;
2341    ParmVarDecl *Param = Constructor->getParamDecl(0);
2342    QualType ParamType = Param->getType().getNonReferenceType();
2343
2344    Expr *CopyCtorArg =
2345      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2346                          Constructor->getLocation(), ParamType,
2347                          VK_LValue, 0);
2348
2349    // Cast to the base class to avoid ambiguities.
2350    QualType ArgTy =
2351      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2352                                       ParamType.getQualifiers());
2353
2354    if (Moving) {
2355      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2356    }
2357
2358    CXXCastPath BasePath;
2359    BasePath.push_back(BaseSpec);
2360    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2361                                            CK_UncheckedDerivedToBase,
2362                                            Moving ? VK_XValue : VK_LValue,
2363                                            &BasePath).take();
2364
2365    InitializationKind InitKind
2366      = InitializationKind::CreateDirect(Constructor->getLocation(),
2367                                         SourceLocation(), SourceLocation());
2368    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2369                                   &CopyCtorArg, 1);
2370    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2371                               MultiExprArg(&CopyCtorArg, 1));
2372    break;
2373  }
2374  }
2375
2376  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2377  if (BaseInit.isInvalid())
2378    return true;
2379
2380  CXXBaseInit =
2381    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2382               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2383                                                        SourceLocation()),
2384                                             BaseSpec->isVirtual(),
2385                                             SourceLocation(),
2386                                             BaseInit.takeAs<Expr>(),
2387                                             SourceLocation(),
2388                                             SourceLocation());
2389
2390  return false;
2391}
2392
2393static bool RefersToRValueRef(Expr *MemRef) {
2394  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2395  return Referenced->getType()->isRValueReferenceType();
2396}
2397
2398static bool
2399BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2400                               ImplicitInitializerKind ImplicitInitKind,
2401                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2402                               CXXCtorInitializer *&CXXMemberInit) {
2403  if (Field->isInvalidDecl())
2404    return true;
2405
2406  SourceLocation Loc = Constructor->getLocation();
2407
2408  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2409    bool Moving = ImplicitInitKind == IIK_Move;
2410    ParmVarDecl *Param = Constructor->getParamDecl(0);
2411    QualType ParamType = Param->getType().getNonReferenceType();
2412
2413    // Suppress copying zero-width bitfields.
2414    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2415      return false;
2416
2417    Expr *MemberExprBase =
2418      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2419                          Loc, ParamType, VK_LValue, 0);
2420
2421    if (Moving) {
2422      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2423    }
2424
2425    // Build a reference to this field within the parameter.
2426    CXXScopeSpec SS;
2427    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2428                              Sema::LookupMemberName);
2429    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2430                                  : cast<ValueDecl>(Field), AS_public);
2431    MemberLookup.resolveKind();
2432    ExprResult CtorArg
2433      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2434                                         ParamType, Loc,
2435                                         /*IsArrow=*/false,
2436                                         SS,
2437                                         /*FirstQualifierInScope=*/0,
2438                                         MemberLookup,
2439                                         /*TemplateArgs=*/0);
2440    if (CtorArg.isInvalid())
2441      return true;
2442
2443    // C++11 [class.copy]p15:
2444    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2445    //     with static_cast<T&&>(x.m);
2446    if (RefersToRValueRef(CtorArg.get())) {
2447      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2448    }
2449
2450    // When the field we are copying is an array, create index variables for
2451    // each dimension of the array. We use these index variables to subscript
2452    // the source array, and other clients (e.g., CodeGen) will perform the
2453    // necessary iteration with these index variables.
2454    SmallVector<VarDecl *, 4> IndexVariables;
2455    QualType BaseType = Field->getType();
2456    QualType SizeType = SemaRef.Context.getSizeType();
2457    bool InitializingArray = false;
2458    while (const ConstantArrayType *Array
2459                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2460      InitializingArray = true;
2461      // Create the iteration variable for this array index.
2462      IdentifierInfo *IterationVarName = 0;
2463      {
2464        llvm::SmallString<8> Str;
2465        llvm::raw_svector_ostream OS(Str);
2466        OS << "__i" << IndexVariables.size();
2467        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2468      }
2469      VarDecl *IterationVar
2470        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2471                          IterationVarName, SizeType,
2472                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2473                          SC_None, SC_None);
2474      IndexVariables.push_back(IterationVar);
2475
2476      // Create a reference to the iteration variable.
2477      ExprResult IterationVarRef
2478        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2479      assert(!IterationVarRef.isInvalid() &&
2480             "Reference to invented variable cannot fail!");
2481
2482      // Subscript the array with this iteration variable.
2483      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2484                                                        IterationVarRef.take(),
2485                                                        Loc);
2486      if (CtorArg.isInvalid())
2487        return true;
2488
2489      BaseType = Array->getElementType();
2490    }
2491
2492    // The array subscript expression is an lvalue, which is wrong for moving.
2493    if (Moving && InitializingArray)
2494      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2495
2496    // Construct the entity that we will be initializing. For an array, this
2497    // will be first element in the array, which may require several levels
2498    // of array-subscript entities.
2499    SmallVector<InitializedEntity, 4> Entities;
2500    Entities.reserve(1 + IndexVariables.size());
2501    if (Indirect)
2502      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2503    else
2504      Entities.push_back(InitializedEntity::InitializeMember(Field));
2505    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2506      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2507                                                              0,
2508                                                              Entities.back()));
2509
2510    // Direct-initialize to use the copy constructor.
2511    InitializationKind InitKind =
2512      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2513
2514    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2515    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2516                                   &CtorArgE, 1);
2517
2518    ExprResult MemberInit
2519      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2520                        MultiExprArg(&CtorArgE, 1));
2521    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2522    if (MemberInit.isInvalid())
2523      return true;
2524
2525    if (Indirect) {
2526      assert(IndexVariables.size() == 0 &&
2527             "Indirect field improperly initialized");
2528      CXXMemberInit
2529        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2530                                                   Loc, Loc,
2531                                                   MemberInit.takeAs<Expr>(),
2532                                                   Loc);
2533    } else
2534      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2535                                                 Loc, MemberInit.takeAs<Expr>(),
2536                                                 Loc,
2537                                                 IndexVariables.data(),
2538                                                 IndexVariables.size());
2539    return false;
2540  }
2541
2542  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2543
2544  QualType FieldBaseElementType =
2545    SemaRef.Context.getBaseElementType(Field->getType());
2546
2547  if (FieldBaseElementType->isRecordType()) {
2548    InitializedEntity InitEntity
2549      = Indirect? InitializedEntity::InitializeMember(Indirect)
2550                : InitializedEntity::InitializeMember(Field);
2551    InitializationKind InitKind =
2552      InitializationKind::CreateDefault(Loc);
2553
2554    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2555    ExprResult MemberInit =
2556      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2557
2558    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2559    if (MemberInit.isInvalid())
2560      return true;
2561
2562    if (Indirect)
2563      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2564                                                               Indirect, Loc,
2565                                                               Loc,
2566                                                               MemberInit.get(),
2567                                                               Loc);
2568    else
2569      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2570                                                               Field, Loc, Loc,
2571                                                               MemberInit.get(),
2572                                                               Loc);
2573    return false;
2574  }
2575
2576  if (!Field->getParent()->isUnion()) {
2577    if (FieldBaseElementType->isReferenceType()) {
2578      SemaRef.Diag(Constructor->getLocation(),
2579                   diag::err_uninitialized_member_in_ctor)
2580      << (int)Constructor->isImplicit()
2581      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2582      << 0 << Field->getDeclName();
2583      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2584      return true;
2585    }
2586
2587    if (FieldBaseElementType.isConstQualified()) {
2588      SemaRef.Diag(Constructor->getLocation(),
2589                   diag::err_uninitialized_member_in_ctor)
2590      << (int)Constructor->isImplicit()
2591      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2592      << 1 << Field->getDeclName();
2593      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2594      return true;
2595    }
2596  }
2597
2598  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2599      FieldBaseElementType->isObjCRetainableType() &&
2600      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2601      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2602    // Instant objects:
2603    //   Default-initialize Objective-C pointers to NULL.
2604    CXXMemberInit
2605      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2606                                                 Loc, Loc,
2607                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2608                                                 Loc);
2609    return false;
2610  }
2611
2612  // Nothing to initialize.
2613  CXXMemberInit = 0;
2614  return false;
2615}
2616
2617namespace {
2618struct BaseAndFieldInfo {
2619  Sema &S;
2620  CXXConstructorDecl *Ctor;
2621  bool AnyErrorsInInits;
2622  ImplicitInitializerKind IIK;
2623  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2624  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2625
2626  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2627    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2628    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2629    if (Generated && Ctor->isCopyConstructor())
2630      IIK = IIK_Copy;
2631    else if (Generated && Ctor->isMoveConstructor())
2632      IIK = IIK_Move;
2633    else
2634      IIK = IIK_Default;
2635  }
2636
2637  bool isImplicitCopyOrMove() const {
2638    switch (IIK) {
2639    case IIK_Copy:
2640    case IIK_Move:
2641      return true;
2642
2643    case IIK_Default:
2644      return false;
2645    }
2646
2647    return false;
2648  }
2649};
2650}
2651
2652/// \brief Determine whether the given indirect field declaration is somewhere
2653/// within an anonymous union.
2654static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2655  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2656                                      CEnd = F->chain_end();
2657       C != CEnd; ++C)
2658    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2659      if (Record->isUnion())
2660        return true;
2661
2662  return false;
2663}
2664
2665/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2666/// array type.
2667static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2668  if (T->isIncompleteArrayType())
2669    return true;
2670
2671  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2672    if (!ArrayT->getSize())
2673      return true;
2674
2675    T = ArrayT->getElementType();
2676  }
2677
2678  return false;
2679}
2680
2681static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2682                                    FieldDecl *Field,
2683                                    IndirectFieldDecl *Indirect = 0) {
2684
2685  // Overwhelmingly common case: we have a direct initializer for this field.
2686  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2687    Info.AllToInit.push_back(Init);
2688    return false;
2689  }
2690
2691  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2692  // has a brace-or-equal-initializer, the entity is initialized as specified
2693  // in [dcl.init].
2694  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2695    CXXCtorInitializer *Init;
2696    if (Indirect)
2697      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2698                                                      SourceLocation(),
2699                                                      SourceLocation(), 0,
2700                                                      SourceLocation());
2701    else
2702      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2703                                                      SourceLocation(),
2704                                                      SourceLocation(), 0,
2705                                                      SourceLocation());
2706    Info.AllToInit.push_back(Init);
2707    return false;
2708  }
2709
2710  // Don't build an implicit initializer for union members if none was
2711  // explicitly specified.
2712  if (Field->getParent()->isUnion() ||
2713      (Indirect && isWithinAnonymousUnion(Indirect)))
2714    return false;
2715
2716  // Don't initialize incomplete or zero-length arrays.
2717  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2718    return false;
2719
2720  // Don't try to build an implicit initializer if there were semantic
2721  // errors in any of the initializers (and therefore we might be
2722  // missing some that the user actually wrote).
2723  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2724    return false;
2725
2726  CXXCtorInitializer *Init = 0;
2727  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2728                                     Indirect, Init))
2729    return true;
2730
2731  if (Init)
2732    Info.AllToInit.push_back(Init);
2733
2734  return false;
2735}
2736
2737bool
2738Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2739                               CXXCtorInitializer *Initializer) {
2740  assert(Initializer->isDelegatingInitializer());
2741  Constructor->setNumCtorInitializers(1);
2742  CXXCtorInitializer **initializer =
2743    new (Context) CXXCtorInitializer*[1];
2744  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2745  Constructor->setCtorInitializers(initializer);
2746
2747  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2748    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2749    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2750  }
2751
2752  DelegatingCtorDecls.push_back(Constructor);
2753
2754  return false;
2755}
2756
2757bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2758                               CXXCtorInitializer **Initializers,
2759                               unsigned NumInitializers,
2760                               bool AnyErrors) {
2761  if (Constructor->isDependentContext()) {
2762    // Just store the initializers as written, they will be checked during
2763    // instantiation.
2764    if (NumInitializers > 0) {
2765      Constructor->setNumCtorInitializers(NumInitializers);
2766      CXXCtorInitializer **baseOrMemberInitializers =
2767        new (Context) CXXCtorInitializer*[NumInitializers];
2768      memcpy(baseOrMemberInitializers, Initializers,
2769             NumInitializers * sizeof(CXXCtorInitializer*));
2770      Constructor->setCtorInitializers(baseOrMemberInitializers);
2771    }
2772
2773    return false;
2774  }
2775
2776  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2777
2778  // We need to build the initializer AST according to order of construction
2779  // and not what user specified in the Initializers list.
2780  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2781  if (!ClassDecl)
2782    return true;
2783
2784  bool HadError = false;
2785
2786  for (unsigned i = 0; i < NumInitializers; i++) {
2787    CXXCtorInitializer *Member = Initializers[i];
2788
2789    if (Member->isBaseInitializer())
2790      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2791    else
2792      Info.AllBaseFields[Member->getAnyMember()] = Member;
2793  }
2794
2795  // Keep track of the direct virtual bases.
2796  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2797  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2798       E = ClassDecl->bases_end(); I != E; ++I) {
2799    if (I->isVirtual())
2800      DirectVBases.insert(I);
2801  }
2802
2803  // Push virtual bases before others.
2804  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2805       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2806
2807    if (CXXCtorInitializer *Value
2808        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2809      Info.AllToInit.push_back(Value);
2810    } else if (!AnyErrors) {
2811      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2812      CXXCtorInitializer *CXXBaseInit;
2813      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2814                                       VBase, IsInheritedVirtualBase,
2815                                       CXXBaseInit)) {
2816        HadError = true;
2817        continue;
2818      }
2819
2820      Info.AllToInit.push_back(CXXBaseInit);
2821    }
2822  }
2823
2824  // Non-virtual bases.
2825  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2826       E = ClassDecl->bases_end(); Base != E; ++Base) {
2827    // Virtuals are in the virtual base list and already constructed.
2828    if (Base->isVirtual())
2829      continue;
2830
2831    if (CXXCtorInitializer *Value
2832          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2833      Info.AllToInit.push_back(Value);
2834    } else if (!AnyErrors) {
2835      CXXCtorInitializer *CXXBaseInit;
2836      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2837                                       Base, /*IsInheritedVirtualBase=*/false,
2838                                       CXXBaseInit)) {
2839        HadError = true;
2840        continue;
2841      }
2842
2843      Info.AllToInit.push_back(CXXBaseInit);
2844    }
2845  }
2846
2847  // Fields.
2848  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2849                               MemEnd = ClassDecl->decls_end();
2850       Mem != MemEnd; ++Mem) {
2851    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2852      // C++ [class.bit]p2:
2853      //   A declaration for a bit-field that omits the identifier declares an
2854      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2855      //   initialized.
2856      if (F->isUnnamedBitfield())
2857        continue;
2858
2859      // If we're not generating the implicit copy/move constructor, then we'll
2860      // handle anonymous struct/union fields based on their individual
2861      // indirect fields.
2862      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2863        continue;
2864
2865      if (CollectFieldInitializer(*this, Info, F))
2866        HadError = true;
2867      continue;
2868    }
2869
2870    // Beyond this point, we only consider default initialization.
2871    if (Info.IIK != IIK_Default)
2872      continue;
2873
2874    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2875      if (F->getType()->isIncompleteArrayType()) {
2876        assert(ClassDecl->hasFlexibleArrayMember() &&
2877               "Incomplete array type is not valid");
2878        continue;
2879      }
2880
2881      // Initialize each field of an anonymous struct individually.
2882      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2883        HadError = true;
2884
2885      continue;
2886    }
2887  }
2888
2889  NumInitializers = Info.AllToInit.size();
2890  if (NumInitializers > 0) {
2891    Constructor->setNumCtorInitializers(NumInitializers);
2892    CXXCtorInitializer **baseOrMemberInitializers =
2893      new (Context) CXXCtorInitializer*[NumInitializers];
2894    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2895           NumInitializers * sizeof(CXXCtorInitializer*));
2896    Constructor->setCtorInitializers(baseOrMemberInitializers);
2897
2898    // Constructors implicitly reference the base and member
2899    // destructors.
2900    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2901                                           Constructor->getParent());
2902  }
2903
2904  return HadError;
2905}
2906
2907static void *GetKeyForTopLevelField(FieldDecl *Field) {
2908  // For anonymous unions, use the class declaration as the key.
2909  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2910    if (RT->getDecl()->isAnonymousStructOrUnion())
2911      return static_cast<void *>(RT->getDecl());
2912  }
2913  return static_cast<void *>(Field);
2914}
2915
2916static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2917  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2918}
2919
2920static void *GetKeyForMember(ASTContext &Context,
2921                             CXXCtorInitializer *Member) {
2922  if (!Member->isAnyMemberInitializer())
2923    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2924
2925  // For fields injected into the class via declaration of an anonymous union,
2926  // use its anonymous union class declaration as the unique key.
2927  FieldDecl *Field = Member->getAnyMember();
2928
2929  // If the field is a member of an anonymous struct or union, our key
2930  // is the anonymous record decl that's a direct child of the class.
2931  RecordDecl *RD = Field->getParent();
2932  if (RD->isAnonymousStructOrUnion()) {
2933    while (true) {
2934      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2935      if (Parent->isAnonymousStructOrUnion())
2936        RD = Parent;
2937      else
2938        break;
2939    }
2940
2941    return static_cast<void *>(RD);
2942  }
2943
2944  return static_cast<void *>(Field);
2945}
2946
2947static void
2948DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2949                                  const CXXConstructorDecl *Constructor,
2950                                  CXXCtorInitializer **Inits,
2951                                  unsigned NumInits) {
2952  if (Constructor->getDeclContext()->isDependentContext())
2953    return;
2954
2955  // Don't check initializers order unless the warning is enabled at the
2956  // location of at least one initializer.
2957  bool ShouldCheckOrder = false;
2958  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2959    CXXCtorInitializer *Init = Inits[InitIndex];
2960    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2961                                         Init->getSourceLocation())
2962          != DiagnosticsEngine::Ignored) {
2963      ShouldCheckOrder = true;
2964      break;
2965    }
2966  }
2967  if (!ShouldCheckOrder)
2968    return;
2969
2970  // Build the list of bases and members in the order that they'll
2971  // actually be initialized.  The explicit initializers should be in
2972  // this same order but may be missing things.
2973  SmallVector<const void*, 32> IdealInitKeys;
2974
2975  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2976
2977  // 1. Virtual bases.
2978  for (CXXRecordDecl::base_class_const_iterator VBase =
2979       ClassDecl->vbases_begin(),
2980       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2981    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2982
2983  // 2. Non-virtual bases.
2984  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2985       E = ClassDecl->bases_end(); Base != E; ++Base) {
2986    if (Base->isVirtual())
2987      continue;
2988    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2989  }
2990
2991  // 3. Direct fields.
2992  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2993       E = ClassDecl->field_end(); Field != E; ++Field) {
2994    if (Field->isUnnamedBitfield())
2995      continue;
2996
2997    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2998  }
2999
3000  unsigned NumIdealInits = IdealInitKeys.size();
3001  unsigned IdealIndex = 0;
3002
3003  CXXCtorInitializer *PrevInit = 0;
3004  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3005    CXXCtorInitializer *Init = Inits[InitIndex];
3006    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3007
3008    // Scan forward to try to find this initializer in the idealized
3009    // initializers list.
3010    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3011      if (InitKey == IdealInitKeys[IdealIndex])
3012        break;
3013
3014    // If we didn't find this initializer, it must be because we
3015    // scanned past it on a previous iteration.  That can only
3016    // happen if we're out of order;  emit a warning.
3017    if (IdealIndex == NumIdealInits && PrevInit) {
3018      Sema::SemaDiagnosticBuilder D =
3019        SemaRef.Diag(PrevInit->getSourceLocation(),
3020                     diag::warn_initializer_out_of_order);
3021
3022      if (PrevInit->isAnyMemberInitializer())
3023        D << 0 << PrevInit->getAnyMember()->getDeclName();
3024      else
3025        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3026
3027      if (Init->isAnyMemberInitializer())
3028        D << 0 << Init->getAnyMember()->getDeclName();
3029      else
3030        D << 1 << Init->getTypeSourceInfo()->getType();
3031
3032      // Move back to the initializer's location in the ideal list.
3033      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3034        if (InitKey == IdealInitKeys[IdealIndex])
3035          break;
3036
3037      assert(IdealIndex != NumIdealInits &&
3038             "initializer not found in initializer list");
3039    }
3040
3041    PrevInit = Init;
3042  }
3043}
3044
3045namespace {
3046bool CheckRedundantInit(Sema &S,
3047                        CXXCtorInitializer *Init,
3048                        CXXCtorInitializer *&PrevInit) {
3049  if (!PrevInit) {
3050    PrevInit = Init;
3051    return false;
3052  }
3053
3054  if (FieldDecl *Field = Init->getMember())
3055    S.Diag(Init->getSourceLocation(),
3056           diag::err_multiple_mem_initialization)
3057      << Field->getDeclName()
3058      << Init->getSourceRange();
3059  else {
3060    const Type *BaseClass = Init->getBaseClass();
3061    assert(BaseClass && "neither field nor base");
3062    S.Diag(Init->getSourceLocation(),
3063           diag::err_multiple_base_initialization)
3064      << QualType(BaseClass, 0)
3065      << Init->getSourceRange();
3066  }
3067  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3068    << 0 << PrevInit->getSourceRange();
3069
3070  return true;
3071}
3072
3073typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3074typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3075
3076bool CheckRedundantUnionInit(Sema &S,
3077                             CXXCtorInitializer *Init,
3078                             RedundantUnionMap &Unions) {
3079  FieldDecl *Field = Init->getAnyMember();
3080  RecordDecl *Parent = Field->getParent();
3081  NamedDecl *Child = Field;
3082
3083  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3084    if (Parent->isUnion()) {
3085      UnionEntry &En = Unions[Parent];
3086      if (En.first && En.first != Child) {
3087        S.Diag(Init->getSourceLocation(),
3088               diag::err_multiple_mem_union_initialization)
3089          << Field->getDeclName()
3090          << Init->getSourceRange();
3091        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3092          << 0 << En.second->getSourceRange();
3093        return true;
3094      }
3095      if (!En.first) {
3096        En.first = Child;
3097        En.second = Init;
3098      }
3099      if (!Parent->isAnonymousStructOrUnion())
3100        return false;
3101    }
3102
3103    Child = Parent;
3104    Parent = cast<RecordDecl>(Parent->getDeclContext());
3105  }
3106
3107  return false;
3108}
3109}
3110
3111/// ActOnMemInitializers - Handle the member initializers for a constructor.
3112void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3113                                SourceLocation ColonLoc,
3114                                CXXCtorInitializer **meminits,
3115                                unsigned NumMemInits,
3116                                bool AnyErrors) {
3117  if (!ConstructorDecl)
3118    return;
3119
3120  AdjustDeclIfTemplate(ConstructorDecl);
3121
3122  CXXConstructorDecl *Constructor
3123    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3124
3125  if (!Constructor) {
3126    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3127    return;
3128  }
3129
3130  CXXCtorInitializer **MemInits =
3131    reinterpret_cast<CXXCtorInitializer **>(meminits);
3132
3133  // Mapping for the duplicate initializers check.
3134  // For member initializers, this is keyed with a FieldDecl*.
3135  // For base initializers, this is keyed with a Type*.
3136  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3137
3138  // Mapping for the inconsistent anonymous-union initializers check.
3139  RedundantUnionMap MemberUnions;
3140
3141  bool HadError = false;
3142  for (unsigned i = 0; i < NumMemInits; i++) {
3143    CXXCtorInitializer *Init = MemInits[i];
3144
3145    // Set the source order index.
3146    Init->setSourceOrder(i);
3147
3148    if (Init->isAnyMemberInitializer()) {
3149      FieldDecl *Field = Init->getAnyMember();
3150      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3151          CheckRedundantUnionInit(*this, Init, MemberUnions))
3152        HadError = true;
3153    } else if (Init->isBaseInitializer()) {
3154      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3155      if (CheckRedundantInit(*this, Init, Members[Key]))
3156        HadError = true;
3157    } else {
3158      assert(Init->isDelegatingInitializer());
3159      // This must be the only initializer
3160      if (i != 0 || NumMemInits > 1) {
3161        Diag(MemInits[0]->getSourceLocation(),
3162             diag::err_delegating_initializer_alone)
3163          << MemInits[0]->getSourceRange();
3164        HadError = true;
3165        // We will treat this as being the only initializer.
3166      }
3167      SetDelegatingInitializer(Constructor, MemInits[i]);
3168      // Return immediately as the initializer is set.
3169      return;
3170    }
3171  }
3172
3173  if (HadError)
3174    return;
3175
3176  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3177
3178  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3179}
3180
3181void
3182Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3183                                             CXXRecordDecl *ClassDecl) {
3184  // Ignore dependent contexts. Also ignore unions, since their members never
3185  // have destructors implicitly called.
3186  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3187    return;
3188
3189  // FIXME: all the access-control diagnostics are positioned on the
3190  // field/base declaration.  That's probably good; that said, the
3191  // user might reasonably want to know why the destructor is being
3192  // emitted, and we currently don't say.
3193
3194  // Non-static data members.
3195  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3196       E = ClassDecl->field_end(); I != E; ++I) {
3197    FieldDecl *Field = *I;
3198    if (Field->isInvalidDecl())
3199      continue;
3200
3201    // Don't destroy incomplete or zero-length arrays.
3202    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3203      continue;
3204
3205    QualType FieldType = Context.getBaseElementType(Field->getType());
3206
3207    const RecordType* RT = FieldType->getAs<RecordType>();
3208    if (!RT)
3209      continue;
3210
3211    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3212    if (FieldClassDecl->isInvalidDecl())
3213      continue;
3214    if (FieldClassDecl->hasTrivialDestructor())
3215      continue;
3216
3217    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3218    assert(Dtor && "No dtor found for FieldClassDecl!");
3219    CheckDestructorAccess(Field->getLocation(), Dtor,
3220                          PDiag(diag::err_access_dtor_field)
3221                            << Field->getDeclName()
3222                            << FieldType);
3223
3224    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3225  }
3226
3227  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3228
3229  // Bases.
3230  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3231       E = ClassDecl->bases_end(); Base != E; ++Base) {
3232    // Bases are always records in a well-formed non-dependent class.
3233    const RecordType *RT = Base->getType()->getAs<RecordType>();
3234
3235    // Remember direct virtual bases.
3236    if (Base->isVirtual())
3237      DirectVirtualBases.insert(RT);
3238
3239    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3240    // If our base class is invalid, we probably can't get its dtor anyway.
3241    if (BaseClassDecl->isInvalidDecl())
3242      continue;
3243    // Ignore trivial destructors.
3244    if (BaseClassDecl->hasTrivialDestructor())
3245      continue;
3246
3247    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3248    assert(Dtor && "No dtor found for BaseClassDecl!");
3249
3250    // FIXME: caret should be on the start of the class name
3251    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3252                          PDiag(diag::err_access_dtor_base)
3253                            << Base->getType()
3254                            << Base->getSourceRange());
3255
3256    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3257  }
3258
3259  // Virtual bases.
3260  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3261       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3262
3263    // Bases are always records in a well-formed non-dependent class.
3264    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3265
3266    // Ignore direct virtual bases.
3267    if (DirectVirtualBases.count(RT))
3268      continue;
3269
3270    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3271    // If our base class is invalid, we probably can't get its dtor anyway.
3272    if (BaseClassDecl->isInvalidDecl())
3273      continue;
3274    // Ignore trivial destructors.
3275    if (BaseClassDecl->hasTrivialDestructor())
3276      continue;
3277
3278    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3279    assert(Dtor && "No dtor found for BaseClassDecl!");
3280    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3281                          PDiag(diag::err_access_dtor_vbase)
3282                            << VBase->getType());
3283
3284    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3285  }
3286}
3287
3288void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3289  if (!CDtorDecl)
3290    return;
3291
3292  if (CXXConstructorDecl *Constructor
3293      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3294    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3295}
3296
3297bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3298                                  unsigned DiagID, AbstractDiagSelID SelID) {
3299  if (SelID == -1)
3300    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3301  else
3302    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3303}
3304
3305bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3306                                  const PartialDiagnostic &PD) {
3307  if (!getLangOptions().CPlusPlus)
3308    return false;
3309
3310  if (const ArrayType *AT = Context.getAsArrayType(T))
3311    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3312
3313  if (const PointerType *PT = T->getAs<PointerType>()) {
3314    // Find the innermost pointer type.
3315    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3316      PT = T;
3317
3318    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3319      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3320  }
3321
3322  const RecordType *RT = T->getAs<RecordType>();
3323  if (!RT)
3324    return false;
3325
3326  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3327
3328  // We can't answer whether something is abstract until it has a
3329  // definition.  If it's currently being defined, we'll walk back
3330  // over all the declarations when we have a full definition.
3331  const CXXRecordDecl *Def = RD->getDefinition();
3332  if (!Def || Def->isBeingDefined())
3333    return false;
3334
3335  if (!RD->isAbstract())
3336    return false;
3337
3338  Diag(Loc, PD) << RD->getDeclName();
3339  DiagnoseAbstractType(RD);
3340
3341  return true;
3342}
3343
3344void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3345  // Check if we've already emitted the list of pure virtual functions
3346  // for this class.
3347  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3348    return;
3349
3350  CXXFinalOverriderMap FinalOverriders;
3351  RD->getFinalOverriders(FinalOverriders);
3352
3353  // Keep a set of seen pure methods so we won't diagnose the same method
3354  // more than once.
3355  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3356
3357  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3358                                   MEnd = FinalOverriders.end();
3359       M != MEnd;
3360       ++M) {
3361    for (OverridingMethods::iterator SO = M->second.begin(),
3362                                  SOEnd = M->second.end();
3363         SO != SOEnd; ++SO) {
3364      // C++ [class.abstract]p4:
3365      //   A class is abstract if it contains or inherits at least one
3366      //   pure virtual function for which the final overrider is pure
3367      //   virtual.
3368
3369      //
3370      if (SO->second.size() != 1)
3371        continue;
3372
3373      if (!SO->second.front().Method->isPure())
3374        continue;
3375
3376      if (!SeenPureMethods.insert(SO->second.front().Method))
3377        continue;
3378
3379      Diag(SO->second.front().Method->getLocation(),
3380           diag::note_pure_virtual_function)
3381        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3382    }
3383  }
3384
3385  if (!PureVirtualClassDiagSet)
3386    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3387  PureVirtualClassDiagSet->insert(RD);
3388}
3389
3390namespace {
3391struct AbstractUsageInfo {
3392  Sema &S;
3393  CXXRecordDecl *Record;
3394  CanQualType AbstractType;
3395  bool Invalid;
3396
3397  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3398    : S(S), Record(Record),
3399      AbstractType(S.Context.getCanonicalType(
3400                   S.Context.getTypeDeclType(Record))),
3401      Invalid(false) {}
3402
3403  void DiagnoseAbstractType() {
3404    if (Invalid) return;
3405    S.DiagnoseAbstractType(Record);
3406    Invalid = true;
3407  }
3408
3409  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3410};
3411
3412struct CheckAbstractUsage {
3413  AbstractUsageInfo &Info;
3414  const NamedDecl *Ctx;
3415
3416  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3417    : Info(Info), Ctx(Ctx) {}
3418
3419  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3420    switch (TL.getTypeLocClass()) {
3421#define ABSTRACT_TYPELOC(CLASS, PARENT)
3422#define TYPELOC(CLASS, PARENT) \
3423    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3424#include "clang/AST/TypeLocNodes.def"
3425    }
3426  }
3427
3428  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3429    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3430    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3431      if (!TL.getArg(I))
3432        continue;
3433
3434      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3435      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3436    }
3437  }
3438
3439  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3440    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3441  }
3442
3443  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3444    // Visit the type parameters from a permissive context.
3445    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3446      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3447      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3448        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3449          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3450      // TODO: other template argument types?
3451    }
3452  }
3453
3454  // Visit pointee types from a permissive context.
3455#define CheckPolymorphic(Type) \
3456  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3457    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3458  }
3459  CheckPolymorphic(PointerTypeLoc)
3460  CheckPolymorphic(ReferenceTypeLoc)
3461  CheckPolymorphic(MemberPointerTypeLoc)
3462  CheckPolymorphic(BlockPointerTypeLoc)
3463  CheckPolymorphic(AtomicTypeLoc)
3464
3465  /// Handle all the types we haven't given a more specific
3466  /// implementation for above.
3467  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3468    // Every other kind of type that we haven't called out already
3469    // that has an inner type is either (1) sugar or (2) contains that
3470    // inner type in some way as a subobject.
3471    if (TypeLoc Next = TL.getNextTypeLoc())
3472      return Visit(Next, Sel);
3473
3474    // If there's no inner type and we're in a permissive context,
3475    // don't diagnose.
3476    if (Sel == Sema::AbstractNone) return;
3477
3478    // Check whether the type matches the abstract type.
3479    QualType T = TL.getType();
3480    if (T->isArrayType()) {
3481      Sel = Sema::AbstractArrayType;
3482      T = Info.S.Context.getBaseElementType(T);
3483    }
3484    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3485    if (CT != Info.AbstractType) return;
3486
3487    // It matched; do some magic.
3488    if (Sel == Sema::AbstractArrayType) {
3489      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3490        << T << TL.getSourceRange();
3491    } else {
3492      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3493        << Sel << T << TL.getSourceRange();
3494    }
3495    Info.DiagnoseAbstractType();
3496  }
3497};
3498
3499void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3500                                  Sema::AbstractDiagSelID Sel) {
3501  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3502}
3503
3504}
3505
3506/// Check for invalid uses of an abstract type in a method declaration.
3507static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3508                                    CXXMethodDecl *MD) {
3509  // No need to do the check on definitions, which require that
3510  // the return/param types be complete.
3511  if (MD->doesThisDeclarationHaveABody())
3512    return;
3513
3514  // For safety's sake, just ignore it if we don't have type source
3515  // information.  This should never happen for non-implicit methods,
3516  // but...
3517  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3518    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3519}
3520
3521/// Check for invalid uses of an abstract type within a class definition.
3522static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3523                                    CXXRecordDecl *RD) {
3524  for (CXXRecordDecl::decl_iterator
3525         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3526    Decl *D = *I;
3527    if (D->isImplicit()) continue;
3528
3529    // Methods and method templates.
3530    if (isa<CXXMethodDecl>(D)) {
3531      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3532    } else if (isa<FunctionTemplateDecl>(D)) {
3533      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3534      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3535
3536    // Fields and static variables.
3537    } else if (isa<FieldDecl>(D)) {
3538      FieldDecl *FD = cast<FieldDecl>(D);
3539      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3540        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3541    } else if (isa<VarDecl>(D)) {
3542      VarDecl *VD = cast<VarDecl>(D);
3543      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3544        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3545
3546    // Nested classes and class templates.
3547    } else if (isa<CXXRecordDecl>(D)) {
3548      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3549    } else if (isa<ClassTemplateDecl>(D)) {
3550      CheckAbstractClassUsage(Info,
3551                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3552    }
3553  }
3554}
3555
3556/// \brief Perform semantic checks on a class definition that has been
3557/// completing, introducing implicitly-declared members, checking for
3558/// abstract types, etc.
3559void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3560  if (!Record)
3561    return;
3562
3563  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3564    AbstractUsageInfo Info(*this, Record);
3565    CheckAbstractClassUsage(Info, Record);
3566  }
3567
3568  // If this is not an aggregate type and has no user-declared constructor,
3569  // complain about any non-static data members of reference or const scalar
3570  // type, since they will never get initializers.
3571  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3572      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3573    bool Complained = false;
3574    for (RecordDecl::field_iterator F = Record->field_begin(),
3575                                 FEnd = Record->field_end();
3576         F != FEnd; ++F) {
3577      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3578        continue;
3579
3580      if (F->getType()->isReferenceType() ||
3581          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3582        if (!Complained) {
3583          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3584            << Record->getTagKind() << Record;
3585          Complained = true;
3586        }
3587
3588        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3589          << F->getType()->isReferenceType()
3590          << F->getDeclName();
3591      }
3592    }
3593  }
3594
3595  if (Record->isDynamicClass() && !Record->isDependentType())
3596    DynamicClasses.push_back(Record);
3597
3598  if (Record->getIdentifier()) {
3599    // C++ [class.mem]p13:
3600    //   If T is the name of a class, then each of the following shall have a
3601    //   name different from T:
3602    //     - every member of every anonymous union that is a member of class T.
3603    //
3604    // C++ [class.mem]p14:
3605    //   In addition, if class T has a user-declared constructor (12.1), every
3606    //   non-static data member of class T shall have a name different from T.
3607    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3608         R.first != R.second; ++R.first) {
3609      NamedDecl *D = *R.first;
3610      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3611          isa<IndirectFieldDecl>(D)) {
3612        Diag(D->getLocation(), diag::err_member_name_of_class)
3613          << D->getDeclName();
3614        break;
3615      }
3616    }
3617  }
3618
3619  // Warn if the class has virtual methods but non-virtual public destructor.
3620  if (Record->isPolymorphic() && !Record->isDependentType()) {
3621    CXXDestructorDecl *dtor = Record->getDestructor();
3622    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3623      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3624           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3625  }
3626
3627  // See if a method overloads virtual methods in a base
3628  /// class without overriding any.
3629  if (!Record->isDependentType()) {
3630    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3631                                     MEnd = Record->method_end();
3632         M != MEnd; ++M) {
3633      if (!(*M)->isStatic())
3634        DiagnoseHiddenVirtualMethods(Record, *M);
3635    }
3636  }
3637
3638  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3639  // function that is not a constructor declares that member function to be
3640  // const. [...] The class of which that function is a member shall be
3641  // a literal type.
3642  //
3643  // It's fine to diagnose constructors here too: such constructors cannot
3644  // produce a constant expression, so are ill-formed (no diagnostic required).
3645  //
3646  // If the class has virtual bases, any constexpr members will already have
3647  // been diagnosed by the checks performed on the member declaration, so
3648  // suppress this (less useful) diagnostic.
3649  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3650      !Record->isLiteral() && !Record->getNumVBases()) {
3651    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3652                                     MEnd = Record->method_end();
3653         M != MEnd; ++M) {
3654      if ((*M)->isConstexpr()) {
3655        switch (Record->getTemplateSpecializationKind()) {
3656        case TSK_ImplicitInstantiation:
3657        case TSK_ExplicitInstantiationDeclaration:
3658        case TSK_ExplicitInstantiationDefinition:
3659          // If a template instantiates to a non-literal type, but its members
3660          // instantiate to constexpr functions, the template is technically
3661          // ill-formed, but we allow it for sanity. Such members are treated as
3662          // non-constexpr.
3663          (*M)->setConstexpr(false);
3664          continue;
3665
3666        case TSK_Undeclared:
3667        case TSK_ExplicitSpecialization:
3668          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3669                             PDiag(diag::err_constexpr_method_non_literal));
3670          break;
3671        }
3672
3673        // Only produce one error per class.
3674        break;
3675      }
3676    }
3677  }
3678
3679  // Declare inherited constructors. We do this eagerly here because:
3680  // - The standard requires an eager diagnostic for conflicting inherited
3681  //   constructors from different classes.
3682  // - The lazy declaration of the other implicit constructors is so as to not
3683  //   waste space and performance on classes that are not meant to be
3684  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3685  //   have inherited constructors.
3686  DeclareInheritedConstructors(Record);
3687
3688  if (!Record->isDependentType())
3689    CheckExplicitlyDefaultedMethods(Record);
3690}
3691
3692void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3693  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3694                                      ME = Record->method_end();
3695       MI != ME; ++MI) {
3696    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3697      switch (getSpecialMember(*MI)) {
3698      case CXXDefaultConstructor:
3699        CheckExplicitlyDefaultedDefaultConstructor(
3700                                                  cast<CXXConstructorDecl>(*MI));
3701        break;
3702
3703      case CXXDestructor:
3704        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3705        break;
3706
3707      case CXXCopyConstructor:
3708        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3709        break;
3710
3711      case CXXCopyAssignment:
3712        CheckExplicitlyDefaultedCopyAssignment(*MI);
3713        break;
3714
3715      case CXXMoveConstructor:
3716        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3717        break;
3718
3719      case CXXMoveAssignment:
3720        CheckExplicitlyDefaultedMoveAssignment(*MI);
3721        break;
3722
3723      case CXXInvalid:
3724        llvm_unreachable("non-special member explicitly defaulted!");
3725      }
3726    }
3727  }
3728
3729}
3730
3731void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3732  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3733
3734  // Whether this was the first-declared instance of the constructor.
3735  // This affects whether we implicitly add an exception spec (and, eventually,
3736  // constexpr). It is also ill-formed to explicitly default a constructor such
3737  // that it would be deleted. (C++0x [decl.fct.def.default])
3738  bool First = CD == CD->getCanonicalDecl();
3739
3740  bool HadError = false;
3741  if (CD->getNumParams() != 0) {
3742    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3743      << CD->getSourceRange();
3744    HadError = true;
3745  }
3746
3747  ImplicitExceptionSpecification Spec
3748    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3749  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3750  if (EPI.ExceptionSpecType == EST_Delayed) {
3751    // Exception specification depends on some deferred part of the class. We'll
3752    // try again when the class's definition has been fully processed.
3753    return;
3754  }
3755  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3756                          *ExceptionType = Context.getFunctionType(
3757                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3758
3759  // C++11 [dcl.fct.def.default]p2:
3760  //   An explicitly-defaulted function may be declared constexpr only if it
3761  //   would have been implicitly declared as constexpr,
3762  if (CD->isConstexpr()) {
3763    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3764      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3765        << CXXDefaultConstructor;
3766      HadError = true;
3767    }
3768  }
3769  //   and may have an explicit exception-specification only if it is compatible
3770  //   with the exception-specification on the implicit declaration.
3771  if (CtorType->hasExceptionSpec()) {
3772    if (CheckEquivalentExceptionSpec(
3773          PDiag(diag::err_incorrect_defaulted_exception_spec)
3774            << CXXDefaultConstructor,
3775          PDiag(),
3776          ExceptionType, SourceLocation(),
3777          CtorType, CD->getLocation())) {
3778      HadError = true;
3779    }
3780  }
3781
3782  //   If a function is explicitly defaulted on its first declaration,
3783  if (First) {
3784    //  -- it is implicitly considered to be constexpr if the implicit
3785    //     definition would be,
3786    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3787
3788    //  -- it is implicitly considered to have the same
3789    //     exception-specification as if it had been implicitly declared
3790    //
3791    // FIXME: a compatible, but different, explicit exception specification
3792    // will be silently overridden. We should issue a warning if this happens.
3793    EPI.ExtInfo = CtorType->getExtInfo();
3794  }
3795
3796  if (HadError) {
3797    CD->setInvalidDecl();
3798    return;
3799  }
3800
3801  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3802    if (First) {
3803      CD->setDeletedAsWritten();
3804    } else {
3805      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3806        << CXXDefaultConstructor;
3807      CD->setInvalidDecl();
3808    }
3809  }
3810}
3811
3812void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3813  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3814
3815  // Whether this was the first-declared instance of the constructor.
3816  bool First = CD == CD->getCanonicalDecl();
3817
3818  bool HadError = false;
3819  if (CD->getNumParams() != 1) {
3820    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3821      << CD->getSourceRange();
3822    HadError = true;
3823  }
3824
3825  ImplicitExceptionSpecification Spec(Context);
3826  bool Const;
3827  llvm::tie(Spec, Const) =
3828    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3829
3830  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3831  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3832                          *ExceptionType = Context.getFunctionType(
3833                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3834
3835  // Check for parameter type matching.
3836  // This is a copy ctor so we know it's a cv-qualified reference to T.
3837  QualType ArgType = CtorType->getArgType(0);
3838  if (ArgType->getPointeeType().isVolatileQualified()) {
3839    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3840    HadError = true;
3841  }
3842  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3843    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3844    HadError = true;
3845  }
3846
3847  // C++11 [dcl.fct.def.default]p2:
3848  //   An explicitly-defaulted function may be declared constexpr only if it
3849  //   would have been implicitly declared as constexpr,
3850  if (CD->isConstexpr()) {
3851    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3852      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3853        << CXXCopyConstructor;
3854      HadError = true;
3855    }
3856  }
3857  //   and may have an explicit exception-specification only if it is compatible
3858  //   with the exception-specification on the implicit declaration.
3859  if (CtorType->hasExceptionSpec()) {
3860    if (CheckEquivalentExceptionSpec(
3861          PDiag(diag::err_incorrect_defaulted_exception_spec)
3862            << CXXCopyConstructor,
3863          PDiag(),
3864          ExceptionType, SourceLocation(),
3865          CtorType, CD->getLocation())) {
3866      HadError = true;
3867    }
3868  }
3869
3870  //   If a function is explicitly defaulted on its first declaration,
3871  if (First) {
3872    //  -- it is implicitly considered to be constexpr if the implicit
3873    //     definition would be,
3874    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3875
3876    //  -- it is implicitly considered to have the same
3877    //     exception-specification as if it had been implicitly declared, and
3878    //
3879    // FIXME: a compatible, but different, explicit exception specification
3880    // will be silently overridden. We should issue a warning if this happens.
3881    EPI.ExtInfo = CtorType->getExtInfo();
3882
3883    //  -- [...] it shall have the same parameter type as if it had been
3884    //     implicitly declared.
3885    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3886  }
3887
3888  if (HadError) {
3889    CD->setInvalidDecl();
3890    return;
3891  }
3892
3893  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3894    if (First) {
3895      CD->setDeletedAsWritten();
3896    } else {
3897      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3898        << CXXCopyConstructor;
3899      CD->setInvalidDecl();
3900    }
3901  }
3902}
3903
3904void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3905  assert(MD->isExplicitlyDefaulted());
3906
3907  // Whether this was the first-declared instance of the operator
3908  bool First = MD == MD->getCanonicalDecl();
3909
3910  bool HadError = false;
3911  if (MD->getNumParams() != 1) {
3912    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3913      << MD->getSourceRange();
3914    HadError = true;
3915  }
3916
3917  QualType ReturnType =
3918    MD->getType()->getAs<FunctionType>()->getResultType();
3919  if (!ReturnType->isLValueReferenceType() ||
3920      !Context.hasSameType(
3921        Context.getCanonicalType(ReturnType->getPointeeType()),
3922        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3923    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3924    HadError = true;
3925  }
3926
3927  ImplicitExceptionSpecification Spec(Context);
3928  bool Const;
3929  llvm::tie(Spec, Const) =
3930    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3931
3932  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3933  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3934                          *ExceptionType = Context.getFunctionType(
3935                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3936
3937  QualType ArgType = OperType->getArgType(0);
3938  if (!ArgType->isLValueReferenceType()) {
3939    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3940    HadError = true;
3941  } else {
3942    if (ArgType->getPointeeType().isVolatileQualified()) {
3943      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3944      HadError = true;
3945    }
3946    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3947      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3948      HadError = true;
3949    }
3950  }
3951
3952  if (OperType->getTypeQuals()) {
3953    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3954    HadError = true;
3955  }
3956
3957  if (OperType->hasExceptionSpec()) {
3958    if (CheckEquivalentExceptionSpec(
3959          PDiag(diag::err_incorrect_defaulted_exception_spec)
3960            << CXXCopyAssignment,
3961          PDiag(),
3962          ExceptionType, SourceLocation(),
3963          OperType, MD->getLocation())) {
3964      HadError = true;
3965    }
3966  }
3967  if (First) {
3968    // We set the declaration to have the computed exception spec here.
3969    // We duplicate the one parameter type.
3970    EPI.RefQualifier = OperType->getRefQualifier();
3971    EPI.ExtInfo = OperType->getExtInfo();
3972    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3973  }
3974
3975  if (HadError) {
3976    MD->setInvalidDecl();
3977    return;
3978  }
3979
3980  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3981    if (First) {
3982      MD->setDeletedAsWritten();
3983    } else {
3984      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3985        << CXXCopyAssignment;
3986      MD->setInvalidDecl();
3987    }
3988  }
3989}
3990
3991void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3992  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3993
3994  // Whether this was the first-declared instance of the constructor.
3995  bool First = CD == CD->getCanonicalDecl();
3996
3997  bool HadError = false;
3998  if (CD->getNumParams() != 1) {
3999    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4000      << CD->getSourceRange();
4001    HadError = true;
4002  }
4003
4004  ImplicitExceptionSpecification Spec(
4005      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4006
4007  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4008  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4009                          *ExceptionType = Context.getFunctionType(
4010                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4011
4012  // Check for parameter type matching.
4013  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4014  QualType ArgType = CtorType->getArgType(0);
4015  if (ArgType->getPointeeType().isVolatileQualified()) {
4016    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4017    HadError = true;
4018  }
4019  if (ArgType->getPointeeType().isConstQualified()) {
4020    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4021    HadError = true;
4022  }
4023
4024  // C++11 [dcl.fct.def.default]p2:
4025  //   An explicitly-defaulted function may be declared constexpr only if it
4026  //   would have been implicitly declared as constexpr,
4027  if (CD->isConstexpr()) {
4028    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4029      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4030        << CXXMoveConstructor;
4031      HadError = true;
4032    }
4033  }
4034  //   and may have an explicit exception-specification only if it is compatible
4035  //   with the exception-specification on the implicit declaration.
4036  if (CtorType->hasExceptionSpec()) {
4037    if (CheckEquivalentExceptionSpec(
4038          PDiag(diag::err_incorrect_defaulted_exception_spec)
4039            << CXXMoveConstructor,
4040          PDiag(),
4041          ExceptionType, SourceLocation(),
4042          CtorType, CD->getLocation())) {
4043      HadError = true;
4044    }
4045  }
4046
4047  //   If a function is explicitly defaulted on its first declaration,
4048  if (First) {
4049    //  -- it is implicitly considered to be constexpr if the implicit
4050    //     definition would be,
4051    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4052
4053    //  -- it is implicitly considered to have the same
4054    //     exception-specification as if it had been implicitly declared, and
4055    //
4056    // FIXME: a compatible, but different, explicit exception specification
4057    // will be silently overridden. We should issue a warning if this happens.
4058    EPI.ExtInfo = CtorType->getExtInfo();
4059
4060    //  -- [...] it shall have the same parameter type as if it had been
4061    //     implicitly declared.
4062    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4063  }
4064
4065  if (HadError) {
4066    CD->setInvalidDecl();
4067    return;
4068  }
4069
4070  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4071    if (First) {
4072      CD->setDeletedAsWritten();
4073    } else {
4074      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4075        << CXXMoveConstructor;
4076      CD->setInvalidDecl();
4077    }
4078  }
4079}
4080
4081void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4082  assert(MD->isExplicitlyDefaulted());
4083
4084  // Whether this was the first-declared instance of the operator
4085  bool First = MD == MD->getCanonicalDecl();
4086
4087  bool HadError = false;
4088  if (MD->getNumParams() != 1) {
4089    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4090      << MD->getSourceRange();
4091    HadError = true;
4092  }
4093
4094  QualType ReturnType =
4095    MD->getType()->getAs<FunctionType>()->getResultType();
4096  if (!ReturnType->isLValueReferenceType() ||
4097      !Context.hasSameType(
4098        Context.getCanonicalType(ReturnType->getPointeeType()),
4099        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4100    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4101    HadError = true;
4102  }
4103
4104  ImplicitExceptionSpecification Spec(
4105      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4106
4107  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4108  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4109                          *ExceptionType = Context.getFunctionType(
4110                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4111
4112  QualType ArgType = OperType->getArgType(0);
4113  if (!ArgType->isRValueReferenceType()) {
4114    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4115    HadError = true;
4116  } else {
4117    if (ArgType->getPointeeType().isVolatileQualified()) {
4118      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4119      HadError = true;
4120    }
4121    if (ArgType->getPointeeType().isConstQualified()) {
4122      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4123      HadError = true;
4124    }
4125  }
4126
4127  if (OperType->getTypeQuals()) {
4128    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4129    HadError = true;
4130  }
4131
4132  if (OperType->hasExceptionSpec()) {
4133    if (CheckEquivalentExceptionSpec(
4134          PDiag(diag::err_incorrect_defaulted_exception_spec)
4135            << CXXMoveAssignment,
4136          PDiag(),
4137          ExceptionType, SourceLocation(),
4138          OperType, MD->getLocation())) {
4139      HadError = true;
4140    }
4141  }
4142  if (First) {
4143    // We set the declaration to have the computed exception spec here.
4144    // We duplicate the one parameter type.
4145    EPI.RefQualifier = OperType->getRefQualifier();
4146    EPI.ExtInfo = OperType->getExtInfo();
4147    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4148  }
4149
4150  if (HadError) {
4151    MD->setInvalidDecl();
4152    return;
4153  }
4154
4155  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4156    if (First) {
4157      MD->setDeletedAsWritten();
4158    } else {
4159      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4160        << CXXMoveAssignment;
4161      MD->setInvalidDecl();
4162    }
4163  }
4164}
4165
4166void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4167  assert(DD->isExplicitlyDefaulted());
4168
4169  // Whether this was the first-declared instance of the destructor.
4170  bool First = DD == DD->getCanonicalDecl();
4171
4172  ImplicitExceptionSpecification Spec
4173    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4174  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4175  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4176                          *ExceptionType = Context.getFunctionType(
4177                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4178
4179  if (DtorType->hasExceptionSpec()) {
4180    if (CheckEquivalentExceptionSpec(
4181          PDiag(diag::err_incorrect_defaulted_exception_spec)
4182            << CXXDestructor,
4183          PDiag(),
4184          ExceptionType, SourceLocation(),
4185          DtorType, DD->getLocation())) {
4186      DD->setInvalidDecl();
4187      return;
4188    }
4189  }
4190  if (First) {
4191    // We set the declaration to have the computed exception spec here.
4192    // There are no parameters.
4193    EPI.ExtInfo = DtorType->getExtInfo();
4194    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4195  }
4196
4197  if (ShouldDeleteDestructor(DD)) {
4198    if (First) {
4199      DD->setDeletedAsWritten();
4200    } else {
4201      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4202        << CXXDestructor;
4203      DD->setInvalidDecl();
4204    }
4205  }
4206}
4207
4208/// This function implements the following C++0x paragraphs:
4209///  - [class.ctor]/5
4210///  - [class.copy]/11
4211bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4212  assert(!MD->isInvalidDecl());
4213  CXXRecordDecl *RD = MD->getParent();
4214  assert(!RD->isDependentType() && "do deletion after instantiation");
4215  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4216    return false;
4217
4218  bool IsUnion = RD->isUnion();
4219  bool IsConstructor = false;
4220  bool IsAssignment = false;
4221  bool IsMove = false;
4222
4223  bool ConstArg = false;
4224
4225  switch (CSM) {
4226  case CXXDefaultConstructor:
4227    IsConstructor = true;
4228    break;
4229  case CXXCopyConstructor:
4230    IsConstructor = true;
4231    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4232    break;
4233  case CXXMoveConstructor:
4234    IsConstructor = true;
4235    IsMove = true;
4236    break;
4237  default:
4238    llvm_unreachable("function only currently implemented for default ctors");
4239  }
4240
4241  SourceLocation Loc = MD->getLocation();
4242
4243  // Do access control from the special member function
4244  ContextRAII MethodContext(*this, MD);
4245
4246  bool AllConst = true;
4247
4248  // We do this because we should never actually use an anonymous
4249  // union's constructor.
4250  if (IsUnion && RD->isAnonymousStructOrUnion())
4251    return false;
4252
4253  // FIXME: We should put some diagnostic logic right into this function.
4254
4255  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4256                                          BE = RD->bases_end();
4257       BI != BE; ++BI) {
4258    // We'll handle this one later
4259    if (BI->isVirtual())
4260      continue;
4261
4262    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4263    assert(BaseDecl && "base isn't a CXXRecordDecl");
4264
4265    // Unless we have an assignment operator, the base's destructor must
4266    // be accessible and not deleted.
4267    if (!IsAssignment) {
4268      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4269      if (BaseDtor->isDeleted())
4270        return true;
4271      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4272          AR_accessible)
4273        return true;
4274    }
4275
4276    // Finding the corresponding member in the base should lead to a
4277    // unique, accessible, non-deleted function. If we are doing
4278    // a destructor, we have already checked this case.
4279    if (CSM != CXXDestructor) {
4280      SpecialMemberOverloadResult *SMOR =
4281        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4282                            false);
4283      if (!SMOR->hasSuccess())
4284        return true;
4285      CXXMethodDecl *BaseMember = SMOR->getMethod();
4286      if (IsConstructor) {
4287        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4288        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4289                                   PDiag()) != AR_accessible)
4290          return true;
4291
4292        // For a move operation, the corresponding operation must actually
4293        // be a move operation (and not a copy selected by overload
4294        // resolution) unless we are working on a trivially copyable class.
4295        if (IsMove && !BaseCtor->isMoveConstructor() &&
4296            !BaseDecl->isTriviallyCopyable())
4297          return true;
4298      }
4299    }
4300  }
4301
4302  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4303                                          BE = RD->vbases_end();
4304       BI != BE; ++BI) {
4305    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4306    assert(BaseDecl && "base isn't a CXXRecordDecl");
4307
4308    // Unless we have an assignment operator, the base's destructor must
4309    // be accessible and not deleted.
4310    if (!IsAssignment) {
4311      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4312      if (BaseDtor->isDeleted())
4313        return true;
4314      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4315          AR_accessible)
4316        return true;
4317    }
4318
4319    // Finding the corresponding member in the base should lead to a
4320    // unique, accessible, non-deleted function.
4321    if (CSM != CXXDestructor) {
4322      SpecialMemberOverloadResult *SMOR =
4323        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4324                            false);
4325      if (!SMOR->hasSuccess())
4326        return true;
4327      CXXMethodDecl *BaseMember = SMOR->getMethod();
4328      if (IsConstructor) {
4329        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4330        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4331                                   PDiag()) != AR_accessible)
4332          return true;
4333
4334        // For a move operation, the corresponding operation must actually
4335        // be a move operation (and not a copy selected by overload
4336        // resolution) unless we are working on a trivially copyable class.
4337        if (IsMove && !BaseCtor->isMoveConstructor() &&
4338            !BaseDecl->isTriviallyCopyable())
4339          return true;
4340      }
4341    }
4342  }
4343
4344  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4345                                     FE = RD->field_end();
4346       FI != FE; ++FI) {
4347    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4348      continue;
4349
4350    QualType FieldType = Context.getBaseElementType(FI->getType());
4351    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4352
4353    // For a default constructor, all references must be initialized in-class
4354    // and, if a union, it must have a non-const member.
4355    if (CSM == CXXDefaultConstructor) {
4356      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4357        return true;
4358
4359      if (IsUnion && !FieldType.isConstQualified())
4360        AllConst = false;
4361    // For a copy constructor, data members must not be of rvalue reference
4362    // type.
4363    } else if (CSM == CXXCopyConstructor) {
4364      if (FieldType->isRValueReferenceType())
4365        return true;
4366    }
4367
4368    if (FieldRecord) {
4369      // For a default constructor, a const member must have a user-provided
4370      // default constructor or else be explicitly initialized.
4371      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4372          !FI->hasInClassInitializer() &&
4373          !FieldRecord->hasUserProvidedDefaultConstructor())
4374        return true;
4375
4376      // Some additional restrictions exist on the variant members.
4377      if (!IsUnion && FieldRecord->isUnion() &&
4378          FieldRecord->isAnonymousStructOrUnion()) {
4379        // We're okay to reuse AllConst here since we only care about the
4380        // value otherwise if we're in a union.
4381        AllConst = true;
4382
4383        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4384                                           UE = FieldRecord->field_end();
4385             UI != UE; ++UI) {
4386          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4387          CXXRecordDecl *UnionFieldRecord =
4388            UnionFieldType->getAsCXXRecordDecl();
4389
4390          if (!UnionFieldType.isConstQualified())
4391            AllConst = false;
4392
4393          if (UnionFieldRecord) {
4394            // FIXME: Checking for accessibility and validity of this
4395            //        destructor is technically going beyond the
4396            //        standard, but this is believed to be a defect.
4397            if (!IsAssignment) {
4398              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4399              if (FieldDtor->isDeleted())
4400                return true;
4401              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4402                  AR_accessible)
4403                return true;
4404              if (!FieldDtor->isTrivial())
4405                return true;
4406            }
4407
4408            if (CSM != CXXDestructor) {
4409              SpecialMemberOverloadResult *SMOR =
4410                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4411                                    false, false, false);
4412              // FIXME: Checking for accessibility and validity of this
4413              //        corresponding member is technically going beyond the
4414              //        standard, but this is believed to be a defect.
4415              if (!SMOR->hasSuccess())
4416                return true;
4417
4418              CXXMethodDecl *FieldMember = SMOR->getMethod();
4419              // A member of a union must have a trivial corresponding
4420              // constructor.
4421              if (!FieldMember->isTrivial())
4422                return true;
4423
4424              if (IsConstructor) {
4425                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4426                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4427                                           PDiag()) != AR_accessible)
4428                return true;
4429              }
4430            }
4431          }
4432        }
4433
4434        // At least one member in each anonymous union must be non-const
4435        if (CSM == CXXDefaultConstructor && AllConst)
4436          return true;
4437
4438        // Don't try to initialize the anonymous union
4439        // This is technically non-conformant, but sanity demands it.
4440        continue;
4441      }
4442
4443      // Unless we're doing assignment, the field's destructor must be
4444      // accessible and not deleted.
4445      if (!IsAssignment) {
4446        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4447        if (FieldDtor->isDeleted())
4448          return true;
4449        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4450            AR_accessible)
4451          return true;
4452      }
4453
4454      // Check that the corresponding member of the field is accessible,
4455      // unique, and non-deleted. We don't do this if it has an explicit
4456      // initialization when default-constructing.
4457      if (CSM != CXXDestructor &&
4458          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4459        SpecialMemberOverloadResult *SMOR =
4460          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4461                              false);
4462        if (!SMOR->hasSuccess())
4463          return true;
4464
4465        CXXMethodDecl *FieldMember = SMOR->getMethod();
4466        if (IsConstructor) {
4467          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4468          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4469                                     PDiag()) != AR_accessible)
4470          return true;
4471
4472          // For a move operation, the corresponding operation must actually
4473          // be a move operation (and not a copy selected by overload
4474          // resolution) unless we are working on a trivially copyable class.
4475          if (IsMove && !FieldCtor->isMoveConstructor() &&
4476              !FieldRecord->isTriviallyCopyable())
4477            return true;
4478        }
4479
4480        // We need the corresponding member of a union to be trivial so that
4481        // we can safely copy them all simultaneously.
4482        // FIXME: Note that performing the check here (where we rely on the lack
4483        // of an in-class initializer) is technically ill-formed. However, this
4484        // seems most obviously to be a bug in the standard.
4485        if (IsUnion && !FieldMember->isTrivial())
4486          return true;
4487      }
4488    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4489               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4490      // We can't initialize a const member of non-class type to any value.
4491      return true;
4492    }
4493  }
4494
4495  // We can't have all const members in a union when default-constructing,
4496  // or else they're all nonsensical garbage values that can't be changed.
4497  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4498    return true;
4499
4500  return false;
4501}
4502
4503bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4504  CXXRecordDecl *RD = MD->getParent();
4505  assert(!RD->isDependentType() && "do deletion after instantiation");
4506  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4507    return false;
4508
4509  SourceLocation Loc = MD->getLocation();
4510
4511  // Do access control from the constructor
4512  ContextRAII MethodContext(*this, MD);
4513
4514  bool Union = RD->isUnion();
4515
4516  unsigned ArgQuals =
4517    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4518      Qualifiers::Const : 0;
4519
4520  // We do this because we should never actually use an anonymous
4521  // union's constructor.
4522  if (Union && RD->isAnonymousStructOrUnion())
4523    return false;
4524
4525  // FIXME: We should put some diagnostic logic right into this function.
4526
4527  // C++0x [class.copy]/20
4528  //    A defaulted [copy] assignment operator for class X is defined as deleted
4529  //    if X has:
4530
4531  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4532                                          BE = RD->bases_end();
4533       BI != BE; ++BI) {
4534    // We'll handle this one later
4535    if (BI->isVirtual())
4536      continue;
4537
4538    QualType BaseType = BI->getType();
4539    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4540    assert(BaseDecl && "base isn't a CXXRecordDecl");
4541
4542    // -- a [direct base class] B that cannot be [copied] because overload
4543    //    resolution, as applied to B's [copy] assignment operator, results in
4544    //    an ambiguity or a function that is deleted or inaccessible from the
4545    //    assignment operator
4546    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4547                                                      0);
4548    if (!CopyOper || CopyOper->isDeleted())
4549      return true;
4550    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4551      return true;
4552  }
4553
4554  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4555                                          BE = RD->vbases_end();
4556       BI != BE; ++BI) {
4557    QualType BaseType = BI->getType();
4558    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4559    assert(BaseDecl && "base isn't a CXXRecordDecl");
4560
4561    // -- a [virtual base class] B that cannot be [copied] because overload
4562    //    resolution, as applied to B's [copy] assignment operator, results in
4563    //    an ambiguity or a function that is deleted or inaccessible from the
4564    //    assignment operator
4565    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4566                                                      0);
4567    if (!CopyOper || CopyOper->isDeleted())
4568      return true;
4569    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4570      return true;
4571  }
4572
4573  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4574                                     FE = RD->field_end();
4575       FI != FE; ++FI) {
4576    if (FI->isUnnamedBitfield())
4577      continue;
4578
4579    QualType FieldType = Context.getBaseElementType(FI->getType());
4580
4581    // -- a non-static data member of reference type
4582    if (FieldType->isReferenceType())
4583      return true;
4584
4585    // -- a non-static data member of const non-class type (or array thereof)
4586    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4587      return true;
4588
4589    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4590
4591    if (FieldRecord) {
4592      // This is an anonymous union
4593      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4594        // Anonymous unions inside unions do not variant members create
4595        if (!Union) {
4596          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4597                                             UE = FieldRecord->field_end();
4598               UI != UE; ++UI) {
4599            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4600            CXXRecordDecl *UnionFieldRecord =
4601              UnionFieldType->getAsCXXRecordDecl();
4602
4603            // -- a variant member with a non-trivial [copy] assignment operator
4604            //    and X is a union-like class
4605            if (UnionFieldRecord &&
4606                !UnionFieldRecord->hasTrivialCopyAssignment())
4607              return true;
4608          }
4609        }
4610
4611        // Don't try to initalize an anonymous union
4612        continue;
4613      // -- a variant member with a non-trivial [copy] assignment operator
4614      //    and X is a union-like class
4615      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4616          return true;
4617      }
4618
4619      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4620                                                        false, 0);
4621      if (!CopyOper || CopyOper->isDeleted())
4622        return true;
4623      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4624        return true;
4625    }
4626  }
4627
4628  return false;
4629}
4630
4631bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4632  CXXRecordDecl *RD = MD->getParent();
4633  assert(!RD->isDependentType() && "do deletion after instantiation");
4634  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4635    return false;
4636
4637  SourceLocation Loc = MD->getLocation();
4638
4639  // Do access control from the constructor
4640  ContextRAII MethodContext(*this, MD);
4641
4642  bool Union = RD->isUnion();
4643
4644  // We do this because we should never actually use an anonymous
4645  // union's constructor.
4646  if (Union && RD->isAnonymousStructOrUnion())
4647    return false;
4648
4649  // C++0x [class.copy]/20
4650  //    A defaulted [move] assignment operator for class X is defined as deleted
4651  //    if X has:
4652
4653  //    -- for the move constructor, [...] any direct or indirect virtual base
4654  //       class.
4655  if (RD->getNumVBases() != 0)
4656    return true;
4657
4658  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4659                                          BE = RD->bases_end();
4660       BI != BE; ++BI) {
4661
4662    QualType BaseType = BI->getType();
4663    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4664    assert(BaseDecl && "base isn't a CXXRecordDecl");
4665
4666    // -- a [direct base class] B that cannot be [moved] because overload
4667    //    resolution, as applied to B's [move] assignment operator, results in
4668    //    an ambiguity or a function that is deleted or inaccessible from the
4669    //    assignment operator
4670    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4671    if (!MoveOper || MoveOper->isDeleted())
4672      return true;
4673    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4674      return true;
4675
4676    // -- for the move assignment operator, a [direct base class] with a type
4677    //    that does not have a move assignment operator and is not trivially
4678    //    copyable.
4679    if (!MoveOper->isMoveAssignmentOperator() &&
4680        !BaseDecl->isTriviallyCopyable())
4681      return true;
4682  }
4683
4684  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4685                                     FE = RD->field_end();
4686       FI != FE; ++FI) {
4687    if (FI->isUnnamedBitfield())
4688      continue;
4689
4690    QualType FieldType = Context.getBaseElementType(FI->getType());
4691
4692    // -- a non-static data member of reference type
4693    if (FieldType->isReferenceType())
4694      return true;
4695
4696    // -- a non-static data member of const non-class type (or array thereof)
4697    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4698      return true;
4699
4700    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4701
4702    if (FieldRecord) {
4703      // This is an anonymous union
4704      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4705        // Anonymous unions inside unions do not variant members create
4706        if (!Union) {
4707          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4708                                             UE = FieldRecord->field_end();
4709               UI != UE; ++UI) {
4710            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4711            CXXRecordDecl *UnionFieldRecord =
4712              UnionFieldType->getAsCXXRecordDecl();
4713
4714            // -- a variant member with a non-trivial [move] assignment operator
4715            //    and X is a union-like class
4716            if (UnionFieldRecord &&
4717                !UnionFieldRecord->hasTrivialMoveAssignment())
4718              return true;
4719          }
4720        }
4721
4722        // Don't try to initalize an anonymous union
4723        continue;
4724      // -- a variant member with a non-trivial [move] assignment operator
4725      //    and X is a union-like class
4726      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4727          return true;
4728      }
4729
4730      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4731      if (!MoveOper || MoveOper->isDeleted())
4732        return true;
4733      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4734        return true;
4735
4736      // -- for the move assignment operator, a [non-static data member] with a
4737      //    type that does not have a move assignment operator and is not
4738      //    trivially copyable.
4739      if (!MoveOper->isMoveAssignmentOperator() &&
4740          !FieldRecord->isTriviallyCopyable())
4741        return true;
4742    }
4743  }
4744
4745  return false;
4746}
4747
4748bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4749  CXXRecordDecl *RD = DD->getParent();
4750  assert(!RD->isDependentType() && "do deletion after instantiation");
4751  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4752    return false;
4753
4754  SourceLocation Loc = DD->getLocation();
4755
4756  // Do access control from the destructor
4757  ContextRAII CtorContext(*this, DD);
4758
4759  bool Union = RD->isUnion();
4760
4761  // We do this because we should never actually use an anonymous
4762  // union's destructor.
4763  if (Union && RD->isAnonymousStructOrUnion())
4764    return false;
4765
4766  // C++0x [class.dtor]p5
4767  //    A defaulted destructor for a class X is defined as deleted if:
4768  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4769                                          BE = RD->bases_end();
4770       BI != BE; ++BI) {
4771    // We'll handle this one later
4772    if (BI->isVirtual())
4773      continue;
4774
4775    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4776    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4777    assert(BaseDtor && "base has no destructor");
4778
4779    // -- any direct or virtual base class has a deleted destructor or
4780    //    a destructor that is inaccessible from the defaulted destructor
4781    if (BaseDtor->isDeleted())
4782      return true;
4783    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4784        AR_accessible)
4785      return true;
4786  }
4787
4788  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4789                                          BE = RD->vbases_end();
4790       BI != BE; ++BI) {
4791    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4792    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4793    assert(BaseDtor && "base has no destructor");
4794
4795    // -- any direct or virtual base class has a deleted destructor or
4796    //    a destructor that is inaccessible from the defaulted destructor
4797    if (BaseDtor->isDeleted())
4798      return true;
4799    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4800        AR_accessible)
4801      return true;
4802  }
4803
4804  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4805                                     FE = RD->field_end();
4806       FI != FE; ++FI) {
4807    QualType FieldType = Context.getBaseElementType(FI->getType());
4808    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4809    if (FieldRecord) {
4810      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4811         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4812                                            UE = FieldRecord->field_end();
4813              UI != UE; ++UI) {
4814           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4815           CXXRecordDecl *UnionFieldRecord =
4816             UnionFieldType->getAsCXXRecordDecl();
4817
4818           // -- X is a union-like class that has a variant member with a non-
4819           //    trivial destructor.
4820           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4821             return true;
4822         }
4823      // Technically we are supposed to do this next check unconditionally.
4824      // But that makes absolutely no sense.
4825      } else {
4826        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4827
4828        // -- any of the non-static data members has class type M (or array
4829        //    thereof) and M has a deleted destructor or a destructor that is
4830        //    inaccessible from the defaulted destructor
4831        if (FieldDtor->isDeleted())
4832          return true;
4833        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4834          AR_accessible)
4835        return true;
4836
4837        // -- X is a union-like class that has a variant member with a non-
4838        //    trivial destructor.
4839        if (Union && !FieldDtor->isTrivial())
4840          return true;
4841      }
4842    }
4843  }
4844
4845  if (DD->isVirtual()) {
4846    FunctionDecl *OperatorDelete = 0;
4847    DeclarationName Name =
4848      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4849    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4850          false))
4851      return true;
4852  }
4853
4854
4855  return false;
4856}
4857
4858/// \brief Data used with FindHiddenVirtualMethod
4859namespace {
4860  struct FindHiddenVirtualMethodData {
4861    Sema *S;
4862    CXXMethodDecl *Method;
4863    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4864    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4865  };
4866}
4867
4868/// \brief Member lookup function that determines whether a given C++
4869/// method overloads virtual methods in a base class without overriding any,
4870/// to be used with CXXRecordDecl::lookupInBases().
4871static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4872                                    CXXBasePath &Path,
4873                                    void *UserData) {
4874  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4875
4876  FindHiddenVirtualMethodData &Data
4877    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4878
4879  DeclarationName Name = Data.Method->getDeclName();
4880  assert(Name.getNameKind() == DeclarationName::Identifier);
4881
4882  bool foundSameNameMethod = false;
4883  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4884  for (Path.Decls = BaseRecord->lookup(Name);
4885       Path.Decls.first != Path.Decls.second;
4886       ++Path.Decls.first) {
4887    NamedDecl *D = *Path.Decls.first;
4888    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4889      MD = MD->getCanonicalDecl();
4890      foundSameNameMethod = true;
4891      // Interested only in hidden virtual methods.
4892      if (!MD->isVirtual())
4893        continue;
4894      // If the method we are checking overrides a method from its base
4895      // don't warn about the other overloaded methods.
4896      if (!Data.S->IsOverload(Data.Method, MD, false))
4897        return true;
4898      // Collect the overload only if its hidden.
4899      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4900        overloadedMethods.push_back(MD);
4901    }
4902  }
4903
4904  if (foundSameNameMethod)
4905    Data.OverloadedMethods.append(overloadedMethods.begin(),
4906                                   overloadedMethods.end());
4907  return foundSameNameMethod;
4908}
4909
4910/// \brief See if a method overloads virtual methods in a base class without
4911/// overriding any.
4912void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4913  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4914                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4915    return;
4916  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4917    return;
4918
4919  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4920                     /*bool RecordPaths=*/false,
4921                     /*bool DetectVirtual=*/false);
4922  FindHiddenVirtualMethodData Data;
4923  Data.Method = MD;
4924  Data.S = this;
4925
4926  // Keep the base methods that were overriden or introduced in the subclass
4927  // by 'using' in a set. A base method not in this set is hidden.
4928  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4929       res.first != res.second; ++res.first) {
4930    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4931      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4932                                          E = MD->end_overridden_methods();
4933           I != E; ++I)
4934        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4935    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4936      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4937        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4938  }
4939
4940  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4941      !Data.OverloadedMethods.empty()) {
4942    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4943      << MD << (Data.OverloadedMethods.size() > 1);
4944
4945    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4946      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4947      Diag(overloadedMD->getLocation(),
4948           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4949    }
4950  }
4951}
4952
4953void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4954                                             Decl *TagDecl,
4955                                             SourceLocation LBrac,
4956                                             SourceLocation RBrac,
4957                                             AttributeList *AttrList) {
4958  if (!TagDecl)
4959    return;
4960
4961  AdjustDeclIfTemplate(TagDecl);
4962
4963  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4964              // strict aliasing violation!
4965              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4966              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4967
4968  CheckCompletedCXXClass(
4969                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4970}
4971
4972/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4973/// special functions, such as the default constructor, copy
4974/// constructor, or destructor, to the given C++ class (C++
4975/// [special]p1).  This routine can only be executed just before the
4976/// definition of the class is complete.
4977void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4978  if (!ClassDecl->hasUserDeclaredConstructor())
4979    ++ASTContext::NumImplicitDefaultConstructors;
4980
4981  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4982    ++ASTContext::NumImplicitCopyConstructors;
4983
4984  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4985    ++ASTContext::NumImplicitMoveConstructors;
4986
4987  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4988    ++ASTContext::NumImplicitCopyAssignmentOperators;
4989
4990    // If we have a dynamic class, then the copy assignment operator may be
4991    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4992    // it shows up in the right place in the vtable and that we diagnose
4993    // problems with the implicit exception specification.
4994    if (ClassDecl->isDynamicClass())
4995      DeclareImplicitCopyAssignment(ClassDecl);
4996  }
4997
4998  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4999    ++ASTContext::NumImplicitMoveAssignmentOperators;
5000
5001    // Likewise for the move assignment operator.
5002    if (ClassDecl->isDynamicClass())
5003      DeclareImplicitMoveAssignment(ClassDecl);
5004  }
5005
5006  if (!ClassDecl->hasUserDeclaredDestructor()) {
5007    ++ASTContext::NumImplicitDestructors;
5008
5009    // If we have a dynamic class, then the destructor may be virtual, so we
5010    // have to declare the destructor immediately. This ensures that, e.g., it
5011    // shows up in the right place in the vtable and that we diagnose problems
5012    // with the implicit exception specification.
5013    if (ClassDecl->isDynamicClass())
5014      DeclareImplicitDestructor(ClassDecl);
5015  }
5016}
5017
5018void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5019  if (!D)
5020    return;
5021
5022  int NumParamList = D->getNumTemplateParameterLists();
5023  for (int i = 0; i < NumParamList; i++) {
5024    TemplateParameterList* Params = D->getTemplateParameterList(i);
5025    for (TemplateParameterList::iterator Param = Params->begin(),
5026                                      ParamEnd = Params->end();
5027          Param != ParamEnd; ++Param) {
5028      NamedDecl *Named = cast<NamedDecl>(*Param);
5029      if (Named->getDeclName()) {
5030        S->AddDecl(Named);
5031        IdResolver.AddDecl(Named);
5032      }
5033    }
5034  }
5035}
5036
5037void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5038  if (!D)
5039    return;
5040
5041  TemplateParameterList *Params = 0;
5042  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5043    Params = Template->getTemplateParameters();
5044  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5045           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5046    Params = PartialSpec->getTemplateParameters();
5047  else
5048    return;
5049
5050  for (TemplateParameterList::iterator Param = Params->begin(),
5051                                    ParamEnd = Params->end();
5052       Param != ParamEnd; ++Param) {
5053    NamedDecl *Named = cast<NamedDecl>(*Param);
5054    if (Named->getDeclName()) {
5055      S->AddDecl(Named);
5056      IdResolver.AddDecl(Named);
5057    }
5058  }
5059}
5060
5061void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5062  if (!RecordD) return;
5063  AdjustDeclIfTemplate(RecordD);
5064  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5065  PushDeclContext(S, Record);
5066}
5067
5068void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5069  if (!RecordD) return;
5070  PopDeclContext();
5071}
5072
5073/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5074/// parsing a top-level (non-nested) C++ class, and we are now
5075/// parsing those parts of the given Method declaration that could
5076/// not be parsed earlier (C++ [class.mem]p2), such as default
5077/// arguments. This action should enter the scope of the given
5078/// Method declaration as if we had just parsed the qualified method
5079/// name. However, it should not bring the parameters into scope;
5080/// that will be performed by ActOnDelayedCXXMethodParameter.
5081void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5082}
5083
5084/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5085/// C++ method declaration. We're (re-)introducing the given
5086/// function parameter into scope for use in parsing later parts of
5087/// the method declaration. For example, we could see an
5088/// ActOnParamDefaultArgument event for this parameter.
5089void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5090  if (!ParamD)
5091    return;
5092
5093  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5094
5095  // If this parameter has an unparsed default argument, clear it out
5096  // to make way for the parsed default argument.
5097  if (Param->hasUnparsedDefaultArg())
5098    Param->setDefaultArg(0);
5099
5100  S->AddDecl(Param);
5101  if (Param->getDeclName())
5102    IdResolver.AddDecl(Param);
5103}
5104
5105/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5106/// processing the delayed method declaration for Method. The method
5107/// declaration is now considered finished. There may be a separate
5108/// ActOnStartOfFunctionDef action later (not necessarily
5109/// immediately!) for this method, if it was also defined inside the
5110/// class body.
5111void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5112  if (!MethodD)
5113    return;
5114
5115  AdjustDeclIfTemplate(MethodD);
5116
5117  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5118
5119  // Now that we have our default arguments, check the constructor
5120  // again. It could produce additional diagnostics or affect whether
5121  // the class has implicitly-declared destructors, among other
5122  // things.
5123  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5124    CheckConstructor(Constructor);
5125
5126  // Check the default arguments, which we may have added.
5127  if (!Method->isInvalidDecl())
5128    CheckCXXDefaultArguments(Method);
5129}
5130
5131/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5132/// the well-formedness of the constructor declarator @p D with type @p
5133/// R. If there are any errors in the declarator, this routine will
5134/// emit diagnostics and set the invalid bit to true.  In any case, the type
5135/// will be updated to reflect a well-formed type for the constructor and
5136/// returned.
5137QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5138                                          StorageClass &SC) {
5139  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5140
5141  // C++ [class.ctor]p3:
5142  //   A constructor shall not be virtual (10.3) or static (9.4). A
5143  //   constructor can be invoked for a const, volatile or const
5144  //   volatile object. A constructor shall not be declared const,
5145  //   volatile, or const volatile (9.3.2).
5146  if (isVirtual) {
5147    if (!D.isInvalidType())
5148      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5149        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5150        << SourceRange(D.getIdentifierLoc());
5151    D.setInvalidType();
5152  }
5153  if (SC == SC_Static) {
5154    if (!D.isInvalidType())
5155      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5156        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5157        << SourceRange(D.getIdentifierLoc());
5158    D.setInvalidType();
5159    SC = SC_None;
5160  }
5161
5162  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5163  if (FTI.TypeQuals != 0) {
5164    if (FTI.TypeQuals & Qualifiers::Const)
5165      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5166        << "const" << SourceRange(D.getIdentifierLoc());
5167    if (FTI.TypeQuals & Qualifiers::Volatile)
5168      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5169        << "volatile" << SourceRange(D.getIdentifierLoc());
5170    if (FTI.TypeQuals & Qualifiers::Restrict)
5171      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5172        << "restrict" << SourceRange(D.getIdentifierLoc());
5173    D.setInvalidType();
5174  }
5175
5176  // C++0x [class.ctor]p4:
5177  //   A constructor shall not be declared with a ref-qualifier.
5178  if (FTI.hasRefQualifier()) {
5179    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5180      << FTI.RefQualifierIsLValueRef
5181      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5182    D.setInvalidType();
5183  }
5184
5185  // Rebuild the function type "R" without any type qualifiers (in
5186  // case any of the errors above fired) and with "void" as the
5187  // return type, since constructors don't have return types.
5188  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5189  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5190    return R;
5191
5192  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5193  EPI.TypeQuals = 0;
5194  EPI.RefQualifier = RQ_None;
5195
5196  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5197                                 Proto->getNumArgs(), EPI);
5198}
5199
5200/// CheckConstructor - Checks a fully-formed constructor for
5201/// well-formedness, issuing any diagnostics required. Returns true if
5202/// the constructor declarator is invalid.
5203void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5204  CXXRecordDecl *ClassDecl
5205    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5206  if (!ClassDecl)
5207    return Constructor->setInvalidDecl();
5208
5209  // C++ [class.copy]p3:
5210  //   A declaration of a constructor for a class X is ill-formed if
5211  //   its first parameter is of type (optionally cv-qualified) X and
5212  //   either there are no other parameters or else all other
5213  //   parameters have default arguments.
5214  if (!Constructor->isInvalidDecl() &&
5215      ((Constructor->getNumParams() == 1) ||
5216       (Constructor->getNumParams() > 1 &&
5217        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5218      Constructor->getTemplateSpecializationKind()
5219                                              != TSK_ImplicitInstantiation) {
5220    QualType ParamType = Constructor->getParamDecl(0)->getType();
5221    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5222    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5223      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5224      const char *ConstRef
5225        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5226                                                        : " const &";
5227      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5228        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5229
5230      // FIXME: Rather that making the constructor invalid, we should endeavor
5231      // to fix the type.
5232      Constructor->setInvalidDecl();
5233    }
5234  }
5235}
5236
5237/// CheckDestructor - Checks a fully-formed destructor definition for
5238/// well-formedness, issuing any diagnostics required.  Returns true
5239/// on error.
5240bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5241  CXXRecordDecl *RD = Destructor->getParent();
5242
5243  if (Destructor->isVirtual()) {
5244    SourceLocation Loc;
5245
5246    if (!Destructor->isImplicit())
5247      Loc = Destructor->getLocation();
5248    else
5249      Loc = RD->getLocation();
5250
5251    // If we have a virtual destructor, look up the deallocation function
5252    FunctionDecl *OperatorDelete = 0;
5253    DeclarationName Name =
5254    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5255    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5256      return true;
5257
5258    MarkDeclarationReferenced(Loc, OperatorDelete);
5259
5260    Destructor->setOperatorDelete(OperatorDelete);
5261  }
5262
5263  return false;
5264}
5265
5266static inline bool
5267FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5268  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5269          FTI.ArgInfo[0].Param &&
5270          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5271}
5272
5273/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5274/// the well-formednes of the destructor declarator @p D with type @p
5275/// R. If there are any errors in the declarator, this routine will
5276/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5277/// will be updated to reflect a well-formed type for the destructor and
5278/// returned.
5279QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5280                                         StorageClass& SC) {
5281  // C++ [class.dtor]p1:
5282  //   [...] A typedef-name that names a class is a class-name
5283  //   (7.1.3); however, a typedef-name that names a class shall not
5284  //   be used as the identifier in the declarator for a destructor
5285  //   declaration.
5286  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5287  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5288    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5289      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5290  else if (const TemplateSpecializationType *TST =
5291             DeclaratorType->getAs<TemplateSpecializationType>())
5292    if (TST->isTypeAlias())
5293      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5294        << DeclaratorType << 1;
5295
5296  // C++ [class.dtor]p2:
5297  //   A destructor is used to destroy objects of its class type. A
5298  //   destructor takes no parameters, and no return type can be
5299  //   specified for it (not even void). The address of a destructor
5300  //   shall not be taken. A destructor shall not be static. A
5301  //   destructor can be invoked for a const, volatile or const
5302  //   volatile object. A destructor shall not be declared const,
5303  //   volatile or const volatile (9.3.2).
5304  if (SC == SC_Static) {
5305    if (!D.isInvalidType())
5306      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5307        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5308        << SourceRange(D.getIdentifierLoc())
5309        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5310
5311    SC = SC_None;
5312  }
5313  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5314    // Destructors don't have return types, but the parser will
5315    // happily parse something like:
5316    //
5317    //   class X {
5318    //     float ~X();
5319    //   };
5320    //
5321    // The return type will be eliminated later.
5322    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5323      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5324      << SourceRange(D.getIdentifierLoc());
5325  }
5326
5327  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5328  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5329    if (FTI.TypeQuals & Qualifiers::Const)
5330      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5331        << "const" << SourceRange(D.getIdentifierLoc());
5332    if (FTI.TypeQuals & Qualifiers::Volatile)
5333      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5334        << "volatile" << SourceRange(D.getIdentifierLoc());
5335    if (FTI.TypeQuals & Qualifiers::Restrict)
5336      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5337        << "restrict" << SourceRange(D.getIdentifierLoc());
5338    D.setInvalidType();
5339  }
5340
5341  // C++0x [class.dtor]p2:
5342  //   A destructor shall not be declared with a ref-qualifier.
5343  if (FTI.hasRefQualifier()) {
5344    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5345      << FTI.RefQualifierIsLValueRef
5346      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5347    D.setInvalidType();
5348  }
5349
5350  // Make sure we don't have any parameters.
5351  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5352    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5353
5354    // Delete the parameters.
5355    FTI.freeArgs();
5356    D.setInvalidType();
5357  }
5358
5359  // Make sure the destructor isn't variadic.
5360  if (FTI.isVariadic) {
5361    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5362    D.setInvalidType();
5363  }
5364
5365  // Rebuild the function type "R" without any type qualifiers or
5366  // parameters (in case any of the errors above fired) and with
5367  // "void" as the return type, since destructors don't have return
5368  // types.
5369  if (!D.isInvalidType())
5370    return R;
5371
5372  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5373  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5374  EPI.Variadic = false;
5375  EPI.TypeQuals = 0;
5376  EPI.RefQualifier = RQ_None;
5377  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5378}
5379
5380/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5381/// well-formednes of the conversion function declarator @p D with
5382/// type @p R. If there are any errors in the declarator, this routine
5383/// will emit diagnostics and return true. Otherwise, it will return
5384/// false. Either way, the type @p R will be updated to reflect a
5385/// well-formed type for the conversion operator.
5386void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5387                                     StorageClass& SC) {
5388  // C++ [class.conv.fct]p1:
5389  //   Neither parameter types nor return type can be specified. The
5390  //   type of a conversion function (8.3.5) is "function taking no
5391  //   parameter returning conversion-type-id."
5392  if (SC == SC_Static) {
5393    if (!D.isInvalidType())
5394      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5395        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5396        << SourceRange(D.getIdentifierLoc());
5397    D.setInvalidType();
5398    SC = SC_None;
5399  }
5400
5401  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5402
5403  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5404    // Conversion functions don't have return types, but the parser will
5405    // happily parse something like:
5406    //
5407    //   class X {
5408    //     float operator bool();
5409    //   };
5410    //
5411    // The return type will be changed later anyway.
5412    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5413      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5414      << SourceRange(D.getIdentifierLoc());
5415    D.setInvalidType();
5416  }
5417
5418  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5419
5420  // Make sure we don't have any parameters.
5421  if (Proto->getNumArgs() > 0) {
5422    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5423
5424    // Delete the parameters.
5425    D.getFunctionTypeInfo().freeArgs();
5426    D.setInvalidType();
5427  } else if (Proto->isVariadic()) {
5428    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5429    D.setInvalidType();
5430  }
5431
5432  // Diagnose "&operator bool()" and other such nonsense.  This
5433  // is actually a gcc extension which we don't support.
5434  if (Proto->getResultType() != ConvType) {
5435    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5436      << Proto->getResultType();
5437    D.setInvalidType();
5438    ConvType = Proto->getResultType();
5439  }
5440
5441  // C++ [class.conv.fct]p4:
5442  //   The conversion-type-id shall not represent a function type nor
5443  //   an array type.
5444  if (ConvType->isArrayType()) {
5445    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5446    ConvType = Context.getPointerType(ConvType);
5447    D.setInvalidType();
5448  } else if (ConvType->isFunctionType()) {
5449    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5450    ConvType = Context.getPointerType(ConvType);
5451    D.setInvalidType();
5452  }
5453
5454  // Rebuild the function type "R" without any parameters (in case any
5455  // of the errors above fired) and with the conversion type as the
5456  // return type.
5457  if (D.isInvalidType())
5458    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5459
5460  // C++0x explicit conversion operators.
5461  if (D.getDeclSpec().isExplicitSpecified())
5462    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5463         getLangOptions().CPlusPlus0x ?
5464           diag::warn_cxx98_compat_explicit_conversion_functions :
5465           diag::ext_explicit_conversion_functions)
5466      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5467}
5468
5469/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5470/// the declaration of the given C++ conversion function. This routine
5471/// is responsible for recording the conversion function in the C++
5472/// class, if possible.
5473Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5474  assert(Conversion && "Expected to receive a conversion function declaration");
5475
5476  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5477
5478  // Make sure we aren't redeclaring the conversion function.
5479  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5480
5481  // C++ [class.conv.fct]p1:
5482  //   [...] A conversion function is never used to convert a
5483  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5484  //   same object type (or a reference to it), to a (possibly
5485  //   cv-qualified) base class of that type (or a reference to it),
5486  //   or to (possibly cv-qualified) void.
5487  // FIXME: Suppress this warning if the conversion function ends up being a
5488  // virtual function that overrides a virtual function in a base class.
5489  QualType ClassType
5490    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5491  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5492    ConvType = ConvTypeRef->getPointeeType();
5493  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5494      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5495    /* Suppress diagnostics for instantiations. */;
5496  else if (ConvType->isRecordType()) {
5497    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5498    if (ConvType == ClassType)
5499      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5500        << ClassType;
5501    else if (IsDerivedFrom(ClassType, ConvType))
5502      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5503        <<  ClassType << ConvType;
5504  } else if (ConvType->isVoidType()) {
5505    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5506      << ClassType << ConvType;
5507  }
5508
5509  if (FunctionTemplateDecl *ConversionTemplate
5510                                = Conversion->getDescribedFunctionTemplate())
5511    return ConversionTemplate;
5512
5513  return Conversion;
5514}
5515
5516//===----------------------------------------------------------------------===//
5517// Namespace Handling
5518//===----------------------------------------------------------------------===//
5519
5520
5521
5522/// ActOnStartNamespaceDef - This is called at the start of a namespace
5523/// definition.
5524Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5525                                   SourceLocation InlineLoc,
5526                                   SourceLocation NamespaceLoc,
5527                                   SourceLocation IdentLoc,
5528                                   IdentifierInfo *II,
5529                                   SourceLocation LBrace,
5530                                   AttributeList *AttrList) {
5531  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5532  // For anonymous namespace, take the location of the left brace.
5533  SourceLocation Loc = II ? IdentLoc : LBrace;
5534  bool IsInline = InlineLoc.isValid();
5535  bool IsInvalid = false;
5536  bool IsStd = false;
5537  bool AddToKnown = false;
5538  Scope *DeclRegionScope = NamespcScope->getParent();
5539
5540  NamespaceDecl *PrevNS = 0;
5541  if (II) {
5542    // C++ [namespace.def]p2:
5543    //   The identifier in an original-namespace-definition shall not
5544    //   have been previously defined in the declarative region in
5545    //   which the original-namespace-definition appears. The
5546    //   identifier in an original-namespace-definition is the name of
5547    //   the namespace. Subsequently in that declarative region, it is
5548    //   treated as an original-namespace-name.
5549    //
5550    // Since namespace names are unique in their scope, and we don't
5551    // look through using directives, just look for any ordinary names.
5552
5553    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5554    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5555    Decl::IDNS_Namespace;
5556    NamedDecl *PrevDecl = 0;
5557    for (DeclContext::lookup_result R
5558         = CurContext->getRedeclContext()->lookup(II);
5559         R.first != R.second; ++R.first) {
5560      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5561        PrevDecl = *R.first;
5562        break;
5563      }
5564    }
5565
5566    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5567
5568    if (PrevNS) {
5569      // This is an extended namespace definition.
5570      if (IsInline != PrevNS->isInline()) {
5571        // inline-ness must match
5572        if (PrevNS->isInline()) {
5573          // The user probably just forgot the 'inline', so suggest that it
5574          // be added back.
5575          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5576            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5577        } else {
5578          Diag(Loc, diag::err_inline_namespace_mismatch)
5579            << IsInline;
5580        }
5581        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5582
5583        IsInline = PrevNS->isInline();
5584      }
5585    } else if (PrevDecl) {
5586      // This is an invalid name redefinition.
5587      Diag(Loc, diag::err_redefinition_different_kind)
5588        << II;
5589      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5590      IsInvalid = true;
5591      // Continue on to push Namespc as current DeclContext and return it.
5592    } else if (II->isStr("std") &&
5593               CurContext->getRedeclContext()->isTranslationUnit()) {
5594      // This is the first "real" definition of the namespace "std", so update
5595      // our cache of the "std" namespace to point at this definition.
5596      PrevNS = getStdNamespace();
5597      IsStd = true;
5598      AddToKnown = !IsInline;
5599    } else {
5600      // We've seen this namespace for the first time.
5601      AddToKnown = !IsInline;
5602    }
5603  } else {
5604    // Anonymous namespaces.
5605
5606    // Determine whether the parent already has an anonymous namespace.
5607    DeclContext *Parent = CurContext->getRedeclContext();
5608    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5609      PrevNS = TU->getAnonymousNamespace();
5610    } else {
5611      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5612      PrevNS = ND->getAnonymousNamespace();
5613    }
5614
5615    if (PrevNS && IsInline != PrevNS->isInline()) {
5616      // inline-ness must match
5617      Diag(Loc, diag::err_inline_namespace_mismatch)
5618        << IsInline;
5619      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5620
5621      // Recover by ignoring the new namespace's inline status.
5622      IsInline = PrevNS->isInline();
5623    }
5624  }
5625
5626  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5627                                                 StartLoc, Loc, II, PrevNS);
5628  if (IsInvalid)
5629    Namespc->setInvalidDecl();
5630
5631  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5632
5633  // FIXME: Should we be merging attributes?
5634  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5635    PushNamespaceVisibilityAttr(Attr);
5636
5637  if (IsStd)
5638    StdNamespace = Namespc;
5639  if (AddToKnown)
5640    KnownNamespaces[Namespc] = false;
5641
5642  if (II) {
5643    PushOnScopeChains(Namespc, DeclRegionScope);
5644  } else {
5645    // Link the anonymous namespace into its parent.
5646    DeclContext *Parent = CurContext->getRedeclContext();
5647    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5648      TU->setAnonymousNamespace(Namespc);
5649    } else {
5650      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5651    }
5652
5653    CurContext->addDecl(Namespc);
5654
5655    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5656    //   behaves as if it were replaced by
5657    //     namespace unique { /* empty body */ }
5658    //     using namespace unique;
5659    //     namespace unique { namespace-body }
5660    //   where all occurrences of 'unique' in a translation unit are
5661    //   replaced by the same identifier and this identifier differs
5662    //   from all other identifiers in the entire program.
5663
5664    // We just create the namespace with an empty name and then add an
5665    // implicit using declaration, just like the standard suggests.
5666    //
5667    // CodeGen enforces the "universally unique" aspect by giving all
5668    // declarations semantically contained within an anonymous
5669    // namespace internal linkage.
5670
5671    if (!PrevNS) {
5672      UsingDirectiveDecl* UD
5673        = UsingDirectiveDecl::Create(Context, CurContext,
5674                                     /* 'using' */ LBrace,
5675                                     /* 'namespace' */ SourceLocation(),
5676                                     /* qualifier */ NestedNameSpecifierLoc(),
5677                                     /* identifier */ SourceLocation(),
5678                                     Namespc,
5679                                     /* Ancestor */ CurContext);
5680      UD->setImplicit();
5681      CurContext->addDecl(UD);
5682    }
5683  }
5684
5685  // Although we could have an invalid decl (i.e. the namespace name is a
5686  // redefinition), push it as current DeclContext and try to continue parsing.
5687  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5688  // for the namespace has the declarations that showed up in that particular
5689  // namespace definition.
5690  PushDeclContext(NamespcScope, Namespc);
5691  return Namespc;
5692}
5693
5694/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5695/// is a namespace alias, returns the namespace it points to.
5696static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5697  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5698    return AD->getNamespace();
5699  return dyn_cast_or_null<NamespaceDecl>(D);
5700}
5701
5702/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5703/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5704void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5705  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5706  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5707  Namespc->setRBraceLoc(RBrace);
5708  PopDeclContext();
5709  if (Namespc->hasAttr<VisibilityAttr>())
5710    PopPragmaVisibility();
5711}
5712
5713CXXRecordDecl *Sema::getStdBadAlloc() const {
5714  return cast_or_null<CXXRecordDecl>(
5715                                  StdBadAlloc.get(Context.getExternalSource()));
5716}
5717
5718NamespaceDecl *Sema::getStdNamespace() const {
5719  return cast_or_null<NamespaceDecl>(
5720                                 StdNamespace.get(Context.getExternalSource()));
5721}
5722
5723/// \brief Retrieve the special "std" namespace, which may require us to
5724/// implicitly define the namespace.
5725NamespaceDecl *Sema::getOrCreateStdNamespace() {
5726  if (!StdNamespace) {
5727    // The "std" namespace has not yet been defined, so build one implicitly.
5728    StdNamespace = NamespaceDecl::Create(Context,
5729                                         Context.getTranslationUnitDecl(),
5730                                         /*Inline=*/false,
5731                                         SourceLocation(), SourceLocation(),
5732                                         &PP.getIdentifierTable().get("std"),
5733                                         /*PrevDecl=*/0);
5734    getStdNamespace()->setImplicit(true);
5735  }
5736
5737  return getStdNamespace();
5738}
5739
5740/// \brief Determine whether a using statement is in a context where it will be
5741/// apply in all contexts.
5742static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5743  switch (CurContext->getDeclKind()) {
5744    case Decl::TranslationUnit:
5745      return true;
5746    case Decl::LinkageSpec:
5747      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5748    default:
5749      return false;
5750  }
5751}
5752
5753static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5754                                       CXXScopeSpec &SS,
5755                                       SourceLocation IdentLoc,
5756                                       IdentifierInfo *Ident) {
5757  R.clear();
5758  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5759                                               R.getLookupKind(), Sc, &SS, NULL,
5760                                               false, S.CTC_NoKeywords, NULL)) {
5761    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5762        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5763      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5764      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5765      if (DeclContext *DC = S.computeDeclContext(SS, false))
5766        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5767          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5768          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5769      else
5770        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5771          << Ident << CorrectedQuotedStr
5772          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5773
5774      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5775           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5776
5777      Ident = Corrected.getCorrectionAsIdentifierInfo();
5778      R.addDecl(Corrected.getCorrectionDecl());
5779      return true;
5780    }
5781    R.setLookupName(Ident);
5782  }
5783  return false;
5784}
5785
5786Decl *Sema::ActOnUsingDirective(Scope *S,
5787                                          SourceLocation UsingLoc,
5788                                          SourceLocation NamespcLoc,
5789                                          CXXScopeSpec &SS,
5790                                          SourceLocation IdentLoc,
5791                                          IdentifierInfo *NamespcName,
5792                                          AttributeList *AttrList) {
5793  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5794  assert(NamespcName && "Invalid NamespcName.");
5795  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5796
5797  // This can only happen along a recovery path.
5798  while (S->getFlags() & Scope::TemplateParamScope)
5799    S = S->getParent();
5800  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5801
5802  UsingDirectiveDecl *UDir = 0;
5803  NestedNameSpecifier *Qualifier = 0;
5804  if (SS.isSet())
5805    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5806
5807  // Lookup namespace name.
5808  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5809  LookupParsedName(R, S, &SS);
5810  if (R.isAmbiguous())
5811    return 0;
5812
5813  if (R.empty()) {
5814    R.clear();
5815    // Allow "using namespace std;" or "using namespace ::std;" even if
5816    // "std" hasn't been defined yet, for GCC compatibility.
5817    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5818        NamespcName->isStr("std")) {
5819      Diag(IdentLoc, diag::ext_using_undefined_std);
5820      R.addDecl(getOrCreateStdNamespace());
5821      R.resolveKind();
5822    }
5823    // Otherwise, attempt typo correction.
5824    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5825  }
5826
5827  if (!R.empty()) {
5828    NamedDecl *Named = R.getFoundDecl();
5829    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5830        && "expected namespace decl");
5831    // C++ [namespace.udir]p1:
5832    //   A using-directive specifies that the names in the nominated
5833    //   namespace can be used in the scope in which the
5834    //   using-directive appears after the using-directive. During
5835    //   unqualified name lookup (3.4.1), the names appear as if they
5836    //   were declared in the nearest enclosing namespace which
5837    //   contains both the using-directive and the nominated
5838    //   namespace. [Note: in this context, "contains" means "contains
5839    //   directly or indirectly". ]
5840
5841    // Find enclosing context containing both using-directive and
5842    // nominated namespace.
5843    NamespaceDecl *NS = getNamespaceDecl(Named);
5844    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5845    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5846      CommonAncestor = CommonAncestor->getParent();
5847
5848    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5849                                      SS.getWithLocInContext(Context),
5850                                      IdentLoc, Named, CommonAncestor);
5851
5852    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5853        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5854      Diag(IdentLoc, diag::warn_using_directive_in_header);
5855    }
5856
5857    PushUsingDirective(S, UDir);
5858  } else {
5859    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5860  }
5861
5862  // FIXME: We ignore attributes for now.
5863  return UDir;
5864}
5865
5866void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5867  // If scope has associated entity, then using directive is at namespace
5868  // or translation unit scope. We add UsingDirectiveDecls, into
5869  // it's lookup structure.
5870  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5871    Ctx->addDecl(UDir);
5872  else
5873    // Otherwise it is block-sope. using-directives will affect lookup
5874    // only to the end of scope.
5875    S->PushUsingDirective(UDir);
5876}
5877
5878
5879Decl *Sema::ActOnUsingDeclaration(Scope *S,
5880                                  AccessSpecifier AS,
5881                                  bool HasUsingKeyword,
5882                                  SourceLocation UsingLoc,
5883                                  CXXScopeSpec &SS,
5884                                  UnqualifiedId &Name,
5885                                  AttributeList *AttrList,
5886                                  bool IsTypeName,
5887                                  SourceLocation TypenameLoc) {
5888  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5889
5890  switch (Name.getKind()) {
5891  case UnqualifiedId::IK_ImplicitSelfParam:
5892  case UnqualifiedId::IK_Identifier:
5893  case UnqualifiedId::IK_OperatorFunctionId:
5894  case UnqualifiedId::IK_LiteralOperatorId:
5895  case UnqualifiedId::IK_ConversionFunctionId:
5896    break;
5897
5898  case UnqualifiedId::IK_ConstructorName:
5899  case UnqualifiedId::IK_ConstructorTemplateId:
5900    // C++0x inherited constructors.
5901    Diag(Name.getSourceRange().getBegin(),
5902         getLangOptions().CPlusPlus0x ?
5903           diag::warn_cxx98_compat_using_decl_constructor :
5904           diag::err_using_decl_constructor)
5905      << SS.getRange();
5906
5907    if (getLangOptions().CPlusPlus0x) break;
5908
5909    return 0;
5910
5911  case UnqualifiedId::IK_DestructorName:
5912    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5913      << SS.getRange();
5914    return 0;
5915
5916  case UnqualifiedId::IK_TemplateId:
5917    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5918      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5919    return 0;
5920  }
5921
5922  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5923  DeclarationName TargetName = TargetNameInfo.getName();
5924  if (!TargetName)
5925    return 0;
5926
5927  // Warn about using declarations.
5928  // TODO: store that the declaration was written without 'using' and
5929  // talk about access decls instead of using decls in the
5930  // diagnostics.
5931  if (!HasUsingKeyword) {
5932    UsingLoc = Name.getSourceRange().getBegin();
5933
5934    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5935      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5936  }
5937
5938  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5939      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5940    return 0;
5941
5942  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5943                                        TargetNameInfo, AttrList,
5944                                        /* IsInstantiation */ false,
5945                                        IsTypeName, TypenameLoc);
5946  if (UD)
5947    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5948
5949  return UD;
5950}
5951
5952/// \brief Determine whether a using declaration considers the given
5953/// declarations as "equivalent", e.g., if they are redeclarations of
5954/// the same entity or are both typedefs of the same type.
5955static bool
5956IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5957                         bool &SuppressRedeclaration) {
5958  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5959    SuppressRedeclaration = false;
5960    return true;
5961  }
5962
5963  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5964    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5965      SuppressRedeclaration = true;
5966      return Context.hasSameType(TD1->getUnderlyingType(),
5967                                 TD2->getUnderlyingType());
5968    }
5969
5970  return false;
5971}
5972
5973
5974/// Determines whether to create a using shadow decl for a particular
5975/// decl, given the set of decls existing prior to this using lookup.
5976bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5977                                const LookupResult &Previous) {
5978  // Diagnose finding a decl which is not from a base class of the
5979  // current class.  We do this now because there are cases where this
5980  // function will silently decide not to build a shadow decl, which
5981  // will pre-empt further diagnostics.
5982  //
5983  // We don't need to do this in C++0x because we do the check once on
5984  // the qualifier.
5985  //
5986  // FIXME: diagnose the following if we care enough:
5987  //   struct A { int foo; };
5988  //   struct B : A { using A::foo; };
5989  //   template <class T> struct C : A {};
5990  //   template <class T> struct D : C<T> { using B::foo; } // <---
5991  // This is invalid (during instantiation) in C++03 because B::foo
5992  // resolves to the using decl in B, which is not a base class of D<T>.
5993  // We can't diagnose it immediately because C<T> is an unknown
5994  // specialization.  The UsingShadowDecl in D<T> then points directly
5995  // to A::foo, which will look well-formed when we instantiate.
5996  // The right solution is to not collapse the shadow-decl chain.
5997  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5998    DeclContext *OrigDC = Orig->getDeclContext();
5999
6000    // Handle enums and anonymous structs.
6001    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6002    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6003    while (OrigRec->isAnonymousStructOrUnion())
6004      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6005
6006    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6007      if (OrigDC == CurContext) {
6008        Diag(Using->getLocation(),
6009             diag::err_using_decl_nested_name_specifier_is_current_class)
6010          << Using->getQualifierLoc().getSourceRange();
6011        Diag(Orig->getLocation(), diag::note_using_decl_target);
6012        return true;
6013      }
6014
6015      Diag(Using->getQualifierLoc().getBeginLoc(),
6016           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6017        << Using->getQualifier()
6018        << cast<CXXRecordDecl>(CurContext)
6019        << Using->getQualifierLoc().getSourceRange();
6020      Diag(Orig->getLocation(), diag::note_using_decl_target);
6021      return true;
6022    }
6023  }
6024
6025  if (Previous.empty()) return false;
6026
6027  NamedDecl *Target = Orig;
6028  if (isa<UsingShadowDecl>(Target))
6029    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6030
6031  // If the target happens to be one of the previous declarations, we
6032  // don't have a conflict.
6033  //
6034  // FIXME: but we might be increasing its access, in which case we
6035  // should redeclare it.
6036  NamedDecl *NonTag = 0, *Tag = 0;
6037  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6038         I != E; ++I) {
6039    NamedDecl *D = (*I)->getUnderlyingDecl();
6040    bool Result;
6041    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6042      return Result;
6043
6044    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6045  }
6046
6047  if (Target->isFunctionOrFunctionTemplate()) {
6048    FunctionDecl *FD;
6049    if (isa<FunctionTemplateDecl>(Target))
6050      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6051    else
6052      FD = cast<FunctionDecl>(Target);
6053
6054    NamedDecl *OldDecl = 0;
6055    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6056    case Ovl_Overload:
6057      return false;
6058
6059    case Ovl_NonFunction:
6060      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6061      break;
6062
6063    // We found a decl with the exact signature.
6064    case Ovl_Match:
6065      // If we're in a record, we want to hide the target, so we
6066      // return true (without a diagnostic) to tell the caller not to
6067      // build a shadow decl.
6068      if (CurContext->isRecord())
6069        return true;
6070
6071      // If we're not in a record, this is an error.
6072      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6073      break;
6074    }
6075
6076    Diag(Target->getLocation(), diag::note_using_decl_target);
6077    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6078    return true;
6079  }
6080
6081  // Target is not a function.
6082
6083  if (isa<TagDecl>(Target)) {
6084    // No conflict between a tag and a non-tag.
6085    if (!Tag) return false;
6086
6087    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6088    Diag(Target->getLocation(), diag::note_using_decl_target);
6089    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6090    return true;
6091  }
6092
6093  // No conflict between a tag and a non-tag.
6094  if (!NonTag) return false;
6095
6096  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6097  Diag(Target->getLocation(), diag::note_using_decl_target);
6098  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6099  return true;
6100}
6101
6102/// Builds a shadow declaration corresponding to a 'using' declaration.
6103UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6104                                            UsingDecl *UD,
6105                                            NamedDecl *Orig) {
6106
6107  // If we resolved to another shadow declaration, just coalesce them.
6108  NamedDecl *Target = Orig;
6109  if (isa<UsingShadowDecl>(Target)) {
6110    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6111    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6112  }
6113
6114  UsingShadowDecl *Shadow
6115    = UsingShadowDecl::Create(Context, CurContext,
6116                              UD->getLocation(), UD, Target);
6117  UD->addShadowDecl(Shadow);
6118
6119  Shadow->setAccess(UD->getAccess());
6120  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6121    Shadow->setInvalidDecl();
6122
6123  if (S)
6124    PushOnScopeChains(Shadow, S);
6125  else
6126    CurContext->addDecl(Shadow);
6127
6128
6129  return Shadow;
6130}
6131
6132/// Hides a using shadow declaration.  This is required by the current
6133/// using-decl implementation when a resolvable using declaration in a
6134/// class is followed by a declaration which would hide or override
6135/// one or more of the using decl's targets; for example:
6136///
6137///   struct Base { void foo(int); };
6138///   struct Derived : Base {
6139///     using Base::foo;
6140///     void foo(int);
6141///   };
6142///
6143/// The governing language is C++03 [namespace.udecl]p12:
6144///
6145///   When a using-declaration brings names from a base class into a
6146///   derived class scope, member functions in the derived class
6147///   override and/or hide member functions with the same name and
6148///   parameter types in a base class (rather than conflicting).
6149///
6150/// There are two ways to implement this:
6151///   (1) optimistically create shadow decls when they're not hidden
6152///       by existing declarations, or
6153///   (2) don't create any shadow decls (or at least don't make them
6154///       visible) until we've fully parsed/instantiated the class.
6155/// The problem with (1) is that we might have to retroactively remove
6156/// a shadow decl, which requires several O(n) operations because the
6157/// decl structures are (very reasonably) not designed for removal.
6158/// (2) avoids this but is very fiddly and phase-dependent.
6159void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6160  if (Shadow->getDeclName().getNameKind() ==
6161        DeclarationName::CXXConversionFunctionName)
6162    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6163
6164  // Remove it from the DeclContext...
6165  Shadow->getDeclContext()->removeDecl(Shadow);
6166
6167  // ...and the scope, if applicable...
6168  if (S) {
6169    S->RemoveDecl(Shadow);
6170    IdResolver.RemoveDecl(Shadow);
6171  }
6172
6173  // ...and the using decl.
6174  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6175
6176  // TODO: complain somehow if Shadow was used.  It shouldn't
6177  // be possible for this to happen, because...?
6178}
6179
6180/// Builds a using declaration.
6181///
6182/// \param IsInstantiation - Whether this call arises from an
6183///   instantiation of an unresolved using declaration.  We treat
6184///   the lookup differently for these declarations.
6185NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6186                                       SourceLocation UsingLoc,
6187                                       CXXScopeSpec &SS,
6188                                       const DeclarationNameInfo &NameInfo,
6189                                       AttributeList *AttrList,
6190                                       bool IsInstantiation,
6191                                       bool IsTypeName,
6192                                       SourceLocation TypenameLoc) {
6193  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6194  SourceLocation IdentLoc = NameInfo.getLoc();
6195  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6196
6197  // FIXME: We ignore attributes for now.
6198
6199  if (SS.isEmpty()) {
6200    Diag(IdentLoc, diag::err_using_requires_qualname);
6201    return 0;
6202  }
6203
6204  // Do the redeclaration lookup in the current scope.
6205  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6206                        ForRedeclaration);
6207  Previous.setHideTags(false);
6208  if (S) {
6209    LookupName(Previous, S);
6210
6211    // It is really dumb that we have to do this.
6212    LookupResult::Filter F = Previous.makeFilter();
6213    while (F.hasNext()) {
6214      NamedDecl *D = F.next();
6215      if (!isDeclInScope(D, CurContext, S))
6216        F.erase();
6217    }
6218    F.done();
6219  } else {
6220    assert(IsInstantiation && "no scope in non-instantiation");
6221    assert(CurContext->isRecord() && "scope not record in instantiation");
6222    LookupQualifiedName(Previous, CurContext);
6223  }
6224
6225  // Check for invalid redeclarations.
6226  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6227    return 0;
6228
6229  // Check for bad qualifiers.
6230  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6231    return 0;
6232
6233  DeclContext *LookupContext = computeDeclContext(SS);
6234  NamedDecl *D;
6235  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6236  if (!LookupContext) {
6237    if (IsTypeName) {
6238      // FIXME: not all declaration name kinds are legal here
6239      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6240                                              UsingLoc, TypenameLoc,
6241                                              QualifierLoc,
6242                                              IdentLoc, NameInfo.getName());
6243    } else {
6244      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6245                                           QualifierLoc, NameInfo);
6246    }
6247  } else {
6248    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6249                          NameInfo, IsTypeName);
6250  }
6251  D->setAccess(AS);
6252  CurContext->addDecl(D);
6253
6254  if (!LookupContext) return D;
6255  UsingDecl *UD = cast<UsingDecl>(D);
6256
6257  if (RequireCompleteDeclContext(SS, LookupContext)) {
6258    UD->setInvalidDecl();
6259    return UD;
6260  }
6261
6262  // Constructor inheriting using decls get special treatment.
6263  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6264    if (CheckInheritedConstructorUsingDecl(UD))
6265      UD->setInvalidDecl();
6266    return UD;
6267  }
6268
6269  // Otherwise, look up the target name.
6270
6271  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6272
6273  // Unlike most lookups, we don't always want to hide tag
6274  // declarations: tag names are visible through the using declaration
6275  // even if hidden by ordinary names, *except* in a dependent context
6276  // where it's important for the sanity of two-phase lookup.
6277  if (!IsInstantiation)
6278    R.setHideTags(false);
6279
6280  LookupQualifiedName(R, LookupContext);
6281
6282  if (R.empty()) {
6283    Diag(IdentLoc, diag::err_no_member)
6284      << NameInfo.getName() << LookupContext << SS.getRange();
6285    UD->setInvalidDecl();
6286    return UD;
6287  }
6288
6289  if (R.isAmbiguous()) {
6290    UD->setInvalidDecl();
6291    return UD;
6292  }
6293
6294  if (IsTypeName) {
6295    // If we asked for a typename and got a non-type decl, error out.
6296    if (!R.getAsSingle<TypeDecl>()) {
6297      Diag(IdentLoc, diag::err_using_typename_non_type);
6298      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6299        Diag((*I)->getUnderlyingDecl()->getLocation(),
6300             diag::note_using_decl_target);
6301      UD->setInvalidDecl();
6302      return UD;
6303    }
6304  } else {
6305    // If we asked for a non-typename and we got a type, error out,
6306    // but only if this is an instantiation of an unresolved using
6307    // decl.  Otherwise just silently find the type name.
6308    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6309      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6310      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6311      UD->setInvalidDecl();
6312      return UD;
6313    }
6314  }
6315
6316  // C++0x N2914 [namespace.udecl]p6:
6317  // A using-declaration shall not name a namespace.
6318  if (R.getAsSingle<NamespaceDecl>()) {
6319    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6320      << SS.getRange();
6321    UD->setInvalidDecl();
6322    return UD;
6323  }
6324
6325  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6326    if (!CheckUsingShadowDecl(UD, *I, Previous))
6327      BuildUsingShadowDecl(S, UD, *I);
6328  }
6329
6330  return UD;
6331}
6332
6333/// Additional checks for a using declaration referring to a constructor name.
6334bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6335  if (UD->isTypeName()) {
6336    // FIXME: Cannot specify typename when specifying constructor
6337    return true;
6338  }
6339
6340  const Type *SourceType = UD->getQualifier()->getAsType();
6341  assert(SourceType &&
6342         "Using decl naming constructor doesn't have type in scope spec.");
6343  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6344
6345  // Check whether the named type is a direct base class.
6346  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6347  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6348  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6349       BaseIt != BaseE; ++BaseIt) {
6350    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6351    if (CanonicalSourceType == BaseType)
6352      break;
6353  }
6354
6355  if (BaseIt == BaseE) {
6356    // Did not find SourceType in the bases.
6357    Diag(UD->getUsingLocation(),
6358         diag::err_using_decl_constructor_not_in_direct_base)
6359      << UD->getNameInfo().getSourceRange()
6360      << QualType(SourceType, 0) << TargetClass;
6361    return true;
6362  }
6363
6364  BaseIt->setInheritConstructors();
6365
6366  return false;
6367}
6368
6369/// Checks that the given using declaration is not an invalid
6370/// redeclaration.  Note that this is checking only for the using decl
6371/// itself, not for any ill-formedness among the UsingShadowDecls.
6372bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6373                                       bool isTypeName,
6374                                       const CXXScopeSpec &SS,
6375                                       SourceLocation NameLoc,
6376                                       const LookupResult &Prev) {
6377  // C++03 [namespace.udecl]p8:
6378  // C++0x [namespace.udecl]p10:
6379  //   A using-declaration is a declaration and can therefore be used
6380  //   repeatedly where (and only where) multiple declarations are
6381  //   allowed.
6382  //
6383  // That's in non-member contexts.
6384  if (!CurContext->getRedeclContext()->isRecord())
6385    return false;
6386
6387  NestedNameSpecifier *Qual
6388    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6389
6390  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6391    NamedDecl *D = *I;
6392
6393    bool DTypename;
6394    NestedNameSpecifier *DQual;
6395    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6396      DTypename = UD->isTypeName();
6397      DQual = UD->getQualifier();
6398    } else if (UnresolvedUsingValueDecl *UD
6399                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6400      DTypename = false;
6401      DQual = UD->getQualifier();
6402    } else if (UnresolvedUsingTypenameDecl *UD
6403                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6404      DTypename = true;
6405      DQual = UD->getQualifier();
6406    } else continue;
6407
6408    // using decls differ if one says 'typename' and the other doesn't.
6409    // FIXME: non-dependent using decls?
6410    if (isTypeName != DTypename) continue;
6411
6412    // using decls differ if they name different scopes (but note that
6413    // template instantiation can cause this check to trigger when it
6414    // didn't before instantiation).
6415    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6416        Context.getCanonicalNestedNameSpecifier(DQual))
6417      continue;
6418
6419    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6420    Diag(D->getLocation(), diag::note_using_decl) << 1;
6421    return true;
6422  }
6423
6424  return false;
6425}
6426
6427
6428/// Checks that the given nested-name qualifier used in a using decl
6429/// in the current context is appropriately related to the current
6430/// scope.  If an error is found, diagnoses it and returns true.
6431bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6432                                   const CXXScopeSpec &SS,
6433                                   SourceLocation NameLoc) {
6434  DeclContext *NamedContext = computeDeclContext(SS);
6435
6436  if (!CurContext->isRecord()) {
6437    // C++03 [namespace.udecl]p3:
6438    // C++0x [namespace.udecl]p8:
6439    //   A using-declaration for a class member shall be a member-declaration.
6440
6441    // If we weren't able to compute a valid scope, it must be a
6442    // dependent class scope.
6443    if (!NamedContext || NamedContext->isRecord()) {
6444      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6445        << SS.getRange();
6446      return true;
6447    }
6448
6449    // Otherwise, everything is known to be fine.
6450    return false;
6451  }
6452
6453  // The current scope is a record.
6454
6455  // If the named context is dependent, we can't decide much.
6456  if (!NamedContext) {
6457    // FIXME: in C++0x, we can diagnose if we can prove that the
6458    // nested-name-specifier does not refer to a base class, which is
6459    // still possible in some cases.
6460
6461    // Otherwise we have to conservatively report that things might be
6462    // okay.
6463    return false;
6464  }
6465
6466  if (!NamedContext->isRecord()) {
6467    // Ideally this would point at the last name in the specifier,
6468    // but we don't have that level of source info.
6469    Diag(SS.getRange().getBegin(),
6470         diag::err_using_decl_nested_name_specifier_is_not_class)
6471      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6472    return true;
6473  }
6474
6475  if (!NamedContext->isDependentContext() &&
6476      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6477    return true;
6478
6479  if (getLangOptions().CPlusPlus0x) {
6480    // C++0x [namespace.udecl]p3:
6481    //   In a using-declaration used as a member-declaration, the
6482    //   nested-name-specifier shall name a base class of the class
6483    //   being defined.
6484
6485    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6486                                 cast<CXXRecordDecl>(NamedContext))) {
6487      if (CurContext == NamedContext) {
6488        Diag(NameLoc,
6489             diag::err_using_decl_nested_name_specifier_is_current_class)
6490          << SS.getRange();
6491        return true;
6492      }
6493
6494      Diag(SS.getRange().getBegin(),
6495           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6496        << (NestedNameSpecifier*) SS.getScopeRep()
6497        << cast<CXXRecordDecl>(CurContext)
6498        << SS.getRange();
6499      return true;
6500    }
6501
6502    return false;
6503  }
6504
6505  // C++03 [namespace.udecl]p4:
6506  //   A using-declaration used as a member-declaration shall refer
6507  //   to a member of a base class of the class being defined [etc.].
6508
6509  // Salient point: SS doesn't have to name a base class as long as
6510  // lookup only finds members from base classes.  Therefore we can
6511  // diagnose here only if we can prove that that can't happen,
6512  // i.e. if the class hierarchies provably don't intersect.
6513
6514  // TODO: it would be nice if "definitely valid" results were cached
6515  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6516  // need to be repeated.
6517
6518  struct UserData {
6519    llvm::DenseSet<const CXXRecordDecl*> Bases;
6520
6521    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6522      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6523      Data->Bases.insert(Base);
6524      return true;
6525    }
6526
6527    bool hasDependentBases(const CXXRecordDecl *Class) {
6528      return !Class->forallBases(collect, this);
6529    }
6530
6531    /// Returns true if the base is dependent or is one of the
6532    /// accumulated base classes.
6533    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6534      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6535      return !Data->Bases.count(Base);
6536    }
6537
6538    bool mightShareBases(const CXXRecordDecl *Class) {
6539      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6540    }
6541  };
6542
6543  UserData Data;
6544
6545  // Returns false if we find a dependent base.
6546  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6547    return false;
6548
6549  // Returns false if the class has a dependent base or if it or one
6550  // of its bases is present in the base set of the current context.
6551  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6552    return false;
6553
6554  Diag(SS.getRange().getBegin(),
6555       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6556    << (NestedNameSpecifier*) SS.getScopeRep()
6557    << cast<CXXRecordDecl>(CurContext)
6558    << SS.getRange();
6559
6560  return true;
6561}
6562
6563Decl *Sema::ActOnAliasDeclaration(Scope *S,
6564                                  AccessSpecifier AS,
6565                                  MultiTemplateParamsArg TemplateParamLists,
6566                                  SourceLocation UsingLoc,
6567                                  UnqualifiedId &Name,
6568                                  TypeResult Type) {
6569  // Skip up to the relevant declaration scope.
6570  while (S->getFlags() & Scope::TemplateParamScope)
6571    S = S->getParent();
6572  assert((S->getFlags() & Scope::DeclScope) &&
6573         "got alias-declaration outside of declaration scope");
6574
6575  if (Type.isInvalid())
6576    return 0;
6577
6578  bool Invalid = false;
6579  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6580  TypeSourceInfo *TInfo = 0;
6581  GetTypeFromParser(Type.get(), &TInfo);
6582
6583  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6584    return 0;
6585
6586  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6587                                      UPPC_DeclarationType)) {
6588    Invalid = true;
6589    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6590                                             TInfo->getTypeLoc().getBeginLoc());
6591  }
6592
6593  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6594  LookupName(Previous, S);
6595
6596  // Warn about shadowing the name of a template parameter.
6597  if (Previous.isSingleResult() &&
6598      Previous.getFoundDecl()->isTemplateParameter()) {
6599    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6600    Previous.clear();
6601  }
6602
6603  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6604         "name in alias declaration must be an identifier");
6605  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6606                                               Name.StartLocation,
6607                                               Name.Identifier, TInfo);
6608
6609  NewTD->setAccess(AS);
6610
6611  if (Invalid)
6612    NewTD->setInvalidDecl();
6613
6614  CheckTypedefForVariablyModifiedType(S, NewTD);
6615  Invalid |= NewTD->isInvalidDecl();
6616
6617  bool Redeclaration = false;
6618
6619  NamedDecl *NewND;
6620  if (TemplateParamLists.size()) {
6621    TypeAliasTemplateDecl *OldDecl = 0;
6622    TemplateParameterList *OldTemplateParams = 0;
6623
6624    if (TemplateParamLists.size() != 1) {
6625      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6626        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6627         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6628    }
6629    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6630
6631    // Only consider previous declarations in the same scope.
6632    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6633                         /*ExplicitInstantiationOrSpecialization*/false);
6634    if (!Previous.empty()) {
6635      Redeclaration = true;
6636
6637      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6638      if (!OldDecl && !Invalid) {
6639        Diag(UsingLoc, diag::err_redefinition_different_kind)
6640          << Name.Identifier;
6641
6642        NamedDecl *OldD = Previous.getRepresentativeDecl();
6643        if (OldD->getLocation().isValid())
6644          Diag(OldD->getLocation(), diag::note_previous_definition);
6645
6646        Invalid = true;
6647      }
6648
6649      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6650        if (TemplateParameterListsAreEqual(TemplateParams,
6651                                           OldDecl->getTemplateParameters(),
6652                                           /*Complain=*/true,
6653                                           TPL_TemplateMatch))
6654          OldTemplateParams = OldDecl->getTemplateParameters();
6655        else
6656          Invalid = true;
6657
6658        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6659        if (!Invalid &&
6660            !Context.hasSameType(OldTD->getUnderlyingType(),
6661                                 NewTD->getUnderlyingType())) {
6662          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6663          // but we can't reasonably accept it.
6664          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6665            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6666          if (OldTD->getLocation().isValid())
6667            Diag(OldTD->getLocation(), diag::note_previous_definition);
6668          Invalid = true;
6669        }
6670      }
6671    }
6672
6673    // Merge any previous default template arguments into our parameters,
6674    // and check the parameter list.
6675    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6676                                   TPC_TypeAliasTemplate))
6677      return 0;
6678
6679    TypeAliasTemplateDecl *NewDecl =
6680      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6681                                    Name.Identifier, TemplateParams,
6682                                    NewTD);
6683
6684    NewDecl->setAccess(AS);
6685
6686    if (Invalid)
6687      NewDecl->setInvalidDecl();
6688    else if (OldDecl)
6689      NewDecl->setPreviousDeclaration(OldDecl);
6690
6691    NewND = NewDecl;
6692  } else {
6693    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6694    NewND = NewTD;
6695  }
6696
6697  if (!Redeclaration)
6698    PushOnScopeChains(NewND, S);
6699
6700  return NewND;
6701}
6702
6703Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6704                                             SourceLocation NamespaceLoc,
6705                                             SourceLocation AliasLoc,
6706                                             IdentifierInfo *Alias,
6707                                             CXXScopeSpec &SS,
6708                                             SourceLocation IdentLoc,
6709                                             IdentifierInfo *Ident) {
6710
6711  // Lookup the namespace name.
6712  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6713  LookupParsedName(R, S, &SS);
6714
6715  // Check if we have a previous declaration with the same name.
6716  NamedDecl *PrevDecl
6717    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6718                       ForRedeclaration);
6719  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6720    PrevDecl = 0;
6721
6722  if (PrevDecl) {
6723    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6724      // We already have an alias with the same name that points to the same
6725      // namespace, so don't create a new one.
6726      // FIXME: At some point, we'll want to create the (redundant)
6727      // declaration to maintain better source information.
6728      if (!R.isAmbiguous() && !R.empty() &&
6729          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6730        return 0;
6731    }
6732
6733    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6734      diag::err_redefinition_different_kind;
6735    Diag(AliasLoc, DiagID) << Alias;
6736    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6737    return 0;
6738  }
6739
6740  if (R.isAmbiguous())
6741    return 0;
6742
6743  if (R.empty()) {
6744    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6745      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6746      return 0;
6747    }
6748  }
6749
6750  NamespaceAliasDecl *AliasDecl =
6751    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6752                               Alias, SS.getWithLocInContext(Context),
6753                               IdentLoc, R.getFoundDecl());
6754
6755  PushOnScopeChains(AliasDecl, S);
6756  return AliasDecl;
6757}
6758
6759namespace {
6760  /// \brief Scoped object used to handle the state changes required in Sema
6761  /// to implicitly define the body of a C++ member function;
6762  class ImplicitlyDefinedFunctionScope {
6763    Sema &S;
6764    Sema::ContextRAII SavedContext;
6765
6766  public:
6767    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6768      : S(S), SavedContext(S, Method)
6769    {
6770      S.PushFunctionScope();
6771      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6772    }
6773
6774    ~ImplicitlyDefinedFunctionScope() {
6775      S.PopExpressionEvaluationContext();
6776      S.PopFunctionScopeInfo();
6777    }
6778  };
6779}
6780
6781Sema::ImplicitExceptionSpecification
6782Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6783  // C++ [except.spec]p14:
6784  //   An implicitly declared special member function (Clause 12) shall have an
6785  //   exception-specification. [...]
6786  ImplicitExceptionSpecification ExceptSpec(Context);
6787  if (ClassDecl->isInvalidDecl())
6788    return ExceptSpec;
6789
6790  // Direct base-class constructors.
6791  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6792                                       BEnd = ClassDecl->bases_end();
6793       B != BEnd; ++B) {
6794    if (B->isVirtual()) // Handled below.
6795      continue;
6796
6797    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6798      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6799      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6800      // If this is a deleted function, add it anyway. This might be conformant
6801      // with the standard. This might not. I'm not sure. It might not matter.
6802      if (Constructor)
6803        ExceptSpec.CalledDecl(Constructor);
6804    }
6805  }
6806
6807  // Virtual base-class constructors.
6808  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6809                                       BEnd = ClassDecl->vbases_end();
6810       B != BEnd; ++B) {
6811    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6812      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6813      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6814      // If this is a deleted function, add it anyway. This might be conformant
6815      // with the standard. This might not. I'm not sure. It might not matter.
6816      if (Constructor)
6817        ExceptSpec.CalledDecl(Constructor);
6818    }
6819  }
6820
6821  // Field constructors.
6822  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6823                               FEnd = ClassDecl->field_end();
6824       F != FEnd; ++F) {
6825    if (F->hasInClassInitializer()) {
6826      if (Expr *E = F->getInClassInitializer())
6827        ExceptSpec.CalledExpr(E);
6828      else if (!F->isInvalidDecl())
6829        ExceptSpec.SetDelayed();
6830    } else if (const RecordType *RecordTy
6831              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6832      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6833      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6834      // If this is a deleted function, add it anyway. This might be conformant
6835      // with the standard. This might not. I'm not sure. It might not matter.
6836      // In particular, the problem is that this function never gets called. It
6837      // might just be ill-formed because this function attempts to refer to
6838      // a deleted function here.
6839      if (Constructor)
6840        ExceptSpec.CalledDecl(Constructor);
6841    }
6842  }
6843
6844  return ExceptSpec;
6845}
6846
6847CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6848                                                     CXXRecordDecl *ClassDecl) {
6849  // C++ [class.ctor]p5:
6850  //   A default constructor for a class X is a constructor of class X
6851  //   that can be called without an argument. If there is no
6852  //   user-declared constructor for class X, a default constructor is
6853  //   implicitly declared. An implicitly-declared default constructor
6854  //   is an inline public member of its class.
6855  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6856         "Should not build implicit default constructor!");
6857
6858  ImplicitExceptionSpecification Spec =
6859    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6860  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6861
6862  // Create the actual constructor declaration.
6863  CanQualType ClassType
6864    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6865  SourceLocation ClassLoc = ClassDecl->getLocation();
6866  DeclarationName Name
6867    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6868  DeclarationNameInfo NameInfo(Name, ClassLoc);
6869  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6870      Context, ClassDecl, ClassLoc, NameInfo,
6871      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6872      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6873      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6874        getLangOptions().CPlusPlus0x);
6875  DefaultCon->setAccess(AS_public);
6876  DefaultCon->setDefaulted();
6877  DefaultCon->setImplicit();
6878  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6879
6880  // Note that we have declared this constructor.
6881  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6882
6883  if (Scope *S = getScopeForContext(ClassDecl))
6884    PushOnScopeChains(DefaultCon, S, false);
6885  ClassDecl->addDecl(DefaultCon);
6886
6887  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6888    DefaultCon->setDeletedAsWritten();
6889
6890  return DefaultCon;
6891}
6892
6893void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6894                                            CXXConstructorDecl *Constructor) {
6895  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6896          !Constructor->doesThisDeclarationHaveABody() &&
6897          !Constructor->isDeleted()) &&
6898    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6899
6900  CXXRecordDecl *ClassDecl = Constructor->getParent();
6901  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6902
6903  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6904  DiagnosticErrorTrap Trap(Diags);
6905  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6906      Trap.hasErrorOccurred()) {
6907    Diag(CurrentLocation, diag::note_member_synthesized_at)
6908      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6909    Constructor->setInvalidDecl();
6910    return;
6911  }
6912
6913  SourceLocation Loc = Constructor->getLocation();
6914  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6915
6916  Constructor->setUsed();
6917  MarkVTableUsed(CurrentLocation, ClassDecl);
6918
6919  if (ASTMutationListener *L = getASTMutationListener()) {
6920    L->CompletedImplicitDefinition(Constructor);
6921  }
6922}
6923
6924/// Get any existing defaulted default constructor for the given class. Do not
6925/// implicitly define one if it does not exist.
6926static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6927                                                             CXXRecordDecl *D) {
6928  ASTContext &Context = Self.Context;
6929  QualType ClassType = Context.getTypeDeclType(D);
6930  DeclarationName ConstructorName
6931    = Context.DeclarationNames.getCXXConstructorName(
6932                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6933
6934  DeclContext::lookup_const_iterator Con, ConEnd;
6935  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6936       Con != ConEnd; ++Con) {
6937    // A function template cannot be defaulted.
6938    if (isa<FunctionTemplateDecl>(*Con))
6939      continue;
6940
6941    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6942    if (Constructor->isDefaultConstructor())
6943      return Constructor->isDefaulted() ? Constructor : 0;
6944  }
6945  return 0;
6946}
6947
6948void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6949  if (!D) return;
6950  AdjustDeclIfTemplate(D);
6951
6952  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6953  CXXConstructorDecl *CtorDecl
6954    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6955
6956  if (!CtorDecl) return;
6957
6958  // Compute the exception specification for the default constructor.
6959  const FunctionProtoType *CtorTy =
6960    CtorDecl->getType()->castAs<FunctionProtoType>();
6961  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6962    ImplicitExceptionSpecification Spec =
6963      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6964    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6965    assert(EPI.ExceptionSpecType != EST_Delayed);
6966
6967    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6968  }
6969
6970  // If the default constructor is explicitly defaulted, checking the exception
6971  // specification is deferred until now.
6972  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6973      !ClassDecl->isDependentType())
6974    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6975}
6976
6977void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6978  // We start with an initial pass over the base classes to collect those that
6979  // inherit constructors from. If there are none, we can forgo all further
6980  // processing.
6981  typedef SmallVector<const RecordType *, 4> BasesVector;
6982  BasesVector BasesToInheritFrom;
6983  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6984                                          BaseE = ClassDecl->bases_end();
6985         BaseIt != BaseE; ++BaseIt) {
6986    if (BaseIt->getInheritConstructors()) {
6987      QualType Base = BaseIt->getType();
6988      if (Base->isDependentType()) {
6989        // If we inherit constructors from anything that is dependent, just
6990        // abort processing altogether. We'll get another chance for the
6991        // instantiations.
6992        return;
6993      }
6994      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6995    }
6996  }
6997  if (BasesToInheritFrom.empty())
6998    return;
6999
7000  // Now collect the constructors that we already have in the current class.
7001  // Those take precedence over inherited constructors.
7002  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7003  //   unless there is a user-declared constructor with the same signature in
7004  //   the class where the using-declaration appears.
7005  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7006  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7007                                    CtorE = ClassDecl->ctor_end();
7008       CtorIt != CtorE; ++CtorIt) {
7009    ExistingConstructors.insert(
7010        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7011  }
7012
7013  Scope *S = getScopeForContext(ClassDecl);
7014  DeclarationName CreatedCtorName =
7015      Context.DeclarationNames.getCXXConstructorName(
7016          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7017
7018  // Now comes the true work.
7019  // First, we keep a map from constructor types to the base that introduced
7020  // them. Needed for finding conflicting constructors. We also keep the
7021  // actually inserted declarations in there, for pretty diagnostics.
7022  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7023  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7024  ConstructorToSourceMap InheritedConstructors;
7025  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7026                             BaseE = BasesToInheritFrom.end();
7027       BaseIt != BaseE; ++BaseIt) {
7028    const RecordType *Base = *BaseIt;
7029    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7030    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7031    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7032                                      CtorE = BaseDecl->ctor_end();
7033         CtorIt != CtorE; ++CtorIt) {
7034      // Find the using declaration for inheriting this base's constructors.
7035      DeclarationName Name =
7036          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7037      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7038          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7039      SourceLocation UsingLoc = UD ? UD->getLocation() :
7040                                     ClassDecl->getLocation();
7041
7042      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7043      //   from the class X named in the using-declaration consists of actual
7044      //   constructors and notional constructors that result from the
7045      //   transformation of defaulted parameters as follows:
7046      //   - all non-template default constructors of X, and
7047      //   - for each non-template constructor of X that has at least one
7048      //     parameter with a default argument, the set of constructors that
7049      //     results from omitting any ellipsis parameter specification and
7050      //     successively omitting parameters with a default argument from the
7051      //     end of the parameter-type-list.
7052      CXXConstructorDecl *BaseCtor = *CtorIt;
7053      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7054      const FunctionProtoType *BaseCtorType =
7055          BaseCtor->getType()->getAs<FunctionProtoType>();
7056
7057      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7058                    maxParams = BaseCtor->getNumParams();
7059           params <= maxParams; ++params) {
7060        // Skip default constructors. They're never inherited.
7061        if (params == 0)
7062          continue;
7063        // Skip copy and move constructors for the same reason.
7064        if (CanBeCopyOrMove && params == 1)
7065          continue;
7066
7067        // Build up a function type for this particular constructor.
7068        // FIXME: The working paper does not consider that the exception spec
7069        // for the inheriting constructor might be larger than that of the
7070        // source. This code doesn't yet, either. When it does, this code will
7071        // need to be delayed until after exception specifications and in-class
7072        // member initializers are attached.
7073        const Type *NewCtorType;
7074        if (params == maxParams)
7075          NewCtorType = BaseCtorType;
7076        else {
7077          SmallVector<QualType, 16> Args;
7078          for (unsigned i = 0; i < params; ++i) {
7079            Args.push_back(BaseCtorType->getArgType(i));
7080          }
7081          FunctionProtoType::ExtProtoInfo ExtInfo =
7082              BaseCtorType->getExtProtoInfo();
7083          ExtInfo.Variadic = false;
7084          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7085                                                Args.data(), params, ExtInfo)
7086                       .getTypePtr();
7087        }
7088        const Type *CanonicalNewCtorType =
7089            Context.getCanonicalType(NewCtorType);
7090
7091        // Now that we have the type, first check if the class already has a
7092        // constructor with this signature.
7093        if (ExistingConstructors.count(CanonicalNewCtorType))
7094          continue;
7095
7096        // Then we check if we have already declared an inherited constructor
7097        // with this signature.
7098        std::pair<ConstructorToSourceMap::iterator, bool> result =
7099            InheritedConstructors.insert(std::make_pair(
7100                CanonicalNewCtorType,
7101                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7102        if (!result.second) {
7103          // Already in the map. If it came from a different class, that's an
7104          // error. Not if it's from the same.
7105          CanQualType PreviousBase = result.first->second.first;
7106          if (CanonicalBase != PreviousBase) {
7107            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7108            const CXXConstructorDecl *PrevBaseCtor =
7109                PrevCtor->getInheritedConstructor();
7110            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7111
7112            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7113            Diag(BaseCtor->getLocation(),
7114                 diag::note_using_decl_constructor_conflict_current_ctor);
7115            Diag(PrevBaseCtor->getLocation(),
7116                 diag::note_using_decl_constructor_conflict_previous_ctor);
7117            Diag(PrevCtor->getLocation(),
7118                 diag::note_using_decl_constructor_conflict_previous_using);
7119          }
7120          continue;
7121        }
7122
7123        // OK, we're there, now add the constructor.
7124        // C++0x [class.inhctor]p8: [...] that would be performed by a
7125        //   user-written inline constructor [...]
7126        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7127        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7128            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7129            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7130            /*ImplicitlyDeclared=*/true,
7131            // FIXME: Due to a defect in the standard, we treat inherited
7132            // constructors as constexpr even if that makes them ill-formed.
7133            /*Constexpr=*/BaseCtor->isConstexpr());
7134        NewCtor->setAccess(BaseCtor->getAccess());
7135
7136        // Build up the parameter decls and add them.
7137        SmallVector<ParmVarDecl *, 16> ParamDecls;
7138        for (unsigned i = 0; i < params; ++i) {
7139          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7140                                                   UsingLoc, UsingLoc,
7141                                                   /*IdentifierInfo=*/0,
7142                                                   BaseCtorType->getArgType(i),
7143                                                   /*TInfo=*/0, SC_None,
7144                                                   SC_None, /*DefaultArg=*/0));
7145        }
7146        NewCtor->setParams(ParamDecls);
7147        NewCtor->setInheritedConstructor(BaseCtor);
7148
7149        PushOnScopeChains(NewCtor, S, false);
7150        ClassDecl->addDecl(NewCtor);
7151        result.first->second.second = NewCtor;
7152      }
7153    }
7154  }
7155}
7156
7157Sema::ImplicitExceptionSpecification
7158Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7159  // C++ [except.spec]p14:
7160  //   An implicitly declared special member function (Clause 12) shall have
7161  //   an exception-specification.
7162  ImplicitExceptionSpecification ExceptSpec(Context);
7163  if (ClassDecl->isInvalidDecl())
7164    return ExceptSpec;
7165
7166  // Direct base-class destructors.
7167  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7168                                       BEnd = ClassDecl->bases_end();
7169       B != BEnd; ++B) {
7170    if (B->isVirtual()) // Handled below.
7171      continue;
7172
7173    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7174      ExceptSpec.CalledDecl(
7175                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7176  }
7177
7178  // Virtual base-class destructors.
7179  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7180                                       BEnd = ClassDecl->vbases_end();
7181       B != BEnd; ++B) {
7182    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7183      ExceptSpec.CalledDecl(
7184                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7185  }
7186
7187  // Field destructors.
7188  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7189                               FEnd = ClassDecl->field_end();
7190       F != FEnd; ++F) {
7191    if (const RecordType *RecordTy
7192        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7193      ExceptSpec.CalledDecl(
7194                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7195  }
7196
7197  return ExceptSpec;
7198}
7199
7200CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7201  // C++ [class.dtor]p2:
7202  //   If a class has no user-declared destructor, a destructor is
7203  //   declared implicitly. An implicitly-declared destructor is an
7204  //   inline public member of its class.
7205
7206  ImplicitExceptionSpecification Spec =
7207      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7208  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7209
7210  // Create the actual destructor declaration.
7211  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7212
7213  CanQualType ClassType
7214    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7215  SourceLocation ClassLoc = ClassDecl->getLocation();
7216  DeclarationName Name
7217    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7218  DeclarationNameInfo NameInfo(Name, ClassLoc);
7219  CXXDestructorDecl *Destructor
7220      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7221                                  /*isInline=*/true,
7222                                  /*isImplicitlyDeclared=*/true);
7223  Destructor->setAccess(AS_public);
7224  Destructor->setDefaulted();
7225  Destructor->setImplicit();
7226  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7227
7228  // Note that we have declared this destructor.
7229  ++ASTContext::NumImplicitDestructorsDeclared;
7230
7231  // Introduce this destructor into its scope.
7232  if (Scope *S = getScopeForContext(ClassDecl))
7233    PushOnScopeChains(Destructor, S, false);
7234  ClassDecl->addDecl(Destructor);
7235
7236  // This could be uniqued if it ever proves significant.
7237  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7238
7239  if (ShouldDeleteDestructor(Destructor))
7240    Destructor->setDeletedAsWritten();
7241
7242  AddOverriddenMethods(ClassDecl, Destructor);
7243
7244  return Destructor;
7245}
7246
7247void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7248                                    CXXDestructorDecl *Destructor) {
7249  assert((Destructor->isDefaulted() &&
7250          !Destructor->doesThisDeclarationHaveABody()) &&
7251         "DefineImplicitDestructor - call it for implicit default dtor");
7252  CXXRecordDecl *ClassDecl = Destructor->getParent();
7253  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7254
7255  if (Destructor->isInvalidDecl())
7256    return;
7257
7258  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7259
7260  DiagnosticErrorTrap Trap(Diags);
7261  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7262                                         Destructor->getParent());
7263
7264  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7265    Diag(CurrentLocation, diag::note_member_synthesized_at)
7266      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7267
7268    Destructor->setInvalidDecl();
7269    return;
7270  }
7271
7272  SourceLocation Loc = Destructor->getLocation();
7273  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7274  Destructor->setImplicitlyDefined(true);
7275  Destructor->setUsed();
7276  MarkVTableUsed(CurrentLocation, ClassDecl);
7277
7278  if (ASTMutationListener *L = getASTMutationListener()) {
7279    L->CompletedImplicitDefinition(Destructor);
7280  }
7281}
7282
7283void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7284                                         CXXDestructorDecl *destructor) {
7285  // C++11 [class.dtor]p3:
7286  //   A declaration of a destructor that does not have an exception-
7287  //   specification is implicitly considered to have the same exception-
7288  //   specification as an implicit declaration.
7289  const FunctionProtoType *dtorType = destructor->getType()->
7290                                        getAs<FunctionProtoType>();
7291  if (dtorType->hasExceptionSpec())
7292    return;
7293
7294  ImplicitExceptionSpecification exceptSpec =
7295      ComputeDefaultedDtorExceptionSpec(classDecl);
7296
7297  // Replace the destructor's type, building off the existing one. Fortunately,
7298  // the only thing of interest in the destructor type is its extended info.
7299  // The return and arguments are fixed.
7300  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7301  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7302  epi.NumExceptions = exceptSpec.size();
7303  epi.Exceptions = exceptSpec.data();
7304  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7305
7306  destructor->setType(ty);
7307
7308  // FIXME: If the destructor has a body that could throw, and the newly created
7309  // spec doesn't allow exceptions, we should emit a warning, because this
7310  // change in behavior can break conforming C++03 programs at runtime.
7311  // However, we don't have a body yet, so it needs to be done somewhere else.
7312}
7313
7314/// \brief Builds a statement that copies/moves the given entity from \p From to
7315/// \c To.
7316///
7317/// This routine is used to copy/move the members of a class with an
7318/// implicitly-declared copy/move assignment operator. When the entities being
7319/// copied are arrays, this routine builds for loops to copy them.
7320///
7321/// \param S The Sema object used for type-checking.
7322///
7323/// \param Loc The location where the implicit copy/move is being generated.
7324///
7325/// \param T The type of the expressions being copied/moved. Both expressions
7326/// must have this type.
7327///
7328/// \param To The expression we are copying/moving to.
7329///
7330/// \param From The expression we are copying/moving from.
7331///
7332/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7333/// Otherwise, it's a non-static member subobject.
7334///
7335/// \param Copying Whether we're copying or moving.
7336///
7337/// \param Depth Internal parameter recording the depth of the recursion.
7338///
7339/// \returns A statement or a loop that copies the expressions.
7340static StmtResult
7341BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7342                      Expr *To, Expr *From,
7343                      bool CopyingBaseSubobject, bool Copying,
7344                      unsigned Depth = 0) {
7345  // C++0x [class.copy]p28:
7346  //   Each subobject is assigned in the manner appropriate to its type:
7347  //
7348  //     - if the subobject is of class type, as if by a call to operator= with
7349  //       the subobject as the object expression and the corresponding
7350  //       subobject of x as a single function argument (as if by explicit
7351  //       qualification; that is, ignoring any possible virtual overriding
7352  //       functions in more derived classes);
7353  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7354    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7355
7356    // Look for operator=.
7357    DeclarationName Name
7358      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7359    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7360    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7361
7362    // Filter out any result that isn't a copy/move-assignment operator.
7363    LookupResult::Filter F = OpLookup.makeFilter();
7364    while (F.hasNext()) {
7365      NamedDecl *D = F.next();
7366      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7367        if (Copying ? Method->isCopyAssignmentOperator() :
7368                      Method->isMoveAssignmentOperator())
7369          continue;
7370
7371      F.erase();
7372    }
7373    F.done();
7374
7375    // Suppress the protected check (C++ [class.protected]) for each of the
7376    // assignment operators we found. This strange dance is required when
7377    // we're assigning via a base classes's copy-assignment operator. To
7378    // ensure that we're getting the right base class subobject (without
7379    // ambiguities), we need to cast "this" to that subobject type; to
7380    // ensure that we don't go through the virtual call mechanism, we need
7381    // to qualify the operator= name with the base class (see below). However,
7382    // this means that if the base class has a protected copy assignment
7383    // operator, the protected member access check will fail. So, we
7384    // rewrite "protected" access to "public" access in this case, since we
7385    // know by construction that we're calling from a derived class.
7386    if (CopyingBaseSubobject) {
7387      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7388           L != LEnd; ++L) {
7389        if (L.getAccess() == AS_protected)
7390          L.setAccess(AS_public);
7391      }
7392    }
7393
7394    // Create the nested-name-specifier that will be used to qualify the
7395    // reference to operator=; this is required to suppress the virtual
7396    // call mechanism.
7397    CXXScopeSpec SS;
7398    SS.MakeTrivial(S.Context,
7399                   NestedNameSpecifier::Create(S.Context, 0, false,
7400                                               T.getTypePtr()),
7401                   Loc);
7402
7403    // Create the reference to operator=.
7404    ExprResult OpEqualRef
7405      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7406                                   /*FirstQualifierInScope=*/0, OpLookup,
7407                                   /*TemplateArgs=*/0,
7408                                   /*SuppressQualifierCheck=*/true);
7409    if (OpEqualRef.isInvalid())
7410      return StmtError();
7411
7412    // Build the call to the assignment operator.
7413
7414    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7415                                                  OpEqualRef.takeAs<Expr>(),
7416                                                  Loc, &From, 1, Loc);
7417    if (Call.isInvalid())
7418      return StmtError();
7419
7420    return S.Owned(Call.takeAs<Stmt>());
7421  }
7422
7423  //     - if the subobject is of scalar type, the built-in assignment
7424  //       operator is used.
7425  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7426  if (!ArrayTy) {
7427    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7428    if (Assignment.isInvalid())
7429      return StmtError();
7430
7431    return S.Owned(Assignment.takeAs<Stmt>());
7432  }
7433
7434  //     - if the subobject is an array, each element is assigned, in the
7435  //       manner appropriate to the element type;
7436
7437  // Construct a loop over the array bounds, e.g.,
7438  //
7439  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7440  //
7441  // that will copy each of the array elements.
7442  QualType SizeType = S.Context.getSizeType();
7443
7444  // Create the iteration variable.
7445  IdentifierInfo *IterationVarName = 0;
7446  {
7447    llvm::SmallString<8> Str;
7448    llvm::raw_svector_ostream OS(Str);
7449    OS << "__i" << Depth;
7450    IterationVarName = &S.Context.Idents.get(OS.str());
7451  }
7452  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7453                                          IterationVarName, SizeType,
7454                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7455                                          SC_None, SC_None);
7456
7457  // Initialize the iteration variable to zero.
7458  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7459  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7460
7461  // Create a reference to the iteration variable; we'll use this several
7462  // times throughout.
7463  Expr *IterationVarRef
7464    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7465  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7466
7467  // Create the DeclStmt that holds the iteration variable.
7468  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7469
7470  // Create the comparison against the array bound.
7471  llvm::APInt Upper
7472    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7473  Expr *Comparison
7474    = new (S.Context) BinaryOperator(IterationVarRef,
7475                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7476                                     BO_NE, S.Context.BoolTy,
7477                                     VK_RValue, OK_Ordinary, Loc);
7478
7479  // Create the pre-increment of the iteration variable.
7480  Expr *Increment
7481    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7482                                    VK_LValue, OK_Ordinary, Loc);
7483
7484  // Subscript the "from" and "to" expressions with the iteration variable.
7485  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7486                                                         IterationVarRef, Loc));
7487  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7488                                                       IterationVarRef, Loc));
7489  if (!Copying) // Cast to rvalue
7490    From = CastForMoving(S, From);
7491
7492  // Build the copy/move for an individual element of the array.
7493  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7494                                          To, From, CopyingBaseSubobject,
7495                                          Copying, Depth + 1);
7496  if (Copy.isInvalid())
7497    return StmtError();
7498
7499  // Construct the loop that copies all elements of this array.
7500  return S.ActOnForStmt(Loc, Loc, InitStmt,
7501                        S.MakeFullExpr(Comparison),
7502                        0, S.MakeFullExpr(Increment),
7503                        Loc, Copy.take());
7504}
7505
7506std::pair<Sema::ImplicitExceptionSpecification, bool>
7507Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7508                                                   CXXRecordDecl *ClassDecl) {
7509  if (ClassDecl->isInvalidDecl())
7510    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7511
7512  // C++ [class.copy]p10:
7513  //   If the class definition does not explicitly declare a copy
7514  //   assignment operator, one is declared implicitly.
7515  //   The implicitly-defined copy assignment operator for a class X
7516  //   will have the form
7517  //
7518  //       X& X::operator=(const X&)
7519  //
7520  //   if
7521  bool HasConstCopyAssignment = true;
7522
7523  //       -- each direct base class B of X has a copy assignment operator
7524  //          whose parameter is of type const B&, const volatile B& or B,
7525  //          and
7526  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7527                                       BaseEnd = ClassDecl->bases_end();
7528       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7529    // We'll handle this below
7530    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7531      continue;
7532
7533    assert(!Base->getType()->isDependentType() &&
7534           "Cannot generate implicit members for class with dependent bases.");
7535    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7536    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7537                            &HasConstCopyAssignment);
7538  }
7539
7540  // In C++11, the above citation has "or virtual" added
7541  if (LangOpts.CPlusPlus0x) {
7542    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7543                                         BaseEnd = ClassDecl->vbases_end();
7544         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7545      assert(!Base->getType()->isDependentType() &&
7546             "Cannot generate implicit members for class with dependent bases.");
7547      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7548      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7549                              &HasConstCopyAssignment);
7550    }
7551  }
7552
7553  //       -- for all the nonstatic data members of X that are of a class
7554  //          type M (or array thereof), each such class type has a copy
7555  //          assignment operator whose parameter is of type const M&,
7556  //          const volatile M& or M.
7557  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7558                                  FieldEnd = ClassDecl->field_end();
7559       HasConstCopyAssignment && Field != FieldEnd;
7560       ++Field) {
7561    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7562    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7563      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7564                              &HasConstCopyAssignment);
7565    }
7566  }
7567
7568  //   Otherwise, the implicitly declared copy assignment operator will
7569  //   have the form
7570  //
7571  //       X& X::operator=(X&)
7572
7573  // C++ [except.spec]p14:
7574  //   An implicitly declared special member function (Clause 12) shall have an
7575  //   exception-specification. [...]
7576
7577  // It is unspecified whether or not an implicit copy assignment operator
7578  // attempts to deduplicate calls to assignment operators of virtual bases are
7579  // made. As such, this exception specification is effectively unspecified.
7580  // Based on a similar decision made for constness in C++0x, we're erring on
7581  // the side of assuming such calls to be made regardless of whether they
7582  // actually happen.
7583  ImplicitExceptionSpecification ExceptSpec(Context);
7584  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7586                                       BaseEnd = ClassDecl->bases_end();
7587       Base != BaseEnd; ++Base) {
7588    if (Base->isVirtual())
7589      continue;
7590
7591    CXXRecordDecl *BaseClassDecl
7592      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7593    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7594                                                            ArgQuals, false, 0))
7595      ExceptSpec.CalledDecl(CopyAssign);
7596  }
7597
7598  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7599                                       BaseEnd = ClassDecl->vbases_end();
7600       Base != BaseEnd; ++Base) {
7601    CXXRecordDecl *BaseClassDecl
7602      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7603    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7604                                                            ArgQuals, false, 0))
7605      ExceptSpec.CalledDecl(CopyAssign);
7606  }
7607
7608  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7609                                  FieldEnd = ClassDecl->field_end();
7610       Field != FieldEnd;
7611       ++Field) {
7612    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7613    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7614      if (CXXMethodDecl *CopyAssign =
7615          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7616        ExceptSpec.CalledDecl(CopyAssign);
7617    }
7618  }
7619
7620  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7621}
7622
7623CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7624  // Note: The following rules are largely analoguous to the copy
7625  // constructor rules. Note that virtual bases are not taken into account
7626  // for determining the argument type of the operator. Note also that
7627  // operators taking an object instead of a reference are allowed.
7628
7629  ImplicitExceptionSpecification Spec(Context);
7630  bool Const;
7631  llvm::tie(Spec, Const) =
7632    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7633
7634  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7635  QualType RetType = Context.getLValueReferenceType(ArgType);
7636  if (Const)
7637    ArgType = ArgType.withConst();
7638  ArgType = Context.getLValueReferenceType(ArgType);
7639
7640  //   An implicitly-declared copy assignment operator is an inline public
7641  //   member of its class.
7642  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7643  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7644  SourceLocation ClassLoc = ClassDecl->getLocation();
7645  DeclarationNameInfo NameInfo(Name, ClassLoc);
7646  CXXMethodDecl *CopyAssignment
7647    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7648                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7649                            /*TInfo=*/0, /*isStatic=*/false,
7650                            /*StorageClassAsWritten=*/SC_None,
7651                            /*isInline=*/true, /*isConstexpr=*/false,
7652                            SourceLocation());
7653  CopyAssignment->setAccess(AS_public);
7654  CopyAssignment->setDefaulted();
7655  CopyAssignment->setImplicit();
7656  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7657
7658  // Add the parameter to the operator.
7659  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7660                                               ClassLoc, ClassLoc, /*Id=*/0,
7661                                               ArgType, /*TInfo=*/0,
7662                                               SC_None,
7663                                               SC_None, 0);
7664  CopyAssignment->setParams(FromParam);
7665
7666  // Note that we have added this copy-assignment operator.
7667  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7668
7669  if (Scope *S = getScopeForContext(ClassDecl))
7670    PushOnScopeChains(CopyAssignment, S, false);
7671  ClassDecl->addDecl(CopyAssignment);
7672
7673  // C++0x [class.copy]p18:
7674  //   ... If the class definition declares a move constructor or move
7675  //   assignment operator, the implicitly declared copy assignment operator is
7676  //   defined as deleted; ...
7677  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7678      ClassDecl->hasUserDeclaredMoveAssignment() ||
7679      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7680    CopyAssignment->setDeletedAsWritten();
7681
7682  AddOverriddenMethods(ClassDecl, CopyAssignment);
7683  return CopyAssignment;
7684}
7685
7686void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7687                                        CXXMethodDecl *CopyAssignOperator) {
7688  assert((CopyAssignOperator->isDefaulted() &&
7689          CopyAssignOperator->isOverloadedOperator() &&
7690          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7691          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7692         "DefineImplicitCopyAssignment called for wrong function");
7693
7694  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7695
7696  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7697    CopyAssignOperator->setInvalidDecl();
7698    return;
7699  }
7700
7701  CopyAssignOperator->setUsed();
7702
7703  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7704  DiagnosticErrorTrap Trap(Diags);
7705
7706  // C++0x [class.copy]p30:
7707  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7708  //   for a non-union class X performs memberwise copy assignment of its
7709  //   subobjects. The direct base classes of X are assigned first, in the
7710  //   order of their declaration in the base-specifier-list, and then the
7711  //   immediate non-static data members of X are assigned, in the order in
7712  //   which they were declared in the class definition.
7713
7714  // The statements that form the synthesized function body.
7715  ASTOwningVector<Stmt*> Statements(*this);
7716
7717  // The parameter for the "other" object, which we are copying from.
7718  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7719  Qualifiers OtherQuals = Other->getType().getQualifiers();
7720  QualType OtherRefType = Other->getType();
7721  if (const LValueReferenceType *OtherRef
7722                                = OtherRefType->getAs<LValueReferenceType>()) {
7723    OtherRefType = OtherRef->getPointeeType();
7724    OtherQuals = OtherRefType.getQualifiers();
7725  }
7726
7727  // Our location for everything implicitly-generated.
7728  SourceLocation Loc = CopyAssignOperator->getLocation();
7729
7730  // Construct a reference to the "other" object. We'll be using this
7731  // throughout the generated ASTs.
7732  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7733  assert(OtherRef && "Reference to parameter cannot fail!");
7734
7735  // Construct the "this" pointer. We'll be using this throughout the generated
7736  // ASTs.
7737  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7738  assert(This && "Reference to this cannot fail!");
7739
7740  // Assign base classes.
7741  bool Invalid = false;
7742  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7743       E = ClassDecl->bases_end(); Base != E; ++Base) {
7744    // Form the assignment:
7745    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7746    QualType BaseType = Base->getType().getUnqualifiedType();
7747    if (!BaseType->isRecordType()) {
7748      Invalid = true;
7749      continue;
7750    }
7751
7752    CXXCastPath BasePath;
7753    BasePath.push_back(Base);
7754
7755    // Construct the "from" expression, which is an implicit cast to the
7756    // appropriately-qualified base type.
7757    Expr *From = OtherRef;
7758    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7759                             CK_UncheckedDerivedToBase,
7760                             VK_LValue, &BasePath).take();
7761
7762    // Dereference "this".
7763    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7764
7765    // Implicitly cast "this" to the appropriately-qualified base type.
7766    To = ImpCastExprToType(To.take(),
7767                           Context.getCVRQualifiedType(BaseType,
7768                                     CopyAssignOperator->getTypeQualifiers()),
7769                           CK_UncheckedDerivedToBase,
7770                           VK_LValue, &BasePath);
7771
7772    // Build the copy.
7773    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7774                                            To.get(), From,
7775                                            /*CopyingBaseSubobject=*/true,
7776                                            /*Copying=*/true);
7777    if (Copy.isInvalid()) {
7778      Diag(CurrentLocation, diag::note_member_synthesized_at)
7779        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7780      CopyAssignOperator->setInvalidDecl();
7781      return;
7782    }
7783
7784    // Success! Record the copy.
7785    Statements.push_back(Copy.takeAs<Expr>());
7786  }
7787
7788  // \brief Reference to the __builtin_memcpy function.
7789  Expr *BuiltinMemCpyRef = 0;
7790  // \brief Reference to the __builtin_objc_memmove_collectable function.
7791  Expr *CollectableMemCpyRef = 0;
7792
7793  // Assign non-static members.
7794  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7795                                  FieldEnd = ClassDecl->field_end();
7796       Field != FieldEnd; ++Field) {
7797    if (Field->isUnnamedBitfield())
7798      continue;
7799
7800    // Check for members of reference type; we can't copy those.
7801    if (Field->getType()->isReferenceType()) {
7802      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7803        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7804      Diag(Field->getLocation(), diag::note_declared_at);
7805      Diag(CurrentLocation, diag::note_member_synthesized_at)
7806        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7807      Invalid = true;
7808      continue;
7809    }
7810
7811    // Check for members of const-qualified, non-class type.
7812    QualType BaseType = Context.getBaseElementType(Field->getType());
7813    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7814      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7815        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7816      Diag(Field->getLocation(), diag::note_declared_at);
7817      Diag(CurrentLocation, diag::note_member_synthesized_at)
7818        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7819      Invalid = true;
7820      continue;
7821    }
7822
7823    // Suppress assigning zero-width bitfields.
7824    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7825      continue;
7826
7827    QualType FieldType = Field->getType().getNonReferenceType();
7828    if (FieldType->isIncompleteArrayType()) {
7829      assert(ClassDecl->hasFlexibleArrayMember() &&
7830             "Incomplete array type is not valid");
7831      continue;
7832    }
7833
7834    // Build references to the field in the object we're copying from and to.
7835    CXXScopeSpec SS; // Intentionally empty
7836    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7837                              LookupMemberName);
7838    MemberLookup.addDecl(*Field);
7839    MemberLookup.resolveKind();
7840    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7841                                               Loc, /*IsArrow=*/false,
7842                                               SS, 0, MemberLookup, 0);
7843    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7844                                             Loc, /*IsArrow=*/true,
7845                                             SS, 0, MemberLookup, 0);
7846    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7847    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7848
7849    // If the field should be copied with __builtin_memcpy rather than via
7850    // explicit assignments, do so. This optimization only applies for arrays
7851    // of scalars and arrays of class type with trivial copy-assignment
7852    // operators.
7853    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7854        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7855      // Compute the size of the memory buffer to be copied.
7856      QualType SizeType = Context.getSizeType();
7857      llvm::APInt Size(Context.getTypeSize(SizeType),
7858                       Context.getTypeSizeInChars(BaseType).getQuantity());
7859      for (const ConstantArrayType *Array
7860              = Context.getAsConstantArrayType(FieldType);
7861           Array;
7862           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7863        llvm::APInt ArraySize
7864          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7865        Size *= ArraySize;
7866      }
7867
7868      // Take the address of the field references for "from" and "to".
7869      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7870      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7871
7872      bool NeedsCollectableMemCpy =
7873          (BaseType->isRecordType() &&
7874           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7875
7876      if (NeedsCollectableMemCpy) {
7877        if (!CollectableMemCpyRef) {
7878          // Create a reference to the __builtin_objc_memmove_collectable function.
7879          LookupResult R(*this,
7880                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7881                         Loc, LookupOrdinaryName);
7882          LookupName(R, TUScope, true);
7883
7884          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7885          if (!CollectableMemCpy) {
7886            // Something went horribly wrong earlier, and we will have
7887            // complained about it.
7888            Invalid = true;
7889            continue;
7890          }
7891
7892          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7893                                                  CollectableMemCpy->getType(),
7894                                                  VK_LValue, Loc, 0).take();
7895          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7896        }
7897      }
7898      // Create a reference to the __builtin_memcpy builtin function.
7899      else if (!BuiltinMemCpyRef) {
7900        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7901                       LookupOrdinaryName);
7902        LookupName(R, TUScope, true);
7903
7904        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7905        if (!BuiltinMemCpy) {
7906          // Something went horribly wrong earlier, and we will have complained
7907          // about it.
7908          Invalid = true;
7909          continue;
7910        }
7911
7912        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7913                                            BuiltinMemCpy->getType(),
7914                                            VK_LValue, Loc, 0).take();
7915        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7916      }
7917
7918      ASTOwningVector<Expr*> CallArgs(*this);
7919      CallArgs.push_back(To.takeAs<Expr>());
7920      CallArgs.push_back(From.takeAs<Expr>());
7921      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7922      ExprResult Call = ExprError();
7923      if (NeedsCollectableMemCpy)
7924        Call = ActOnCallExpr(/*Scope=*/0,
7925                             CollectableMemCpyRef,
7926                             Loc, move_arg(CallArgs),
7927                             Loc);
7928      else
7929        Call = ActOnCallExpr(/*Scope=*/0,
7930                             BuiltinMemCpyRef,
7931                             Loc, move_arg(CallArgs),
7932                             Loc);
7933
7934      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7935      Statements.push_back(Call.takeAs<Expr>());
7936      continue;
7937    }
7938
7939    // Build the copy of this field.
7940    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7941                                            To.get(), From.get(),
7942                                            /*CopyingBaseSubobject=*/false,
7943                                            /*Copying=*/true);
7944    if (Copy.isInvalid()) {
7945      Diag(CurrentLocation, diag::note_member_synthesized_at)
7946        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7947      CopyAssignOperator->setInvalidDecl();
7948      return;
7949    }
7950
7951    // Success! Record the copy.
7952    Statements.push_back(Copy.takeAs<Stmt>());
7953  }
7954
7955  if (!Invalid) {
7956    // Add a "return *this;"
7957    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7958
7959    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7960    if (Return.isInvalid())
7961      Invalid = true;
7962    else {
7963      Statements.push_back(Return.takeAs<Stmt>());
7964
7965      if (Trap.hasErrorOccurred()) {
7966        Diag(CurrentLocation, diag::note_member_synthesized_at)
7967          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7968        Invalid = true;
7969      }
7970    }
7971  }
7972
7973  if (Invalid) {
7974    CopyAssignOperator->setInvalidDecl();
7975    return;
7976  }
7977
7978  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7979                                            /*isStmtExpr=*/false);
7980  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7981  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7982
7983  if (ASTMutationListener *L = getASTMutationListener()) {
7984    L->CompletedImplicitDefinition(CopyAssignOperator);
7985  }
7986}
7987
7988Sema::ImplicitExceptionSpecification
7989Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7990  ImplicitExceptionSpecification ExceptSpec(Context);
7991
7992  if (ClassDecl->isInvalidDecl())
7993    return ExceptSpec;
7994
7995  // C++0x [except.spec]p14:
7996  //   An implicitly declared special member function (Clause 12) shall have an
7997  //   exception-specification. [...]
7998
7999  // It is unspecified whether or not an implicit move assignment operator
8000  // attempts to deduplicate calls to assignment operators of virtual bases are
8001  // made. As such, this exception specification is effectively unspecified.
8002  // Based on a similar decision made for constness in C++0x, we're erring on
8003  // the side of assuming such calls to be made regardless of whether they
8004  // actually happen.
8005  // Note that a move constructor is not implicitly declared when there are
8006  // virtual bases, but it can still be user-declared and explicitly defaulted.
8007  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8008                                       BaseEnd = ClassDecl->bases_end();
8009       Base != BaseEnd; ++Base) {
8010    if (Base->isVirtual())
8011      continue;
8012
8013    CXXRecordDecl *BaseClassDecl
8014      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8015    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8016                                                           false, 0))
8017      ExceptSpec.CalledDecl(MoveAssign);
8018  }
8019
8020  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8021                                       BaseEnd = ClassDecl->vbases_end();
8022       Base != BaseEnd; ++Base) {
8023    CXXRecordDecl *BaseClassDecl
8024      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8025    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8026                                                           false, 0))
8027      ExceptSpec.CalledDecl(MoveAssign);
8028  }
8029
8030  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8031                                  FieldEnd = ClassDecl->field_end();
8032       Field != FieldEnd;
8033       ++Field) {
8034    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8035    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8036      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8037                                                             false, 0))
8038        ExceptSpec.CalledDecl(MoveAssign);
8039    }
8040  }
8041
8042  return ExceptSpec;
8043}
8044
8045CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8046  // Note: The following rules are largely analoguous to the move
8047  // constructor rules.
8048
8049  ImplicitExceptionSpecification Spec(
8050      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8051
8052  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8053  QualType RetType = Context.getLValueReferenceType(ArgType);
8054  ArgType = Context.getRValueReferenceType(ArgType);
8055
8056  //   An implicitly-declared move assignment operator is an inline public
8057  //   member of its class.
8058  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8059  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8060  SourceLocation ClassLoc = ClassDecl->getLocation();
8061  DeclarationNameInfo NameInfo(Name, ClassLoc);
8062  CXXMethodDecl *MoveAssignment
8063    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8064                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8065                            /*TInfo=*/0, /*isStatic=*/false,
8066                            /*StorageClassAsWritten=*/SC_None,
8067                            /*isInline=*/true,
8068                            /*isConstexpr=*/false,
8069                            SourceLocation());
8070  MoveAssignment->setAccess(AS_public);
8071  MoveAssignment->setDefaulted();
8072  MoveAssignment->setImplicit();
8073  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8074
8075  // Add the parameter to the operator.
8076  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8077                                               ClassLoc, ClassLoc, /*Id=*/0,
8078                                               ArgType, /*TInfo=*/0,
8079                                               SC_None,
8080                                               SC_None, 0);
8081  MoveAssignment->setParams(FromParam);
8082
8083  // Note that we have added this copy-assignment operator.
8084  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8085
8086  // C++0x [class.copy]p9:
8087  //   If the definition of a class X does not explicitly declare a move
8088  //   assignment operator, one will be implicitly declared as defaulted if and
8089  //   only if:
8090  //   [...]
8091  //   - the move assignment operator would not be implicitly defined as
8092  //     deleted.
8093  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8094    // Cache this result so that we don't try to generate this over and over
8095    // on every lookup, leaking memory and wasting time.
8096    ClassDecl->setFailedImplicitMoveAssignment();
8097    return 0;
8098  }
8099
8100  if (Scope *S = getScopeForContext(ClassDecl))
8101    PushOnScopeChains(MoveAssignment, S, false);
8102  ClassDecl->addDecl(MoveAssignment);
8103
8104  AddOverriddenMethods(ClassDecl, MoveAssignment);
8105  return MoveAssignment;
8106}
8107
8108void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8109                                        CXXMethodDecl *MoveAssignOperator) {
8110  assert((MoveAssignOperator->isDefaulted() &&
8111          MoveAssignOperator->isOverloadedOperator() &&
8112          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8113          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8114         "DefineImplicitMoveAssignment called for wrong function");
8115
8116  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8117
8118  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8119    MoveAssignOperator->setInvalidDecl();
8120    return;
8121  }
8122
8123  MoveAssignOperator->setUsed();
8124
8125  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8126  DiagnosticErrorTrap Trap(Diags);
8127
8128  // C++0x [class.copy]p28:
8129  //   The implicitly-defined or move assignment operator for a non-union class
8130  //   X performs memberwise move assignment of its subobjects. The direct base
8131  //   classes of X are assigned first, in the order of their declaration in the
8132  //   base-specifier-list, and then the immediate non-static data members of X
8133  //   are assigned, in the order in which they were declared in the class
8134  //   definition.
8135
8136  // The statements that form the synthesized function body.
8137  ASTOwningVector<Stmt*> Statements(*this);
8138
8139  // The parameter for the "other" object, which we are move from.
8140  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8141  QualType OtherRefType = Other->getType()->
8142      getAs<RValueReferenceType>()->getPointeeType();
8143  assert(OtherRefType.getQualifiers() == 0 &&
8144         "Bad argument type of defaulted move assignment");
8145
8146  // Our location for everything implicitly-generated.
8147  SourceLocation Loc = MoveAssignOperator->getLocation();
8148
8149  // Construct a reference to the "other" object. We'll be using this
8150  // throughout the generated ASTs.
8151  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8152  assert(OtherRef && "Reference to parameter cannot fail!");
8153  // Cast to rvalue.
8154  OtherRef = CastForMoving(*this, OtherRef);
8155
8156  // Construct the "this" pointer. We'll be using this throughout the generated
8157  // ASTs.
8158  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8159  assert(This && "Reference to this cannot fail!");
8160
8161  // Assign base classes.
8162  bool Invalid = false;
8163  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8164       E = ClassDecl->bases_end(); Base != E; ++Base) {
8165    // Form the assignment:
8166    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8167    QualType BaseType = Base->getType().getUnqualifiedType();
8168    if (!BaseType->isRecordType()) {
8169      Invalid = true;
8170      continue;
8171    }
8172
8173    CXXCastPath BasePath;
8174    BasePath.push_back(Base);
8175
8176    // Construct the "from" expression, which is an implicit cast to the
8177    // appropriately-qualified base type.
8178    Expr *From = OtherRef;
8179    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8180                             VK_XValue, &BasePath).take();
8181
8182    // Dereference "this".
8183    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8184
8185    // Implicitly cast "this" to the appropriately-qualified base type.
8186    To = ImpCastExprToType(To.take(),
8187                           Context.getCVRQualifiedType(BaseType,
8188                                     MoveAssignOperator->getTypeQualifiers()),
8189                           CK_UncheckedDerivedToBase,
8190                           VK_LValue, &BasePath);
8191
8192    // Build the move.
8193    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8194                                            To.get(), From,
8195                                            /*CopyingBaseSubobject=*/true,
8196                                            /*Copying=*/false);
8197    if (Move.isInvalid()) {
8198      Diag(CurrentLocation, diag::note_member_synthesized_at)
8199        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8200      MoveAssignOperator->setInvalidDecl();
8201      return;
8202    }
8203
8204    // Success! Record the move.
8205    Statements.push_back(Move.takeAs<Expr>());
8206  }
8207
8208  // \brief Reference to the __builtin_memcpy function.
8209  Expr *BuiltinMemCpyRef = 0;
8210  // \brief Reference to the __builtin_objc_memmove_collectable function.
8211  Expr *CollectableMemCpyRef = 0;
8212
8213  // Assign non-static members.
8214  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8215                                  FieldEnd = ClassDecl->field_end();
8216       Field != FieldEnd; ++Field) {
8217    if (Field->isUnnamedBitfield())
8218      continue;
8219
8220    // Check for members of reference type; we can't move those.
8221    if (Field->getType()->isReferenceType()) {
8222      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8223        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8224      Diag(Field->getLocation(), diag::note_declared_at);
8225      Diag(CurrentLocation, diag::note_member_synthesized_at)
8226        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8227      Invalid = true;
8228      continue;
8229    }
8230
8231    // Check for members of const-qualified, non-class type.
8232    QualType BaseType = Context.getBaseElementType(Field->getType());
8233    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8234      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8235        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8236      Diag(Field->getLocation(), diag::note_declared_at);
8237      Diag(CurrentLocation, diag::note_member_synthesized_at)
8238        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8239      Invalid = true;
8240      continue;
8241    }
8242
8243    // Suppress assigning zero-width bitfields.
8244    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8245      continue;
8246
8247    QualType FieldType = Field->getType().getNonReferenceType();
8248    if (FieldType->isIncompleteArrayType()) {
8249      assert(ClassDecl->hasFlexibleArrayMember() &&
8250             "Incomplete array type is not valid");
8251      continue;
8252    }
8253
8254    // Build references to the field in the object we're copying from and to.
8255    CXXScopeSpec SS; // Intentionally empty
8256    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8257                              LookupMemberName);
8258    MemberLookup.addDecl(*Field);
8259    MemberLookup.resolveKind();
8260    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8261                                               Loc, /*IsArrow=*/false,
8262                                               SS, 0, MemberLookup, 0);
8263    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8264                                             Loc, /*IsArrow=*/true,
8265                                             SS, 0, MemberLookup, 0);
8266    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8267    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8268
8269    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8270        "Member reference with rvalue base must be rvalue except for reference "
8271        "members, which aren't allowed for move assignment.");
8272
8273    // If the field should be copied with __builtin_memcpy rather than via
8274    // explicit assignments, do so. This optimization only applies for arrays
8275    // of scalars and arrays of class type with trivial move-assignment
8276    // operators.
8277    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8278        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8279      // Compute the size of the memory buffer to be copied.
8280      QualType SizeType = Context.getSizeType();
8281      llvm::APInt Size(Context.getTypeSize(SizeType),
8282                       Context.getTypeSizeInChars(BaseType).getQuantity());
8283      for (const ConstantArrayType *Array
8284              = Context.getAsConstantArrayType(FieldType);
8285           Array;
8286           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8287        llvm::APInt ArraySize
8288          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8289        Size *= ArraySize;
8290      }
8291
8292      // Take the address of the field references for "from" and "to". We
8293      // directly construct UnaryOperators here because semantic analysis
8294      // does not permit us to take the address of an xvalue.
8295      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8296                             Context.getPointerType(From.get()->getType()),
8297                             VK_RValue, OK_Ordinary, Loc);
8298      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8299                           Context.getPointerType(To.get()->getType()),
8300                           VK_RValue, OK_Ordinary, Loc);
8301
8302      bool NeedsCollectableMemCpy =
8303          (BaseType->isRecordType() &&
8304           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8305
8306      if (NeedsCollectableMemCpy) {
8307        if (!CollectableMemCpyRef) {
8308          // Create a reference to the __builtin_objc_memmove_collectable function.
8309          LookupResult R(*this,
8310                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8311                         Loc, LookupOrdinaryName);
8312          LookupName(R, TUScope, true);
8313
8314          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8315          if (!CollectableMemCpy) {
8316            // Something went horribly wrong earlier, and we will have
8317            // complained about it.
8318            Invalid = true;
8319            continue;
8320          }
8321
8322          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8323                                                  CollectableMemCpy->getType(),
8324                                                  VK_LValue, Loc, 0).take();
8325          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8326        }
8327      }
8328      // Create a reference to the __builtin_memcpy builtin function.
8329      else if (!BuiltinMemCpyRef) {
8330        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8331                       LookupOrdinaryName);
8332        LookupName(R, TUScope, true);
8333
8334        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8335        if (!BuiltinMemCpy) {
8336          // Something went horribly wrong earlier, and we will have complained
8337          // about it.
8338          Invalid = true;
8339          continue;
8340        }
8341
8342        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8343                                            BuiltinMemCpy->getType(),
8344                                            VK_LValue, Loc, 0).take();
8345        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8346      }
8347
8348      ASTOwningVector<Expr*> CallArgs(*this);
8349      CallArgs.push_back(To.takeAs<Expr>());
8350      CallArgs.push_back(From.takeAs<Expr>());
8351      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8352      ExprResult Call = ExprError();
8353      if (NeedsCollectableMemCpy)
8354        Call = ActOnCallExpr(/*Scope=*/0,
8355                             CollectableMemCpyRef,
8356                             Loc, move_arg(CallArgs),
8357                             Loc);
8358      else
8359        Call = ActOnCallExpr(/*Scope=*/0,
8360                             BuiltinMemCpyRef,
8361                             Loc, move_arg(CallArgs),
8362                             Loc);
8363
8364      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8365      Statements.push_back(Call.takeAs<Expr>());
8366      continue;
8367    }
8368
8369    // Build the move of this field.
8370    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8371                                            To.get(), From.get(),
8372                                            /*CopyingBaseSubobject=*/false,
8373                                            /*Copying=*/false);
8374    if (Move.isInvalid()) {
8375      Diag(CurrentLocation, diag::note_member_synthesized_at)
8376        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8377      MoveAssignOperator->setInvalidDecl();
8378      return;
8379    }
8380
8381    // Success! Record the copy.
8382    Statements.push_back(Move.takeAs<Stmt>());
8383  }
8384
8385  if (!Invalid) {
8386    // Add a "return *this;"
8387    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8388
8389    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8390    if (Return.isInvalid())
8391      Invalid = true;
8392    else {
8393      Statements.push_back(Return.takeAs<Stmt>());
8394
8395      if (Trap.hasErrorOccurred()) {
8396        Diag(CurrentLocation, diag::note_member_synthesized_at)
8397          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8398        Invalid = true;
8399      }
8400    }
8401  }
8402
8403  if (Invalid) {
8404    MoveAssignOperator->setInvalidDecl();
8405    return;
8406  }
8407
8408  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8409                                            /*isStmtExpr=*/false);
8410  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8411  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8412
8413  if (ASTMutationListener *L = getASTMutationListener()) {
8414    L->CompletedImplicitDefinition(MoveAssignOperator);
8415  }
8416}
8417
8418std::pair<Sema::ImplicitExceptionSpecification, bool>
8419Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8420  if (ClassDecl->isInvalidDecl())
8421    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8422
8423  // C++ [class.copy]p5:
8424  //   The implicitly-declared copy constructor for a class X will
8425  //   have the form
8426  //
8427  //       X::X(const X&)
8428  //
8429  //   if
8430  // FIXME: It ought to be possible to store this on the record.
8431  bool HasConstCopyConstructor = true;
8432
8433  //     -- each direct or virtual base class B of X has a copy
8434  //        constructor whose first parameter is of type const B& or
8435  //        const volatile B&, and
8436  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8437                                       BaseEnd = ClassDecl->bases_end();
8438       HasConstCopyConstructor && Base != BaseEnd;
8439       ++Base) {
8440    // Virtual bases are handled below.
8441    if (Base->isVirtual())
8442      continue;
8443
8444    CXXRecordDecl *BaseClassDecl
8445      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8446    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8447                             &HasConstCopyConstructor);
8448  }
8449
8450  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8451                                       BaseEnd = ClassDecl->vbases_end();
8452       HasConstCopyConstructor && Base != BaseEnd;
8453       ++Base) {
8454    CXXRecordDecl *BaseClassDecl
8455      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8456    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8457                             &HasConstCopyConstructor);
8458  }
8459
8460  //     -- for all the nonstatic data members of X that are of a
8461  //        class type M (or array thereof), each such class type
8462  //        has a copy constructor whose first parameter is of type
8463  //        const M& or const volatile M&.
8464  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8465                                  FieldEnd = ClassDecl->field_end();
8466       HasConstCopyConstructor && Field != FieldEnd;
8467       ++Field) {
8468    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8469    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8470      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8471                               &HasConstCopyConstructor);
8472    }
8473  }
8474  //   Otherwise, the implicitly declared copy constructor will have
8475  //   the form
8476  //
8477  //       X::X(X&)
8478
8479  // C++ [except.spec]p14:
8480  //   An implicitly declared special member function (Clause 12) shall have an
8481  //   exception-specification. [...]
8482  ImplicitExceptionSpecification ExceptSpec(Context);
8483  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8484  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8485                                       BaseEnd = ClassDecl->bases_end();
8486       Base != BaseEnd;
8487       ++Base) {
8488    // Virtual bases are handled below.
8489    if (Base->isVirtual())
8490      continue;
8491
8492    CXXRecordDecl *BaseClassDecl
8493      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8494    if (CXXConstructorDecl *CopyConstructor =
8495          LookupCopyingConstructor(BaseClassDecl, Quals))
8496      ExceptSpec.CalledDecl(CopyConstructor);
8497  }
8498  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8499                                       BaseEnd = ClassDecl->vbases_end();
8500       Base != BaseEnd;
8501       ++Base) {
8502    CXXRecordDecl *BaseClassDecl
8503      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8504    if (CXXConstructorDecl *CopyConstructor =
8505          LookupCopyingConstructor(BaseClassDecl, Quals))
8506      ExceptSpec.CalledDecl(CopyConstructor);
8507  }
8508  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8509                                  FieldEnd = ClassDecl->field_end();
8510       Field != FieldEnd;
8511       ++Field) {
8512    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8513    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8514      if (CXXConstructorDecl *CopyConstructor =
8515        LookupCopyingConstructor(FieldClassDecl, Quals))
8516      ExceptSpec.CalledDecl(CopyConstructor);
8517    }
8518  }
8519
8520  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8521}
8522
8523CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8524                                                    CXXRecordDecl *ClassDecl) {
8525  // C++ [class.copy]p4:
8526  //   If the class definition does not explicitly declare a copy
8527  //   constructor, one is declared implicitly.
8528
8529  ImplicitExceptionSpecification Spec(Context);
8530  bool Const;
8531  llvm::tie(Spec, Const) =
8532    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8533
8534  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8535  QualType ArgType = ClassType;
8536  if (Const)
8537    ArgType = ArgType.withConst();
8538  ArgType = Context.getLValueReferenceType(ArgType);
8539
8540  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8541
8542  DeclarationName Name
8543    = Context.DeclarationNames.getCXXConstructorName(
8544                                           Context.getCanonicalType(ClassType));
8545  SourceLocation ClassLoc = ClassDecl->getLocation();
8546  DeclarationNameInfo NameInfo(Name, ClassLoc);
8547
8548  //   An implicitly-declared copy constructor is an inline public
8549  //   member of its class.
8550  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8551      Context, ClassDecl, ClassLoc, NameInfo,
8552      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8553      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8554      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8555        getLangOptions().CPlusPlus0x);
8556  CopyConstructor->setAccess(AS_public);
8557  CopyConstructor->setDefaulted();
8558  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8559
8560  // Note that we have declared this constructor.
8561  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8562
8563  // Add the parameter to the constructor.
8564  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8565                                               ClassLoc, ClassLoc,
8566                                               /*IdentifierInfo=*/0,
8567                                               ArgType, /*TInfo=*/0,
8568                                               SC_None,
8569                                               SC_None, 0);
8570  CopyConstructor->setParams(FromParam);
8571
8572  if (Scope *S = getScopeForContext(ClassDecl))
8573    PushOnScopeChains(CopyConstructor, S, false);
8574  ClassDecl->addDecl(CopyConstructor);
8575
8576  // C++0x [class.copy]p7:
8577  //   ... If the class definition declares a move constructor or move
8578  //   assignment operator, the implicitly declared constructor is defined as
8579  //   deleted; ...
8580  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8581      ClassDecl->hasUserDeclaredMoveAssignment() ||
8582      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8583    CopyConstructor->setDeletedAsWritten();
8584
8585  return CopyConstructor;
8586}
8587
8588void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8589                                   CXXConstructorDecl *CopyConstructor) {
8590  assert((CopyConstructor->isDefaulted() &&
8591          CopyConstructor->isCopyConstructor() &&
8592          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8593         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8594
8595  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8596  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8597
8598  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8599  DiagnosticErrorTrap Trap(Diags);
8600
8601  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8602      Trap.hasErrorOccurred()) {
8603    Diag(CurrentLocation, diag::note_member_synthesized_at)
8604      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8605    CopyConstructor->setInvalidDecl();
8606  }  else {
8607    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8608                                               CopyConstructor->getLocation(),
8609                                               MultiStmtArg(*this, 0, 0),
8610                                               /*isStmtExpr=*/false)
8611                                                              .takeAs<Stmt>());
8612    CopyConstructor->setImplicitlyDefined(true);
8613  }
8614
8615  CopyConstructor->setUsed();
8616  if (ASTMutationListener *L = getASTMutationListener()) {
8617    L->CompletedImplicitDefinition(CopyConstructor);
8618  }
8619}
8620
8621Sema::ImplicitExceptionSpecification
8622Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8623  // C++ [except.spec]p14:
8624  //   An implicitly declared special member function (Clause 12) shall have an
8625  //   exception-specification. [...]
8626  ImplicitExceptionSpecification ExceptSpec(Context);
8627  if (ClassDecl->isInvalidDecl())
8628    return ExceptSpec;
8629
8630  // Direct base-class constructors.
8631  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8632                                       BEnd = ClassDecl->bases_end();
8633       B != BEnd; ++B) {
8634    if (B->isVirtual()) // Handled below.
8635      continue;
8636
8637    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8638      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8639      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8640      // If this is a deleted function, add it anyway. This might be conformant
8641      // with the standard. This might not. I'm not sure. It might not matter.
8642      if (Constructor)
8643        ExceptSpec.CalledDecl(Constructor);
8644    }
8645  }
8646
8647  // Virtual base-class constructors.
8648  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8649                                       BEnd = ClassDecl->vbases_end();
8650       B != BEnd; ++B) {
8651    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8652      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8653      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8654      // If this is a deleted function, add it anyway. This might be conformant
8655      // with the standard. This might not. I'm not sure. It might not matter.
8656      if (Constructor)
8657        ExceptSpec.CalledDecl(Constructor);
8658    }
8659  }
8660
8661  // Field constructors.
8662  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8663                               FEnd = ClassDecl->field_end();
8664       F != FEnd; ++F) {
8665    if (const RecordType *RecordTy
8666              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8667      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8668      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8669      // If this is a deleted function, add it anyway. This might be conformant
8670      // with the standard. This might not. I'm not sure. It might not matter.
8671      // In particular, the problem is that this function never gets called. It
8672      // might just be ill-formed because this function attempts to refer to
8673      // a deleted function here.
8674      if (Constructor)
8675        ExceptSpec.CalledDecl(Constructor);
8676    }
8677  }
8678
8679  return ExceptSpec;
8680}
8681
8682CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8683                                                    CXXRecordDecl *ClassDecl) {
8684  ImplicitExceptionSpecification Spec(
8685      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8686
8687  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8688  QualType ArgType = Context.getRValueReferenceType(ClassType);
8689
8690  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8691
8692  DeclarationName Name
8693    = Context.DeclarationNames.getCXXConstructorName(
8694                                           Context.getCanonicalType(ClassType));
8695  SourceLocation ClassLoc = ClassDecl->getLocation();
8696  DeclarationNameInfo NameInfo(Name, ClassLoc);
8697
8698  // C++0x [class.copy]p11:
8699  //   An implicitly-declared copy/move constructor is an inline public
8700  //   member of its class.
8701  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8702      Context, ClassDecl, ClassLoc, NameInfo,
8703      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8704      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8705      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8706        getLangOptions().CPlusPlus0x);
8707  MoveConstructor->setAccess(AS_public);
8708  MoveConstructor->setDefaulted();
8709  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8710
8711  // Add the parameter to the constructor.
8712  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8713                                               ClassLoc, ClassLoc,
8714                                               /*IdentifierInfo=*/0,
8715                                               ArgType, /*TInfo=*/0,
8716                                               SC_None,
8717                                               SC_None, 0);
8718  MoveConstructor->setParams(FromParam);
8719
8720  // C++0x [class.copy]p9:
8721  //   If the definition of a class X does not explicitly declare a move
8722  //   constructor, one will be implicitly declared as defaulted if and only if:
8723  //   [...]
8724  //   - the move constructor would not be implicitly defined as deleted.
8725  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8726    // Cache this result so that we don't try to generate this over and over
8727    // on every lookup, leaking memory and wasting time.
8728    ClassDecl->setFailedImplicitMoveConstructor();
8729    return 0;
8730  }
8731
8732  // Note that we have declared this constructor.
8733  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8734
8735  if (Scope *S = getScopeForContext(ClassDecl))
8736    PushOnScopeChains(MoveConstructor, S, false);
8737  ClassDecl->addDecl(MoveConstructor);
8738
8739  return MoveConstructor;
8740}
8741
8742void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8743                                   CXXConstructorDecl *MoveConstructor) {
8744  assert((MoveConstructor->isDefaulted() &&
8745          MoveConstructor->isMoveConstructor() &&
8746          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8747         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8748
8749  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8750  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8751
8752  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8753  DiagnosticErrorTrap Trap(Diags);
8754
8755  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8756      Trap.hasErrorOccurred()) {
8757    Diag(CurrentLocation, diag::note_member_synthesized_at)
8758      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8759    MoveConstructor->setInvalidDecl();
8760  }  else {
8761    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8762                                               MoveConstructor->getLocation(),
8763                                               MultiStmtArg(*this, 0, 0),
8764                                               /*isStmtExpr=*/false)
8765                                                              .takeAs<Stmt>());
8766    MoveConstructor->setImplicitlyDefined(true);
8767  }
8768
8769  MoveConstructor->setUsed();
8770
8771  if (ASTMutationListener *L = getASTMutationListener()) {
8772    L->CompletedImplicitDefinition(MoveConstructor);
8773  }
8774}
8775
8776ExprResult
8777Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8778                            CXXConstructorDecl *Constructor,
8779                            MultiExprArg ExprArgs,
8780                            bool HadMultipleCandidates,
8781                            bool RequiresZeroInit,
8782                            unsigned ConstructKind,
8783                            SourceRange ParenRange) {
8784  bool Elidable = false;
8785
8786  // C++0x [class.copy]p34:
8787  //   When certain criteria are met, an implementation is allowed to
8788  //   omit the copy/move construction of a class object, even if the
8789  //   copy/move constructor and/or destructor for the object have
8790  //   side effects. [...]
8791  //     - when a temporary class object that has not been bound to a
8792  //       reference (12.2) would be copied/moved to a class object
8793  //       with the same cv-unqualified type, the copy/move operation
8794  //       can be omitted by constructing the temporary object
8795  //       directly into the target of the omitted copy/move
8796  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8797      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8798    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8799    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8800  }
8801
8802  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8803                               Elidable, move(ExprArgs), HadMultipleCandidates,
8804                               RequiresZeroInit, ConstructKind, ParenRange);
8805}
8806
8807/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8808/// including handling of its default argument expressions.
8809ExprResult
8810Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8811                            CXXConstructorDecl *Constructor, bool Elidable,
8812                            MultiExprArg ExprArgs,
8813                            bool HadMultipleCandidates,
8814                            bool RequiresZeroInit,
8815                            unsigned ConstructKind,
8816                            SourceRange ParenRange) {
8817  unsigned NumExprs = ExprArgs.size();
8818  Expr **Exprs = (Expr **)ExprArgs.release();
8819
8820  for (specific_attr_iterator<NonNullAttr>
8821           i = Constructor->specific_attr_begin<NonNullAttr>(),
8822           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8823    const NonNullAttr *NonNull = *i;
8824    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8825  }
8826
8827  MarkDeclarationReferenced(ConstructLoc, Constructor);
8828  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8829                                        Constructor, Elidable, Exprs, NumExprs,
8830                                        HadMultipleCandidates, RequiresZeroInit,
8831              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8832                                        ParenRange));
8833}
8834
8835bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8836                                        CXXConstructorDecl *Constructor,
8837                                        MultiExprArg Exprs,
8838                                        bool HadMultipleCandidates) {
8839  // FIXME: Provide the correct paren SourceRange when available.
8840  ExprResult TempResult =
8841    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8842                          move(Exprs), HadMultipleCandidates, false,
8843                          CXXConstructExpr::CK_Complete, SourceRange());
8844  if (TempResult.isInvalid())
8845    return true;
8846
8847  Expr *Temp = TempResult.takeAs<Expr>();
8848  CheckImplicitConversions(Temp, VD->getLocation());
8849  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8850  Temp = MaybeCreateExprWithCleanups(Temp);
8851  VD->setInit(Temp);
8852
8853  return false;
8854}
8855
8856void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8857  if (VD->isInvalidDecl()) return;
8858
8859  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8860  if (ClassDecl->isInvalidDecl()) return;
8861  if (ClassDecl->hasTrivialDestructor()) return;
8862  if (ClassDecl->isDependentContext()) return;
8863
8864  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8865  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8866  CheckDestructorAccess(VD->getLocation(), Destructor,
8867                        PDiag(diag::err_access_dtor_var)
8868                        << VD->getDeclName()
8869                        << VD->getType());
8870
8871  if (!VD->hasGlobalStorage()) return;
8872
8873  // Emit warning for non-trivial dtor in global scope (a real global,
8874  // class-static, function-static).
8875  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8876
8877  // TODO: this should be re-enabled for static locals by !CXAAtExit
8878  if (!VD->isStaticLocal())
8879    Diag(VD->getLocation(), diag::warn_global_destructor);
8880}
8881
8882/// AddCXXDirectInitializerToDecl - This action is called immediately after
8883/// ActOnDeclarator, when a C++ direct initializer is present.
8884/// e.g: "int x(1);"
8885void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8886                                         SourceLocation LParenLoc,
8887                                         MultiExprArg Exprs,
8888                                         SourceLocation RParenLoc,
8889                                         bool TypeMayContainAuto) {
8890  // If there is no declaration, there was an error parsing it.  Just ignore
8891  // the initializer.
8892  if (RealDecl == 0)
8893    return;
8894
8895  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8896  if (!VDecl) {
8897    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8898    RealDecl->setInvalidDecl();
8899    return;
8900  }
8901
8902  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8903  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8904    if (Exprs.size() == 0) {
8905      // It isn't possible to write this directly, but it is possible to
8906      // end up in this situation with "auto x(some_pack...);"
8907      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
8908        << VDecl->getDeclName() << VDecl->getType()
8909        << VDecl->getSourceRange();
8910      RealDecl->setInvalidDecl();
8911      return;
8912    }
8913
8914    if (Exprs.size() > 1) {
8915      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8916           diag::err_auto_var_init_multiple_expressions)
8917        << VDecl->getDeclName() << VDecl->getType()
8918        << VDecl->getSourceRange();
8919      RealDecl->setInvalidDecl();
8920      return;
8921    }
8922
8923    Expr *Init = Exprs.get()[0];
8924    TypeSourceInfo *DeducedType = 0;
8925    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8926      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8927        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8928        << Init->getSourceRange();
8929    if (!DeducedType) {
8930      RealDecl->setInvalidDecl();
8931      return;
8932    }
8933    VDecl->setTypeSourceInfo(DeducedType);
8934    VDecl->setType(DeducedType->getType());
8935
8936    // In ARC, infer lifetime.
8937    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8938      VDecl->setInvalidDecl();
8939
8940    // If this is a redeclaration, check that the type we just deduced matches
8941    // the previously declared type.
8942    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8943      MergeVarDeclTypes(VDecl, Old);
8944  }
8945
8946  // We will represent direct-initialization similarly to copy-initialization:
8947  //    int x(1);  -as-> int x = 1;
8948  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8949  //
8950  // Clients that want to distinguish between the two forms, can check for
8951  // direct initializer using VarDecl::hasCXXDirectInitializer().
8952  // A major benefit is that clients that don't particularly care about which
8953  // exactly form was it (like the CodeGen) can handle both cases without
8954  // special case code.
8955
8956  // C++ 8.5p11:
8957  // The form of initialization (using parentheses or '=') is generally
8958  // insignificant, but does matter when the entity being initialized has a
8959  // class type.
8960
8961  if (!VDecl->getType()->isDependentType() &&
8962      !VDecl->getType()->isIncompleteArrayType() &&
8963      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8964                          diag::err_typecheck_decl_incomplete_type)) {
8965    VDecl->setInvalidDecl();
8966    return;
8967  }
8968
8969  // The variable can not have an abstract class type.
8970  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8971                             diag::err_abstract_type_in_decl,
8972                             AbstractVariableType))
8973    VDecl->setInvalidDecl();
8974
8975  const VarDecl *Def;
8976  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8977    Diag(VDecl->getLocation(), diag::err_redefinition)
8978    << VDecl->getDeclName();
8979    Diag(Def->getLocation(), diag::note_previous_definition);
8980    VDecl->setInvalidDecl();
8981    return;
8982  }
8983
8984  // C++ [class.static.data]p4
8985  //   If a static data member is of const integral or const
8986  //   enumeration type, its declaration in the class definition can
8987  //   specify a constant-initializer which shall be an integral
8988  //   constant expression (5.19). In that case, the member can appear
8989  //   in integral constant expressions. The member shall still be
8990  //   defined in a namespace scope if it is used in the program and the
8991  //   namespace scope definition shall not contain an initializer.
8992  //
8993  // We already performed a redefinition check above, but for static
8994  // data members we also need to check whether there was an in-class
8995  // declaration with an initializer.
8996  const VarDecl* PrevInit = 0;
8997  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8998    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8999    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9000    return;
9001  }
9002
9003  bool IsDependent = false;
9004  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9005    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9006      VDecl->setInvalidDecl();
9007      return;
9008    }
9009
9010    if (Exprs.get()[I]->isTypeDependent())
9011      IsDependent = true;
9012  }
9013
9014  // If either the declaration has a dependent type or if any of the
9015  // expressions is type-dependent, we represent the initialization
9016  // via a ParenListExpr for later use during template instantiation.
9017  if (VDecl->getType()->isDependentType() || IsDependent) {
9018    // Let clients know that initialization was done with a direct initializer.
9019    VDecl->setCXXDirectInitializer(true);
9020
9021    // Store the initialization expressions as a ParenListExpr.
9022    unsigned NumExprs = Exprs.size();
9023    VDecl->setInit(new (Context) ParenListExpr(
9024        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9025        VDecl->getType().getNonReferenceType()));
9026    return;
9027  }
9028
9029  // Capture the variable that is being initialized and the style of
9030  // initialization.
9031  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9032
9033  // FIXME: Poor source location information.
9034  InitializationKind Kind
9035    = InitializationKind::CreateDirect(VDecl->getLocation(),
9036                                       LParenLoc, RParenLoc);
9037
9038  QualType T = VDecl->getType();
9039  InitializationSequence InitSeq(*this, Entity, Kind,
9040                                 Exprs.get(), Exprs.size());
9041  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9042  if (Result.isInvalid()) {
9043    VDecl->setInvalidDecl();
9044    return;
9045  } else if (T != VDecl->getType()) {
9046    VDecl->setType(T);
9047    Result.get()->setType(T);
9048  }
9049
9050
9051  Expr *Init = Result.get();
9052  CheckImplicitConversions(Init, LParenLoc);
9053
9054  Init = MaybeCreateExprWithCleanups(Init);
9055  VDecl->setInit(Init);
9056  VDecl->setCXXDirectInitializer(true);
9057
9058  CheckCompleteVariableDeclaration(VDecl);
9059}
9060
9061/// \brief Given a constructor and the set of arguments provided for the
9062/// constructor, convert the arguments and add any required default arguments
9063/// to form a proper call to this constructor.
9064///
9065/// \returns true if an error occurred, false otherwise.
9066bool
9067Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9068                              MultiExprArg ArgsPtr,
9069                              SourceLocation Loc,
9070                              ASTOwningVector<Expr*> &ConvertedArgs) {
9071  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9072  unsigned NumArgs = ArgsPtr.size();
9073  Expr **Args = (Expr **)ArgsPtr.get();
9074
9075  const FunctionProtoType *Proto
9076    = Constructor->getType()->getAs<FunctionProtoType>();
9077  assert(Proto && "Constructor without a prototype?");
9078  unsigned NumArgsInProto = Proto->getNumArgs();
9079
9080  // If too few arguments are available, we'll fill in the rest with defaults.
9081  if (NumArgs < NumArgsInProto)
9082    ConvertedArgs.reserve(NumArgsInProto);
9083  else
9084    ConvertedArgs.reserve(NumArgs);
9085
9086  VariadicCallType CallType =
9087    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9088  SmallVector<Expr *, 8> AllArgs;
9089  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9090                                        Proto, 0, Args, NumArgs, AllArgs,
9091                                        CallType);
9092  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9093    ConvertedArgs.push_back(AllArgs[i]);
9094  return Invalid;
9095}
9096
9097static inline bool
9098CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9099                                       const FunctionDecl *FnDecl) {
9100  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9101  if (isa<NamespaceDecl>(DC)) {
9102    return SemaRef.Diag(FnDecl->getLocation(),
9103                        diag::err_operator_new_delete_declared_in_namespace)
9104      << FnDecl->getDeclName();
9105  }
9106
9107  if (isa<TranslationUnitDecl>(DC) &&
9108      FnDecl->getStorageClass() == SC_Static) {
9109    return SemaRef.Diag(FnDecl->getLocation(),
9110                        diag::err_operator_new_delete_declared_static)
9111      << FnDecl->getDeclName();
9112  }
9113
9114  return false;
9115}
9116
9117static inline bool
9118CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9119                            CanQualType ExpectedResultType,
9120                            CanQualType ExpectedFirstParamType,
9121                            unsigned DependentParamTypeDiag,
9122                            unsigned InvalidParamTypeDiag) {
9123  QualType ResultType =
9124    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9125
9126  // Check that the result type is not dependent.
9127  if (ResultType->isDependentType())
9128    return SemaRef.Diag(FnDecl->getLocation(),
9129                        diag::err_operator_new_delete_dependent_result_type)
9130    << FnDecl->getDeclName() << ExpectedResultType;
9131
9132  // Check that the result type is what we expect.
9133  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9134    return SemaRef.Diag(FnDecl->getLocation(),
9135                        diag::err_operator_new_delete_invalid_result_type)
9136    << FnDecl->getDeclName() << ExpectedResultType;
9137
9138  // A function template must have at least 2 parameters.
9139  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9140    return SemaRef.Diag(FnDecl->getLocation(),
9141                      diag::err_operator_new_delete_template_too_few_parameters)
9142        << FnDecl->getDeclName();
9143
9144  // The function decl must have at least 1 parameter.
9145  if (FnDecl->getNumParams() == 0)
9146    return SemaRef.Diag(FnDecl->getLocation(),
9147                        diag::err_operator_new_delete_too_few_parameters)
9148      << FnDecl->getDeclName();
9149
9150  // Check the the first parameter type is not dependent.
9151  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9152  if (FirstParamType->isDependentType())
9153    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9154      << FnDecl->getDeclName() << ExpectedFirstParamType;
9155
9156  // Check that the first parameter type is what we expect.
9157  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9158      ExpectedFirstParamType)
9159    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9160    << FnDecl->getDeclName() << ExpectedFirstParamType;
9161
9162  return false;
9163}
9164
9165static bool
9166CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9167  // C++ [basic.stc.dynamic.allocation]p1:
9168  //   A program is ill-formed if an allocation function is declared in a
9169  //   namespace scope other than global scope or declared static in global
9170  //   scope.
9171  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9172    return true;
9173
9174  CanQualType SizeTy =
9175    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9176
9177  // C++ [basic.stc.dynamic.allocation]p1:
9178  //  The return type shall be void*. The first parameter shall have type
9179  //  std::size_t.
9180  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9181                                  SizeTy,
9182                                  diag::err_operator_new_dependent_param_type,
9183                                  diag::err_operator_new_param_type))
9184    return true;
9185
9186  // C++ [basic.stc.dynamic.allocation]p1:
9187  //  The first parameter shall not have an associated default argument.
9188  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9189    return SemaRef.Diag(FnDecl->getLocation(),
9190                        diag::err_operator_new_default_arg)
9191      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9192
9193  return false;
9194}
9195
9196static bool
9197CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9198  // C++ [basic.stc.dynamic.deallocation]p1:
9199  //   A program is ill-formed if deallocation functions are declared in a
9200  //   namespace scope other than global scope or declared static in global
9201  //   scope.
9202  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9203    return true;
9204
9205  // C++ [basic.stc.dynamic.deallocation]p2:
9206  //   Each deallocation function shall return void and its first parameter
9207  //   shall be void*.
9208  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9209                                  SemaRef.Context.VoidPtrTy,
9210                                 diag::err_operator_delete_dependent_param_type,
9211                                 diag::err_operator_delete_param_type))
9212    return true;
9213
9214  return false;
9215}
9216
9217/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9218/// of this overloaded operator is well-formed. If so, returns false;
9219/// otherwise, emits appropriate diagnostics and returns true.
9220bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9221  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9222         "Expected an overloaded operator declaration");
9223
9224  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9225
9226  // C++ [over.oper]p5:
9227  //   The allocation and deallocation functions, operator new,
9228  //   operator new[], operator delete and operator delete[], are
9229  //   described completely in 3.7.3. The attributes and restrictions
9230  //   found in the rest of this subclause do not apply to them unless
9231  //   explicitly stated in 3.7.3.
9232  if (Op == OO_Delete || Op == OO_Array_Delete)
9233    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9234
9235  if (Op == OO_New || Op == OO_Array_New)
9236    return CheckOperatorNewDeclaration(*this, FnDecl);
9237
9238  // C++ [over.oper]p6:
9239  //   An operator function shall either be a non-static member
9240  //   function or be a non-member function and have at least one
9241  //   parameter whose type is a class, a reference to a class, an
9242  //   enumeration, or a reference to an enumeration.
9243  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9244    if (MethodDecl->isStatic())
9245      return Diag(FnDecl->getLocation(),
9246                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9247  } else {
9248    bool ClassOrEnumParam = false;
9249    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9250                                   ParamEnd = FnDecl->param_end();
9251         Param != ParamEnd; ++Param) {
9252      QualType ParamType = (*Param)->getType().getNonReferenceType();
9253      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9254          ParamType->isEnumeralType()) {
9255        ClassOrEnumParam = true;
9256        break;
9257      }
9258    }
9259
9260    if (!ClassOrEnumParam)
9261      return Diag(FnDecl->getLocation(),
9262                  diag::err_operator_overload_needs_class_or_enum)
9263        << FnDecl->getDeclName();
9264  }
9265
9266  // C++ [over.oper]p8:
9267  //   An operator function cannot have default arguments (8.3.6),
9268  //   except where explicitly stated below.
9269  //
9270  // Only the function-call operator allows default arguments
9271  // (C++ [over.call]p1).
9272  if (Op != OO_Call) {
9273    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9274         Param != FnDecl->param_end(); ++Param) {
9275      if ((*Param)->hasDefaultArg())
9276        return Diag((*Param)->getLocation(),
9277                    diag::err_operator_overload_default_arg)
9278          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9279    }
9280  }
9281
9282  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9283    { false, false, false }
9284#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9285    , { Unary, Binary, MemberOnly }
9286#include "clang/Basic/OperatorKinds.def"
9287  };
9288
9289  bool CanBeUnaryOperator = OperatorUses[Op][0];
9290  bool CanBeBinaryOperator = OperatorUses[Op][1];
9291  bool MustBeMemberOperator = OperatorUses[Op][2];
9292
9293  // C++ [over.oper]p8:
9294  //   [...] Operator functions cannot have more or fewer parameters
9295  //   than the number required for the corresponding operator, as
9296  //   described in the rest of this subclause.
9297  unsigned NumParams = FnDecl->getNumParams()
9298                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9299  if (Op != OO_Call &&
9300      ((NumParams == 1 && !CanBeUnaryOperator) ||
9301       (NumParams == 2 && !CanBeBinaryOperator) ||
9302       (NumParams < 1) || (NumParams > 2))) {
9303    // We have the wrong number of parameters.
9304    unsigned ErrorKind;
9305    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9306      ErrorKind = 2;  // 2 -> unary or binary.
9307    } else if (CanBeUnaryOperator) {
9308      ErrorKind = 0;  // 0 -> unary
9309    } else {
9310      assert(CanBeBinaryOperator &&
9311             "All non-call overloaded operators are unary or binary!");
9312      ErrorKind = 1;  // 1 -> binary
9313    }
9314
9315    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9316      << FnDecl->getDeclName() << NumParams << ErrorKind;
9317  }
9318
9319  // Overloaded operators other than operator() cannot be variadic.
9320  if (Op != OO_Call &&
9321      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9322    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9323      << FnDecl->getDeclName();
9324  }
9325
9326  // Some operators must be non-static member functions.
9327  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9328    return Diag(FnDecl->getLocation(),
9329                diag::err_operator_overload_must_be_member)
9330      << FnDecl->getDeclName();
9331  }
9332
9333  // C++ [over.inc]p1:
9334  //   The user-defined function called operator++ implements the
9335  //   prefix and postfix ++ operator. If this function is a member
9336  //   function with no parameters, or a non-member function with one
9337  //   parameter of class or enumeration type, it defines the prefix
9338  //   increment operator ++ for objects of that type. If the function
9339  //   is a member function with one parameter (which shall be of type
9340  //   int) or a non-member function with two parameters (the second
9341  //   of which shall be of type int), it defines the postfix
9342  //   increment operator ++ for objects of that type.
9343  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9344    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9345    bool ParamIsInt = false;
9346    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9347      ParamIsInt = BT->getKind() == BuiltinType::Int;
9348
9349    if (!ParamIsInt)
9350      return Diag(LastParam->getLocation(),
9351                  diag::err_operator_overload_post_incdec_must_be_int)
9352        << LastParam->getType() << (Op == OO_MinusMinus);
9353  }
9354
9355  return false;
9356}
9357
9358/// CheckLiteralOperatorDeclaration - Check whether the declaration
9359/// of this literal operator function is well-formed. If so, returns
9360/// false; otherwise, emits appropriate diagnostics and returns true.
9361bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9362  DeclContext *DC = FnDecl->getDeclContext();
9363  Decl::Kind Kind = DC->getDeclKind();
9364  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9365      Kind != Decl::LinkageSpec) {
9366    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9367      << FnDecl->getDeclName();
9368    return true;
9369  }
9370
9371  bool Valid = false;
9372
9373  // template <char...> type operator "" name() is the only valid template
9374  // signature, and the only valid signature with no parameters.
9375  if (FnDecl->param_size() == 0) {
9376    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9377      // Must have only one template parameter
9378      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9379      if (Params->size() == 1) {
9380        NonTypeTemplateParmDecl *PmDecl =
9381          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9382
9383        // The template parameter must be a char parameter pack.
9384        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9385            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9386          Valid = true;
9387      }
9388    }
9389  } else {
9390    // Check the first parameter
9391    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9392
9393    QualType T = (*Param)->getType();
9394
9395    // unsigned long long int, long double, and any character type are allowed
9396    // as the only parameters.
9397    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9398        Context.hasSameType(T, Context.LongDoubleTy) ||
9399        Context.hasSameType(T, Context.CharTy) ||
9400        Context.hasSameType(T, Context.WCharTy) ||
9401        Context.hasSameType(T, Context.Char16Ty) ||
9402        Context.hasSameType(T, Context.Char32Ty)) {
9403      if (++Param == FnDecl->param_end())
9404        Valid = true;
9405      goto FinishedParams;
9406    }
9407
9408    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9409    const PointerType *PT = T->getAs<PointerType>();
9410    if (!PT)
9411      goto FinishedParams;
9412    T = PT->getPointeeType();
9413    if (!T.isConstQualified())
9414      goto FinishedParams;
9415    T = T.getUnqualifiedType();
9416
9417    // Move on to the second parameter;
9418    ++Param;
9419
9420    // If there is no second parameter, the first must be a const char *
9421    if (Param == FnDecl->param_end()) {
9422      if (Context.hasSameType(T, Context.CharTy))
9423        Valid = true;
9424      goto FinishedParams;
9425    }
9426
9427    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9428    // are allowed as the first parameter to a two-parameter function
9429    if (!(Context.hasSameType(T, Context.CharTy) ||
9430          Context.hasSameType(T, Context.WCharTy) ||
9431          Context.hasSameType(T, Context.Char16Ty) ||
9432          Context.hasSameType(T, Context.Char32Ty)))
9433      goto FinishedParams;
9434
9435    // The second and final parameter must be an std::size_t
9436    T = (*Param)->getType().getUnqualifiedType();
9437    if (Context.hasSameType(T, Context.getSizeType()) &&
9438        ++Param == FnDecl->param_end())
9439      Valid = true;
9440  }
9441
9442  // FIXME: This diagnostic is absolutely terrible.
9443FinishedParams:
9444  if (!Valid) {
9445    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9446      << FnDecl->getDeclName();
9447    return true;
9448  }
9449
9450  StringRef LiteralName
9451    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9452  if (LiteralName[0] != '_') {
9453    // C++0x [usrlit.suffix]p1:
9454    //   Literal suffix identifiers that do not start with an underscore are
9455    //   reserved for future standardization.
9456    bool IsHexFloat = true;
9457    if (LiteralName.size() > 1 &&
9458        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9459      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9460        if (!isdigit(LiteralName[I])) {
9461          IsHexFloat = false;
9462          break;
9463        }
9464      }
9465    }
9466
9467    if (IsHexFloat)
9468      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9469        << LiteralName;
9470    else
9471      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9472  }
9473
9474  return false;
9475}
9476
9477/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9478/// linkage specification, including the language and (if present)
9479/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9480/// the location of the language string literal, which is provided
9481/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9482/// the '{' brace. Otherwise, this linkage specification does not
9483/// have any braces.
9484Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9485                                           SourceLocation LangLoc,
9486                                           StringRef Lang,
9487                                           SourceLocation LBraceLoc) {
9488  LinkageSpecDecl::LanguageIDs Language;
9489  if (Lang == "\"C\"")
9490    Language = LinkageSpecDecl::lang_c;
9491  else if (Lang == "\"C++\"")
9492    Language = LinkageSpecDecl::lang_cxx;
9493  else {
9494    Diag(LangLoc, diag::err_bad_language);
9495    return 0;
9496  }
9497
9498  // FIXME: Add all the various semantics of linkage specifications
9499
9500  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9501                                               ExternLoc, LangLoc, Language);
9502  CurContext->addDecl(D);
9503  PushDeclContext(S, D);
9504  return D;
9505}
9506
9507/// ActOnFinishLinkageSpecification - Complete the definition of
9508/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9509/// valid, it's the position of the closing '}' brace in a linkage
9510/// specification that uses braces.
9511Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9512                                            Decl *LinkageSpec,
9513                                            SourceLocation RBraceLoc) {
9514  if (LinkageSpec) {
9515    if (RBraceLoc.isValid()) {
9516      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9517      LSDecl->setRBraceLoc(RBraceLoc);
9518    }
9519    PopDeclContext();
9520  }
9521  return LinkageSpec;
9522}
9523
9524/// \brief Perform semantic analysis for the variable declaration that
9525/// occurs within a C++ catch clause, returning the newly-created
9526/// variable.
9527VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9528                                         TypeSourceInfo *TInfo,
9529                                         SourceLocation StartLoc,
9530                                         SourceLocation Loc,
9531                                         IdentifierInfo *Name) {
9532  bool Invalid = false;
9533  QualType ExDeclType = TInfo->getType();
9534
9535  // Arrays and functions decay.
9536  if (ExDeclType->isArrayType())
9537    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9538  else if (ExDeclType->isFunctionType())
9539    ExDeclType = Context.getPointerType(ExDeclType);
9540
9541  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9542  // The exception-declaration shall not denote a pointer or reference to an
9543  // incomplete type, other than [cv] void*.
9544  // N2844 forbids rvalue references.
9545  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9546    Diag(Loc, diag::err_catch_rvalue_ref);
9547    Invalid = true;
9548  }
9549
9550  // GCC allows catching pointers and references to incomplete types
9551  // as an extension; so do we, but we warn by default.
9552
9553  QualType BaseType = ExDeclType;
9554  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9555  unsigned DK = diag::err_catch_incomplete;
9556  bool IncompleteCatchIsInvalid = true;
9557  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9558    BaseType = Ptr->getPointeeType();
9559    Mode = 1;
9560    DK = diag::ext_catch_incomplete_ptr;
9561    IncompleteCatchIsInvalid = false;
9562  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9563    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9564    BaseType = Ref->getPointeeType();
9565    Mode = 2;
9566    DK = diag::ext_catch_incomplete_ref;
9567    IncompleteCatchIsInvalid = false;
9568  }
9569  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9570      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9571      IncompleteCatchIsInvalid)
9572    Invalid = true;
9573
9574  if (!Invalid && !ExDeclType->isDependentType() &&
9575      RequireNonAbstractType(Loc, ExDeclType,
9576                             diag::err_abstract_type_in_decl,
9577                             AbstractVariableType))
9578    Invalid = true;
9579
9580  // Only the non-fragile NeXT runtime currently supports C++ catches
9581  // of ObjC types, and no runtime supports catching ObjC types by value.
9582  if (!Invalid && getLangOptions().ObjC1) {
9583    QualType T = ExDeclType;
9584    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9585      T = RT->getPointeeType();
9586
9587    if (T->isObjCObjectType()) {
9588      Diag(Loc, diag::err_objc_object_catch);
9589      Invalid = true;
9590    } else if (T->isObjCObjectPointerType()) {
9591      if (!getLangOptions().ObjCNonFragileABI)
9592        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9593    }
9594  }
9595
9596  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9597                                    ExDeclType, TInfo, SC_None, SC_None);
9598  ExDecl->setExceptionVariable(true);
9599
9600  // In ARC, infer 'retaining' for variables of retainable type.
9601  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9602    Invalid = true;
9603
9604  if (!Invalid && !ExDeclType->isDependentType()) {
9605    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9606      // C++ [except.handle]p16:
9607      //   The object declared in an exception-declaration or, if the
9608      //   exception-declaration does not specify a name, a temporary (12.2) is
9609      //   copy-initialized (8.5) from the exception object. [...]
9610      //   The object is destroyed when the handler exits, after the destruction
9611      //   of any automatic objects initialized within the handler.
9612      //
9613      // We just pretend to initialize the object with itself, then make sure
9614      // it can be destroyed later.
9615      QualType initType = ExDeclType;
9616
9617      InitializedEntity entity =
9618        InitializedEntity::InitializeVariable(ExDecl);
9619      InitializationKind initKind =
9620        InitializationKind::CreateCopy(Loc, SourceLocation());
9621
9622      Expr *opaqueValue =
9623        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9624      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9625      ExprResult result = sequence.Perform(*this, entity, initKind,
9626                                           MultiExprArg(&opaqueValue, 1));
9627      if (result.isInvalid())
9628        Invalid = true;
9629      else {
9630        // If the constructor used was non-trivial, set this as the
9631        // "initializer".
9632        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9633        if (!construct->getConstructor()->isTrivial()) {
9634          Expr *init = MaybeCreateExprWithCleanups(construct);
9635          ExDecl->setInit(init);
9636        }
9637
9638        // And make sure it's destructable.
9639        FinalizeVarWithDestructor(ExDecl, recordType);
9640      }
9641    }
9642  }
9643
9644  if (Invalid)
9645    ExDecl->setInvalidDecl();
9646
9647  return ExDecl;
9648}
9649
9650/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9651/// handler.
9652Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9653  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9654  bool Invalid = D.isInvalidType();
9655
9656  // Check for unexpanded parameter packs.
9657  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9658                                               UPPC_ExceptionType)) {
9659    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9660                                             D.getIdentifierLoc());
9661    Invalid = true;
9662  }
9663
9664  IdentifierInfo *II = D.getIdentifier();
9665  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9666                                             LookupOrdinaryName,
9667                                             ForRedeclaration)) {
9668    // The scope should be freshly made just for us. There is just no way
9669    // it contains any previous declaration.
9670    assert(!S->isDeclScope(PrevDecl));
9671    if (PrevDecl->isTemplateParameter()) {
9672      // Maybe we will complain about the shadowed template parameter.
9673      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9674      PrevDecl = 0;
9675    }
9676  }
9677
9678  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9679    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9680      << D.getCXXScopeSpec().getRange();
9681    Invalid = true;
9682  }
9683
9684  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9685                                              D.getSourceRange().getBegin(),
9686                                              D.getIdentifierLoc(),
9687                                              D.getIdentifier());
9688  if (Invalid)
9689    ExDecl->setInvalidDecl();
9690
9691  // Add the exception declaration into this scope.
9692  if (II)
9693    PushOnScopeChains(ExDecl, S);
9694  else
9695    CurContext->addDecl(ExDecl);
9696
9697  ProcessDeclAttributes(S, ExDecl, D);
9698  return ExDecl;
9699}
9700
9701Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9702                                         Expr *AssertExpr,
9703                                         Expr *AssertMessageExpr_,
9704                                         SourceLocation RParenLoc) {
9705  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9706
9707  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9708    llvm::APSInt Cond;
9709    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9710                             diag::err_static_assert_expression_is_not_constant,
9711                                        /*AllowFold=*/false))
9712      return 0;
9713
9714    if (!Cond)
9715      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9716        << AssertMessage->getString() << AssertExpr->getSourceRange();
9717  }
9718
9719  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9720    return 0;
9721
9722  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9723                                        AssertExpr, AssertMessage, RParenLoc);
9724
9725  CurContext->addDecl(Decl);
9726  return Decl;
9727}
9728
9729/// \brief Perform semantic analysis of the given friend type declaration.
9730///
9731/// \returns A friend declaration that.
9732FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9733                                      SourceLocation FriendLoc,
9734                                      TypeSourceInfo *TSInfo) {
9735  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9736
9737  QualType T = TSInfo->getType();
9738  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9739
9740  // C++03 [class.friend]p2:
9741  //   An elaborated-type-specifier shall be used in a friend declaration
9742  //   for a class.*
9743  //
9744  //   * The class-key of the elaborated-type-specifier is required.
9745  if (!ActiveTemplateInstantiations.empty()) {
9746    // Do not complain about the form of friend template types during
9747    // template instantiation; we will already have complained when the
9748    // template was declared.
9749  } else if (!T->isElaboratedTypeSpecifier()) {
9750    // If we evaluated the type to a record type, suggest putting
9751    // a tag in front.
9752    if (const RecordType *RT = T->getAs<RecordType>()) {
9753      RecordDecl *RD = RT->getDecl();
9754
9755      std::string InsertionText = std::string(" ") + RD->getKindName();
9756
9757      Diag(TypeRange.getBegin(),
9758           getLangOptions().CPlusPlus0x ?
9759             diag::warn_cxx98_compat_unelaborated_friend_type :
9760             diag::ext_unelaborated_friend_type)
9761        << (unsigned) RD->getTagKind()
9762        << T
9763        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9764                                      InsertionText);
9765    } else {
9766      Diag(FriendLoc,
9767           getLangOptions().CPlusPlus0x ?
9768             diag::warn_cxx98_compat_nonclass_type_friend :
9769             diag::ext_nonclass_type_friend)
9770        << T
9771        << SourceRange(FriendLoc, TypeRange.getEnd());
9772    }
9773  } else if (T->getAs<EnumType>()) {
9774    Diag(FriendLoc,
9775         getLangOptions().CPlusPlus0x ?
9776           diag::warn_cxx98_compat_enum_friend :
9777           diag::ext_enum_friend)
9778      << T
9779      << SourceRange(FriendLoc, TypeRange.getEnd());
9780  }
9781
9782  // C++0x [class.friend]p3:
9783  //   If the type specifier in a friend declaration designates a (possibly
9784  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9785  //   the friend declaration is ignored.
9786
9787  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9788  // in [class.friend]p3 that we do not implement.
9789
9790  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9791}
9792
9793/// Handle a friend tag declaration where the scope specifier was
9794/// templated.
9795Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9796                                    unsigned TagSpec, SourceLocation TagLoc,
9797                                    CXXScopeSpec &SS,
9798                                    IdentifierInfo *Name, SourceLocation NameLoc,
9799                                    AttributeList *Attr,
9800                                    MultiTemplateParamsArg TempParamLists) {
9801  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9802
9803  bool isExplicitSpecialization = false;
9804  bool Invalid = false;
9805
9806  if (TemplateParameterList *TemplateParams
9807        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9808                                                  TempParamLists.get(),
9809                                                  TempParamLists.size(),
9810                                                  /*friend*/ true,
9811                                                  isExplicitSpecialization,
9812                                                  Invalid)) {
9813    if (TemplateParams->size() > 0) {
9814      // This is a declaration of a class template.
9815      if (Invalid)
9816        return 0;
9817
9818      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9819                                SS, Name, NameLoc, Attr,
9820                                TemplateParams, AS_public,
9821                                /*ModulePrivateLoc=*/SourceLocation(),
9822                                TempParamLists.size() - 1,
9823                   (TemplateParameterList**) TempParamLists.release()).take();
9824    } else {
9825      // The "template<>" header is extraneous.
9826      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9827        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9828      isExplicitSpecialization = true;
9829    }
9830  }
9831
9832  if (Invalid) return 0;
9833
9834  bool isAllExplicitSpecializations = true;
9835  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9836    if (TempParamLists.get()[I]->size()) {
9837      isAllExplicitSpecializations = false;
9838      break;
9839    }
9840  }
9841
9842  // FIXME: don't ignore attributes.
9843
9844  // If it's explicit specializations all the way down, just forget
9845  // about the template header and build an appropriate non-templated
9846  // friend.  TODO: for source fidelity, remember the headers.
9847  if (isAllExplicitSpecializations) {
9848    if (SS.isEmpty()) {
9849      bool Owned = false;
9850      bool IsDependent = false;
9851      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9852                      Attr, AS_public,
9853                      /*ModulePrivateLoc=*/SourceLocation(),
9854                      MultiTemplateParamsArg(), Owned, IsDependent,
9855                      /*ScopedEnumKWLoc=*/SourceLocation(),
9856                      /*ScopedEnumUsesClassTag=*/false,
9857                      /*UnderlyingType=*/TypeResult());
9858    }
9859
9860    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9861    ElaboratedTypeKeyword Keyword
9862      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9863    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9864                                   *Name, NameLoc);
9865    if (T.isNull())
9866      return 0;
9867
9868    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9869    if (isa<DependentNameType>(T)) {
9870      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9871      TL.setKeywordLoc(TagLoc);
9872      TL.setQualifierLoc(QualifierLoc);
9873      TL.setNameLoc(NameLoc);
9874    } else {
9875      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9876      TL.setKeywordLoc(TagLoc);
9877      TL.setQualifierLoc(QualifierLoc);
9878      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9879    }
9880
9881    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9882                                            TSI, FriendLoc);
9883    Friend->setAccess(AS_public);
9884    CurContext->addDecl(Friend);
9885    return Friend;
9886  }
9887
9888  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9889
9890
9891
9892  // Handle the case of a templated-scope friend class.  e.g.
9893  //   template <class T> class A<T>::B;
9894  // FIXME: we don't support these right now.
9895  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9896  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9897  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9898  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9899  TL.setKeywordLoc(TagLoc);
9900  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9901  TL.setNameLoc(NameLoc);
9902
9903  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9904                                          TSI, FriendLoc);
9905  Friend->setAccess(AS_public);
9906  Friend->setUnsupportedFriend(true);
9907  CurContext->addDecl(Friend);
9908  return Friend;
9909}
9910
9911
9912/// Handle a friend type declaration.  This works in tandem with
9913/// ActOnTag.
9914///
9915/// Notes on friend class templates:
9916///
9917/// We generally treat friend class declarations as if they were
9918/// declaring a class.  So, for example, the elaborated type specifier
9919/// in a friend declaration is required to obey the restrictions of a
9920/// class-head (i.e. no typedefs in the scope chain), template
9921/// parameters are required to match up with simple template-ids, &c.
9922/// However, unlike when declaring a template specialization, it's
9923/// okay to refer to a template specialization without an empty
9924/// template parameter declaration, e.g.
9925///   friend class A<T>::B<unsigned>;
9926/// We permit this as a special case; if there are any template
9927/// parameters present at all, require proper matching, i.e.
9928///   template <> template <class T> friend class A<int>::B;
9929Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9930                                MultiTemplateParamsArg TempParams) {
9931  SourceLocation Loc = DS.getSourceRange().getBegin();
9932
9933  assert(DS.isFriendSpecified());
9934  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9935
9936  // Try to convert the decl specifier to a type.  This works for
9937  // friend templates because ActOnTag never produces a ClassTemplateDecl
9938  // for a TUK_Friend.
9939  Declarator TheDeclarator(DS, Declarator::MemberContext);
9940  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9941  QualType T = TSI->getType();
9942  if (TheDeclarator.isInvalidType())
9943    return 0;
9944
9945  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9946    return 0;
9947
9948  // This is definitely an error in C++98.  It's probably meant to
9949  // be forbidden in C++0x, too, but the specification is just
9950  // poorly written.
9951  //
9952  // The problem is with declarations like the following:
9953  //   template <T> friend A<T>::foo;
9954  // where deciding whether a class C is a friend or not now hinges
9955  // on whether there exists an instantiation of A that causes
9956  // 'foo' to equal C.  There are restrictions on class-heads
9957  // (which we declare (by fiat) elaborated friend declarations to
9958  // be) that makes this tractable.
9959  //
9960  // FIXME: handle "template <> friend class A<T>;", which
9961  // is possibly well-formed?  Who even knows?
9962  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9963    Diag(Loc, diag::err_tagless_friend_type_template)
9964      << DS.getSourceRange();
9965    return 0;
9966  }
9967
9968  // C++98 [class.friend]p1: A friend of a class is a function
9969  //   or class that is not a member of the class . . .
9970  // This is fixed in DR77, which just barely didn't make the C++03
9971  // deadline.  It's also a very silly restriction that seriously
9972  // affects inner classes and which nobody else seems to implement;
9973  // thus we never diagnose it, not even in -pedantic.
9974  //
9975  // But note that we could warn about it: it's always useless to
9976  // friend one of your own members (it's not, however, worthless to
9977  // friend a member of an arbitrary specialization of your template).
9978
9979  Decl *D;
9980  if (unsigned NumTempParamLists = TempParams.size())
9981    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9982                                   NumTempParamLists,
9983                                   TempParams.release(),
9984                                   TSI,
9985                                   DS.getFriendSpecLoc());
9986  else
9987    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9988
9989  if (!D)
9990    return 0;
9991
9992  D->setAccess(AS_public);
9993  CurContext->addDecl(D);
9994
9995  return D;
9996}
9997
9998Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9999                                    MultiTemplateParamsArg TemplateParams) {
10000  const DeclSpec &DS = D.getDeclSpec();
10001
10002  assert(DS.isFriendSpecified());
10003  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10004
10005  SourceLocation Loc = D.getIdentifierLoc();
10006  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10007
10008  // C++ [class.friend]p1
10009  //   A friend of a class is a function or class....
10010  // Note that this sees through typedefs, which is intended.
10011  // It *doesn't* see through dependent types, which is correct
10012  // according to [temp.arg.type]p3:
10013  //   If a declaration acquires a function type through a
10014  //   type dependent on a template-parameter and this causes
10015  //   a declaration that does not use the syntactic form of a
10016  //   function declarator to have a function type, the program
10017  //   is ill-formed.
10018  if (!TInfo->getType()->isFunctionType()) {
10019    Diag(Loc, diag::err_unexpected_friend);
10020
10021    // It might be worthwhile to try to recover by creating an
10022    // appropriate declaration.
10023    return 0;
10024  }
10025
10026  // C++ [namespace.memdef]p3
10027  //  - If a friend declaration in a non-local class first declares a
10028  //    class or function, the friend class or function is a member
10029  //    of the innermost enclosing namespace.
10030  //  - The name of the friend is not found by simple name lookup
10031  //    until a matching declaration is provided in that namespace
10032  //    scope (either before or after the class declaration granting
10033  //    friendship).
10034  //  - If a friend function is called, its name may be found by the
10035  //    name lookup that considers functions from namespaces and
10036  //    classes associated with the types of the function arguments.
10037  //  - When looking for a prior declaration of a class or a function
10038  //    declared as a friend, scopes outside the innermost enclosing
10039  //    namespace scope are not considered.
10040
10041  CXXScopeSpec &SS = D.getCXXScopeSpec();
10042  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10043  DeclarationName Name = NameInfo.getName();
10044  assert(Name);
10045
10046  // Check for unexpanded parameter packs.
10047  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10048      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10049      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10050    return 0;
10051
10052  // The context we found the declaration in, or in which we should
10053  // create the declaration.
10054  DeclContext *DC;
10055  Scope *DCScope = S;
10056  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10057                        ForRedeclaration);
10058
10059  // FIXME: there are different rules in local classes
10060
10061  // There are four cases here.
10062  //   - There's no scope specifier, in which case we just go to the
10063  //     appropriate scope and look for a function or function template
10064  //     there as appropriate.
10065  // Recover from invalid scope qualifiers as if they just weren't there.
10066  if (SS.isInvalid() || !SS.isSet()) {
10067    // C++0x [namespace.memdef]p3:
10068    //   If the name in a friend declaration is neither qualified nor
10069    //   a template-id and the declaration is a function or an
10070    //   elaborated-type-specifier, the lookup to determine whether
10071    //   the entity has been previously declared shall not consider
10072    //   any scopes outside the innermost enclosing namespace.
10073    // C++0x [class.friend]p11:
10074    //   If a friend declaration appears in a local class and the name
10075    //   specified is an unqualified name, a prior declaration is
10076    //   looked up without considering scopes that are outside the
10077    //   innermost enclosing non-class scope. For a friend function
10078    //   declaration, if there is no prior declaration, the program is
10079    //   ill-formed.
10080    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10081    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10082
10083    // Find the appropriate context according to the above.
10084    DC = CurContext;
10085    while (true) {
10086      // Skip class contexts.  If someone can cite chapter and verse
10087      // for this behavior, that would be nice --- it's what GCC and
10088      // EDG do, and it seems like a reasonable intent, but the spec
10089      // really only says that checks for unqualified existing
10090      // declarations should stop at the nearest enclosing namespace,
10091      // not that they should only consider the nearest enclosing
10092      // namespace.
10093      while (DC->isRecord())
10094        DC = DC->getParent();
10095
10096      LookupQualifiedName(Previous, DC);
10097
10098      // TODO: decide what we think about using declarations.
10099      if (isLocal || !Previous.empty())
10100        break;
10101
10102      if (isTemplateId) {
10103        if (isa<TranslationUnitDecl>(DC)) break;
10104      } else {
10105        if (DC->isFileContext()) break;
10106      }
10107      DC = DC->getParent();
10108    }
10109
10110    // C++ [class.friend]p1: A friend of a class is a function or
10111    //   class that is not a member of the class . . .
10112    // C++11 changes this for both friend types and functions.
10113    // Most C++ 98 compilers do seem to give an error here, so
10114    // we do, too.
10115    if (!Previous.empty() && DC->Equals(CurContext))
10116      Diag(DS.getFriendSpecLoc(),
10117           getLangOptions().CPlusPlus0x ?
10118             diag::warn_cxx98_compat_friend_is_member :
10119             diag::err_friend_is_member);
10120
10121    DCScope = getScopeForDeclContext(S, DC);
10122
10123    // C++ [class.friend]p6:
10124    //   A function can be defined in a friend declaration of a class if and
10125    //   only if the class is a non-local class (9.8), the function name is
10126    //   unqualified, and the function has namespace scope.
10127    if (isLocal && D.isFunctionDefinition()) {
10128      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10129    }
10130
10131  //   - There's a non-dependent scope specifier, in which case we
10132  //     compute it and do a previous lookup there for a function
10133  //     or function template.
10134  } else if (!SS.getScopeRep()->isDependent()) {
10135    DC = computeDeclContext(SS);
10136    if (!DC) return 0;
10137
10138    if (RequireCompleteDeclContext(SS, DC)) return 0;
10139
10140    LookupQualifiedName(Previous, DC);
10141
10142    // Ignore things found implicitly in the wrong scope.
10143    // TODO: better diagnostics for this case.  Suggesting the right
10144    // qualified scope would be nice...
10145    LookupResult::Filter F = Previous.makeFilter();
10146    while (F.hasNext()) {
10147      NamedDecl *D = F.next();
10148      if (!DC->InEnclosingNamespaceSetOf(
10149              D->getDeclContext()->getRedeclContext()))
10150        F.erase();
10151    }
10152    F.done();
10153
10154    if (Previous.empty()) {
10155      D.setInvalidType();
10156      Diag(Loc, diag::err_qualified_friend_not_found)
10157          << Name << TInfo->getType();
10158      return 0;
10159    }
10160
10161    // C++ [class.friend]p1: A friend of a class is a function or
10162    //   class that is not a member of the class . . .
10163    if (DC->Equals(CurContext))
10164      Diag(DS.getFriendSpecLoc(),
10165           getLangOptions().CPlusPlus0x ?
10166             diag::warn_cxx98_compat_friend_is_member :
10167             diag::err_friend_is_member);
10168
10169    if (D.isFunctionDefinition()) {
10170      // C++ [class.friend]p6:
10171      //   A function can be defined in a friend declaration of a class if and
10172      //   only if the class is a non-local class (9.8), the function name is
10173      //   unqualified, and the function has namespace scope.
10174      SemaDiagnosticBuilder DB
10175        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10176
10177      DB << SS.getScopeRep();
10178      if (DC->isFileContext())
10179        DB << FixItHint::CreateRemoval(SS.getRange());
10180      SS.clear();
10181    }
10182
10183  //   - There's a scope specifier that does not match any template
10184  //     parameter lists, in which case we use some arbitrary context,
10185  //     create a method or method template, and wait for instantiation.
10186  //   - There's a scope specifier that does match some template
10187  //     parameter lists, which we don't handle right now.
10188  } else {
10189    if (D.isFunctionDefinition()) {
10190      // C++ [class.friend]p6:
10191      //   A function can be defined in a friend declaration of a class if and
10192      //   only if the class is a non-local class (9.8), the function name is
10193      //   unqualified, and the function has namespace scope.
10194      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10195        << SS.getScopeRep();
10196    }
10197
10198    DC = CurContext;
10199    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10200  }
10201
10202  if (!DC->isRecord()) {
10203    // This implies that it has to be an operator or function.
10204    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10205        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10206        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10207      Diag(Loc, diag::err_introducing_special_friend) <<
10208        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10209         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10210      return 0;
10211    }
10212  }
10213
10214  // FIXME: This is an egregious hack to cope with cases where the scope stack
10215  // does not contain the declaration context, i.e., in an out-of-line
10216  // definition of a class.
10217  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10218  if (!DCScope) {
10219    FakeDCScope.setEntity(DC);
10220    DCScope = &FakeDCScope;
10221  }
10222
10223  bool AddToScope = true;
10224  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10225                                          move(TemplateParams), AddToScope);
10226  if (!ND) return 0;
10227
10228  assert(ND->getDeclContext() == DC);
10229  assert(ND->getLexicalDeclContext() == CurContext);
10230
10231  // Add the function declaration to the appropriate lookup tables,
10232  // adjusting the redeclarations list as necessary.  We don't
10233  // want to do this yet if the friending class is dependent.
10234  //
10235  // Also update the scope-based lookup if the target context's
10236  // lookup context is in lexical scope.
10237  if (!CurContext->isDependentContext()) {
10238    DC = DC->getRedeclContext();
10239    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10240    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10241      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10242  }
10243
10244  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10245                                       D.getIdentifierLoc(), ND,
10246                                       DS.getFriendSpecLoc());
10247  FrD->setAccess(AS_public);
10248  CurContext->addDecl(FrD);
10249
10250  if (ND->isInvalidDecl())
10251    FrD->setInvalidDecl();
10252  else {
10253    FunctionDecl *FD;
10254    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10255      FD = FTD->getTemplatedDecl();
10256    else
10257      FD = cast<FunctionDecl>(ND);
10258
10259    // Mark templated-scope function declarations as unsupported.
10260    if (FD->getNumTemplateParameterLists())
10261      FrD->setUnsupportedFriend(true);
10262  }
10263
10264  return ND;
10265}
10266
10267void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10268  AdjustDeclIfTemplate(Dcl);
10269
10270  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10271  if (!Fn) {
10272    Diag(DelLoc, diag::err_deleted_non_function);
10273    return;
10274  }
10275  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10276    Diag(DelLoc, diag::err_deleted_decl_not_first);
10277    Diag(Prev->getLocation(), diag::note_previous_declaration);
10278    // If the declaration wasn't the first, we delete the function anyway for
10279    // recovery.
10280  }
10281  Fn->setDeletedAsWritten();
10282}
10283
10284void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10285  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10286
10287  if (MD) {
10288    if (MD->getParent()->isDependentType()) {
10289      MD->setDefaulted();
10290      MD->setExplicitlyDefaulted();
10291      return;
10292    }
10293
10294    CXXSpecialMember Member = getSpecialMember(MD);
10295    if (Member == CXXInvalid) {
10296      Diag(DefaultLoc, diag::err_default_special_members);
10297      return;
10298    }
10299
10300    MD->setDefaulted();
10301    MD->setExplicitlyDefaulted();
10302
10303    // If this definition appears within the record, do the checking when
10304    // the record is complete.
10305    const FunctionDecl *Primary = MD;
10306    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10307      // Find the uninstantiated declaration that actually had the '= default'
10308      // on it.
10309      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10310
10311    if (Primary == Primary->getCanonicalDecl())
10312      return;
10313
10314    switch (Member) {
10315    case CXXDefaultConstructor: {
10316      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10317      CheckExplicitlyDefaultedDefaultConstructor(CD);
10318      if (!CD->isInvalidDecl())
10319        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10320      break;
10321    }
10322
10323    case CXXCopyConstructor: {
10324      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10325      CheckExplicitlyDefaultedCopyConstructor(CD);
10326      if (!CD->isInvalidDecl())
10327        DefineImplicitCopyConstructor(DefaultLoc, CD);
10328      break;
10329    }
10330
10331    case CXXCopyAssignment: {
10332      CheckExplicitlyDefaultedCopyAssignment(MD);
10333      if (!MD->isInvalidDecl())
10334        DefineImplicitCopyAssignment(DefaultLoc, MD);
10335      break;
10336    }
10337
10338    case CXXDestructor: {
10339      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10340      CheckExplicitlyDefaultedDestructor(DD);
10341      if (!DD->isInvalidDecl())
10342        DefineImplicitDestructor(DefaultLoc, DD);
10343      break;
10344    }
10345
10346    case CXXMoveConstructor: {
10347      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10348      CheckExplicitlyDefaultedMoveConstructor(CD);
10349      if (!CD->isInvalidDecl())
10350        DefineImplicitMoveConstructor(DefaultLoc, CD);
10351      break;
10352    }
10353
10354    case CXXMoveAssignment: {
10355      CheckExplicitlyDefaultedMoveAssignment(MD);
10356      if (!MD->isInvalidDecl())
10357        DefineImplicitMoveAssignment(DefaultLoc, MD);
10358      break;
10359    }
10360
10361    case CXXInvalid:
10362      llvm_unreachable("Invalid special member.");
10363    }
10364  } else {
10365    Diag(DefaultLoc, diag::err_default_special_members);
10366  }
10367}
10368
10369static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10370  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10371    Stmt *SubStmt = *CI;
10372    if (!SubStmt)
10373      continue;
10374    if (isa<ReturnStmt>(SubStmt))
10375      Self.Diag(SubStmt->getSourceRange().getBegin(),
10376           diag::err_return_in_constructor_handler);
10377    if (!isa<Expr>(SubStmt))
10378      SearchForReturnInStmt(Self, SubStmt);
10379  }
10380}
10381
10382void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10383  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10384    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10385    SearchForReturnInStmt(*this, Handler);
10386  }
10387}
10388
10389bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10390                                             const CXXMethodDecl *Old) {
10391  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10392  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10393
10394  if (Context.hasSameType(NewTy, OldTy) ||
10395      NewTy->isDependentType() || OldTy->isDependentType())
10396    return false;
10397
10398  // Check if the return types are covariant
10399  QualType NewClassTy, OldClassTy;
10400
10401  /// Both types must be pointers or references to classes.
10402  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10403    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10404      NewClassTy = NewPT->getPointeeType();
10405      OldClassTy = OldPT->getPointeeType();
10406    }
10407  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10408    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10409      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10410        NewClassTy = NewRT->getPointeeType();
10411        OldClassTy = OldRT->getPointeeType();
10412      }
10413    }
10414  }
10415
10416  // The return types aren't either both pointers or references to a class type.
10417  if (NewClassTy.isNull()) {
10418    Diag(New->getLocation(),
10419         diag::err_different_return_type_for_overriding_virtual_function)
10420      << New->getDeclName() << NewTy << OldTy;
10421    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10422
10423    return true;
10424  }
10425
10426  // C++ [class.virtual]p6:
10427  //   If the return type of D::f differs from the return type of B::f, the
10428  //   class type in the return type of D::f shall be complete at the point of
10429  //   declaration of D::f or shall be the class type D.
10430  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10431    if (!RT->isBeingDefined() &&
10432        RequireCompleteType(New->getLocation(), NewClassTy,
10433                            PDiag(diag::err_covariant_return_incomplete)
10434                              << New->getDeclName()))
10435    return true;
10436  }
10437
10438  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10439    // Check if the new class derives from the old class.
10440    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10441      Diag(New->getLocation(),
10442           diag::err_covariant_return_not_derived)
10443      << New->getDeclName() << NewTy << OldTy;
10444      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10445      return true;
10446    }
10447
10448    // Check if we the conversion from derived to base is valid.
10449    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10450                    diag::err_covariant_return_inaccessible_base,
10451                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10452                    // FIXME: Should this point to the return type?
10453                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10454      // FIXME: this note won't trigger for delayed access control
10455      // diagnostics, and it's impossible to get an undelayed error
10456      // here from access control during the original parse because
10457      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10458      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10459      return true;
10460    }
10461  }
10462
10463  // The qualifiers of the return types must be the same.
10464  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10465    Diag(New->getLocation(),
10466         diag::err_covariant_return_type_different_qualifications)
10467    << New->getDeclName() << NewTy << OldTy;
10468    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10469    return true;
10470  };
10471
10472
10473  // The new class type must have the same or less qualifiers as the old type.
10474  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10475    Diag(New->getLocation(),
10476         diag::err_covariant_return_type_class_type_more_qualified)
10477    << New->getDeclName() << NewTy << OldTy;
10478    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10479    return true;
10480  };
10481
10482  return false;
10483}
10484
10485/// \brief Mark the given method pure.
10486///
10487/// \param Method the method to be marked pure.
10488///
10489/// \param InitRange the source range that covers the "0" initializer.
10490bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10491  SourceLocation EndLoc = InitRange.getEnd();
10492  if (EndLoc.isValid())
10493    Method->setRangeEnd(EndLoc);
10494
10495  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10496    Method->setPure();
10497    return false;
10498  }
10499
10500  if (!Method->isInvalidDecl())
10501    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10502      << Method->getDeclName() << InitRange;
10503  return true;
10504}
10505
10506/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10507/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10508/// is a fresh scope pushed for just this purpose.
10509///
10510/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10511/// static data member of class X, names should be looked up in the scope of
10512/// class X.
10513void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10514  // If there is no declaration, there was an error parsing it.
10515  if (D == 0 || D->isInvalidDecl()) return;
10516
10517  // We should only get called for declarations with scope specifiers, like:
10518  //   int foo::bar;
10519  assert(D->isOutOfLine());
10520  EnterDeclaratorContext(S, D->getDeclContext());
10521}
10522
10523/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10524/// initializer for the out-of-line declaration 'D'.
10525void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10526  // If there is no declaration, there was an error parsing it.
10527  if (D == 0 || D->isInvalidDecl()) return;
10528
10529  assert(D->isOutOfLine());
10530  ExitDeclaratorContext(S);
10531}
10532
10533/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10534/// C++ if/switch/while/for statement.
10535/// e.g: "if (int x = f()) {...}"
10536DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10537  // C++ 6.4p2:
10538  // The declarator shall not specify a function or an array.
10539  // The type-specifier-seq shall not contain typedef and shall not declare a
10540  // new class or enumeration.
10541  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10542         "Parser allowed 'typedef' as storage class of condition decl.");
10543
10544  Decl *Dcl = ActOnDeclarator(S, D);
10545  if (!Dcl)
10546    return true;
10547
10548  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10549    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10550      << D.getSourceRange();
10551    return true;
10552  }
10553
10554  return Dcl;
10555}
10556
10557void Sema::LoadExternalVTableUses() {
10558  if (!ExternalSource)
10559    return;
10560
10561  SmallVector<ExternalVTableUse, 4> VTables;
10562  ExternalSource->ReadUsedVTables(VTables);
10563  SmallVector<VTableUse, 4> NewUses;
10564  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10565    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10566      = VTablesUsed.find(VTables[I].Record);
10567    // Even if a definition wasn't required before, it may be required now.
10568    if (Pos != VTablesUsed.end()) {
10569      if (!Pos->second && VTables[I].DefinitionRequired)
10570        Pos->second = true;
10571      continue;
10572    }
10573
10574    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10575    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10576  }
10577
10578  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10579}
10580
10581void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10582                          bool DefinitionRequired) {
10583  // Ignore any vtable uses in unevaluated operands or for classes that do
10584  // not have a vtable.
10585  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10586      CurContext->isDependentContext() ||
10587      ExprEvalContexts.back().Context == Unevaluated ||
10588      ExprEvalContexts.back().Context == ConstantEvaluated)
10589    return;
10590
10591  // Try to insert this class into the map.
10592  LoadExternalVTableUses();
10593  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10594  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10595    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10596  if (!Pos.second) {
10597    // If we already had an entry, check to see if we are promoting this vtable
10598    // to required a definition. If so, we need to reappend to the VTableUses
10599    // list, since we may have already processed the first entry.
10600    if (DefinitionRequired && !Pos.first->second) {
10601      Pos.first->second = true;
10602    } else {
10603      // Otherwise, we can early exit.
10604      return;
10605    }
10606  }
10607
10608  // Local classes need to have their virtual members marked
10609  // immediately. For all other classes, we mark their virtual members
10610  // at the end of the translation unit.
10611  if (Class->isLocalClass())
10612    MarkVirtualMembersReferenced(Loc, Class);
10613  else
10614    VTableUses.push_back(std::make_pair(Class, Loc));
10615}
10616
10617bool Sema::DefineUsedVTables() {
10618  LoadExternalVTableUses();
10619  if (VTableUses.empty())
10620    return false;
10621
10622  // Note: The VTableUses vector could grow as a result of marking
10623  // the members of a class as "used", so we check the size each
10624  // time through the loop and prefer indices (with are stable) to
10625  // iterators (which are not).
10626  bool DefinedAnything = false;
10627  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10628    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10629    if (!Class)
10630      continue;
10631
10632    SourceLocation Loc = VTableUses[I].second;
10633
10634    // If this class has a key function, but that key function is
10635    // defined in another translation unit, we don't need to emit the
10636    // vtable even though we're using it.
10637    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10638    if (KeyFunction && !KeyFunction->hasBody()) {
10639      switch (KeyFunction->getTemplateSpecializationKind()) {
10640      case TSK_Undeclared:
10641      case TSK_ExplicitSpecialization:
10642      case TSK_ExplicitInstantiationDeclaration:
10643        // The key function is in another translation unit.
10644        continue;
10645
10646      case TSK_ExplicitInstantiationDefinition:
10647      case TSK_ImplicitInstantiation:
10648        // We will be instantiating the key function.
10649        break;
10650      }
10651    } else if (!KeyFunction) {
10652      // If we have a class with no key function that is the subject
10653      // of an explicit instantiation declaration, suppress the
10654      // vtable; it will live with the explicit instantiation
10655      // definition.
10656      bool IsExplicitInstantiationDeclaration
10657        = Class->getTemplateSpecializationKind()
10658                                      == TSK_ExplicitInstantiationDeclaration;
10659      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10660                                 REnd = Class->redecls_end();
10661           R != REnd; ++R) {
10662        TemplateSpecializationKind TSK
10663          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10664        if (TSK == TSK_ExplicitInstantiationDeclaration)
10665          IsExplicitInstantiationDeclaration = true;
10666        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10667          IsExplicitInstantiationDeclaration = false;
10668          break;
10669        }
10670      }
10671
10672      if (IsExplicitInstantiationDeclaration)
10673        continue;
10674    }
10675
10676    // Mark all of the virtual members of this class as referenced, so
10677    // that we can build a vtable. Then, tell the AST consumer that a
10678    // vtable for this class is required.
10679    DefinedAnything = true;
10680    MarkVirtualMembersReferenced(Loc, Class);
10681    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10682    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10683
10684    // Optionally warn if we're emitting a weak vtable.
10685    if (Class->getLinkage() == ExternalLinkage &&
10686        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10687      const FunctionDecl *KeyFunctionDef = 0;
10688      if (!KeyFunction ||
10689          (KeyFunction->hasBody(KeyFunctionDef) &&
10690           KeyFunctionDef->isInlined()))
10691        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10692             TSK_ExplicitInstantiationDefinition
10693             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10694          << Class;
10695    }
10696  }
10697  VTableUses.clear();
10698
10699  return DefinedAnything;
10700}
10701
10702void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10703                                        const CXXRecordDecl *RD) {
10704  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10705       e = RD->method_end(); i != e; ++i) {
10706    CXXMethodDecl *MD = *i;
10707
10708    // C++ [basic.def.odr]p2:
10709    //   [...] A virtual member function is used if it is not pure. [...]
10710    if (MD->isVirtual() && !MD->isPure())
10711      MarkDeclarationReferenced(Loc, MD);
10712  }
10713
10714  // Only classes that have virtual bases need a VTT.
10715  if (RD->getNumVBases() == 0)
10716    return;
10717
10718  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10719           e = RD->bases_end(); i != e; ++i) {
10720    const CXXRecordDecl *Base =
10721        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10722    if (Base->getNumVBases() == 0)
10723      continue;
10724    MarkVirtualMembersReferenced(Loc, Base);
10725  }
10726}
10727
10728/// SetIvarInitializers - This routine builds initialization ASTs for the
10729/// Objective-C implementation whose ivars need be initialized.
10730void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10731  if (!getLangOptions().CPlusPlus)
10732    return;
10733  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10734    SmallVector<ObjCIvarDecl*, 8> ivars;
10735    CollectIvarsToConstructOrDestruct(OID, ivars);
10736    if (ivars.empty())
10737      return;
10738    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10739    for (unsigned i = 0; i < ivars.size(); i++) {
10740      FieldDecl *Field = ivars[i];
10741      if (Field->isInvalidDecl())
10742        continue;
10743
10744      CXXCtorInitializer *Member;
10745      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10746      InitializationKind InitKind =
10747        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10748
10749      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10750      ExprResult MemberInit =
10751        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10752      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10753      // Note, MemberInit could actually come back empty if no initialization
10754      // is required (e.g., because it would call a trivial default constructor)
10755      if (!MemberInit.get() || MemberInit.isInvalid())
10756        continue;
10757
10758      Member =
10759        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10760                                         SourceLocation(),
10761                                         MemberInit.takeAs<Expr>(),
10762                                         SourceLocation());
10763      AllToInit.push_back(Member);
10764
10765      // Be sure that the destructor is accessible and is marked as referenced.
10766      if (const RecordType *RecordTy
10767                  = Context.getBaseElementType(Field->getType())
10768                                                        ->getAs<RecordType>()) {
10769                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10770        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10771          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10772          CheckDestructorAccess(Field->getLocation(), Destructor,
10773                            PDiag(diag::err_access_dtor_ivar)
10774                              << Context.getBaseElementType(Field->getType()));
10775        }
10776      }
10777    }
10778    ObjCImplementation->setIvarInitializers(Context,
10779                                            AllToInit.data(), AllToInit.size());
10780  }
10781}
10782
10783static
10784void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10785                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10786                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10787                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10788                           Sema &S) {
10789  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10790                                                   CE = Current.end();
10791  if (Ctor->isInvalidDecl())
10792    return;
10793
10794  const FunctionDecl *FNTarget = 0;
10795  CXXConstructorDecl *Target;
10796
10797  // We ignore the result here since if we don't have a body, Target will be
10798  // null below.
10799  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10800  Target
10801= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10802
10803  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10804                     // Avoid dereferencing a null pointer here.
10805                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10806
10807  if (!Current.insert(Canonical))
10808    return;
10809
10810  // We know that beyond here, we aren't chaining into a cycle.
10811  if (!Target || !Target->isDelegatingConstructor() ||
10812      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10813    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10814      Valid.insert(*CI);
10815    Current.clear();
10816  // We've hit a cycle.
10817  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10818             Current.count(TCanonical)) {
10819    // If we haven't diagnosed this cycle yet, do so now.
10820    if (!Invalid.count(TCanonical)) {
10821      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10822             diag::warn_delegating_ctor_cycle)
10823        << Ctor;
10824
10825      // Don't add a note for a function delegating directo to itself.
10826      if (TCanonical != Canonical)
10827        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10828
10829      CXXConstructorDecl *C = Target;
10830      while (C->getCanonicalDecl() != Canonical) {
10831        (void)C->getTargetConstructor()->hasBody(FNTarget);
10832        assert(FNTarget && "Ctor cycle through bodiless function");
10833
10834        C
10835       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10836        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10837      }
10838    }
10839
10840    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10841      Invalid.insert(*CI);
10842    Current.clear();
10843  } else {
10844    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10845  }
10846}
10847
10848
10849void Sema::CheckDelegatingCtorCycles() {
10850  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10851
10852  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10853                                                   CE = Current.end();
10854
10855  for (DelegatingCtorDeclsType::iterator
10856         I = DelegatingCtorDecls.begin(ExternalSource),
10857         E = DelegatingCtorDecls.end();
10858       I != E; ++I) {
10859   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10860  }
10861
10862  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10863    (*CI)->setInvalidDecl();
10864}
10865
10866/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10867Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10868  // Implicitly declared functions (e.g. copy constructors) are
10869  // __host__ __device__
10870  if (D->isImplicit())
10871    return CFT_HostDevice;
10872
10873  if (D->hasAttr<CUDAGlobalAttr>())
10874    return CFT_Global;
10875
10876  if (D->hasAttr<CUDADeviceAttr>()) {
10877    if (D->hasAttr<CUDAHostAttr>())
10878      return CFT_HostDevice;
10879    else
10880      return CFT_Device;
10881  }
10882
10883  return CFT_Host;
10884}
10885
10886bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10887                           CUDAFunctionTarget CalleeTarget) {
10888  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10889  // Callable from the device only."
10890  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10891    return true;
10892
10893  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10894  // Callable from the host only."
10895  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10896  // Callable from the host only."
10897  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10898      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10899    return true;
10900
10901  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10902    return true;
10903
10904  return false;
10905}
10906