SemaDeclCXX.cpp revision 6fe2965ce722826ae7c3af85271f900286ef20c3
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537          << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer.
1749MemInitResult
1750Sema::BuildMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          SourceLocation IdLoc,
1756                          const MultiInitializer &Args,
1757                          SourceLocation EllipsisLoc) {
1758  if (!ConstructorD)
1759    return true;
1760
1761  AdjustDeclIfTemplate(ConstructorD);
1762
1763  CXXConstructorDecl *Constructor
1764    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1765  if (!Constructor) {
1766    // The user wrote a constructor initializer on a function that is
1767    // not a C++ constructor. Ignore the error for now, because we may
1768    // have more member initializers coming; we'll diagnose it just
1769    // once in ActOnMemInitializers.
1770    return true;
1771  }
1772
1773  CXXRecordDecl *ClassDecl = Constructor->getParent();
1774
1775  // C++ [class.base.init]p2:
1776  //   Names in a mem-initializer-id are looked up in the scope of the
1777  //   constructor's class and, if not found in that scope, are looked
1778  //   up in the scope containing the constructor's definition.
1779  //   [Note: if the constructor's class contains a member with the
1780  //   same name as a direct or virtual base class of the class, a
1781  //   mem-initializer-id naming the member or base class and composed
1782  //   of a single identifier refers to the class member. A
1783  //   mem-initializer-id for the hidden base class may be specified
1784  //   using a qualified name. ]
1785  if (!SS.getScopeRep() && !TemplateTypeTy) {
1786    // Look for a member, first.
1787    DeclContext::lookup_result Result
1788      = ClassDecl->lookup(MemberOrBase);
1789    if (Result.first != Result.second) {
1790      ValueDecl *Member;
1791      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1792          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1793        if (EllipsisLoc.isValid())
1794          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1795            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1796
1797        return BuildMemberInitializer(Member, Args, IdLoc);
1798      }
1799    }
1800  }
1801  // It didn't name a member, so see if it names a class.
1802  QualType BaseType;
1803  TypeSourceInfo *TInfo = 0;
1804
1805  if (TemplateTypeTy) {
1806    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1807  } else {
1808    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1809    LookupParsedName(R, S, &SS);
1810
1811    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1812    if (!TyD) {
1813      if (R.isAmbiguous()) return true;
1814
1815      // We don't want access-control diagnostics here.
1816      R.suppressDiagnostics();
1817
1818      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1819        bool NotUnknownSpecialization = false;
1820        DeclContext *DC = computeDeclContext(SS, false);
1821        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1822          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1823
1824        if (!NotUnknownSpecialization) {
1825          // When the scope specifier can refer to a member of an unknown
1826          // specialization, we take it as a type name.
1827          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1828                                       SS.getWithLocInContext(Context),
1829                                       *MemberOrBase, IdLoc);
1830          if (BaseType.isNull())
1831            return true;
1832
1833          R.clear();
1834          R.setLookupName(MemberOrBase);
1835        }
1836      }
1837
1838      // If no results were found, try to correct typos.
1839      TypoCorrection Corr;
1840      if (R.empty() && BaseType.isNull() &&
1841          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1842                              ClassDecl, false, CTC_NoKeywords))) {
1843        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1844        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1845        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1846          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1847            // We have found a non-static data member with a similar
1848            // name to what was typed; complain and initialize that
1849            // member.
1850            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1851              << MemberOrBase << true << CorrectedQuotedStr
1852              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1853            Diag(Member->getLocation(), diag::note_previous_decl)
1854              << CorrectedQuotedStr;
1855
1856            return BuildMemberInitializer(Member, Args, IdLoc);
1857          }
1858        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1859          const CXXBaseSpecifier *DirectBaseSpec;
1860          const CXXBaseSpecifier *VirtualBaseSpec;
1861          if (FindBaseInitializer(*this, ClassDecl,
1862                                  Context.getTypeDeclType(Type),
1863                                  DirectBaseSpec, VirtualBaseSpec)) {
1864            // We have found a direct or virtual base class with a
1865            // similar name to what was typed; complain and initialize
1866            // that base class.
1867            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1868              << MemberOrBase << false << CorrectedQuotedStr
1869              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1870
1871            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1872                                                             : VirtualBaseSpec;
1873            Diag(BaseSpec->getSourceRange().getBegin(),
1874                 diag::note_base_class_specified_here)
1875              << BaseSpec->getType()
1876              << BaseSpec->getSourceRange();
1877
1878            TyD = Type;
1879          }
1880        }
1881      }
1882
1883      if (!TyD && BaseType.isNull()) {
1884        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1885          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1886        return true;
1887      }
1888    }
1889
1890    if (BaseType.isNull()) {
1891      BaseType = Context.getTypeDeclType(TyD);
1892      if (SS.isSet()) {
1893        NestedNameSpecifier *Qualifier =
1894          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1895
1896        // FIXME: preserve source range information
1897        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1898      }
1899    }
1900  }
1901
1902  if (!TInfo)
1903    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1904
1905  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1906}
1907
1908/// Checks a member initializer expression for cases where reference (or
1909/// pointer) members are bound to by-value parameters (or their addresses).
1910static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1911                                               Expr *Init,
1912                                               SourceLocation IdLoc) {
1913  QualType MemberTy = Member->getType();
1914
1915  // We only handle pointers and references currently.
1916  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1917  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1918    return;
1919
1920  const bool IsPointer = MemberTy->isPointerType();
1921  if (IsPointer) {
1922    if (const UnaryOperator *Op
1923          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1924      // The only case we're worried about with pointers requires taking the
1925      // address.
1926      if (Op->getOpcode() != UO_AddrOf)
1927        return;
1928
1929      Init = Op->getSubExpr();
1930    } else {
1931      // We only handle address-of expression initializers for pointers.
1932      return;
1933    }
1934  }
1935
1936  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1937    // Taking the address of a temporary will be diagnosed as a hard error.
1938    if (IsPointer)
1939      return;
1940
1941    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1942      << Member << Init->getSourceRange();
1943  } else if (const DeclRefExpr *DRE
1944               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1945    // We only warn when referring to a non-reference parameter declaration.
1946    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1947    if (!Parameter || Parameter->getType()->isReferenceType())
1948      return;
1949
1950    S.Diag(Init->getExprLoc(),
1951           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1952                     : diag::warn_bind_ref_member_to_parameter)
1953      << Member << Parameter << Init->getSourceRange();
1954  } else {
1955    // Other initializers are fine.
1956    return;
1957  }
1958
1959  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1960    << (unsigned)IsPointer;
1961}
1962
1963/// Checks an initializer expression for use of uninitialized fields, such as
1964/// containing the field that is being initialized. Returns true if there is an
1965/// uninitialized field was used an updates the SourceLocation parameter; false
1966/// otherwise.
1967static bool InitExprContainsUninitializedFields(const Stmt *S,
1968                                                const ValueDecl *LhsField,
1969                                                SourceLocation *L) {
1970  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1971
1972  if (isa<CallExpr>(S)) {
1973    // Do not descend into function calls or constructors, as the use
1974    // of an uninitialized field may be valid. One would have to inspect
1975    // the contents of the function/ctor to determine if it is safe or not.
1976    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1977    // may be safe, depending on what the function/ctor does.
1978    return false;
1979  }
1980  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1981    const NamedDecl *RhsField = ME->getMemberDecl();
1982
1983    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1984      // The member expression points to a static data member.
1985      assert(VD->isStaticDataMember() &&
1986             "Member points to non-static data member!");
1987      (void)VD;
1988      return false;
1989    }
1990
1991    if (isa<EnumConstantDecl>(RhsField)) {
1992      // The member expression points to an enum.
1993      return false;
1994    }
1995
1996    if (RhsField == LhsField) {
1997      // Initializing a field with itself. Throw a warning.
1998      // But wait; there are exceptions!
1999      // Exception #1:  The field may not belong to this record.
2000      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2001      const Expr *base = ME->getBase();
2002      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2003        // Even though the field matches, it does not belong to this record.
2004        return false;
2005      }
2006      // None of the exceptions triggered; return true to indicate an
2007      // uninitialized field was used.
2008      *L = ME->getMemberLoc();
2009      return true;
2010    }
2011  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2012    // sizeof/alignof doesn't reference contents, do not warn.
2013    return false;
2014  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2015    // address-of doesn't reference contents (the pointer may be dereferenced
2016    // in the same expression but it would be rare; and weird).
2017    if (UOE->getOpcode() == UO_AddrOf)
2018      return false;
2019  }
2020  for (Stmt::const_child_range it = S->children(); it; ++it) {
2021    if (!*it) {
2022      // An expression such as 'member(arg ?: "")' may trigger this.
2023      continue;
2024    }
2025    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2026      return true;
2027  }
2028  return false;
2029}
2030
2031MemInitResult
2032Sema::BuildMemberInitializer(ValueDecl *Member,
2033                             const MultiInitializer &Args,
2034                             SourceLocation IdLoc) {
2035  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2036  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2037  assert((DirectMember || IndirectMember) &&
2038         "Member must be a FieldDecl or IndirectFieldDecl");
2039
2040  if (Args.DiagnoseUnexpandedParameterPack(*this))
2041    return true;
2042
2043  if (Member->isInvalidDecl())
2044    return true;
2045
2046  // Diagnose value-uses of fields to initialize themselves, e.g.
2047  //   foo(foo)
2048  // where foo is not also a parameter to the constructor.
2049  // TODO: implement -Wuninitialized and fold this into that framework.
2050  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2051       I != E; ++I) {
2052    SourceLocation L;
2053    Expr *Arg = *I;
2054    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2055      Arg = DIE->getInit();
2056    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2057      // FIXME: Return true in the case when other fields are used before being
2058      // uninitialized. For example, let this field be the i'th field. When
2059      // initializing the i'th field, throw a warning if any of the >= i'th
2060      // fields are used, as they are not yet initialized.
2061      // Right now we are only handling the case where the i'th field uses
2062      // itself in its initializer.
2063      Diag(L, diag::warn_field_is_uninit);
2064    }
2065  }
2066
2067  bool HasDependentArg = Args.isTypeDependent();
2068
2069  Expr *Init;
2070  if (Member->getType()->isDependentType() || HasDependentArg) {
2071    // Can't check initialization for a member of dependent type or when
2072    // any of the arguments are type-dependent expressions.
2073    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2074
2075    DiscardCleanupsInEvaluationContext();
2076  } else {
2077    // Initialize the member.
2078    InitializedEntity MemberEntity =
2079      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2080                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2081    InitializationKind Kind =
2082      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2083                                       Args.getEndLoc());
2084
2085    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2086    if (MemberInit.isInvalid())
2087      return true;
2088
2089    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2090
2091    // C++0x [class.base.init]p7:
2092    //   The initialization of each base and member constitutes a
2093    //   full-expression.
2094    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2095    if (MemberInit.isInvalid())
2096      return true;
2097
2098    // If we are in a dependent context, template instantiation will
2099    // perform this type-checking again. Just save the arguments that we
2100    // received in a ParenListExpr.
2101    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2102    // of the information that we have about the member
2103    // initializer. However, deconstructing the ASTs is a dicey process,
2104    // and this approach is far more likely to get the corner cases right.
2105    if (CurContext->isDependentContext()) {
2106      Init = Args.CreateInitExpr(Context,
2107                                 Member->getType().getNonReferenceType());
2108    } else {
2109      Init = MemberInit.get();
2110      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2111    }
2112  }
2113
2114  if (DirectMember) {
2115    return new (Context) CXXCtorInitializer(Context, DirectMember,
2116                                                    IdLoc, Args.getStartLoc(),
2117                                                    Init, Args.getEndLoc());
2118  } else {
2119    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  }
2123}
2124
2125MemInitResult
2126Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2127                                 const MultiInitializer &Args,
2128                                 CXXRecordDecl *ClassDecl) {
2129  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2130  if (!LangOpts.CPlusPlus0x)
2131    return Diag(NameLoc, diag::err_delegating_ctor)
2132      << TInfo->getTypeLoc().getLocalSourceRange();
2133  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2134
2135  // Initialize the object.
2136  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2137                                     QualType(ClassDecl->getTypeForDecl(), 0));
2138  InitializationKind Kind =
2139    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2140                                     Args.getEndLoc());
2141
2142  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2143  if (DelegationInit.isInvalid())
2144    return true;
2145
2146  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2147         "Delegating constructor with no target?");
2148
2149  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2150
2151  // C++0x [class.base.init]p7:
2152  //   The initialization of each base and member constitutes a
2153  //   full-expression.
2154  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2155  if (DelegationInit.isInvalid())
2156    return true;
2157
2158  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2159                                          DelegationInit.takeAs<Expr>(),
2160                                          Args.getEndLoc());
2161}
2162
2163MemInitResult
2164Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2165                           const MultiInitializer &Args,
2166                           CXXRecordDecl *ClassDecl,
2167                           SourceLocation EllipsisLoc) {
2168  bool HasDependentArg = Args.isTypeDependent();
2169
2170  SourceLocation BaseLoc
2171    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2172
2173  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2174    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2175             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2176
2177  // C++ [class.base.init]p2:
2178  //   [...] Unless the mem-initializer-id names a nonstatic data
2179  //   member of the constructor's class or a direct or virtual base
2180  //   of that class, the mem-initializer is ill-formed. A
2181  //   mem-initializer-list can initialize a base class using any
2182  //   name that denotes that base class type.
2183  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2184
2185  if (EllipsisLoc.isValid()) {
2186    // This is a pack expansion.
2187    if (!BaseType->containsUnexpandedParameterPack())  {
2188      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2189        << SourceRange(BaseLoc, Args.getEndLoc());
2190
2191      EllipsisLoc = SourceLocation();
2192    }
2193  } else {
2194    // Check for any unexpanded parameter packs.
2195    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2196      return true;
2197
2198    if (Args.DiagnoseUnexpandedParameterPack(*this))
2199      return true;
2200  }
2201
2202  // Check for direct and virtual base classes.
2203  const CXXBaseSpecifier *DirectBaseSpec = 0;
2204  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2205  if (!Dependent) {
2206    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2207                                       BaseType))
2208      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2209
2210    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2211                        VirtualBaseSpec);
2212
2213    // C++ [base.class.init]p2:
2214    // Unless the mem-initializer-id names a nonstatic data member of the
2215    // constructor's class or a direct or virtual base of that class, the
2216    // mem-initializer is ill-formed.
2217    if (!DirectBaseSpec && !VirtualBaseSpec) {
2218      // If the class has any dependent bases, then it's possible that
2219      // one of those types will resolve to the same type as
2220      // BaseType. Therefore, just treat this as a dependent base
2221      // class initialization.  FIXME: Should we try to check the
2222      // initialization anyway? It seems odd.
2223      if (ClassDecl->hasAnyDependentBases())
2224        Dependent = true;
2225      else
2226        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2227          << BaseType << Context.getTypeDeclType(ClassDecl)
2228          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229    }
2230  }
2231
2232  if (Dependent) {
2233    // Can't check initialization for a base of dependent type or when
2234    // any of the arguments are type-dependent expressions.
2235    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2236
2237    DiscardCleanupsInEvaluationContext();
2238
2239    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2240                                            /*IsVirtual=*/false,
2241                                            Args.getStartLoc(), BaseInit,
2242                                            Args.getEndLoc(), EllipsisLoc);
2243  }
2244
2245  // C++ [base.class.init]p2:
2246  //   If a mem-initializer-id is ambiguous because it designates both
2247  //   a direct non-virtual base class and an inherited virtual base
2248  //   class, the mem-initializer is ill-formed.
2249  if (DirectBaseSpec && VirtualBaseSpec)
2250    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2251      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  CXXBaseSpecifier *BaseSpec
2254    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2255  if (!BaseSpec)
2256    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2257
2258  // Initialize the base.
2259  InitializedEntity BaseEntity =
2260    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2261  InitializationKind Kind =
2262    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2263                                     Args.getEndLoc());
2264
2265  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2266  if (BaseInit.isInvalid())
2267    return true;
2268
2269  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2270
2271  // C++0x [class.base.init]p7:
2272  //   The initialization of each base and member constitutes a
2273  //   full-expression.
2274  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2275  if (BaseInit.isInvalid())
2276    return true;
2277
2278  // If we are in a dependent context, template instantiation will
2279  // perform this type-checking again. Just save the arguments that we
2280  // received in a ParenListExpr.
2281  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2282  // of the information that we have about the base
2283  // initializer. However, deconstructing the ASTs is a dicey process,
2284  // and this approach is far more likely to get the corner cases right.
2285  if (CurContext->isDependentContext())
2286    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2287
2288  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2289                                          BaseSpec->isVirtual(),
2290                                          Args.getStartLoc(),
2291                                          BaseInit.takeAs<Expr>(),
2292                                          Args.getEndLoc(), EllipsisLoc);
2293}
2294
2295// Create a static_cast\<T&&>(expr).
2296static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2297  QualType ExprType = E->getType();
2298  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2299  SourceLocation ExprLoc = E->getLocStart();
2300  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2301      TargetType, ExprLoc);
2302
2303  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2304                                   SourceRange(ExprLoc, ExprLoc),
2305                                   E->getSourceRange()).take();
2306}
2307
2308/// ImplicitInitializerKind - How an implicit base or member initializer should
2309/// initialize its base or member.
2310enum ImplicitInitializerKind {
2311  IIK_Default,
2312  IIK_Copy,
2313  IIK_Move
2314};
2315
2316static bool
2317BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2318                             ImplicitInitializerKind ImplicitInitKind,
2319                             CXXBaseSpecifier *BaseSpec,
2320                             bool IsInheritedVirtualBase,
2321                             CXXCtorInitializer *&CXXBaseInit) {
2322  InitializedEntity InitEntity
2323    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2324                                        IsInheritedVirtualBase);
2325
2326  ExprResult BaseInit;
2327
2328  switch (ImplicitInitKind) {
2329  case IIK_Default: {
2330    InitializationKind InitKind
2331      = InitializationKind::CreateDefault(Constructor->getLocation());
2332    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2333    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2334                               MultiExprArg(SemaRef, 0, 0));
2335    break;
2336  }
2337
2338  case IIK_Move:
2339  case IIK_Copy: {
2340    bool Moving = ImplicitInitKind == IIK_Move;
2341    ParmVarDecl *Param = Constructor->getParamDecl(0);
2342    QualType ParamType = Param->getType().getNonReferenceType();
2343
2344    Expr *CopyCtorArg =
2345      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2346                          Constructor->getLocation(), ParamType,
2347                          VK_LValue, 0);
2348
2349    // Cast to the base class to avoid ambiguities.
2350    QualType ArgTy =
2351      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2352                                       ParamType.getQualifiers());
2353
2354    if (Moving) {
2355      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2356    }
2357
2358    CXXCastPath BasePath;
2359    BasePath.push_back(BaseSpec);
2360    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2361                                            CK_UncheckedDerivedToBase,
2362                                            Moving ? VK_XValue : VK_LValue,
2363                                            &BasePath).take();
2364
2365    InitializationKind InitKind
2366      = InitializationKind::CreateDirect(Constructor->getLocation(),
2367                                         SourceLocation(), SourceLocation());
2368    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2369                                   &CopyCtorArg, 1);
2370    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2371                               MultiExprArg(&CopyCtorArg, 1));
2372    break;
2373  }
2374  }
2375
2376  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2377  if (BaseInit.isInvalid())
2378    return true;
2379
2380  CXXBaseInit =
2381    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2382               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2383                                                        SourceLocation()),
2384                                             BaseSpec->isVirtual(),
2385                                             SourceLocation(),
2386                                             BaseInit.takeAs<Expr>(),
2387                                             SourceLocation(),
2388                                             SourceLocation());
2389
2390  return false;
2391}
2392
2393static bool RefersToRValueRef(Expr *MemRef) {
2394  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2395  return Referenced->getType()->isRValueReferenceType();
2396}
2397
2398static bool
2399BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2400                               ImplicitInitializerKind ImplicitInitKind,
2401                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2402                               CXXCtorInitializer *&CXXMemberInit) {
2403  if (Field->isInvalidDecl())
2404    return true;
2405
2406  SourceLocation Loc = Constructor->getLocation();
2407
2408  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2409    bool Moving = ImplicitInitKind == IIK_Move;
2410    ParmVarDecl *Param = Constructor->getParamDecl(0);
2411    QualType ParamType = Param->getType().getNonReferenceType();
2412
2413    // Suppress copying zero-width bitfields.
2414    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2415      return false;
2416
2417    Expr *MemberExprBase =
2418      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2419                          Loc, ParamType, VK_LValue, 0);
2420
2421    if (Moving) {
2422      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2423    }
2424
2425    // Build a reference to this field within the parameter.
2426    CXXScopeSpec SS;
2427    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2428                              Sema::LookupMemberName);
2429    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2430                                  : cast<ValueDecl>(Field), AS_public);
2431    MemberLookup.resolveKind();
2432    ExprResult CtorArg
2433      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2434                                         ParamType, Loc,
2435                                         /*IsArrow=*/false,
2436                                         SS,
2437                                         /*FirstQualifierInScope=*/0,
2438                                         MemberLookup,
2439                                         /*TemplateArgs=*/0);
2440    if (CtorArg.isInvalid())
2441      return true;
2442
2443    // C++11 [class.copy]p15:
2444    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2445    //     with static_cast<T&&>(x.m);
2446    if (RefersToRValueRef(CtorArg.get())) {
2447      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2448    }
2449
2450    // When the field we are copying is an array, create index variables for
2451    // each dimension of the array. We use these index variables to subscript
2452    // the source array, and other clients (e.g., CodeGen) will perform the
2453    // necessary iteration with these index variables.
2454    SmallVector<VarDecl *, 4> IndexVariables;
2455    QualType BaseType = Field->getType();
2456    QualType SizeType = SemaRef.Context.getSizeType();
2457    bool InitializingArray = false;
2458    while (const ConstantArrayType *Array
2459                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2460      InitializingArray = true;
2461      // Create the iteration variable for this array index.
2462      IdentifierInfo *IterationVarName = 0;
2463      {
2464        llvm::SmallString<8> Str;
2465        llvm::raw_svector_ostream OS(Str);
2466        OS << "__i" << IndexVariables.size();
2467        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2468      }
2469      VarDecl *IterationVar
2470        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2471                          IterationVarName, SizeType,
2472                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2473                          SC_None, SC_None);
2474      IndexVariables.push_back(IterationVar);
2475
2476      // Create a reference to the iteration variable.
2477      ExprResult IterationVarRef
2478        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2479      assert(!IterationVarRef.isInvalid() &&
2480             "Reference to invented variable cannot fail!");
2481
2482      // Subscript the array with this iteration variable.
2483      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2484                                                        IterationVarRef.take(),
2485                                                        Loc);
2486      if (CtorArg.isInvalid())
2487        return true;
2488
2489      BaseType = Array->getElementType();
2490    }
2491
2492    // The array subscript expression is an lvalue, which is wrong for moving.
2493    if (Moving && InitializingArray)
2494      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2495
2496    // Construct the entity that we will be initializing. For an array, this
2497    // will be first element in the array, which may require several levels
2498    // of array-subscript entities.
2499    SmallVector<InitializedEntity, 4> Entities;
2500    Entities.reserve(1 + IndexVariables.size());
2501    if (Indirect)
2502      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2503    else
2504      Entities.push_back(InitializedEntity::InitializeMember(Field));
2505    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2506      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2507                                                              0,
2508                                                              Entities.back()));
2509
2510    // Direct-initialize to use the copy constructor.
2511    InitializationKind InitKind =
2512      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2513
2514    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2515    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2516                                   &CtorArgE, 1);
2517
2518    ExprResult MemberInit
2519      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2520                        MultiExprArg(&CtorArgE, 1));
2521    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2522    if (MemberInit.isInvalid())
2523      return true;
2524
2525    if (Indirect) {
2526      assert(IndexVariables.size() == 0 &&
2527             "Indirect field improperly initialized");
2528      CXXMemberInit
2529        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2530                                                   Loc, Loc,
2531                                                   MemberInit.takeAs<Expr>(),
2532                                                   Loc);
2533    } else
2534      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2535                                                 Loc, MemberInit.takeAs<Expr>(),
2536                                                 Loc,
2537                                                 IndexVariables.data(),
2538                                                 IndexVariables.size());
2539    return false;
2540  }
2541
2542  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2543
2544  QualType FieldBaseElementType =
2545    SemaRef.Context.getBaseElementType(Field->getType());
2546
2547  if (FieldBaseElementType->isRecordType()) {
2548    InitializedEntity InitEntity
2549      = Indirect? InitializedEntity::InitializeMember(Indirect)
2550                : InitializedEntity::InitializeMember(Field);
2551    InitializationKind InitKind =
2552      InitializationKind::CreateDefault(Loc);
2553
2554    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2555    ExprResult MemberInit =
2556      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2557
2558    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2559    if (MemberInit.isInvalid())
2560      return true;
2561
2562    if (Indirect)
2563      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2564                                                               Indirect, Loc,
2565                                                               Loc,
2566                                                               MemberInit.get(),
2567                                                               Loc);
2568    else
2569      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2570                                                               Field, Loc, Loc,
2571                                                               MemberInit.get(),
2572                                                               Loc);
2573    return false;
2574  }
2575
2576  if (!Field->getParent()->isUnion()) {
2577    if (FieldBaseElementType->isReferenceType()) {
2578      SemaRef.Diag(Constructor->getLocation(),
2579                   diag::err_uninitialized_member_in_ctor)
2580      << (int)Constructor->isImplicit()
2581      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2582      << 0 << Field->getDeclName();
2583      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2584      return true;
2585    }
2586
2587    if (FieldBaseElementType.isConstQualified()) {
2588      SemaRef.Diag(Constructor->getLocation(),
2589                   diag::err_uninitialized_member_in_ctor)
2590      << (int)Constructor->isImplicit()
2591      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2592      << 1 << Field->getDeclName();
2593      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2594      return true;
2595    }
2596  }
2597
2598  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2599      FieldBaseElementType->isObjCRetainableType() &&
2600      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2601      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2602    // Instant objects:
2603    //   Default-initialize Objective-C pointers to NULL.
2604    CXXMemberInit
2605      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2606                                                 Loc, Loc,
2607                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2608                                                 Loc);
2609    return false;
2610  }
2611
2612  // Nothing to initialize.
2613  CXXMemberInit = 0;
2614  return false;
2615}
2616
2617namespace {
2618struct BaseAndFieldInfo {
2619  Sema &S;
2620  CXXConstructorDecl *Ctor;
2621  bool AnyErrorsInInits;
2622  ImplicitInitializerKind IIK;
2623  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2624  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2625
2626  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2627    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2628    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2629    if (Generated && Ctor->isCopyConstructor())
2630      IIK = IIK_Copy;
2631    else if (Generated && Ctor->isMoveConstructor())
2632      IIK = IIK_Move;
2633    else
2634      IIK = IIK_Default;
2635  }
2636};
2637}
2638
2639/// \brief Determine whether the given indirect field declaration is somewhere
2640/// within an anonymous union.
2641static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2642  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2643                                      CEnd = F->chain_end();
2644       C != CEnd; ++C)
2645    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2646      if (Record->isUnion())
2647        return true;
2648
2649  return false;
2650}
2651
2652/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2653/// array type.
2654static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2655  if (T->isIncompleteArrayType())
2656    return true;
2657
2658  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2659    if (!ArrayT->getSize())
2660      return true;
2661
2662    T = ArrayT->getElementType();
2663  }
2664
2665  return false;
2666}
2667
2668static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2669                                    FieldDecl *Field,
2670                                    IndirectFieldDecl *Indirect = 0) {
2671
2672  // Overwhelmingly common case: we have a direct initializer for this field.
2673  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2674    Info.AllToInit.push_back(Init);
2675    return false;
2676  }
2677
2678  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2679  // has a brace-or-equal-initializer, the entity is initialized as specified
2680  // in [dcl.init].
2681  if (Field->hasInClassInitializer()) {
2682    CXXCtorInitializer *Init;
2683    if (Indirect)
2684      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2685                                                      SourceLocation(),
2686                                                      SourceLocation(), 0,
2687                                                      SourceLocation());
2688    else
2689      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2690                                                      SourceLocation(),
2691                                                      SourceLocation(), 0,
2692                                                      SourceLocation());
2693    Info.AllToInit.push_back(Init);
2694    return false;
2695  }
2696
2697  // Don't build an implicit initializer for union members if none was
2698  // explicitly specified.
2699  if (Field->getParent()->isUnion() ||
2700      (Indirect && isWithinAnonymousUnion(Indirect)))
2701    return false;
2702
2703  // Don't initialize incomplete or zero-length arrays.
2704  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2705    return false;
2706
2707  // Don't try to build an implicit initializer if there were semantic
2708  // errors in any of the initializers (and therefore we might be
2709  // missing some that the user actually wrote).
2710  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2711    return false;
2712
2713  CXXCtorInitializer *Init = 0;
2714  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2715                                     Indirect, Init))
2716    return true;
2717
2718  if (Init)
2719    Info.AllToInit.push_back(Init);
2720
2721  return false;
2722}
2723
2724bool
2725Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2726                               CXXCtorInitializer *Initializer) {
2727  assert(Initializer->isDelegatingInitializer());
2728  Constructor->setNumCtorInitializers(1);
2729  CXXCtorInitializer **initializer =
2730    new (Context) CXXCtorInitializer*[1];
2731  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2732  Constructor->setCtorInitializers(initializer);
2733
2734  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2735    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2736    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2737  }
2738
2739  DelegatingCtorDecls.push_back(Constructor);
2740
2741  return false;
2742}
2743
2744bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2745                               CXXCtorInitializer **Initializers,
2746                               unsigned NumInitializers,
2747                               bool AnyErrors) {
2748  if (Constructor->isDependentContext()) {
2749    // Just store the initializers as written, they will be checked during
2750    // instantiation.
2751    if (NumInitializers > 0) {
2752      Constructor->setNumCtorInitializers(NumInitializers);
2753      CXXCtorInitializer **baseOrMemberInitializers =
2754        new (Context) CXXCtorInitializer*[NumInitializers];
2755      memcpy(baseOrMemberInitializers, Initializers,
2756             NumInitializers * sizeof(CXXCtorInitializer*));
2757      Constructor->setCtorInitializers(baseOrMemberInitializers);
2758    }
2759
2760    return false;
2761  }
2762
2763  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2764
2765  // We need to build the initializer AST according to order of construction
2766  // and not what user specified in the Initializers list.
2767  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2768  if (!ClassDecl)
2769    return true;
2770
2771  bool HadError = false;
2772
2773  for (unsigned i = 0; i < NumInitializers; i++) {
2774    CXXCtorInitializer *Member = Initializers[i];
2775
2776    if (Member->isBaseInitializer())
2777      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2778    else
2779      Info.AllBaseFields[Member->getAnyMember()] = Member;
2780  }
2781
2782  // Keep track of the direct virtual bases.
2783  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2784  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2785       E = ClassDecl->bases_end(); I != E; ++I) {
2786    if (I->isVirtual())
2787      DirectVBases.insert(I);
2788  }
2789
2790  // Push virtual bases before others.
2791  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2792       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2793
2794    if (CXXCtorInitializer *Value
2795        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2796      Info.AllToInit.push_back(Value);
2797    } else if (!AnyErrors) {
2798      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2799      CXXCtorInitializer *CXXBaseInit;
2800      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2801                                       VBase, IsInheritedVirtualBase,
2802                                       CXXBaseInit)) {
2803        HadError = true;
2804        continue;
2805      }
2806
2807      Info.AllToInit.push_back(CXXBaseInit);
2808    }
2809  }
2810
2811  // Non-virtual bases.
2812  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2813       E = ClassDecl->bases_end(); Base != E; ++Base) {
2814    // Virtuals are in the virtual base list and already constructed.
2815    if (Base->isVirtual())
2816      continue;
2817
2818    if (CXXCtorInitializer *Value
2819          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2820      Info.AllToInit.push_back(Value);
2821    } else if (!AnyErrors) {
2822      CXXCtorInitializer *CXXBaseInit;
2823      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2824                                       Base, /*IsInheritedVirtualBase=*/false,
2825                                       CXXBaseInit)) {
2826        HadError = true;
2827        continue;
2828      }
2829
2830      Info.AllToInit.push_back(CXXBaseInit);
2831    }
2832  }
2833
2834  // Fields.
2835  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2836                               MemEnd = ClassDecl->decls_end();
2837       Mem != MemEnd; ++Mem) {
2838    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2839      // C++ [class.bit]p2:
2840      //   A declaration for a bit-field that omits the identifier declares an
2841      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2842      //   initialized.
2843      if (F->isUnnamedBitfield())
2844        continue;
2845
2846      // If we're not generating the implicit copy/move constructor, then we'll
2847      // handle anonymous struct/union fields based on their individual
2848      // indirect fields.
2849      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2850        continue;
2851
2852      if (CollectFieldInitializer(*this, Info, F))
2853        HadError = true;
2854      continue;
2855    }
2856
2857    // Beyond this point, we only consider default initialization.
2858    if (Info.IIK != IIK_Default)
2859      continue;
2860
2861    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2862      if (F->getType()->isIncompleteArrayType()) {
2863        assert(ClassDecl->hasFlexibleArrayMember() &&
2864               "Incomplete array type is not valid");
2865        continue;
2866      }
2867
2868      // Initialize each field of an anonymous struct individually.
2869      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2870        HadError = true;
2871
2872      continue;
2873    }
2874  }
2875
2876  NumInitializers = Info.AllToInit.size();
2877  if (NumInitializers > 0) {
2878    Constructor->setNumCtorInitializers(NumInitializers);
2879    CXXCtorInitializer **baseOrMemberInitializers =
2880      new (Context) CXXCtorInitializer*[NumInitializers];
2881    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2882           NumInitializers * sizeof(CXXCtorInitializer*));
2883    Constructor->setCtorInitializers(baseOrMemberInitializers);
2884
2885    // Constructors implicitly reference the base and member
2886    // destructors.
2887    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2888                                           Constructor->getParent());
2889  }
2890
2891  return HadError;
2892}
2893
2894static void *GetKeyForTopLevelField(FieldDecl *Field) {
2895  // For anonymous unions, use the class declaration as the key.
2896  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2897    if (RT->getDecl()->isAnonymousStructOrUnion())
2898      return static_cast<void *>(RT->getDecl());
2899  }
2900  return static_cast<void *>(Field);
2901}
2902
2903static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2904  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2905}
2906
2907static void *GetKeyForMember(ASTContext &Context,
2908                             CXXCtorInitializer *Member) {
2909  if (!Member->isAnyMemberInitializer())
2910    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2911
2912  // For fields injected into the class via declaration of an anonymous union,
2913  // use its anonymous union class declaration as the unique key.
2914  FieldDecl *Field = Member->getAnyMember();
2915
2916  // If the field is a member of an anonymous struct or union, our key
2917  // is the anonymous record decl that's a direct child of the class.
2918  RecordDecl *RD = Field->getParent();
2919  if (RD->isAnonymousStructOrUnion()) {
2920    while (true) {
2921      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2922      if (Parent->isAnonymousStructOrUnion())
2923        RD = Parent;
2924      else
2925        break;
2926    }
2927
2928    return static_cast<void *>(RD);
2929  }
2930
2931  return static_cast<void *>(Field);
2932}
2933
2934static void
2935DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2936                                  const CXXConstructorDecl *Constructor,
2937                                  CXXCtorInitializer **Inits,
2938                                  unsigned NumInits) {
2939  if (Constructor->getDeclContext()->isDependentContext())
2940    return;
2941
2942  // Don't check initializers order unless the warning is enabled at the
2943  // location of at least one initializer.
2944  bool ShouldCheckOrder = false;
2945  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2946    CXXCtorInitializer *Init = Inits[InitIndex];
2947    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2948                                         Init->getSourceLocation())
2949          != DiagnosticsEngine::Ignored) {
2950      ShouldCheckOrder = true;
2951      break;
2952    }
2953  }
2954  if (!ShouldCheckOrder)
2955    return;
2956
2957  // Build the list of bases and members in the order that they'll
2958  // actually be initialized.  The explicit initializers should be in
2959  // this same order but may be missing things.
2960  SmallVector<const void*, 32> IdealInitKeys;
2961
2962  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2963
2964  // 1. Virtual bases.
2965  for (CXXRecordDecl::base_class_const_iterator VBase =
2966       ClassDecl->vbases_begin(),
2967       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2968    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2969
2970  // 2. Non-virtual bases.
2971  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2972       E = ClassDecl->bases_end(); Base != E; ++Base) {
2973    if (Base->isVirtual())
2974      continue;
2975    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2976  }
2977
2978  // 3. Direct fields.
2979  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2980       E = ClassDecl->field_end(); Field != E; ++Field) {
2981    if (Field->isUnnamedBitfield())
2982      continue;
2983
2984    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2985  }
2986
2987  unsigned NumIdealInits = IdealInitKeys.size();
2988  unsigned IdealIndex = 0;
2989
2990  CXXCtorInitializer *PrevInit = 0;
2991  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2992    CXXCtorInitializer *Init = Inits[InitIndex];
2993    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2994
2995    // Scan forward to try to find this initializer in the idealized
2996    // initializers list.
2997    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2998      if (InitKey == IdealInitKeys[IdealIndex])
2999        break;
3000
3001    // If we didn't find this initializer, it must be because we
3002    // scanned past it on a previous iteration.  That can only
3003    // happen if we're out of order;  emit a warning.
3004    if (IdealIndex == NumIdealInits && PrevInit) {
3005      Sema::SemaDiagnosticBuilder D =
3006        SemaRef.Diag(PrevInit->getSourceLocation(),
3007                     diag::warn_initializer_out_of_order);
3008
3009      if (PrevInit->isAnyMemberInitializer())
3010        D << 0 << PrevInit->getAnyMember()->getDeclName();
3011      else
3012        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3013
3014      if (Init->isAnyMemberInitializer())
3015        D << 0 << Init->getAnyMember()->getDeclName();
3016      else
3017        D << 1 << Init->getTypeSourceInfo()->getType();
3018
3019      // Move back to the initializer's location in the ideal list.
3020      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3021        if (InitKey == IdealInitKeys[IdealIndex])
3022          break;
3023
3024      assert(IdealIndex != NumIdealInits &&
3025             "initializer not found in initializer list");
3026    }
3027
3028    PrevInit = Init;
3029  }
3030}
3031
3032namespace {
3033bool CheckRedundantInit(Sema &S,
3034                        CXXCtorInitializer *Init,
3035                        CXXCtorInitializer *&PrevInit) {
3036  if (!PrevInit) {
3037    PrevInit = Init;
3038    return false;
3039  }
3040
3041  if (FieldDecl *Field = Init->getMember())
3042    S.Diag(Init->getSourceLocation(),
3043           diag::err_multiple_mem_initialization)
3044      << Field->getDeclName()
3045      << Init->getSourceRange();
3046  else {
3047    const Type *BaseClass = Init->getBaseClass();
3048    assert(BaseClass && "neither field nor base");
3049    S.Diag(Init->getSourceLocation(),
3050           diag::err_multiple_base_initialization)
3051      << QualType(BaseClass, 0)
3052      << Init->getSourceRange();
3053  }
3054  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3055    << 0 << PrevInit->getSourceRange();
3056
3057  return true;
3058}
3059
3060typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3061typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3062
3063bool CheckRedundantUnionInit(Sema &S,
3064                             CXXCtorInitializer *Init,
3065                             RedundantUnionMap &Unions) {
3066  FieldDecl *Field = Init->getAnyMember();
3067  RecordDecl *Parent = Field->getParent();
3068  NamedDecl *Child = Field;
3069
3070  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3071    if (Parent->isUnion()) {
3072      UnionEntry &En = Unions[Parent];
3073      if (En.first && En.first != Child) {
3074        S.Diag(Init->getSourceLocation(),
3075               diag::err_multiple_mem_union_initialization)
3076          << Field->getDeclName()
3077          << Init->getSourceRange();
3078        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3079          << 0 << En.second->getSourceRange();
3080        return true;
3081      }
3082      if (!En.first) {
3083        En.first = Child;
3084        En.second = Init;
3085      }
3086      if (!Parent->isAnonymousStructOrUnion())
3087        return false;
3088    }
3089
3090    Child = Parent;
3091    Parent = cast<RecordDecl>(Parent->getDeclContext());
3092  }
3093
3094  return false;
3095}
3096}
3097
3098/// ActOnMemInitializers - Handle the member initializers for a constructor.
3099void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3100                                SourceLocation ColonLoc,
3101                                CXXCtorInitializer **meminits,
3102                                unsigned NumMemInits,
3103                                bool AnyErrors) {
3104  if (!ConstructorDecl)
3105    return;
3106
3107  AdjustDeclIfTemplate(ConstructorDecl);
3108
3109  CXXConstructorDecl *Constructor
3110    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3111
3112  if (!Constructor) {
3113    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3114    return;
3115  }
3116
3117  CXXCtorInitializer **MemInits =
3118    reinterpret_cast<CXXCtorInitializer **>(meminits);
3119
3120  // Mapping for the duplicate initializers check.
3121  // For member initializers, this is keyed with a FieldDecl*.
3122  // For base initializers, this is keyed with a Type*.
3123  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3124
3125  // Mapping for the inconsistent anonymous-union initializers check.
3126  RedundantUnionMap MemberUnions;
3127
3128  bool HadError = false;
3129  for (unsigned i = 0; i < NumMemInits; i++) {
3130    CXXCtorInitializer *Init = MemInits[i];
3131
3132    // Set the source order index.
3133    Init->setSourceOrder(i);
3134
3135    if (Init->isAnyMemberInitializer()) {
3136      FieldDecl *Field = Init->getAnyMember();
3137      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3138          CheckRedundantUnionInit(*this, Init, MemberUnions))
3139        HadError = true;
3140    } else if (Init->isBaseInitializer()) {
3141      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3142      if (CheckRedundantInit(*this, Init, Members[Key]))
3143        HadError = true;
3144    } else {
3145      assert(Init->isDelegatingInitializer());
3146      // This must be the only initializer
3147      if (i != 0 || NumMemInits > 1) {
3148        Diag(MemInits[0]->getSourceLocation(),
3149             diag::err_delegating_initializer_alone)
3150          << MemInits[0]->getSourceRange();
3151        HadError = true;
3152        // We will treat this as being the only initializer.
3153      }
3154      SetDelegatingInitializer(Constructor, MemInits[i]);
3155      // Return immediately as the initializer is set.
3156      return;
3157    }
3158  }
3159
3160  if (HadError)
3161    return;
3162
3163  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3164
3165  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3166}
3167
3168void
3169Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3170                                             CXXRecordDecl *ClassDecl) {
3171  // Ignore dependent contexts. Also ignore unions, since their members never
3172  // have destructors implicitly called.
3173  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3174    return;
3175
3176  // FIXME: all the access-control diagnostics are positioned on the
3177  // field/base declaration.  That's probably good; that said, the
3178  // user might reasonably want to know why the destructor is being
3179  // emitted, and we currently don't say.
3180
3181  // Non-static data members.
3182  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3183       E = ClassDecl->field_end(); I != E; ++I) {
3184    FieldDecl *Field = *I;
3185    if (Field->isInvalidDecl())
3186      continue;
3187
3188    // Don't destroy incomplete or zero-length arrays.
3189    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3190      continue;
3191
3192    QualType FieldType = Context.getBaseElementType(Field->getType());
3193
3194    const RecordType* RT = FieldType->getAs<RecordType>();
3195    if (!RT)
3196      continue;
3197
3198    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3199    if (FieldClassDecl->isInvalidDecl())
3200      continue;
3201    if (FieldClassDecl->hasTrivialDestructor())
3202      continue;
3203
3204    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3205    assert(Dtor && "No dtor found for FieldClassDecl!");
3206    CheckDestructorAccess(Field->getLocation(), Dtor,
3207                          PDiag(diag::err_access_dtor_field)
3208                            << Field->getDeclName()
3209                            << FieldType);
3210
3211    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3212  }
3213
3214  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3215
3216  // Bases.
3217  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3218       E = ClassDecl->bases_end(); Base != E; ++Base) {
3219    // Bases are always records in a well-formed non-dependent class.
3220    const RecordType *RT = Base->getType()->getAs<RecordType>();
3221
3222    // Remember direct virtual bases.
3223    if (Base->isVirtual())
3224      DirectVirtualBases.insert(RT);
3225
3226    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3227    // If our base class is invalid, we probably can't get its dtor anyway.
3228    if (BaseClassDecl->isInvalidDecl())
3229      continue;
3230    // Ignore trivial destructors.
3231    if (BaseClassDecl->hasTrivialDestructor())
3232      continue;
3233
3234    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3235    assert(Dtor && "No dtor found for BaseClassDecl!");
3236
3237    // FIXME: caret should be on the start of the class name
3238    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3239                          PDiag(diag::err_access_dtor_base)
3240                            << Base->getType()
3241                            << Base->getSourceRange());
3242
3243    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3244  }
3245
3246  // Virtual bases.
3247  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3248       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3249
3250    // Bases are always records in a well-formed non-dependent class.
3251    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3252
3253    // Ignore direct virtual bases.
3254    if (DirectVirtualBases.count(RT))
3255      continue;
3256
3257    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3258    // If our base class is invalid, we probably can't get its dtor anyway.
3259    if (BaseClassDecl->isInvalidDecl())
3260      continue;
3261    // Ignore trivial destructors.
3262    if (BaseClassDecl->hasTrivialDestructor())
3263      continue;
3264
3265    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3266    assert(Dtor && "No dtor found for BaseClassDecl!");
3267    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3268                          PDiag(diag::err_access_dtor_vbase)
3269                            << VBase->getType());
3270
3271    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3272  }
3273}
3274
3275void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3276  if (!CDtorDecl)
3277    return;
3278
3279  if (CXXConstructorDecl *Constructor
3280      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3281    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3282}
3283
3284bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3285                                  unsigned DiagID, AbstractDiagSelID SelID) {
3286  if (SelID == -1)
3287    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3288  else
3289    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3290}
3291
3292bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3293                                  const PartialDiagnostic &PD) {
3294  if (!getLangOptions().CPlusPlus)
3295    return false;
3296
3297  if (const ArrayType *AT = Context.getAsArrayType(T))
3298    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3299
3300  if (const PointerType *PT = T->getAs<PointerType>()) {
3301    // Find the innermost pointer type.
3302    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3303      PT = T;
3304
3305    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3306      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3307  }
3308
3309  const RecordType *RT = T->getAs<RecordType>();
3310  if (!RT)
3311    return false;
3312
3313  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3314
3315  // We can't answer whether something is abstract until it has a
3316  // definition.  If it's currently being defined, we'll walk back
3317  // over all the declarations when we have a full definition.
3318  const CXXRecordDecl *Def = RD->getDefinition();
3319  if (!Def || Def->isBeingDefined())
3320    return false;
3321
3322  if (!RD->isAbstract())
3323    return false;
3324
3325  Diag(Loc, PD) << RD->getDeclName();
3326  DiagnoseAbstractType(RD);
3327
3328  return true;
3329}
3330
3331void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3332  // Check if we've already emitted the list of pure virtual functions
3333  // for this class.
3334  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3335    return;
3336
3337  CXXFinalOverriderMap FinalOverriders;
3338  RD->getFinalOverriders(FinalOverriders);
3339
3340  // Keep a set of seen pure methods so we won't diagnose the same method
3341  // more than once.
3342  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3343
3344  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3345                                   MEnd = FinalOverriders.end();
3346       M != MEnd;
3347       ++M) {
3348    for (OverridingMethods::iterator SO = M->second.begin(),
3349                                  SOEnd = M->second.end();
3350         SO != SOEnd; ++SO) {
3351      // C++ [class.abstract]p4:
3352      //   A class is abstract if it contains or inherits at least one
3353      //   pure virtual function for which the final overrider is pure
3354      //   virtual.
3355
3356      //
3357      if (SO->second.size() != 1)
3358        continue;
3359
3360      if (!SO->second.front().Method->isPure())
3361        continue;
3362
3363      if (!SeenPureMethods.insert(SO->second.front().Method))
3364        continue;
3365
3366      Diag(SO->second.front().Method->getLocation(),
3367           diag::note_pure_virtual_function)
3368        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3369    }
3370  }
3371
3372  if (!PureVirtualClassDiagSet)
3373    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3374  PureVirtualClassDiagSet->insert(RD);
3375}
3376
3377namespace {
3378struct AbstractUsageInfo {
3379  Sema &S;
3380  CXXRecordDecl *Record;
3381  CanQualType AbstractType;
3382  bool Invalid;
3383
3384  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3385    : S(S), Record(Record),
3386      AbstractType(S.Context.getCanonicalType(
3387                   S.Context.getTypeDeclType(Record))),
3388      Invalid(false) {}
3389
3390  void DiagnoseAbstractType() {
3391    if (Invalid) return;
3392    S.DiagnoseAbstractType(Record);
3393    Invalid = true;
3394  }
3395
3396  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3397};
3398
3399struct CheckAbstractUsage {
3400  AbstractUsageInfo &Info;
3401  const NamedDecl *Ctx;
3402
3403  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3404    : Info(Info), Ctx(Ctx) {}
3405
3406  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3407    switch (TL.getTypeLocClass()) {
3408#define ABSTRACT_TYPELOC(CLASS, PARENT)
3409#define TYPELOC(CLASS, PARENT) \
3410    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3411#include "clang/AST/TypeLocNodes.def"
3412    }
3413  }
3414
3415  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3416    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3417    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3418      if (!TL.getArg(I))
3419        continue;
3420
3421      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3422      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3423    }
3424  }
3425
3426  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3427    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3428  }
3429
3430  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3431    // Visit the type parameters from a permissive context.
3432    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3433      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3434      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3435        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3436          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3437      // TODO: other template argument types?
3438    }
3439  }
3440
3441  // Visit pointee types from a permissive context.
3442#define CheckPolymorphic(Type) \
3443  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3444    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3445  }
3446  CheckPolymorphic(PointerTypeLoc)
3447  CheckPolymorphic(ReferenceTypeLoc)
3448  CheckPolymorphic(MemberPointerTypeLoc)
3449  CheckPolymorphic(BlockPointerTypeLoc)
3450  CheckPolymorphic(AtomicTypeLoc)
3451
3452  /// Handle all the types we haven't given a more specific
3453  /// implementation for above.
3454  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3455    // Every other kind of type that we haven't called out already
3456    // that has an inner type is either (1) sugar or (2) contains that
3457    // inner type in some way as a subobject.
3458    if (TypeLoc Next = TL.getNextTypeLoc())
3459      return Visit(Next, Sel);
3460
3461    // If there's no inner type and we're in a permissive context,
3462    // don't diagnose.
3463    if (Sel == Sema::AbstractNone) return;
3464
3465    // Check whether the type matches the abstract type.
3466    QualType T = TL.getType();
3467    if (T->isArrayType()) {
3468      Sel = Sema::AbstractArrayType;
3469      T = Info.S.Context.getBaseElementType(T);
3470    }
3471    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3472    if (CT != Info.AbstractType) return;
3473
3474    // It matched; do some magic.
3475    if (Sel == Sema::AbstractArrayType) {
3476      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3477        << T << TL.getSourceRange();
3478    } else {
3479      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3480        << Sel << T << TL.getSourceRange();
3481    }
3482    Info.DiagnoseAbstractType();
3483  }
3484};
3485
3486void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3487                                  Sema::AbstractDiagSelID Sel) {
3488  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3489}
3490
3491}
3492
3493/// Check for invalid uses of an abstract type in a method declaration.
3494static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3495                                    CXXMethodDecl *MD) {
3496  // No need to do the check on definitions, which require that
3497  // the return/param types be complete.
3498  if (MD->doesThisDeclarationHaveABody())
3499    return;
3500
3501  // For safety's sake, just ignore it if we don't have type source
3502  // information.  This should never happen for non-implicit methods,
3503  // but...
3504  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3505    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3506}
3507
3508/// Check for invalid uses of an abstract type within a class definition.
3509static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3510                                    CXXRecordDecl *RD) {
3511  for (CXXRecordDecl::decl_iterator
3512         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3513    Decl *D = *I;
3514    if (D->isImplicit()) continue;
3515
3516    // Methods and method templates.
3517    if (isa<CXXMethodDecl>(D)) {
3518      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3519    } else if (isa<FunctionTemplateDecl>(D)) {
3520      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3521      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3522
3523    // Fields and static variables.
3524    } else if (isa<FieldDecl>(D)) {
3525      FieldDecl *FD = cast<FieldDecl>(D);
3526      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3527        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3528    } else if (isa<VarDecl>(D)) {
3529      VarDecl *VD = cast<VarDecl>(D);
3530      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3531        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3532
3533    // Nested classes and class templates.
3534    } else if (isa<CXXRecordDecl>(D)) {
3535      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3536    } else if (isa<ClassTemplateDecl>(D)) {
3537      CheckAbstractClassUsage(Info,
3538                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3539    }
3540  }
3541}
3542
3543/// \brief Perform semantic checks on a class definition that has been
3544/// completing, introducing implicitly-declared members, checking for
3545/// abstract types, etc.
3546void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3547  if (!Record)
3548    return;
3549
3550  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3551    AbstractUsageInfo Info(*this, Record);
3552    CheckAbstractClassUsage(Info, Record);
3553  }
3554
3555  // If this is not an aggregate type and has no user-declared constructor,
3556  // complain about any non-static data members of reference or const scalar
3557  // type, since they will never get initializers.
3558  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3559      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3560    bool Complained = false;
3561    for (RecordDecl::field_iterator F = Record->field_begin(),
3562                                 FEnd = Record->field_end();
3563         F != FEnd; ++F) {
3564      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3565        continue;
3566
3567      if (F->getType()->isReferenceType() ||
3568          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3569        if (!Complained) {
3570          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3571            << Record->getTagKind() << Record;
3572          Complained = true;
3573        }
3574
3575        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3576          << F->getType()->isReferenceType()
3577          << F->getDeclName();
3578      }
3579    }
3580  }
3581
3582  if (Record->isDynamicClass() && !Record->isDependentType())
3583    DynamicClasses.push_back(Record);
3584
3585  if (Record->getIdentifier()) {
3586    // C++ [class.mem]p13:
3587    //   If T is the name of a class, then each of the following shall have a
3588    //   name different from T:
3589    //     - every member of every anonymous union that is a member of class T.
3590    //
3591    // C++ [class.mem]p14:
3592    //   In addition, if class T has a user-declared constructor (12.1), every
3593    //   non-static data member of class T shall have a name different from T.
3594    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3595         R.first != R.second; ++R.first) {
3596      NamedDecl *D = *R.first;
3597      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3598          isa<IndirectFieldDecl>(D)) {
3599        Diag(D->getLocation(), diag::err_member_name_of_class)
3600          << D->getDeclName();
3601        break;
3602      }
3603    }
3604  }
3605
3606  // Warn if the class has virtual methods but non-virtual public destructor.
3607  if (Record->isPolymorphic() && !Record->isDependentType()) {
3608    CXXDestructorDecl *dtor = Record->getDestructor();
3609    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3610      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3611           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3612  }
3613
3614  // See if a method overloads virtual methods in a base
3615  /// class without overriding any.
3616  if (!Record->isDependentType()) {
3617    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3618                                     MEnd = Record->method_end();
3619         M != MEnd; ++M) {
3620      if (!(*M)->isStatic())
3621        DiagnoseHiddenVirtualMethods(Record, *M);
3622    }
3623  }
3624
3625  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3626  // function that is not a constructor declares that member function to be
3627  // const. [...] The class of which that function is a member shall be
3628  // a literal type.
3629  //
3630  // It's fine to diagnose constructors here too: such constructors cannot
3631  // produce a constant expression, so are ill-formed (no diagnostic required).
3632  //
3633  // If the class has virtual bases, any constexpr members will already have
3634  // been diagnosed by the checks performed on the member declaration, so
3635  // suppress this (less useful) diagnostic.
3636  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3637      !Record->isLiteral() && !Record->getNumVBases()) {
3638    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3639                                     MEnd = Record->method_end();
3640         M != MEnd; ++M) {
3641      if ((*M)->isConstexpr()) {
3642        switch (Record->getTemplateSpecializationKind()) {
3643        case TSK_ImplicitInstantiation:
3644        case TSK_ExplicitInstantiationDeclaration:
3645        case TSK_ExplicitInstantiationDefinition:
3646          // If a template instantiates to a non-literal type, but its members
3647          // instantiate to constexpr functions, the template is technically
3648          // ill-formed, but we allow it for sanity. Such members are treated as
3649          // non-constexpr.
3650          (*M)->setConstexpr(false);
3651          continue;
3652
3653        case TSK_Undeclared:
3654        case TSK_ExplicitSpecialization:
3655          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3656                             PDiag(diag::err_constexpr_method_non_literal));
3657          break;
3658        }
3659
3660        // Only produce one error per class.
3661        break;
3662      }
3663    }
3664  }
3665
3666  // Declare inherited constructors. We do this eagerly here because:
3667  // - The standard requires an eager diagnostic for conflicting inherited
3668  //   constructors from different classes.
3669  // - The lazy declaration of the other implicit constructors is so as to not
3670  //   waste space and performance on classes that are not meant to be
3671  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3672  //   have inherited constructors.
3673  DeclareInheritedConstructors(Record);
3674
3675  if (!Record->isDependentType())
3676    CheckExplicitlyDefaultedMethods(Record);
3677}
3678
3679void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3680  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3681                                      ME = Record->method_end();
3682       MI != ME; ++MI) {
3683    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3684      switch (getSpecialMember(*MI)) {
3685      case CXXDefaultConstructor:
3686        CheckExplicitlyDefaultedDefaultConstructor(
3687                                                  cast<CXXConstructorDecl>(*MI));
3688        break;
3689
3690      case CXXDestructor:
3691        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3692        break;
3693
3694      case CXXCopyConstructor:
3695        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3696        break;
3697
3698      case CXXCopyAssignment:
3699        CheckExplicitlyDefaultedCopyAssignment(*MI);
3700        break;
3701
3702      case CXXMoveConstructor:
3703        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3704        break;
3705
3706      case CXXMoveAssignment:
3707        CheckExplicitlyDefaultedMoveAssignment(*MI);
3708        break;
3709
3710      case CXXInvalid:
3711        llvm_unreachable("non-special member explicitly defaulted!");
3712      }
3713    }
3714  }
3715
3716}
3717
3718void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3719  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3720
3721  // Whether this was the first-declared instance of the constructor.
3722  // This affects whether we implicitly add an exception spec (and, eventually,
3723  // constexpr). It is also ill-formed to explicitly default a constructor such
3724  // that it would be deleted. (C++0x [decl.fct.def.default])
3725  bool First = CD == CD->getCanonicalDecl();
3726
3727  bool HadError = false;
3728  if (CD->getNumParams() != 0) {
3729    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3730      << CD->getSourceRange();
3731    HadError = true;
3732  }
3733
3734  ImplicitExceptionSpecification Spec
3735    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3736  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3737  if (EPI.ExceptionSpecType == EST_Delayed) {
3738    // Exception specification depends on some deferred part of the class. We'll
3739    // try again when the class's definition has been fully processed.
3740    return;
3741  }
3742  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3743                          *ExceptionType = Context.getFunctionType(
3744                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3745
3746  if (CtorType->hasExceptionSpec()) {
3747    if (CheckEquivalentExceptionSpec(
3748          PDiag(diag::err_incorrect_defaulted_exception_spec)
3749            << CXXDefaultConstructor,
3750          PDiag(),
3751          ExceptionType, SourceLocation(),
3752          CtorType, CD->getLocation())) {
3753      HadError = true;
3754    }
3755  } else if (First) {
3756    // We set the declaration to have the computed exception spec here.
3757    // We know there are no parameters.
3758    EPI.ExtInfo = CtorType->getExtInfo();
3759    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3760  }
3761
3762  if (HadError) {
3763    CD->setInvalidDecl();
3764    return;
3765  }
3766
3767  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3768    if (First) {
3769      CD->setDeletedAsWritten();
3770    } else {
3771      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3772        << CXXDefaultConstructor;
3773      CD->setInvalidDecl();
3774    }
3775  }
3776}
3777
3778void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3779  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3780
3781  // Whether this was the first-declared instance of the constructor.
3782  bool First = CD == CD->getCanonicalDecl();
3783
3784  bool HadError = false;
3785  if (CD->getNumParams() != 1) {
3786    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3787      << CD->getSourceRange();
3788    HadError = true;
3789  }
3790
3791  ImplicitExceptionSpecification Spec(Context);
3792  bool Const;
3793  llvm::tie(Spec, Const) =
3794    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3795
3796  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3797  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3798                          *ExceptionType = Context.getFunctionType(
3799                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3800
3801  // Check for parameter type matching.
3802  // This is a copy ctor so we know it's a cv-qualified reference to T.
3803  QualType ArgType = CtorType->getArgType(0);
3804  if (ArgType->getPointeeType().isVolatileQualified()) {
3805    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3806    HadError = true;
3807  }
3808  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3809    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3810    HadError = true;
3811  }
3812
3813  if (CtorType->hasExceptionSpec()) {
3814    if (CheckEquivalentExceptionSpec(
3815          PDiag(diag::err_incorrect_defaulted_exception_spec)
3816            << CXXCopyConstructor,
3817          PDiag(),
3818          ExceptionType, SourceLocation(),
3819          CtorType, CD->getLocation())) {
3820      HadError = true;
3821    }
3822  } else if (First) {
3823    // We set the declaration to have the computed exception spec here.
3824    // We duplicate the one parameter type.
3825    EPI.ExtInfo = CtorType->getExtInfo();
3826    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3827  }
3828
3829  if (HadError) {
3830    CD->setInvalidDecl();
3831    return;
3832  }
3833
3834  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3835    if (First) {
3836      CD->setDeletedAsWritten();
3837    } else {
3838      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3839        << CXXCopyConstructor;
3840      CD->setInvalidDecl();
3841    }
3842  }
3843}
3844
3845void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3846  assert(MD->isExplicitlyDefaulted());
3847
3848  // Whether this was the first-declared instance of the operator
3849  bool First = MD == MD->getCanonicalDecl();
3850
3851  bool HadError = false;
3852  if (MD->getNumParams() != 1) {
3853    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3854      << MD->getSourceRange();
3855    HadError = true;
3856  }
3857
3858  QualType ReturnType =
3859    MD->getType()->getAs<FunctionType>()->getResultType();
3860  if (!ReturnType->isLValueReferenceType() ||
3861      !Context.hasSameType(
3862        Context.getCanonicalType(ReturnType->getPointeeType()),
3863        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3864    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3865    HadError = true;
3866  }
3867
3868  ImplicitExceptionSpecification Spec(Context);
3869  bool Const;
3870  llvm::tie(Spec, Const) =
3871    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3872
3873  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3874  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3875                          *ExceptionType = Context.getFunctionType(
3876                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3877
3878  QualType ArgType = OperType->getArgType(0);
3879  if (!ArgType->isLValueReferenceType()) {
3880    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3881    HadError = true;
3882  } else {
3883    if (ArgType->getPointeeType().isVolatileQualified()) {
3884      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3885      HadError = true;
3886    }
3887    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3888      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3889      HadError = true;
3890    }
3891  }
3892
3893  if (OperType->getTypeQuals()) {
3894    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3895    HadError = true;
3896  }
3897
3898  if (OperType->hasExceptionSpec()) {
3899    if (CheckEquivalentExceptionSpec(
3900          PDiag(diag::err_incorrect_defaulted_exception_spec)
3901            << CXXCopyAssignment,
3902          PDiag(),
3903          ExceptionType, SourceLocation(),
3904          OperType, MD->getLocation())) {
3905      HadError = true;
3906    }
3907  } else if (First) {
3908    // We set the declaration to have the computed exception spec here.
3909    // We duplicate the one parameter type.
3910    EPI.RefQualifier = OperType->getRefQualifier();
3911    EPI.ExtInfo = OperType->getExtInfo();
3912    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3913  }
3914
3915  if (HadError) {
3916    MD->setInvalidDecl();
3917    return;
3918  }
3919
3920  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3921    if (First) {
3922      MD->setDeletedAsWritten();
3923    } else {
3924      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3925        << CXXCopyAssignment;
3926      MD->setInvalidDecl();
3927    }
3928  }
3929}
3930
3931void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3932  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3933
3934  // Whether this was the first-declared instance of the constructor.
3935  bool First = CD == CD->getCanonicalDecl();
3936
3937  bool HadError = false;
3938  if (CD->getNumParams() != 1) {
3939    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3940      << CD->getSourceRange();
3941    HadError = true;
3942  }
3943
3944  ImplicitExceptionSpecification Spec(
3945      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3946
3947  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3948  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3949                          *ExceptionType = Context.getFunctionType(
3950                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3951
3952  // Check for parameter type matching.
3953  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3954  QualType ArgType = CtorType->getArgType(0);
3955  if (ArgType->getPointeeType().isVolatileQualified()) {
3956    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3957    HadError = true;
3958  }
3959  if (ArgType->getPointeeType().isConstQualified()) {
3960    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3961    HadError = true;
3962  }
3963
3964  if (CtorType->hasExceptionSpec()) {
3965    if (CheckEquivalentExceptionSpec(
3966          PDiag(diag::err_incorrect_defaulted_exception_spec)
3967            << CXXMoveConstructor,
3968          PDiag(),
3969          ExceptionType, SourceLocation(),
3970          CtorType, CD->getLocation())) {
3971      HadError = true;
3972    }
3973  } else if (First) {
3974    // We set the declaration to have the computed exception spec here.
3975    // We duplicate the one parameter type.
3976    EPI.ExtInfo = CtorType->getExtInfo();
3977    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3978  }
3979
3980  if (HadError) {
3981    CD->setInvalidDecl();
3982    return;
3983  }
3984
3985  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
3986    if (First) {
3987      CD->setDeletedAsWritten();
3988    } else {
3989      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3990        << CXXMoveConstructor;
3991      CD->setInvalidDecl();
3992    }
3993  }
3994}
3995
3996void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3997  assert(MD->isExplicitlyDefaulted());
3998
3999  // Whether this was the first-declared instance of the operator
4000  bool First = MD == MD->getCanonicalDecl();
4001
4002  bool HadError = false;
4003  if (MD->getNumParams() != 1) {
4004    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4005      << MD->getSourceRange();
4006    HadError = true;
4007  }
4008
4009  QualType ReturnType =
4010    MD->getType()->getAs<FunctionType>()->getResultType();
4011  if (!ReturnType->isLValueReferenceType() ||
4012      !Context.hasSameType(
4013        Context.getCanonicalType(ReturnType->getPointeeType()),
4014        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4015    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4016    HadError = true;
4017  }
4018
4019  ImplicitExceptionSpecification Spec(
4020      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4021
4022  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4023  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4024                          *ExceptionType = Context.getFunctionType(
4025                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4026
4027  QualType ArgType = OperType->getArgType(0);
4028  if (!ArgType->isRValueReferenceType()) {
4029    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4030    HadError = true;
4031  } else {
4032    if (ArgType->getPointeeType().isVolatileQualified()) {
4033      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4034      HadError = true;
4035    }
4036    if (ArgType->getPointeeType().isConstQualified()) {
4037      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4038      HadError = true;
4039    }
4040  }
4041
4042  if (OperType->getTypeQuals()) {
4043    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4044    HadError = true;
4045  }
4046
4047  if (OperType->hasExceptionSpec()) {
4048    if (CheckEquivalentExceptionSpec(
4049          PDiag(diag::err_incorrect_defaulted_exception_spec)
4050            << CXXMoveAssignment,
4051          PDiag(),
4052          ExceptionType, SourceLocation(),
4053          OperType, MD->getLocation())) {
4054      HadError = true;
4055    }
4056  } else if (First) {
4057    // We set the declaration to have the computed exception spec here.
4058    // We duplicate the one parameter type.
4059    EPI.RefQualifier = OperType->getRefQualifier();
4060    EPI.ExtInfo = OperType->getExtInfo();
4061    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4062  }
4063
4064  if (HadError) {
4065    MD->setInvalidDecl();
4066    return;
4067  }
4068
4069  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4070    if (First) {
4071      MD->setDeletedAsWritten();
4072    } else {
4073      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4074        << CXXMoveAssignment;
4075      MD->setInvalidDecl();
4076    }
4077  }
4078}
4079
4080void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4081  assert(DD->isExplicitlyDefaulted());
4082
4083  // Whether this was the first-declared instance of the destructor.
4084  bool First = DD == DD->getCanonicalDecl();
4085
4086  ImplicitExceptionSpecification Spec
4087    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4088  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4089  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4090                          *ExceptionType = Context.getFunctionType(
4091                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4092
4093  if (DtorType->hasExceptionSpec()) {
4094    if (CheckEquivalentExceptionSpec(
4095          PDiag(diag::err_incorrect_defaulted_exception_spec)
4096            << CXXDestructor,
4097          PDiag(),
4098          ExceptionType, SourceLocation(),
4099          DtorType, DD->getLocation())) {
4100      DD->setInvalidDecl();
4101      return;
4102    }
4103  } else if (First) {
4104    // We set the declaration to have the computed exception spec here.
4105    // There are no parameters.
4106    EPI.ExtInfo = DtorType->getExtInfo();
4107    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4108  }
4109
4110  if (ShouldDeleteDestructor(DD)) {
4111    if (First) {
4112      DD->setDeletedAsWritten();
4113    } else {
4114      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4115        << CXXDestructor;
4116      DD->setInvalidDecl();
4117    }
4118  }
4119}
4120
4121/// This function implements the following C++0x paragraphs:
4122///  - [class.ctor]/5
4123///  - [class.copy]/11
4124bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4125  assert(!MD->isInvalidDecl());
4126  CXXRecordDecl *RD = MD->getParent();
4127  assert(!RD->isDependentType() && "do deletion after instantiation");
4128  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4129    return false;
4130
4131  bool IsUnion = RD->isUnion();
4132  bool IsConstructor = false;
4133  bool IsAssignment = false;
4134  bool IsMove = false;
4135
4136  bool ConstArg = false;
4137
4138  switch (CSM) {
4139  case CXXDefaultConstructor:
4140    IsConstructor = true;
4141    break;
4142  case CXXCopyConstructor:
4143    IsConstructor = true;
4144    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4145    break;
4146  case CXXMoveConstructor:
4147    IsConstructor = true;
4148    IsMove = true;
4149    break;
4150  default:
4151    llvm_unreachable("function only currently implemented for default ctors");
4152  }
4153
4154  SourceLocation Loc = MD->getLocation();
4155
4156  // Do access control from the special member function
4157  ContextRAII MethodContext(*this, MD);
4158
4159  bool AllConst = true;
4160
4161  // We do this because we should never actually use an anonymous
4162  // union's constructor.
4163  if (IsUnion && RD->isAnonymousStructOrUnion())
4164    return false;
4165
4166  // FIXME: We should put some diagnostic logic right into this function.
4167
4168  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4169                                          BE = RD->bases_end();
4170       BI != BE; ++BI) {
4171    // We'll handle this one later
4172    if (BI->isVirtual())
4173      continue;
4174
4175    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4176    assert(BaseDecl && "base isn't a CXXRecordDecl");
4177
4178    // Unless we have an assignment operator, the base's destructor must
4179    // be accessible and not deleted.
4180    if (!IsAssignment) {
4181      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4182      if (BaseDtor->isDeleted())
4183        return true;
4184      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4185          AR_accessible)
4186        return true;
4187    }
4188
4189    // Finding the corresponding member in the base should lead to a
4190    // unique, accessible, non-deleted function. If we are doing
4191    // a destructor, we have already checked this case.
4192    if (CSM != CXXDestructor) {
4193      SpecialMemberOverloadResult *SMOR =
4194        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4195                            false);
4196      if (!SMOR->hasSuccess())
4197        return true;
4198      CXXMethodDecl *BaseMember = SMOR->getMethod();
4199      if (IsConstructor) {
4200        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4201        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4202                                   PDiag()) != AR_accessible)
4203          return true;
4204
4205        // For a move operation, the corresponding operation must actually
4206        // be a move operation (and not a copy selected by overload
4207        // resolution) unless we are working on a trivially copyable class.
4208        if (IsMove && !BaseCtor->isMoveConstructor() &&
4209            !BaseDecl->isTriviallyCopyable())
4210          return true;
4211      }
4212    }
4213  }
4214
4215  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4216                                          BE = RD->vbases_end();
4217       BI != BE; ++BI) {
4218    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4219    assert(BaseDecl && "base isn't a CXXRecordDecl");
4220
4221    // Unless we have an assignment operator, the base's destructor must
4222    // be accessible and not deleted.
4223    if (!IsAssignment) {
4224      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4225      if (BaseDtor->isDeleted())
4226        return true;
4227      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4228          AR_accessible)
4229        return true;
4230    }
4231
4232    // Finding the corresponding member in the base should lead to a
4233    // unique, accessible, non-deleted function.
4234    if (CSM != CXXDestructor) {
4235      SpecialMemberOverloadResult *SMOR =
4236        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4237                            false);
4238      if (!SMOR->hasSuccess())
4239        return true;
4240      CXXMethodDecl *BaseMember = SMOR->getMethod();
4241      if (IsConstructor) {
4242        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4243        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4244                                   PDiag()) != AR_accessible)
4245          return true;
4246
4247        // For a move operation, the corresponding operation must actually
4248        // be a move operation (and not a copy selected by overload
4249        // resolution) unless we are working on a trivially copyable class.
4250        if (IsMove && !BaseCtor->isMoveConstructor() &&
4251            !BaseDecl->isTriviallyCopyable())
4252          return true;
4253      }
4254    }
4255  }
4256
4257  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4258                                     FE = RD->field_end();
4259       FI != FE; ++FI) {
4260    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4261      continue;
4262
4263    QualType FieldType = Context.getBaseElementType(FI->getType());
4264    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4265
4266    // For a default constructor, all references must be initialized in-class
4267    // and, if a union, it must have a non-const member.
4268    if (CSM == CXXDefaultConstructor) {
4269      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4270        return true;
4271
4272      if (IsUnion && !FieldType.isConstQualified())
4273        AllConst = false;
4274    // For a copy constructor, data members must not be of rvalue reference
4275    // type.
4276    } else if (CSM == CXXCopyConstructor) {
4277      if (FieldType->isRValueReferenceType())
4278        return true;
4279    }
4280
4281    if (FieldRecord) {
4282      // For a default constructor, a const member must have a user-provided
4283      // default constructor or else be explicitly initialized.
4284      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4285          !FI->hasInClassInitializer() &&
4286          !FieldRecord->hasUserProvidedDefaultConstructor())
4287        return true;
4288
4289      // Some additional restrictions exist on the variant members.
4290      if (!IsUnion && FieldRecord->isUnion() &&
4291          FieldRecord->isAnonymousStructOrUnion()) {
4292        // We're okay to reuse AllConst here since we only care about the
4293        // value otherwise if we're in a union.
4294        AllConst = true;
4295
4296        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4297                                           UE = FieldRecord->field_end();
4298             UI != UE; ++UI) {
4299          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4300          CXXRecordDecl *UnionFieldRecord =
4301            UnionFieldType->getAsCXXRecordDecl();
4302
4303          if (!UnionFieldType.isConstQualified())
4304            AllConst = false;
4305
4306          if (UnionFieldRecord) {
4307            // FIXME: Checking for accessibility and validity of this
4308            //        destructor is technically going beyond the
4309            //        standard, but this is believed to be a defect.
4310            if (!IsAssignment) {
4311              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4312              if (FieldDtor->isDeleted())
4313                return true;
4314              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4315                  AR_accessible)
4316                return true;
4317              if (!FieldDtor->isTrivial())
4318                return true;
4319            }
4320
4321            if (CSM != CXXDestructor) {
4322              SpecialMemberOverloadResult *SMOR =
4323                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4324                                    false, false, false);
4325              // FIXME: Checking for accessibility and validity of this
4326              //        corresponding member is technically going beyond the
4327              //        standard, but this is believed to be a defect.
4328              if (!SMOR->hasSuccess())
4329                return true;
4330
4331              CXXMethodDecl *FieldMember = SMOR->getMethod();
4332              // A member of a union must have a trivial corresponding
4333              // constructor.
4334              if (!FieldMember->isTrivial())
4335                return true;
4336
4337              if (IsConstructor) {
4338                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4339                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4340                                           PDiag()) != AR_accessible)
4341                return true;
4342              }
4343            }
4344          }
4345        }
4346
4347        // At least one member in each anonymous union must be non-const
4348        if (CSM == CXXDefaultConstructor && AllConst)
4349          return true;
4350
4351        // Don't try to initialize the anonymous union
4352        // This is technically non-conformant, but sanity demands it.
4353        continue;
4354      }
4355
4356      // Unless we're doing assignment, the field's destructor must be
4357      // accessible and not deleted.
4358      if (!IsAssignment) {
4359        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4360        if (FieldDtor->isDeleted())
4361          return true;
4362        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4363            AR_accessible)
4364          return true;
4365      }
4366
4367      // Check that the corresponding member of the field is accessible,
4368      // unique, and non-deleted. We don't do this if it has an explicit
4369      // initialization when default-constructing.
4370      if (CSM != CXXDestructor &&
4371          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4372        SpecialMemberOverloadResult *SMOR =
4373          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4374                              false);
4375        if (!SMOR->hasSuccess())
4376          return true;
4377
4378        CXXMethodDecl *FieldMember = SMOR->getMethod();
4379        if (IsConstructor) {
4380          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4381          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4382                                     PDiag()) != AR_accessible)
4383          return true;
4384
4385          // For a move operation, the corresponding operation must actually
4386          // be a move operation (and not a copy selected by overload
4387          // resolution) unless we are working on a trivially copyable class.
4388          if (IsMove && !FieldCtor->isMoveConstructor() &&
4389              !FieldRecord->isTriviallyCopyable())
4390            return true;
4391        }
4392
4393        // We need the corresponding member of a union to be trivial so that
4394        // we can safely copy them all simultaneously.
4395        // FIXME: Note that performing the check here (where we rely on the lack
4396        // of an in-class initializer) is technically ill-formed. However, this
4397        // seems most obviously to be a bug in the standard.
4398        if (IsUnion && !FieldMember->isTrivial())
4399          return true;
4400      }
4401    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4402               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4403      // We can't initialize a const member of non-class type to any value.
4404      return true;
4405    }
4406  }
4407
4408  // We can't have all const members in a union when default-constructing,
4409  // or else they're all nonsensical garbage values that can't be changed.
4410  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4411    return true;
4412
4413  return false;
4414}
4415
4416bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4417  CXXRecordDecl *RD = MD->getParent();
4418  assert(!RD->isDependentType() && "do deletion after instantiation");
4419  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4420    return false;
4421
4422  SourceLocation Loc = MD->getLocation();
4423
4424  // Do access control from the constructor
4425  ContextRAII MethodContext(*this, MD);
4426
4427  bool Union = RD->isUnion();
4428
4429  unsigned ArgQuals =
4430    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4431      Qualifiers::Const : 0;
4432
4433  // We do this because we should never actually use an anonymous
4434  // union's constructor.
4435  if (Union && RD->isAnonymousStructOrUnion())
4436    return false;
4437
4438  // FIXME: We should put some diagnostic logic right into this function.
4439
4440  // C++0x [class.copy]/20
4441  //    A defaulted [copy] assignment operator for class X is defined as deleted
4442  //    if X has:
4443
4444  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4445                                          BE = RD->bases_end();
4446       BI != BE; ++BI) {
4447    // We'll handle this one later
4448    if (BI->isVirtual())
4449      continue;
4450
4451    QualType BaseType = BI->getType();
4452    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4453    assert(BaseDecl && "base isn't a CXXRecordDecl");
4454
4455    // -- a [direct base class] B that cannot be [copied] because overload
4456    //    resolution, as applied to B's [copy] assignment operator, results in
4457    //    an ambiguity or a function that is deleted or inaccessible from the
4458    //    assignment operator
4459    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4460                                                      0);
4461    if (!CopyOper || CopyOper->isDeleted())
4462      return true;
4463    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4464      return true;
4465  }
4466
4467  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4468                                          BE = RD->vbases_end();
4469       BI != BE; ++BI) {
4470    QualType BaseType = BI->getType();
4471    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4472    assert(BaseDecl && "base isn't a CXXRecordDecl");
4473
4474    // -- a [virtual base class] B that cannot be [copied] because overload
4475    //    resolution, as applied to B's [copy] assignment operator, results in
4476    //    an ambiguity or a function that is deleted or inaccessible from the
4477    //    assignment operator
4478    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4479                                                      0);
4480    if (!CopyOper || CopyOper->isDeleted())
4481      return true;
4482    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4483      return true;
4484  }
4485
4486  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4487                                     FE = RD->field_end();
4488       FI != FE; ++FI) {
4489    if (FI->isUnnamedBitfield())
4490      continue;
4491
4492    QualType FieldType = Context.getBaseElementType(FI->getType());
4493
4494    // -- a non-static data member of reference type
4495    if (FieldType->isReferenceType())
4496      return true;
4497
4498    // -- a non-static data member of const non-class type (or array thereof)
4499    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4500      return true;
4501
4502    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4503
4504    if (FieldRecord) {
4505      // This is an anonymous union
4506      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4507        // Anonymous unions inside unions do not variant members create
4508        if (!Union) {
4509          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4510                                             UE = FieldRecord->field_end();
4511               UI != UE; ++UI) {
4512            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4513            CXXRecordDecl *UnionFieldRecord =
4514              UnionFieldType->getAsCXXRecordDecl();
4515
4516            // -- a variant member with a non-trivial [copy] assignment operator
4517            //    and X is a union-like class
4518            if (UnionFieldRecord &&
4519                !UnionFieldRecord->hasTrivialCopyAssignment())
4520              return true;
4521          }
4522        }
4523
4524        // Don't try to initalize an anonymous union
4525        continue;
4526      // -- a variant member with a non-trivial [copy] assignment operator
4527      //    and X is a union-like class
4528      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4529          return true;
4530      }
4531
4532      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4533                                                        false, 0);
4534      if (!CopyOper || CopyOper->isDeleted())
4535        return true;
4536      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4537        return true;
4538    }
4539  }
4540
4541  return false;
4542}
4543
4544bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4545  CXXRecordDecl *RD = MD->getParent();
4546  assert(!RD->isDependentType() && "do deletion after instantiation");
4547  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4548    return false;
4549
4550  SourceLocation Loc = MD->getLocation();
4551
4552  // Do access control from the constructor
4553  ContextRAII MethodContext(*this, MD);
4554
4555  bool Union = RD->isUnion();
4556
4557  // We do this because we should never actually use an anonymous
4558  // union's constructor.
4559  if (Union && RD->isAnonymousStructOrUnion())
4560    return false;
4561
4562  // C++0x [class.copy]/20
4563  //    A defaulted [move] assignment operator for class X is defined as deleted
4564  //    if X has:
4565
4566  //    -- for the move constructor, [...] any direct or indirect virtual base
4567  //       class.
4568  if (RD->getNumVBases() != 0)
4569    return true;
4570
4571  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4572                                          BE = RD->bases_end();
4573       BI != BE; ++BI) {
4574
4575    QualType BaseType = BI->getType();
4576    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4577    assert(BaseDecl && "base isn't a CXXRecordDecl");
4578
4579    // -- a [direct base class] B that cannot be [moved] because overload
4580    //    resolution, as applied to B's [move] assignment operator, results in
4581    //    an ambiguity or a function that is deleted or inaccessible from the
4582    //    assignment operator
4583    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4584    if (!MoveOper || MoveOper->isDeleted())
4585      return true;
4586    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4587      return true;
4588
4589    // -- for the move assignment operator, a [direct base class] with a type
4590    //    that does not have a move assignment operator and is not trivially
4591    //    copyable.
4592    if (!MoveOper->isMoveAssignmentOperator() &&
4593        !BaseDecl->isTriviallyCopyable())
4594      return true;
4595  }
4596
4597  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4598                                     FE = RD->field_end();
4599       FI != FE; ++FI) {
4600    if (FI->isUnnamedBitfield())
4601      continue;
4602
4603    QualType FieldType = Context.getBaseElementType(FI->getType());
4604
4605    // -- a non-static data member of reference type
4606    if (FieldType->isReferenceType())
4607      return true;
4608
4609    // -- a non-static data member of const non-class type (or array thereof)
4610    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4611      return true;
4612
4613    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4614
4615    if (FieldRecord) {
4616      // This is an anonymous union
4617      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4618        // Anonymous unions inside unions do not variant members create
4619        if (!Union) {
4620          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4621                                             UE = FieldRecord->field_end();
4622               UI != UE; ++UI) {
4623            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4624            CXXRecordDecl *UnionFieldRecord =
4625              UnionFieldType->getAsCXXRecordDecl();
4626
4627            // -- a variant member with a non-trivial [move] assignment operator
4628            //    and X is a union-like class
4629            if (UnionFieldRecord &&
4630                !UnionFieldRecord->hasTrivialMoveAssignment())
4631              return true;
4632          }
4633        }
4634
4635        // Don't try to initalize an anonymous union
4636        continue;
4637      // -- a variant member with a non-trivial [move] assignment operator
4638      //    and X is a union-like class
4639      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4640          return true;
4641      }
4642
4643      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4644      if (!MoveOper || MoveOper->isDeleted())
4645        return true;
4646      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4647        return true;
4648
4649      // -- for the move assignment operator, a [non-static data member] with a
4650      //    type that does not have a move assignment operator and is not
4651      //    trivially copyable.
4652      if (!MoveOper->isMoveAssignmentOperator() &&
4653          !FieldRecord->isTriviallyCopyable())
4654        return true;
4655    }
4656  }
4657
4658  return false;
4659}
4660
4661bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4662  CXXRecordDecl *RD = DD->getParent();
4663  assert(!RD->isDependentType() && "do deletion after instantiation");
4664  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4665    return false;
4666
4667  SourceLocation Loc = DD->getLocation();
4668
4669  // Do access control from the destructor
4670  ContextRAII CtorContext(*this, DD);
4671
4672  bool Union = RD->isUnion();
4673
4674  // We do this because we should never actually use an anonymous
4675  // union's destructor.
4676  if (Union && RD->isAnonymousStructOrUnion())
4677    return false;
4678
4679  // C++0x [class.dtor]p5
4680  //    A defaulted destructor for a class X is defined as deleted if:
4681  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4682                                          BE = RD->bases_end();
4683       BI != BE; ++BI) {
4684    // We'll handle this one later
4685    if (BI->isVirtual())
4686      continue;
4687
4688    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4689    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4690    assert(BaseDtor && "base has no destructor");
4691
4692    // -- any direct or virtual base class has a deleted destructor or
4693    //    a destructor that is inaccessible from the defaulted destructor
4694    if (BaseDtor->isDeleted())
4695      return true;
4696    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4697        AR_accessible)
4698      return true;
4699  }
4700
4701  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4702                                          BE = RD->vbases_end();
4703       BI != BE; ++BI) {
4704    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4705    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4706    assert(BaseDtor && "base has no destructor");
4707
4708    // -- any direct or virtual base class has a deleted destructor or
4709    //    a destructor that is inaccessible from the defaulted destructor
4710    if (BaseDtor->isDeleted())
4711      return true;
4712    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4713        AR_accessible)
4714      return true;
4715  }
4716
4717  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4718                                     FE = RD->field_end();
4719       FI != FE; ++FI) {
4720    QualType FieldType = Context.getBaseElementType(FI->getType());
4721    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4722    if (FieldRecord) {
4723      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4724         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4725                                            UE = FieldRecord->field_end();
4726              UI != UE; ++UI) {
4727           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4728           CXXRecordDecl *UnionFieldRecord =
4729             UnionFieldType->getAsCXXRecordDecl();
4730
4731           // -- X is a union-like class that has a variant member with a non-
4732           //    trivial destructor.
4733           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4734             return true;
4735         }
4736      // Technically we are supposed to do this next check unconditionally.
4737      // But that makes absolutely no sense.
4738      } else {
4739        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4740
4741        // -- any of the non-static data members has class type M (or array
4742        //    thereof) and M has a deleted destructor or a destructor that is
4743        //    inaccessible from the defaulted destructor
4744        if (FieldDtor->isDeleted())
4745          return true;
4746        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4747          AR_accessible)
4748        return true;
4749
4750        // -- X is a union-like class that has a variant member with a non-
4751        //    trivial destructor.
4752        if (Union && !FieldDtor->isTrivial())
4753          return true;
4754      }
4755    }
4756  }
4757
4758  if (DD->isVirtual()) {
4759    FunctionDecl *OperatorDelete = 0;
4760    DeclarationName Name =
4761      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4762    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4763          false))
4764      return true;
4765  }
4766
4767
4768  return false;
4769}
4770
4771/// \brief Data used with FindHiddenVirtualMethod
4772namespace {
4773  struct FindHiddenVirtualMethodData {
4774    Sema *S;
4775    CXXMethodDecl *Method;
4776    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4777    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4778  };
4779}
4780
4781/// \brief Member lookup function that determines whether a given C++
4782/// method overloads virtual methods in a base class without overriding any,
4783/// to be used with CXXRecordDecl::lookupInBases().
4784static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4785                                    CXXBasePath &Path,
4786                                    void *UserData) {
4787  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4788
4789  FindHiddenVirtualMethodData &Data
4790    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4791
4792  DeclarationName Name = Data.Method->getDeclName();
4793  assert(Name.getNameKind() == DeclarationName::Identifier);
4794
4795  bool foundSameNameMethod = false;
4796  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4797  for (Path.Decls = BaseRecord->lookup(Name);
4798       Path.Decls.first != Path.Decls.second;
4799       ++Path.Decls.first) {
4800    NamedDecl *D = *Path.Decls.first;
4801    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4802      MD = MD->getCanonicalDecl();
4803      foundSameNameMethod = true;
4804      // Interested only in hidden virtual methods.
4805      if (!MD->isVirtual())
4806        continue;
4807      // If the method we are checking overrides a method from its base
4808      // don't warn about the other overloaded methods.
4809      if (!Data.S->IsOverload(Data.Method, MD, false))
4810        return true;
4811      // Collect the overload only if its hidden.
4812      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4813        overloadedMethods.push_back(MD);
4814    }
4815  }
4816
4817  if (foundSameNameMethod)
4818    Data.OverloadedMethods.append(overloadedMethods.begin(),
4819                                   overloadedMethods.end());
4820  return foundSameNameMethod;
4821}
4822
4823/// \brief See if a method overloads virtual methods in a base class without
4824/// overriding any.
4825void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4826  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4827                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4828    return;
4829  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4830    return;
4831
4832  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4833                     /*bool RecordPaths=*/false,
4834                     /*bool DetectVirtual=*/false);
4835  FindHiddenVirtualMethodData Data;
4836  Data.Method = MD;
4837  Data.S = this;
4838
4839  // Keep the base methods that were overriden or introduced in the subclass
4840  // by 'using' in a set. A base method not in this set is hidden.
4841  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4842       res.first != res.second; ++res.first) {
4843    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4844      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4845                                          E = MD->end_overridden_methods();
4846           I != E; ++I)
4847        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4848    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4849      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4850        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4851  }
4852
4853  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4854      !Data.OverloadedMethods.empty()) {
4855    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4856      << MD << (Data.OverloadedMethods.size() > 1);
4857
4858    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4859      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4860      Diag(overloadedMD->getLocation(),
4861           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4862    }
4863  }
4864}
4865
4866void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4867                                             Decl *TagDecl,
4868                                             SourceLocation LBrac,
4869                                             SourceLocation RBrac,
4870                                             AttributeList *AttrList) {
4871  if (!TagDecl)
4872    return;
4873
4874  AdjustDeclIfTemplate(TagDecl);
4875
4876  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4877              // strict aliasing violation!
4878              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4879              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4880
4881  CheckCompletedCXXClass(
4882                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4883}
4884
4885/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4886/// special functions, such as the default constructor, copy
4887/// constructor, or destructor, to the given C++ class (C++
4888/// [special]p1).  This routine can only be executed just before the
4889/// definition of the class is complete.
4890void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4891  if (!ClassDecl->hasUserDeclaredConstructor())
4892    ++ASTContext::NumImplicitDefaultConstructors;
4893
4894  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4895    ++ASTContext::NumImplicitCopyConstructors;
4896
4897  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4898    ++ASTContext::NumImplicitCopyAssignmentOperators;
4899
4900    // If we have a dynamic class, then the copy assignment operator may be
4901    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4902    // it shows up in the right place in the vtable and that we diagnose
4903    // problems with the implicit exception specification.
4904    if (ClassDecl->isDynamicClass())
4905      DeclareImplicitCopyAssignment(ClassDecl);
4906  }
4907
4908  if (!ClassDecl->hasUserDeclaredDestructor()) {
4909    ++ASTContext::NumImplicitDestructors;
4910
4911    // If we have a dynamic class, then the destructor may be virtual, so we
4912    // have to declare the destructor immediately. This ensures that, e.g., it
4913    // shows up in the right place in the vtable and that we diagnose problems
4914    // with the implicit exception specification.
4915    if (ClassDecl->isDynamicClass())
4916      DeclareImplicitDestructor(ClassDecl);
4917  }
4918}
4919
4920void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4921  if (!D)
4922    return;
4923
4924  int NumParamList = D->getNumTemplateParameterLists();
4925  for (int i = 0; i < NumParamList; i++) {
4926    TemplateParameterList* Params = D->getTemplateParameterList(i);
4927    for (TemplateParameterList::iterator Param = Params->begin(),
4928                                      ParamEnd = Params->end();
4929          Param != ParamEnd; ++Param) {
4930      NamedDecl *Named = cast<NamedDecl>(*Param);
4931      if (Named->getDeclName()) {
4932        S->AddDecl(Named);
4933        IdResolver.AddDecl(Named);
4934      }
4935    }
4936  }
4937}
4938
4939void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4940  if (!D)
4941    return;
4942
4943  TemplateParameterList *Params = 0;
4944  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4945    Params = Template->getTemplateParameters();
4946  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4947           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4948    Params = PartialSpec->getTemplateParameters();
4949  else
4950    return;
4951
4952  for (TemplateParameterList::iterator Param = Params->begin(),
4953                                    ParamEnd = Params->end();
4954       Param != ParamEnd; ++Param) {
4955    NamedDecl *Named = cast<NamedDecl>(*Param);
4956    if (Named->getDeclName()) {
4957      S->AddDecl(Named);
4958      IdResolver.AddDecl(Named);
4959    }
4960  }
4961}
4962
4963void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4964  if (!RecordD) return;
4965  AdjustDeclIfTemplate(RecordD);
4966  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4967  PushDeclContext(S, Record);
4968}
4969
4970void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4971  if (!RecordD) return;
4972  PopDeclContext();
4973}
4974
4975/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4976/// parsing a top-level (non-nested) C++ class, and we are now
4977/// parsing those parts of the given Method declaration that could
4978/// not be parsed earlier (C++ [class.mem]p2), such as default
4979/// arguments. This action should enter the scope of the given
4980/// Method declaration as if we had just parsed the qualified method
4981/// name. However, it should not bring the parameters into scope;
4982/// that will be performed by ActOnDelayedCXXMethodParameter.
4983void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4984}
4985
4986/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4987/// C++ method declaration. We're (re-)introducing the given
4988/// function parameter into scope for use in parsing later parts of
4989/// the method declaration. For example, we could see an
4990/// ActOnParamDefaultArgument event for this parameter.
4991void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4992  if (!ParamD)
4993    return;
4994
4995  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4996
4997  // If this parameter has an unparsed default argument, clear it out
4998  // to make way for the parsed default argument.
4999  if (Param->hasUnparsedDefaultArg())
5000    Param->setDefaultArg(0);
5001
5002  S->AddDecl(Param);
5003  if (Param->getDeclName())
5004    IdResolver.AddDecl(Param);
5005}
5006
5007/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5008/// processing the delayed method declaration for Method. The method
5009/// declaration is now considered finished. There may be a separate
5010/// ActOnStartOfFunctionDef action later (not necessarily
5011/// immediately!) for this method, if it was also defined inside the
5012/// class body.
5013void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5014  if (!MethodD)
5015    return;
5016
5017  AdjustDeclIfTemplate(MethodD);
5018
5019  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5020
5021  // Now that we have our default arguments, check the constructor
5022  // again. It could produce additional diagnostics or affect whether
5023  // the class has implicitly-declared destructors, among other
5024  // things.
5025  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5026    CheckConstructor(Constructor);
5027
5028  // Check the default arguments, which we may have added.
5029  if (!Method->isInvalidDecl())
5030    CheckCXXDefaultArguments(Method);
5031}
5032
5033/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5034/// the well-formedness of the constructor declarator @p D with type @p
5035/// R. If there are any errors in the declarator, this routine will
5036/// emit diagnostics and set the invalid bit to true.  In any case, the type
5037/// will be updated to reflect a well-formed type for the constructor and
5038/// returned.
5039QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5040                                          StorageClass &SC) {
5041  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5042
5043  // C++ [class.ctor]p3:
5044  //   A constructor shall not be virtual (10.3) or static (9.4). A
5045  //   constructor can be invoked for a const, volatile or const
5046  //   volatile object. A constructor shall not be declared const,
5047  //   volatile, or const volatile (9.3.2).
5048  if (isVirtual) {
5049    if (!D.isInvalidType())
5050      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5051        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5052        << SourceRange(D.getIdentifierLoc());
5053    D.setInvalidType();
5054  }
5055  if (SC == SC_Static) {
5056    if (!D.isInvalidType())
5057      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5058        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5059        << SourceRange(D.getIdentifierLoc());
5060    D.setInvalidType();
5061    SC = SC_None;
5062  }
5063
5064  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5065  if (FTI.TypeQuals != 0) {
5066    if (FTI.TypeQuals & Qualifiers::Const)
5067      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5068        << "const" << SourceRange(D.getIdentifierLoc());
5069    if (FTI.TypeQuals & Qualifiers::Volatile)
5070      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5071        << "volatile" << SourceRange(D.getIdentifierLoc());
5072    if (FTI.TypeQuals & Qualifiers::Restrict)
5073      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5074        << "restrict" << SourceRange(D.getIdentifierLoc());
5075    D.setInvalidType();
5076  }
5077
5078  // C++0x [class.ctor]p4:
5079  //   A constructor shall not be declared with a ref-qualifier.
5080  if (FTI.hasRefQualifier()) {
5081    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5082      << FTI.RefQualifierIsLValueRef
5083      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5084    D.setInvalidType();
5085  }
5086
5087  // Rebuild the function type "R" without any type qualifiers (in
5088  // case any of the errors above fired) and with "void" as the
5089  // return type, since constructors don't have return types.
5090  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5091  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5092    return R;
5093
5094  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5095  EPI.TypeQuals = 0;
5096  EPI.RefQualifier = RQ_None;
5097
5098  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5099                                 Proto->getNumArgs(), EPI);
5100}
5101
5102/// CheckConstructor - Checks a fully-formed constructor for
5103/// well-formedness, issuing any diagnostics required. Returns true if
5104/// the constructor declarator is invalid.
5105void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5106  CXXRecordDecl *ClassDecl
5107    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5108  if (!ClassDecl)
5109    return Constructor->setInvalidDecl();
5110
5111  // C++ [class.copy]p3:
5112  //   A declaration of a constructor for a class X is ill-formed if
5113  //   its first parameter is of type (optionally cv-qualified) X and
5114  //   either there are no other parameters or else all other
5115  //   parameters have default arguments.
5116  if (!Constructor->isInvalidDecl() &&
5117      ((Constructor->getNumParams() == 1) ||
5118       (Constructor->getNumParams() > 1 &&
5119        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5120      Constructor->getTemplateSpecializationKind()
5121                                              != TSK_ImplicitInstantiation) {
5122    QualType ParamType = Constructor->getParamDecl(0)->getType();
5123    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5124    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5125      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5126      const char *ConstRef
5127        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5128                                                        : " const &";
5129      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5130        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5131
5132      // FIXME: Rather that making the constructor invalid, we should endeavor
5133      // to fix the type.
5134      Constructor->setInvalidDecl();
5135    }
5136  }
5137}
5138
5139/// CheckDestructor - Checks a fully-formed destructor definition for
5140/// well-formedness, issuing any diagnostics required.  Returns true
5141/// on error.
5142bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5143  CXXRecordDecl *RD = Destructor->getParent();
5144
5145  if (Destructor->isVirtual()) {
5146    SourceLocation Loc;
5147
5148    if (!Destructor->isImplicit())
5149      Loc = Destructor->getLocation();
5150    else
5151      Loc = RD->getLocation();
5152
5153    // If we have a virtual destructor, look up the deallocation function
5154    FunctionDecl *OperatorDelete = 0;
5155    DeclarationName Name =
5156    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5157    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5158      return true;
5159
5160    MarkDeclarationReferenced(Loc, OperatorDelete);
5161
5162    Destructor->setOperatorDelete(OperatorDelete);
5163  }
5164
5165  return false;
5166}
5167
5168static inline bool
5169FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5170  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5171          FTI.ArgInfo[0].Param &&
5172          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5173}
5174
5175/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5176/// the well-formednes of the destructor declarator @p D with type @p
5177/// R. If there are any errors in the declarator, this routine will
5178/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5179/// will be updated to reflect a well-formed type for the destructor and
5180/// returned.
5181QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5182                                         StorageClass& SC) {
5183  // C++ [class.dtor]p1:
5184  //   [...] A typedef-name that names a class is a class-name
5185  //   (7.1.3); however, a typedef-name that names a class shall not
5186  //   be used as the identifier in the declarator for a destructor
5187  //   declaration.
5188  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5189  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5190    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5191      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5192  else if (const TemplateSpecializationType *TST =
5193             DeclaratorType->getAs<TemplateSpecializationType>())
5194    if (TST->isTypeAlias())
5195      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5196        << DeclaratorType << 1;
5197
5198  // C++ [class.dtor]p2:
5199  //   A destructor is used to destroy objects of its class type. A
5200  //   destructor takes no parameters, and no return type can be
5201  //   specified for it (not even void). The address of a destructor
5202  //   shall not be taken. A destructor shall not be static. A
5203  //   destructor can be invoked for a const, volatile or const
5204  //   volatile object. A destructor shall not be declared const,
5205  //   volatile or const volatile (9.3.2).
5206  if (SC == SC_Static) {
5207    if (!D.isInvalidType())
5208      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5209        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5210        << SourceRange(D.getIdentifierLoc())
5211        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5212
5213    SC = SC_None;
5214  }
5215  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5216    // Destructors don't have return types, but the parser will
5217    // happily parse something like:
5218    //
5219    //   class X {
5220    //     float ~X();
5221    //   };
5222    //
5223    // The return type will be eliminated later.
5224    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5225      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5226      << SourceRange(D.getIdentifierLoc());
5227  }
5228
5229  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5230  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5231    if (FTI.TypeQuals & Qualifiers::Const)
5232      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5233        << "const" << SourceRange(D.getIdentifierLoc());
5234    if (FTI.TypeQuals & Qualifiers::Volatile)
5235      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5236        << "volatile" << SourceRange(D.getIdentifierLoc());
5237    if (FTI.TypeQuals & Qualifiers::Restrict)
5238      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5239        << "restrict" << SourceRange(D.getIdentifierLoc());
5240    D.setInvalidType();
5241  }
5242
5243  // C++0x [class.dtor]p2:
5244  //   A destructor shall not be declared with a ref-qualifier.
5245  if (FTI.hasRefQualifier()) {
5246    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5247      << FTI.RefQualifierIsLValueRef
5248      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5249    D.setInvalidType();
5250  }
5251
5252  // Make sure we don't have any parameters.
5253  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5254    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5255
5256    // Delete the parameters.
5257    FTI.freeArgs();
5258    D.setInvalidType();
5259  }
5260
5261  // Make sure the destructor isn't variadic.
5262  if (FTI.isVariadic) {
5263    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5264    D.setInvalidType();
5265  }
5266
5267  // Rebuild the function type "R" without any type qualifiers or
5268  // parameters (in case any of the errors above fired) and with
5269  // "void" as the return type, since destructors don't have return
5270  // types.
5271  if (!D.isInvalidType())
5272    return R;
5273
5274  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5275  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5276  EPI.Variadic = false;
5277  EPI.TypeQuals = 0;
5278  EPI.RefQualifier = RQ_None;
5279  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5280}
5281
5282/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5283/// well-formednes of the conversion function declarator @p D with
5284/// type @p R. If there are any errors in the declarator, this routine
5285/// will emit diagnostics and return true. Otherwise, it will return
5286/// false. Either way, the type @p R will be updated to reflect a
5287/// well-formed type for the conversion operator.
5288void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5289                                     StorageClass& SC) {
5290  // C++ [class.conv.fct]p1:
5291  //   Neither parameter types nor return type can be specified. The
5292  //   type of a conversion function (8.3.5) is "function taking no
5293  //   parameter returning conversion-type-id."
5294  if (SC == SC_Static) {
5295    if (!D.isInvalidType())
5296      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5297        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5298        << SourceRange(D.getIdentifierLoc());
5299    D.setInvalidType();
5300    SC = SC_None;
5301  }
5302
5303  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5304
5305  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5306    // Conversion functions don't have return types, but the parser will
5307    // happily parse something like:
5308    //
5309    //   class X {
5310    //     float operator bool();
5311    //   };
5312    //
5313    // The return type will be changed later anyway.
5314    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5315      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5316      << SourceRange(D.getIdentifierLoc());
5317    D.setInvalidType();
5318  }
5319
5320  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5321
5322  // Make sure we don't have any parameters.
5323  if (Proto->getNumArgs() > 0) {
5324    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5325
5326    // Delete the parameters.
5327    D.getFunctionTypeInfo().freeArgs();
5328    D.setInvalidType();
5329  } else if (Proto->isVariadic()) {
5330    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5331    D.setInvalidType();
5332  }
5333
5334  // Diagnose "&operator bool()" and other such nonsense.  This
5335  // is actually a gcc extension which we don't support.
5336  if (Proto->getResultType() != ConvType) {
5337    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5338      << Proto->getResultType();
5339    D.setInvalidType();
5340    ConvType = Proto->getResultType();
5341  }
5342
5343  // C++ [class.conv.fct]p4:
5344  //   The conversion-type-id shall not represent a function type nor
5345  //   an array type.
5346  if (ConvType->isArrayType()) {
5347    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5348    ConvType = Context.getPointerType(ConvType);
5349    D.setInvalidType();
5350  } else if (ConvType->isFunctionType()) {
5351    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5352    ConvType = Context.getPointerType(ConvType);
5353    D.setInvalidType();
5354  }
5355
5356  // Rebuild the function type "R" without any parameters (in case any
5357  // of the errors above fired) and with the conversion type as the
5358  // return type.
5359  if (D.isInvalidType())
5360    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5361
5362  // C++0x explicit conversion operators.
5363  if (D.getDeclSpec().isExplicitSpecified())
5364    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5365         getLangOptions().CPlusPlus0x ?
5366           diag::warn_cxx98_compat_explicit_conversion_functions :
5367           diag::ext_explicit_conversion_functions)
5368      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5369}
5370
5371/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5372/// the declaration of the given C++ conversion function. This routine
5373/// is responsible for recording the conversion function in the C++
5374/// class, if possible.
5375Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5376  assert(Conversion && "Expected to receive a conversion function declaration");
5377
5378  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5379
5380  // Make sure we aren't redeclaring the conversion function.
5381  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5382
5383  // C++ [class.conv.fct]p1:
5384  //   [...] A conversion function is never used to convert a
5385  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5386  //   same object type (or a reference to it), to a (possibly
5387  //   cv-qualified) base class of that type (or a reference to it),
5388  //   or to (possibly cv-qualified) void.
5389  // FIXME: Suppress this warning if the conversion function ends up being a
5390  // virtual function that overrides a virtual function in a base class.
5391  QualType ClassType
5392    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5393  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5394    ConvType = ConvTypeRef->getPointeeType();
5395  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5396      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5397    /* Suppress diagnostics for instantiations. */;
5398  else if (ConvType->isRecordType()) {
5399    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5400    if (ConvType == ClassType)
5401      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5402        << ClassType;
5403    else if (IsDerivedFrom(ClassType, ConvType))
5404      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5405        <<  ClassType << ConvType;
5406  } else if (ConvType->isVoidType()) {
5407    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5408      << ClassType << ConvType;
5409  }
5410
5411  if (FunctionTemplateDecl *ConversionTemplate
5412                                = Conversion->getDescribedFunctionTemplate())
5413    return ConversionTemplate;
5414
5415  return Conversion;
5416}
5417
5418//===----------------------------------------------------------------------===//
5419// Namespace Handling
5420//===----------------------------------------------------------------------===//
5421
5422
5423
5424/// ActOnStartNamespaceDef - This is called at the start of a namespace
5425/// definition.
5426Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5427                                   SourceLocation InlineLoc,
5428                                   SourceLocation NamespaceLoc,
5429                                   SourceLocation IdentLoc,
5430                                   IdentifierInfo *II,
5431                                   SourceLocation LBrace,
5432                                   AttributeList *AttrList) {
5433  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5434  // For anonymous namespace, take the location of the left brace.
5435  SourceLocation Loc = II ? IdentLoc : LBrace;
5436  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5437                                                 StartLoc, Loc, II);
5438  Namespc->setInline(InlineLoc.isValid());
5439
5440  Scope *DeclRegionScope = NamespcScope->getParent();
5441
5442  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5443
5444  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5445    PushNamespaceVisibilityAttr(Attr);
5446
5447  if (II) {
5448    // C++ [namespace.def]p2:
5449    //   The identifier in an original-namespace-definition shall not
5450    //   have been previously defined in the declarative region in
5451    //   which the original-namespace-definition appears. The
5452    //   identifier in an original-namespace-definition is the name of
5453    //   the namespace. Subsequently in that declarative region, it is
5454    //   treated as an original-namespace-name.
5455    //
5456    // Since namespace names are unique in their scope, and we don't
5457    // look through using directives, just look for any ordinary names.
5458
5459    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5460      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5461      Decl::IDNS_Namespace;
5462    NamedDecl *PrevDecl = 0;
5463    for (DeclContext::lookup_result R
5464            = CurContext->getRedeclContext()->lookup(II);
5465         R.first != R.second; ++R.first) {
5466      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5467        PrevDecl = *R.first;
5468        break;
5469      }
5470    }
5471
5472    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5473      // This is an extended namespace definition.
5474      if (Namespc->isInline() != OrigNS->isInline()) {
5475        // inline-ness must match
5476        if (OrigNS->isInline()) {
5477          // The user probably just forgot the 'inline', so suggest that it
5478          // be added back.
5479          Diag(Namespc->getLocation(),
5480               diag::warn_inline_namespace_reopened_noninline)
5481            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5482        } else {
5483          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5484            << Namespc->isInline();
5485        }
5486        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5487
5488        // Recover by ignoring the new namespace's inline status.
5489        Namespc->setInline(OrigNS->isInline());
5490      }
5491
5492      // Attach this namespace decl to the chain of extended namespace
5493      // definitions.
5494      OrigNS->setNextNamespace(Namespc);
5495      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5496
5497      // Remove the previous declaration from the scope.
5498      if (DeclRegionScope->isDeclScope(OrigNS)) {
5499        IdResolver.RemoveDecl(OrigNS);
5500        DeclRegionScope->RemoveDecl(OrigNS);
5501      }
5502    } else if (PrevDecl) {
5503      // This is an invalid name redefinition.
5504      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5505       << Namespc->getDeclName();
5506      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5507      Namespc->setInvalidDecl();
5508      // Continue on to push Namespc as current DeclContext and return it.
5509    } else if (II->isStr("std") &&
5510               CurContext->getRedeclContext()->isTranslationUnit()) {
5511      // This is the first "real" definition of the namespace "std", so update
5512      // our cache of the "std" namespace to point at this definition.
5513      if (NamespaceDecl *StdNS = getStdNamespace()) {
5514        // We had already defined a dummy namespace "std". Link this new
5515        // namespace definition to the dummy namespace "std".
5516        StdNS->setNextNamespace(Namespc);
5517        StdNS->setLocation(IdentLoc);
5518        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5519      }
5520
5521      // Make our StdNamespace cache point at the first real definition of the
5522      // "std" namespace.
5523      StdNamespace = Namespc;
5524
5525      // Add this instance of "std" to the set of known namespaces
5526      KnownNamespaces[Namespc] = false;
5527    } else if (!Namespc->isInline()) {
5528      // Since this is an "original" namespace, add it to the known set of
5529      // namespaces if it is not an inline namespace.
5530      KnownNamespaces[Namespc] = false;
5531    }
5532
5533    PushOnScopeChains(Namespc, DeclRegionScope);
5534  } else {
5535    // Anonymous namespaces.
5536    assert(Namespc->isAnonymousNamespace());
5537
5538    // Link the anonymous namespace into its parent.
5539    NamespaceDecl *PrevDecl;
5540    DeclContext *Parent = CurContext->getRedeclContext();
5541    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5542      PrevDecl = TU->getAnonymousNamespace();
5543      TU->setAnonymousNamespace(Namespc);
5544    } else {
5545      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5546      PrevDecl = ND->getAnonymousNamespace();
5547      ND->setAnonymousNamespace(Namespc);
5548    }
5549
5550    // Link the anonymous namespace with its previous declaration.
5551    if (PrevDecl) {
5552      assert(PrevDecl->isAnonymousNamespace());
5553      assert(!PrevDecl->getNextNamespace());
5554      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5555      PrevDecl->setNextNamespace(Namespc);
5556
5557      if (Namespc->isInline() != PrevDecl->isInline()) {
5558        // inline-ness must match
5559        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5560          << Namespc->isInline();
5561        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5562        Namespc->setInvalidDecl();
5563        // Recover by ignoring the new namespace's inline status.
5564        Namespc->setInline(PrevDecl->isInline());
5565      }
5566    }
5567
5568    CurContext->addDecl(Namespc);
5569
5570    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5571    //   behaves as if it were replaced by
5572    //     namespace unique { /* empty body */ }
5573    //     using namespace unique;
5574    //     namespace unique { namespace-body }
5575    //   where all occurrences of 'unique' in a translation unit are
5576    //   replaced by the same identifier and this identifier differs
5577    //   from all other identifiers in the entire program.
5578
5579    // We just create the namespace with an empty name and then add an
5580    // implicit using declaration, just like the standard suggests.
5581    //
5582    // CodeGen enforces the "universally unique" aspect by giving all
5583    // declarations semantically contained within an anonymous
5584    // namespace internal linkage.
5585
5586    if (!PrevDecl) {
5587      UsingDirectiveDecl* UD
5588        = UsingDirectiveDecl::Create(Context, CurContext,
5589                                     /* 'using' */ LBrace,
5590                                     /* 'namespace' */ SourceLocation(),
5591                                     /* qualifier */ NestedNameSpecifierLoc(),
5592                                     /* identifier */ SourceLocation(),
5593                                     Namespc,
5594                                     /* Ancestor */ CurContext);
5595      UD->setImplicit();
5596      CurContext->addDecl(UD);
5597    }
5598  }
5599
5600  // Although we could have an invalid decl (i.e. the namespace name is a
5601  // redefinition), push it as current DeclContext and try to continue parsing.
5602  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5603  // for the namespace has the declarations that showed up in that particular
5604  // namespace definition.
5605  PushDeclContext(NamespcScope, Namespc);
5606  return Namespc;
5607}
5608
5609/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5610/// is a namespace alias, returns the namespace it points to.
5611static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5612  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5613    return AD->getNamespace();
5614  return dyn_cast_or_null<NamespaceDecl>(D);
5615}
5616
5617/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5618/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5619void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5620  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5621  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5622  Namespc->setRBraceLoc(RBrace);
5623  PopDeclContext();
5624  if (Namespc->hasAttr<VisibilityAttr>())
5625    PopPragmaVisibility();
5626}
5627
5628CXXRecordDecl *Sema::getStdBadAlloc() const {
5629  return cast_or_null<CXXRecordDecl>(
5630                                  StdBadAlloc.get(Context.getExternalSource()));
5631}
5632
5633NamespaceDecl *Sema::getStdNamespace() const {
5634  return cast_or_null<NamespaceDecl>(
5635                                 StdNamespace.get(Context.getExternalSource()));
5636}
5637
5638/// \brief Retrieve the special "std" namespace, which may require us to
5639/// implicitly define the namespace.
5640NamespaceDecl *Sema::getOrCreateStdNamespace() {
5641  if (!StdNamespace) {
5642    // The "std" namespace has not yet been defined, so build one implicitly.
5643    StdNamespace = NamespaceDecl::Create(Context,
5644                                         Context.getTranslationUnitDecl(),
5645                                         SourceLocation(), SourceLocation(),
5646                                         &PP.getIdentifierTable().get("std"));
5647    getStdNamespace()->setImplicit(true);
5648  }
5649
5650  return getStdNamespace();
5651}
5652
5653/// \brief Determine whether a using statement is in a context where it will be
5654/// apply in all contexts.
5655static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5656  switch (CurContext->getDeclKind()) {
5657    case Decl::TranslationUnit:
5658      return true;
5659    case Decl::LinkageSpec:
5660      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5661    default:
5662      return false;
5663  }
5664}
5665
5666static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5667                                       CXXScopeSpec &SS,
5668                                       SourceLocation IdentLoc,
5669                                       IdentifierInfo *Ident) {
5670  R.clear();
5671  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5672                                               R.getLookupKind(), Sc, &SS, NULL,
5673                                               false, S.CTC_NoKeywords, NULL)) {
5674    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5675        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5676      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5677      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5678      if (DeclContext *DC = S.computeDeclContext(SS, false))
5679        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5680          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5681          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5682      else
5683        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5684          << Ident << CorrectedQuotedStr
5685          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5686
5687      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5688           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5689
5690      Ident = Corrected.getCorrectionAsIdentifierInfo();
5691      R.addDecl(Corrected.getCorrectionDecl());
5692      return true;
5693    }
5694    R.setLookupName(Ident);
5695  }
5696  return false;
5697}
5698
5699Decl *Sema::ActOnUsingDirective(Scope *S,
5700                                          SourceLocation UsingLoc,
5701                                          SourceLocation NamespcLoc,
5702                                          CXXScopeSpec &SS,
5703                                          SourceLocation IdentLoc,
5704                                          IdentifierInfo *NamespcName,
5705                                          AttributeList *AttrList) {
5706  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5707  assert(NamespcName && "Invalid NamespcName.");
5708  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5709
5710  // This can only happen along a recovery path.
5711  while (S->getFlags() & Scope::TemplateParamScope)
5712    S = S->getParent();
5713  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5714
5715  UsingDirectiveDecl *UDir = 0;
5716  NestedNameSpecifier *Qualifier = 0;
5717  if (SS.isSet())
5718    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5719
5720  // Lookup namespace name.
5721  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5722  LookupParsedName(R, S, &SS);
5723  if (R.isAmbiguous())
5724    return 0;
5725
5726  if (R.empty()) {
5727    R.clear();
5728    // Allow "using namespace std;" or "using namespace ::std;" even if
5729    // "std" hasn't been defined yet, for GCC compatibility.
5730    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5731        NamespcName->isStr("std")) {
5732      Diag(IdentLoc, diag::ext_using_undefined_std);
5733      R.addDecl(getOrCreateStdNamespace());
5734      R.resolveKind();
5735    }
5736    // Otherwise, attempt typo correction.
5737    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5738  }
5739
5740  if (!R.empty()) {
5741    NamedDecl *Named = R.getFoundDecl();
5742    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5743        && "expected namespace decl");
5744    // C++ [namespace.udir]p1:
5745    //   A using-directive specifies that the names in the nominated
5746    //   namespace can be used in the scope in which the
5747    //   using-directive appears after the using-directive. During
5748    //   unqualified name lookup (3.4.1), the names appear as if they
5749    //   were declared in the nearest enclosing namespace which
5750    //   contains both the using-directive and the nominated
5751    //   namespace. [Note: in this context, "contains" means "contains
5752    //   directly or indirectly". ]
5753
5754    // Find enclosing context containing both using-directive and
5755    // nominated namespace.
5756    NamespaceDecl *NS = getNamespaceDecl(Named);
5757    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5758    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5759      CommonAncestor = CommonAncestor->getParent();
5760
5761    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5762                                      SS.getWithLocInContext(Context),
5763                                      IdentLoc, Named, CommonAncestor);
5764
5765    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5766        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5767      Diag(IdentLoc, diag::warn_using_directive_in_header);
5768    }
5769
5770    PushUsingDirective(S, UDir);
5771  } else {
5772    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5773  }
5774
5775  // FIXME: We ignore attributes for now.
5776  return UDir;
5777}
5778
5779void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5780  // If scope has associated entity, then using directive is at namespace
5781  // or translation unit scope. We add UsingDirectiveDecls, into
5782  // it's lookup structure.
5783  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5784    Ctx->addDecl(UDir);
5785  else
5786    // Otherwise it is block-sope. using-directives will affect lookup
5787    // only to the end of scope.
5788    S->PushUsingDirective(UDir);
5789}
5790
5791
5792Decl *Sema::ActOnUsingDeclaration(Scope *S,
5793                                  AccessSpecifier AS,
5794                                  bool HasUsingKeyword,
5795                                  SourceLocation UsingLoc,
5796                                  CXXScopeSpec &SS,
5797                                  UnqualifiedId &Name,
5798                                  AttributeList *AttrList,
5799                                  bool IsTypeName,
5800                                  SourceLocation TypenameLoc) {
5801  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5802
5803  switch (Name.getKind()) {
5804  case UnqualifiedId::IK_ImplicitSelfParam:
5805  case UnqualifiedId::IK_Identifier:
5806  case UnqualifiedId::IK_OperatorFunctionId:
5807  case UnqualifiedId::IK_LiteralOperatorId:
5808  case UnqualifiedId::IK_ConversionFunctionId:
5809    break;
5810
5811  case UnqualifiedId::IK_ConstructorName:
5812  case UnqualifiedId::IK_ConstructorTemplateId:
5813    // C++0x inherited constructors.
5814    Diag(Name.getSourceRange().getBegin(),
5815         getLangOptions().CPlusPlus0x ?
5816           diag::warn_cxx98_compat_using_decl_constructor :
5817           diag::err_using_decl_constructor)
5818      << SS.getRange();
5819
5820    if (getLangOptions().CPlusPlus0x) break;
5821
5822    return 0;
5823
5824  case UnqualifiedId::IK_DestructorName:
5825    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5826      << SS.getRange();
5827    return 0;
5828
5829  case UnqualifiedId::IK_TemplateId:
5830    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5831      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5832    return 0;
5833  }
5834
5835  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5836  DeclarationName TargetName = TargetNameInfo.getName();
5837  if (!TargetName)
5838    return 0;
5839
5840  // Warn about using declarations.
5841  // TODO: store that the declaration was written without 'using' and
5842  // talk about access decls instead of using decls in the
5843  // diagnostics.
5844  if (!HasUsingKeyword) {
5845    UsingLoc = Name.getSourceRange().getBegin();
5846
5847    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5848      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5849  }
5850
5851  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5852      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5853    return 0;
5854
5855  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5856                                        TargetNameInfo, AttrList,
5857                                        /* IsInstantiation */ false,
5858                                        IsTypeName, TypenameLoc);
5859  if (UD)
5860    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5861
5862  return UD;
5863}
5864
5865/// \brief Determine whether a using declaration considers the given
5866/// declarations as "equivalent", e.g., if they are redeclarations of
5867/// the same entity or are both typedefs of the same type.
5868static bool
5869IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5870                         bool &SuppressRedeclaration) {
5871  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5872    SuppressRedeclaration = false;
5873    return true;
5874  }
5875
5876  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5877    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5878      SuppressRedeclaration = true;
5879      return Context.hasSameType(TD1->getUnderlyingType(),
5880                                 TD2->getUnderlyingType());
5881    }
5882
5883  return false;
5884}
5885
5886
5887/// Determines whether to create a using shadow decl for a particular
5888/// decl, given the set of decls existing prior to this using lookup.
5889bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5890                                const LookupResult &Previous) {
5891  // Diagnose finding a decl which is not from a base class of the
5892  // current class.  We do this now because there are cases where this
5893  // function will silently decide not to build a shadow decl, which
5894  // will pre-empt further diagnostics.
5895  //
5896  // We don't need to do this in C++0x because we do the check once on
5897  // the qualifier.
5898  //
5899  // FIXME: diagnose the following if we care enough:
5900  //   struct A { int foo; };
5901  //   struct B : A { using A::foo; };
5902  //   template <class T> struct C : A {};
5903  //   template <class T> struct D : C<T> { using B::foo; } // <---
5904  // This is invalid (during instantiation) in C++03 because B::foo
5905  // resolves to the using decl in B, which is not a base class of D<T>.
5906  // We can't diagnose it immediately because C<T> is an unknown
5907  // specialization.  The UsingShadowDecl in D<T> then points directly
5908  // to A::foo, which will look well-formed when we instantiate.
5909  // The right solution is to not collapse the shadow-decl chain.
5910  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5911    DeclContext *OrigDC = Orig->getDeclContext();
5912
5913    // Handle enums and anonymous structs.
5914    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5915    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5916    while (OrigRec->isAnonymousStructOrUnion())
5917      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5918
5919    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5920      if (OrigDC == CurContext) {
5921        Diag(Using->getLocation(),
5922             diag::err_using_decl_nested_name_specifier_is_current_class)
5923          << Using->getQualifierLoc().getSourceRange();
5924        Diag(Orig->getLocation(), diag::note_using_decl_target);
5925        return true;
5926      }
5927
5928      Diag(Using->getQualifierLoc().getBeginLoc(),
5929           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5930        << Using->getQualifier()
5931        << cast<CXXRecordDecl>(CurContext)
5932        << Using->getQualifierLoc().getSourceRange();
5933      Diag(Orig->getLocation(), diag::note_using_decl_target);
5934      return true;
5935    }
5936  }
5937
5938  if (Previous.empty()) return false;
5939
5940  NamedDecl *Target = Orig;
5941  if (isa<UsingShadowDecl>(Target))
5942    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5943
5944  // If the target happens to be one of the previous declarations, we
5945  // don't have a conflict.
5946  //
5947  // FIXME: but we might be increasing its access, in which case we
5948  // should redeclare it.
5949  NamedDecl *NonTag = 0, *Tag = 0;
5950  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5951         I != E; ++I) {
5952    NamedDecl *D = (*I)->getUnderlyingDecl();
5953    bool Result;
5954    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5955      return Result;
5956
5957    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5958  }
5959
5960  if (Target->isFunctionOrFunctionTemplate()) {
5961    FunctionDecl *FD;
5962    if (isa<FunctionTemplateDecl>(Target))
5963      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5964    else
5965      FD = cast<FunctionDecl>(Target);
5966
5967    NamedDecl *OldDecl = 0;
5968    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5969    case Ovl_Overload:
5970      return false;
5971
5972    case Ovl_NonFunction:
5973      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5974      break;
5975
5976    // We found a decl with the exact signature.
5977    case Ovl_Match:
5978      // If we're in a record, we want to hide the target, so we
5979      // return true (without a diagnostic) to tell the caller not to
5980      // build a shadow decl.
5981      if (CurContext->isRecord())
5982        return true;
5983
5984      // If we're not in a record, this is an error.
5985      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5986      break;
5987    }
5988
5989    Diag(Target->getLocation(), diag::note_using_decl_target);
5990    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5991    return true;
5992  }
5993
5994  // Target is not a function.
5995
5996  if (isa<TagDecl>(Target)) {
5997    // No conflict between a tag and a non-tag.
5998    if (!Tag) return false;
5999
6000    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6001    Diag(Target->getLocation(), diag::note_using_decl_target);
6002    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6003    return true;
6004  }
6005
6006  // No conflict between a tag and a non-tag.
6007  if (!NonTag) return false;
6008
6009  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6010  Diag(Target->getLocation(), diag::note_using_decl_target);
6011  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6012  return true;
6013}
6014
6015/// Builds a shadow declaration corresponding to a 'using' declaration.
6016UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6017                                            UsingDecl *UD,
6018                                            NamedDecl *Orig) {
6019
6020  // If we resolved to another shadow declaration, just coalesce them.
6021  NamedDecl *Target = Orig;
6022  if (isa<UsingShadowDecl>(Target)) {
6023    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6024    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6025  }
6026
6027  UsingShadowDecl *Shadow
6028    = UsingShadowDecl::Create(Context, CurContext,
6029                              UD->getLocation(), UD, Target);
6030  UD->addShadowDecl(Shadow);
6031
6032  Shadow->setAccess(UD->getAccess());
6033  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6034    Shadow->setInvalidDecl();
6035
6036  if (S)
6037    PushOnScopeChains(Shadow, S);
6038  else
6039    CurContext->addDecl(Shadow);
6040
6041
6042  return Shadow;
6043}
6044
6045/// Hides a using shadow declaration.  This is required by the current
6046/// using-decl implementation when a resolvable using declaration in a
6047/// class is followed by a declaration which would hide or override
6048/// one or more of the using decl's targets; for example:
6049///
6050///   struct Base { void foo(int); };
6051///   struct Derived : Base {
6052///     using Base::foo;
6053///     void foo(int);
6054///   };
6055///
6056/// The governing language is C++03 [namespace.udecl]p12:
6057///
6058///   When a using-declaration brings names from a base class into a
6059///   derived class scope, member functions in the derived class
6060///   override and/or hide member functions with the same name and
6061///   parameter types in a base class (rather than conflicting).
6062///
6063/// There are two ways to implement this:
6064///   (1) optimistically create shadow decls when they're not hidden
6065///       by existing declarations, or
6066///   (2) don't create any shadow decls (or at least don't make them
6067///       visible) until we've fully parsed/instantiated the class.
6068/// The problem with (1) is that we might have to retroactively remove
6069/// a shadow decl, which requires several O(n) operations because the
6070/// decl structures are (very reasonably) not designed for removal.
6071/// (2) avoids this but is very fiddly and phase-dependent.
6072void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6073  if (Shadow->getDeclName().getNameKind() ==
6074        DeclarationName::CXXConversionFunctionName)
6075    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6076
6077  // Remove it from the DeclContext...
6078  Shadow->getDeclContext()->removeDecl(Shadow);
6079
6080  // ...and the scope, if applicable...
6081  if (S) {
6082    S->RemoveDecl(Shadow);
6083    IdResolver.RemoveDecl(Shadow);
6084  }
6085
6086  // ...and the using decl.
6087  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6088
6089  // TODO: complain somehow if Shadow was used.  It shouldn't
6090  // be possible for this to happen, because...?
6091}
6092
6093/// Builds a using declaration.
6094///
6095/// \param IsInstantiation - Whether this call arises from an
6096///   instantiation of an unresolved using declaration.  We treat
6097///   the lookup differently for these declarations.
6098NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6099                                       SourceLocation UsingLoc,
6100                                       CXXScopeSpec &SS,
6101                                       const DeclarationNameInfo &NameInfo,
6102                                       AttributeList *AttrList,
6103                                       bool IsInstantiation,
6104                                       bool IsTypeName,
6105                                       SourceLocation TypenameLoc) {
6106  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6107  SourceLocation IdentLoc = NameInfo.getLoc();
6108  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6109
6110  // FIXME: We ignore attributes for now.
6111
6112  if (SS.isEmpty()) {
6113    Diag(IdentLoc, diag::err_using_requires_qualname);
6114    return 0;
6115  }
6116
6117  // Do the redeclaration lookup in the current scope.
6118  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6119                        ForRedeclaration);
6120  Previous.setHideTags(false);
6121  if (S) {
6122    LookupName(Previous, S);
6123
6124    // It is really dumb that we have to do this.
6125    LookupResult::Filter F = Previous.makeFilter();
6126    while (F.hasNext()) {
6127      NamedDecl *D = F.next();
6128      if (!isDeclInScope(D, CurContext, S))
6129        F.erase();
6130    }
6131    F.done();
6132  } else {
6133    assert(IsInstantiation && "no scope in non-instantiation");
6134    assert(CurContext->isRecord() && "scope not record in instantiation");
6135    LookupQualifiedName(Previous, CurContext);
6136  }
6137
6138  // Check for invalid redeclarations.
6139  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6140    return 0;
6141
6142  // Check for bad qualifiers.
6143  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6144    return 0;
6145
6146  DeclContext *LookupContext = computeDeclContext(SS);
6147  NamedDecl *D;
6148  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6149  if (!LookupContext) {
6150    if (IsTypeName) {
6151      // FIXME: not all declaration name kinds are legal here
6152      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6153                                              UsingLoc, TypenameLoc,
6154                                              QualifierLoc,
6155                                              IdentLoc, NameInfo.getName());
6156    } else {
6157      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6158                                           QualifierLoc, NameInfo);
6159    }
6160  } else {
6161    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6162                          NameInfo, IsTypeName);
6163  }
6164  D->setAccess(AS);
6165  CurContext->addDecl(D);
6166
6167  if (!LookupContext) return D;
6168  UsingDecl *UD = cast<UsingDecl>(D);
6169
6170  if (RequireCompleteDeclContext(SS, LookupContext)) {
6171    UD->setInvalidDecl();
6172    return UD;
6173  }
6174
6175  // Constructor inheriting using decls get special treatment.
6176  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6177    if (CheckInheritedConstructorUsingDecl(UD))
6178      UD->setInvalidDecl();
6179    return UD;
6180  }
6181
6182  // Otherwise, look up the target name.
6183
6184  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6185
6186  // Unlike most lookups, we don't always want to hide tag
6187  // declarations: tag names are visible through the using declaration
6188  // even if hidden by ordinary names, *except* in a dependent context
6189  // where it's important for the sanity of two-phase lookup.
6190  if (!IsInstantiation)
6191    R.setHideTags(false);
6192
6193  LookupQualifiedName(R, LookupContext);
6194
6195  if (R.empty()) {
6196    Diag(IdentLoc, diag::err_no_member)
6197      << NameInfo.getName() << LookupContext << SS.getRange();
6198    UD->setInvalidDecl();
6199    return UD;
6200  }
6201
6202  if (R.isAmbiguous()) {
6203    UD->setInvalidDecl();
6204    return UD;
6205  }
6206
6207  if (IsTypeName) {
6208    // If we asked for a typename and got a non-type decl, error out.
6209    if (!R.getAsSingle<TypeDecl>()) {
6210      Diag(IdentLoc, diag::err_using_typename_non_type);
6211      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6212        Diag((*I)->getUnderlyingDecl()->getLocation(),
6213             diag::note_using_decl_target);
6214      UD->setInvalidDecl();
6215      return UD;
6216    }
6217  } else {
6218    // If we asked for a non-typename and we got a type, error out,
6219    // but only if this is an instantiation of an unresolved using
6220    // decl.  Otherwise just silently find the type name.
6221    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6222      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6223      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6224      UD->setInvalidDecl();
6225      return UD;
6226    }
6227  }
6228
6229  // C++0x N2914 [namespace.udecl]p6:
6230  // A using-declaration shall not name a namespace.
6231  if (R.getAsSingle<NamespaceDecl>()) {
6232    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6233      << SS.getRange();
6234    UD->setInvalidDecl();
6235    return UD;
6236  }
6237
6238  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6239    if (!CheckUsingShadowDecl(UD, *I, Previous))
6240      BuildUsingShadowDecl(S, UD, *I);
6241  }
6242
6243  return UD;
6244}
6245
6246/// Additional checks for a using declaration referring to a constructor name.
6247bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6248  if (UD->isTypeName()) {
6249    // FIXME: Cannot specify typename when specifying constructor
6250    return true;
6251  }
6252
6253  const Type *SourceType = UD->getQualifier()->getAsType();
6254  assert(SourceType &&
6255         "Using decl naming constructor doesn't have type in scope spec.");
6256  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6257
6258  // Check whether the named type is a direct base class.
6259  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6260  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6261  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6262       BaseIt != BaseE; ++BaseIt) {
6263    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6264    if (CanonicalSourceType == BaseType)
6265      break;
6266  }
6267
6268  if (BaseIt == BaseE) {
6269    // Did not find SourceType in the bases.
6270    Diag(UD->getUsingLocation(),
6271         diag::err_using_decl_constructor_not_in_direct_base)
6272      << UD->getNameInfo().getSourceRange()
6273      << QualType(SourceType, 0) << TargetClass;
6274    return true;
6275  }
6276
6277  BaseIt->setInheritConstructors();
6278
6279  return false;
6280}
6281
6282/// Checks that the given using declaration is not an invalid
6283/// redeclaration.  Note that this is checking only for the using decl
6284/// itself, not for any ill-formedness among the UsingShadowDecls.
6285bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6286                                       bool isTypeName,
6287                                       const CXXScopeSpec &SS,
6288                                       SourceLocation NameLoc,
6289                                       const LookupResult &Prev) {
6290  // C++03 [namespace.udecl]p8:
6291  // C++0x [namespace.udecl]p10:
6292  //   A using-declaration is a declaration and can therefore be used
6293  //   repeatedly where (and only where) multiple declarations are
6294  //   allowed.
6295  //
6296  // That's in non-member contexts.
6297  if (!CurContext->getRedeclContext()->isRecord())
6298    return false;
6299
6300  NestedNameSpecifier *Qual
6301    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6302
6303  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6304    NamedDecl *D = *I;
6305
6306    bool DTypename;
6307    NestedNameSpecifier *DQual;
6308    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6309      DTypename = UD->isTypeName();
6310      DQual = UD->getQualifier();
6311    } else if (UnresolvedUsingValueDecl *UD
6312                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6313      DTypename = false;
6314      DQual = UD->getQualifier();
6315    } else if (UnresolvedUsingTypenameDecl *UD
6316                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6317      DTypename = true;
6318      DQual = UD->getQualifier();
6319    } else continue;
6320
6321    // using decls differ if one says 'typename' and the other doesn't.
6322    // FIXME: non-dependent using decls?
6323    if (isTypeName != DTypename) continue;
6324
6325    // using decls differ if they name different scopes (but note that
6326    // template instantiation can cause this check to trigger when it
6327    // didn't before instantiation).
6328    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6329        Context.getCanonicalNestedNameSpecifier(DQual))
6330      continue;
6331
6332    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6333    Diag(D->getLocation(), diag::note_using_decl) << 1;
6334    return true;
6335  }
6336
6337  return false;
6338}
6339
6340
6341/// Checks that the given nested-name qualifier used in a using decl
6342/// in the current context is appropriately related to the current
6343/// scope.  If an error is found, diagnoses it and returns true.
6344bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6345                                   const CXXScopeSpec &SS,
6346                                   SourceLocation NameLoc) {
6347  DeclContext *NamedContext = computeDeclContext(SS);
6348
6349  if (!CurContext->isRecord()) {
6350    // C++03 [namespace.udecl]p3:
6351    // C++0x [namespace.udecl]p8:
6352    //   A using-declaration for a class member shall be a member-declaration.
6353
6354    // If we weren't able to compute a valid scope, it must be a
6355    // dependent class scope.
6356    if (!NamedContext || NamedContext->isRecord()) {
6357      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6358        << SS.getRange();
6359      return true;
6360    }
6361
6362    // Otherwise, everything is known to be fine.
6363    return false;
6364  }
6365
6366  // The current scope is a record.
6367
6368  // If the named context is dependent, we can't decide much.
6369  if (!NamedContext) {
6370    // FIXME: in C++0x, we can diagnose if we can prove that the
6371    // nested-name-specifier does not refer to a base class, which is
6372    // still possible in some cases.
6373
6374    // Otherwise we have to conservatively report that things might be
6375    // okay.
6376    return false;
6377  }
6378
6379  if (!NamedContext->isRecord()) {
6380    // Ideally this would point at the last name in the specifier,
6381    // but we don't have that level of source info.
6382    Diag(SS.getRange().getBegin(),
6383         diag::err_using_decl_nested_name_specifier_is_not_class)
6384      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6385    return true;
6386  }
6387
6388  if (!NamedContext->isDependentContext() &&
6389      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6390    return true;
6391
6392  if (getLangOptions().CPlusPlus0x) {
6393    // C++0x [namespace.udecl]p3:
6394    //   In a using-declaration used as a member-declaration, the
6395    //   nested-name-specifier shall name a base class of the class
6396    //   being defined.
6397
6398    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6399                                 cast<CXXRecordDecl>(NamedContext))) {
6400      if (CurContext == NamedContext) {
6401        Diag(NameLoc,
6402             diag::err_using_decl_nested_name_specifier_is_current_class)
6403          << SS.getRange();
6404        return true;
6405      }
6406
6407      Diag(SS.getRange().getBegin(),
6408           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6409        << (NestedNameSpecifier*) SS.getScopeRep()
6410        << cast<CXXRecordDecl>(CurContext)
6411        << SS.getRange();
6412      return true;
6413    }
6414
6415    return false;
6416  }
6417
6418  // C++03 [namespace.udecl]p4:
6419  //   A using-declaration used as a member-declaration shall refer
6420  //   to a member of a base class of the class being defined [etc.].
6421
6422  // Salient point: SS doesn't have to name a base class as long as
6423  // lookup only finds members from base classes.  Therefore we can
6424  // diagnose here only if we can prove that that can't happen,
6425  // i.e. if the class hierarchies provably don't intersect.
6426
6427  // TODO: it would be nice if "definitely valid" results were cached
6428  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6429  // need to be repeated.
6430
6431  struct UserData {
6432    llvm::DenseSet<const CXXRecordDecl*> Bases;
6433
6434    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6435      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6436      Data->Bases.insert(Base);
6437      return true;
6438    }
6439
6440    bool hasDependentBases(const CXXRecordDecl *Class) {
6441      return !Class->forallBases(collect, this);
6442    }
6443
6444    /// Returns true if the base is dependent or is one of the
6445    /// accumulated base classes.
6446    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6447      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6448      return !Data->Bases.count(Base);
6449    }
6450
6451    bool mightShareBases(const CXXRecordDecl *Class) {
6452      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6453    }
6454  };
6455
6456  UserData Data;
6457
6458  // Returns false if we find a dependent base.
6459  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6460    return false;
6461
6462  // Returns false if the class has a dependent base or if it or one
6463  // of its bases is present in the base set of the current context.
6464  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6465    return false;
6466
6467  Diag(SS.getRange().getBegin(),
6468       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6469    << (NestedNameSpecifier*) SS.getScopeRep()
6470    << cast<CXXRecordDecl>(CurContext)
6471    << SS.getRange();
6472
6473  return true;
6474}
6475
6476Decl *Sema::ActOnAliasDeclaration(Scope *S,
6477                                  AccessSpecifier AS,
6478                                  MultiTemplateParamsArg TemplateParamLists,
6479                                  SourceLocation UsingLoc,
6480                                  UnqualifiedId &Name,
6481                                  TypeResult Type) {
6482  // Skip up to the relevant declaration scope.
6483  while (S->getFlags() & Scope::TemplateParamScope)
6484    S = S->getParent();
6485  assert((S->getFlags() & Scope::DeclScope) &&
6486         "got alias-declaration outside of declaration scope");
6487
6488  if (Type.isInvalid())
6489    return 0;
6490
6491  bool Invalid = false;
6492  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6493  TypeSourceInfo *TInfo = 0;
6494  GetTypeFromParser(Type.get(), &TInfo);
6495
6496  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6497    return 0;
6498
6499  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6500                                      UPPC_DeclarationType)) {
6501    Invalid = true;
6502    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6503                                             TInfo->getTypeLoc().getBeginLoc());
6504  }
6505
6506  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6507  LookupName(Previous, S);
6508
6509  // Warn about shadowing the name of a template parameter.
6510  if (Previous.isSingleResult() &&
6511      Previous.getFoundDecl()->isTemplateParameter()) {
6512    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6513    Previous.clear();
6514  }
6515
6516  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6517         "name in alias declaration must be an identifier");
6518  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6519                                               Name.StartLocation,
6520                                               Name.Identifier, TInfo);
6521
6522  NewTD->setAccess(AS);
6523
6524  if (Invalid)
6525    NewTD->setInvalidDecl();
6526
6527  CheckTypedefForVariablyModifiedType(S, NewTD);
6528  Invalid |= NewTD->isInvalidDecl();
6529
6530  bool Redeclaration = false;
6531
6532  NamedDecl *NewND;
6533  if (TemplateParamLists.size()) {
6534    TypeAliasTemplateDecl *OldDecl = 0;
6535    TemplateParameterList *OldTemplateParams = 0;
6536
6537    if (TemplateParamLists.size() != 1) {
6538      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6539        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6540         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6541    }
6542    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6543
6544    // Only consider previous declarations in the same scope.
6545    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6546                         /*ExplicitInstantiationOrSpecialization*/false);
6547    if (!Previous.empty()) {
6548      Redeclaration = true;
6549
6550      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6551      if (!OldDecl && !Invalid) {
6552        Diag(UsingLoc, diag::err_redefinition_different_kind)
6553          << Name.Identifier;
6554
6555        NamedDecl *OldD = Previous.getRepresentativeDecl();
6556        if (OldD->getLocation().isValid())
6557          Diag(OldD->getLocation(), diag::note_previous_definition);
6558
6559        Invalid = true;
6560      }
6561
6562      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6563        if (TemplateParameterListsAreEqual(TemplateParams,
6564                                           OldDecl->getTemplateParameters(),
6565                                           /*Complain=*/true,
6566                                           TPL_TemplateMatch))
6567          OldTemplateParams = OldDecl->getTemplateParameters();
6568        else
6569          Invalid = true;
6570
6571        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6572        if (!Invalid &&
6573            !Context.hasSameType(OldTD->getUnderlyingType(),
6574                                 NewTD->getUnderlyingType())) {
6575          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6576          // but we can't reasonably accept it.
6577          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6578            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6579          if (OldTD->getLocation().isValid())
6580            Diag(OldTD->getLocation(), diag::note_previous_definition);
6581          Invalid = true;
6582        }
6583      }
6584    }
6585
6586    // Merge any previous default template arguments into our parameters,
6587    // and check the parameter list.
6588    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6589                                   TPC_TypeAliasTemplate))
6590      return 0;
6591
6592    TypeAliasTemplateDecl *NewDecl =
6593      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6594                                    Name.Identifier, TemplateParams,
6595                                    NewTD);
6596
6597    NewDecl->setAccess(AS);
6598
6599    if (Invalid)
6600      NewDecl->setInvalidDecl();
6601    else if (OldDecl)
6602      NewDecl->setPreviousDeclaration(OldDecl);
6603
6604    NewND = NewDecl;
6605  } else {
6606    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6607    NewND = NewTD;
6608  }
6609
6610  if (!Redeclaration)
6611    PushOnScopeChains(NewND, S);
6612
6613  return NewND;
6614}
6615
6616Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6617                                             SourceLocation NamespaceLoc,
6618                                             SourceLocation AliasLoc,
6619                                             IdentifierInfo *Alias,
6620                                             CXXScopeSpec &SS,
6621                                             SourceLocation IdentLoc,
6622                                             IdentifierInfo *Ident) {
6623
6624  // Lookup the namespace name.
6625  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6626  LookupParsedName(R, S, &SS);
6627
6628  // Check if we have a previous declaration with the same name.
6629  NamedDecl *PrevDecl
6630    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6631                       ForRedeclaration);
6632  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6633    PrevDecl = 0;
6634
6635  if (PrevDecl) {
6636    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6637      // We already have an alias with the same name that points to the same
6638      // namespace, so don't create a new one.
6639      // FIXME: At some point, we'll want to create the (redundant)
6640      // declaration to maintain better source information.
6641      if (!R.isAmbiguous() && !R.empty() &&
6642          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6643        return 0;
6644    }
6645
6646    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6647      diag::err_redefinition_different_kind;
6648    Diag(AliasLoc, DiagID) << Alias;
6649    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6650    return 0;
6651  }
6652
6653  if (R.isAmbiguous())
6654    return 0;
6655
6656  if (R.empty()) {
6657    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6658      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6659      return 0;
6660    }
6661  }
6662
6663  NamespaceAliasDecl *AliasDecl =
6664    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6665                               Alias, SS.getWithLocInContext(Context),
6666                               IdentLoc, R.getFoundDecl());
6667
6668  PushOnScopeChains(AliasDecl, S);
6669  return AliasDecl;
6670}
6671
6672namespace {
6673  /// \brief Scoped object used to handle the state changes required in Sema
6674  /// to implicitly define the body of a C++ member function;
6675  class ImplicitlyDefinedFunctionScope {
6676    Sema &S;
6677    Sema::ContextRAII SavedContext;
6678
6679  public:
6680    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6681      : S(S), SavedContext(S, Method)
6682    {
6683      S.PushFunctionScope();
6684      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6685    }
6686
6687    ~ImplicitlyDefinedFunctionScope() {
6688      S.PopExpressionEvaluationContext();
6689      S.PopFunctionOrBlockScope();
6690    }
6691  };
6692}
6693
6694Sema::ImplicitExceptionSpecification
6695Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6696  // C++ [except.spec]p14:
6697  //   An implicitly declared special member function (Clause 12) shall have an
6698  //   exception-specification. [...]
6699  ImplicitExceptionSpecification ExceptSpec(Context);
6700  if (ClassDecl->isInvalidDecl())
6701    return ExceptSpec;
6702
6703  // Direct base-class constructors.
6704  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6705                                       BEnd = ClassDecl->bases_end();
6706       B != BEnd; ++B) {
6707    if (B->isVirtual()) // Handled below.
6708      continue;
6709
6710    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6711      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6712      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6713      // If this is a deleted function, add it anyway. This might be conformant
6714      // with the standard. This might not. I'm not sure. It might not matter.
6715      if (Constructor)
6716        ExceptSpec.CalledDecl(Constructor);
6717    }
6718  }
6719
6720  // Virtual base-class constructors.
6721  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6722                                       BEnd = ClassDecl->vbases_end();
6723       B != BEnd; ++B) {
6724    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6725      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6726      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6727      // If this is a deleted function, add it anyway. This might be conformant
6728      // with the standard. This might not. I'm not sure. It might not matter.
6729      if (Constructor)
6730        ExceptSpec.CalledDecl(Constructor);
6731    }
6732  }
6733
6734  // Field constructors.
6735  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6736                               FEnd = ClassDecl->field_end();
6737       F != FEnd; ++F) {
6738    if (F->hasInClassInitializer()) {
6739      if (Expr *E = F->getInClassInitializer())
6740        ExceptSpec.CalledExpr(E);
6741      else if (!F->isInvalidDecl())
6742        ExceptSpec.SetDelayed();
6743    } else if (const RecordType *RecordTy
6744              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6745      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6746      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6747      // If this is a deleted function, add it anyway. This might be conformant
6748      // with the standard. This might not. I'm not sure. It might not matter.
6749      // In particular, the problem is that this function never gets called. It
6750      // might just be ill-formed because this function attempts to refer to
6751      // a deleted function here.
6752      if (Constructor)
6753        ExceptSpec.CalledDecl(Constructor);
6754    }
6755  }
6756
6757  return ExceptSpec;
6758}
6759
6760CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6761                                                     CXXRecordDecl *ClassDecl) {
6762  // C++ [class.ctor]p5:
6763  //   A default constructor for a class X is a constructor of class X
6764  //   that can be called without an argument. If there is no
6765  //   user-declared constructor for class X, a default constructor is
6766  //   implicitly declared. An implicitly-declared default constructor
6767  //   is an inline public member of its class.
6768  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6769         "Should not build implicit default constructor!");
6770
6771  ImplicitExceptionSpecification Spec =
6772    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6773  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6774
6775  // Create the actual constructor declaration.
6776  CanQualType ClassType
6777    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6778  SourceLocation ClassLoc = ClassDecl->getLocation();
6779  DeclarationName Name
6780    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6781  DeclarationNameInfo NameInfo(Name, ClassLoc);
6782  CXXConstructorDecl *DefaultCon
6783    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6784                                 Context.getFunctionType(Context.VoidTy,
6785                                                         0, 0, EPI),
6786                                 /*TInfo=*/0,
6787                                 /*isExplicit=*/false,
6788                                 /*isInline=*/true,
6789                                 /*isImplicitlyDeclared=*/true,
6790                                 // FIXME: apply the rules for definitions here
6791                                 /*isConstexpr=*/false);
6792  DefaultCon->setAccess(AS_public);
6793  DefaultCon->setDefaulted();
6794  DefaultCon->setImplicit();
6795  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6796
6797  // Note that we have declared this constructor.
6798  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6799
6800  if (Scope *S = getScopeForContext(ClassDecl))
6801    PushOnScopeChains(DefaultCon, S, false);
6802  ClassDecl->addDecl(DefaultCon);
6803
6804  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6805    DefaultCon->setDeletedAsWritten();
6806
6807  return DefaultCon;
6808}
6809
6810void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6811                                            CXXConstructorDecl *Constructor) {
6812  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6813          !Constructor->doesThisDeclarationHaveABody() &&
6814          !Constructor->isDeleted()) &&
6815    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6816
6817  CXXRecordDecl *ClassDecl = Constructor->getParent();
6818  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6819
6820  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6821  DiagnosticErrorTrap Trap(Diags);
6822  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6823      Trap.hasErrorOccurred()) {
6824    Diag(CurrentLocation, diag::note_member_synthesized_at)
6825      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6826    Constructor->setInvalidDecl();
6827    return;
6828  }
6829
6830  SourceLocation Loc = Constructor->getLocation();
6831  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6832
6833  Constructor->setUsed();
6834  MarkVTableUsed(CurrentLocation, ClassDecl);
6835
6836  if (ASTMutationListener *L = getASTMutationListener()) {
6837    L->CompletedImplicitDefinition(Constructor);
6838  }
6839}
6840
6841/// Get any existing defaulted default constructor for the given class. Do not
6842/// implicitly define one if it does not exist.
6843static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6844                                                             CXXRecordDecl *D) {
6845  ASTContext &Context = Self.Context;
6846  QualType ClassType = Context.getTypeDeclType(D);
6847  DeclarationName ConstructorName
6848    = Context.DeclarationNames.getCXXConstructorName(
6849                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6850
6851  DeclContext::lookup_const_iterator Con, ConEnd;
6852  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6853       Con != ConEnd; ++Con) {
6854    // A function template cannot be defaulted.
6855    if (isa<FunctionTemplateDecl>(*Con))
6856      continue;
6857
6858    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6859    if (Constructor->isDefaultConstructor())
6860      return Constructor->isDefaulted() ? Constructor : 0;
6861  }
6862  return 0;
6863}
6864
6865void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6866  if (!D) return;
6867  AdjustDeclIfTemplate(D);
6868
6869  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6870  CXXConstructorDecl *CtorDecl
6871    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6872
6873  if (!CtorDecl) return;
6874
6875  // Compute the exception specification for the default constructor.
6876  const FunctionProtoType *CtorTy =
6877    CtorDecl->getType()->castAs<FunctionProtoType>();
6878  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6879    ImplicitExceptionSpecification Spec =
6880      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6881    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6882    assert(EPI.ExceptionSpecType != EST_Delayed);
6883
6884    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6885  }
6886
6887  // If the default constructor is explicitly defaulted, checking the exception
6888  // specification is deferred until now.
6889  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6890      !ClassDecl->isDependentType())
6891    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6892}
6893
6894void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6895  // We start with an initial pass over the base classes to collect those that
6896  // inherit constructors from. If there are none, we can forgo all further
6897  // processing.
6898  typedef SmallVector<const RecordType *, 4> BasesVector;
6899  BasesVector BasesToInheritFrom;
6900  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6901                                          BaseE = ClassDecl->bases_end();
6902         BaseIt != BaseE; ++BaseIt) {
6903    if (BaseIt->getInheritConstructors()) {
6904      QualType Base = BaseIt->getType();
6905      if (Base->isDependentType()) {
6906        // If we inherit constructors from anything that is dependent, just
6907        // abort processing altogether. We'll get another chance for the
6908        // instantiations.
6909        return;
6910      }
6911      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6912    }
6913  }
6914  if (BasesToInheritFrom.empty())
6915    return;
6916
6917  // Now collect the constructors that we already have in the current class.
6918  // Those take precedence over inherited constructors.
6919  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6920  //   unless there is a user-declared constructor with the same signature in
6921  //   the class where the using-declaration appears.
6922  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6923  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6924                                    CtorE = ClassDecl->ctor_end();
6925       CtorIt != CtorE; ++CtorIt) {
6926    ExistingConstructors.insert(
6927        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6928  }
6929
6930  Scope *S = getScopeForContext(ClassDecl);
6931  DeclarationName CreatedCtorName =
6932      Context.DeclarationNames.getCXXConstructorName(
6933          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6934
6935  // Now comes the true work.
6936  // First, we keep a map from constructor types to the base that introduced
6937  // them. Needed for finding conflicting constructors. We also keep the
6938  // actually inserted declarations in there, for pretty diagnostics.
6939  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6940  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6941  ConstructorToSourceMap InheritedConstructors;
6942  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6943                             BaseE = BasesToInheritFrom.end();
6944       BaseIt != BaseE; ++BaseIt) {
6945    const RecordType *Base = *BaseIt;
6946    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6947    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6948    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6949                                      CtorE = BaseDecl->ctor_end();
6950         CtorIt != CtorE; ++CtorIt) {
6951      // Find the using declaration for inheriting this base's constructors.
6952      DeclarationName Name =
6953          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6954      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6955          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6956      SourceLocation UsingLoc = UD ? UD->getLocation() :
6957                                     ClassDecl->getLocation();
6958
6959      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6960      //   from the class X named in the using-declaration consists of actual
6961      //   constructors and notional constructors that result from the
6962      //   transformation of defaulted parameters as follows:
6963      //   - all non-template default constructors of X, and
6964      //   - for each non-template constructor of X that has at least one
6965      //     parameter with a default argument, the set of constructors that
6966      //     results from omitting any ellipsis parameter specification and
6967      //     successively omitting parameters with a default argument from the
6968      //     end of the parameter-type-list.
6969      CXXConstructorDecl *BaseCtor = *CtorIt;
6970      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6971      const FunctionProtoType *BaseCtorType =
6972          BaseCtor->getType()->getAs<FunctionProtoType>();
6973
6974      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6975                    maxParams = BaseCtor->getNumParams();
6976           params <= maxParams; ++params) {
6977        // Skip default constructors. They're never inherited.
6978        if (params == 0)
6979          continue;
6980        // Skip copy and move constructors for the same reason.
6981        if (CanBeCopyOrMove && params == 1)
6982          continue;
6983
6984        // Build up a function type for this particular constructor.
6985        // FIXME: The working paper does not consider that the exception spec
6986        // for the inheriting constructor might be larger than that of the
6987        // source. This code doesn't yet, either. When it does, this code will
6988        // need to be delayed until after exception specifications and in-class
6989        // member initializers are attached.
6990        const Type *NewCtorType;
6991        if (params == maxParams)
6992          NewCtorType = BaseCtorType;
6993        else {
6994          SmallVector<QualType, 16> Args;
6995          for (unsigned i = 0; i < params; ++i) {
6996            Args.push_back(BaseCtorType->getArgType(i));
6997          }
6998          FunctionProtoType::ExtProtoInfo ExtInfo =
6999              BaseCtorType->getExtProtoInfo();
7000          ExtInfo.Variadic = false;
7001          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7002                                                Args.data(), params, ExtInfo)
7003                       .getTypePtr();
7004        }
7005        const Type *CanonicalNewCtorType =
7006            Context.getCanonicalType(NewCtorType);
7007
7008        // Now that we have the type, first check if the class already has a
7009        // constructor with this signature.
7010        if (ExistingConstructors.count(CanonicalNewCtorType))
7011          continue;
7012
7013        // Then we check if we have already declared an inherited constructor
7014        // with this signature.
7015        std::pair<ConstructorToSourceMap::iterator, bool> result =
7016            InheritedConstructors.insert(std::make_pair(
7017                CanonicalNewCtorType,
7018                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7019        if (!result.second) {
7020          // Already in the map. If it came from a different class, that's an
7021          // error. Not if it's from the same.
7022          CanQualType PreviousBase = result.first->second.first;
7023          if (CanonicalBase != PreviousBase) {
7024            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7025            const CXXConstructorDecl *PrevBaseCtor =
7026                PrevCtor->getInheritedConstructor();
7027            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7028
7029            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7030            Diag(BaseCtor->getLocation(),
7031                 diag::note_using_decl_constructor_conflict_current_ctor);
7032            Diag(PrevBaseCtor->getLocation(),
7033                 diag::note_using_decl_constructor_conflict_previous_ctor);
7034            Diag(PrevCtor->getLocation(),
7035                 diag::note_using_decl_constructor_conflict_previous_using);
7036          }
7037          continue;
7038        }
7039
7040        // OK, we're there, now add the constructor.
7041        // C++0x [class.inhctor]p8: [...] that would be performed by a
7042        //   user-written inline constructor [...]
7043        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7044        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7045            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7046            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7047            /*ImplicitlyDeclared=*/true,
7048            // FIXME: Due to a defect in the standard, we treat inherited
7049            // constructors as constexpr even if that makes them ill-formed.
7050            /*Constexpr=*/BaseCtor->isConstexpr());
7051        NewCtor->setAccess(BaseCtor->getAccess());
7052
7053        // Build up the parameter decls and add them.
7054        SmallVector<ParmVarDecl *, 16> ParamDecls;
7055        for (unsigned i = 0; i < params; ++i) {
7056          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7057                                                   UsingLoc, UsingLoc,
7058                                                   /*IdentifierInfo=*/0,
7059                                                   BaseCtorType->getArgType(i),
7060                                                   /*TInfo=*/0, SC_None,
7061                                                   SC_None, /*DefaultArg=*/0));
7062        }
7063        NewCtor->setParams(ParamDecls);
7064        NewCtor->setInheritedConstructor(BaseCtor);
7065
7066        PushOnScopeChains(NewCtor, S, false);
7067        ClassDecl->addDecl(NewCtor);
7068        result.first->second.second = NewCtor;
7069      }
7070    }
7071  }
7072}
7073
7074Sema::ImplicitExceptionSpecification
7075Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7076  // C++ [except.spec]p14:
7077  //   An implicitly declared special member function (Clause 12) shall have
7078  //   an exception-specification.
7079  ImplicitExceptionSpecification ExceptSpec(Context);
7080  if (ClassDecl->isInvalidDecl())
7081    return ExceptSpec;
7082
7083  // Direct base-class destructors.
7084  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7085                                       BEnd = ClassDecl->bases_end();
7086       B != BEnd; ++B) {
7087    if (B->isVirtual()) // Handled below.
7088      continue;
7089
7090    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7091      ExceptSpec.CalledDecl(
7092                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7093  }
7094
7095  // Virtual base-class destructors.
7096  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7097                                       BEnd = ClassDecl->vbases_end();
7098       B != BEnd; ++B) {
7099    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7100      ExceptSpec.CalledDecl(
7101                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7102  }
7103
7104  // Field destructors.
7105  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7106                               FEnd = ClassDecl->field_end();
7107       F != FEnd; ++F) {
7108    if (const RecordType *RecordTy
7109        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7110      ExceptSpec.CalledDecl(
7111                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7112  }
7113
7114  return ExceptSpec;
7115}
7116
7117CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7118  // C++ [class.dtor]p2:
7119  //   If a class has no user-declared destructor, a destructor is
7120  //   declared implicitly. An implicitly-declared destructor is an
7121  //   inline public member of its class.
7122
7123  ImplicitExceptionSpecification Spec =
7124      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7125  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7126
7127  // Create the actual destructor declaration.
7128  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7129
7130  CanQualType ClassType
7131    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7132  SourceLocation ClassLoc = ClassDecl->getLocation();
7133  DeclarationName Name
7134    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7135  DeclarationNameInfo NameInfo(Name, ClassLoc);
7136  CXXDestructorDecl *Destructor
7137      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7138                                  /*isInline=*/true,
7139                                  /*isImplicitlyDeclared=*/true);
7140  Destructor->setAccess(AS_public);
7141  Destructor->setDefaulted();
7142  Destructor->setImplicit();
7143  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7144
7145  // Note that we have declared this destructor.
7146  ++ASTContext::NumImplicitDestructorsDeclared;
7147
7148  // Introduce this destructor into its scope.
7149  if (Scope *S = getScopeForContext(ClassDecl))
7150    PushOnScopeChains(Destructor, S, false);
7151  ClassDecl->addDecl(Destructor);
7152
7153  // This could be uniqued if it ever proves significant.
7154  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7155
7156  if (ShouldDeleteDestructor(Destructor))
7157    Destructor->setDeletedAsWritten();
7158
7159  AddOverriddenMethods(ClassDecl, Destructor);
7160
7161  return Destructor;
7162}
7163
7164void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7165                                    CXXDestructorDecl *Destructor) {
7166  assert((Destructor->isDefaulted() &&
7167          !Destructor->doesThisDeclarationHaveABody()) &&
7168         "DefineImplicitDestructor - call it for implicit default dtor");
7169  CXXRecordDecl *ClassDecl = Destructor->getParent();
7170  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7171
7172  if (Destructor->isInvalidDecl())
7173    return;
7174
7175  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7176
7177  DiagnosticErrorTrap Trap(Diags);
7178  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7179                                         Destructor->getParent());
7180
7181  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7182    Diag(CurrentLocation, diag::note_member_synthesized_at)
7183      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7184
7185    Destructor->setInvalidDecl();
7186    return;
7187  }
7188
7189  SourceLocation Loc = Destructor->getLocation();
7190  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7191  Destructor->setImplicitlyDefined(true);
7192  Destructor->setUsed();
7193  MarkVTableUsed(CurrentLocation, ClassDecl);
7194
7195  if (ASTMutationListener *L = getASTMutationListener()) {
7196    L->CompletedImplicitDefinition(Destructor);
7197  }
7198}
7199
7200void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7201                                         CXXDestructorDecl *destructor) {
7202  // C++11 [class.dtor]p3:
7203  //   A declaration of a destructor that does not have an exception-
7204  //   specification is implicitly considered to have the same exception-
7205  //   specification as an implicit declaration.
7206  const FunctionProtoType *dtorType = destructor->getType()->
7207                                        getAs<FunctionProtoType>();
7208  if (dtorType->hasExceptionSpec())
7209    return;
7210
7211  ImplicitExceptionSpecification exceptSpec =
7212      ComputeDefaultedDtorExceptionSpec(classDecl);
7213
7214  // Replace the destructor's type, building off the existing one. Fortunately,
7215  // the only thing of interest in the destructor type is its extended info.
7216  // The return and arguments are fixed.
7217  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7218  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7219  epi.NumExceptions = exceptSpec.size();
7220  epi.Exceptions = exceptSpec.data();
7221  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7222
7223  destructor->setType(ty);
7224
7225  // FIXME: If the destructor has a body that could throw, and the newly created
7226  // spec doesn't allow exceptions, we should emit a warning, because this
7227  // change in behavior can break conforming C++03 programs at runtime.
7228  // However, we don't have a body yet, so it needs to be done somewhere else.
7229}
7230
7231/// \brief Builds a statement that copies/moves the given entity from \p From to
7232/// \c To.
7233///
7234/// This routine is used to copy/move the members of a class with an
7235/// implicitly-declared copy/move assignment operator. When the entities being
7236/// copied are arrays, this routine builds for loops to copy them.
7237///
7238/// \param S The Sema object used for type-checking.
7239///
7240/// \param Loc The location where the implicit copy/move is being generated.
7241///
7242/// \param T The type of the expressions being copied/moved. Both expressions
7243/// must have this type.
7244///
7245/// \param To The expression we are copying/moving to.
7246///
7247/// \param From The expression we are copying/moving from.
7248///
7249/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7250/// Otherwise, it's a non-static member subobject.
7251///
7252/// \param Copying Whether we're copying or moving.
7253///
7254/// \param Depth Internal parameter recording the depth of the recursion.
7255///
7256/// \returns A statement or a loop that copies the expressions.
7257static StmtResult
7258BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7259                      Expr *To, Expr *From,
7260                      bool CopyingBaseSubobject, bool Copying,
7261                      unsigned Depth = 0) {
7262  // C++0x [class.copy]p28:
7263  //   Each subobject is assigned in the manner appropriate to its type:
7264  //
7265  //     - if the subobject is of class type, as if by a call to operator= with
7266  //       the subobject as the object expression and the corresponding
7267  //       subobject of x as a single function argument (as if by explicit
7268  //       qualification; that is, ignoring any possible virtual overriding
7269  //       functions in more derived classes);
7270  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7271    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7272
7273    // Look for operator=.
7274    DeclarationName Name
7275      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7276    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7277    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7278
7279    // Filter out any result that isn't a copy/move-assignment operator.
7280    LookupResult::Filter F = OpLookup.makeFilter();
7281    while (F.hasNext()) {
7282      NamedDecl *D = F.next();
7283      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7284        if (Copying ? Method->isCopyAssignmentOperator() :
7285                      Method->isMoveAssignmentOperator())
7286          continue;
7287
7288      F.erase();
7289    }
7290    F.done();
7291
7292    // Suppress the protected check (C++ [class.protected]) for each of the
7293    // assignment operators we found. This strange dance is required when
7294    // we're assigning via a base classes's copy-assignment operator. To
7295    // ensure that we're getting the right base class subobject (without
7296    // ambiguities), we need to cast "this" to that subobject type; to
7297    // ensure that we don't go through the virtual call mechanism, we need
7298    // to qualify the operator= name with the base class (see below). However,
7299    // this means that if the base class has a protected copy assignment
7300    // operator, the protected member access check will fail. So, we
7301    // rewrite "protected" access to "public" access in this case, since we
7302    // know by construction that we're calling from a derived class.
7303    if (CopyingBaseSubobject) {
7304      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7305           L != LEnd; ++L) {
7306        if (L.getAccess() == AS_protected)
7307          L.setAccess(AS_public);
7308      }
7309    }
7310
7311    // Create the nested-name-specifier that will be used to qualify the
7312    // reference to operator=; this is required to suppress the virtual
7313    // call mechanism.
7314    CXXScopeSpec SS;
7315    SS.MakeTrivial(S.Context,
7316                   NestedNameSpecifier::Create(S.Context, 0, false,
7317                                               T.getTypePtr()),
7318                   Loc);
7319
7320    // Create the reference to operator=.
7321    ExprResult OpEqualRef
7322      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7323                                   /*FirstQualifierInScope=*/0, OpLookup,
7324                                   /*TemplateArgs=*/0,
7325                                   /*SuppressQualifierCheck=*/true);
7326    if (OpEqualRef.isInvalid())
7327      return StmtError();
7328
7329    // Build the call to the assignment operator.
7330
7331    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7332                                                  OpEqualRef.takeAs<Expr>(),
7333                                                  Loc, &From, 1, Loc);
7334    if (Call.isInvalid())
7335      return StmtError();
7336
7337    return S.Owned(Call.takeAs<Stmt>());
7338  }
7339
7340  //     - if the subobject is of scalar type, the built-in assignment
7341  //       operator is used.
7342  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7343  if (!ArrayTy) {
7344    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7345    if (Assignment.isInvalid())
7346      return StmtError();
7347
7348    return S.Owned(Assignment.takeAs<Stmt>());
7349  }
7350
7351  //     - if the subobject is an array, each element is assigned, in the
7352  //       manner appropriate to the element type;
7353
7354  // Construct a loop over the array bounds, e.g.,
7355  //
7356  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7357  //
7358  // that will copy each of the array elements.
7359  QualType SizeType = S.Context.getSizeType();
7360
7361  // Create the iteration variable.
7362  IdentifierInfo *IterationVarName = 0;
7363  {
7364    llvm::SmallString<8> Str;
7365    llvm::raw_svector_ostream OS(Str);
7366    OS << "__i" << Depth;
7367    IterationVarName = &S.Context.Idents.get(OS.str());
7368  }
7369  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7370                                          IterationVarName, SizeType,
7371                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7372                                          SC_None, SC_None);
7373
7374  // Initialize the iteration variable to zero.
7375  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7376  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7377
7378  // Create a reference to the iteration variable; we'll use this several
7379  // times throughout.
7380  Expr *IterationVarRef
7381    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7382  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7383
7384  // Create the DeclStmt that holds the iteration variable.
7385  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7386
7387  // Create the comparison against the array bound.
7388  llvm::APInt Upper
7389    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7390  Expr *Comparison
7391    = new (S.Context) BinaryOperator(IterationVarRef,
7392                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7393                                     BO_NE, S.Context.BoolTy,
7394                                     VK_RValue, OK_Ordinary, Loc);
7395
7396  // Create the pre-increment of the iteration variable.
7397  Expr *Increment
7398    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7399                                    VK_LValue, OK_Ordinary, Loc);
7400
7401  // Subscript the "from" and "to" expressions with the iteration variable.
7402  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7403                                                         IterationVarRef, Loc));
7404  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7405                                                       IterationVarRef, Loc));
7406  if (!Copying) // Cast to rvalue
7407    From = CastForMoving(S, From);
7408
7409  // Build the copy/move for an individual element of the array.
7410  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7411                                          To, From, CopyingBaseSubobject,
7412                                          Copying, Depth + 1);
7413  if (Copy.isInvalid())
7414    return StmtError();
7415
7416  // Construct the loop that copies all elements of this array.
7417  return S.ActOnForStmt(Loc, Loc, InitStmt,
7418                        S.MakeFullExpr(Comparison),
7419                        0, S.MakeFullExpr(Increment),
7420                        Loc, Copy.take());
7421}
7422
7423std::pair<Sema::ImplicitExceptionSpecification, bool>
7424Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7425                                                   CXXRecordDecl *ClassDecl) {
7426  if (ClassDecl->isInvalidDecl())
7427    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7428
7429  // C++ [class.copy]p10:
7430  //   If the class definition does not explicitly declare a copy
7431  //   assignment operator, one is declared implicitly.
7432  //   The implicitly-defined copy assignment operator for a class X
7433  //   will have the form
7434  //
7435  //       X& X::operator=(const X&)
7436  //
7437  //   if
7438  bool HasConstCopyAssignment = true;
7439
7440  //       -- each direct base class B of X has a copy assignment operator
7441  //          whose parameter is of type const B&, const volatile B& or B,
7442  //          and
7443  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7444                                       BaseEnd = ClassDecl->bases_end();
7445       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7446    // We'll handle this below
7447    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7448      continue;
7449
7450    assert(!Base->getType()->isDependentType() &&
7451           "Cannot generate implicit members for class with dependent bases.");
7452    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7453    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7454                            &HasConstCopyAssignment);
7455  }
7456
7457  // In C++11, the above citation has "or virtual" added
7458  if (LangOpts.CPlusPlus0x) {
7459    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7460                                         BaseEnd = ClassDecl->vbases_end();
7461         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7462      assert(!Base->getType()->isDependentType() &&
7463             "Cannot generate implicit members for class with dependent bases.");
7464      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7465      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7466                              &HasConstCopyAssignment);
7467    }
7468  }
7469
7470  //       -- for all the nonstatic data members of X that are of a class
7471  //          type M (or array thereof), each such class type has a copy
7472  //          assignment operator whose parameter is of type const M&,
7473  //          const volatile M& or M.
7474  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7475                                  FieldEnd = ClassDecl->field_end();
7476       HasConstCopyAssignment && Field != FieldEnd;
7477       ++Field) {
7478    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7479    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7480      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7481                              &HasConstCopyAssignment);
7482    }
7483  }
7484
7485  //   Otherwise, the implicitly declared copy assignment operator will
7486  //   have the form
7487  //
7488  //       X& X::operator=(X&)
7489
7490  // C++ [except.spec]p14:
7491  //   An implicitly declared special member function (Clause 12) shall have an
7492  //   exception-specification. [...]
7493
7494  // It is unspecified whether or not an implicit copy assignment operator
7495  // attempts to deduplicate calls to assignment operators of virtual bases are
7496  // made. As such, this exception specification is effectively unspecified.
7497  // Based on a similar decision made for constness in C++0x, we're erring on
7498  // the side of assuming such calls to be made regardless of whether they
7499  // actually happen.
7500  ImplicitExceptionSpecification ExceptSpec(Context);
7501  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7502  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7503                                       BaseEnd = ClassDecl->bases_end();
7504       Base != BaseEnd; ++Base) {
7505    if (Base->isVirtual())
7506      continue;
7507
7508    CXXRecordDecl *BaseClassDecl
7509      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7510    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7511                                                            ArgQuals, false, 0))
7512      ExceptSpec.CalledDecl(CopyAssign);
7513  }
7514
7515  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7516                                       BaseEnd = ClassDecl->vbases_end();
7517       Base != BaseEnd; ++Base) {
7518    CXXRecordDecl *BaseClassDecl
7519      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7520    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7521                                                            ArgQuals, false, 0))
7522      ExceptSpec.CalledDecl(CopyAssign);
7523  }
7524
7525  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7526                                  FieldEnd = ClassDecl->field_end();
7527       Field != FieldEnd;
7528       ++Field) {
7529    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7530    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7531      if (CXXMethodDecl *CopyAssign =
7532          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7533        ExceptSpec.CalledDecl(CopyAssign);
7534    }
7535  }
7536
7537  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7538}
7539
7540CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7541  // Note: The following rules are largely analoguous to the copy
7542  // constructor rules. Note that virtual bases are not taken into account
7543  // for determining the argument type of the operator. Note also that
7544  // operators taking an object instead of a reference are allowed.
7545
7546  ImplicitExceptionSpecification Spec(Context);
7547  bool Const;
7548  llvm::tie(Spec, Const) =
7549    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7550
7551  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7552  QualType RetType = Context.getLValueReferenceType(ArgType);
7553  if (Const)
7554    ArgType = ArgType.withConst();
7555  ArgType = Context.getLValueReferenceType(ArgType);
7556
7557  //   An implicitly-declared copy assignment operator is an inline public
7558  //   member of its class.
7559  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7560  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7561  SourceLocation ClassLoc = ClassDecl->getLocation();
7562  DeclarationNameInfo NameInfo(Name, ClassLoc);
7563  CXXMethodDecl *CopyAssignment
7564    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7565                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7566                            /*TInfo=*/0, /*isStatic=*/false,
7567                            /*StorageClassAsWritten=*/SC_None,
7568                            /*isInline=*/true, /*isConstexpr=*/false,
7569                            SourceLocation());
7570  CopyAssignment->setAccess(AS_public);
7571  CopyAssignment->setDefaulted();
7572  CopyAssignment->setImplicit();
7573  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7574
7575  // Add the parameter to the operator.
7576  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7577                                               ClassLoc, ClassLoc, /*Id=*/0,
7578                                               ArgType, /*TInfo=*/0,
7579                                               SC_None,
7580                                               SC_None, 0);
7581  CopyAssignment->setParams(FromParam);
7582
7583  // Note that we have added this copy-assignment operator.
7584  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7585
7586  if (Scope *S = getScopeForContext(ClassDecl))
7587    PushOnScopeChains(CopyAssignment, S, false);
7588  ClassDecl->addDecl(CopyAssignment);
7589
7590  // C++0x [class.copy]p18:
7591  //   ... If the class definition declares a move constructor or move
7592  //   assignment operator, the implicitly declared copy assignment operator is
7593  //   defined as deleted; ...
7594  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7595      ClassDecl->hasUserDeclaredMoveAssignment() ||
7596      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7597    CopyAssignment->setDeletedAsWritten();
7598
7599  AddOverriddenMethods(ClassDecl, CopyAssignment);
7600  return CopyAssignment;
7601}
7602
7603void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7604                                        CXXMethodDecl *CopyAssignOperator) {
7605  assert((CopyAssignOperator->isDefaulted() &&
7606          CopyAssignOperator->isOverloadedOperator() &&
7607          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7608          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7609         "DefineImplicitCopyAssignment called for wrong function");
7610
7611  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7612
7613  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7614    CopyAssignOperator->setInvalidDecl();
7615    return;
7616  }
7617
7618  CopyAssignOperator->setUsed();
7619
7620  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7621  DiagnosticErrorTrap Trap(Diags);
7622
7623  // C++0x [class.copy]p30:
7624  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7625  //   for a non-union class X performs memberwise copy assignment of its
7626  //   subobjects. The direct base classes of X are assigned first, in the
7627  //   order of their declaration in the base-specifier-list, and then the
7628  //   immediate non-static data members of X are assigned, in the order in
7629  //   which they were declared in the class definition.
7630
7631  // The statements that form the synthesized function body.
7632  ASTOwningVector<Stmt*> Statements(*this);
7633
7634  // The parameter for the "other" object, which we are copying from.
7635  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7636  Qualifiers OtherQuals = Other->getType().getQualifiers();
7637  QualType OtherRefType = Other->getType();
7638  if (const LValueReferenceType *OtherRef
7639                                = OtherRefType->getAs<LValueReferenceType>()) {
7640    OtherRefType = OtherRef->getPointeeType();
7641    OtherQuals = OtherRefType.getQualifiers();
7642  }
7643
7644  // Our location for everything implicitly-generated.
7645  SourceLocation Loc = CopyAssignOperator->getLocation();
7646
7647  // Construct a reference to the "other" object. We'll be using this
7648  // throughout the generated ASTs.
7649  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7650  assert(OtherRef && "Reference to parameter cannot fail!");
7651
7652  // Construct the "this" pointer. We'll be using this throughout the generated
7653  // ASTs.
7654  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7655  assert(This && "Reference to this cannot fail!");
7656
7657  // Assign base classes.
7658  bool Invalid = false;
7659  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7660       E = ClassDecl->bases_end(); Base != E; ++Base) {
7661    // Form the assignment:
7662    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7663    QualType BaseType = Base->getType().getUnqualifiedType();
7664    if (!BaseType->isRecordType()) {
7665      Invalid = true;
7666      continue;
7667    }
7668
7669    CXXCastPath BasePath;
7670    BasePath.push_back(Base);
7671
7672    // Construct the "from" expression, which is an implicit cast to the
7673    // appropriately-qualified base type.
7674    Expr *From = OtherRef;
7675    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7676                             CK_UncheckedDerivedToBase,
7677                             VK_LValue, &BasePath).take();
7678
7679    // Dereference "this".
7680    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7681
7682    // Implicitly cast "this" to the appropriately-qualified base type.
7683    To = ImpCastExprToType(To.take(),
7684                           Context.getCVRQualifiedType(BaseType,
7685                                     CopyAssignOperator->getTypeQualifiers()),
7686                           CK_UncheckedDerivedToBase,
7687                           VK_LValue, &BasePath);
7688
7689    // Build the copy.
7690    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7691                                            To.get(), From,
7692                                            /*CopyingBaseSubobject=*/true,
7693                                            /*Copying=*/true);
7694    if (Copy.isInvalid()) {
7695      Diag(CurrentLocation, diag::note_member_synthesized_at)
7696        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7697      CopyAssignOperator->setInvalidDecl();
7698      return;
7699    }
7700
7701    // Success! Record the copy.
7702    Statements.push_back(Copy.takeAs<Expr>());
7703  }
7704
7705  // \brief Reference to the __builtin_memcpy function.
7706  Expr *BuiltinMemCpyRef = 0;
7707  // \brief Reference to the __builtin_objc_memmove_collectable function.
7708  Expr *CollectableMemCpyRef = 0;
7709
7710  // Assign non-static members.
7711  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7712                                  FieldEnd = ClassDecl->field_end();
7713       Field != FieldEnd; ++Field) {
7714    if (Field->isUnnamedBitfield())
7715      continue;
7716
7717    // Check for members of reference type; we can't copy those.
7718    if (Field->getType()->isReferenceType()) {
7719      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7720        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7721      Diag(Field->getLocation(), diag::note_declared_at);
7722      Diag(CurrentLocation, diag::note_member_synthesized_at)
7723        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7724      Invalid = true;
7725      continue;
7726    }
7727
7728    // Check for members of const-qualified, non-class type.
7729    QualType BaseType = Context.getBaseElementType(Field->getType());
7730    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7731      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7732        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7733      Diag(Field->getLocation(), diag::note_declared_at);
7734      Diag(CurrentLocation, diag::note_member_synthesized_at)
7735        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7736      Invalid = true;
7737      continue;
7738    }
7739
7740    // Suppress assigning zero-width bitfields.
7741    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7742      continue;
7743
7744    QualType FieldType = Field->getType().getNonReferenceType();
7745    if (FieldType->isIncompleteArrayType()) {
7746      assert(ClassDecl->hasFlexibleArrayMember() &&
7747             "Incomplete array type is not valid");
7748      continue;
7749    }
7750
7751    // Build references to the field in the object we're copying from and to.
7752    CXXScopeSpec SS; // Intentionally empty
7753    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7754                              LookupMemberName);
7755    MemberLookup.addDecl(*Field);
7756    MemberLookup.resolveKind();
7757    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7758                                               Loc, /*IsArrow=*/false,
7759                                               SS, 0, MemberLookup, 0);
7760    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7761                                             Loc, /*IsArrow=*/true,
7762                                             SS, 0, MemberLookup, 0);
7763    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7764    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7765
7766    // If the field should be copied with __builtin_memcpy rather than via
7767    // explicit assignments, do so. This optimization only applies for arrays
7768    // of scalars and arrays of class type with trivial copy-assignment
7769    // operators.
7770    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7771        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7772      // Compute the size of the memory buffer to be copied.
7773      QualType SizeType = Context.getSizeType();
7774      llvm::APInt Size(Context.getTypeSize(SizeType),
7775                       Context.getTypeSizeInChars(BaseType).getQuantity());
7776      for (const ConstantArrayType *Array
7777              = Context.getAsConstantArrayType(FieldType);
7778           Array;
7779           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7780        llvm::APInt ArraySize
7781          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7782        Size *= ArraySize;
7783      }
7784
7785      // Take the address of the field references for "from" and "to".
7786      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7787      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7788
7789      bool NeedsCollectableMemCpy =
7790          (BaseType->isRecordType() &&
7791           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7792
7793      if (NeedsCollectableMemCpy) {
7794        if (!CollectableMemCpyRef) {
7795          // Create a reference to the __builtin_objc_memmove_collectable function.
7796          LookupResult R(*this,
7797                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7798                         Loc, LookupOrdinaryName);
7799          LookupName(R, TUScope, true);
7800
7801          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7802          if (!CollectableMemCpy) {
7803            // Something went horribly wrong earlier, and we will have
7804            // complained about it.
7805            Invalid = true;
7806            continue;
7807          }
7808
7809          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7810                                                  CollectableMemCpy->getType(),
7811                                                  VK_LValue, Loc, 0).take();
7812          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7813        }
7814      }
7815      // Create a reference to the __builtin_memcpy builtin function.
7816      else if (!BuiltinMemCpyRef) {
7817        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7818                       LookupOrdinaryName);
7819        LookupName(R, TUScope, true);
7820
7821        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7822        if (!BuiltinMemCpy) {
7823          // Something went horribly wrong earlier, and we will have complained
7824          // about it.
7825          Invalid = true;
7826          continue;
7827        }
7828
7829        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7830                                            BuiltinMemCpy->getType(),
7831                                            VK_LValue, Loc, 0).take();
7832        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7833      }
7834
7835      ASTOwningVector<Expr*> CallArgs(*this);
7836      CallArgs.push_back(To.takeAs<Expr>());
7837      CallArgs.push_back(From.takeAs<Expr>());
7838      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7839      ExprResult Call = ExprError();
7840      if (NeedsCollectableMemCpy)
7841        Call = ActOnCallExpr(/*Scope=*/0,
7842                             CollectableMemCpyRef,
7843                             Loc, move_arg(CallArgs),
7844                             Loc);
7845      else
7846        Call = ActOnCallExpr(/*Scope=*/0,
7847                             BuiltinMemCpyRef,
7848                             Loc, move_arg(CallArgs),
7849                             Loc);
7850
7851      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7852      Statements.push_back(Call.takeAs<Expr>());
7853      continue;
7854    }
7855
7856    // Build the copy of this field.
7857    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7858                                            To.get(), From.get(),
7859                                            /*CopyingBaseSubobject=*/false,
7860                                            /*Copying=*/true);
7861    if (Copy.isInvalid()) {
7862      Diag(CurrentLocation, diag::note_member_synthesized_at)
7863        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7864      CopyAssignOperator->setInvalidDecl();
7865      return;
7866    }
7867
7868    // Success! Record the copy.
7869    Statements.push_back(Copy.takeAs<Stmt>());
7870  }
7871
7872  if (!Invalid) {
7873    // Add a "return *this;"
7874    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7875
7876    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7877    if (Return.isInvalid())
7878      Invalid = true;
7879    else {
7880      Statements.push_back(Return.takeAs<Stmt>());
7881
7882      if (Trap.hasErrorOccurred()) {
7883        Diag(CurrentLocation, diag::note_member_synthesized_at)
7884          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7885        Invalid = true;
7886      }
7887    }
7888  }
7889
7890  if (Invalid) {
7891    CopyAssignOperator->setInvalidDecl();
7892    return;
7893  }
7894
7895  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7896                                            /*isStmtExpr=*/false);
7897  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7898  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7899
7900  if (ASTMutationListener *L = getASTMutationListener()) {
7901    L->CompletedImplicitDefinition(CopyAssignOperator);
7902  }
7903}
7904
7905Sema::ImplicitExceptionSpecification
7906Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7907  ImplicitExceptionSpecification ExceptSpec(Context);
7908
7909  if (ClassDecl->isInvalidDecl())
7910    return ExceptSpec;
7911
7912  // C++0x [except.spec]p14:
7913  //   An implicitly declared special member function (Clause 12) shall have an
7914  //   exception-specification. [...]
7915
7916  // It is unspecified whether or not an implicit move assignment operator
7917  // attempts to deduplicate calls to assignment operators of virtual bases are
7918  // made. As such, this exception specification is effectively unspecified.
7919  // Based on a similar decision made for constness in C++0x, we're erring on
7920  // the side of assuming such calls to be made regardless of whether they
7921  // actually happen.
7922  // Note that a move constructor is not implicitly declared when there are
7923  // virtual bases, but it can still be user-declared and explicitly defaulted.
7924  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7925                                       BaseEnd = ClassDecl->bases_end();
7926       Base != BaseEnd; ++Base) {
7927    if (Base->isVirtual())
7928      continue;
7929
7930    CXXRecordDecl *BaseClassDecl
7931      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7932    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7933                                                           false, 0))
7934      ExceptSpec.CalledDecl(MoveAssign);
7935  }
7936
7937  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7938                                       BaseEnd = ClassDecl->vbases_end();
7939       Base != BaseEnd; ++Base) {
7940    CXXRecordDecl *BaseClassDecl
7941      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7942    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7943                                                           false, 0))
7944      ExceptSpec.CalledDecl(MoveAssign);
7945  }
7946
7947  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7948                                  FieldEnd = ClassDecl->field_end();
7949       Field != FieldEnd;
7950       ++Field) {
7951    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7952    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7953      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7954                                                             false, 0))
7955        ExceptSpec.CalledDecl(MoveAssign);
7956    }
7957  }
7958
7959  return ExceptSpec;
7960}
7961
7962CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7963  // Note: The following rules are largely analoguous to the move
7964  // constructor rules.
7965
7966  ImplicitExceptionSpecification Spec(
7967      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7968
7969  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7970  QualType RetType = Context.getLValueReferenceType(ArgType);
7971  ArgType = Context.getRValueReferenceType(ArgType);
7972
7973  //   An implicitly-declared move assignment operator is an inline public
7974  //   member of its class.
7975  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7976  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7977  SourceLocation ClassLoc = ClassDecl->getLocation();
7978  DeclarationNameInfo NameInfo(Name, ClassLoc);
7979  CXXMethodDecl *MoveAssignment
7980    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7981                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7982                            /*TInfo=*/0, /*isStatic=*/false,
7983                            /*StorageClassAsWritten=*/SC_None,
7984                            /*isInline=*/true,
7985                            /*isConstexpr=*/false,
7986                            SourceLocation());
7987  MoveAssignment->setAccess(AS_public);
7988  MoveAssignment->setDefaulted();
7989  MoveAssignment->setImplicit();
7990  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
7991
7992  // Add the parameter to the operator.
7993  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
7994                                               ClassLoc, ClassLoc, /*Id=*/0,
7995                                               ArgType, /*TInfo=*/0,
7996                                               SC_None,
7997                                               SC_None, 0);
7998  MoveAssignment->setParams(FromParam);
7999
8000  // Note that we have added this copy-assignment operator.
8001  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8002
8003  // C++0x [class.copy]p9:
8004  //   If the definition of a class X does not explicitly declare a move
8005  //   assignment operator, one will be implicitly declared as defaulted if and
8006  //   only if:
8007  //   [...]
8008  //   - the move assignment operator would not be implicitly defined as
8009  //     deleted.
8010  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8011    // Cache this result so that we don't try to generate this over and over
8012    // on every lookup, leaking memory and wasting time.
8013    ClassDecl->setFailedImplicitMoveAssignment();
8014    return 0;
8015  }
8016
8017  if (Scope *S = getScopeForContext(ClassDecl))
8018    PushOnScopeChains(MoveAssignment, S, false);
8019  ClassDecl->addDecl(MoveAssignment);
8020
8021  AddOverriddenMethods(ClassDecl, MoveAssignment);
8022  return MoveAssignment;
8023}
8024
8025void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8026                                        CXXMethodDecl *MoveAssignOperator) {
8027  assert((MoveAssignOperator->isDefaulted() &&
8028          MoveAssignOperator->isOverloadedOperator() &&
8029          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8030          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8031         "DefineImplicitMoveAssignment called for wrong function");
8032
8033  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8034
8035  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8036    MoveAssignOperator->setInvalidDecl();
8037    return;
8038  }
8039
8040  MoveAssignOperator->setUsed();
8041
8042  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8043  DiagnosticErrorTrap Trap(Diags);
8044
8045  // C++0x [class.copy]p28:
8046  //   The implicitly-defined or move assignment operator for a non-union class
8047  //   X performs memberwise move assignment of its subobjects. The direct base
8048  //   classes of X are assigned first, in the order of their declaration in the
8049  //   base-specifier-list, and then the immediate non-static data members of X
8050  //   are assigned, in the order in which they were declared in the class
8051  //   definition.
8052
8053  // The statements that form the synthesized function body.
8054  ASTOwningVector<Stmt*> Statements(*this);
8055
8056  // The parameter for the "other" object, which we are move from.
8057  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8058  QualType OtherRefType = Other->getType()->
8059      getAs<RValueReferenceType>()->getPointeeType();
8060  assert(OtherRefType.getQualifiers() == 0 &&
8061         "Bad argument type of defaulted move assignment");
8062
8063  // Our location for everything implicitly-generated.
8064  SourceLocation Loc = MoveAssignOperator->getLocation();
8065
8066  // Construct a reference to the "other" object. We'll be using this
8067  // throughout the generated ASTs.
8068  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8069  assert(OtherRef && "Reference to parameter cannot fail!");
8070  // Cast to rvalue.
8071  OtherRef = CastForMoving(*this, OtherRef);
8072
8073  // Construct the "this" pointer. We'll be using this throughout the generated
8074  // ASTs.
8075  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8076  assert(This && "Reference to this cannot fail!");
8077
8078  // Assign base classes.
8079  bool Invalid = false;
8080  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8081       E = ClassDecl->bases_end(); Base != E; ++Base) {
8082    // Form the assignment:
8083    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8084    QualType BaseType = Base->getType().getUnqualifiedType();
8085    if (!BaseType->isRecordType()) {
8086      Invalid = true;
8087      continue;
8088    }
8089
8090    CXXCastPath BasePath;
8091    BasePath.push_back(Base);
8092
8093    // Construct the "from" expression, which is an implicit cast to the
8094    // appropriately-qualified base type.
8095    Expr *From = OtherRef;
8096    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8097                             VK_XValue, &BasePath).take();
8098
8099    // Dereference "this".
8100    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8101
8102    // Implicitly cast "this" to the appropriately-qualified base type.
8103    To = ImpCastExprToType(To.take(),
8104                           Context.getCVRQualifiedType(BaseType,
8105                                     MoveAssignOperator->getTypeQualifiers()),
8106                           CK_UncheckedDerivedToBase,
8107                           VK_LValue, &BasePath);
8108
8109    // Build the move.
8110    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8111                                            To.get(), From,
8112                                            /*CopyingBaseSubobject=*/true,
8113                                            /*Copying=*/false);
8114    if (Move.isInvalid()) {
8115      Diag(CurrentLocation, diag::note_member_synthesized_at)
8116        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8117      MoveAssignOperator->setInvalidDecl();
8118      return;
8119    }
8120
8121    // Success! Record the move.
8122    Statements.push_back(Move.takeAs<Expr>());
8123  }
8124
8125  // \brief Reference to the __builtin_memcpy function.
8126  Expr *BuiltinMemCpyRef = 0;
8127  // \brief Reference to the __builtin_objc_memmove_collectable function.
8128  Expr *CollectableMemCpyRef = 0;
8129
8130  // Assign non-static members.
8131  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8132                                  FieldEnd = ClassDecl->field_end();
8133       Field != FieldEnd; ++Field) {
8134    if (Field->isUnnamedBitfield())
8135      continue;
8136
8137    // Check for members of reference type; we can't move those.
8138    if (Field->getType()->isReferenceType()) {
8139      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8140        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8141      Diag(Field->getLocation(), diag::note_declared_at);
8142      Diag(CurrentLocation, diag::note_member_synthesized_at)
8143        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8144      Invalid = true;
8145      continue;
8146    }
8147
8148    // Check for members of const-qualified, non-class type.
8149    QualType BaseType = Context.getBaseElementType(Field->getType());
8150    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8151      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8152        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8153      Diag(Field->getLocation(), diag::note_declared_at);
8154      Diag(CurrentLocation, diag::note_member_synthesized_at)
8155        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8156      Invalid = true;
8157      continue;
8158    }
8159
8160    // Suppress assigning zero-width bitfields.
8161    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8162      continue;
8163
8164    QualType FieldType = Field->getType().getNonReferenceType();
8165    if (FieldType->isIncompleteArrayType()) {
8166      assert(ClassDecl->hasFlexibleArrayMember() &&
8167             "Incomplete array type is not valid");
8168      continue;
8169    }
8170
8171    // Build references to the field in the object we're copying from and to.
8172    CXXScopeSpec SS; // Intentionally empty
8173    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8174                              LookupMemberName);
8175    MemberLookup.addDecl(*Field);
8176    MemberLookup.resolveKind();
8177    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8178                                               Loc, /*IsArrow=*/false,
8179                                               SS, 0, MemberLookup, 0);
8180    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8181                                             Loc, /*IsArrow=*/true,
8182                                             SS, 0, MemberLookup, 0);
8183    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8184    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8185
8186    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8187        "Member reference with rvalue base must be rvalue except for reference "
8188        "members, which aren't allowed for move assignment.");
8189
8190    // If the field should be copied with __builtin_memcpy rather than via
8191    // explicit assignments, do so. This optimization only applies for arrays
8192    // of scalars and arrays of class type with trivial move-assignment
8193    // operators.
8194    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8195        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8196      // Compute the size of the memory buffer to be copied.
8197      QualType SizeType = Context.getSizeType();
8198      llvm::APInt Size(Context.getTypeSize(SizeType),
8199                       Context.getTypeSizeInChars(BaseType).getQuantity());
8200      for (const ConstantArrayType *Array
8201              = Context.getAsConstantArrayType(FieldType);
8202           Array;
8203           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8204        llvm::APInt ArraySize
8205          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8206        Size *= ArraySize;
8207      }
8208
8209      // Take the address of the field references for "from" and "to". We
8210      // directly construct UnaryOperators here because semantic analysis
8211      // does not permit us to take the address of an xvalue.
8212      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8213                             Context.getPointerType(From.get()->getType()),
8214                             VK_RValue, OK_Ordinary, Loc);
8215      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8216                           Context.getPointerType(To.get()->getType()),
8217                           VK_RValue, OK_Ordinary, Loc);
8218
8219      bool NeedsCollectableMemCpy =
8220          (BaseType->isRecordType() &&
8221           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8222
8223      if (NeedsCollectableMemCpy) {
8224        if (!CollectableMemCpyRef) {
8225          // Create a reference to the __builtin_objc_memmove_collectable function.
8226          LookupResult R(*this,
8227                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8228                         Loc, LookupOrdinaryName);
8229          LookupName(R, TUScope, true);
8230
8231          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8232          if (!CollectableMemCpy) {
8233            // Something went horribly wrong earlier, and we will have
8234            // complained about it.
8235            Invalid = true;
8236            continue;
8237          }
8238
8239          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8240                                                  CollectableMemCpy->getType(),
8241                                                  VK_LValue, Loc, 0).take();
8242          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8243        }
8244      }
8245      // Create a reference to the __builtin_memcpy builtin function.
8246      else if (!BuiltinMemCpyRef) {
8247        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8248                       LookupOrdinaryName);
8249        LookupName(R, TUScope, true);
8250
8251        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8252        if (!BuiltinMemCpy) {
8253          // Something went horribly wrong earlier, and we will have complained
8254          // about it.
8255          Invalid = true;
8256          continue;
8257        }
8258
8259        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8260                                            BuiltinMemCpy->getType(),
8261                                            VK_LValue, Loc, 0).take();
8262        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8263      }
8264
8265      ASTOwningVector<Expr*> CallArgs(*this);
8266      CallArgs.push_back(To.takeAs<Expr>());
8267      CallArgs.push_back(From.takeAs<Expr>());
8268      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8269      ExprResult Call = ExprError();
8270      if (NeedsCollectableMemCpy)
8271        Call = ActOnCallExpr(/*Scope=*/0,
8272                             CollectableMemCpyRef,
8273                             Loc, move_arg(CallArgs),
8274                             Loc);
8275      else
8276        Call = ActOnCallExpr(/*Scope=*/0,
8277                             BuiltinMemCpyRef,
8278                             Loc, move_arg(CallArgs),
8279                             Loc);
8280
8281      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8282      Statements.push_back(Call.takeAs<Expr>());
8283      continue;
8284    }
8285
8286    // Build the move of this field.
8287    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8288                                            To.get(), From.get(),
8289                                            /*CopyingBaseSubobject=*/false,
8290                                            /*Copying=*/false);
8291    if (Move.isInvalid()) {
8292      Diag(CurrentLocation, diag::note_member_synthesized_at)
8293        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8294      MoveAssignOperator->setInvalidDecl();
8295      return;
8296    }
8297
8298    // Success! Record the copy.
8299    Statements.push_back(Move.takeAs<Stmt>());
8300  }
8301
8302  if (!Invalid) {
8303    // Add a "return *this;"
8304    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8305
8306    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8307    if (Return.isInvalid())
8308      Invalid = true;
8309    else {
8310      Statements.push_back(Return.takeAs<Stmt>());
8311
8312      if (Trap.hasErrorOccurred()) {
8313        Diag(CurrentLocation, diag::note_member_synthesized_at)
8314          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8315        Invalid = true;
8316      }
8317    }
8318  }
8319
8320  if (Invalid) {
8321    MoveAssignOperator->setInvalidDecl();
8322    return;
8323  }
8324
8325  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8326                                            /*isStmtExpr=*/false);
8327  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8328  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8329
8330  if (ASTMutationListener *L = getASTMutationListener()) {
8331    L->CompletedImplicitDefinition(MoveAssignOperator);
8332  }
8333}
8334
8335std::pair<Sema::ImplicitExceptionSpecification, bool>
8336Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8337  if (ClassDecl->isInvalidDecl())
8338    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8339
8340  // C++ [class.copy]p5:
8341  //   The implicitly-declared copy constructor for a class X will
8342  //   have the form
8343  //
8344  //       X::X(const X&)
8345  //
8346  //   if
8347  // FIXME: It ought to be possible to store this on the record.
8348  bool HasConstCopyConstructor = true;
8349
8350  //     -- each direct or virtual base class B of X has a copy
8351  //        constructor whose first parameter is of type const B& or
8352  //        const volatile B&, and
8353  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8354                                       BaseEnd = ClassDecl->bases_end();
8355       HasConstCopyConstructor && Base != BaseEnd;
8356       ++Base) {
8357    // Virtual bases are handled below.
8358    if (Base->isVirtual())
8359      continue;
8360
8361    CXXRecordDecl *BaseClassDecl
8362      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8363    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8364                             &HasConstCopyConstructor);
8365  }
8366
8367  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8368                                       BaseEnd = ClassDecl->vbases_end();
8369       HasConstCopyConstructor && Base != BaseEnd;
8370       ++Base) {
8371    CXXRecordDecl *BaseClassDecl
8372      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8373    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8374                             &HasConstCopyConstructor);
8375  }
8376
8377  //     -- for all the nonstatic data members of X that are of a
8378  //        class type M (or array thereof), each such class type
8379  //        has a copy constructor whose first parameter is of type
8380  //        const M& or const volatile M&.
8381  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8382                                  FieldEnd = ClassDecl->field_end();
8383       HasConstCopyConstructor && Field != FieldEnd;
8384       ++Field) {
8385    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8386    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8387      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8388                               &HasConstCopyConstructor);
8389    }
8390  }
8391  //   Otherwise, the implicitly declared copy constructor will have
8392  //   the form
8393  //
8394  //       X::X(X&)
8395
8396  // C++ [except.spec]p14:
8397  //   An implicitly declared special member function (Clause 12) shall have an
8398  //   exception-specification. [...]
8399  ImplicitExceptionSpecification ExceptSpec(Context);
8400  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8401  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8402                                       BaseEnd = ClassDecl->bases_end();
8403       Base != BaseEnd;
8404       ++Base) {
8405    // Virtual bases are handled below.
8406    if (Base->isVirtual())
8407      continue;
8408
8409    CXXRecordDecl *BaseClassDecl
8410      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8411    if (CXXConstructorDecl *CopyConstructor =
8412          LookupCopyingConstructor(BaseClassDecl, Quals))
8413      ExceptSpec.CalledDecl(CopyConstructor);
8414  }
8415  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8416                                       BaseEnd = ClassDecl->vbases_end();
8417       Base != BaseEnd;
8418       ++Base) {
8419    CXXRecordDecl *BaseClassDecl
8420      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8421    if (CXXConstructorDecl *CopyConstructor =
8422          LookupCopyingConstructor(BaseClassDecl, Quals))
8423      ExceptSpec.CalledDecl(CopyConstructor);
8424  }
8425  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8426                                  FieldEnd = ClassDecl->field_end();
8427       Field != FieldEnd;
8428       ++Field) {
8429    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8430    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8431      if (CXXConstructorDecl *CopyConstructor =
8432        LookupCopyingConstructor(FieldClassDecl, Quals))
8433      ExceptSpec.CalledDecl(CopyConstructor);
8434    }
8435  }
8436
8437  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8438}
8439
8440CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8441                                                    CXXRecordDecl *ClassDecl) {
8442  // C++ [class.copy]p4:
8443  //   If the class definition does not explicitly declare a copy
8444  //   constructor, one is declared implicitly.
8445
8446  ImplicitExceptionSpecification Spec(Context);
8447  bool Const;
8448  llvm::tie(Spec, Const) =
8449    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8450
8451  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8452  QualType ArgType = ClassType;
8453  if (Const)
8454    ArgType = ArgType.withConst();
8455  ArgType = Context.getLValueReferenceType(ArgType);
8456
8457  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8458
8459  DeclarationName Name
8460    = Context.DeclarationNames.getCXXConstructorName(
8461                                           Context.getCanonicalType(ClassType));
8462  SourceLocation ClassLoc = ClassDecl->getLocation();
8463  DeclarationNameInfo NameInfo(Name, ClassLoc);
8464
8465  //   An implicitly-declared copy constructor is an inline public
8466  //   member of its class.
8467  CXXConstructorDecl *CopyConstructor
8468    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8469                                 Context.getFunctionType(Context.VoidTy,
8470                                                         &ArgType, 1, EPI),
8471                                 /*TInfo=*/0,
8472                                 /*isExplicit=*/false,
8473                                 /*isInline=*/true,
8474                                 /*isImplicitlyDeclared=*/true,
8475                                 // FIXME: apply the rules for definitions here
8476                                 /*isConstexpr=*/false);
8477  CopyConstructor->setAccess(AS_public);
8478  CopyConstructor->setDefaulted();
8479  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8480
8481  // Note that we have declared this constructor.
8482  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8483
8484  // Add the parameter to the constructor.
8485  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8486                                               ClassLoc, ClassLoc,
8487                                               /*IdentifierInfo=*/0,
8488                                               ArgType, /*TInfo=*/0,
8489                                               SC_None,
8490                                               SC_None, 0);
8491  CopyConstructor->setParams(FromParam);
8492
8493  if (Scope *S = getScopeForContext(ClassDecl))
8494    PushOnScopeChains(CopyConstructor, S, false);
8495  ClassDecl->addDecl(CopyConstructor);
8496
8497  // C++0x [class.copy]p7:
8498  //   ... If the class definition declares a move constructor or move
8499  //   assignment operator, the implicitly declared constructor is defined as
8500  //   deleted; ...
8501  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8502      ClassDecl->hasUserDeclaredMoveAssignment() ||
8503      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8504    CopyConstructor->setDeletedAsWritten();
8505
8506  return CopyConstructor;
8507}
8508
8509void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8510                                   CXXConstructorDecl *CopyConstructor) {
8511  assert((CopyConstructor->isDefaulted() &&
8512          CopyConstructor->isCopyConstructor() &&
8513          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8514         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8515
8516  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8517  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8518
8519  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8520  DiagnosticErrorTrap Trap(Diags);
8521
8522  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8523      Trap.hasErrorOccurred()) {
8524    Diag(CurrentLocation, diag::note_member_synthesized_at)
8525      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8526    CopyConstructor->setInvalidDecl();
8527  }  else {
8528    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8529                                               CopyConstructor->getLocation(),
8530                                               MultiStmtArg(*this, 0, 0),
8531                                               /*isStmtExpr=*/false)
8532                                                              .takeAs<Stmt>());
8533    CopyConstructor->setImplicitlyDefined(true);
8534  }
8535
8536  CopyConstructor->setUsed();
8537  if (ASTMutationListener *L = getASTMutationListener()) {
8538    L->CompletedImplicitDefinition(CopyConstructor);
8539  }
8540}
8541
8542Sema::ImplicitExceptionSpecification
8543Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8544  // C++ [except.spec]p14:
8545  //   An implicitly declared special member function (Clause 12) shall have an
8546  //   exception-specification. [...]
8547  ImplicitExceptionSpecification ExceptSpec(Context);
8548  if (ClassDecl->isInvalidDecl())
8549    return ExceptSpec;
8550
8551  // Direct base-class constructors.
8552  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8553                                       BEnd = ClassDecl->bases_end();
8554       B != BEnd; ++B) {
8555    if (B->isVirtual()) // Handled below.
8556      continue;
8557
8558    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8559      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8560      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8561      // If this is a deleted function, add it anyway. This might be conformant
8562      // with the standard. This might not. I'm not sure. It might not matter.
8563      if (Constructor)
8564        ExceptSpec.CalledDecl(Constructor);
8565    }
8566  }
8567
8568  // Virtual base-class constructors.
8569  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8570                                       BEnd = ClassDecl->vbases_end();
8571       B != BEnd; ++B) {
8572    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8573      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8574      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8575      // If this is a deleted function, add it anyway. This might be conformant
8576      // with the standard. This might not. I'm not sure. It might not matter.
8577      if (Constructor)
8578        ExceptSpec.CalledDecl(Constructor);
8579    }
8580  }
8581
8582  // Field constructors.
8583  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8584                               FEnd = ClassDecl->field_end();
8585       F != FEnd; ++F) {
8586    if (F->hasInClassInitializer()) {
8587      if (Expr *E = F->getInClassInitializer())
8588        ExceptSpec.CalledExpr(E);
8589      else if (!F->isInvalidDecl())
8590        ExceptSpec.SetDelayed();
8591    } else if (const RecordType *RecordTy
8592              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8593      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8594      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8595      // If this is a deleted function, add it anyway. This might be conformant
8596      // with the standard. This might not. I'm not sure. It might not matter.
8597      // In particular, the problem is that this function never gets called. It
8598      // might just be ill-formed because this function attempts to refer to
8599      // a deleted function here.
8600      if (Constructor)
8601        ExceptSpec.CalledDecl(Constructor);
8602    }
8603  }
8604
8605  return ExceptSpec;
8606}
8607
8608CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8609                                                    CXXRecordDecl *ClassDecl) {
8610  ImplicitExceptionSpecification Spec(
8611      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8612
8613  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8614  QualType ArgType = Context.getRValueReferenceType(ClassType);
8615
8616  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8617
8618  DeclarationName Name
8619    = Context.DeclarationNames.getCXXConstructorName(
8620                                           Context.getCanonicalType(ClassType));
8621  SourceLocation ClassLoc = ClassDecl->getLocation();
8622  DeclarationNameInfo NameInfo(Name, ClassLoc);
8623
8624  // C++0x [class.copy]p11:
8625  //   An implicitly-declared copy/move constructor is an inline public
8626  //   member of its class.
8627  CXXConstructorDecl *MoveConstructor
8628    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8629                                 Context.getFunctionType(Context.VoidTy,
8630                                                         &ArgType, 1, EPI),
8631                                 /*TInfo=*/0,
8632                                 /*isExplicit=*/false,
8633                                 /*isInline=*/true,
8634                                 /*isImplicitlyDeclared=*/true,
8635                                 // FIXME: apply the rules for definitions here
8636                                 /*isConstexpr=*/false);
8637  MoveConstructor->setAccess(AS_public);
8638  MoveConstructor->setDefaulted();
8639  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8640
8641  // Add the parameter to the constructor.
8642  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8643                                               ClassLoc, ClassLoc,
8644                                               /*IdentifierInfo=*/0,
8645                                               ArgType, /*TInfo=*/0,
8646                                               SC_None,
8647                                               SC_None, 0);
8648  MoveConstructor->setParams(FromParam);
8649
8650  // C++0x [class.copy]p9:
8651  //   If the definition of a class X does not explicitly declare a move
8652  //   constructor, one will be implicitly declared as defaulted if and only if:
8653  //   [...]
8654  //   - the move constructor would not be implicitly defined as deleted.
8655  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8656    // Cache this result so that we don't try to generate this over and over
8657    // on every lookup, leaking memory and wasting time.
8658    ClassDecl->setFailedImplicitMoveConstructor();
8659    return 0;
8660  }
8661
8662  // Note that we have declared this constructor.
8663  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8664
8665  if (Scope *S = getScopeForContext(ClassDecl))
8666    PushOnScopeChains(MoveConstructor, S, false);
8667  ClassDecl->addDecl(MoveConstructor);
8668
8669  return MoveConstructor;
8670}
8671
8672void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8673                                   CXXConstructorDecl *MoveConstructor) {
8674  assert((MoveConstructor->isDefaulted() &&
8675          MoveConstructor->isMoveConstructor() &&
8676          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8677         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8678
8679  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8680  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8681
8682  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8683  DiagnosticErrorTrap Trap(Diags);
8684
8685  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8686      Trap.hasErrorOccurred()) {
8687    Diag(CurrentLocation, diag::note_member_synthesized_at)
8688      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8689    MoveConstructor->setInvalidDecl();
8690  }  else {
8691    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8692                                               MoveConstructor->getLocation(),
8693                                               MultiStmtArg(*this, 0, 0),
8694                                               /*isStmtExpr=*/false)
8695                                                              .takeAs<Stmt>());
8696    MoveConstructor->setImplicitlyDefined(true);
8697  }
8698
8699  MoveConstructor->setUsed();
8700
8701  if (ASTMutationListener *L = getASTMutationListener()) {
8702    L->CompletedImplicitDefinition(MoveConstructor);
8703  }
8704}
8705
8706ExprResult
8707Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8708                            CXXConstructorDecl *Constructor,
8709                            MultiExprArg ExprArgs,
8710                            bool HadMultipleCandidates,
8711                            bool RequiresZeroInit,
8712                            unsigned ConstructKind,
8713                            SourceRange ParenRange) {
8714  bool Elidable = false;
8715
8716  // C++0x [class.copy]p34:
8717  //   When certain criteria are met, an implementation is allowed to
8718  //   omit the copy/move construction of a class object, even if the
8719  //   copy/move constructor and/or destructor for the object have
8720  //   side effects. [...]
8721  //     - when a temporary class object that has not been bound to a
8722  //       reference (12.2) would be copied/moved to a class object
8723  //       with the same cv-unqualified type, the copy/move operation
8724  //       can be omitted by constructing the temporary object
8725  //       directly into the target of the omitted copy/move
8726  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8727      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8728    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8729    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8730  }
8731
8732  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8733                               Elidable, move(ExprArgs), HadMultipleCandidates,
8734                               RequiresZeroInit, ConstructKind, ParenRange);
8735}
8736
8737/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8738/// including handling of its default argument expressions.
8739ExprResult
8740Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8741                            CXXConstructorDecl *Constructor, bool Elidable,
8742                            MultiExprArg ExprArgs,
8743                            bool HadMultipleCandidates,
8744                            bool RequiresZeroInit,
8745                            unsigned ConstructKind,
8746                            SourceRange ParenRange) {
8747  unsigned NumExprs = ExprArgs.size();
8748  Expr **Exprs = (Expr **)ExprArgs.release();
8749
8750  for (specific_attr_iterator<NonNullAttr>
8751           i = Constructor->specific_attr_begin<NonNullAttr>(),
8752           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8753    const NonNullAttr *NonNull = *i;
8754    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8755  }
8756
8757  MarkDeclarationReferenced(ConstructLoc, Constructor);
8758  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8759                                        Constructor, Elidable, Exprs, NumExprs,
8760                                        HadMultipleCandidates, RequiresZeroInit,
8761              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8762                                        ParenRange));
8763}
8764
8765bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8766                                        CXXConstructorDecl *Constructor,
8767                                        MultiExprArg Exprs,
8768                                        bool HadMultipleCandidates) {
8769  // FIXME: Provide the correct paren SourceRange when available.
8770  ExprResult TempResult =
8771    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8772                          move(Exprs), HadMultipleCandidates, false,
8773                          CXXConstructExpr::CK_Complete, SourceRange());
8774  if (TempResult.isInvalid())
8775    return true;
8776
8777  Expr *Temp = TempResult.takeAs<Expr>();
8778  CheckImplicitConversions(Temp, VD->getLocation());
8779  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8780  Temp = MaybeCreateExprWithCleanups(Temp);
8781  VD->setInit(Temp);
8782
8783  return false;
8784}
8785
8786void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8787  if (VD->isInvalidDecl()) return;
8788
8789  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8790  if (ClassDecl->isInvalidDecl()) return;
8791  if (ClassDecl->hasTrivialDestructor()) return;
8792  if (ClassDecl->isDependentContext()) return;
8793
8794  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8795  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8796  CheckDestructorAccess(VD->getLocation(), Destructor,
8797                        PDiag(diag::err_access_dtor_var)
8798                        << VD->getDeclName()
8799                        << VD->getType());
8800
8801  if (!VD->hasGlobalStorage()) return;
8802
8803  // Emit warning for non-trivial dtor in global scope (a real global,
8804  // class-static, function-static).
8805  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8806
8807  // TODO: this should be re-enabled for static locals by !CXAAtExit
8808  if (!VD->isStaticLocal())
8809    Diag(VD->getLocation(), diag::warn_global_destructor);
8810}
8811
8812/// AddCXXDirectInitializerToDecl - This action is called immediately after
8813/// ActOnDeclarator, when a C++ direct initializer is present.
8814/// e.g: "int x(1);"
8815void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8816                                         SourceLocation LParenLoc,
8817                                         MultiExprArg Exprs,
8818                                         SourceLocation RParenLoc,
8819                                         bool TypeMayContainAuto) {
8820  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8821
8822  // If there is no declaration, there was an error parsing it.  Just ignore
8823  // the initializer.
8824  if (RealDecl == 0)
8825    return;
8826
8827  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8828  if (!VDecl) {
8829    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8830    RealDecl->setInvalidDecl();
8831    return;
8832  }
8833
8834  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8835  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8836    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8837    if (Exprs.size() > 1) {
8838      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8839           diag::err_auto_var_init_multiple_expressions)
8840        << VDecl->getDeclName() << VDecl->getType()
8841        << VDecl->getSourceRange();
8842      RealDecl->setInvalidDecl();
8843      return;
8844    }
8845
8846    Expr *Init = Exprs.get()[0];
8847    TypeSourceInfo *DeducedType = 0;
8848    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8849      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8850        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8851        << Init->getSourceRange();
8852    if (!DeducedType) {
8853      RealDecl->setInvalidDecl();
8854      return;
8855    }
8856    VDecl->setTypeSourceInfo(DeducedType);
8857    VDecl->setType(DeducedType->getType());
8858
8859    // In ARC, infer lifetime.
8860    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8861      VDecl->setInvalidDecl();
8862
8863    // If this is a redeclaration, check that the type we just deduced matches
8864    // the previously declared type.
8865    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8866      MergeVarDeclTypes(VDecl, Old);
8867  }
8868
8869  // We will represent direct-initialization similarly to copy-initialization:
8870  //    int x(1);  -as-> int x = 1;
8871  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8872  //
8873  // Clients that want to distinguish between the two forms, can check for
8874  // direct initializer using VarDecl::hasCXXDirectInitializer().
8875  // A major benefit is that clients that don't particularly care about which
8876  // exactly form was it (like the CodeGen) can handle both cases without
8877  // special case code.
8878
8879  // C++ 8.5p11:
8880  // The form of initialization (using parentheses or '=') is generally
8881  // insignificant, but does matter when the entity being initialized has a
8882  // class type.
8883
8884  if (!VDecl->getType()->isDependentType() &&
8885      !VDecl->getType()->isIncompleteArrayType() &&
8886      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8887                          diag::err_typecheck_decl_incomplete_type)) {
8888    VDecl->setInvalidDecl();
8889    return;
8890  }
8891
8892  // The variable can not have an abstract class type.
8893  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8894                             diag::err_abstract_type_in_decl,
8895                             AbstractVariableType))
8896    VDecl->setInvalidDecl();
8897
8898  const VarDecl *Def;
8899  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8900    Diag(VDecl->getLocation(), diag::err_redefinition)
8901    << VDecl->getDeclName();
8902    Diag(Def->getLocation(), diag::note_previous_definition);
8903    VDecl->setInvalidDecl();
8904    return;
8905  }
8906
8907  // C++ [class.static.data]p4
8908  //   If a static data member is of const integral or const
8909  //   enumeration type, its declaration in the class definition can
8910  //   specify a constant-initializer which shall be an integral
8911  //   constant expression (5.19). In that case, the member can appear
8912  //   in integral constant expressions. The member shall still be
8913  //   defined in a namespace scope if it is used in the program and the
8914  //   namespace scope definition shall not contain an initializer.
8915  //
8916  // We already performed a redefinition check above, but for static
8917  // data members we also need to check whether there was an in-class
8918  // declaration with an initializer.
8919  const VarDecl* PrevInit = 0;
8920  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8921    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8922    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8923    return;
8924  }
8925
8926  bool IsDependent = false;
8927  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8928    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8929      VDecl->setInvalidDecl();
8930      return;
8931    }
8932
8933    if (Exprs.get()[I]->isTypeDependent())
8934      IsDependent = true;
8935  }
8936
8937  // If either the declaration has a dependent type or if any of the
8938  // expressions is type-dependent, we represent the initialization
8939  // via a ParenListExpr for later use during template instantiation.
8940  if (VDecl->getType()->isDependentType() || IsDependent) {
8941    // Let clients know that initialization was done with a direct initializer.
8942    VDecl->setCXXDirectInitializer(true);
8943
8944    // Store the initialization expressions as a ParenListExpr.
8945    unsigned NumExprs = Exprs.size();
8946    VDecl->setInit(new (Context) ParenListExpr(
8947        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8948        VDecl->getType().getNonReferenceType()));
8949    return;
8950  }
8951
8952  // Capture the variable that is being initialized and the style of
8953  // initialization.
8954  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8955
8956  // FIXME: Poor source location information.
8957  InitializationKind Kind
8958    = InitializationKind::CreateDirect(VDecl->getLocation(),
8959                                       LParenLoc, RParenLoc);
8960
8961  QualType T = VDecl->getType();
8962  InitializationSequence InitSeq(*this, Entity, Kind,
8963                                 Exprs.get(), Exprs.size());
8964  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
8965  if (Result.isInvalid()) {
8966    VDecl->setInvalidDecl();
8967    return;
8968  } else if (T != VDecl->getType()) {
8969    VDecl->setType(T);
8970    Result.get()->setType(T);
8971  }
8972
8973
8974  Expr *Init = Result.get();
8975  CheckImplicitConversions(Init, LParenLoc);
8976
8977  Init = MaybeCreateExprWithCleanups(Init);
8978  VDecl->setInit(Init);
8979  VDecl->setCXXDirectInitializer(true);
8980
8981  CheckCompleteVariableDeclaration(VDecl);
8982}
8983
8984/// \brief Given a constructor and the set of arguments provided for the
8985/// constructor, convert the arguments and add any required default arguments
8986/// to form a proper call to this constructor.
8987///
8988/// \returns true if an error occurred, false otherwise.
8989bool
8990Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8991                              MultiExprArg ArgsPtr,
8992                              SourceLocation Loc,
8993                              ASTOwningVector<Expr*> &ConvertedArgs) {
8994  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8995  unsigned NumArgs = ArgsPtr.size();
8996  Expr **Args = (Expr **)ArgsPtr.get();
8997
8998  const FunctionProtoType *Proto
8999    = Constructor->getType()->getAs<FunctionProtoType>();
9000  assert(Proto && "Constructor without a prototype?");
9001  unsigned NumArgsInProto = Proto->getNumArgs();
9002
9003  // If too few arguments are available, we'll fill in the rest with defaults.
9004  if (NumArgs < NumArgsInProto)
9005    ConvertedArgs.reserve(NumArgsInProto);
9006  else
9007    ConvertedArgs.reserve(NumArgs);
9008
9009  VariadicCallType CallType =
9010    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9011  SmallVector<Expr *, 8> AllArgs;
9012  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9013                                        Proto, 0, Args, NumArgs, AllArgs,
9014                                        CallType);
9015  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9016    ConvertedArgs.push_back(AllArgs[i]);
9017  return Invalid;
9018}
9019
9020static inline bool
9021CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9022                                       const FunctionDecl *FnDecl) {
9023  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9024  if (isa<NamespaceDecl>(DC)) {
9025    return SemaRef.Diag(FnDecl->getLocation(),
9026                        diag::err_operator_new_delete_declared_in_namespace)
9027      << FnDecl->getDeclName();
9028  }
9029
9030  if (isa<TranslationUnitDecl>(DC) &&
9031      FnDecl->getStorageClass() == SC_Static) {
9032    return SemaRef.Diag(FnDecl->getLocation(),
9033                        diag::err_operator_new_delete_declared_static)
9034      << FnDecl->getDeclName();
9035  }
9036
9037  return false;
9038}
9039
9040static inline bool
9041CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9042                            CanQualType ExpectedResultType,
9043                            CanQualType ExpectedFirstParamType,
9044                            unsigned DependentParamTypeDiag,
9045                            unsigned InvalidParamTypeDiag) {
9046  QualType ResultType =
9047    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9048
9049  // Check that the result type is not dependent.
9050  if (ResultType->isDependentType())
9051    return SemaRef.Diag(FnDecl->getLocation(),
9052                        diag::err_operator_new_delete_dependent_result_type)
9053    << FnDecl->getDeclName() << ExpectedResultType;
9054
9055  // Check that the result type is what we expect.
9056  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9057    return SemaRef.Diag(FnDecl->getLocation(),
9058                        diag::err_operator_new_delete_invalid_result_type)
9059    << FnDecl->getDeclName() << ExpectedResultType;
9060
9061  // A function template must have at least 2 parameters.
9062  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9063    return SemaRef.Diag(FnDecl->getLocation(),
9064                      diag::err_operator_new_delete_template_too_few_parameters)
9065        << FnDecl->getDeclName();
9066
9067  // The function decl must have at least 1 parameter.
9068  if (FnDecl->getNumParams() == 0)
9069    return SemaRef.Diag(FnDecl->getLocation(),
9070                        diag::err_operator_new_delete_too_few_parameters)
9071      << FnDecl->getDeclName();
9072
9073  // Check the the first parameter type is not dependent.
9074  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9075  if (FirstParamType->isDependentType())
9076    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9077      << FnDecl->getDeclName() << ExpectedFirstParamType;
9078
9079  // Check that the first parameter type is what we expect.
9080  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9081      ExpectedFirstParamType)
9082    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9083    << FnDecl->getDeclName() << ExpectedFirstParamType;
9084
9085  return false;
9086}
9087
9088static bool
9089CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9090  // C++ [basic.stc.dynamic.allocation]p1:
9091  //   A program is ill-formed if an allocation function is declared in a
9092  //   namespace scope other than global scope or declared static in global
9093  //   scope.
9094  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9095    return true;
9096
9097  CanQualType SizeTy =
9098    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9099
9100  // C++ [basic.stc.dynamic.allocation]p1:
9101  //  The return type shall be void*. The first parameter shall have type
9102  //  std::size_t.
9103  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9104                                  SizeTy,
9105                                  diag::err_operator_new_dependent_param_type,
9106                                  diag::err_operator_new_param_type))
9107    return true;
9108
9109  // C++ [basic.stc.dynamic.allocation]p1:
9110  //  The first parameter shall not have an associated default argument.
9111  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9112    return SemaRef.Diag(FnDecl->getLocation(),
9113                        diag::err_operator_new_default_arg)
9114      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9115
9116  return false;
9117}
9118
9119static bool
9120CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9121  // C++ [basic.stc.dynamic.deallocation]p1:
9122  //   A program is ill-formed if deallocation functions are declared in a
9123  //   namespace scope other than global scope or declared static in global
9124  //   scope.
9125  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9126    return true;
9127
9128  // C++ [basic.stc.dynamic.deallocation]p2:
9129  //   Each deallocation function shall return void and its first parameter
9130  //   shall be void*.
9131  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9132                                  SemaRef.Context.VoidPtrTy,
9133                                 diag::err_operator_delete_dependent_param_type,
9134                                 diag::err_operator_delete_param_type))
9135    return true;
9136
9137  return false;
9138}
9139
9140/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9141/// of this overloaded operator is well-formed. If so, returns false;
9142/// otherwise, emits appropriate diagnostics and returns true.
9143bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9144  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9145         "Expected an overloaded operator declaration");
9146
9147  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9148
9149  // C++ [over.oper]p5:
9150  //   The allocation and deallocation functions, operator new,
9151  //   operator new[], operator delete and operator delete[], are
9152  //   described completely in 3.7.3. The attributes and restrictions
9153  //   found in the rest of this subclause do not apply to them unless
9154  //   explicitly stated in 3.7.3.
9155  if (Op == OO_Delete || Op == OO_Array_Delete)
9156    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9157
9158  if (Op == OO_New || Op == OO_Array_New)
9159    return CheckOperatorNewDeclaration(*this, FnDecl);
9160
9161  // C++ [over.oper]p6:
9162  //   An operator function shall either be a non-static member
9163  //   function or be a non-member function and have at least one
9164  //   parameter whose type is a class, a reference to a class, an
9165  //   enumeration, or a reference to an enumeration.
9166  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9167    if (MethodDecl->isStatic())
9168      return Diag(FnDecl->getLocation(),
9169                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9170  } else {
9171    bool ClassOrEnumParam = false;
9172    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9173                                   ParamEnd = FnDecl->param_end();
9174         Param != ParamEnd; ++Param) {
9175      QualType ParamType = (*Param)->getType().getNonReferenceType();
9176      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9177          ParamType->isEnumeralType()) {
9178        ClassOrEnumParam = true;
9179        break;
9180      }
9181    }
9182
9183    if (!ClassOrEnumParam)
9184      return Diag(FnDecl->getLocation(),
9185                  diag::err_operator_overload_needs_class_or_enum)
9186        << FnDecl->getDeclName();
9187  }
9188
9189  // C++ [over.oper]p8:
9190  //   An operator function cannot have default arguments (8.3.6),
9191  //   except where explicitly stated below.
9192  //
9193  // Only the function-call operator allows default arguments
9194  // (C++ [over.call]p1).
9195  if (Op != OO_Call) {
9196    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9197         Param != FnDecl->param_end(); ++Param) {
9198      if ((*Param)->hasDefaultArg())
9199        return Diag((*Param)->getLocation(),
9200                    diag::err_operator_overload_default_arg)
9201          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9202    }
9203  }
9204
9205  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9206    { false, false, false }
9207#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9208    , { Unary, Binary, MemberOnly }
9209#include "clang/Basic/OperatorKinds.def"
9210  };
9211
9212  bool CanBeUnaryOperator = OperatorUses[Op][0];
9213  bool CanBeBinaryOperator = OperatorUses[Op][1];
9214  bool MustBeMemberOperator = OperatorUses[Op][2];
9215
9216  // C++ [over.oper]p8:
9217  //   [...] Operator functions cannot have more or fewer parameters
9218  //   than the number required for the corresponding operator, as
9219  //   described in the rest of this subclause.
9220  unsigned NumParams = FnDecl->getNumParams()
9221                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9222  if (Op != OO_Call &&
9223      ((NumParams == 1 && !CanBeUnaryOperator) ||
9224       (NumParams == 2 && !CanBeBinaryOperator) ||
9225       (NumParams < 1) || (NumParams > 2))) {
9226    // We have the wrong number of parameters.
9227    unsigned ErrorKind;
9228    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9229      ErrorKind = 2;  // 2 -> unary or binary.
9230    } else if (CanBeUnaryOperator) {
9231      ErrorKind = 0;  // 0 -> unary
9232    } else {
9233      assert(CanBeBinaryOperator &&
9234             "All non-call overloaded operators are unary or binary!");
9235      ErrorKind = 1;  // 1 -> binary
9236    }
9237
9238    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9239      << FnDecl->getDeclName() << NumParams << ErrorKind;
9240  }
9241
9242  // Overloaded operators other than operator() cannot be variadic.
9243  if (Op != OO_Call &&
9244      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9245    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9246      << FnDecl->getDeclName();
9247  }
9248
9249  // Some operators must be non-static member functions.
9250  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9251    return Diag(FnDecl->getLocation(),
9252                diag::err_operator_overload_must_be_member)
9253      << FnDecl->getDeclName();
9254  }
9255
9256  // C++ [over.inc]p1:
9257  //   The user-defined function called operator++ implements the
9258  //   prefix and postfix ++ operator. If this function is a member
9259  //   function with no parameters, or a non-member function with one
9260  //   parameter of class or enumeration type, it defines the prefix
9261  //   increment operator ++ for objects of that type. If the function
9262  //   is a member function with one parameter (which shall be of type
9263  //   int) or a non-member function with two parameters (the second
9264  //   of which shall be of type int), it defines the postfix
9265  //   increment operator ++ for objects of that type.
9266  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9267    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9268    bool ParamIsInt = false;
9269    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9270      ParamIsInt = BT->getKind() == BuiltinType::Int;
9271
9272    if (!ParamIsInt)
9273      return Diag(LastParam->getLocation(),
9274                  diag::err_operator_overload_post_incdec_must_be_int)
9275        << LastParam->getType() << (Op == OO_MinusMinus);
9276  }
9277
9278  return false;
9279}
9280
9281/// CheckLiteralOperatorDeclaration - Check whether the declaration
9282/// of this literal operator function is well-formed. If so, returns
9283/// false; otherwise, emits appropriate diagnostics and returns true.
9284bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9285  DeclContext *DC = FnDecl->getDeclContext();
9286  Decl::Kind Kind = DC->getDeclKind();
9287  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9288      Kind != Decl::LinkageSpec) {
9289    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9290      << FnDecl->getDeclName();
9291    return true;
9292  }
9293
9294  bool Valid = false;
9295
9296  // template <char...> type operator "" name() is the only valid template
9297  // signature, and the only valid signature with no parameters.
9298  if (FnDecl->param_size() == 0) {
9299    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9300      // Must have only one template parameter
9301      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9302      if (Params->size() == 1) {
9303        NonTypeTemplateParmDecl *PmDecl =
9304          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9305
9306        // The template parameter must be a char parameter pack.
9307        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9308            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9309          Valid = true;
9310      }
9311    }
9312  } else {
9313    // Check the first parameter
9314    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9315
9316    QualType T = (*Param)->getType();
9317
9318    // unsigned long long int, long double, and any character type are allowed
9319    // as the only parameters.
9320    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9321        Context.hasSameType(T, Context.LongDoubleTy) ||
9322        Context.hasSameType(T, Context.CharTy) ||
9323        Context.hasSameType(T, Context.WCharTy) ||
9324        Context.hasSameType(T, Context.Char16Ty) ||
9325        Context.hasSameType(T, Context.Char32Ty)) {
9326      if (++Param == FnDecl->param_end())
9327        Valid = true;
9328      goto FinishedParams;
9329    }
9330
9331    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9332    const PointerType *PT = T->getAs<PointerType>();
9333    if (!PT)
9334      goto FinishedParams;
9335    T = PT->getPointeeType();
9336    if (!T.isConstQualified())
9337      goto FinishedParams;
9338    T = T.getUnqualifiedType();
9339
9340    // Move on to the second parameter;
9341    ++Param;
9342
9343    // If there is no second parameter, the first must be a const char *
9344    if (Param == FnDecl->param_end()) {
9345      if (Context.hasSameType(T, Context.CharTy))
9346        Valid = true;
9347      goto FinishedParams;
9348    }
9349
9350    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9351    // are allowed as the first parameter to a two-parameter function
9352    if (!(Context.hasSameType(T, Context.CharTy) ||
9353          Context.hasSameType(T, Context.WCharTy) ||
9354          Context.hasSameType(T, Context.Char16Ty) ||
9355          Context.hasSameType(T, Context.Char32Ty)))
9356      goto FinishedParams;
9357
9358    // The second and final parameter must be an std::size_t
9359    T = (*Param)->getType().getUnqualifiedType();
9360    if (Context.hasSameType(T, Context.getSizeType()) &&
9361        ++Param == FnDecl->param_end())
9362      Valid = true;
9363  }
9364
9365  // FIXME: This diagnostic is absolutely terrible.
9366FinishedParams:
9367  if (!Valid) {
9368    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9369      << FnDecl->getDeclName();
9370    return true;
9371  }
9372
9373  StringRef LiteralName
9374    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9375  if (LiteralName[0] != '_') {
9376    // C++0x [usrlit.suffix]p1:
9377    //   Literal suffix identifiers that do not start with an underscore are
9378    //   reserved for future standardization.
9379    bool IsHexFloat = true;
9380    if (LiteralName.size() > 1 &&
9381        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9382      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9383        if (!isdigit(LiteralName[I])) {
9384          IsHexFloat = false;
9385          break;
9386        }
9387      }
9388    }
9389
9390    if (IsHexFloat)
9391      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9392        << LiteralName;
9393    else
9394      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9395  }
9396
9397  return false;
9398}
9399
9400/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9401/// linkage specification, including the language and (if present)
9402/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9403/// the location of the language string literal, which is provided
9404/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9405/// the '{' brace. Otherwise, this linkage specification does not
9406/// have any braces.
9407Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9408                                           SourceLocation LangLoc,
9409                                           StringRef Lang,
9410                                           SourceLocation LBraceLoc) {
9411  LinkageSpecDecl::LanguageIDs Language;
9412  if (Lang == "\"C\"")
9413    Language = LinkageSpecDecl::lang_c;
9414  else if (Lang == "\"C++\"")
9415    Language = LinkageSpecDecl::lang_cxx;
9416  else {
9417    Diag(LangLoc, diag::err_bad_language);
9418    return 0;
9419  }
9420
9421  // FIXME: Add all the various semantics of linkage specifications
9422
9423  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9424                                               ExternLoc, LangLoc, Language);
9425  CurContext->addDecl(D);
9426  PushDeclContext(S, D);
9427  return D;
9428}
9429
9430/// ActOnFinishLinkageSpecification - Complete the definition of
9431/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9432/// valid, it's the position of the closing '}' brace in a linkage
9433/// specification that uses braces.
9434Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9435                                            Decl *LinkageSpec,
9436                                            SourceLocation RBraceLoc) {
9437  if (LinkageSpec) {
9438    if (RBraceLoc.isValid()) {
9439      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9440      LSDecl->setRBraceLoc(RBraceLoc);
9441    }
9442    PopDeclContext();
9443  }
9444  return LinkageSpec;
9445}
9446
9447/// \brief Perform semantic analysis for the variable declaration that
9448/// occurs within a C++ catch clause, returning the newly-created
9449/// variable.
9450VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9451                                         TypeSourceInfo *TInfo,
9452                                         SourceLocation StartLoc,
9453                                         SourceLocation Loc,
9454                                         IdentifierInfo *Name) {
9455  bool Invalid = false;
9456  QualType ExDeclType = TInfo->getType();
9457
9458  // Arrays and functions decay.
9459  if (ExDeclType->isArrayType())
9460    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9461  else if (ExDeclType->isFunctionType())
9462    ExDeclType = Context.getPointerType(ExDeclType);
9463
9464  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9465  // The exception-declaration shall not denote a pointer or reference to an
9466  // incomplete type, other than [cv] void*.
9467  // N2844 forbids rvalue references.
9468  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9469    Diag(Loc, diag::err_catch_rvalue_ref);
9470    Invalid = true;
9471  }
9472
9473  // GCC allows catching pointers and references to incomplete types
9474  // as an extension; so do we, but we warn by default.
9475
9476  QualType BaseType = ExDeclType;
9477  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9478  unsigned DK = diag::err_catch_incomplete;
9479  bool IncompleteCatchIsInvalid = true;
9480  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9481    BaseType = Ptr->getPointeeType();
9482    Mode = 1;
9483    DK = diag::ext_catch_incomplete_ptr;
9484    IncompleteCatchIsInvalid = false;
9485  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9486    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9487    BaseType = Ref->getPointeeType();
9488    Mode = 2;
9489    DK = diag::ext_catch_incomplete_ref;
9490    IncompleteCatchIsInvalid = false;
9491  }
9492  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9493      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9494      IncompleteCatchIsInvalid)
9495    Invalid = true;
9496
9497  if (!Invalid && !ExDeclType->isDependentType() &&
9498      RequireNonAbstractType(Loc, ExDeclType,
9499                             diag::err_abstract_type_in_decl,
9500                             AbstractVariableType))
9501    Invalid = true;
9502
9503  // Only the non-fragile NeXT runtime currently supports C++ catches
9504  // of ObjC types, and no runtime supports catching ObjC types by value.
9505  if (!Invalid && getLangOptions().ObjC1) {
9506    QualType T = ExDeclType;
9507    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9508      T = RT->getPointeeType();
9509
9510    if (T->isObjCObjectType()) {
9511      Diag(Loc, diag::err_objc_object_catch);
9512      Invalid = true;
9513    } else if (T->isObjCObjectPointerType()) {
9514      if (!getLangOptions().ObjCNonFragileABI)
9515        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9516    }
9517  }
9518
9519  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9520                                    ExDeclType, TInfo, SC_None, SC_None);
9521  ExDecl->setExceptionVariable(true);
9522
9523  if (!Invalid && !ExDeclType->isDependentType()) {
9524    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9525      // C++ [except.handle]p16:
9526      //   The object declared in an exception-declaration or, if the
9527      //   exception-declaration does not specify a name, a temporary (12.2) is
9528      //   copy-initialized (8.5) from the exception object. [...]
9529      //   The object is destroyed when the handler exits, after the destruction
9530      //   of any automatic objects initialized within the handler.
9531      //
9532      // We just pretend to initialize the object with itself, then make sure
9533      // it can be destroyed later.
9534      QualType initType = ExDeclType;
9535
9536      InitializedEntity entity =
9537        InitializedEntity::InitializeVariable(ExDecl);
9538      InitializationKind initKind =
9539        InitializationKind::CreateCopy(Loc, SourceLocation());
9540
9541      Expr *opaqueValue =
9542        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9543      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9544      ExprResult result = sequence.Perform(*this, entity, initKind,
9545                                           MultiExprArg(&opaqueValue, 1));
9546      if (result.isInvalid())
9547        Invalid = true;
9548      else {
9549        // If the constructor used was non-trivial, set this as the
9550        // "initializer".
9551        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9552        if (!construct->getConstructor()->isTrivial()) {
9553          Expr *init = MaybeCreateExprWithCleanups(construct);
9554          ExDecl->setInit(init);
9555        }
9556
9557        // And make sure it's destructable.
9558        FinalizeVarWithDestructor(ExDecl, recordType);
9559      }
9560    }
9561  }
9562
9563  if (Invalid)
9564    ExDecl->setInvalidDecl();
9565
9566  return ExDecl;
9567}
9568
9569/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9570/// handler.
9571Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9572  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9573  bool Invalid = D.isInvalidType();
9574
9575  // Check for unexpanded parameter packs.
9576  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9577                                               UPPC_ExceptionType)) {
9578    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9579                                             D.getIdentifierLoc());
9580    Invalid = true;
9581  }
9582
9583  IdentifierInfo *II = D.getIdentifier();
9584  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9585                                             LookupOrdinaryName,
9586                                             ForRedeclaration)) {
9587    // The scope should be freshly made just for us. There is just no way
9588    // it contains any previous declaration.
9589    assert(!S->isDeclScope(PrevDecl));
9590    if (PrevDecl->isTemplateParameter()) {
9591      // Maybe we will complain about the shadowed template parameter.
9592      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9593      PrevDecl = 0;
9594    }
9595  }
9596
9597  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9598    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9599      << D.getCXXScopeSpec().getRange();
9600    Invalid = true;
9601  }
9602
9603  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9604                                              D.getSourceRange().getBegin(),
9605                                              D.getIdentifierLoc(),
9606                                              D.getIdentifier());
9607  if (Invalid)
9608    ExDecl->setInvalidDecl();
9609
9610  // Add the exception declaration into this scope.
9611  if (II)
9612    PushOnScopeChains(ExDecl, S);
9613  else
9614    CurContext->addDecl(ExDecl);
9615
9616  ProcessDeclAttributes(S, ExDecl, D);
9617  return ExDecl;
9618}
9619
9620Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9621                                         Expr *AssertExpr,
9622                                         Expr *AssertMessageExpr_,
9623                                         SourceLocation RParenLoc) {
9624  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9625
9626  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9627    llvm::APSInt Value(32);
9628    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9629      Diag(StaticAssertLoc,
9630           diag::err_static_assert_expression_is_not_constant) <<
9631        AssertExpr->getSourceRange();
9632      return 0;
9633    }
9634
9635    if (Value == 0) {
9636      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9637        << AssertMessage->getString() << AssertExpr->getSourceRange();
9638    }
9639  }
9640
9641  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9642    return 0;
9643
9644  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9645                                        AssertExpr, AssertMessage, RParenLoc);
9646
9647  CurContext->addDecl(Decl);
9648  return Decl;
9649}
9650
9651/// \brief Perform semantic analysis of the given friend type declaration.
9652///
9653/// \returns A friend declaration that.
9654FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9655                                      SourceLocation FriendLoc,
9656                                      TypeSourceInfo *TSInfo) {
9657  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9658
9659  QualType T = TSInfo->getType();
9660  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9661
9662  // C++03 [class.friend]p2:
9663  //   An elaborated-type-specifier shall be used in a friend declaration
9664  //   for a class.*
9665  //
9666  //   * The class-key of the elaborated-type-specifier is required.
9667  if (!ActiveTemplateInstantiations.empty()) {
9668    // Do not complain about the form of friend template types during
9669    // template instantiation; we will already have complained when the
9670    // template was declared.
9671  } else if (!T->isElaboratedTypeSpecifier()) {
9672    // If we evaluated the type to a record type, suggest putting
9673    // a tag in front.
9674    if (const RecordType *RT = T->getAs<RecordType>()) {
9675      RecordDecl *RD = RT->getDecl();
9676
9677      std::string InsertionText = std::string(" ") + RD->getKindName();
9678
9679      Diag(TypeRange.getBegin(),
9680           getLangOptions().CPlusPlus0x ?
9681             diag::warn_cxx98_compat_unelaborated_friend_type :
9682             diag::ext_unelaborated_friend_type)
9683        << (unsigned) RD->getTagKind()
9684        << T
9685        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9686                                      InsertionText);
9687    } else {
9688      Diag(FriendLoc,
9689           getLangOptions().CPlusPlus0x ?
9690             diag::warn_cxx98_compat_nonclass_type_friend :
9691             diag::ext_nonclass_type_friend)
9692        << T
9693        << SourceRange(FriendLoc, TypeRange.getEnd());
9694    }
9695  } else if (T->getAs<EnumType>()) {
9696    Diag(FriendLoc,
9697         getLangOptions().CPlusPlus0x ?
9698           diag::warn_cxx98_compat_enum_friend :
9699           diag::ext_enum_friend)
9700      << T
9701      << SourceRange(FriendLoc, TypeRange.getEnd());
9702  }
9703
9704  // C++0x [class.friend]p3:
9705  //   If the type specifier in a friend declaration designates a (possibly
9706  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9707  //   the friend declaration is ignored.
9708
9709  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9710  // in [class.friend]p3 that we do not implement.
9711
9712  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9713}
9714
9715/// Handle a friend tag declaration where the scope specifier was
9716/// templated.
9717Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9718                                    unsigned TagSpec, SourceLocation TagLoc,
9719                                    CXXScopeSpec &SS,
9720                                    IdentifierInfo *Name, SourceLocation NameLoc,
9721                                    AttributeList *Attr,
9722                                    MultiTemplateParamsArg TempParamLists) {
9723  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9724
9725  bool isExplicitSpecialization = false;
9726  bool Invalid = false;
9727
9728  if (TemplateParameterList *TemplateParams
9729        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9730                                                  TempParamLists.get(),
9731                                                  TempParamLists.size(),
9732                                                  /*friend*/ true,
9733                                                  isExplicitSpecialization,
9734                                                  Invalid)) {
9735    if (TemplateParams->size() > 0) {
9736      // This is a declaration of a class template.
9737      if (Invalid)
9738        return 0;
9739
9740      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9741                                SS, Name, NameLoc, Attr,
9742                                TemplateParams, AS_public,
9743                                /*ModulePrivateLoc=*/SourceLocation(),
9744                                TempParamLists.size() - 1,
9745                   (TemplateParameterList**) TempParamLists.release()).take();
9746    } else {
9747      // The "template<>" header is extraneous.
9748      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9749        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9750      isExplicitSpecialization = true;
9751    }
9752  }
9753
9754  if (Invalid) return 0;
9755
9756  bool isAllExplicitSpecializations = true;
9757  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9758    if (TempParamLists.get()[I]->size()) {
9759      isAllExplicitSpecializations = false;
9760      break;
9761    }
9762  }
9763
9764  // FIXME: don't ignore attributes.
9765
9766  // If it's explicit specializations all the way down, just forget
9767  // about the template header and build an appropriate non-templated
9768  // friend.  TODO: for source fidelity, remember the headers.
9769  if (isAllExplicitSpecializations) {
9770    if (SS.isEmpty()) {
9771      bool Owned = false;
9772      bool IsDependent = false;
9773      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9774                      Attr, AS_public,
9775                      /*ModulePrivateLoc=*/SourceLocation(),
9776                      MultiTemplateParamsArg(), Owned, IsDependent,
9777                      /*ScopedEnum=*/false,
9778                      /*ScopedEnumUsesClassTag=*/false,
9779                      /*UnderlyingType=*/TypeResult());
9780    }
9781
9782    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9783    ElaboratedTypeKeyword Keyword
9784      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9785    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9786                                   *Name, NameLoc);
9787    if (T.isNull())
9788      return 0;
9789
9790    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9791    if (isa<DependentNameType>(T)) {
9792      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9793      TL.setKeywordLoc(TagLoc);
9794      TL.setQualifierLoc(QualifierLoc);
9795      TL.setNameLoc(NameLoc);
9796    } else {
9797      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9798      TL.setKeywordLoc(TagLoc);
9799      TL.setQualifierLoc(QualifierLoc);
9800      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9801    }
9802
9803    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9804                                            TSI, FriendLoc);
9805    Friend->setAccess(AS_public);
9806    CurContext->addDecl(Friend);
9807    return Friend;
9808  }
9809
9810  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9811
9812
9813
9814  // Handle the case of a templated-scope friend class.  e.g.
9815  //   template <class T> class A<T>::B;
9816  // FIXME: we don't support these right now.
9817  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9818  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9819  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9820  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9821  TL.setKeywordLoc(TagLoc);
9822  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9823  TL.setNameLoc(NameLoc);
9824
9825  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9826                                          TSI, FriendLoc);
9827  Friend->setAccess(AS_public);
9828  Friend->setUnsupportedFriend(true);
9829  CurContext->addDecl(Friend);
9830  return Friend;
9831}
9832
9833
9834/// Handle a friend type declaration.  This works in tandem with
9835/// ActOnTag.
9836///
9837/// Notes on friend class templates:
9838///
9839/// We generally treat friend class declarations as if they were
9840/// declaring a class.  So, for example, the elaborated type specifier
9841/// in a friend declaration is required to obey the restrictions of a
9842/// class-head (i.e. no typedefs in the scope chain), template
9843/// parameters are required to match up with simple template-ids, &c.
9844/// However, unlike when declaring a template specialization, it's
9845/// okay to refer to a template specialization without an empty
9846/// template parameter declaration, e.g.
9847///   friend class A<T>::B<unsigned>;
9848/// We permit this as a special case; if there are any template
9849/// parameters present at all, require proper matching, i.e.
9850///   template <> template <class T> friend class A<int>::B;
9851Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9852                                MultiTemplateParamsArg TempParams) {
9853  SourceLocation Loc = DS.getSourceRange().getBegin();
9854
9855  assert(DS.isFriendSpecified());
9856  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9857
9858  // Try to convert the decl specifier to a type.  This works for
9859  // friend templates because ActOnTag never produces a ClassTemplateDecl
9860  // for a TUK_Friend.
9861  Declarator TheDeclarator(DS, Declarator::MemberContext);
9862  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9863  QualType T = TSI->getType();
9864  if (TheDeclarator.isInvalidType())
9865    return 0;
9866
9867  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9868    return 0;
9869
9870  // This is definitely an error in C++98.  It's probably meant to
9871  // be forbidden in C++0x, too, but the specification is just
9872  // poorly written.
9873  //
9874  // The problem is with declarations like the following:
9875  //   template <T> friend A<T>::foo;
9876  // where deciding whether a class C is a friend or not now hinges
9877  // on whether there exists an instantiation of A that causes
9878  // 'foo' to equal C.  There are restrictions on class-heads
9879  // (which we declare (by fiat) elaborated friend declarations to
9880  // be) that makes this tractable.
9881  //
9882  // FIXME: handle "template <> friend class A<T>;", which
9883  // is possibly well-formed?  Who even knows?
9884  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9885    Diag(Loc, diag::err_tagless_friend_type_template)
9886      << DS.getSourceRange();
9887    return 0;
9888  }
9889
9890  // C++98 [class.friend]p1: A friend of a class is a function
9891  //   or class that is not a member of the class . . .
9892  // This is fixed in DR77, which just barely didn't make the C++03
9893  // deadline.  It's also a very silly restriction that seriously
9894  // affects inner classes and which nobody else seems to implement;
9895  // thus we never diagnose it, not even in -pedantic.
9896  //
9897  // But note that we could warn about it: it's always useless to
9898  // friend one of your own members (it's not, however, worthless to
9899  // friend a member of an arbitrary specialization of your template).
9900
9901  Decl *D;
9902  if (unsigned NumTempParamLists = TempParams.size())
9903    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9904                                   NumTempParamLists,
9905                                   TempParams.release(),
9906                                   TSI,
9907                                   DS.getFriendSpecLoc());
9908  else
9909    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9910
9911  if (!D)
9912    return 0;
9913
9914  D->setAccess(AS_public);
9915  CurContext->addDecl(D);
9916
9917  return D;
9918}
9919
9920Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9921                                    MultiTemplateParamsArg TemplateParams) {
9922  const DeclSpec &DS = D.getDeclSpec();
9923
9924  assert(DS.isFriendSpecified());
9925  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9926
9927  SourceLocation Loc = D.getIdentifierLoc();
9928  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9929
9930  // C++ [class.friend]p1
9931  //   A friend of a class is a function or class....
9932  // Note that this sees through typedefs, which is intended.
9933  // It *doesn't* see through dependent types, which is correct
9934  // according to [temp.arg.type]p3:
9935  //   If a declaration acquires a function type through a
9936  //   type dependent on a template-parameter and this causes
9937  //   a declaration that does not use the syntactic form of a
9938  //   function declarator to have a function type, the program
9939  //   is ill-formed.
9940  if (!TInfo->getType()->isFunctionType()) {
9941    Diag(Loc, diag::err_unexpected_friend);
9942
9943    // It might be worthwhile to try to recover by creating an
9944    // appropriate declaration.
9945    return 0;
9946  }
9947
9948  // C++ [namespace.memdef]p3
9949  //  - If a friend declaration in a non-local class first declares a
9950  //    class or function, the friend class or function is a member
9951  //    of the innermost enclosing namespace.
9952  //  - The name of the friend is not found by simple name lookup
9953  //    until a matching declaration is provided in that namespace
9954  //    scope (either before or after the class declaration granting
9955  //    friendship).
9956  //  - If a friend function is called, its name may be found by the
9957  //    name lookup that considers functions from namespaces and
9958  //    classes associated with the types of the function arguments.
9959  //  - When looking for a prior declaration of a class or a function
9960  //    declared as a friend, scopes outside the innermost enclosing
9961  //    namespace scope are not considered.
9962
9963  CXXScopeSpec &SS = D.getCXXScopeSpec();
9964  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9965  DeclarationName Name = NameInfo.getName();
9966  assert(Name);
9967
9968  // Check for unexpanded parameter packs.
9969  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9970      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9971      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9972    return 0;
9973
9974  // The context we found the declaration in, or in which we should
9975  // create the declaration.
9976  DeclContext *DC;
9977  Scope *DCScope = S;
9978  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9979                        ForRedeclaration);
9980
9981  // FIXME: there are different rules in local classes
9982
9983  // There are four cases here.
9984  //   - There's no scope specifier, in which case we just go to the
9985  //     appropriate scope and look for a function or function template
9986  //     there as appropriate.
9987  // Recover from invalid scope qualifiers as if they just weren't there.
9988  if (SS.isInvalid() || !SS.isSet()) {
9989    // C++0x [namespace.memdef]p3:
9990    //   If the name in a friend declaration is neither qualified nor
9991    //   a template-id and the declaration is a function or an
9992    //   elaborated-type-specifier, the lookup to determine whether
9993    //   the entity has been previously declared shall not consider
9994    //   any scopes outside the innermost enclosing namespace.
9995    // C++0x [class.friend]p11:
9996    //   If a friend declaration appears in a local class and the name
9997    //   specified is an unqualified name, a prior declaration is
9998    //   looked up without considering scopes that are outside the
9999    //   innermost enclosing non-class scope. For a friend function
10000    //   declaration, if there is no prior declaration, the program is
10001    //   ill-formed.
10002    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10003    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10004
10005    // Find the appropriate context according to the above.
10006    DC = CurContext;
10007    while (true) {
10008      // Skip class contexts.  If someone can cite chapter and verse
10009      // for this behavior, that would be nice --- it's what GCC and
10010      // EDG do, and it seems like a reasonable intent, but the spec
10011      // really only says that checks for unqualified existing
10012      // declarations should stop at the nearest enclosing namespace,
10013      // not that they should only consider the nearest enclosing
10014      // namespace.
10015      while (DC->isRecord())
10016        DC = DC->getParent();
10017
10018      LookupQualifiedName(Previous, DC);
10019
10020      // TODO: decide what we think about using declarations.
10021      if (isLocal || !Previous.empty())
10022        break;
10023
10024      if (isTemplateId) {
10025        if (isa<TranslationUnitDecl>(DC)) break;
10026      } else {
10027        if (DC->isFileContext()) break;
10028      }
10029      DC = DC->getParent();
10030    }
10031
10032    // C++ [class.friend]p1: A friend of a class is a function or
10033    //   class that is not a member of the class . . .
10034    // C++11 changes this for both friend types and functions.
10035    // Most C++ 98 compilers do seem to give an error here, so
10036    // we do, too.
10037    if (!Previous.empty() && DC->Equals(CurContext))
10038      Diag(DS.getFriendSpecLoc(),
10039           getLangOptions().CPlusPlus0x ?
10040             diag::warn_cxx98_compat_friend_is_member :
10041             diag::err_friend_is_member);
10042
10043    DCScope = getScopeForDeclContext(S, DC);
10044
10045    // C++ [class.friend]p6:
10046    //   A function can be defined in a friend declaration of a class if and
10047    //   only if the class is a non-local class (9.8), the function name is
10048    //   unqualified, and the function has namespace scope.
10049    if (isLocal && D.isFunctionDefinition()) {
10050      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10051    }
10052
10053  //   - There's a non-dependent scope specifier, in which case we
10054  //     compute it and do a previous lookup there for a function
10055  //     or function template.
10056  } else if (!SS.getScopeRep()->isDependent()) {
10057    DC = computeDeclContext(SS);
10058    if (!DC) return 0;
10059
10060    if (RequireCompleteDeclContext(SS, DC)) return 0;
10061
10062    LookupQualifiedName(Previous, DC);
10063
10064    // Ignore things found implicitly in the wrong scope.
10065    // TODO: better diagnostics for this case.  Suggesting the right
10066    // qualified scope would be nice...
10067    LookupResult::Filter F = Previous.makeFilter();
10068    while (F.hasNext()) {
10069      NamedDecl *D = F.next();
10070      if (!DC->InEnclosingNamespaceSetOf(
10071              D->getDeclContext()->getRedeclContext()))
10072        F.erase();
10073    }
10074    F.done();
10075
10076    if (Previous.empty()) {
10077      D.setInvalidType();
10078      Diag(Loc, diag::err_qualified_friend_not_found)
10079          << Name << TInfo->getType();
10080      return 0;
10081    }
10082
10083    // C++ [class.friend]p1: A friend of a class is a function or
10084    //   class that is not a member of the class . . .
10085    if (DC->Equals(CurContext))
10086      Diag(DS.getFriendSpecLoc(),
10087           getLangOptions().CPlusPlus0x ?
10088             diag::warn_cxx98_compat_friend_is_member :
10089             diag::err_friend_is_member);
10090
10091    if (D.isFunctionDefinition()) {
10092      // C++ [class.friend]p6:
10093      //   A function can be defined in a friend declaration of a class if and
10094      //   only if the class is a non-local class (9.8), the function name is
10095      //   unqualified, and the function has namespace scope.
10096      SemaDiagnosticBuilder DB
10097        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10098
10099      DB << SS.getScopeRep();
10100      if (DC->isFileContext())
10101        DB << FixItHint::CreateRemoval(SS.getRange());
10102      SS.clear();
10103    }
10104
10105  //   - There's a scope specifier that does not match any template
10106  //     parameter lists, in which case we use some arbitrary context,
10107  //     create a method or method template, and wait for instantiation.
10108  //   - There's a scope specifier that does match some template
10109  //     parameter lists, which we don't handle right now.
10110  } else {
10111    if (D.isFunctionDefinition()) {
10112      // C++ [class.friend]p6:
10113      //   A function can be defined in a friend declaration of a class if and
10114      //   only if the class is a non-local class (9.8), the function name is
10115      //   unqualified, and the function has namespace scope.
10116      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10117        << SS.getScopeRep();
10118    }
10119
10120    DC = CurContext;
10121    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10122  }
10123
10124  if (!DC->isRecord()) {
10125    // This implies that it has to be an operator or function.
10126    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10127        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10128        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10129      Diag(Loc, diag::err_introducing_special_friend) <<
10130        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10131         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10132      return 0;
10133    }
10134  }
10135
10136  // FIXME: This is an egregious hack to cope with cases where the scope stack
10137  // does not contain the declaration context, i.e., in an out-of-line
10138  // definition of a class.
10139  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10140  if (!DCScope) {
10141    FakeDCScope.setEntity(DC);
10142    DCScope = &FakeDCScope;
10143  }
10144
10145  bool AddToScope = true;
10146  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10147                                          move(TemplateParams), AddToScope);
10148  if (!ND) return 0;
10149
10150  assert(ND->getDeclContext() == DC);
10151  assert(ND->getLexicalDeclContext() == CurContext);
10152
10153  // Add the function declaration to the appropriate lookup tables,
10154  // adjusting the redeclarations list as necessary.  We don't
10155  // want to do this yet if the friending class is dependent.
10156  //
10157  // Also update the scope-based lookup if the target context's
10158  // lookup context is in lexical scope.
10159  if (!CurContext->isDependentContext()) {
10160    DC = DC->getRedeclContext();
10161    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10162    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10163      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10164  }
10165
10166  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10167                                       D.getIdentifierLoc(), ND,
10168                                       DS.getFriendSpecLoc());
10169  FrD->setAccess(AS_public);
10170  CurContext->addDecl(FrD);
10171
10172  if (ND->isInvalidDecl())
10173    FrD->setInvalidDecl();
10174  else {
10175    FunctionDecl *FD;
10176    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10177      FD = FTD->getTemplatedDecl();
10178    else
10179      FD = cast<FunctionDecl>(ND);
10180
10181    // Mark templated-scope function declarations as unsupported.
10182    if (FD->getNumTemplateParameterLists())
10183      FrD->setUnsupportedFriend(true);
10184  }
10185
10186  return ND;
10187}
10188
10189void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10190  AdjustDeclIfTemplate(Dcl);
10191
10192  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10193  if (!Fn) {
10194    Diag(DelLoc, diag::err_deleted_non_function);
10195    return;
10196  }
10197  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10198    Diag(DelLoc, diag::err_deleted_decl_not_first);
10199    Diag(Prev->getLocation(), diag::note_previous_declaration);
10200    // If the declaration wasn't the first, we delete the function anyway for
10201    // recovery.
10202  }
10203  Fn->setDeletedAsWritten();
10204}
10205
10206void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10207  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10208
10209  if (MD) {
10210    if (MD->getParent()->isDependentType()) {
10211      MD->setDefaulted();
10212      MD->setExplicitlyDefaulted();
10213      return;
10214    }
10215
10216    CXXSpecialMember Member = getSpecialMember(MD);
10217    if (Member == CXXInvalid) {
10218      Diag(DefaultLoc, diag::err_default_special_members);
10219      return;
10220    }
10221
10222    MD->setDefaulted();
10223    MD->setExplicitlyDefaulted();
10224
10225    // If this definition appears within the record, do the checking when
10226    // the record is complete.
10227    const FunctionDecl *Primary = MD;
10228    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10229      // Find the uninstantiated declaration that actually had the '= default'
10230      // on it.
10231      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10232
10233    if (Primary == Primary->getCanonicalDecl())
10234      return;
10235
10236    switch (Member) {
10237    case CXXDefaultConstructor: {
10238      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10239      CheckExplicitlyDefaultedDefaultConstructor(CD);
10240      if (!CD->isInvalidDecl())
10241        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10242      break;
10243    }
10244
10245    case CXXCopyConstructor: {
10246      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10247      CheckExplicitlyDefaultedCopyConstructor(CD);
10248      if (!CD->isInvalidDecl())
10249        DefineImplicitCopyConstructor(DefaultLoc, CD);
10250      break;
10251    }
10252
10253    case CXXCopyAssignment: {
10254      CheckExplicitlyDefaultedCopyAssignment(MD);
10255      if (!MD->isInvalidDecl())
10256        DefineImplicitCopyAssignment(DefaultLoc, MD);
10257      break;
10258    }
10259
10260    case CXXDestructor: {
10261      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10262      CheckExplicitlyDefaultedDestructor(DD);
10263      if (!DD->isInvalidDecl())
10264        DefineImplicitDestructor(DefaultLoc, DD);
10265      break;
10266    }
10267
10268    case CXXMoveConstructor: {
10269      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10270      CheckExplicitlyDefaultedMoveConstructor(CD);
10271      if (!CD->isInvalidDecl())
10272        DefineImplicitMoveConstructor(DefaultLoc, CD);
10273      break;
10274    }
10275
10276    case CXXMoveAssignment: {
10277      CheckExplicitlyDefaultedMoveAssignment(MD);
10278      if (!MD->isInvalidDecl())
10279        DefineImplicitMoveAssignment(DefaultLoc, MD);
10280      break;
10281    }
10282
10283    case CXXInvalid:
10284      llvm_unreachable("Invalid special member.");
10285    }
10286  } else {
10287    Diag(DefaultLoc, diag::err_default_special_members);
10288  }
10289}
10290
10291static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10292  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10293    Stmt *SubStmt = *CI;
10294    if (!SubStmt)
10295      continue;
10296    if (isa<ReturnStmt>(SubStmt))
10297      Self.Diag(SubStmt->getSourceRange().getBegin(),
10298           diag::err_return_in_constructor_handler);
10299    if (!isa<Expr>(SubStmt))
10300      SearchForReturnInStmt(Self, SubStmt);
10301  }
10302}
10303
10304void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10305  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10306    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10307    SearchForReturnInStmt(*this, Handler);
10308  }
10309}
10310
10311bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10312                                             const CXXMethodDecl *Old) {
10313  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10314  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10315
10316  if (Context.hasSameType(NewTy, OldTy) ||
10317      NewTy->isDependentType() || OldTy->isDependentType())
10318    return false;
10319
10320  // Check if the return types are covariant
10321  QualType NewClassTy, OldClassTy;
10322
10323  /// Both types must be pointers or references to classes.
10324  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10325    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10326      NewClassTy = NewPT->getPointeeType();
10327      OldClassTy = OldPT->getPointeeType();
10328    }
10329  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10330    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10331      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10332        NewClassTy = NewRT->getPointeeType();
10333        OldClassTy = OldRT->getPointeeType();
10334      }
10335    }
10336  }
10337
10338  // The return types aren't either both pointers or references to a class type.
10339  if (NewClassTy.isNull()) {
10340    Diag(New->getLocation(),
10341         diag::err_different_return_type_for_overriding_virtual_function)
10342      << New->getDeclName() << NewTy << OldTy;
10343    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10344
10345    return true;
10346  }
10347
10348  // C++ [class.virtual]p6:
10349  //   If the return type of D::f differs from the return type of B::f, the
10350  //   class type in the return type of D::f shall be complete at the point of
10351  //   declaration of D::f or shall be the class type D.
10352  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10353    if (!RT->isBeingDefined() &&
10354        RequireCompleteType(New->getLocation(), NewClassTy,
10355                            PDiag(diag::err_covariant_return_incomplete)
10356                              << New->getDeclName()))
10357    return true;
10358  }
10359
10360  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10361    // Check if the new class derives from the old class.
10362    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10363      Diag(New->getLocation(),
10364           diag::err_covariant_return_not_derived)
10365      << New->getDeclName() << NewTy << OldTy;
10366      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10367      return true;
10368    }
10369
10370    // Check if we the conversion from derived to base is valid.
10371    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10372                    diag::err_covariant_return_inaccessible_base,
10373                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10374                    // FIXME: Should this point to the return type?
10375                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10376      // FIXME: this note won't trigger for delayed access control
10377      // diagnostics, and it's impossible to get an undelayed error
10378      // here from access control during the original parse because
10379      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10380      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10381      return true;
10382    }
10383  }
10384
10385  // The qualifiers of the return types must be the same.
10386  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10387    Diag(New->getLocation(),
10388         diag::err_covariant_return_type_different_qualifications)
10389    << New->getDeclName() << NewTy << OldTy;
10390    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10391    return true;
10392  };
10393
10394
10395  // The new class type must have the same or less qualifiers as the old type.
10396  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10397    Diag(New->getLocation(),
10398         diag::err_covariant_return_type_class_type_more_qualified)
10399    << New->getDeclName() << NewTy << OldTy;
10400    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10401    return true;
10402  };
10403
10404  return false;
10405}
10406
10407/// \brief Mark the given method pure.
10408///
10409/// \param Method the method to be marked pure.
10410///
10411/// \param InitRange the source range that covers the "0" initializer.
10412bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10413  SourceLocation EndLoc = InitRange.getEnd();
10414  if (EndLoc.isValid())
10415    Method->setRangeEnd(EndLoc);
10416
10417  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10418    Method->setPure();
10419    return false;
10420  }
10421
10422  if (!Method->isInvalidDecl())
10423    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10424      << Method->getDeclName() << InitRange;
10425  return true;
10426}
10427
10428/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10429/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10430/// is a fresh scope pushed for just this purpose.
10431///
10432/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10433/// static data member of class X, names should be looked up in the scope of
10434/// class X.
10435void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10436  // If there is no declaration, there was an error parsing it.
10437  if (D == 0 || D->isInvalidDecl()) return;
10438
10439  // We should only get called for declarations with scope specifiers, like:
10440  //   int foo::bar;
10441  assert(D->isOutOfLine());
10442  EnterDeclaratorContext(S, D->getDeclContext());
10443}
10444
10445/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10446/// initializer for the out-of-line declaration 'D'.
10447void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10448  // If there is no declaration, there was an error parsing it.
10449  if (D == 0 || D->isInvalidDecl()) return;
10450
10451  assert(D->isOutOfLine());
10452  ExitDeclaratorContext(S);
10453}
10454
10455/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10456/// C++ if/switch/while/for statement.
10457/// e.g: "if (int x = f()) {...}"
10458DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10459  // C++ 6.4p2:
10460  // The declarator shall not specify a function or an array.
10461  // The type-specifier-seq shall not contain typedef and shall not declare a
10462  // new class or enumeration.
10463  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10464         "Parser allowed 'typedef' as storage class of condition decl.");
10465
10466  Decl *Dcl = ActOnDeclarator(S, D);
10467  if (!Dcl)
10468    return true;
10469
10470  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10471    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10472      << D.getSourceRange();
10473    return true;
10474  }
10475
10476  return Dcl;
10477}
10478
10479void Sema::LoadExternalVTableUses() {
10480  if (!ExternalSource)
10481    return;
10482
10483  SmallVector<ExternalVTableUse, 4> VTables;
10484  ExternalSource->ReadUsedVTables(VTables);
10485  SmallVector<VTableUse, 4> NewUses;
10486  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10487    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10488      = VTablesUsed.find(VTables[I].Record);
10489    // Even if a definition wasn't required before, it may be required now.
10490    if (Pos != VTablesUsed.end()) {
10491      if (!Pos->second && VTables[I].DefinitionRequired)
10492        Pos->second = true;
10493      continue;
10494    }
10495
10496    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10497    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10498  }
10499
10500  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10501}
10502
10503void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10504                          bool DefinitionRequired) {
10505  // Ignore any vtable uses in unevaluated operands or for classes that do
10506  // not have a vtable.
10507  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10508      CurContext->isDependentContext() ||
10509      ExprEvalContexts.back().Context == Unevaluated)
10510    return;
10511
10512  // Try to insert this class into the map.
10513  LoadExternalVTableUses();
10514  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10515  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10516    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10517  if (!Pos.second) {
10518    // If we already had an entry, check to see if we are promoting this vtable
10519    // to required a definition. If so, we need to reappend to the VTableUses
10520    // list, since we may have already processed the first entry.
10521    if (DefinitionRequired && !Pos.first->second) {
10522      Pos.first->second = true;
10523    } else {
10524      // Otherwise, we can early exit.
10525      return;
10526    }
10527  }
10528
10529  // Local classes need to have their virtual members marked
10530  // immediately. For all other classes, we mark their virtual members
10531  // at the end of the translation unit.
10532  if (Class->isLocalClass())
10533    MarkVirtualMembersReferenced(Loc, Class);
10534  else
10535    VTableUses.push_back(std::make_pair(Class, Loc));
10536}
10537
10538bool Sema::DefineUsedVTables() {
10539  LoadExternalVTableUses();
10540  if (VTableUses.empty())
10541    return false;
10542
10543  // Note: The VTableUses vector could grow as a result of marking
10544  // the members of a class as "used", so we check the size each
10545  // time through the loop and prefer indices (with are stable) to
10546  // iterators (which are not).
10547  bool DefinedAnything = false;
10548  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10549    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10550    if (!Class)
10551      continue;
10552
10553    SourceLocation Loc = VTableUses[I].second;
10554
10555    // If this class has a key function, but that key function is
10556    // defined in another translation unit, we don't need to emit the
10557    // vtable even though we're using it.
10558    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10559    if (KeyFunction && !KeyFunction->hasBody()) {
10560      switch (KeyFunction->getTemplateSpecializationKind()) {
10561      case TSK_Undeclared:
10562      case TSK_ExplicitSpecialization:
10563      case TSK_ExplicitInstantiationDeclaration:
10564        // The key function is in another translation unit.
10565        continue;
10566
10567      case TSK_ExplicitInstantiationDefinition:
10568      case TSK_ImplicitInstantiation:
10569        // We will be instantiating the key function.
10570        break;
10571      }
10572    } else if (!KeyFunction) {
10573      // If we have a class with no key function that is the subject
10574      // of an explicit instantiation declaration, suppress the
10575      // vtable; it will live with the explicit instantiation
10576      // definition.
10577      bool IsExplicitInstantiationDeclaration
10578        = Class->getTemplateSpecializationKind()
10579                                      == TSK_ExplicitInstantiationDeclaration;
10580      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10581                                 REnd = Class->redecls_end();
10582           R != REnd; ++R) {
10583        TemplateSpecializationKind TSK
10584          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10585        if (TSK == TSK_ExplicitInstantiationDeclaration)
10586          IsExplicitInstantiationDeclaration = true;
10587        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10588          IsExplicitInstantiationDeclaration = false;
10589          break;
10590        }
10591      }
10592
10593      if (IsExplicitInstantiationDeclaration)
10594        continue;
10595    }
10596
10597    // Mark all of the virtual members of this class as referenced, so
10598    // that we can build a vtable. Then, tell the AST consumer that a
10599    // vtable for this class is required.
10600    DefinedAnything = true;
10601    MarkVirtualMembersReferenced(Loc, Class);
10602    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10603    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10604
10605    // Optionally warn if we're emitting a weak vtable.
10606    if (Class->getLinkage() == ExternalLinkage &&
10607        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10608      const FunctionDecl *KeyFunctionDef = 0;
10609      if (!KeyFunction ||
10610          (KeyFunction->hasBody(KeyFunctionDef) &&
10611           KeyFunctionDef->isInlined()))
10612        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10613    }
10614  }
10615  VTableUses.clear();
10616
10617  return DefinedAnything;
10618}
10619
10620void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10621                                        const CXXRecordDecl *RD) {
10622  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10623       e = RD->method_end(); i != e; ++i) {
10624    CXXMethodDecl *MD = *i;
10625
10626    // C++ [basic.def.odr]p2:
10627    //   [...] A virtual member function is used if it is not pure. [...]
10628    if (MD->isVirtual() && !MD->isPure())
10629      MarkDeclarationReferenced(Loc, MD);
10630  }
10631
10632  // Only classes that have virtual bases need a VTT.
10633  if (RD->getNumVBases() == 0)
10634    return;
10635
10636  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10637           e = RD->bases_end(); i != e; ++i) {
10638    const CXXRecordDecl *Base =
10639        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10640    if (Base->getNumVBases() == 0)
10641      continue;
10642    MarkVirtualMembersReferenced(Loc, Base);
10643  }
10644}
10645
10646/// SetIvarInitializers - This routine builds initialization ASTs for the
10647/// Objective-C implementation whose ivars need be initialized.
10648void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10649  if (!getLangOptions().CPlusPlus)
10650    return;
10651  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10652    SmallVector<ObjCIvarDecl*, 8> ivars;
10653    CollectIvarsToConstructOrDestruct(OID, ivars);
10654    if (ivars.empty())
10655      return;
10656    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10657    for (unsigned i = 0; i < ivars.size(); i++) {
10658      FieldDecl *Field = ivars[i];
10659      if (Field->isInvalidDecl())
10660        continue;
10661
10662      CXXCtorInitializer *Member;
10663      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10664      InitializationKind InitKind =
10665        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10666
10667      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10668      ExprResult MemberInit =
10669        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10670      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10671      // Note, MemberInit could actually come back empty if no initialization
10672      // is required (e.g., because it would call a trivial default constructor)
10673      if (!MemberInit.get() || MemberInit.isInvalid())
10674        continue;
10675
10676      Member =
10677        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10678                                         SourceLocation(),
10679                                         MemberInit.takeAs<Expr>(),
10680                                         SourceLocation());
10681      AllToInit.push_back(Member);
10682
10683      // Be sure that the destructor is accessible and is marked as referenced.
10684      if (const RecordType *RecordTy
10685                  = Context.getBaseElementType(Field->getType())
10686                                                        ->getAs<RecordType>()) {
10687                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10688        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10689          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10690          CheckDestructorAccess(Field->getLocation(), Destructor,
10691                            PDiag(diag::err_access_dtor_ivar)
10692                              << Context.getBaseElementType(Field->getType()));
10693        }
10694      }
10695    }
10696    ObjCImplementation->setIvarInitializers(Context,
10697                                            AllToInit.data(), AllToInit.size());
10698  }
10699}
10700
10701static
10702void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10703                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10704                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10705                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10706                           Sema &S) {
10707  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10708                                                   CE = Current.end();
10709  if (Ctor->isInvalidDecl())
10710    return;
10711
10712  const FunctionDecl *FNTarget = 0;
10713  CXXConstructorDecl *Target;
10714
10715  // We ignore the result here since if we don't have a body, Target will be
10716  // null below.
10717  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10718  Target
10719= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10720
10721  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10722                     // Avoid dereferencing a null pointer here.
10723                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10724
10725  if (!Current.insert(Canonical))
10726    return;
10727
10728  // We know that beyond here, we aren't chaining into a cycle.
10729  if (!Target || !Target->isDelegatingConstructor() ||
10730      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10731    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10732      Valid.insert(*CI);
10733    Current.clear();
10734  // We've hit a cycle.
10735  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10736             Current.count(TCanonical)) {
10737    // If we haven't diagnosed this cycle yet, do so now.
10738    if (!Invalid.count(TCanonical)) {
10739      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10740             diag::warn_delegating_ctor_cycle)
10741        << Ctor;
10742
10743      // Don't add a note for a function delegating directo to itself.
10744      if (TCanonical != Canonical)
10745        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10746
10747      CXXConstructorDecl *C = Target;
10748      while (C->getCanonicalDecl() != Canonical) {
10749        (void)C->getTargetConstructor()->hasBody(FNTarget);
10750        assert(FNTarget && "Ctor cycle through bodiless function");
10751
10752        C
10753       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10754        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10755      }
10756    }
10757
10758    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10759      Invalid.insert(*CI);
10760    Current.clear();
10761  } else {
10762    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10763  }
10764}
10765
10766
10767void Sema::CheckDelegatingCtorCycles() {
10768  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10769
10770  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10771                                                   CE = Current.end();
10772
10773  for (DelegatingCtorDeclsType::iterator
10774         I = DelegatingCtorDecls.begin(ExternalSource),
10775         E = DelegatingCtorDecls.end();
10776       I != E; ++I) {
10777   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10778  }
10779
10780  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10781    (*CI)->setInvalidDecl();
10782}
10783
10784/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10785Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10786  // Implicitly declared functions (e.g. copy constructors) are
10787  // __host__ __device__
10788  if (D->isImplicit())
10789    return CFT_HostDevice;
10790
10791  if (D->hasAttr<CUDAGlobalAttr>())
10792    return CFT_Global;
10793
10794  if (D->hasAttr<CUDADeviceAttr>()) {
10795    if (D->hasAttr<CUDAHostAttr>())
10796      return CFT_HostDevice;
10797    else
10798      return CFT_Device;
10799  }
10800
10801  return CFT_Host;
10802}
10803
10804bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10805                           CUDAFunctionTarget CalleeTarget) {
10806  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10807  // Callable from the device only."
10808  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10809    return true;
10810
10811  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10812  // Callable from the host only."
10813  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10814  // Callable from the host only."
10815  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10816      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10817    return true;
10818
10819  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10820    return true;
10821
10822  return false;
10823}
10824