SemaDeclCXX.cpp revision 6f7a17b718385464966251ee421b314570d32731
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(
360          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
361          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        if (!Param->hasUnparsedDefaultArg())
414          Param->getDefaultArg()->Destroy(Context);
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl && CurDecl->getIdentifier())
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         QualType BaseType,
451                         SourceLocation BaseLoc) {
452  // C++ [class.union]p1:
453  //   A union shall not have base classes.
454  if (Class->isUnion()) {
455    Diag(Class->getLocation(), diag::err_base_clause_on_union)
456      << SpecifierRange;
457    return 0;
458  }
459
460  if (BaseType->isDependentType())
461    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
462                                Class->getTagKind() == RecordDecl::TK_class,
463                                Access, BaseType);
464
465  // Base specifiers must be record types.
466  if (!BaseType->isRecordType()) {
467    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
468    return 0;
469  }
470
471  // C++ [class.union]p1:
472  //   A union shall not be used as a base class.
473  if (BaseType->isUnionType()) {
474    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
475    return 0;
476  }
477
478  // C++ [class.derived]p2:
479  //   The class-name in a base-specifier shall not be an incompletely
480  //   defined class.
481  if (RequireCompleteType(BaseLoc, BaseType,
482                          PDiag(diag::err_incomplete_base_class)
483                            << SpecifierRange))
484    return 0;
485
486  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
487  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
488  assert(BaseDecl && "Record type has no declaration");
489  BaseDecl = BaseDecl->getDefinition(Context);
490  assert(BaseDecl && "Base type is not incomplete, but has no definition");
491  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
492  assert(CXXBaseDecl && "Base type is not a C++ type");
493
494  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
495  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
496    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
497    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
498      << BaseType;
499    return 0;
500  }
501
502  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
503
504  // Create the base specifier.
505  // FIXME: Allocate via ASTContext?
506  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
507                              Class->getTagKind() == RecordDecl::TK_class,
508                              Access, BaseType);
509}
510
511void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
512                                          const CXXRecordDecl *BaseClass,
513                                          bool BaseIsVirtual) {
514  // A class with a non-empty base class is not empty.
515  // FIXME: Standard ref?
516  if (!BaseClass->isEmpty())
517    Class->setEmpty(false);
518
519  // C++ [class.virtual]p1:
520  //   A class that [...] inherits a virtual function is called a polymorphic
521  //   class.
522  if (BaseClass->isPolymorphic())
523    Class->setPolymorphic(true);
524
525  // C++ [dcl.init.aggr]p1:
526  //   An aggregate is [...] a class with [...] no base classes [...].
527  Class->setAggregate(false);
528
529  // C++ [class]p4:
530  //   A POD-struct is an aggregate class...
531  Class->setPOD(false);
532
533  if (BaseIsVirtual) {
534    // C++ [class.ctor]p5:
535    //   A constructor is trivial if its class has no virtual base classes.
536    Class->setHasTrivialConstructor(false);
537
538    // C++ [class.copy]p6:
539    //   A copy constructor is trivial if its class has no virtual base classes.
540    Class->setHasTrivialCopyConstructor(false);
541
542    // C++ [class.copy]p11:
543    //   A copy assignment operator is trivial if its class has no virtual
544    //   base classes.
545    Class->setHasTrivialCopyAssignment(false);
546
547    // C++0x [meta.unary.prop] is_empty:
548    //    T is a class type, but not a union type, with ... no virtual base
549    //    classes
550    Class->setEmpty(false);
551  } else {
552    // C++ [class.ctor]p5:
553    //   A constructor is trivial if all the direct base classes of its
554    //   class have trivial constructors.
555    if (!BaseClass->hasTrivialConstructor())
556      Class->setHasTrivialConstructor(false);
557
558    // C++ [class.copy]p6:
559    //   A copy constructor is trivial if all the direct base classes of its
560    //   class have trivial copy constructors.
561    if (!BaseClass->hasTrivialCopyConstructor())
562      Class->setHasTrivialCopyConstructor(false);
563
564    // C++ [class.copy]p11:
565    //   A copy assignment operator is trivial if all the direct base classes
566    //   of its class have trivial copy assignment operators.
567    if (!BaseClass->hasTrivialCopyAssignment())
568      Class->setHasTrivialCopyAssignment(false);
569  }
570
571  // C++ [class.ctor]p3:
572  //   A destructor is trivial if all the direct base classes of its class
573  //   have trivial destructors.
574  if (!BaseClass->hasTrivialDestructor())
575    Class->setHasTrivialDestructor(false);
576}
577
578/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
579/// one entry in the base class list of a class specifier, for
580/// example:
581///    class foo : public bar, virtual private baz {
582/// 'public bar' and 'virtual private baz' are each base-specifiers.
583Sema::BaseResult
584Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
585                         bool Virtual, AccessSpecifier Access,
586                         TypeTy *basetype, SourceLocation BaseLoc) {
587  if (!classdecl)
588    return true;
589
590  AdjustDeclIfTemplate(classdecl);
591  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
592  QualType BaseType = GetTypeFromParser(basetype);
593  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
594                                                      Virtual, Access,
595                                                      BaseType, BaseLoc))
596    return BaseSpec;
597
598  return true;
599}
600
601/// \brief Performs the actual work of attaching the given base class
602/// specifiers to a C++ class.
603bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
604                                unsigned NumBases) {
605 if (NumBases == 0)
606    return false;
607
608  // Used to keep track of which base types we have already seen, so
609  // that we can properly diagnose redundant direct base types. Note
610  // that the key is always the unqualified canonical type of the base
611  // class.
612  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
613
614  // Copy non-redundant base specifiers into permanent storage.
615  unsigned NumGoodBases = 0;
616  bool Invalid = false;
617  for (unsigned idx = 0; idx < NumBases; ++idx) {
618    QualType NewBaseType
619      = Context.getCanonicalType(Bases[idx]->getType());
620    NewBaseType = NewBaseType.getLocalUnqualifiedType();
621
622    if (KnownBaseTypes[NewBaseType]) {
623      // C++ [class.mi]p3:
624      //   A class shall not be specified as a direct base class of a
625      //   derived class more than once.
626      Diag(Bases[idx]->getSourceRange().getBegin(),
627           diag::err_duplicate_base_class)
628        << KnownBaseTypes[NewBaseType]->getType()
629        << Bases[idx]->getSourceRange();
630
631      // Delete the duplicate base class specifier; we're going to
632      // overwrite its pointer later.
633      Context.Deallocate(Bases[idx]);
634
635      Invalid = true;
636    } else {
637      // Okay, add this new base class.
638      KnownBaseTypes[NewBaseType] = Bases[idx];
639      Bases[NumGoodBases++] = Bases[idx];
640    }
641  }
642
643  // Attach the remaining base class specifiers to the derived class.
644  Class->setBases(Context, Bases, NumGoodBases);
645
646  // Delete the remaining (good) base class specifiers, since their
647  // data has been copied into the CXXRecordDecl.
648  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
649    Context.Deallocate(Bases[idx]);
650
651  return Invalid;
652}
653
654/// ActOnBaseSpecifiers - Attach the given base specifiers to the
655/// class, after checking whether there are any duplicate base
656/// classes.
657void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
658                               unsigned NumBases) {
659  if (!ClassDecl || !Bases || !NumBases)
660    return;
661
662  AdjustDeclIfTemplate(ClassDecl);
663  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
664                       (CXXBaseSpecifier**)(Bases), NumBases);
665}
666
667/// \brief Determine whether the type \p Derived is a C++ class that is
668/// derived from the type \p Base.
669bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
670  if (!getLangOptions().CPlusPlus)
671    return false;
672
673  const RecordType *DerivedRT = Derived->getAs<RecordType>();
674  if (!DerivedRT)
675    return false;
676
677  const RecordType *BaseRT = Base->getAs<RecordType>();
678  if (!BaseRT)
679    return false;
680
681  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
682  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
683  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
684  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
685}
686
687/// \brief Determine whether the type \p Derived is a C++ class that is
688/// derived from the type \p Base.
689bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
690  if (!getLangOptions().CPlusPlus)
691    return false;
692
693  const RecordType *DerivedRT = Derived->getAs<RecordType>();
694  if (!DerivedRT)
695    return false;
696
697  const RecordType *BaseRT = Base->getAs<RecordType>();
698  if (!BaseRT)
699    return false;
700
701  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
702  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
703  return DerivedRD->isDerivedFrom(BaseRD, Paths);
704}
705
706/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
707/// conversion (where Derived and Base are class types) is
708/// well-formed, meaning that the conversion is unambiguous (and
709/// that all of the base classes are accessible). Returns true
710/// and emits a diagnostic if the code is ill-formed, returns false
711/// otherwise. Loc is the location where this routine should point to
712/// if there is an error, and Range is the source range to highlight
713/// if there is an error.
714bool
715Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
716                                   unsigned InaccessibleBaseID,
717                                   unsigned AmbigiousBaseConvID,
718                                   SourceLocation Loc, SourceRange Range,
719                                   DeclarationName Name) {
720  // First, determine whether the path from Derived to Base is
721  // ambiguous. This is slightly more expensive than checking whether
722  // the Derived to Base conversion exists, because here we need to
723  // explore multiple paths to determine if there is an ambiguity.
724  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
725                     /*DetectVirtual=*/false);
726  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
727  assert(DerivationOkay &&
728         "Can only be used with a derived-to-base conversion");
729  (void)DerivationOkay;
730
731  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
732    if (InaccessibleBaseID == 0)
733      return false;
734    // Check that the base class can be accessed.
735    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
736                                Name);
737  }
738
739  // We know that the derived-to-base conversion is ambiguous, and
740  // we're going to produce a diagnostic. Perform the derived-to-base
741  // search just one more time to compute all of the possible paths so
742  // that we can print them out. This is more expensive than any of
743  // the previous derived-to-base checks we've done, but at this point
744  // performance isn't as much of an issue.
745  Paths.clear();
746  Paths.setRecordingPaths(true);
747  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
748  assert(StillOkay && "Can only be used with a derived-to-base conversion");
749  (void)StillOkay;
750
751  // Build up a textual representation of the ambiguous paths, e.g.,
752  // D -> B -> A, that will be used to illustrate the ambiguous
753  // conversions in the diagnostic. We only print one of the paths
754  // to each base class subobject.
755  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
756
757  Diag(Loc, AmbigiousBaseConvID)
758  << Derived << Base << PathDisplayStr << Range << Name;
759  return true;
760}
761
762bool
763Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
764                                   SourceLocation Loc, SourceRange Range,
765                                   bool IgnoreAccess) {
766  return CheckDerivedToBaseConversion(Derived, Base,
767                                      IgnoreAccess ? 0 :
768                                        diag::err_conv_to_inaccessible_base,
769                                      diag::err_ambiguous_derived_to_base_conv,
770                                      Loc, Range, DeclarationName());
771}
772
773
774/// @brief Builds a string representing ambiguous paths from a
775/// specific derived class to different subobjects of the same base
776/// class.
777///
778/// This function builds a string that can be used in error messages
779/// to show the different paths that one can take through the
780/// inheritance hierarchy to go from the derived class to different
781/// subobjects of a base class. The result looks something like this:
782/// @code
783/// struct D -> struct B -> struct A
784/// struct D -> struct C -> struct A
785/// @endcode
786std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
787  std::string PathDisplayStr;
788  std::set<unsigned> DisplayedPaths;
789  for (CXXBasePaths::paths_iterator Path = Paths.begin();
790       Path != Paths.end(); ++Path) {
791    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
792      // We haven't displayed a path to this particular base
793      // class subobject yet.
794      PathDisplayStr += "\n    ";
795      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
796      for (CXXBasePath::const_iterator Element = Path->begin();
797           Element != Path->end(); ++Element)
798        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
799    }
800  }
801
802  return PathDisplayStr;
803}
804
805//===----------------------------------------------------------------------===//
806// C++ class member Handling
807//===----------------------------------------------------------------------===//
808
809/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
810/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
811/// bitfield width if there is one and 'InitExpr' specifies the initializer if
812/// any.
813Sema::DeclPtrTy
814Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
815                               MultiTemplateParamsArg TemplateParameterLists,
816                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
817                               bool Deleted) {
818  const DeclSpec &DS = D.getDeclSpec();
819  DeclarationName Name = GetNameForDeclarator(D);
820  Expr *BitWidth = static_cast<Expr*>(BW);
821  Expr *Init = static_cast<Expr*>(InitExpr);
822  SourceLocation Loc = D.getIdentifierLoc();
823
824  bool isFunc = D.isFunctionDeclarator();
825
826  assert(!DS.isFriendSpecified());
827
828  // C++ 9.2p6: A member shall not be declared to have automatic storage
829  // duration (auto, register) or with the extern storage-class-specifier.
830  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
831  // data members and cannot be applied to names declared const or static,
832  // and cannot be applied to reference members.
833  switch (DS.getStorageClassSpec()) {
834    case DeclSpec::SCS_unspecified:
835    case DeclSpec::SCS_typedef:
836    case DeclSpec::SCS_static:
837      // FALL THROUGH.
838      break;
839    case DeclSpec::SCS_mutable:
840      if (isFunc) {
841        if (DS.getStorageClassSpecLoc().isValid())
842          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
843        else
844          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
845
846        // FIXME: It would be nicer if the keyword was ignored only for this
847        // declarator. Otherwise we could get follow-up errors.
848        D.getMutableDeclSpec().ClearStorageClassSpecs();
849      } else {
850        QualType T = GetTypeForDeclarator(D, S);
851        diag::kind err = static_cast<diag::kind>(0);
852        if (T->isReferenceType())
853          err = diag::err_mutable_reference;
854        else if (T.isConstQualified())
855          err = diag::err_mutable_const;
856        if (err != 0) {
857          if (DS.getStorageClassSpecLoc().isValid())
858            Diag(DS.getStorageClassSpecLoc(), err);
859          else
860            Diag(DS.getThreadSpecLoc(), err);
861          // FIXME: It would be nicer if the keyword was ignored only for this
862          // declarator. Otherwise we could get follow-up errors.
863          D.getMutableDeclSpec().ClearStorageClassSpecs();
864        }
865      }
866      break;
867    default:
868      if (DS.getStorageClassSpecLoc().isValid())
869        Diag(DS.getStorageClassSpecLoc(),
870             diag::err_storageclass_invalid_for_member);
871      else
872        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
873      D.getMutableDeclSpec().ClearStorageClassSpecs();
874  }
875
876  if (!isFunc &&
877      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
878      D.getNumTypeObjects() == 0) {
879    // Check also for this case:
880    //
881    // typedef int f();
882    // f a;
883    //
884    QualType TDType = GetTypeFromParser(DS.getTypeRep());
885    isFunc = TDType->isFunctionType();
886  }
887
888  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
889                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
890                      !isFunc);
891
892  Decl *Member;
893  if (isInstField) {
894    // FIXME: Check for template parameters!
895    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
896                         AS);
897    assert(Member && "HandleField never returns null");
898  } else {
899    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
900               .getAs<Decl>();
901    if (!Member) {
902      if (BitWidth) DeleteExpr(BitWidth);
903      return DeclPtrTy();
904    }
905
906    // Non-instance-fields can't have a bitfield.
907    if (BitWidth) {
908      if (Member->isInvalidDecl()) {
909        // don't emit another diagnostic.
910      } else if (isa<VarDecl>(Member)) {
911        // C++ 9.6p3: A bit-field shall not be a static member.
912        // "static member 'A' cannot be a bit-field"
913        Diag(Loc, diag::err_static_not_bitfield)
914          << Name << BitWidth->getSourceRange();
915      } else if (isa<TypedefDecl>(Member)) {
916        // "typedef member 'x' cannot be a bit-field"
917        Diag(Loc, diag::err_typedef_not_bitfield)
918          << Name << BitWidth->getSourceRange();
919      } else {
920        // A function typedef ("typedef int f(); f a;").
921        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
922        Diag(Loc, diag::err_not_integral_type_bitfield)
923          << Name << cast<ValueDecl>(Member)->getType()
924          << BitWidth->getSourceRange();
925      }
926
927      DeleteExpr(BitWidth);
928      BitWidth = 0;
929      Member->setInvalidDecl();
930    }
931
932    Member->setAccess(AS);
933
934    // If we have declared a member function template, set the access of the
935    // templated declaration as well.
936    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
937      FunTmpl->getTemplatedDecl()->setAccess(AS);
938  }
939
940  assert((Name || isInstField) && "No identifier for non-field ?");
941
942  if (Init)
943    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
944  if (Deleted) // FIXME: Source location is not very good.
945    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
946
947  if (isInstField) {
948    FieldCollector->Add(cast<FieldDecl>(Member));
949    return DeclPtrTy();
950  }
951  return DeclPtrTy::make(Member);
952}
953
954/// \brief Find the direct and/or virtual base specifiers that
955/// correspond to the given base type, for use in base initialization
956/// within a constructor.
957static bool FindBaseInitializer(Sema &SemaRef,
958                                CXXRecordDecl *ClassDecl,
959                                QualType BaseType,
960                                const CXXBaseSpecifier *&DirectBaseSpec,
961                                const CXXBaseSpecifier *&VirtualBaseSpec) {
962  // First, check for a direct base class.
963  DirectBaseSpec = 0;
964  for (CXXRecordDecl::base_class_const_iterator Base
965         = ClassDecl->bases_begin();
966       Base != ClassDecl->bases_end(); ++Base) {
967    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
968      // We found a direct base of this type. That's what we're
969      // initializing.
970      DirectBaseSpec = &*Base;
971      break;
972    }
973  }
974
975  // Check for a virtual base class.
976  // FIXME: We might be able to short-circuit this if we know in advance that
977  // there are no virtual bases.
978  VirtualBaseSpec = 0;
979  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
980    // We haven't found a base yet; search the class hierarchy for a
981    // virtual base class.
982    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
983                       /*DetectVirtual=*/false);
984    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
985                              BaseType, Paths)) {
986      for (CXXBasePaths::paths_iterator Path = Paths.begin();
987           Path != Paths.end(); ++Path) {
988        if (Path->back().Base->isVirtual()) {
989          VirtualBaseSpec = Path->back().Base;
990          break;
991        }
992      }
993    }
994  }
995
996  return DirectBaseSpec || VirtualBaseSpec;
997}
998
999/// ActOnMemInitializer - Handle a C++ member initializer.
1000Sema::MemInitResult
1001Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1002                          Scope *S,
1003                          const CXXScopeSpec &SS,
1004                          IdentifierInfo *MemberOrBase,
1005                          TypeTy *TemplateTypeTy,
1006                          SourceLocation IdLoc,
1007                          SourceLocation LParenLoc,
1008                          ExprTy **Args, unsigned NumArgs,
1009                          SourceLocation *CommaLocs,
1010                          SourceLocation RParenLoc) {
1011  if (!ConstructorD)
1012    return true;
1013
1014  AdjustDeclIfTemplate(ConstructorD);
1015
1016  CXXConstructorDecl *Constructor
1017    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1018  if (!Constructor) {
1019    // The user wrote a constructor initializer on a function that is
1020    // not a C++ constructor. Ignore the error for now, because we may
1021    // have more member initializers coming; we'll diagnose it just
1022    // once in ActOnMemInitializers.
1023    return true;
1024  }
1025
1026  CXXRecordDecl *ClassDecl = Constructor->getParent();
1027
1028  // C++ [class.base.init]p2:
1029  //   Names in a mem-initializer-id are looked up in the scope of the
1030  //   constructor’s class and, if not found in that scope, are looked
1031  //   up in the scope containing the constructor’s
1032  //   definition. [Note: if the constructor’s class contains a member
1033  //   with the same name as a direct or virtual base class of the
1034  //   class, a mem-initializer-id naming the member or base class and
1035  //   composed of a single identifier refers to the class member. A
1036  //   mem-initializer-id for the hidden base class may be specified
1037  //   using a qualified name. ]
1038  if (!SS.getScopeRep() && !TemplateTypeTy) {
1039    // Look for a member, first.
1040    FieldDecl *Member = 0;
1041    DeclContext::lookup_result Result
1042      = ClassDecl->lookup(MemberOrBase);
1043    if (Result.first != Result.second)
1044      Member = dyn_cast<FieldDecl>(*Result.first);
1045
1046    // FIXME: Handle members of an anonymous union.
1047
1048    if (Member)
1049      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1050                                    LParenLoc, RParenLoc);
1051  }
1052  // It didn't name a member, so see if it names a class.
1053  QualType BaseType;
1054  TypeSourceInfo *TInfo = 0;
1055
1056  if (TemplateTypeTy) {
1057    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1058  } else {
1059    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1060    LookupParsedName(R, S, &SS);
1061
1062    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1063    if (!TyD) {
1064      if (R.isAmbiguous()) return true;
1065
1066      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1067        bool NotUnknownSpecialization = false;
1068        DeclContext *DC = computeDeclContext(SS, false);
1069        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1070          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1071
1072        if (!NotUnknownSpecialization) {
1073          // When the scope specifier can refer to a member of an unknown
1074          // specialization, we take it as a type name.
1075          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1076                                       *MemberOrBase, SS.getRange());
1077          R.clear();
1078        }
1079      }
1080
1081      // If no results were found, try to correct typos.
1082      if (R.empty() && BaseType.isNull() &&
1083          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1084        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1085          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1086            // We have found a non-static data member with a similar
1087            // name to what was typed; complain and initialize that
1088            // member.
1089            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1090              << MemberOrBase << true << R.getLookupName()
1091              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1092                                               R.getLookupName().getAsString());
1093            Diag(Member->getLocation(), diag::note_previous_decl)
1094              << Member->getDeclName();
1095
1096            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1097                                          LParenLoc, RParenLoc);
1098          }
1099        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1100          const CXXBaseSpecifier *DirectBaseSpec;
1101          const CXXBaseSpecifier *VirtualBaseSpec;
1102          if (FindBaseInitializer(*this, ClassDecl,
1103                                  Context.getTypeDeclType(Type),
1104                                  DirectBaseSpec, VirtualBaseSpec)) {
1105            // We have found a direct or virtual base class with a
1106            // similar name to what was typed; complain and initialize
1107            // that base class.
1108            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1109              << MemberOrBase << false << R.getLookupName()
1110              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1111                                               R.getLookupName().getAsString());
1112
1113            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1114                                                             : VirtualBaseSpec;
1115            Diag(BaseSpec->getSourceRange().getBegin(),
1116                 diag::note_base_class_specified_here)
1117              << BaseSpec->getType()
1118              << BaseSpec->getSourceRange();
1119
1120            TyD = Type;
1121          }
1122        }
1123      }
1124
1125      if (!TyD && BaseType.isNull()) {
1126        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1127          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1128        return true;
1129      }
1130    }
1131
1132    if (BaseType.isNull()) {
1133      BaseType = Context.getTypeDeclType(TyD);
1134      if (SS.isSet()) {
1135        NestedNameSpecifier *Qualifier =
1136          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1137
1138        // FIXME: preserve source range information
1139        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1140      }
1141    }
1142  }
1143
1144  if (!TInfo)
1145    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1146
1147  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1148                              LParenLoc, RParenLoc, ClassDecl);
1149}
1150
1151/// Checks an initializer expression for use of uninitialized fields, such as
1152/// containing the field that is being initialized. Returns true if there is an
1153/// uninitialized field was used an updates the SourceLocation parameter; false
1154/// otherwise.
1155static bool InitExprContainsUninitializedFields(const Stmt* S,
1156                                                const FieldDecl* LhsField,
1157                                                SourceLocation* L) {
1158  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1159  if (ME) {
1160    const NamedDecl* RhsField = ME->getMemberDecl();
1161    if (RhsField == LhsField) {
1162      // Initializing a field with itself. Throw a warning.
1163      // But wait; there are exceptions!
1164      // Exception #1:  The field may not belong to this record.
1165      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1166      const Expr* base = ME->getBase();
1167      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1168        // Even though the field matches, it does not belong to this record.
1169        return false;
1170      }
1171      // None of the exceptions triggered; return true to indicate an
1172      // uninitialized field was used.
1173      *L = ME->getMemberLoc();
1174      return true;
1175    }
1176  }
1177  bool found = false;
1178  for (Stmt::const_child_iterator it = S->child_begin();
1179       it != S->child_end() && found == false;
1180       ++it) {
1181    if (isa<CallExpr>(S)) {
1182      // Do not descend into function calls or constructors, as the use
1183      // of an uninitialized field may be valid. One would have to inspect
1184      // the contents of the function/ctor to determine if it is safe or not.
1185      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1186      // may be safe, depending on what the function/ctor does.
1187      continue;
1188    }
1189    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1190  }
1191  return found;
1192}
1193
1194Sema::MemInitResult
1195Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1196                             unsigned NumArgs, SourceLocation IdLoc,
1197                             SourceLocation LParenLoc,
1198                             SourceLocation RParenLoc) {
1199  // Diagnose value-uses of fields to initialize themselves, e.g.
1200  //   foo(foo)
1201  // where foo is not also a parameter to the constructor.
1202  // TODO: implement -Wuninitialized and fold this into that framework.
1203  for (unsigned i = 0; i < NumArgs; ++i) {
1204    SourceLocation L;
1205    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1206      // FIXME: Return true in the case when other fields are used before being
1207      // uninitialized. For example, let this field be the i'th field. When
1208      // initializing the i'th field, throw a warning if any of the >= i'th
1209      // fields are used, as they are not yet initialized.
1210      // Right now we are only handling the case where the i'th field uses
1211      // itself in its initializer.
1212      Diag(L, diag::warn_field_is_uninit);
1213    }
1214  }
1215
1216  bool HasDependentArg = false;
1217  for (unsigned i = 0; i < NumArgs; i++)
1218    HasDependentArg |= Args[i]->isTypeDependent();
1219
1220  QualType FieldType = Member->getType();
1221  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1222    FieldType = Array->getElementType();
1223  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1224  if (FieldType->isDependentType() || HasDependentArg) {
1225    // Can't check initialization for a member of dependent type or when
1226    // any of the arguments are type-dependent expressions.
1227    OwningExprResult Init
1228      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1229                                          RParenLoc));
1230
1231    // Erase any temporaries within this evaluation context; we're not
1232    // going to track them in the AST, since we'll be rebuilding the
1233    // ASTs during template instantiation.
1234    ExprTemporaries.erase(
1235              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1236                          ExprTemporaries.end());
1237
1238    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1239                                                    LParenLoc,
1240                                                    Init.takeAs<Expr>(),
1241                                                    RParenLoc);
1242
1243  }
1244
1245  if (Member->isInvalidDecl())
1246    return true;
1247
1248  // Initialize the member.
1249  InitializedEntity MemberEntity =
1250    InitializedEntity::InitializeMember(Member, 0);
1251  InitializationKind Kind =
1252    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1253
1254  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1255
1256  OwningExprResult MemberInit =
1257    InitSeq.Perform(*this, MemberEntity, Kind,
1258                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1259  if (MemberInit.isInvalid())
1260    return true;
1261
1262  // C++0x [class.base.init]p7:
1263  //   The initialization of each base and member constitutes a
1264  //   full-expression.
1265  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1266  if (MemberInit.isInvalid())
1267    return true;
1268
1269  // If we are in a dependent context, template instantiation will
1270  // perform this type-checking again. Just save the arguments that we
1271  // received in a ParenListExpr.
1272  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1273  // of the information that we have about the member
1274  // initializer. However, deconstructing the ASTs is a dicey process,
1275  // and this approach is far more likely to get the corner cases right.
1276  if (CurContext->isDependentContext()) {
1277    // Bump the reference count of all of the arguments.
1278    for (unsigned I = 0; I != NumArgs; ++I)
1279      Args[I]->Retain();
1280
1281    OwningExprResult Init
1282      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1283                                          RParenLoc));
1284    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1285                                                    LParenLoc,
1286                                                    Init.takeAs<Expr>(),
1287                                                    RParenLoc);
1288  }
1289
1290  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1291                                                  LParenLoc,
1292                                                  MemberInit.takeAs<Expr>(),
1293                                                  RParenLoc);
1294}
1295
1296Sema::MemInitResult
1297Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1298                           Expr **Args, unsigned NumArgs,
1299                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1300                           CXXRecordDecl *ClassDecl) {
1301  bool HasDependentArg = false;
1302  for (unsigned i = 0; i < NumArgs; i++)
1303    HasDependentArg |= Args[i]->isTypeDependent();
1304
1305  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1306  if (BaseType->isDependentType() || HasDependentArg) {
1307    // Can't check initialization for a base of dependent type or when
1308    // any of the arguments are type-dependent expressions.
1309    OwningExprResult BaseInit
1310      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1311                                          RParenLoc));
1312
1313    // Erase any temporaries within this evaluation context; we're not
1314    // going to track them in the AST, since we'll be rebuilding the
1315    // ASTs during template instantiation.
1316    ExprTemporaries.erase(
1317              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1318                          ExprTemporaries.end());
1319
1320    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1321                                                    LParenLoc,
1322                                                    BaseInit.takeAs<Expr>(),
1323                                                    RParenLoc);
1324  }
1325
1326  if (!BaseType->isRecordType())
1327    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1328             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1329
1330  // C++ [class.base.init]p2:
1331  //   [...] Unless the mem-initializer-id names a nonstatic data
1332  //   member of the constructor’s class or a direct or virtual base
1333  //   of that class, the mem-initializer is ill-formed. A
1334  //   mem-initializer-list can initialize a base class using any
1335  //   name that denotes that base class type.
1336
1337  // Check for direct and virtual base classes.
1338  const CXXBaseSpecifier *DirectBaseSpec = 0;
1339  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1340  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1341                      VirtualBaseSpec);
1342
1343  // C++ [base.class.init]p2:
1344  //   If a mem-initializer-id is ambiguous because it designates both
1345  //   a direct non-virtual base class and an inherited virtual base
1346  //   class, the mem-initializer is ill-formed.
1347  if (DirectBaseSpec && VirtualBaseSpec)
1348    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1349      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1350  // C++ [base.class.init]p2:
1351  // Unless the mem-initializer-id names a nonstatic data membeer of the
1352  // constructor's class ot a direst or virtual base of that class, the
1353  // mem-initializer is ill-formed.
1354  if (!DirectBaseSpec && !VirtualBaseSpec)
1355    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1356      << BaseType << ClassDecl->getNameAsCString()
1357      << BaseTInfo->getTypeLoc().getSourceRange();
1358
1359  CXXBaseSpecifier *BaseSpec
1360    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1361  if (!BaseSpec)
1362    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1363
1364  // Initialize the base.
1365  InitializedEntity BaseEntity =
1366    InitializedEntity::InitializeBase(Context, BaseSpec);
1367  InitializationKind Kind =
1368    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1369
1370  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1371
1372  OwningExprResult BaseInit =
1373    InitSeq.Perform(*this, BaseEntity, Kind,
1374                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1375  if (BaseInit.isInvalid())
1376    return true;
1377
1378  // C++0x [class.base.init]p7:
1379  //   The initialization of each base and member constitutes a
1380  //   full-expression.
1381  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1382  if (BaseInit.isInvalid())
1383    return true;
1384
1385  // If we are in a dependent context, template instantiation will
1386  // perform this type-checking again. Just save the arguments that we
1387  // received in a ParenListExpr.
1388  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1389  // of the information that we have about the base
1390  // initializer. However, deconstructing the ASTs is a dicey process,
1391  // and this approach is far more likely to get the corner cases right.
1392  if (CurContext->isDependentContext()) {
1393    // Bump the reference count of all of the arguments.
1394    for (unsigned I = 0; I != NumArgs; ++I)
1395      Args[I]->Retain();
1396
1397    OwningExprResult Init
1398      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1399                                          RParenLoc));
1400    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1401                                                    LParenLoc,
1402                                                    Init.takeAs<Expr>(),
1403                                                    RParenLoc);
1404  }
1405
1406  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1407                                                  LParenLoc,
1408                                                  BaseInit.takeAs<Expr>(),
1409                                                  RParenLoc);
1410}
1411
1412bool
1413Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1414                                  CXXBaseOrMemberInitializer **Initializers,
1415                                  unsigned NumInitializers,
1416                                  bool IsImplicitConstructor,
1417                                  bool AnyErrors) {
1418  // We need to build the initializer AST according to order of construction
1419  // and not what user specified in the Initializers list.
1420  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1421  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1422  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1423  bool HasDependentBaseInit = false;
1424  bool HadError = false;
1425
1426  for (unsigned i = 0; i < NumInitializers; i++) {
1427    CXXBaseOrMemberInitializer *Member = Initializers[i];
1428    if (Member->isBaseInitializer()) {
1429      if (Member->getBaseClass()->isDependentType())
1430        HasDependentBaseInit = true;
1431      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1432    } else {
1433      AllBaseFields[Member->getMember()] = Member;
1434    }
1435  }
1436
1437  if (HasDependentBaseInit) {
1438    // FIXME. This does not preserve the ordering of the initializers.
1439    // Try (with -Wreorder)
1440    // template<class X> struct A {};
1441    // template<class X> struct B : A<X> {
1442    //   B() : x1(10), A<X>() {}
1443    //   int x1;
1444    // };
1445    // B<int> x;
1446    // On seeing one dependent type, we should essentially exit this routine
1447    // while preserving user-declared initializer list. When this routine is
1448    // called during instantiatiation process, this routine will rebuild the
1449    // ordered initializer list correctly.
1450
1451    // If we have a dependent base initialization, we can't determine the
1452    // association between initializers and bases; just dump the known
1453    // initializers into the list, and don't try to deal with other bases.
1454    for (unsigned i = 0; i < NumInitializers; i++) {
1455      CXXBaseOrMemberInitializer *Member = Initializers[i];
1456      if (Member->isBaseInitializer())
1457        AllToInit.push_back(Member);
1458    }
1459  } else {
1460    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1461
1462    // Push virtual bases before others.
1463    for (CXXRecordDecl::base_class_iterator VBase =
1464         ClassDecl->vbases_begin(),
1465         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1466      if (VBase->getType()->isDependentType())
1467        continue;
1468      if (CXXBaseOrMemberInitializer *Value
1469            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1470        AllToInit.push_back(Value);
1471      } else if (!AnyErrors) {
1472        InitializedEntity InitEntity
1473          = InitializedEntity::InitializeBase(Context, VBase);
1474        InitializationKind InitKind
1475          = InitializationKind::CreateDefault(Constructor->getLocation());
1476        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1477        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1478                                                    MultiExprArg(*this, 0, 0));
1479        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1480        if (BaseInit.isInvalid()) {
1481          HadError = true;
1482          continue;
1483        }
1484
1485        // Don't attach synthesized base initializers in a dependent
1486        // context; they'll be checked again at template instantiation
1487        // time.
1488        if (CurContext->isDependentContext())
1489          continue;
1490
1491        CXXBaseOrMemberInitializer *CXXBaseInit =
1492          new (Context) CXXBaseOrMemberInitializer(Context,
1493                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1494                                                              SourceLocation()),
1495                                                   SourceLocation(),
1496                                                   BaseInit.takeAs<Expr>(),
1497                                                   SourceLocation());
1498        AllToInit.push_back(CXXBaseInit);
1499      }
1500    }
1501
1502    for (CXXRecordDecl::base_class_iterator Base =
1503         ClassDecl->bases_begin(),
1504         E = ClassDecl->bases_end(); Base != E; ++Base) {
1505      // Virtuals are in the virtual base list and already constructed.
1506      if (Base->isVirtual())
1507        continue;
1508      // Skip dependent types.
1509      if (Base->getType()->isDependentType())
1510        continue;
1511      if (CXXBaseOrMemberInitializer *Value
1512            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1513        AllToInit.push_back(Value);
1514      }
1515      else if (!AnyErrors) {
1516        InitializedEntity InitEntity
1517          = InitializedEntity::InitializeBase(Context, Base);
1518        InitializationKind InitKind
1519          = InitializationKind::CreateDefault(Constructor->getLocation());
1520        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1521        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1522                                                    MultiExprArg(*this, 0, 0));
1523        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1524        if (BaseInit.isInvalid()) {
1525          HadError = true;
1526          continue;
1527        }
1528
1529        // Don't attach synthesized base initializers in a dependent
1530        // context; they'll be regenerated at template instantiation
1531        // time.
1532        if (CurContext->isDependentContext())
1533          continue;
1534
1535        CXXBaseOrMemberInitializer *CXXBaseInit =
1536          new (Context) CXXBaseOrMemberInitializer(Context,
1537                             Context.getTrivialTypeSourceInfo(Base->getType(),
1538                                                              SourceLocation()),
1539                                                   SourceLocation(),
1540                                                   BaseInit.takeAs<Expr>(),
1541                                                   SourceLocation());
1542        AllToInit.push_back(CXXBaseInit);
1543      }
1544    }
1545  }
1546
1547  // non-static data members.
1548  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1549       E = ClassDecl->field_end(); Field != E; ++Field) {
1550    if ((*Field)->isAnonymousStructOrUnion()) {
1551      if (const RecordType *FieldClassType =
1552          Field->getType()->getAs<RecordType>()) {
1553        CXXRecordDecl *FieldClassDecl
1554          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1555        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1556            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1557          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1558            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1559            // set to the anonymous union data member used in the initializer
1560            // list.
1561            Value->setMember(*Field);
1562            Value->setAnonUnionMember(*FA);
1563            AllToInit.push_back(Value);
1564            break;
1565          }
1566        }
1567      }
1568      continue;
1569    }
1570    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1571      AllToInit.push_back(Value);
1572      continue;
1573    }
1574
1575    if ((*Field)->getType()->isDependentType() || AnyErrors)
1576      continue;
1577
1578    QualType FT = Context.getBaseElementType((*Field)->getType());
1579    if (FT->getAs<RecordType>()) {
1580      InitializedEntity InitEntity
1581        = InitializedEntity::InitializeMember(*Field);
1582      InitializationKind InitKind
1583        = InitializationKind::CreateDefault(Constructor->getLocation());
1584
1585      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1586      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1587                                                    MultiExprArg(*this, 0, 0));
1588      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1589      if (MemberInit.isInvalid()) {
1590        HadError = true;
1591        continue;
1592      }
1593
1594      // Don't attach synthesized member initializers in a dependent
1595      // context; they'll be regenerated a template instantiation
1596      // time.
1597      if (CurContext->isDependentContext())
1598        continue;
1599
1600      CXXBaseOrMemberInitializer *Member =
1601        new (Context) CXXBaseOrMemberInitializer(Context,
1602                                                 *Field, SourceLocation(),
1603                                                 SourceLocation(),
1604                                                 MemberInit.takeAs<Expr>(),
1605                                                 SourceLocation());
1606
1607      AllToInit.push_back(Member);
1608    }
1609    else if (FT->isReferenceType()) {
1610      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1611        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1612        << 0 << (*Field)->getDeclName();
1613      Diag((*Field)->getLocation(), diag::note_declared_at);
1614      HadError = true;
1615    }
1616    else if (FT.isConstQualified()) {
1617      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1618        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1619        << 1 << (*Field)->getDeclName();
1620      Diag((*Field)->getLocation(), diag::note_declared_at);
1621      HadError = true;
1622    }
1623  }
1624
1625  NumInitializers = AllToInit.size();
1626  if (NumInitializers > 0) {
1627    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1628    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1629      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1630
1631    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1632    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1633      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1634  }
1635
1636  return HadError;
1637}
1638
1639static void *GetKeyForTopLevelField(FieldDecl *Field) {
1640  // For anonymous unions, use the class declaration as the key.
1641  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1642    if (RT->getDecl()->isAnonymousStructOrUnion())
1643      return static_cast<void *>(RT->getDecl());
1644  }
1645  return static_cast<void *>(Field);
1646}
1647
1648static void *GetKeyForBase(QualType BaseType) {
1649  if (const RecordType *RT = BaseType->getAs<RecordType>())
1650    return (void *)RT;
1651
1652  assert(0 && "Unexpected base type!");
1653  return 0;
1654}
1655
1656static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1657                             bool MemberMaybeAnon = false) {
1658  // For fields injected into the class via declaration of an anonymous union,
1659  // use its anonymous union class declaration as the unique key.
1660  if (Member->isMemberInitializer()) {
1661    FieldDecl *Field = Member->getMember();
1662
1663    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1664    // data member of the class. Data member used in the initializer list is
1665    // in AnonUnionMember field.
1666    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1667      Field = Member->getAnonUnionMember();
1668    if (Field->getDeclContext()->isRecord()) {
1669      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1670      if (RD->isAnonymousStructOrUnion())
1671        return static_cast<void *>(RD);
1672    }
1673    return static_cast<void *>(Field);
1674  }
1675
1676  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1677}
1678
1679/// ActOnMemInitializers - Handle the member initializers for a constructor.
1680void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1681                                SourceLocation ColonLoc,
1682                                MemInitTy **MemInits, unsigned NumMemInits,
1683                                bool AnyErrors) {
1684  if (!ConstructorDecl)
1685    return;
1686
1687  AdjustDeclIfTemplate(ConstructorDecl);
1688
1689  CXXConstructorDecl *Constructor
1690    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1691
1692  if (!Constructor) {
1693    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1694    return;
1695  }
1696
1697  if (!Constructor->isDependentContext()) {
1698    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1699    bool err = false;
1700    for (unsigned i = 0; i < NumMemInits; i++) {
1701      CXXBaseOrMemberInitializer *Member =
1702        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1703      void *KeyToMember = GetKeyForMember(Member);
1704      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1705      if (!PrevMember) {
1706        PrevMember = Member;
1707        continue;
1708      }
1709      if (FieldDecl *Field = Member->getMember())
1710        Diag(Member->getSourceLocation(),
1711             diag::error_multiple_mem_initialization)
1712          << Field->getNameAsString()
1713          << Member->getSourceRange();
1714      else {
1715        Type *BaseClass = Member->getBaseClass();
1716        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1717        Diag(Member->getSourceLocation(),
1718             diag::error_multiple_base_initialization)
1719          << QualType(BaseClass, 0)
1720          << Member->getSourceRange();
1721      }
1722      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1723        << 0;
1724      err = true;
1725    }
1726
1727    if (err)
1728      return;
1729  }
1730
1731  SetBaseOrMemberInitializers(Constructor,
1732                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1733                      NumMemInits, false, AnyErrors);
1734
1735  if (Constructor->isDependentContext())
1736    return;
1737
1738  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1739      Diagnostic::Ignored &&
1740      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1741      Diagnostic::Ignored)
1742    return;
1743
1744  // Also issue warning if order of ctor-initializer list does not match order
1745  // of 1) base class declarations and 2) order of non-static data members.
1746  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1747
1748  CXXRecordDecl *ClassDecl
1749    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1750  // Push virtual bases before others.
1751  for (CXXRecordDecl::base_class_iterator VBase =
1752       ClassDecl->vbases_begin(),
1753       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1754    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1755
1756  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1757       E = ClassDecl->bases_end(); Base != E; ++Base) {
1758    // Virtuals are alread in the virtual base list and are constructed
1759    // first.
1760    if (Base->isVirtual())
1761      continue;
1762    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1763  }
1764
1765  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1766       E = ClassDecl->field_end(); Field != E; ++Field)
1767    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1768
1769  int Last = AllBaseOrMembers.size();
1770  int curIndex = 0;
1771  CXXBaseOrMemberInitializer *PrevMember = 0;
1772  for (unsigned i = 0; i < NumMemInits; i++) {
1773    CXXBaseOrMemberInitializer *Member =
1774      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1775    void *MemberInCtorList = GetKeyForMember(Member, true);
1776
1777    for (; curIndex < Last; curIndex++)
1778      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1779        break;
1780    if (curIndex == Last) {
1781      assert(PrevMember && "Member not in member list?!");
1782      // Initializer as specified in ctor-initializer list is out of order.
1783      // Issue a warning diagnostic.
1784      if (PrevMember->isBaseInitializer()) {
1785        // Diagnostics is for an initialized base class.
1786        Type *BaseClass = PrevMember->getBaseClass();
1787        Diag(PrevMember->getSourceLocation(),
1788             diag::warn_base_initialized)
1789          << QualType(BaseClass, 0);
1790      } else {
1791        FieldDecl *Field = PrevMember->getMember();
1792        Diag(PrevMember->getSourceLocation(),
1793             diag::warn_field_initialized)
1794          << Field->getNameAsString();
1795      }
1796      // Also the note!
1797      if (FieldDecl *Field = Member->getMember())
1798        Diag(Member->getSourceLocation(),
1799             diag::note_fieldorbase_initialized_here) << 0
1800          << Field->getNameAsString();
1801      else {
1802        Type *BaseClass = Member->getBaseClass();
1803        Diag(Member->getSourceLocation(),
1804             diag::note_fieldorbase_initialized_here) << 1
1805          << QualType(BaseClass, 0);
1806      }
1807      for (curIndex = 0; curIndex < Last; curIndex++)
1808        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1809          break;
1810    }
1811    PrevMember = Member;
1812  }
1813}
1814
1815void
1816Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1817  // Ignore dependent destructors.
1818  if (Destructor->isDependentContext())
1819    return;
1820
1821  CXXRecordDecl *ClassDecl = Destructor->getParent();
1822
1823  // Non-static data members.
1824  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1825       E = ClassDecl->field_end(); I != E; ++I) {
1826    FieldDecl *Field = *I;
1827
1828    QualType FieldType = Context.getBaseElementType(Field->getType());
1829
1830    const RecordType* RT = FieldType->getAs<RecordType>();
1831    if (!RT)
1832      continue;
1833
1834    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1835    if (FieldClassDecl->hasTrivialDestructor())
1836      continue;
1837
1838    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1839    MarkDeclarationReferenced(Destructor->getLocation(),
1840                              const_cast<CXXDestructorDecl*>(Dtor));
1841  }
1842
1843  // Bases.
1844  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1845       E = ClassDecl->bases_end(); Base != E; ++Base) {
1846    // Ignore virtual bases.
1847    if (Base->isVirtual())
1848      continue;
1849
1850    // Ignore trivial destructors.
1851    CXXRecordDecl *BaseClassDecl
1852      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1853    if (BaseClassDecl->hasTrivialDestructor())
1854      continue;
1855
1856    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1857    MarkDeclarationReferenced(Destructor->getLocation(),
1858                              const_cast<CXXDestructorDecl*>(Dtor));
1859  }
1860
1861  // Virtual bases.
1862  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1863       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1864    // Ignore trivial destructors.
1865    CXXRecordDecl *BaseClassDecl
1866      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1867    if (BaseClassDecl->hasTrivialDestructor())
1868      continue;
1869
1870    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1871    MarkDeclarationReferenced(Destructor->getLocation(),
1872                              const_cast<CXXDestructorDecl*>(Dtor));
1873  }
1874}
1875
1876void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1877  if (!CDtorDecl)
1878    return;
1879
1880  AdjustDeclIfTemplate(CDtorDecl);
1881
1882  if (CXXConstructorDecl *Constructor
1883      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1884    SetBaseOrMemberInitializers(Constructor, 0, 0, false, false);
1885}
1886
1887namespace {
1888  /// PureVirtualMethodCollector - traverses a class and its superclasses
1889  /// and determines if it has any pure virtual methods.
1890  class PureVirtualMethodCollector {
1891    ASTContext &Context;
1892
1893  public:
1894    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1895
1896  private:
1897    MethodList Methods;
1898
1899    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1900
1901  public:
1902    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1903      : Context(Ctx) {
1904
1905      MethodList List;
1906      Collect(RD, List);
1907
1908      // Copy the temporary list to methods, and make sure to ignore any
1909      // null entries.
1910      for (size_t i = 0, e = List.size(); i != e; ++i) {
1911        if (List[i])
1912          Methods.push_back(List[i]);
1913      }
1914    }
1915
1916    bool empty() const { return Methods.empty(); }
1917
1918    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1919    MethodList::const_iterator methods_end() { return Methods.end(); }
1920  };
1921
1922  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1923                                           MethodList& Methods) {
1924    // First, collect the pure virtual methods for the base classes.
1925    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1926         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1927      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1928        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1929        if (BaseDecl && BaseDecl->isAbstract())
1930          Collect(BaseDecl, Methods);
1931      }
1932    }
1933
1934    // Next, zero out any pure virtual methods that this class overrides.
1935    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1936
1937    MethodSetTy OverriddenMethods;
1938    size_t MethodsSize = Methods.size();
1939
1940    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1941         i != e; ++i) {
1942      // Traverse the record, looking for methods.
1943      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1944        // If the method is pure virtual, add it to the methods vector.
1945        if (MD->isPure())
1946          Methods.push_back(MD);
1947
1948        // Record all the overridden methods in our set.
1949        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1950             E = MD->end_overridden_methods(); I != E; ++I) {
1951          // Keep track of the overridden methods.
1952          OverriddenMethods.insert(*I);
1953        }
1954      }
1955    }
1956
1957    // Now go through the methods and zero out all the ones we know are
1958    // overridden.
1959    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1960      if (OverriddenMethods.count(Methods[i]))
1961        Methods[i] = 0;
1962    }
1963
1964  }
1965}
1966
1967
1968bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1969                                  unsigned DiagID, AbstractDiagSelID SelID,
1970                                  const CXXRecordDecl *CurrentRD) {
1971  if (SelID == -1)
1972    return RequireNonAbstractType(Loc, T,
1973                                  PDiag(DiagID), CurrentRD);
1974  else
1975    return RequireNonAbstractType(Loc, T,
1976                                  PDiag(DiagID) << SelID, CurrentRD);
1977}
1978
1979bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1980                                  const PartialDiagnostic &PD,
1981                                  const CXXRecordDecl *CurrentRD) {
1982  if (!getLangOptions().CPlusPlus)
1983    return false;
1984
1985  if (const ArrayType *AT = Context.getAsArrayType(T))
1986    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1987                                  CurrentRD);
1988
1989  if (const PointerType *PT = T->getAs<PointerType>()) {
1990    // Find the innermost pointer type.
1991    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1992      PT = T;
1993
1994    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1995      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1996  }
1997
1998  const RecordType *RT = T->getAs<RecordType>();
1999  if (!RT)
2000    return false;
2001
2002  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2003
2004  if (CurrentRD && CurrentRD != RD)
2005    return false;
2006
2007  // FIXME: is this reasonable?  It matches current behavior, but....
2008  if (!RD->getDefinition(Context))
2009    return false;
2010
2011  if (!RD->isAbstract())
2012    return false;
2013
2014  Diag(Loc, PD) << RD->getDeclName();
2015
2016  // Check if we've already emitted the list of pure virtual functions for this
2017  // class.
2018  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2019    return true;
2020
2021  PureVirtualMethodCollector Collector(Context, RD);
2022
2023  for (PureVirtualMethodCollector::MethodList::const_iterator I =
2024       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
2025    const CXXMethodDecl *MD = *I;
2026
2027    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
2028      MD->getDeclName();
2029  }
2030
2031  if (!PureVirtualClassDiagSet)
2032    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2033  PureVirtualClassDiagSet->insert(RD);
2034
2035  return true;
2036}
2037
2038namespace {
2039  class AbstractClassUsageDiagnoser
2040    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2041    Sema &SemaRef;
2042    CXXRecordDecl *AbstractClass;
2043
2044    bool VisitDeclContext(const DeclContext *DC) {
2045      bool Invalid = false;
2046
2047      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2048           E = DC->decls_end(); I != E; ++I)
2049        Invalid |= Visit(*I);
2050
2051      return Invalid;
2052    }
2053
2054  public:
2055    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2056      : SemaRef(SemaRef), AbstractClass(ac) {
2057        Visit(SemaRef.Context.getTranslationUnitDecl());
2058    }
2059
2060    bool VisitFunctionDecl(const FunctionDecl *FD) {
2061      if (FD->isThisDeclarationADefinition()) {
2062        // No need to do the check if we're in a definition, because it requires
2063        // that the return/param types are complete.
2064        // because that requires
2065        return VisitDeclContext(FD);
2066      }
2067
2068      // Check the return type.
2069      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2070      bool Invalid =
2071        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2072                                       diag::err_abstract_type_in_decl,
2073                                       Sema::AbstractReturnType,
2074                                       AbstractClass);
2075
2076      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2077           E = FD->param_end(); I != E; ++I) {
2078        const ParmVarDecl *VD = *I;
2079        Invalid |=
2080          SemaRef.RequireNonAbstractType(VD->getLocation(),
2081                                         VD->getOriginalType(),
2082                                         diag::err_abstract_type_in_decl,
2083                                         Sema::AbstractParamType,
2084                                         AbstractClass);
2085      }
2086
2087      return Invalid;
2088    }
2089
2090    bool VisitDecl(const Decl* D) {
2091      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2092        return VisitDeclContext(DC);
2093
2094      return false;
2095    }
2096  };
2097}
2098
2099/// \brief Perform semantic checks on a class definition that has been
2100/// completing, introducing implicitly-declared members, checking for
2101/// abstract types, etc.
2102void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2103  if (!Record || Record->isInvalidDecl())
2104    return;
2105
2106  if (!Record->isDependentType())
2107    AddImplicitlyDeclaredMembersToClass(Record);
2108
2109  if (Record->isInvalidDecl())
2110    return;
2111
2112  // Set access bits correctly on the directly-declared conversions.
2113  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2114  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2115    Convs->setAccess(I, (*I)->getAccess());
2116
2117  if (!Record->isAbstract()) {
2118    // Collect all the pure virtual methods and see if this is an abstract
2119    // class after all.
2120    PureVirtualMethodCollector Collector(Context, Record);
2121    if (!Collector.empty())
2122      Record->setAbstract(true);
2123  }
2124
2125  if (Record->isAbstract())
2126    (void)AbstractClassUsageDiagnoser(*this, Record);
2127}
2128
2129void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2130                                             DeclPtrTy TagDecl,
2131                                             SourceLocation LBrac,
2132                                             SourceLocation RBrac) {
2133  if (!TagDecl)
2134    return;
2135
2136  AdjustDeclIfTemplate(TagDecl);
2137
2138  ActOnFields(S, RLoc, TagDecl,
2139              (DeclPtrTy*)FieldCollector->getCurFields(),
2140              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2141
2142  CheckCompletedCXXClass(
2143                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2144}
2145
2146/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2147/// special functions, such as the default constructor, copy
2148/// constructor, or destructor, to the given C++ class (C++
2149/// [special]p1).  This routine can only be executed just before the
2150/// definition of the class is complete.
2151void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2152  CanQualType ClassType
2153    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2154
2155  // FIXME: Implicit declarations have exception specifications, which are
2156  // the union of the specifications of the implicitly called functions.
2157
2158  if (!ClassDecl->hasUserDeclaredConstructor()) {
2159    // C++ [class.ctor]p5:
2160    //   A default constructor for a class X is a constructor of class X
2161    //   that can be called without an argument. If there is no
2162    //   user-declared constructor for class X, a default constructor is
2163    //   implicitly declared. An implicitly-declared default constructor
2164    //   is an inline public member of its class.
2165    DeclarationName Name
2166      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2167    CXXConstructorDecl *DefaultCon =
2168      CXXConstructorDecl::Create(Context, ClassDecl,
2169                                 ClassDecl->getLocation(), Name,
2170                                 Context.getFunctionType(Context.VoidTy,
2171                                                         0, 0, false, 0),
2172                                 /*TInfo=*/0,
2173                                 /*isExplicit=*/false,
2174                                 /*isInline=*/true,
2175                                 /*isImplicitlyDeclared=*/true);
2176    DefaultCon->setAccess(AS_public);
2177    DefaultCon->setImplicit();
2178    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2179    ClassDecl->addDecl(DefaultCon);
2180  }
2181
2182  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2183    // C++ [class.copy]p4:
2184    //   If the class definition does not explicitly declare a copy
2185    //   constructor, one is declared implicitly.
2186
2187    // C++ [class.copy]p5:
2188    //   The implicitly-declared copy constructor for a class X will
2189    //   have the form
2190    //
2191    //       X::X(const X&)
2192    //
2193    //   if
2194    bool HasConstCopyConstructor = true;
2195
2196    //     -- each direct or virtual base class B of X has a copy
2197    //        constructor whose first parameter is of type const B& or
2198    //        const volatile B&, and
2199    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2200         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2201      const CXXRecordDecl *BaseClassDecl
2202        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2203      HasConstCopyConstructor
2204        = BaseClassDecl->hasConstCopyConstructor(Context);
2205    }
2206
2207    //     -- for all the nonstatic data members of X that are of a
2208    //        class type M (or array thereof), each such class type
2209    //        has a copy constructor whose first parameter is of type
2210    //        const M& or const volatile M&.
2211    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2212         HasConstCopyConstructor && Field != ClassDecl->field_end();
2213         ++Field) {
2214      QualType FieldType = (*Field)->getType();
2215      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2216        FieldType = Array->getElementType();
2217      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2218        const CXXRecordDecl *FieldClassDecl
2219          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2220        HasConstCopyConstructor
2221          = FieldClassDecl->hasConstCopyConstructor(Context);
2222      }
2223    }
2224
2225    //   Otherwise, the implicitly declared copy constructor will have
2226    //   the form
2227    //
2228    //       X::X(X&)
2229    QualType ArgType = ClassType;
2230    if (HasConstCopyConstructor)
2231      ArgType = ArgType.withConst();
2232    ArgType = Context.getLValueReferenceType(ArgType);
2233
2234    //   An implicitly-declared copy constructor is an inline public
2235    //   member of its class.
2236    DeclarationName Name
2237      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2238    CXXConstructorDecl *CopyConstructor
2239      = CXXConstructorDecl::Create(Context, ClassDecl,
2240                                   ClassDecl->getLocation(), Name,
2241                                   Context.getFunctionType(Context.VoidTy,
2242                                                           &ArgType, 1,
2243                                                           false, 0),
2244                                   /*TInfo=*/0,
2245                                   /*isExplicit=*/false,
2246                                   /*isInline=*/true,
2247                                   /*isImplicitlyDeclared=*/true);
2248    CopyConstructor->setAccess(AS_public);
2249    CopyConstructor->setImplicit();
2250    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2251
2252    // Add the parameter to the constructor.
2253    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2254                                                 ClassDecl->getLocation(),
2255                                                 /*IdentifierInfo=*/0,
2256                                                 ArgType, /*TInfo=*/0,
2257                                                 VarDecl::None, 0);
2258    CopyConstructor->setParams(Context, &FromParam, 1);
2259    ClassDecl->addDecl(CopyConstructor);
2260  }
2261
2262  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2263    // Note: The following rules are largely analoguous to the copy
2264    // constructor rules. Note that virtual bases are not taken into account
2265    // for determining the argument type of the operator. Note also that
2266    // operators taking an object instead of a reference are allowed.
2267    //
2268    // C++ [class.copy]p10:
2269    //   If the class definition does not explicitly declare a copy
2270    //   assignment operator, one is declared implicitly.
2271    //   The implicitly-defined copy assignment operator for a class X
2272    //   will have the form
2273    //
2274    //       X& X::operator=(const X&)
2275    //
2276    //   if
2277    bool HasConstCopyAssignment = true;
2278
2279    //       -- each direct base class B of X has a copy assignment operator
2280    //          whose parameter is of type const B&, const volatile B& or B,
2281    //          and
2282    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2283         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2284      assert(!Base->getType()->isDependentType() &&
2285            "Cannot generate implicit members for class with dependent bases.");
2286      const CXXRecordDecl *BaseClassDecl
2287        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2288      const CXXMethodDecl *MD = 0;
2289      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2290                                                                     MD);
2291    }
2292
2293    //       -- for all the nonstatic data members of X that are of a class
2294    //          type M (or array thereof), each such class type has a copy
2295    //          assignment operator whose parameter is of type const M&,
2296    //          const volatile M& or M.
2297    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2298         HasConstCopyAssignment && Field != ClassDecl->field_end();
2299         ++Field) {
2300      QualType FieldType = (*Field)->getType();
2301      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2302        FieldType = Array->getElementType();
2303      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2304        const CXXRecordDecl *FieldClassDecl
2305          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2306        const CXXMethodDecl *MD = 0;
2307        HasConstCopyAssignment
2308          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2309      }
2310    }
2311
2312    //   Otherwise, the implicitly declared copy assignment operator will
2313    //   have the form
2314    //
2315    //       X& X::operator=(X&)
2316    QualType ArgType = ClassType;
2317    QualType RetType = Context.getLValueReferenceType(ArgType);
2318    if (HasConstCopyAssignment)
2319      ArgType = ArgType.withConst();
2320    ArgType = Context.getLValueReferenceType(ArgType);
2321
2322    //   An implicitly-declared copy assignment operator is an inline public
2323    //   member of its class.
2324    DeclarationName Name =
2325      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2326    CXXMethodDecl *CopyAssignment =
2327      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2328                            Context.getFunctionType(RetType, &ArgType, 1,
2329                                                    false, 0),
2330                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2331    CopyAssignment->setAccess(AS_public);
2332    CopyAssignment->setImplicit();
2333    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2334    CopyAssignment->setCopyAssignment(true);
2335
2336    // Add the parameter to the operator.
2337    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2338                                                 ClassDecl->getLocation(),
2339                                                 /*IdentifierInfo=*/0,
2340                                                 ArgType, /*TInfo=*/0,
2341                                                 VarDecl::None, 0);
2342    CopyAssignment->setParams(Context, &FromParam, 1);
2343
2344    // Don't call addedAssignmentOperator. There is no way to distinguish an
2345    // implicit from an explicit assignment operator.
2346    ClassDecl->addDecl(CopyAssignment);
2347    AddOverriddenMethods(ClassDecl, CopyAssignment);
2348  }
2349
2350  if (!ClassDecl->hasUserDeclaredDestructor()) {
2351    // C++ [class.dtor]p2:
2352    //   If a class has no user-declared destructor, a destructor is
2353    //   declared implicitly. An implicitly-declared destructor is an
2354    //   inline public member of its class.
2355    DeclarationName Name
2356      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2357    CXXDestructorDecl *Destructor
2358      = CXXDestructorDecl::Create(Context, ClassDecl,
2359                                  ClassDecl->getLocation(), Name,
2360                                  Context.getFunctionType(Context.VoidTy,
2361                                                          0, 0, false, 0),
2362                                  /*isInline=*/true,
2363                                  /*isImplicitlyDeclared=*/true);
2364    Destructor->setAccess(AS_public);
2365    Destructor->setImplicit();
2366    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2367    ClassDecl->addDecl(Destructor);
2368
2369    AddOverriddenMethods(ClassDecl, Destructor);
2370  }
2371}
2372
2373void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2374  Decl *D = TemplateD.getAs<Decl>();
2375  if (!D)
2376    return;
2377
2378  TemplateParameterList *Params = 0;
2379  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2380    Params = Template->getTemplateParameters();
2381  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2382           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2383    Params = PartialSpec->getTemplateParameters();
2384  else
2385    return;
2386
2387  for (TemplateParameterList::iterator Param = Params->begin(),
2388                                    ParamEnd = Params->end();
2389       Param != ParamEnd; ++Param) {
2390    NamedDecl *Named = cast<NamedDecl>(*Param);
2391    if (Named->getDeclName()) {
2392      S->AddDecl(DeclPtrTy::make(Named));
2393      IdResolver.AddDecl(Named);
2394    }
2395  }
2396}
2397
2398void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2399  if (!RecordD) return;
2400  AdjustDeclIfTemplate(RecordD);
2401  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2402  PushDeclContext(S, Record);
2403}
2404
2405void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2406  if (!RecordD) return;
2407  PopDeclContext();
2408}
2409
2410/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2411/// parsing a top-level (non-nested) C++ class, and we are now
2412/// parsing those parts of the given Method declaration that could
2413/// not be parsed earlier (C++ [class.mem]p2), such as default
2414/// arguments. This action should enter the scope of the given
2415/// Method declaration as if we had just parsed the qualified method
2416/// name. However, it should not bring the parameters into scope;
2417/// that will be performed by ActOnDelayedCXXMethodParameter.
2418void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2419}
2420
2421/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2422/// C++ method declaration. We're (re-)introducing the given
2423/// function parameter into scope for use in parsing later parts of
2424/// the method declaration. For example, we could see an
2425/// ActOnParamDefaultArgument event for this parameter.
2426void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2427  if (!ParamD)
2428    return;
2429
2430  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2431
2432  // If this parameter has an unparsed default argument, clear it out
2433  // to make way for the parsed default argument.
2434  if (Param->hasUnparsedDefaultArg())
2435    Param->setDefaultArg(0);
2436
2437  S->AddDecl(DeclPtrTy::make(Param));
2438  if (Param->getDeclName())
2439    IdResolver.AddDecl(Param);
2440}
2441
2442/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2443/// processing the delayed method declaration for Method. The method
2444/// declaration is now considered finished. There may be a separate
2445/// ActOnStartOfFunctionDef action later (not necessarily
2446/// immediately!) for this method, if it was also defined inside the
2447/// class body.
2448void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2449  if (!MethodD)
2450    return;
2451
2452  AdjustDeclIfTemplate(MethodD);
2453
2454  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2455
2456  // Now that we have our default arguments, check the constructor
2457  // again. It could produce additional diagnostics or affect whether
2458  // the class has implicitly-declared destructors, among other
2459  // things.
2460  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2461    CheckConstructor(Constructor);
2462
2463  // Check the default arguments, which we may have added.
2464  if (!Method->isInvalidDecl())
2465    CheckCXXDefaultArguments(Method);
2466}
2467
2468/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2469/// the well-formedness of the constructor declarator @p D with type @p
2470/// R. If there are any errors in the declarator, this routine will
2471/// emit diagnostics and set the invalid bit to true.  In any case, the type
2472/// will be updated to reflect a well-formed type for the constructor and
2473/// returned.
2474QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2475                                          FunctionDecl::StorageClass &SC) {
2476  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2477
2478  // C++ [class.ctor]p3:
2479  //   A constructor shall not be virtual (10.3) or static (9.4). A
2480  //   constructor can be invoked for a const, volatile or const
2481  //   volatile object. A constructor shall not be declared const,
2482  //   volatile, or const volatile (9.3.2).
2483  if (isVirtual) {
2484    if (!D.isInvalidType())
2485      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2486        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2487        << SourceRange(D.getIdentifierLoc());
2488    D.setInvalidType();
2489  }
2490  if (SC == FunctionDecl::Static) {
2491    if (!D.isInvalidType())
2492      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2493        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2494        << SourceRange(D.getIdentifierLoc());
2495    D.setInvalidType();
2496    SC = FunctionDecl::None;
2497  }
2498
2499  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2500  if (FTI.TypeQuals != 0) {
2501    if (FTI.TypeQuals & Qualifiers::Const)
2502      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2503        << "const" << SourceRange(D.getIdentifierLoc());
2504    if (FTI.TypeQuals & Qualifiers::Volatile)
2505      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2506        << "volatile" << SourceRange(D.getIdentifierLoc());
2507    if (FTI.TypeQuals & Qualifiers::Restrict)
2508      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2509        << "restrict" << SourceRange(D.getIdentifierLoc());
2510  }
2511
2512  // Rebuild the function type "R" without any type qualifiers (in
2513  // case any of the errors above fired) and with "void" as the
2514  // return type, since constructors don't have return types. We
2515  // *always* have to do this, because GetTypeForDeclarator will
2516  // put in a result type of "int" when none was specified.
2517  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2518  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2519                                 Proto->getNumArgs(),
2520                                 Proto->isVariadic(), 0);
2521}
2522
2523/// CheckConstructor - Checks a fully-formed constructor for
2524/// well-formedness, issuing any diagnostics required. Returns true if
2525/// the constructor declarator is invalid.
2526void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2527  CXXRecordDecl *ClassDecl
2528    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2529  if (!ClassDecl)
2530    return Constructor->setInvalidDecl();
2531
2532  // C++ [class.copy]p3:
2533  //   A declaration of a constructor for a class X is ill-formed if
2534  //   its first parameter is of type (optionally cv-qualified) X and
2535  //   either there are no other parameters or else all other
2536  //   parameters have default arguments.
2537  if (!Constructor->isInvalidDecl() &&
2538      ((Constructor->getNumParams() == 1) ||
2539       (Constructor->getNumParams() > 1 &&
2540        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2541      Constructor->getTemplateSpecializationKind()
2542                                              != TSK_ImplicitInstantiation) {
2543    QualType ParamType = Constructor->getParamDecl(0)->getType();
2544    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2545    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2546      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2547      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2548        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2549
2550      // FIXME: Rather that making the constructor invalid, we should endeavor
2551      // to fix the type.
2552      Constructor->setInvalidDecl();
2553    }
2554  }
2555
2556  // Notify the class that we've added a constructor.
2557  ClassDecl->addedConstructor(Context, Constructor);
2558}
2559
2560/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2561/// issuing any diagnostics required. Returns true on error.
2562bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2563  CXXRecordDecl *RD = Destructor->getParent();
2564
2565  if (Destructor->isVirtual()) {
2566    SourceLocation Loc;
2567
2568    if (!Destructor->isImplicit())
2569      Loc = Destructor->getLocation();
2570    else
2571      Loc = RD->getLocation();
2572
2573    // If we have a virtual destructor, look up the deallocation function
2574    FunctionDecl *OperatorDelete = 0;
2575    DeclarationName Name =
2576    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2577    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2578      return true;
2579
2580    Destructor->setOperatorDelete(OperatorDelete);
2581  }
2582
2583  return false;
2584}
2585
2586static inline bool
2587FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2588  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2589          FTI.ArgInfo[0].Param &&
2590          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2591}
2592
2593/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2594/// the well-formednes of the destructor declarator @p D with type @p
2595/// R. If there are any errors in the declarator, this routine will
2596/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2597/// will be updated to reflect a well-formed type for the destructor and
2598/// returned.
2599QualType Sema::CheckDestructorDeclarator(Declarator &D,
2600                                         FunctionDecl::StorageClass& SC) {
2601  // C++ [class.dtor]p1:
2602  //   [...] A typedef-name that names a class is a class-name
2603  //   (7.1.3); however, a typedef-name that names a class shall not
2604  //   be used as the identifier in the declarator for a destructor
2605  //   declaration.
2606  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2607  if (isa<TypedefType>(DeclaratorType)) {
2608    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2609      << DeclaratorType;
2610    D.setInvalidType();
2611  }
2612
2613  // C++ [class.dtor]p2:
2614  //   A destructor is used to destroy objects of its class type. A
2615  //   destructor takes no parameters, and no return type can be
2616  //   specified for it (not even void). The address of a destructor
2617  //   shall not be taken. A destructor shall not be static. A
2618  //   destructor can be invoked for a const, volatile or const
2619  //   volatile object. A destructor shall not be declared const,
2620  //   volatile or const volatile (9.3.2).
2621  if (SC == FunctionDecl::Static) {
2622    if (!D.isInvalidType())
2623      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2624        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2625        << SourceRange(D.getIdentifierLoc());
2626    SC = FunctionDecl::None;
2627    D.setInvalidType();
2628  }
2629  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2630    // Destructors don't have return types, but the parser will
2631    // happily parse something like:
2632    //
2633    //   class X {
2634    //     float ~X();
2635    //   };
2636    //
2637    // The return type will be eliminated later.
2638    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2639      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2640      << SourceRange(D.getIdentifierLoc());
2641  }
2642
2643  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2644  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2645    if (FTI.TypeQuals & Qualifiers::Const)
2646      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2647        << "const" << SourceRange(D.getIdentifierLoc());
2648    if (FTI.TypeQuals & Qualifiers::Volatile)
2649      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2650        << "volatile" << SourceRange(D.getIdentifierLoc());
2651    if (FTI.TypeQuals & Qualifiers::Restrict)
2652      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2653        << "restrict" << SourceRange(D.getIdentifierLoc());
2654    D.setInvalidType();
2655  }
2656
2657  // Make sure we don't have any parameters.
2658  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2659    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2660
2661    // Delete the parameters.
2662    FTI.freeArgs();
2663    D.setInvalidType();
2664  }
2665
2666  // Make sure the destructor isn't variadic.
2667  if (FTI.isVariadic) {
2668    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2669    D.setInvalidType();
2670  }
2671
2672  // Rebuild the function type "R" without any type qualifiers or
2673  // parameters (in case any of the errors above fired) and with
2674  // "void" as the return type, since destructors don't have return
2675  // types. We *always* have to do this, because GetTypeForDeclarator
2676  // will put in a result type of "int" when none was specified.
2677  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2678}
2679
2680/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2681/// well-formednes of the conversion function declarator @p D with
2682/// type @p R. If there are any errors in the declarator, this routine
2683/// will emit diagnostics and return true. Otherwise, it will return
2684/// false. Either way, the type @p R will be updated to reflect a
2685/// well-formed type for the conversion operator.
2686void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2687                                     FunctionDecl::StorageClass& SC) {
2688  // C++ [class.conv.fct]p1:
2689  //   Neither parameter types nor return type can be specified. The
2690  //   type of a conversion function (8.3.5) is "function taking no
2691  //   parameter returning conversion-type-id."
2692  if (SC == FunctionDecl::Static) {
2693    if (!D.isInvalidType())
2694      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2695        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2696        << SourceRange(D.getIdentifierLoc());
2697    D.setInvalidType();
2698    SC = FunctionDecl::None;
2699  }
2700  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2701    // Conversion functions don't have return types, but the parser will
2702    // happily parse something like:
2703    //
2704    //   class X {
2705    //     float operator bool();
2706    //   };
2707    //
2708    // The return type will be changed later anyway.
2709    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2710      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2711      << SourceRange(D.getIdentifierLoc());
2712  }
2713
2714  // Make sure we don't have any parameters.
2715  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2716    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2717
2718    // Delete the parameters.
2719    D.getTypeObject(0).Fun.freeArgs();
2720    D.setInvalidType();
2721  }
2722
2723  // Make sure the conversion function isn't variadic.
2724  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2725    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2726    D.setInvalidType();
2727  }
2728
2729  // C++ [class.conv.fct]p4:
2730  //   The conversion-type-id shall not represent a function type nor
2731  //   an array type.
2732  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2733  if (ConvType->isArrayType()) {
2734    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2735    ConvType = Context.getPointerType(ConvType);
2736    D.setInvalidType();
2737  } else if (ConvType->isFunctionType()) {
2738    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2739    ConvType = Context.getPointerType(ConvType);
2740    D.setInvalidType();
2741  }
2742
2743  // Rebuild the function type "R" without any parameters (in case any
2744  // of the errors above fired) and with the conversion type as the
2745  // return type.
2746  R = Context.getFunctionType(ConvType, 0, 0, false,
2747                              R->getAs<FunctionProtoType>()->getTypeQuals());
2748
2749  // C++0x explicit conversion operators.
2750  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2751    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2752         diag::warn_explicit_conversion_functions)
2753      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2754}
2755
2756/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2757/// the declaration of the given C++ conversion function. This routine
2758/// is responsible for recording the conversion function in the C++
2759/// class, if possible.
2760Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2761  assert(Conversion && "Expected to receive a conversion function declaration");
2762
2763  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2764
2765  // Make sure we aren't redeclaring the conversion function.
2766  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2767
2768  // C++ [class.conv.fct]p1:
2769  //   [...] A conversion function is never used to convert a
2770  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2771  //   same object type (or a reference to it), to a (possibly
2772  //   cv-qualified) base class of that type (or a reference to it),
2773  //   or to (possibly cv-qualified) void.
2774  // FIXME: Suppress this warning if the conversion function ends up being a
2775  // virtual function that overrides a virtual function in a base class.
2776  QualType ClassType
2777    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2778  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2779    ConvType = ConvTypeRef->getPointeeType();
2780  if (ConvType->isRecordType()) {
2781    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2782    if (ConvType == ClassType)
2783      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2784        << ClassType;
2785    else if (IsDerivedFrom(ClassType, ConvType))
2786      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2787        <<  ClassType << ConvType;
2788  } else if (ConvType->isVoidType()) {
2789    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2790      << ClassType << ConvType;
2791  }
2792
2793  if (Conversion->getPrimaryTemplate()) {
2794    // ignore specializations
2795  } else if (Conversion->getPreviousDeclaration()) {
2796    if (FunctionTemplateDecl *ConversionTemplate
2797                                  = Conversion->getDescribedFunctionTemplate()) {
2798      if (ClassDecl->replaceConversion(
2799                                   ConversionTemplate->getPreviousDeclaration(),
2800                                       ConversionTemplate))
2801        return DeclPtrTy::make(ConversionTemplate);
2802    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2803                                            Conversion))
2804      return DeclPtrTy::make(Conversion);
2805    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2806  } else if (FunctionTemplateDecl *ConversionTemplate
2807               = Conversion->getDescribedFunctionTemplate())
2808    ClassDecl->addConversionFunction(ConversionTemplate);
2809  else
2810    ClassDecl->addConversionFunction(Conversion);
2811
2812  return DeclPtrTy::make(Conversion);
2813}
2814
2815//===----------------------------------------------------------------------===//
2816// Namespace Handling
2817//===----------------------------------------------------------------------===//
2818
2819/// ActOnStartNamespaceDef - This is called at the start of a namespace
2820/// definition.
2821Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2822                                             SourceLocation IdentLoc,
2823                                             IdentifierInfo *II,
2824                                             SourceLocation LBrace) {
2825  NamespaceDecl *Namespc =
2826      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2827  Namespc->setLBracLoc(LBrace);
2828
2829  Scope *DeclRegionScope = NamespcScope->getParent();
2830
2831  if (II) {
2832    // C++ [namespace.def]p2:
2833    // The identifier in an original-namespace-definition shall not have been
2834    // previously defined in the declarative region in which the
2835    // original-namespace-definition appears. The identifier in an
2836    // original-namespace-definition is the name of the namespace. Subsequently
2837    // in that declarative region, it is treated as an original-namespace-name.
2838
2839    NamedDecl *PrevDecl
2840      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2841                         ForRedeclaration);
2842
2843    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2844      // This is an extended namespace definition.
2845      // Attach this namespace decl to the chain of extended namespace
2846      // definitions.
2847      OrigNS->setNextNamespace(Namespc);
2848      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2849
2850      // Remove the previous declaration from the scope.
2851      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2852        IdResolver.RemoveDecl(OrigNS);
2853        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2854      }
2855    } else if (PrevDecl) {
2856      // This is an invalid name redefinition.
2857      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2858       << Namespc->getDeclName();
2859      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2860      Namespc->setInvalidDecl();
2861      // Continue on to push Namespc as current DeclContext and return it.
2862    } else if (II->isStr("std") &&
2863               CurContext->getLookupContext()->isTranslationUnit()) {
2864      // This is the first "real" definition of the namespace "std", so update
2865      // our cache of the "std" namespace to point at this definition.
2866      if (StdNamespace) {
2867        // We had already defined a dummy namespace "std". Link this new
2868        // namespace definition to the dummy namespace "std".
2869        StdNamespace->setNextNamespace(Namespc);
2870        StdNamespace->setLocation(IdentLoc);
2871        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2872      }
2873
2874      // Make our StdNamespace cache point at the first real definition of the
2875      // "std" namespace.
2876      StdNamespace = Namespc;
2877    }
2878
2879    PushOnScopeChains(Namespc, DeclRegionScope);
2880  } else {
2881    // Anonymous namespaces.
2882    assert(Namespc->isAnonymousNamespace());
2883    CurContext->addDecl(Namespc);
2884
2885    // Link the anonymous namespace into its parent.
2886    NamespaceDecl *PrevDecl;
2887    DeclContext *Parent = CurContext->getLookupContext();
2888    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2889      PrevDecl = TU->getAnonymousNamespace();
2890      TU->setAnonymousNamespace(Namespc);
2891    } else {
2892      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2893      PrevDecl = ND->getAnonymousNamespace();
2894      ND->setAnonymousNamespace(Namespc);
2895    }
2896
2897    // Link the anonymous namespace with its previous declaration.
2898    if (PrevDecl) {
2899      assert(PrevDecl->isAnonymousNamespace());
2900      assert(!PrevDecl->getNextNamespace());
2901      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2902      PrevDecl->setNextNamespace(Namespc);
2903    }
2904
2905    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2906    //   behaves as if it were replaced by
2907    //     namespace unique { /* empty body */ }
2908    //     using namespace unique;
2909    //     namespace unique { namespace-body }
2910    //   where all occurrences of 'unique' in a translation unit are
2911    //   replaced by the same identifier and this identifier differs
2912    //   from all other identifiers in the entire program.
2913
2914    // We just create the namespace with an empty name and then add an
2915    // implicit using declaration, just like the standard suggests.
2916    //
2917    // CodeGen enforces the "universally unique" aspect by giving all
2918    // declarations semantically contained within an anonymous
2919    // namespace internal linkage.
2920
2921    if (!PrevDecl) {
2922      UsingDirectiveDecl* UD
2923        = UsingDirectiveDecl::Create(Context, CurContext,
2924                                     /* 'using' */ LBrace,
2925                                     /* 'namespace' */ SourceLocation(),
2926                                     /* qualifier */ SourceRange(),
2927                                     /* NNS */ NULL,
2928                                     /* identifier */ SourceLocation(),
2929                                     Namespc,
2930                                     /* Ancestor */ CurContext);
2931      UD->setImplicit();
2932      CurContext->addDecl(UD);
2933    }
2934  }
2935
2936  // Although we could have an invalid decl (i.e. the namespace name is a
2937  // redefinition), push it as current DeclContext and try to continue parsing.
2938  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2939  // for the namespace has the declarations that showed up in that particular
2940  // namespace definition.
2941  PushDeclContext(NamespcScope, Namespc);
2942  return DeclPtrTy::make(Namespc);
2943}
2944
2945/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2946/// is a namespace alias, returns the namespace it points to.
2947static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2948  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2949    return AD->getNamespace();
2950  return dyn_cast_or_null<NamespaceDecl>(D);
2951}
2952
2953/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2954/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2955void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2956  Decl *Dcl = D.getAs<Decl>();
2957  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2958  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2959  Namespc->setRBracLoc(RBrace);
2960  PopDeclContext();
2961}
2962
2963Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2964                                          SourceLocation UsingLoc,
2965                                          SourceLocation NamespcLoc,
2966                                          const CXXScopeSpec &SS,
2967                                          SourceLocation IdentLoc,
2968                                          IdentifierInfo *NamespcName,
2969                                          AttributeList *AttrList) {
2970  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2971  assert(NamespcName && "Invalid NamespcName.");
2972  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2973  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2974
2975  UsingDirectiveDecl *UDir = 0;
2976
2977  // Lookup namespace name.
2978  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2979  LookupParsedName(R, S, &SS);
2980  if (R.isAmbiguous())
2981    return DeclPtrTy();
2982
2983  if (!R.empty()) {
2984    NamedDecl *Named = R.getFoundDecl();
2985    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2986        && "expected namespace decl");
2987    // C++ [namespace.udir]p1:
2988    //   A using-directive specifies that the names in the nominated
2989    //   namespace can be used in the scope in which the
2990    //   using-directive appears after the using-directive. During
2991    //   unqualified name lookup (3.4.1), the names appear as if they
2992    //   were declared in the nearest enclosing namespace which
2993    //   contains both the using-directive and the nominated
2994    //   namespace. [Note: in this context, "contains" means "contains
2995    //   directly or indirectly". ]
2996
2997    // Find enclosing context containing both using-directive and
2998    // nominated namespace.
2999    NamespaceDecl *NS = getNamespaceDecl(Named);
3000    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3001    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3002      CommonAncestor = CommonAncestor->getParent();
3003
3004    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3005                                      SS.getRange(),
3006                                      (NestedNameSpecifier *)SS.getScopeRep(),
3007                                      IdentLoc, Named, CommonAncestor);
3008    PushUsingDirective(S, UDir);
3009  } else {
3010    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3011  }
3012
3013  // FIXME: We ignore attributes for now.
3014  delete AttrList;
3015  return DeclPtrTy::make(UDir);
3016}
3017
3018void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3019  // If scope has associated entity, then using directive is at namespace
3020  // or translation unit scope. We add UsingDirectiveDecls, into
3021  // it's lookup structure.
3022  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3023    Ctx->addDecl(UDir);
3024  else
3025    // Otherwise it is block-sope. using-directives will affect lookup
3026    // only to the end of scope.
3027    S->PushUsingDirective(DeclPtrTy::make(UDir));
3028}
3029
3030
3031Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3032                                            AccessSpecifier AS,
3033                                            bool HasUsingKeyword,
3034                                            SourceLocation UsingLoc,
3035                                            const CXXScopeSpec &SS,
3036                                            UnqualifiedId &Name,
3037                                            AttributeList *AttrList,
3038                                            bool IsTypeName,
3039                                            SourceLocation TypenameLoc) {
3040  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3041
3042  switch (Name.getKind()) {
3043  case UnqualifiedId::IK_Identifier:
3044  case UnqualifiedId::IK_OperatorFunctionId:
3045  case UnqualifiedId::IK_LiteralOperatorId:
3046  case UnqualifiedId::IK_ConversionFunctionId:
3047    break;
3048
3049  case UnqualifiedId::IK_ConstructorName:
3050  case UnqualifiedId::IK_ConstructorTemplateId:
3051    // C++0x inherited constructors.
3052    if (getLangOptions().CPlusPlus0x) break;
3053
3054    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3055      << SS.getRange();
3056    return DeclPtrTy();
3057
3058  case UnqualifiedId::IK_DestructorName:
3059    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3060      << SS.getRange();
3061    return DeclPtrTy();
3062
3063  case UnqualifiedId::IK_TemplateId:
3064    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3065      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3066    return DeclPtrTy();
3067  }
3068
3069  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3070  if (!TargetName)
3071    return DeclPtrTy();
3072
3073  // Warn about using declarations.
3074  // TODO: store that the declaration was written without 'using' and
3075  // talk about access decls instead of using decls in the
3076  // diagnostics.
3077  if (!HasUsingKeyword) {
3078    UsingLoc = Name.getSourceRange().getBegin();
3079
3080    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3081      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3082                                               "using ");
3083  }
3084
3085  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3086                                        Name.getSourceRange().getBegin(),
3087                                        TargetName, AttrList,
3088                                        /* IsInstantiation */ false,
3089                                        IsTypeName, TypenameLoc);
3090  if (UD)
3091    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3092
3093  return DeclPtrTy::make(UD);
3094}
3095
3096/// Determines whether to create a using shadow decl for a particular
3097/// decl, given the set of decls existing prior to this using lookup.
3098bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3099                                const LookupResult &Previous) {
3100  // Diagnose finding a decl which is not from a base class of the
3101  // current class.  We do this now because there are cases where this
3102  // function will silently decide not to build a shadow decl, which
3103  // will pre-empt further diagnostics.
3104  //
3105  // We don't need to do this in C++0x because we do the check once on
3106  // the qualifier.
3107  //
3108  // FIXME: diagnose the following if we care enough:
3109  //   struct A { int foo; };
3110  //   struct B : A { using A::foo; };
3111  //   template <class T> struct C : A {};
3112  //   template <class T> struct D : C<T> { using B::foo; } // <---
3113  // This is invalid (during instantiation) in C++03 because B::foo
3114  // resolves to the using decl in B, which is not a base class of D<T>.
3115  // We can't diagnose it immediately because C<T> is an unknown
3116  // specialization.  The UsingShadowDecl in D<T> then points directly
3117  // to A::foo, which will look well-formed when we instantiate.
3118  // The right solution is to not collapse the shadow-decl chain.
3119  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3120    DeclContext *OrigDC = Orig->getDeclContext();
3121
3122    // Handle enums and anonymous structs.
3123    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3124    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3125    while (OrigRec->isAnonymousStructOrUnion())
3126      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3127
3128    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3129      if (OrigDC == CurContext) {
3130        Diag(Using->getLocation(),
3131             diag::err_using_decl_nested_name_specifier_is_current_class)
3132          << Using->getNestedNameRange();
3133        Diag(Orig->getLocation(), diag::note_using_decl_target);
3134        return true;
3135      }
3136
3137      Diag(Using->getNestedNameRange().getBegin(),
3138           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3139        << Using->getTargetNestedNameDecl()
3140        << cast<CXXRecordDecl>(CurContext)
3141        << Using->getNestedNameRange();
3142      Diag(Orig->getLocation(), diag::note_using_decl_target);
3143      return true;
3144    }
3145  }
3146
3147  if (Previous.empty()) return false;
3148
3149  NamedDecl *Target = Orig;
3150  if (isa<UsingShadowDecl>(Target))
3151    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3152
3153  // If the target happens to be one of the previous declarations, we
3154  // don't have a conflict.
3155  //
3156  // FIXME: but we might be increasing its access, in which case we
3157  // should redeclare it.
3158  NamedDecl *NonTag = 0, *Tag = 0;
3159  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3160         I != E; ++I) {
3161    NamedDecl *D = (*I)->getUnderlyingDecl();
3162    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3163      return false;
3164
3165    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3166  }
3167
3168  if (Target->isFunctionOrFunctionTemplate()) {
3169    FunctionDecl *FD;
3170    if (isa<FunctionTemplateDecl>(Target))
3171      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3172    else
3173      FD = cast<FunctionDecl>(Target);
3174
3175    NamedDecl *OldDecl = 0;
3176    switch (CheckOverload(FD, Previous, OldDecl)) {
3177    case Ovl_Overload:
3178      return false;
3179
3180    case Ovl_NonFunction:
3181      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3182      break;
3183
3184    // We found a decl with the exact signature.
3185    case Ovl_Match:
3186      if (isa<UsingShadowDecl>(OldDecl)) {
3187        // Silently ignore the possible conflict.
3188        return false;
3189      }
3190
3191      // If we're in a record, we want to hide the target, so we
3192      // return true (without a diagnostic) to tell the caller not to
3193      // build a shadow decl.
3194      if (CurContext->isRecord())
3195        return true;
3196
3197      // If we're not in a record, this is an error.
3198      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3199      break;
3200    }
3201
3202    Diag(Target->getLocation(), diag::note_using_decl_target);
3203    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3204    return true;
3205  }
3206
3207  // Target is not a function.
3208
3209  if (isa<TagDecl>(Target)) {
3210    // No conflict between a tag and a non-tag.
3211    if (!Tag) return false;
3212
3213    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3214    Diag(Target->getLocation(), diag::note_using_decl_target);
3215    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3216    return true;
3217  }
3218
3219  // No conflict between a tag and a non-tag.
3220  if (!NonTag) return false;
3221
3222  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3223  Diag(Target->getLocation(), diag::note_using_decl_target);
3224  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3225  return true;
3226}
3227
3228/// Builds a shadow declaration corresponding to a 'using' declaration.
3229UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3230                                            UsingDecl *UD,
3231                                            NamedDecl *Orig) {
3232
3233  // If we resolved to another shadow declaration, just coalesce them.
3234  NamedDecl *Target = Orig;
3235  if (isa<UsingShadowDecl>(Target)) {
3236    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3237    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3238  }
3239
3240  UsingShadowDecl *Shadow
3241    = UsingShadowDecl::Create(Context, CurContext,
3242                              UD->getLocation(), UD, Target);
3243  UD->addShadowDecl(Shadow);
3244
3245  if (S)
3246    PushOnScopeChains(Shadow, S);
3247  else
3248    CurContext->addDecl(Shadow);
3249  Shadow->setAccess(UD->getAccess());
3250
3251  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3252    Shadow->setInvalidDecl();
3253
3254  return Shadow;
3255}
3256
3257/// Hides a using shadow declaration.  This is required by the current
3258/// using-decl implementation when a resolvable using declaration in a
3259/// class is followed by a declaration which would hide or override
3260/// one or more of the using decl's targets; for example:
3261///
3262///   struct Base { void foo(int); };
3263///   struct Derived : Base {
3264///     using Base::foo;
3265///     void foo(int);
3266///   };
3267///
3268/// The governing language is C++03 [namespace.udecl]p12:
3269///
3270///   When a using-declaration brings names from a base class into a
3271///   derived class scope, member functions in the derived class
3272///   override and/or hide member functions with the same name and
3273///   parameter types in a base class (rather than conflicting).
3274///
3275/// There are two ways to implement this:
3276///   (1) optimistically create shadow decls when they're not hidden
3277///       by existing declarations, or
3278///   (2) don't create any shadow decls (or at least don't make them
3279///       visible) until we've fully parsed/instantiated the class.
3280/// The problem with (1) is that we might have to retroactively remove
3281/// a shadow decl, which requires several O(n) operations because the
3282/// decl structures are (very reasonably) not designed for removal.
3283/// (2) avoids this but is very fiddly and phase-dependent.
3284void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3285  // Remove it from the DeclContext...
3286  Shadow->getDeclContext()->removeDecl(Shadow);
3287
3288  // ...and the scope, if applicable...
3289  if (S) {
3290    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3291    IdResolver.RemoveDecl(Shadow);
3292  }
3293
3294  // ...and the using decl.
3295  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3296
3297  // TODO: complain somehow if Shadow was used.  It shouldn't
3298  // be possible for this to happen, because
3299}
3300
3301/// Builds a using declaration.
3302///
3303/// \param IsInstantiation - Whether this call arises from an
3304///   instantiation of an unresolved using declaration.  We treat
3305///   the lookup differently for these declarations.
3306NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3307                                       SourceLocation UsingLoc,
3308                                       const CXXScopeSpec &SS,
3309                                       SourceLocation IdentLoc,
3310                                       DeclarationName Name,
3311                                       AttributeList *AttrList,
3312                                       bool IsInstantiation,
3313                                       bool IsTypeName,
3314                                       SourceLocation TypenameLoc) {
3315  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3316  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3317
3318  // FIXME: We ignore attributes for now.
3319  delete AttrList;
3320
3321  if (SS.isEmpty()) {
3322    Diag(IdentLoc, diag::err_using_requires_qualname);
3323    return 0;
3324  }
3325
3326  // Do the redeclaration lookup in the current scope.
3327  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3328                        ForRedeclaration);
3329  Previous.setHideTags(false);
3330  if (S) {
3331    LookupName(Previous, S);
3332
3333    // It is really dumb that we have to do this.
3334    LookupResult::Filter F = Previous.makeFilter();
3335    while (F.hasNext()) {
3336      NamedDecl *D = F.next();
3337      if (!isDeclInScope(D, CurContext, S))
3338        F.erase();
3339    }
3340    F.done();
3341  } else {
3342    assert(IsInstantiation && "no scope in non-instantiation");
3343    assert(CurContext->isRecord() && "scope not record in instantiation");
3344    LookupQualifiedName(Previous, CurContext);
3345  }
3346
3347  NestedNameSpecifier *NNS =
3348    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3349
3350  // Check for invalid redeclarations.
3351  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3352    return 0;
3353
3354  // Check for bad qualifiers.
3355  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3356    return 0;
3357
3358  DeclContext *LookupContext = computeDeclContext(SS);
3359  NamedDecl *D;
3360  if (!LookupContext) {
3361    if (IsTypeName) {
3362      // FIXME: not all declaration name kinds are legal here
3363      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3364                                              UsingLoc, TypenameLoc,
3365                                              SS.getRange(), NNS,
3366                                              IdentLoc, Name);
3367    } else {
3368      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3369                                           UsingLoc, SS.getRange(), NNS,
3370                                           IdentLoc, Name);
3371    }
3372  } else {
3373    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3374                          SS.getRange(), UsingLoc, NNS, Name,
3375                          IsTypeName);
3376  }
3377  D->setAccess(AS);
3378  CurContext->addDecl(D);
3379
3380  if (!LookupContext) return D;
3381  UsingDecl *UD = cast<UsingDecl>(D);
3382
3383  if (RequireCompleteDeclContext(SS)) {
3384    UD->setInvalidDecl();
3385    return UD;
3386  }
3387
3388  // Look up the target name.
3389
3390  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3391
3392  // Unlike most lookups, we don't always want to hide tag
3393  // declarations: tag names are visible through the using declaration
3394  // even if hidden by ordinary names, *except* in a dependent context
3395  // where it's important for the sanity of two-phase lookup.
3396  if (!IsInstantiation)
3397    R.setHideTags(false);
3398
3399  LookupQualifiedName(R, LookupContext);
3400
3401  if (R.empty()) {
3402    Diag(IdentLoc, diag::err_no_member)
3403      << Name << LookupContext << SS.getRange();
3404    UD->setInvalidDecl();
3405    return UD;
3406  }
3407
3408  if (R.isAmbiguous()) {
3409    UD->setInvalidDecl();
3410    return UD;
3411  }
3412
3413  if (IsTypeName) {
3414    // If we asked for a typename and got a non-type decl, error out.
3415    if (!R.getAsSingle<TypeDecl>()) {
3416      Diag(IdentLoc, diag::err_using_typename_non_type);
3417      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3418        Diag((*I)->getUnderlyingDecl()->getLocation(),
3419             diag::note_using_decl_target);
3420      UD->setInvalidDecl();
3421      return UD;
3422    }
3423  } else {
3424    // If we asked for a non-typename and we got a type, error out,
3425    // but only if this is an instantiation of an unresolved using
3426    // decl.  Otherwise just silently find the type name.
3427    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3428      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3429      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3430      UD->setInvalidDecl();
3431      return UD;
3432    }
3433  }
3434
3435  // C++0x N2914 [namespace.udecl]p6:
3436  // A using-declaration shall not name a namespace.
3437  if (R.getAsSingle<NamespaceDecl>()) {
3438    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3439      << SS.getRange();
3440    UD->setInvalidDecl();
3441    return UD;
3442  }
3443
3444  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3445    if (!CheckUsingShadowDecl(UD, *I, Previous))
3446      BuildUsingShadowDecl(S, UD, *I);
3447  }
3448
3449  return UD;
3450}
3451
3452/// Checks that the given using declaration is not an invalid
3453/// redeclaration.  Note that this is checking only for the using decl
3454/// itself, not for any ill-formedness among the UsingShadowDecls.
3455bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3456                                       bool isTypeName,
3457                                       const CXXScopeSpec &SS,
3458                                       SourceLocation NameLoc,
3459                                       const LookupResult &Prev) {
3460  // C++03 [namespace.udecl]p8:
3461  // C++0x [namespace.udecl]p10:
3462  //   A using-declaration is a declaration and can therefore be used
3463  //   repeatedly where (and only where) multiple declarations are
3464  //   allowed.
3465  // That's only in file contexts.
3466  if (CurContext->getLookupContext()->isFileContext())
3467    return false;
3468
3469  NestedNameSpecifier *Qual
3470    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3471
3472  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3473    NamedDecl *D = *I;
3474
3475    bool DTypename;
3476    NestedNameSpecifier *DQual;
3477    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3478      DTypename = UD->isTypeName();
3479      DQual = UD->getTargetNestedNameDecl();
3480    } else if (UnresolvedUsingValueDecl *UD
3481                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3482      DTypename = false;
3483      DQual = UD->getTargetNestedNameSpecifier();
3484    } else if (UnresolvedUsingTypenameDecl *UD
3485                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3486      DTypename = true;
3487      DQual = UD->getTargetNestedNameSpecifier();
3488    } else continue;
3489
3490    // using decls differ if one says 'typename' and the other doesn't.
3491    // FIXME: non-dependent using decls?
3492    if (isTypeName != DTypename) continue;
3493
3494    // using decls differ if they name different scopes (but note that
3495    // template instantiation can cause this check to trigger when it
3496    // didn't before instantiation).
3497    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3498        Context.getCanonicalNestedNameSpecifier(DQual))
3499      continue;
3500
3501    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3502    Diag(D->getLocation(), diag::note_using_decl) << 1;
3503    return true;
3504  }
3505
3506  return false;
3507}
3508
3509
3510/// Checks that the given nested-name qualifier used in a using decl
3511/// in the current context is appropriately related to the current
3512/// scope.  If an error is found, diagnoses it and returns true.
3513bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3514                                   const CXXScopeSpec &SS,
3515                                   SourceLocation NameLoc) {
3516  DeclContext *NamedContext = computeDeclContext(SS);
3517
3518  if (!CurContext->isRecord()) {
3519    // C++03 [namespace.udecl]p3:
3520    // C++0x [namespace.udecl]p8:
3521    //   A using-declaration for a class member shall be a member-declaration.
3522
3523    // If we weren't able to compute a valid scope, it must be a
3524    // dependent class scope.
3525    if (!NamedContext || NamedContext->isRecord()) {
3526      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3527        << SS.getRange();
3528      return true;
3529    }
3530
3531    // Otherwise, everything is known to be fine.
3532    return false;
3533  }
3534
3535  // The current scope is a record.
3536
3537  // If the named context is dependent, we can't decide much.
3538  if (!NamedContext) {
3539    // FIXME: in C++0x, we can diagnose if we can prove that the
3540    // nested-name-specifier does not refer to a base class, which is
3541    // still possible in some cases.
3542
3543    // Otherwise we have to conservatively report that things might be
3544    // okay.
3545    return false;
3546  }
3547
3548  if (!NamedContext->isRecord()) {
3549    // Ideally this would point at the last name in the specifier,
3550    // but we don't have that level of source info.
3551    Diag(SS.getRange().getBegin(),
3552         diag::err_using_decl_nested_name_specifier_is_not_class)
3553      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3554    return true;
3555  }
3556
3557  if (getLangOptions().CPlusPlus0x) {
3558    // C++0x [namespace.udecl]p3:
3559    //   In a using-declaration used as a member-declaration, the
3560    //   nested-name-specifier shall name a base class of the class
3561    //   being defined.
3562
3563    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3564                                 cast<CXXRecordDecl>(NamedContext))) {
3565      if (CurContext == NamedContext) {
3566        Diag(NameLoc,
3567             diag::err_using_decl_nested_name_specifier_is_current_class)
3568          << SS.getRange();
3569        return true;
3570      }
3571
3572      Diag(SS.getRange().getBegin(),
3573           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3574        << (NestedNameSpecifier*) SS.getScopeRep()
3575        << cast<CXXRecordDecl>(CurContext)
3576        << SS.getRange();
3577      return true;
3578    }
3579
3580    return false;
3581  }
3582
3583  // C++03 [namespace.udecl]p4:
3584  //   A using-declaration used as a member-declaration shall refer
3585  //   to a member of a base class of the class being defined [etc.].
3586
3587  // Salient point: SS doesn't have to name a base class as long as
3588  // lookup only finds members from base classes.  Therefore we can
3589  // diagnose here only if we can prove that that can't happen,
3590  // i.e. if the class hierarchies provably don't intersect.
3591
3592  // TODO: it would be nice if "definitely valid" results were cached
3593  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3594  // need to be repeated.
3595
3596  struct UserData {
3597    llvm::DenseSet<const CXXRecordDecl*> Bases;
3598
3599    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3600      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3601      Data->Bases.insert(Base);
3602      return true;
3603    }
3604
3605    bool hasDependentBases(const CXXRecordDecl *Class) {
3606      return !Class->forallBases(collect, this);
3607    }
3608
3609    /// Returns true if the base is dependent or is one of the
3610    /// accumulated base classes.
3611    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3612      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3613      return !Data->Bases.count(Base);
3614    }
3615
3616    bool mightShareBases(const CXXRecordDecl *Class) {
3617      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3618    }
3619  };
3620
3621  UserData Data;
3622
3623  // Returns false if we find a dependent base.
3624  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3625    return false;
3626
3627  // Returns false if the class has a dependent base or if it or one
3628  // of its bases is present in the base set of the current context.
3629  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3630    return false;
3631
3632  Diag(SS.getRange().getBegin(),
3633       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3634    << (NestedNameSpecifier*) SS.getScopeRep()
3635    << cast<CXXRecordDecl>(CurContext)
3636    << SS.getRange();
3637
3638  return true;
3639}
3640
3641Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3642                                             SourceLocation NamespaceLoc,
3643                                             SourceLocation AliasLoc,
3644                                             IdentifierInfo *Alias,
3645                                             const CXXScopeSpec &SS,
3646                                             SourceLocation IdentLoc,
3647                                             IdentifierInfo *Ident) {
3648
3649  // Lookup the namespace name.
3650  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3651  LookupParsedName(R, S, &SS);
3652
3653  // Check if we have a previous declaration with the same name.
3654  if (NamedDecl *PrevDecl
3655        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3656    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3657      // We already have an alias with the same name that points to the same
3658      // namespace, so don't create a new one.
3659      if (!R.isAmbiguous() && !R.empty() &&
3660          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3661        return DeclPtrTy();
3662    }
3663
3664    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3665      diag::err_redefinition_different_kind;
3666    Diag(AliasLoc, DiagID) << Alias;
3667    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3668    return DeclPtrTy();
3669  }
3670
3671  if (R.isAmbiguous())
3672    return DeclPtrTy();
3673
3674  if (R.empty()) {
3675    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3676    return DeclPtrTy();
3677  }
3678
3679  NamespaceAliasDecl *AliasDecl =
3680    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3681                               Alias, SS.getRange(),
3682                               (NestedNameSpecifier *)SS.getScopeRep(),
3683                               IdentLoc, R.getFoundDecl());
3684
3685  CurContext->addDecl(AliasDecl);
3686  return DeclPtrTy::make(AliasDecl);
3687}
3688
3689void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3690                                            CXXConstructorDecl *Constructor) {
3691  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3692          !Constructor->isUsed()) &&
3693    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3694
3695  CXXRecordDecl *ClassDecl
3696    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3697  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3698
3699  DeclContext *PreviousContext = CurContext;
3700  CurContext = Constructor;
3701  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true, false)) {
3702    Diag(CurrentLocation, diag::note_member_synthesized_at)
3703      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3704    Constructor->setInvalidDecl();
3705  } else {
3706    Constructor->setUsed();
3707  }
3708  CurContext = PreviousContext;
3709}
3710
3711void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3712                                    CXXDestructorDecl *Destructor) {
3713  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3714         "DefineImplicitDestructor - call it for implicit default dtor");
3715  CXXRecordDecl *ClassDecl = Destructor->getParent();
3716  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3717
3718  DeclContext *PreviousContext = CurContext;
3719  CurContext = Destructor;
3720
3721  // C++ [class.dtor] p5
3722  // Before the implicitly-declared default destructor for a class is
3723  // implicitly defined, all the implicitly-declared default destructors
3724  // for its base class and its non-static data members shall have been
3725  // implicitly defined.
3726  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3727       E = ClassDecl->bases_end(); Base != E; ++Base) {
3728    CXXRecordDecl *BaseClassDecl
3729      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3730    if (!BaseClassDecl->hasTrivialDestructor()) {
3731      if (CXXDestructorDecl *BaseDtor =
3732          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3733        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3734      else
3735        assert(false &&
3736               "DefineImplicitDestructor - missing dtor in a base class");
3737    }
3738  }
3739
3740  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3741       E = ClassDecl->field_end(); Field != E; ++Field) {
3742    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3743    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3744      FieldType = Array->getElementType();
3745    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3746      CXXRecordDecl *FieldClassDecl
3747        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3748      if (!FieldClassDecl->hasTrivialDestructor()) {
3749        if (CXXDestructorDecl *FieldDtor =
3750            const_cast<CXXDestructorDecl*>(
3751                                        FieldClassDecl->getDestructor(Context)))
3752          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3753        else
3754          assert(false &&
3755          "DefineImplicitDestructor - missing dtor in class of a data member");
3756      }
3757    }
3758  }
3759
3760  // FIXME: If CheckDestructor fails, we should emit a note about where the
3761  // implicit destructor was needed.
3762  if (CheckDestructor(Destructor)) {
3763    Diag(CurrentLocation, diag::note_member_synthesized_at)
3764      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3765
3766    Destructor->setInvalidDecl();
3767    CurContext = PreviousContext;
3768
3769    return;
3770  }
3771  CurContext = PreviousContext;
3772
3773  Destructor->setUsed();
3774}
3775
3776void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3777                                          CXXMethodDecl *MethodDecl) {
3778  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3779          MethodDecl->getOverloadedOperator() == OO_Equal &&
3780          !MethodDecl->isUsed()) &&
3781         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3782
3783  CXXRecordDecl *ClassDecl
3784    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3785
3786  DeclContext *PreviousContext = CurContext;
3787  CurContext = MethodDecl;
3788
3789  // C++[class.copy] p12
3790  // Before the implicitly-declared copy assignment operator for a class is
3791  // implicitly defined, all implicitly-declared copy assignment operators
3792  // for its direct base classes and its nonstatic data members shall have
3793  // been implicitly defined.
3794  bool err = false;
3795  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3796       E = ClassDecl->bases_end(); Base != E; ++Base) {
3797    CXXRecordDecl *BaseClassDecl
3798      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3799    if (CXXMethodDecl *BaseAssignOpMethod =
3800          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3801                                  BaseClassDecl))
3802      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3803  }
3804  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3805       E = ClassDecl->field_end(); Field != E; ++Field) {
3806    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3807    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3808      FieldType = Array->getElementType();
3809    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3810      CXXRecordDecl *FieldClassDecl
3811        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3812      if (CXXMethodDecl *FieldAssignOpMethod =
3813          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3814                                  FieldClassDecl))
3815        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3816    } else if (FieldType->isReferenceType()) {
3817      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3818      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3819      Diag(Field->getLocation(), diag::note_declared_at);
3820      Diag(CurrentLocation, diag::note_first_required_here);
3821      err = true;
3822    } else if (FieldType.isConstQualified()) {
3823      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3824      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3825      Diag(Field->getLocation(), diag::note_declared_at);
3826      Diag(CurrentLocation, diag::note_first_required_here);
3827      err = true;
3828    }
3829  }
3830  if (!err)
3831    MethodDecl->setUsed();
3832
3833  CurContext = PreviousContext;
3834}
3835
3836CXXMethodDecl *
3837Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3838                              ParmVarDecl *ParmDecl,
3839                              CXXRecordDecl *ClassDecl) {
3840  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3841  QualType RHSType(LHSType);
3842  // If class's assignment operator argument is const/volatile qualified,
3843  // look for operator = (const/volatile B&). Otherwise, look for
3844  // operator = (B&).
3845  RHSType = Context.getCVRQualifiedType(RHSType,
3846                                     ParmDecl->getType().getCVRQualifiers());
3847  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3848                                                           LHSType,
3849                                                           SourceLocation()));
3850  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3851                                                           RHSType,
3852                                                           CurrentLocation));
3853  Expr *Args[2] = { &*LHS, &*RHS };
3854  OverloadCandidateSet CandidateSet;
3855  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3856                              CandidateSet);
3857  OverloadCandidateSet::iterator Best;
3858  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3859    return cast<CXXMethodDecl>(Best->Function);
3860  assert(false &&
3861         "getAssignOperatorMethod - copy assignment operator method not found");
3862  return 0;
3863}
3864
3865void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3866                                   CXXConstructorDecl *CopyConstructor,
3867                                   unsigned TypeQuals) {
3868  assert((CopyConstructor->isImplicit() &&
3869          CopyConstructor->isCopyConstructor(TypeQuals) &&
3870          !CopyConstructor->isUsed()) &&
3871         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3872
3873  CXXRecordDecl *ClassDecl
3874    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3875  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3876
3877  DeclContext *PreviousContext = CurContext;
3878  CurContext = CopyConstructor;
3879
3880  // C++ [class.copy] p209
3881  // Before the implicitly-declared copy constructor for a class is
3882  // implicitly defined, all the implicitly-declared copy constructors
3883  // for its base class and its non-static data members shall have been
3884  // implicitly defined.
3885  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3886       Base != ClassDecl->bases_end(); ++Base) {
3887    CXXRecordDecl *BaseClassDecl
3888      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3889    if (CXXConstructorDecl *BaseCopyCtor =
3890        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3891      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3892  }
3893  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3894                                  FieldEnd = ClassDecl->field_end();
3895       Field != FieldEnd; ++Field) {
3896    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3897    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3898      FieldType = Array->getElementType();
3899    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3900      CXXRecordDecl *FieldClassDecl
3901        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3902      if (CXXConstructorDecl *FieldCopyCtor =
3903          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3904        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3905    }
3906  }
3907  CopyConstructor->setUsed();
3908
3909  CurContext = PreviousContext;
3910}
3911
3912Sema::OwningExprResult
3913Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3914                            CXXConstructorDecl *Constructor,
3915                            MultiExprArg ExprArgs,
3916                            bool RequiresZeroInit,
3917                            bool BaseInitialization) {
3918  bool Elidable = false;
3919
3920  // C++ [class.copy]p15:
3921  //   Whenever a temporary class object is copied using a copy constructor, and
3922  //   this object and the copy have the same cv-unqualified type, an
3923  //   implementation is permitted to treat the original and the copy as two
3924  //   different ways of referring to the same object and not perform a copy at
3925  //   all, even if the class copy constructor or destructor have side effects.
3926
3927  // FIXME: Is this enough?
3928  if (Constructor->isCopyConstructor()) {
3929    Expr *E = ((Expr **)ExprArgs.get())[0];
3930    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3931      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3932        E = ICE->getSubExpr();
3933    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3934      E = FCE->getSubExpr();
3935    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3936      E = BE->getSubExpr();
3937    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3938      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3939        E = ICE->getSubExpr();
3940
3941    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3942      Elidable = !CE->getCallReturnType()->isReferenceType();
3943    else if (isa<CXXTemporaryObjectExpr>(E))
3944      Elidable = true;
3945    else if (isa<CXXConstructExpr>(E))
3946      Elidable = true;
3947  }
3948
3949  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3950                               Elidable, move(ExprArgs), RequiresZeroInit,
3951                               BaseInitialization);
3952}
3953
3954/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3955/// including handling of its default argument expressions.
3956Sema::OwningExprResult
3957Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3958                            CXXConstructorDecl *Constructor, bool Elidable,
3959                            MultiExprArg ExprArgs,
3960                            bool RequiresZeroInit,
3961                            bool BaseInitialization) {
3962  unsigned NumExprs = ExprArgs.size();
3963  Expr **Exprs = (Expr **)ExprArgs.release();
3964
3965  MarkDeclarationReferenced(ConstructLoc, Constructor);
3966  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3967                                        Constructor, Elidable, Exprs, NumExprs,
3968                                        RequiresZeroInit, BaseInitialization));
3969}
3970
3971bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3972                                        CXXConstructorDecl *Constructor,
3973                                        MultiExprArg Exprs) {
3974  OwningExprResult TempResult =
3975    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3976                          move(Exprs));
3977  if (TempResult.isInvalid())
3978    return true;
3979
3980  Expr *Temp = TempResult.takeAs<Expr>();
3981  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3982  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3983  VD->setInit(Context, Temp);
3984
3985  return false;
3986}
3987
3988void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
3989  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
3990  if (!ClassDecl->hasTrivialDestructor()) {
3991    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
3992    MarkDeclarationReferenced(VD->getLocation(), Destructor);
3993    CheckDestructorAccess(VD->getLocation(), Record);
3994  }
3995}
3996
3997/// AddCXXDirectInitializerToDecl - This action is called immediately after
3998/// ActOnDeclarator, when a C++ direct initializer is present.
3999/// e.g: "int x(1);"
4000void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4001                                         SourceLocation LParenLoc,
4002                                         MultiExprArg Exprs,
4003                                         SourceLocation *CommaLocs,
4004                                         SourceLocation RParenLoc) {
4005  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4006  Decl *RealDecl = Dcl.getAs<Decl>();
4007
4008  // If there is no declaration, there was an error parsing it.  Just ignore
4009  // the initializer.
4010  if (RealDecl == 0)
4011    return;
4012
4013  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4014  if (!VDecl) {
4015    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4016    RealDecl->setInvalidDecl();
4017    return;
4018  }
4019
4020  // We will represent direct-initialization similarly to copy-initialization:
4021  //    int x(1);  -as-> int x = 1;
4022  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4023  //
4024  // Clients that want to distinguish between the two forms, can check for
4025  // direct initializer using VarDecl::hasCXXDirectInitializer().
4026  // A major benefit is that clients that don't particularly care about which
4027  // exactly form was it (like the CodeGen) can handle both cases without
4028  // special case code.
4029
4030  // If either the declaration has a dependent type or if any of the expressions
4031  // is type-dependent, we represent the initialization via a ParenListExpr for
4032  // later use during template instantiation.
4033  if (VDecl->getType()->isDependentType() ||
4034      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4035    // Let clients know that initialization was done with a direct initializer.
4036    VDecl->setCXXDirectInitializer(true);
4037
4038    // Store the initialization expressions as a ParenListExpr.
4039    unsigned NumExprs = Exprs.size();
4040    VDecl->setInit(Context,
4041                   new (Context) ParenListExpr(Context, LParenLoc,
4042                                               (Expr **)Exprs.release(),
4043                                               NumExprs, RParenLoc));
4044    return;
4045  }
4046
4047
4048  // C++ 8.5p11:
4049  // The form of initialization (using parentheses or '=') is generally
4050  // insignificant, but does matter when the entity being initialized has a
4051  // class type.
4052  QualType DeclInitType = VDecl->getType();
4053  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4054    DeclInitType = Context.getBaseElementType(Array);
4055
4056  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4057                          diag::err_typecheck_decl_incomplete_type)) {
4058    VDecl->setInvalidDecl();
4059    return;
4060  }
4061
4062  // The variable can not have an abstract class type.
4063  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4064                             diag::err_abstract_type_in_decl,
4065                             AbstractVariableType))
4066    VDecl->setInvalidDecl();
4067
4068  const VarDecl *Def;
4069  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4070    Diag(VDecl->getLocation(), diag::err_redefinition)
4071    << VDecl->getDeclName();
4072    Diag(Def->getLocation(), diag::note_previous_definition);
4073    VDecl->setInvalidDecl();
4074    return;
4075  }
4076
4077  // Capture the variable that is being initialized and the style of
4078  // initialization.
4079  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4080
4081  // FIXME: Poor source location information.
4082  InitializationKind Kind
4083    = InitializationKind::CreateDirect(VDecl->getLocation(),
4084                                       LParenLoc, RParenLoc);
4085
4086  InitializationSequence InitSeq(*this, Entity, Kind,
4087                                 (Expr**)Exprs.get(), Exprs.size());
4088  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4089  if (Result.isInvalid()) {
4090    VDecl->setInvalidDecl();
4091    return;
4092  }
4093
4094  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4095  VDecl->setInit(Context, Result.takeAs<Expr>());
4096  VDecl->setCXXDirectInitializer(true);
4097
4098  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4099    FinalizeVarWithDestructor(VDecl, Record);
4100}
4101
4102/// \brief Add the applicable constructor candidates for an initialization
4103/// by constructor.
4104static void AddConstructorInitializationCandidates(Sema &SemaRef,
4105                                                   QualType ClassType,
4106                                                   Expr **Args,
4107                                                   unsigned NumArgs,
4108                                                   InitializationKind Kind,
4109                                           OverloadCandidateSet &CandidateSet) {
4110  // C++ [dcl.init]p14:
4111  //   If the initialization is direct-initialization, or if it is
4112  //   copy-initialization where the cv-unqualified version of the
4113  //   source type is the same class as, or a derived class of, the
4114  //   class of the destination, constructors are considered. The
4115  //   applicable constructors are enumerated (13.3.1.3), and the
4116  //   best one is chosen through overload resolution (13.3). The
4117  //   constructor so selected is called to initialize the object,
4118  //   with the initializer expression(s) as its argument(s). If no
4119  //   constructor applies, or the overload resolution is ambiguous,
4120  //   the initialization is ill-formed.
4121  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4122  assert(ClassRec && "Can only initialize a class type here");
4123
4124  // FIXME: When we decide not to synthesize the implicitly-declared
4125  // constructors, we'll need to make them appear here.
4126
4127  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4128  DeclarationName ConstructorName
4129    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4130              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4131  DeclContext::lookup_const_iterator Con, ConEnd;
4132  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4133       Con != ConEnd; ++Con) {
4134    // Find the constructor (which may be a template).
4135    CXXConstructorDecl *Constructor = 0;
4136    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4137    if (ConstructorTmpl)
4138      Constructor
4139      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4140    else
4141      Constructor = cast<CXXConstructorDecl>(*Con);
4142
4143    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4144        (Kind.getKind() == InitializationKind::IK_Value) ||
4145        (Kind.getKind() == InitializationKind::IK_Copy &&
4146         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4147        ((Kind.getKind() == InitializationKind::IK_Default) &&
4148         Constructor->isDefaultConstructor())) {
4149      if (ConstructorTmpl)
4150        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4151                                             ConstructorTmpl->getAccess(),
4152                                             /*ExplicitArgs*/ 0,
4153                                             Args, NumArgs, CandidateSet);
4154      else
4155        SemaRef.AddOverloadCandidate(Constructor, Constructor->getAccess(),
4156                                     Args, NumArgs, CandidateSet);
4157    }
4158  }
4159}
4160
4161/// \brief Attempt to perform initialization by constructor
4162/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4163/// copy-initialization.
4164///
4165/// This routine determines whether initialization by constructor is possible,
4166/// but it does not emit any diagnostics in the case where the initialization
4167/// is ill-formed.
4168///
4169/// \param ClassType the type of the object being initialized, which must have
4170/// class type.
4171///
4172/// \param Args the arguments provided to initialize the object
4173///
4174/// \param NumArgs the number of arguments provided to initialize the object
4175///
4176/// \param Kind the type of initialization being performed
4177///
4178/// \returns the constructor used to initialize the object, if successful.
4179/// Otherwise, emits a diagnostic and returns NULL.
4180CXXConstructorDecl *
4181Sema::TryInitializationByConstructor(QualType ClassType,
4182                                     Expr **Args, unsigned NumArgs,
4183                                     SourceLocation Loc,
4184                                     InitializationKind Kind) {
4185  // Build the overload candidate set
4186  OverloadCandidateSet CandidateSet;
4187  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4188                                         CandidateSet);
4189
4190  // Determine whether we found a constructor we can use.
4191  OverloadCandidateSet::iterator Best;
4192  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4193    case OR_Success:
4194    case OR_Deleted:
4195      // We found a constructor. Return it.
4196      return cast<CXXConstructorDecl>(Best->Function);
4197
4198    case OR_No_Viable_Function:
4199    case OR_Ambiguous:
4200      // Overload resolution failed. Return nothing.
4201      return 0;
4202  }
4203
4204  // Silence GCC warning
4205  return 0;
4206}
4207
4208/// \brief Given a constructor and the set of arguments provided for the
4209/// constructor, convert the arguments and add any required default arguments
4210/// to form a proper call to this constructor.
4211///
4212/// \returns true if an error occurred, false otherwise.
4213bool
4214Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4215                              MultiExprArg ArgsPtr,
4216                              SourceLocation Loc,
4217                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4218  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4219  unsigned NumArgs = ArgsPtr.size();
4220  Expr **Args = (Expr **)ArgsPtr.get();
4221
4222  const FunctionProtoType *Proto
4223    = Constructor->getType()->getAs<FunctionProtoType>();
4224  assert(Proto && "Constructor without a prototype?");
4225  unsigned NumArgsInProto = Proto->getNumArgs();
4226
4227  // If too few arguments are available, we'll fill in the rest with defaults.
4228  if (NumArgs < NumArgsInProto)
4229    ConvertedArgs.reserve(NumArgsInProto);
4230  else
4231    ConvertedArgs.reserve(NumArgs);
4232
4233  VariadicCallType CallType =
4234    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4235  llvm::SmallVector<Expr *, 8> AllArgs;
4236  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4237                                        Proto, 0, Args, NumArgs, AllArgs,
4238                                        CallType);
4239  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4240    ConvertedArgs.push_back(AllArgs[i]);
4241  return Invalid;
4242}
4243
4244/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4245/// determine whether they are reference-related,
4246/// reference-compatible, reference-compatible with added
4247/// qualification, or incompatible, for use in C++ initialization by
4248/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4249/// type, and the first type (T1) is the pointee type of the reference
4250/// type being initialized.
4251Sema::ReferenceCompareResult
4252Sema::CompareReferenceRelationship(SourceLocation Loc,
4253                                   QualType OrigT1, QualType OrigT2,
4254                                   bool& DerivedToBase) {
4255  assert(!OrigT1->isReferenceType() &&
4256    "T1 must be the pointee type of the reference type");
4257  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4258
4259  QualType T1 = Context.getCanonicalType(OrigT1);
4260  QualType T2 = Context.getCanonicalType(OrigT2);
4261  Qualifiers T1Quals, T2Quals;
4262  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4263  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4264
4265  // C++ [dcl.init.ref]p4:
4266  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4267  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4268  //   T1 is a base class of T2.
4269  if (UnqualT1 == UnqualT2)
4270    DerivedToBase = false;
4271  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4272           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4273           IsDerivedFrom(UnqualT2, UnqualT1))
4274    DerivedToBase = true;
4275  else
4276    return Ref_Incompatible;
4277
4278  // At this point, we know that T1 and T2 are reference-related (at
4279  // least).
4280
4281  // If the type is an array type, promote the element qualifiers to the type
4282  // for comparison.
4283  if (isa<ArrayType>(T1) && T1Quals)
4284    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4285  if (isa<ArrayType>(T2) && T2Quals)
4286    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4287
4288  // C++ [dcl.init.ref]p4:
4289  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4290  //   reference-related to T2 and cv1 is the same cv-qualification
4291  //   as, or greater cv-qualification than, cv2. For purposes of
4292  //   overload resolution, cases for which cv1 is greater
4293  //   cv-qualification than cv2 are identified as
4294  //   reference-compatible with added qualification (see 13.3.3.2).
4295  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4296    return Ref_Compatible;
4297  else if (T1.isMoreQualifiedThan(T2))
4298    return Ref_Compatible_With_Added_Qualification;
4299  else
4300    return Ref_Related;
4301}
4302
4303/// CheckReferenceInit - Check the initialization of a reference
4304/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4305/// the initializer (either a simple initializer or an initializer
4306/// list), and DeclType is the type of the declaration. When ICS is
4307/// non-null, this routine will compute the implicit conversion
4308/// sequence according to C++ [over.ics.ref] and will not produce any
4309/// diagnostics; when ICS is null, it will emit diagnostics when any
4310/// errors are found. Either way, a return value of true indicates
4311/// that there was a failure, a return value of false indicates that
4312/// the reference initialization succeeded.
4313///
4314/// When @p SuppressUserConversions, user-defined conversions are
4315/// suppressed.
4316/// When @p AllowExplicit, we also permit explicit user-defined
4317/// conversion functions.
4318/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4319/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4320/// This is used when this is called from a C-style cast.
4321bool
4322Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4323                         SourceLocation DeclLoc,
4324                         bool SuppressUserConversions,
4325                         bool AllowExplicit, bool ForceRValue,
4326                         ImplicitConversionSequence *ICS,
4327                         bool IgnoreBaseAccess) {
4328  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4329
4330  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4331  QualType T2 = Init->getType();
4332
4333  // If the initializer is the address of an overloaded function, try
4334  // to resolve the overloaded function. If all goes well, T2 is the
4335  // type of the resulting function.
4336  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4337    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4338                                                          ICS != 0);
4339    if (Fn) {
4340      // Since we're performing this reference-initialization for
4341      // real, update the initializer with the resulting function.
4342      if (!ICS) {
4343        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4344          return true;
4345
4346        Init = FixOverloadedFunctionReference(Init, Fn);
4347      }
4348
4349      T2 = Fn->getType();
4350    }
4351  }
4352
4353  // Compute some basic properties of the types and the initializer.
4354  bool isRValRef = DeclType->isRValueReferenceType();
4355  bool DerivedToBase = false;
4356  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4357                                                  Init->isLvalue(Context);
4358  ReferenceCompareResult RefRelationship
4359    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4360
4361  // Most paths end in a failed conversion.
4362  if (ICS) {
4363    ICS->setBad();
4364    ICS->Bad.init(BadConversionSequence::no_conversion, Init, DeclType);
4365  }
4366
4367  // C++ [dcl.init.ref]p5:
4368  //   A reference to type "cv1 T1" is initialized by an expression
4369  //   of type "cv2 T2" as follows:
4370
4371  //     -- If the initializer expression
4372
4373  // Rvalue references cannot bind to lvalues (N2812).
4374  // There is absolutely no situation where they can. In particular, note that
4375  // this is ill-formed, even if B has a user-defined conversion to A&&:
4376  //   B b;
4377  //   A&& r = b;
4378  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4379    if (!ICS)
4380      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4381        << Init->getSourceRange();
4382    return true;
4383  }
4384
4385  bool BindsDirectly = false;
4386  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4387  //          reference-compatible with "cv2 T2," or
4388  //
4389  // Note that the bit-field check is skipped if we are just computing
4390  // the implicit conversion sequence (C++ [over.best.ics]p2).
4391  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4392      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4393    BindsDirectly = true;
4394
4395    if (ICS) {
4396      // C++ [over.ics.ref]p1:
4397      //   When a parameter of reference type binds directly (8.5.3)
4398      //   to an argument expression, the implicit conversion sequence
4399      //   is the identity conversion, unless the argument expression
4400      //   has a type that is a derived class of the parameter type,
4401      //   in which case the implicit conversion sequence is a
4402      //   derived-to-base Conversion (13.3.3.1).
4403      ICS->setStandard();
4404      ICS->Standard.First = ICK_Identity;
4405      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4406      ICS->Standard.Third = ICK_Identity;
4407      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4408      ICS->Standard.setToType(0, T2);
4409      ICS->Standard.setToType(1, T1);
4410      ICS->Standard.setToType(2, T1);
4411      ICS->Standard.ReferenceBinding = true;
4412      ICS->Standard.DirectBinding = true;
4413      ICS->Standard.RRefBinding = false;
4414      ICS->Standard.CopyConstructor = 0;
4415
4416      // Nothing more to do: the inaccessibility/ambiguity check for
4417      // derived-to-base conversions is suppressed when we're
4418      // computing the implicit conversion sequence (C++
4419      // [over.best.ics]p2).
4420      return false;
4421    } else {
4422      // Perform the conversion.
4423      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4424      if (DerivedToBase)
4425        CK = CastExpr::CK_DerivedToBase;
4426      else if(CheckExceptionSpecCompatibility(Init, T1))
4427        return true;
4428      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4429    }
4430  }
4431
4432  //       -- has a class type (i.e., T2 is a class type) and can be
4433  //          implicitly converted to an lvalue of type "cv3 T3,"
4434  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4435  //          92) (this conversion is selected by enumerating the
4436  //          applicable conversion functions (13.3.1.6) and choosing
4437  //          the best one through overload resolution (13.3)),
4438  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4439      !RequireCompleteType(DeclLoc, T2, 0)) {
4440    CXXRecordDecl *T2RecordDecl
4441      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4442
4443    OverloadCandidateSet CandidateSet;
4444    const UnresolvedSetImpl *Conversions
4445      = T2RecordDecl->getVisibleConversionFunctions();
4446    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4447           E = Conversions->end(); I != E; ++I) {
4448      NamedDecl *D = *I;
4449      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4450      if (isa<UsingShadowDecl>(D))
4451        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4452
4453      FunctionTemplateDecl *ConvTemplate
4454        = dyn_cast<FunctionTemplateDecl>(D);
4455      CXXConversionDecl *Conv;
4456      if (ConvTemplate)
4457        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4458      else
4459        Conv = cast<CXXConversionDecl>(D);
4460
4461      // If the conversion function doesn't return a reference type,
4462      // it can't be considered for this conversion.
4463      if (Conv->getConversionType()->isLValueReferenceType() &&
4464          (AllowExplicit || !Conv->isExplicit())) {
4465        if (ConvTemplate)
4466          AddTemplateConversionCandidate(ConvTemplate, I.getAccess(), ActingDC,
4467                                         Init, DeclType, CandidateSet);
4468        else
4469          AddConversionCandidate(Conv, I.getAccess(), ActingDC, Init,
4470                                 DeclType, CandidateSet);
4471      }
4472    }
4473
4474    OverloadCandidateSet::iterator Best;
4475    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4476    case OR_Success:
4477      // This is a direct binding.
4478      BindsDirectly = true;
4479
4480      if (ICS) {
4481        // C++ [over.ics.ref]p1:
4482        //
4483        //   [...] If the parameter binds directly to the result of
4484        //   applying a conversion function to the argument
4485        //   expression, the implicit conversion sequence is a
4486        //   user-defined conversion sequence (13.3.3.1.2), with the
4487        //   second standard conversion sequence either an identity
4488        //   conversion or, if the conversion function returns an
4489        //   entity of a type that is a derived class of the parameter
4490        //   type, a derived-to-base Conversion.
4491        ICS->setUserDefined();
4492        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4493        ICS->UserDefined.After = Best->FinalConversion;
4494        ICS->UserDefined.ConversionFunction = Best->Function;
4495        ICS->UserDefined.EllipsisConversion = false;
4496        assert(ICS->UserDefined.After.ReferenceBinding &&
4497               ICS->UserDefined.After.DirectBinding &&
4498               "Expected a direct reference binding!");
4499        return false;
4500      } else {
4501        OwningExprResult InitConversion =
4502          BuildCXXCastArgument(DeclLoc, QualType(),
4503                               CastExpr::CK_UserDefinedConversion,
4504                               cast<CXXMethodDecl>(Best->Function),
4505                               Owned(Init));
4506        Init = InitConversion.takeAs<Expr>();
4507
4508        if (CheckExceptionSpecCompatibility(Init, T1))
4509          return true;
4510        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4511                          /*isLvalue=*/true);
4512      }
4513      break;
4514
4515    case OR_Ambiguous:
4516      if (ICS) {
4517        ICS->setAmbiguous();
4518        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4519             Cand != CandidateSet.end(); ++Cand)
4520          if (Cand->Viable)
4521            ICS->Ambiguous.addConversion(Cand->Function);
4522        break;
4523      }
4524      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4525            << Init->getSourceRange();
4526      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4527      return true;
4528
4529    case OR_No_Viable_Function:
4530    case OR_Deleted:
4531      // There was no suitable conversion, or we found a deleted
4532      // conversion; continue with other checks.
4533      break;
4534    }
4535  }
4536
4537  if (BindsDirectly) {
4538    // C++ [dcl.init.ref]p4:
4539    //   [...] In all cases where the reference-related or
4540    //   reference-compatible relationship of two types is used to
4541    //   establish the validity of a reference binding, and T1 is a
4542    //   base class of T2, a program that necessitates such a binding
4543    //   is ill-formed if T1 is an inaccessible (clause 11) or
4544    //   ambiguous (10.2) base class of T2.
4545    //
4546    // Note that we only check this condition when we're allowed to
4547    // complain about errors, because we should not be checking for
4548    // ambiguity (or inaccessibility) unless the reference binding
4549    // actually happens.
4550    if (DerivedToBase)
4551      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4552                                          Init->getSourceRange(),
4553                                          IgnoreBaseAccess);
4554    else
4555      return false;
4556  }
4557
4558  //     -- Otherwise, the reference shall be to a non-volatile const
4559  //        type (i.e., cv1 shall be const), or the reference shall be an
4560  //        rvalue reference and the initializer expression shall be an rvalue.
4561  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4562    if (!ICS)
4563      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4564        << T1.isVolatileQualified()
4565        << T1 << int(InitLvalue != Expr::LV_Valid)
4566        << T2 << Init->getSourceRange();
4567    return true;
4568  }
4569
4570  //       -- If the initializer expression is an rvalue, with T2 a
4571  //          class type, and "cv1 T1" is reference-compatible with
4572  //          "cv2 T2," the reference is bound in one of the
4573  //          following ways (the choice is implementation-defined):
4574  //
4575  //          -- The reference is bound to the object represented by
4576  //             the rvalue (see 3.10) or to a sub-object within that
4577  //             object.
4578  //
4579  //          -- A temporary of type "cv1 T2" [sic] is created, and
4580  //             a constructor is called to copy the entire rvalue
4581  //             object into the temporary. The reference is bound to
4582  //             the temporary or to a sub-object within the
4583  //             temporary.
4584  //
4585  //          The constructor that would be used to make the copy
4586  //          shall be callable whether or not the copy is actually
4587  //          done.
4588  //
4589  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4590  // freedom, so we will always take the first option and never build
4591  // a temporary in this case. FIXME: We will, however, have to check
4592  // for the presence of a copy constructor in C++98/03 mode.
4593  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4594      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4595    if (ICS) {
4596      ICS->setStandard();
4597      ICS->Standard.First = ICK_Identity;
4598      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4599      ICS->Standard.Third = ICK_Identity;
4600      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4601      ICS->Standard.setToType(0, T2);
4602      ICS->Standard.setToType(1, T1);
4603      ICS->Standard.setToType(2, T1);
4604      ICS->Standard.ReferenceBinding = true;
4605      ICS->Standard.DirectBinding = false;
4606      ICS->Standard.RRefBinding = isRValRef;
4607      ICS->Standard.CopyConstructor = 0;
4608    } else {
4609      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4610      if (DerivedToBase)
4611        CK = CastExpr::CK_DerivedToBase;
4612      else if(CheckExceptionSpecCompatibility(Init, T1))
4613        return true;
4614      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4615    }
4616    return false;
4617  }
4618
4619  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4620  //          initialized from the initializer expression using the
4621  //          rules for a non-reference copy initialization (8.5). The
4622  //          reference is then bound to the temporary. If T1 is
4623  //          reference-related to T2, cv1 must be the same
4624  //          cv-qualification as, or greater cv-qualification than,
4625  //          cv2; otherwise, the program is ill-formed.
4626  if (RefRelationship == Ref_Related) {
4627    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4628    // we would be reference-compatible or reference-compatible with
4629    // added qualification. But that wasn't the case, so the reference
4630    // initialization fails.
4631    if (!ICS)
4632      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4633        << T1 << int(InitLvalue != Expr::LV_Valid)
4634        << T2 << Init->getSourceRange();
4635    return true;
4636  }
4637
4638  // If at least one of the types is a class type, the types are not
4639  // related, and we aren't allowed any user conversions, the
4640  // reference binding fails. This case is important for breaking
4641  // recursion, since TryImplicitConversion below will attempt to
4642  // create a temporary through the use of a copy constructor.
4643  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4644      (T1->isRecordType() || T2->isRecordType())) {
4645    if (!ICS)
4646      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4647        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4648    return true;
4649  }
4650
4651  // Actually try to convert the initializer to T1.
4652  if (ICS) {
4653    // C++ [over.ics.ref]p2:
4654    //
4655    //   When a parameter of reference type is not bound directly to
4656    //   an argument expression, the conversion sequence is the one
4657    //   required to convert the argument expression to the
4658    //   underlying type of the reference according to
4659    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4660    //   to copy-initializing a temporary of the underlying type with
4661    //   the argument expression. Any difference in top-level
4662    //   cv-qualification is subsumed by the initialization itself
4663    //   and does not constitute a conversion.
4664    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4665                                 /*AllowExplicit=*/false,
4666                                 /*ForceRValue=*/false,
4667                                 /*InOverloadResolution=*/false);
4668
4669    // Of course, that's still a reference binding.
4670    if (ICS->isStandard()) {
4671      ICS->Standard.ReferenceBinding = true;
4672      ICS->Standard.RRefBinding = isRValRef;
4673    } else if (ICS->isUserDefined()) {
4674      ICS->UserDefined.After.ReferenceBinding = true;
4675      ICS->UserDefined.After.RRefBinding = isRValRef;
4676    }
4677    return ICS->isBad();
4678  } else {
4679    ImplicitConversionSequence Conversions;
4680    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4681                                                   false, false,
4682                                                   Conversions);
4683    if (badConversion) {
4684      if (Conversions.isAmbiguous()) {
4685        Diag(DeclLoc,
4686             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4687        for (int j = Conversions.Ambiguous.conversions().size()-1;
4688             j >= 0; j--) {
4689          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4690          NoteOverloadCandidate(Func);
4691        }
4692      }
4693      else {
4694        if (isRValRef)
4695          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4696            << Init->getSourceRange();
4697        else
4698          Diag(DeclLoc, diag::err_invalid_initialization)
4699            << DeclType << Init->getType() << Init->getSourceRange();
4700      }
4701    }
4702    return badConversion;
4703  }
4704}
4705
4706static inline bool
4707CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4708                                       const FunctionDecl *FnDecl) {
4709  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4710  if (isa<NamespaceDecl>(DC)) {
4711    return SemaRef.Diag(FnDecl->getLocation(),
4712                        diag::err_operator_new_delete_declared_in_namespace)
4713      << FnDecl->getDeclName();
4714  }
4715
4716  if (isa<TranslationUnitDecl>(DC) &&
4717      FnDecl->getStorageClass() == FunctionDecl::Static) {
4718    return SemaRef.Diag(FnDecl->getLocation(),
4719                        diag::err_operator_new_delete_declared_static)
4720      << FnDecl->getDeclName();
4721  }
4722
4723  return false;
4724}
4725
4726static inline bool
4727CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4728                            CanQualType ExpectedResultType,
4729                            CanQualType ExpectedFirstParamType,
4730                            unsigned DependentParamTypeDiag,
4731                            unsigned InvalidParamTypeDiag) {
4732  QualType ResultType =
4733    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4734
4735  // Check that the result type is not dependent.
4736  if (ResultType->isDependentType())
4737    return SemaRef.Diag(FnDecl->getLocation(),
4738                        diag::err_operator_new_delete_dependent_result_type)
4739    << FnDecl->getDeclName() << ExpectedResultType;
4740
4741  // Check that the result type is what we expect.
4742  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4743    return SemaRef.Diag(FnDecl->getLocation(),
4744                        diag::err_operator_new_delete_invalid_result_type)
4745    << FnDecl->getDeclName() << ExpectedResultType;
4746
4747  // A function template must have at least 2 parameters.
4748  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4749    return SemaRef.Diag(FnDecl->getLocation(),
4750                      diag::err_operator_new_delete_template_too_few_parameters)
4751        << FnDecl->getDeclName();
4752
4753  // The function decl must have at least 1 parameter.
4754  if (FnDecl->getNumParams() == 0)
4755    return SemaRef.Diag(FnDecl->getLocation(),
4756                        diag::err_operator_new_delete_too_few_parameters)
4757      << FnDecl->getDeclName();
4758
4759  // Check the the first parameter type is not dependent.
4760  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4761  if (FirstParamType->isDependentType())
4762    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4763      << FnDecl->getDeclName() << ExpectedFirstParamType;
4764
4765  // Check that the first parameter type is what we expect.
4766  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4767      ExpectedFirstParamType)
4768    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4769    << FnDecl->getDeclName() << ExpectedFirstParamType;
4770
4771  return false;
4772}
4773
4774static bool
4775CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4776  // C++ [basic.stc.dynamic.allocation]p1:
4777  //   A program is ill-formed if an allocation function is declared in a
4778  //   namespace scope other than global scope or declared static in global
4779  //   scope.
4780  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4781    return true;
4782
4783  CanQualType SizeTy =
4784    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4785
4786  // C++ [basic.stc.dynamic.allocation]p1:
4787  //  The return type shall be void*. The first parameter shall have type
4788  //  std::size_t.
4789  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4790                                  SizeTy,
4791                                  diag::err_operator_new_dependent_param_type,
4792                                  diag::err_operator_new_param_type))
4793    return true;
4794
4795  // C++ [basic.stc.dynamic.allocation]p1:
4796  //  The first parameter shall not have an associated default argument.
4797  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4798    return SemaRef.Diag(FnDecl->getLocation(),
4799                        diag::err_operator_new_default_arg)
4800      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4801
4802  return false;
4803}
4804
4805static bool
4806CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4807  // C++ [basic.stc.dynamic.deallocation]p1:
4808  //   A program is ill-formed if deallocation functions are declared in a
4809  //   namespace scope other than global scope or declared static in global
4810  //   scope.
4811  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4812    return true;
4813
4814  // C++ [basic.stc.dynamic.deallocation]p2:
4815  //   Each deallocation function shall return void and its first parameter
4816  //   shall be void*.
4817  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4818                                  SemaRef.Context.VoidPtrTy,
4819                                 diag::err_operator_delete_dependent_param_type,
4820                                 diag::err_operator_delete_param_type))
4821    return true;
4822
4823  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4824  if (FirstParamType->isDependentType())
4825    return SemaRef.Diag(FnDecl->getLocation(),
4826                        diag::err_operator_delete_dependent_param_type)
4827    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4828
4829  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4830      SemaRef.Context.VoidPtrTy)
4831    return SemaRef.Diag(FnDecl->getLocation(),
4832                        diag::err_operator_delete_param_type)
4833      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4834
4835  return false;
4836}
4837
4838/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4839/// of this overloaded operator is well-formed. If so, returns false;
4840/// otherwise, emits appropriate diagnostics and returns true.
4841bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4842  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4843         "Expected an overloaded operator declaration");
4844
4845  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4846
4847  // C++ [over.oper]p5:
4848  //   The allocation and deallocation functions, operator new,
4849  //   operator new[], operator delete and operator delete[], are
4850  //   described completely in 3.7.3. The attributes and restrictions
4851  //   found in the rest of this subclause do not apply to them unless
4852  //   explicitly stated in 3.7.3.
4853  if (Op == OO_Delete || Op == OO_Array_Delete)
4854    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4855
4856  if (Op == OO_New || Op == OO_Array_New)
4857    return CheckOperatorNewDeclaration(*this, FnDecl);
4858
4859  // C++ [over.oper]p6:
4860  //   An operator function shall either be a non-static member
4861  //   function or be a non-member function and have at least one
4862  //   parameter whose type is a class, a reference to a class, an
4863  //   enumeration, or a reference to an enumeration.
4864  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4865    if (MethodDecl->isStatic())
4866      return Diag(FnDecl->getLocation(),
4867                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4868  } else {
4869    bool ClassOrEnumParam = false;
4870    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4871                                   ParamEnd = FnDecl->param_end();
4872         Param != ParamEnd; ++Param) {
4873      QualType ParamType = (*Param)->getType().getNonReferenceType();
4874      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4875          ParamType->isEnumeralType()) {
4876        ClassOrEnumParam = true;
4877        break;
4878      }
4879    }
4880
4881    if (!ClassOrEnumParam)
4882      return Diag(FnDecl->getLocation(),
4883                  diag::err_operator_overload_needs_class_or_enum)
4884        << FnDecl->getDeclName();
4885  }
4886
4887  // C++ [over.oper]p8:
4888  //   An operator function cannot have default arguments (8.3.6),
4889  //   except where explicitly stated below.
4890  //
4891  // Only the function-call operator allows default arguments
4892  // (C++ [over.call]p1).
4893  if (Op != OO_Call) {
4894    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4895         Param != FnDecl->param_end(); ++Param) {
4896      if ((*Param)->hasDefaultArg())
4897        return Diag((*Param)->getLocation(),
4898                    diag::err_operator_overload_default_arg)
4899          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4900    }
4901  }
4902
4903  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4904    { false, false, false }
4905#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4906    , { Unary, Binary, MemberOnly }
4907#include "clang/Basic/OperatorKinds.def"
4908  };
4909
4910  bool CanBeUnaryOperator = OperatorUses[Op][0];
4911  bool CanBeBinaryOperator = OperatorUses[Op][1];
4912  bool MustBeMemberOperator = OperatorUses[Op][2];
4913
4914  // C++ [over.oper]p8:
4915  //   [...] Operator functions cannot have more or fewer parameters
4916  //   than the number required for the corresponding operator, as
4917  //   described in the rest of this subclause.
4918  unsigned NumParams = FnDecl->getNumParams()
4919                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4920  if (Op != OO_Call &&
4921      ((NumParams == 1 && !CanBeUnaryOperator) ||
4922       (NumParams == 2 && !CanBeBinaryOperator) ||
4923       (NumParams < 1) || (NumParams > 2))) {
4924    // We have the wrong number of parameters.
4925    unsigned ErrorKind;
4926    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4927      ErrorKind = 2;  // 2 -> unary or binary.
4928    } else if (CanBeUnaryOperator) {
4929      ErrorKind = 0;  // 0 -> unary
4930    } else {
4931      assert(CanBeBinaryOperator &&
4932             "All non-call overloaded operators are unary or binary!");
4933      ErrorKind = 1;  // 1 -> binary
4934    }
4935
4936    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4937      << FnDecl->getDeclName() << NumParams << ErrorKind;
4938  }
4939
4940  // Overloaded operators other than operator() cannot be variadic.
4941  if (Op != OO_Call &&
4942      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4943    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4944      << FnDecl->getDeclName();
4945  }
4946
4947  // Some operators must be non-static member functions.
4948  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4949    return Diag(FnDecl->getLocation(),
4950                diag::err_operator_overload_must_be_member)
4951      << FnDecl->getDeclName();
4952  }
4953
4954  // C++ [over.inc]p1:
4955  //   The user-defined function called operator++ implements the
4956  //   prefix and postfix ++ operator. If this function is a member
4957  //   function with no parameters, or a non-member function with one
4958  //   parameter of class or enumeration type, it defines the prefix
4959  //   increment operator ++ for objects of that type. If the function
4960  //   is a member function with one parameter (which shall be of type
4961  //   int) or a non-member function with two parameters (the second
4962  //   of which shall be of type int), it defines the postfix
4963  //   increment operator ++ for objects of that type.
4964  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4965    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4966    bool ParamIsInt = false;
4967    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4968      ParamIsInt = BT->getKind() == BuiltinType::Int;
4969
4970    if (!ParamIsInt)
4971      return Diag(LastParam->getLocation(),
4972                  diag::err_operator_overload_post_incdec_must_be_int)
4973        << LastParam->getType() << (Op == OO_MinusMinus);
4974  }
4975
4976  // Notify the class if it got an assignment operator.
4977  if (Op == OO_Equal) {
4978    // Would have returned earlier otherwise.
4979    assert(isa<CXXMethodDecl>(FnDecl) &&
4980      "Overloaded = not member, but not filtered.");
4981    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4982    Method->getParent()->addedAssignmentOperator(Context, Method);
4983  }
4984
4985  return false;
4986}
4987
4988/// CheckLiteralOperatorDeclaration - Check whether the declaration
4989/// of this literal operator function is well-formed. If so, returns
4990/// false; otherwise, emits appropriate diagnostics and returns true.
4991bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4992  DeclContext *DC = FnDecl->getDeclContext();
4993  Decl::Kind Kind = DC->getDeclKind();
4994  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4995      Kind != Decl::LinkageSpec) {
4996    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4997      << FnDecl->getDeclName();
4998    return true;
4999  }
5000
5001  bool Valid = false;
5002
5003  // FIXME: Check for the one valid template signature
5004  // template <char...> type operator "" name();
5005
5006  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5007    // Check the first parameter
5008    QualType T = (*Param)->getType();
5009
5010    // unsigned long long int and long double are allowed, but only
5011    // alone.
5012    // We also allow any character type; their omission seems to be a bug
5013    // in n3000
5014    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5015        Context.hasSameType(T, Context.LongDoubleTy) ||
5016        Context.hasSameType(T, Context.CharTy) ||
5017        Context.hasSameType(T, Context.WCharTy) ||
5018        Context.hasSameType(T, Context.Char16Ty) ||
5019        Context.hasSameType(T, Context.Char32Ty)) {
5020      if (++Param == FnDecl->param_end())
5021        Valid = true;
5022      goto FinishedParams;
5023    }
5024
5025    // Otherwise it must be a pointer to const; let's strip those.
5026    const PointerType *PT = T->getAs<PointerType>();
5027    if (!PT)
5028      goto FinishedParams;
5029    T = PT->getPointeeType();
5030    if (!T.isConstQualified())
5031      goto FinishedParams;
5032    T = T.getUnqualifiedType();
5033
5034    // Move on to the second parameter;
5035    ++Param;
5036
5037    // If there is no second parameter, the first must be a const char *
5038    if (Param == FnDecl->param_end()) {
5039      if (Context.hasSameType(T, Context.CharTy))
5040        Valid = true;
5041      goto FinishedParams;
5042    }
5043
5044    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5045    // are allowed as the first parameter to a two-parameter function
5046    if (!(Context.hasSameType(T, Context.CharTy) ||
5047          Context.hasSameType(T, Context.WCharTy) ||
5048          Context.hasSameType(T, Context.Char16Ty) ||
5049          Context.hasSameType(T, Context.Char32Ty)))
5050      goto FinishedParams;
5051
5052    // The second and final parameter must be an std::size_t
5053    T = (*Param)->getType().getUnqualifiedType();
5054    if (Context.hasSameType(T, Context.getSizeType()) &&
5055        ++Param == FnDecl->param_end())
5056      Valid = true;
5057  }
5058
5059  // FIXME: This diagnostic is absolutely terrible.
5060FinishedParams:
5061  if (!Valid) {
5062    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5063      << FnDecl->getDeclName();
5064    return true;
5065  }
5066
5067  return false;
5068}
5069
5070/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5071/// linkage specification, including the language and (if present)
5072/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5073/// the location of the language string literal, which is provided
5074/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5075/// the '{' brace. Otherwise, this linkage specification does not
5076/// have any braces.
5077Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5078                                                     SourceLocation ExternLoc,
5079                                                     SourceLocation LangLoc,
5080                                                     const char *Lang,
5081                                                     unsigned StrSize,
5082                                                     SourceLocation LBraceLoc) {
5083  LinkageSpecDecl::LanguageIDs Language;
5084  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5085    Language = LinkageSpecDecl::lang_c;
5086  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5087    Language = LinkageSpecDecl::lang_cxx;
5088  else {
5089    Diag(LangLoc, diag::err_bad_language);
5090    return DeclPtrTy();
5091  }
5092
5093  // FIXME: Add all the various semantics of linkage specifications
5094
5095  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5096                                               LangLoc, Language,
5097                                               LBraceLoc.isValid());
5098  CurContext->addDecl(D);
5099  PushDeclContext(S, D);
5100  return DeclPtrTy::make(D);
5101}
5102
5103/// ActOnFinishLinkageSpecification - Completely the definition of
5104/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5105/// valid, it's the position of the closing '}' brace in a linkage
5106/// specification that uses braces.
5107Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5108                                                      DeclPtrTy LinkageSpec,
5109                                                      SourceLocation RBraceLoc) {
5110  if (LinkageSpec)
5111    PopDeclContext();
5112  return LinkageSpec;
5113}
5114
5115/// \brief Perform semantic analysis for the variable declaration that
5116/// occurs within a C++ catch clause, returning the newly-created
5117/// variable.
5118VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5119                                         TypeSourceInfo *TInfo,
5120                                         IdentifierInfo *Name,
5121                                         SourceLocation Loc,
5122                                         SourceRange Range) {
5123  bool Invalid = false;
5124
5125  // Arrays and functions decay.
5126  if (ExDeclType->isArrayType())
5127    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5128  else if (ExDeclType->isFunctionType())
5129    ExDeclType = Context.getPointerType(ExDeclType);
5130
5131  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5132  // The exception-declaration shall not denote a pointer or reference to an
5133  // incomplete type, other than [cv] void*.
5134  // N2844 forbids rvalue references.
5135  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5136    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5137    Invalid = true;
5138  }
5139
5140  QualType BaseType = ExDeclType;
5141  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5142  unsigned DK = diag::err_catch_incomplete;
5143  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5144    BaseType = Ptr->getPointeeType();
5145    Mode = 1;
5146    DK = diag::err_catch_incomplete_ptr;
5147  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5148    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5149    BaseType = Ref->getPointeeType();
5150    Mode = 2;
5151    DK = diag::err_catch_incomplete_ref;
5152  }
5153  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5154      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5155    Invalid = true;
5156
5157  if (!Invalid && !ExDeclType->isDependentType() &&
5158      RequireNonAbstractType(Loc, ExDeclType,
5159                             diag::err_abstract_type_in_decl,
5160                             AbstractVariableType))
5161    Invalid = true;
5162
5163  // FIXME: Need to test for ability to copy-construct and destroy the
5164  // exception variable.
5165
5166  // FIXME: Need to check for abstract classes.
5167
5168  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5169                                    Name, ExDeclType, TInfo, VarDecl::None);
5170
5171  if (Invalid)
5172    ExDecl->setInvalidDecl();
5173
5174  return ExDecl;
5175}
5176
5177/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5178/// handler.
5179Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5180  TypeSourceInfo *TInfo = 0;
5181  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5182
5183  bool Invalid = D.isInvalidType();
5184  IdentifierInfo *II = D.getIdentifier();
5185  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5186    // The scope should be freshly made just for us. There is just no way
5187    // it contains any previous declaration.
5188    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5189    if (PrevDecl->isTemplateParameter()) {
5190      // Maybe we will complain about the shadowed template parameter.
5191      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5192    }
5193  }
5194
5195  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5196    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5197      << D.getCXXScopeSpec().getRange();
5198    Invalid = true;
5199  }
5200
5201  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5202                                              D.getIdentifier(),
5203                                              D.getIdentifierLoc(),
5204                                            D.getDeclSpec().getSourceRange());
5205
5206  if (Invalid)
5207    ExDecl->setInvalidDecl();
5208
5209  // Add the exception declaration into this scope.
5210  if (II)
5211    PushOnScopeChains(ExDecl, S);
5212  else
5213    CurContext->addDecl(ExDecl);
5214
5215  ProcessDeclAttributes(S, ExDecl, D);
5216  return DeclPtrTy::make(ExDecl);
5217}
5218
5219Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5220                                                   ExprArg assertexpr,
5221                                                   ExprArg assertmessageexpr) {
5222  Expr *AssertExpr = (Expr *)assertexpr.get();
5223  StringLiteral *AssertMessage =
5224    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5225
5226  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5227    llvm::APSInt Value(32);
5228    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5229      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5230        AssertExpr->getSourceRange();
5231      return DeclPtrTy();
5232    }
5233
5234    if (Value == 0) {
5235      Diag(AssertLoc, diag::err_static_assert_failed)
5236        << AssertMessage->getString() << AssertExpr->getSourceRange();
5237    }
5238  }
5239
5240  assertexpr.release();
5241  assertmessageexpr.release();
5242  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5243                                        AssertExpr, AssertMessage);
5244
5245  CurContext->addDecl(Decl);
5246  return DeclPtrTy::make(Decl);
5247}
5248
5249/// Handle a friend type declaration.  This works in tandem with
5250/// ActOnTag.
5251///
5252/// Notes on friend class templates:
5253///
5254/// We generally treat friend class declarations as if they were
5255/// declaring a class.  So, for example, the elaborated type specifier
5256/// in a friend declaration is required to obey the restrictions of a
5257/// class-head (i.e. no typedefs in the scope chain), template
5258/// parameters are required to match up with simple template-ids, &c.
5259/// However, unlike when declaring a template specialization, it's
5260/// okay to refer to a template specialization without an empty
5261/// template parameter declaration, e.g.
5262///   friend class A<T>::B<unsigned>;
5263/// We permit this as a special case; if there are any template
5264/// parameters present at all, require proper matching, i.e.
5265///   template <> template <class T> friend class A<int>::B;
5266Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5267                                          MultiTemplateParamsArg TempParams) {
5268  SourceLocation Loc = DS.getSourceRange().getBegin();
5269
5270  assert(DS.isFriendSpecified());
5271  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5272
5273  // Try to convert the decl specifier to a type.  This works for
5274  // friend templates because ActOnTag never produces a ClassTemplateDecl
5275  // for a TUK_Friend.
5276  Declarator TheDeclarator(DS, Declarator::MemberContext);
5277  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5278  if (TheDeclarator.isInvalidType())
5279    return DeclPtrTy();
5280
5281  // This is definitely an error in C++98.  It's probably meant to
5282  // be forbidden in C++0x, too, but the specification is just
5283  // poorly written.
5284  //
5285  // The problem is with declarations like the following:
5286  //   template <T> friend A<T>::foo;
5287  // where deciding whether a class C is a friend or not now hinges
5288  // on whether there exists an instantiation of A that causes
5289  // 'foo' to equal C.  There are restrictions on class-heads
5290  // (which we declare (by fiat) elaborated friend declarations to
5291  // be) that makes this tractable.
5292  //
5293  // FIXME: handle "template <> friend class A<T>;", which
5294  // is possibly well-formed?  Who even knows?
5295  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5296    Diag(Loc, diag::err_tagless_friend_type_template)
5297      << DS.getSourceRange();
5298    return DeclPtrTy();
5299  }
5300
5301  // C++ [class.friend]p2:
5302  //   An elaborated-type-specifier shall be used in a friend declaration
5303  //   for a class.*
5304  //   * The class-key of the elaborated-type-specifier is required.
5305  // This is one of the rare places in Clang where it's legitimate to
5306  // ask about the "spelling" of the type.
5307  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5308    // If we evaluated the type to a record type, suggest putting
5309    // a tag in front.
5310    if (const RecordType *RT = T->getAs<RecordType>()) {
5311      RecordDecl *RD = RT->getDecl();
5312
5313      std::string InsertionText = std::string(" ") + RD->getKindName();
5314
5315      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5316        << (unsigned) RD->getTagKind()
5317        << T
5318        << SourceRange(DS.getFriendSpecLoc())
5319        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5320                                                 InsertionText);
5321      return DeclPtrTy();
5322    }else {
5323      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5324          << DS.getSourceRange();
5325      return DeclPtrTy();
5326    }
5327  }
5328
5329  // Enum types cannot be friends.
5330  if (T->getAs<EnumType>()) {
5331    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5332      << SourceRange(DS.getFriendSpecLoc());
5333    return DeclPtrTy();
5334  }
5335
5336  // C++98 [class.friend]p1: A friend of a class is a function
5337  //   or class that is not a member of the class . . .
5338  // This is fixed in DR77, which just barely didn't make the C++03
5339  // deadline.  It's also a very silly restriction that seriously
5340  // affects inner classes and which nobody else seems to implement;
5341  // thus we never diagnose it, not even in -pedantic.
5342
5343  Decl *D;
5344  if (TempParams.size())
5345    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5346                                   TempParams.size(),
5347                                 (TemplateParameterList**) TempParams.release(),
5348                                   T.getTypePtr(),
5349                                   DS.getFriendSpecLoc());
5350  else
5351    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5352                           DS.getFriendSpecLoc());
5353  D->setAccess(AS_public);
5354  CurContext->addDecl(D);
5355
5356  return DeclPtrTy::make(D);
5357}
5358
5359Sema::DeclPtrTy
5360Sema::ActOnFriendFunctionDecl(Scope *S,
5361                              Declarator &D,
5362                              bool IsDefinition,
5363                              MultiTemplateParamsArg TemplateParams) {
5364  const DeclSpec &DS = D.getDeclSpec();
5365
5366  assert(DS.isFriendSpecified());
5367  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5368
5369  SourceLocation Loc = D.getIdentifierLoc();
5370  TypeSourceInfo *TInfo = 0;
5371  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5372
5373  // C++ [class.friend]p1
5374  //   A friend of a class is a function or class....
5375  // Note that this sees through typedefs, which is intended.
5376  // It *doesn't* see through dependent types, which is correct
5377  // according to [temp.arg.type]p3:
5378  //   If a declaration acquires a function type through a
5379  //   type dependent on a template-parameter and this causes
5380  //   a declaration that does not use the syntactic form of a
5381  //   function declarator to have a function type, the program
5382  //   is ill-formed.
5383  if (!T->isFunctionType()) {
5384    Diag(Loc, diag::err_unexpected_friend);
5385
5386    // It might be worthwhile to try to recover by creating an
5387    // appropriate declaration.
5388    return DeclPtrTy();
5389  }
5390
5391  // C++ [namespace.memdef]p3
5392  //  - If a friend declaration in a non-local class first declares a
5393  //    class or function, the friend class or function is a member
5394  //    of the innermost enclosing namespace.
5395  //  - The name of the friend is not found by simple name lookup
5396  //    until a matching declaration is provided in that namespace
5397  //    scope (either before or after the class declaration granting
5398  //    friendship).
5399  //  - If a friend function is called, its name may be found by the
5400  //    name lookup that considers functions from namespaces and
5401  //    classes associated with the types of the function arguments.
5402  //  - When looking for a prior declaration of a class or a function
5403  //    declared as a friend, scopes outside the innermost enclosing
5404  //    namespace scope are not considered.
5405
5406  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5407  DeclarationName Name = GetNameForDeclarator(D);
5408  assert(Name);
5409
5410  // The context we found the declaration in, or in which we should
5411  // create the declaration.
5412  DeclContext *DC;
5413
5414  // FIXME: handle local classes
5415
5416  // Recover from invalid scope qualifiers as if they just weren't there.
5417  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5418                        ForRedeclaration);
5419  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5420    // FIXME: RequireCompleteDeclContext
5421    DC = computeDeclContext(ScopeQual);
5422
5423    // FIXME: handle dependent contexts
5424    if (!DC) return DeclPtrTy();
5425
5426    LookupQualifiedName(Previous, DC);
5427
5428    // If searching in that context implicitly found a declaration in
5429    // a different context, treat it like it wasn't found at all.
5430    // TODO: better diagnostics for this case.  Suggesting the right
5431    // qualified scope would be nice...
5432    // FIXME: getRepresentativeDecl() is not right here at all
5433    if (Previous.empty() ||
5434        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5435      D.setInvalidType();
5436      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5437      return DeclPtrTy();
5438    }
5439
5440    // C++ [class.friend]p1: A friend of a class is a function or
5441    //   class that is not a member of the class . . .
5442    if (DC->Equals(CurContext))
5443      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5444
5445  // Otherwise walk out to the nearest namespace scope looking for matches.
5446  } else {
5447    // TODO: handle local class contexts.
5448
5449    DC = CurContext;
5450    while (true) {
5451      // Skip class contexts.  If someone can cite chapter and verse
5452      // for this behavior, that would be nice --- it's what GCC and
5453      // EDG do, and it seems like a reasonable intent, but the spec
5454      // really only says that checks for unqualified existing
5455      // declarations should stop at the nearest enclosing namespace,
5456      // not that they should only consider the nearest enclosing
5457      // namespace.
5458      while (DC->isRecord())
5459        DC = DC->getParent();
5460
5461      LookupQualifiedName(Previous, DC);
5462
5463      // TODO: decide what we think about using declarations.
5464      if (!Previous.empty())
5465        break;
5466
5467      if (DC->isFileContext()) break;
5468      DC = DC->getParent();
5469    }
5470
5471    // C++ [class.friend]p1: A friend of a class is a function or
5472    //   class that is not a member of the class . . .
5473    // C++0x changes this for both friend types and functions.
5474    // Most C++ 98 compilers do seem to give an error here, so
5475    // we do, too.
5476    if (!Previous.empty() && DC->Equals(CurContext)
5477        && !getLangOptions().CPlusPlus0x)
5478      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5479  }
5480
5481  if (DC->isFileContext()) {
5482    // This implies that it has to be an operator or function.
5483    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5484        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5485        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5486      Diag(Loc, diag::err_introducing_special_friend) <<
5487        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5488         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5489      return DeclPtrTy();
5490    }
5491  }
5492
5493  bool Redeclaration = false;
5494  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5495                                          move(TemplateParams),
5496                                          IsDefinition,
5497                                          Redeclaration);
5498  if (!ND) return DeclPtrTy();
5499
5500  assert(ND->getDeclContext() == DC);
5501  assert(ND->getLexicalDeclContext() == CurContext);
5502
5503  // Add the function declaration to the appropriate lookup tables,
5504  // adjusting the redeclarations list as necessary.  We don't
5505  // want to do this yet if the friending class is dependent.
5506  //
5507  // Also update the scope-based lookup if the target context's
5508  // lookup context is in lexical scope.
5509  if (!CurContext->isDependentContext()) {
5510    DC = DC->getLookupContext();
5511    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5512    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5513      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5514  }
5515
5516  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5517                                       D.getIdentifierLoc(), ND,
5518                                       DS.getFriendSpecLoc());
5519  FrD->setAccess(AS_public);
5520  CurContext->addDecl(FrD);
5521
5522  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5523    FrD->setSpecialization(true);
5524
5525  return DeclPtrTy::make(ND);
5526}
5527
5528void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5529  AdjustDeclIfTemplate(dcl);
5530
5531  Decl *Dcl = dcl.getAs<Decl>();
5532  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5533  if (!Fn) {
5534    Diag(DelLoc, diag::err_deleted_non_function);
5535    return;
5536  }
5537  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5538    Diag(DelLoc, diag::err_deleted_decl_not_first);
5539    Diag(Prev->getLocation(), diag::note_previous_declaration);
5540    // If the declaration wasn't the first, we delete the function anyway for
5541    // recovery.
5542  }
5543  Fn->setDeleted();
5544}
5545
5546static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5547  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5548       ++CI) {
5549    Stmt *SubStmt = *CI;
5550    if (!SubStmt)
5551      continue;
5552    if (isa<ReturnStmt>(SubStmt))
5553      Self.Diag(SubStmt->getSourceRange().getBegin(),
5554           diag::err_return_in_constructor_handler);
5555    if (!isa<Expr>(SubStmt))
5556      SearchForReturnInStmt(Self, SubStmt);
5557  }
5558}
5559
5560void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5561  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5562    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5563    SearchForReturnInStmt(*this, Handler);
5564  }
5565}
5566
5567bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5568                                             const CXXMethodDecl *Old) {
5569  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5570  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5571
5572  if (Context.hasSameType(NewTy, OldTy))
5573    return false;
5574
5575  // Check if the return types are covariant
5576  QualType NewClassTy, OldClassTy;
5577
5578  /// Both types must be pointers or references to classes.
5579  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5580    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5581      NewClassTy = NewPT->getPointeeType();
5582      OldClassTy = OldPT->getPointeeType();
5583    }
5584  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5585    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5586      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5587        NewClassTy = NewRT->getPointeeType();
5588        OldClassTy = OldRT->getPointeeType();
5589      }
5590    }
5591  }
5592
5593  // The return types aren't either both pointers or references to a class type.
5594  if (NewClassTy.isNull()) {
5595    Diag(New->getLocation(),
5596         diag::err_different_return_type_for_overriding_virtual_function)
5597      << New->getDeclName() << NewTy << OldTy;
5598    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5599
5600    return true;
5601  }
5602
5603  // C++ [class.virtual]p6:
5604  //   If the return type of D::f differs from the return type of B::f, the
5605  //   class type in the return type of D::f shall be complete at the point of
5606  //   declaration of D::f or shall be the class type D.
5607  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5608    if (!RT->isBeingDefined() &&
5609        RequireCompleteType(New->getLocation(), NewClassTy,
5610                            PDiag(diag::err_covariant_return_incomplete)
5611                              << New->getDeclName()))
5612    return true;
5613  }
5614
5615  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5616    // Check if the new class derives from the old class.
5617    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5618      Diag(New->getLocation(),
5619           diag::err_covariant_return_not_derived)
5620      << New->getDeclName() << NewTy << OldTy;
5621      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5622      return true;
5623    }
5624
5625    // Check if we the conversion from derived to base is valid.
5626    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5627                      diag::err_covariant_return_inaccessible_base,
5628                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5629                      // FIXME: Should this point to the return type?
5630                      New->getLocation(), SourceRange(), New->getDeclName())) {
5631      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5632      return true;
5633    }
5634  }
5635
5636  // The qualifiers of the return types must be the same.
5637  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5638    Diag(New->getLocation(),
5639         diag::err_covariant_return_type_different_qualifications)
5640    << New->getDeclName() << NewTy << OldTy;
5641    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5642    return true;
5643  };
5644
5645
5646  // The new class type must have the same or less qualifiers as the old type.
5647  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5648    Diag(New->getLocation(),
5649         diag::err_covariant_return_type_class_type_more_qualified)
5650    << New->getDeclName() << NewTy << OldTy;
5651    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5652    return true;
5653  };
5654
5655  return false;
5656}
5657
5658bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5659                                             const CXXMethodDecl *Old)
5660{
5661  if (Old->hasAttr<FinalAttr>()) {
5662    Diag(New->getLocation(), diag::err_final_function_overridden)
5663      << New->getDeclName();
5664    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5665    return true;
5666  }
5667
5668  return false;
5669}
5670
5671/// \brief Mark the given method pure.
5672///
5673/// \param Method the method to be marked pure.
5674///
5675/// \param InitRange the source range that covers the "0" initializer.
5676bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5677  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5678    Method->setPure();
5679
5680    // A class is abstract if at least one function is pure virtual.
5681    Method->getParent()->setAbstract(true);
5682    return false;
5683  }
5684
5685  if (!Method->isInvalidDecl())
5686    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5687      << Method->getDeclName() << InitRange;
5688  return true;
5689}
5690
5691/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5692/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5693/// is a fresh scope pushed for just this purpose.
5694///
5695/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5696/// static data member of class X, names should be looked up in the scope of
5697/// class X.
5698void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5699  // If there is no declaration, there was an error parsing it.
5700  Decl *D = Dcl.getAs<Decl>();
5701  if (D == 0) return;
5702
5703  // We should only get called for declarations with scope specifiers, like:
5704  //   int foo::bar;
5705  assert(D->isOutOfLine());
5706  EnterDeclaratorContext(S, D->getDeclContext());
5707}
5708
5709/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5710/// initializer for the out-of-line declaration 'Dcl'.
5711void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5712  // If there is no declaration, there was an error parsing it.
5713  Decl *D = Dcl.getAs<Decl>();
5714  if (D == 0) return;
5715
5716  assert(D->isOutOfLine());
5717  ExitDeclaratorContext(S);
5718}
5719
5720/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5721/// C++ if/switch/while/for statement.
5722/// e.g: "if (int x = f()) {...}"
5723Action::DeclResult
5724Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5725  // C++ 6.4p2:
5726  // The declarator shall not specify a function or an array.
5727  // The type-specifier-seq shall not contain typedef and shall not declare a
5728  // new class or enumeration.
5729  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5730         "Parser allowed 'typedef' as storage class of condition decl.");
5731
5732  TypeSourceInfo *TInfo = 0;
5733  TagDecl *OwnedTag = 0;
5734  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5735
5736  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5737                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5738                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5739    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5740      << D.getSourceRange();
5741    return DeclResult();
5742  } else if (OwnedTag && OwnedTag->isDefinition()) {
5743    // The type-specifier-seq shall not declare a new class or enumeration.
5744    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5745  }
5746
5747  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5748  if (!Dcl)
5749    return DeclResult();
5750
5751  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5752  VD->setDeclaredInCondition(true);
5753  return Dcl;
5754}
5755
5756void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5757                                             CXXMethodDecl *MD) {
5758  // Ignore dependent types.
5759  if (MD->isDependentContext())
5760    return;
5761
5762  CXXRecordDecl *RD = MD->getParent();
5763
5764  // Ignore classes without a vtable.
5765  if (!RD->isDynamicClass())
5766    return;
5767
5768  // Ignore declarations that are not definitions.
5769  if (!MD->isThisDeclarationADefinition())
5770    return;
5771
5772  if (isa<CXXConstructorDecl>(MD)) {
5773    switch (MD->getParent()->getTemplateSpecializationKind()) {
5774    case TSK_Undeclared:
5775    case TSK_ExplicitSpecialization:
5776      // Classes that aren't instantiations of templates don't need their
5777      // virtual methods marked until we see the definition of the key
5778      // function.
5779      return;
5780
5781    case TSK_ImplicitInstantiation:
5782    case TSK_ExplicitInstantiationDeclaration:
5783    case TSK_ExplicitInstantiationDefinition:
5784      // This is a constructor of a class template; mark all of the virtual
5785      // members as referenced to ensure that they get instantiatied.
5786      break;
5787    }
5788  } else if (!MD->isOutOfLine()) {
5789    // Consider only out-of-line definitions of member functions. When we see
5790    // an inline definition, it's too early to compute the key function.
5791    return;
5792  } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) {
5793    // If this is not the key function, we don't need to mark virtual members.
5794    if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl())
5795      return;
5796  } else {
5797    // The class has no key function, so we've already noted that we need to
5798    // mark the virtual members of this class.
5799    return;
5800  }
5801
5802  // We will need to mark all of the virtual members as referenced to build the
5803  // vtable.
5804  ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5805}
5806
5807bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5808  if (ClassesWithUnmarkedVirtualMembers.empty())
5809    return false;
5810
5811  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5812    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5813    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5814    ClassesWithUnmarkedVirtualMembers.pop_back();
5815    MarkVirtualMembersReferenced(Loc, RD);
5816  }
5817
5818  return true;
5819}
5820
5821void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5822  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5823       e = RD->method_end(); i != e; ++i) {
5824    CXXMethodDecl *MD = *i;
5825
5826    // C++ [basic.def.odr]p2:
5827    //   [...] A virtual member function is used if it is not pure. [...]
5828    if (MD->isVirtual() && !MD->isPure())
5829      MarkDeclarationReferenced(Loc, MD);
5830  }
5831}
5832
5833