SemaDeclCXX.cpp revision 7252f5110de3163a465aa50a2114c1fef9e848e8
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  // C++ 9.2p6: A member shall not be declared to have automatic storage
554  // duration (auto, register) or with the extern storage-class-specifier.
555  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
556  // data members and cannot be applied to names declared const or static,
557  // and cannot be applied to reference members.
558  switch (DS.getStorageClassSpec()) {
559    case DeclSpec::SCS_unspecified:
560    case DeclSpec::SCS_typedef:
561    case DeclSpec::SCS_static:
562      // FALL THROUGH.
563      break;
564    case DeclSpec::SCS_mutable:
565      if (isFunc) {
566        if (DS.getStorageClassSpecLoc().isValid())
567          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
568        else
569          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
570
571        // FIXME: It would be nicer if the keyword was ignored only for this
572        // declarator. Otherwise we could get follow-up errors.
573        D.getMutableDeclSpec().ClearStorageClassSpecs();
574      } else {
575        QualType T = GetTypeForDeclarator(D, S);
576        diag::kind err = static_cast<diag::kind>(0);
577        if (T->isReferenceType())
578          err = diag::err_mutable_reference;
579        else if (T.isConstQualified())
580          err = diag::err_mutable_const;
581        if (err != 0) {
582          if (DS.getStorageClassSpecLoc().isValid())
583            Diag(DS.getStorageClassSpecLoc(), err);
584          else
585            Diag(DS.getThreadSpecLoc(), err);
586          // FIXME: It would be nicer if the keyword was ignored only for this
587          // declarator. Otherwise we could get follow-up errors.
588          D.getMutableDeclSpec().ClearStorageClassSpecs();
589        }
590      }
591      break;
592    default:
593      if (DS.getStorageClassSpecLoc().isValid())
594        Diag(DS.getStorageClassSpecLoc(),
595             diag::err_storageclass_invalid_for_member);
596      else
597        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
598      D.getMutableDeclSpec().ClearStorageClassSpecs();
599  }
600
601  if (!isFunc &&
602      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
603      D.getNumTypeObjects() == 0) {
604    // Check also for this case:
605    //
606    // typedef int f();
607    // f a;
608    //
609    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
610    isFunc = TDType->isFunctionType();
611  }
612
613  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
614                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
615                      !isFunc);
616
617  Decl *Member;
618  if (isInstField) {
619    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
620                         AS);
621    assert(Member && "HandleField never returns null");
622  } else {
623    Member = ActOnDeclarator(S, D).getAs<Decl>();
624    if (!Member) {
625      if (BitWidth) DeleteExpr(BitWidth);
626      return DeclPtrTy();
627    }
628
629    // Non-instance-fields can't have a bitfield.
630    if (BitWidth) {
631      if (Member->isInvalidDecl()) {
632        // don't emit another diagnostic.
633      } else if (isa<VarDecl>(Member)) {
634        // C++ 9.6p3: A bit-field shall not be a static member.
635        // "static member 'A' cannot be a bit-field"
636        Diag(Loc, diag::err_static_not_bitfield)
637          << Name << BitWidth->getSourceRange();
638      } else if (isa<TypedefDecl>(Member)) {
639        // "typedef member 'x' cannot be a bit-field"
640        Diag(Loc, diag::err_typedef_not_bitfield)
641          << Name << BitWidth->getSourceRange();
642      } else {
643        // A function typedef ("typedef int f(); f a;").
644        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
645        Diag(Loc, diag::err_not_integral_type_bitfield)
646          << Name << cast<ValueDecl>(Member)->getType()
647          << BitWidth->getSourceRange();
648      }
649
650      DeleteExpr(BitWidth);
651      BitWidth = 0;
652      Member->setInvalidDecl();
653    }
654
655    Member->setAccess(AS);
656  }
657
658  assert((Name || isInstField) && "No identifier for non-field ?");
659
660  if (Init)
661    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
662  if (Deleted) // FIXME: Source location is not very good.
663    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
664
665  if (isInstField) {
666    FieldCollector->Add(cast<FieldDecl>(Member));
667    return DeclPtrTy();
668  }
669  return DeclPtrTy::make(Member);
670}
671
672/// ActOnMemInitializer - Handle a C++ member initializer.
673Sema::MemInitResult
674Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
675                          Scope *S,
676                          const CXXScopeSpec &SS,
677                          IdentifierInfo *MemberOrBase,
678                          TypeTy *TemplateTypeTy,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  if (!ConstructorD)
685    return true;
686
687  CXXConstructorDecl *Constructor
688    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
689  if (!Constructor) {
690    // The user wrote a constructor initializer on a function that is
691    // not a C++ constructor. Ignore the error for now, because we may
692    // have more member initializers coming; we'll diagnose it just
693    // once in ActOnMemInitializers.
694    return true;
695  }
696
697  CXXRecordDecl *ClassDecl = Constructor->getParent();
698
699  // C++ [class.base.init]p2:
700  //   Names in a mem-initializer-id are looked up in the scope of the
701  //   constructor’s class and, if not found in that scope, are looked
702  //   up in the scope containing the constructor’s
703  //   definition. [Note: if the constructor’s class contains a member
704  //   with the same name as a direct or virtual base class of the
705  //   class, a mem-initializer-id naming the member or base class and
706  //   composed of a single identifier refers to the class member. A
707  //   mem-initializer-id for the hidden base class may be specified
708  //   using a qualified name. ]
709  if (!SS.getScopeRep() && !TemplateTypeTy) {
710    // Look for a member, first.
711    FieldDecl *Member = 0;
712    DeclContext::lookup_result Result
713      = ClassDecl->lookup(MemberOrBase);
714    if (Result.first != Result.second)
715      Member = dyn_cast<FieldDecl>(*Result.first);
716
717    // FIXME: Handle members of an anonymous union.
718
719    if (Member) {
720      CXXConstructorDecl *C = 0;
721      QualType FieldType = Member->getType();
722      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
723        FieldType = Array->getElementType();
724      if (!FieldType->isDependentType() && FieldType->getAsRecordType())
725        C = PerformInitializationByConstructor(
726              FieldType, (Expr **)Args, NumArgs, IdLoc,
727              SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
728      else if (NumArgs != 1)
729        return Diag(IdLoc, diag::err_mem_initializer_mismatch)
730                    << MemberOrBase << SourceRange(IdLoc, RParenLoc);
731      else {
732        Expr * NewExp = (Expr*)Args[0];
733        if (PerformCopyInitialization(NewExp, FieldType, "passing"))
734          return true;
735        Args[0] = NewExp;
736      }
737      // FIXME: Perform direct initialization of the member.
738      return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
739                                                      NumArgs, C, IdLoc);
740    }
741  }
742  // It didn't name a member, so see if it names a class.
743  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
744                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
745  if (!BaseTy)
746    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
747      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
748
749  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
750  if (!BaseType->isRecordType() && !BaseType->isDependentType())
751    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
752      << BaseType << SourceRange(IdLoc, RParenLoc);
753
754  // C++ [class.base.init]p2:
755  //   [...] Unless the mem-initializer-id names a nonstatic data
756  //   member of the constructor’s class or a direct or virtual base
757  //   of that class, the mem-initializer is ill-formed. A
758  //   mem-initializer-list can initialize a base class using any
759  //   name that denotes that base class type.
760
761  // First, check for a direct base class.
762  const CXXBaseSpecifier *DirectBaseSpec = 0;
763  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
764       Base != ClassDecl->bases_end(); ++Base) {
765    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
766        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
767      // We found a direct base of this type. That's what we're
768      // initializing.
769      DirectBaseSpec = &*Base;
770      break;
771    }
772  }
773
774  // Check for a virtual base class.
775  // FIXME: We might be able to short-circuit this if we know in advance that
776  // there are no virtual bases.
777  const CXXBaseSpecifier *VirtualBaseSpec = 0;
778  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
779    // We haven't found a base yet; search the class hierarchy for a
780    // virtual base class.
781    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
782                    /*DetectVirtual=*/false);
783    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
784      for (BasePaths::paths_iterator Path = Paths.begin();
785           Path != Paths.end(); ++Path) {
786        if (Path->back().Base->isVirtual()) {
787          VirtualBaseSpec = Path->back().Base;
788          break;
789        }
790      }
791    }
792  }
793
794  // C++ [base.class.init]p2:
795  //   If a mem-initializer-id is ambiguous because it designates both
796  //   a direct non-virtual base class and an inherited virtual base
797  //   class, the mem-initializer is ill-formed.
798  if (DirectBaseSpec && VirtualBaseSpec)
799    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
800      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
801  // C++ [base.class.init]p2:
802  // Unless the mem-initializer-id names a nonstatic data membeer of the
803  // constructor's class ot a direst or virtual base of that class, the
804  // mem-initializer is ill-formed.
805  if (!DirectBaseSpec && !VirtualBaseSpec)
806    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
807    << BaseType << ClassDecl->getNameAsCString()
808    << SourceRange(IdLoc, RParenLoc);
809  DeclarationName Name
810    = Context.DeclarationNames.getCXXConstructorName(
811        Context.getCanonicalType(BaseType));
812  CXXConstructorDecl *C = 0;
813  if (!BaseType->isDependentType())
814    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs, IdLoc,
815                                       SourceRange(IdLoc, RParenLoc), Name,
816                                       IK_Direct);
817
818  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
819                                                  NumArgs, C, IdLoc);
820}
821
822void
823Sema::BuildBaseOrMemberInitializers(ASTContext &C,
824                                 CXXConstructorDecl *Constructor,
825                                 CXXBaseOrMemberInitializer **Initializers,
826                                 unsigned NumInitializers
827                                 ) {
828  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
829  llvm::SmallVector<FieldDecl *, 4>Members;
830
831  Constructor->setBaseOrMemberInitializers(C,
832                                           Initializers, NumInitializers,
833                                           Bases, Members);
834  for (unsigned int i = 0; i < Bases.size(); i++)
835    Diag(Bases[i]->getSourceRange().getBegin(),
836         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
837  for (unsigned int i = 0; i < Members.size(); i++)
838    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
839          << 1 << Members[i]->getType();
840}
841
842static void *GetKeyForTopLevelField(FieldDecl *Field) {
843  // For anonymous unions, use the class declaration as the key.
844  if (const RecordType *RT = Field->getType()->getAsRecordType()) {
845    if (RT->getDecl()->isAnonymousStructOrUnion())
846      return static_cast<void *>(RT->getDecl());
847  }
848  return static_cast<void *>(Field);
849}
850
851static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
852  // For fields injected into the class via declaration of an anonymous union,
853  // use its anonymous union class declaration as the unique key.
854  if (FieldDecl *Field = Member->getMember()) {
855    if (Field->getDeclContext()->isRecord()) {
856      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
857      if (RD->isAnonymousStructOrUnion())
858        return static_cast<void *>(RD);
859    }
860    return static_cast<void *>(Field);
861  }
862  return static_cast<RecordType *>(Member->getBaseClass());
863}
864
865void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
866                                SourceLocation ColonLoc,
867                                MemInitTy **MemInits, unsigned NumMemInits) {
868  if (!ConstructorDecl)
869    return;
870
871  CXXConstructorDecl *Constructor
872    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
873
874  if (!Constructor) {
875    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
876    return;
877  }
878  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
879  bool err = false;
880  for (unsigned i = 0; i < NumMemInits; i++) {
881    CXXBaseOrMemberInitializer *Member =
882      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
883    void *KeyToMember = GetKeyForMember(Member);
884    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
885    if (!PrevMember) {
886      PrevMember = Member;
887      continue;
888    }
889    if (FieldDecl *Field = Member->getMember())
890      Diag(Member->getSourceLocation(),
891           diag::error_multiple_mem_initialization)
892      << Field->getNameAsString();
893    else {
894      Type *BaseClass = Member->getBaseClass();
895      assert(BaseClass && "ActOnMemInitializers - neither field or base");
896      Diag(Member->getSourceLocation(),
897           diag::error_multiple_base_initialization)
898        << BaseClass->getDesugaredType(true);
899    }
900    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
901      << 0;
902    err = true;
903  }
904  if (!err)
905    BuildBaseOrMemberInitializers(Context, Constructor,
906                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
907                      NumMemInits);
908
909  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
910               != Diagnostic::Ignored ||
911               Diags.getDiagnosticLevel(diag::warn_field_initialized)
912               != Diagnostic::Ignored)) {
913    // Also issue warning if order of ctor-initializer list does not match order
914    // of 1) base class declarations and 2) order of non-static data members.
915    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
916
917    CXXRecordDecl *ClassDecl
918      = cast<CXXRecordDecl>(Constructor->getDeclContext());
919    // Push virtual bases before others.
920    for (CXXRecordDecl::base_class_iterator VBase =
921         ClassDecl->vbases_begin(),
922         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
923      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
924
925    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
926         E = ClassDecl->bases_end(); Base != E; ++Base) {
927      // Virtuals are alread in the virtual base list and are constructed
928      // first.
929      if (Base->isVirtual())
930        continue;
931      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
932    }
933
934    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
935         E = ClassDecl->field_end(); Field != E; ++Field)
936      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
937
938    int Last = AllBaseOrMembers.size();
939    int curIndex = 0;
940    CXXBaseOrMemberInitializer *PrevMember = 0;
941    for (unsigned i = 0; i < NumMemInits; i++) {
942      CXXBaseOrMemberInitializer *Member =
943        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
944      void *MemberInCtorList = GetKeyForMember(Member);
945
946      for (; curIndex < Last; curIndex++)
947        if (MemberInCtorList == AllBaseOrMembers[curIndex])
948          break;
949      if (curIndex == Last) {
950        assert(PrevMember && "Member not in member list?!");
951        // Initializer as specified in ctor-initializer list is out of order.
952        // Issue a warning diagnostic.
953        if (PrevMember->isBaseInitializer()) {
954          // Diagnostics is for an initialized base class.
955          Type *BaseClass = PrevMember->getBaseClass();
956          Diag(PrevMember->getSourceLocation(),
957               diag::warn_base_initialized)
958                << BaseClass->getDesugaredType(true);
959        }
960        else {
961          FieldDecl *Field = PrevMember->getMember();
962          Diag(PrevMember->getSourceLocation(),
963               diag::warn_field_initialized)
964            << Field->getNameAsString();
965        }
966        // Also the note!
967        if (FieldDecl *Field = Member->getMember())
968          Diag(Member->getSourceLocation(),
969               diag::note_fieldorbase_initialized_here) << 0
970            << Field->getNameAsString();
971        else {
972          Type *BaseClass = Member->getBaseClass();
973          Diag(Member->getSourceLocation(),
974               diag::note_fieldorbase_initialized_here) << 1
975            << BaseClass->getDesugaredType(true);
976        }
977        for (curIndex = 0; curIndex < Last; curIndex++)
978          if (MemberInCtorList == AllBaseOrMembers[curIndex])
979            break;
980      }
981      PrevMember = Member;
982    }
983  }
984}
985
986void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
987  if (!CDtorDecl)
988    return;
989
990  if (CXXConstructorDecl *Constructor
991      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
992    BuildBaseOrMemberInitializers(Context,
993                                     Constructor,
994                                     (CXXBaseOrMemberInitializer **)0, 0);
995}
996
997namespace {
998  /// PureVirtualMethodCollector - traverses a class and its superclasses
999  /// and determines if it has any pure virtual methods.
1000  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1001    ASTContext &Context;
1002
1003  public:
1004    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1005
1006  private:
1007    MethodList Methods;
1008
1009    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1010
1011  public:
1012    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1013      : Context(Ctx) {
1014
1015      MethodList List;
1016      Collect(RD, List);
1017
1018      // Copy the temporary list to methods, and make sure to ignore any
1019      // null entries.
1020      for (size_t i = 0, e = List.size(); i != e; ++i) {
1021        if (List[i])
1022          Methods.push_back(List[i]);
1023      }
1024    }
1025
1026    bool empty() const { return Methods.empty(); }
1027
1028    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1029    MethodList::const_iterator methods_end() { return Methods.end(); }
1030  };
1031
1032  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1033                                           MethodList& Methods) {
1034    // First, collect the pure virtual methods for the base classes.
1035    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1036         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1037      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
1038        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1039        if (BaseDecl && BaseDecl->isAbstract())
1040          Collect(BaseDecl, Methods);
1041      }
1042    }
1043
1044    // Next, zero out any pure virtual methods that this class overrides.
1045    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1046
1047    MethodSetTy OverriddenMethods;
1048    size_t MethodsSize = Methods.size();
1049
1050    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1051         i != e; ++i) {
1052      // Traverse the record, looking for methods.
1053      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1054        // If the method is pure virtual, add it to the methods vector.
1055        if (MD->isPure()) {
1056          Methods.push_back(MD);
1057          continue;
1058        }
1059
1060        // Otherwise, record all the overridden methods in our set.
1061        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1062             E = MD->end_overridden_methods(); I != E; ++I) {
1063          // Keep track of the overridden methods.
1064          OverriddenMethods.insert(*I);
1065        }
1066      }
1067    }
1068
1069    // Now go through the methods and zero out all the ones we know are
1070    // overridden.
1071    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1072      if (OverriddenMethods.count(Methods[i]))
1073        Methods[i] = 0;
1074    }
1075
1076  }
1077}
1078
1079bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1080                                  unsigned DiagID, AbstractDiagSelID SelID,
1081                                  const CXXRecordDecl *CurrentRD) {
1082
1083  if (!getLangOptions().CPlusPlus)
1084    return false;
1085
1086  if (const ArrayType *AT = Context.getAsArrayType(T))
1087    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1088                                  CurrentRD);
1089
1090  if (const PointerType *PT = T->getAsPointerType()) {
1091    // Find the innermost pointer type.
1092    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1093      PT = T;
1094
1095    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1096      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1097                                    CurrentRD);
1098  }
1099
1100  const RecordType *RT = T->getAsRecordType();
1101  if (!RT)
1102    return false;
1103
1104  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1105  if (!RD)
1106    return false;
1107
1108  if (CurrentRD && CurrentRD != RD)
1109    return false;
1110
1111  if (!RD->isAbstract())
1112    return false;
1113
1114  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1115
1116  // Check if we've already emitted the list of pure virtual functions for this
1117  // class.
1118  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1119    return true;
1120
1121  PureVirtualMethodCollector Collector(Context, RD);
1122
1123  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1124       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1125    const CXXMethodDecl *MD = *I;
1126
1127    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1128      MD->getDeclName();
1129  }
1130
1131  if (!PureVirtualClassDiagSet)
1132    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1133  PureVirtualClassDiagSet->insert(RD);
1134
1135  return true;
1136}
1137
1138namespace {
1139  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1140    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1141    Sema &SemaRef;
1142    CXXRecordDecl *AbstractClass;
1143
1144    bool VisitDeclContext(const DeclContext *DC) {
1145      bool Invalid = false;
1146
1147      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1148           E = DC->decls_end(); I != E; ++I)
1149        Invalid |= Visit(*I);
1150
1151      return Invalid;
1152    }
1153
1154  public:
1155    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1156      : SemaRef(SemaRef), AbstractClass(ac) {
1157        Visit(SemaRef.Context.getTranslationUnitDecl());
1158    }
1159
1160    bool VisitFunctionDecl(const FunctionDecl *FD) {
1161      if (FD->isThisDeclarationADefinition()) {
1162        // No need to do the check if we're in a definition, because it requires
1163        // that the return/param types are complete.
1164        // because that requires
1165        return VisitDeclContext(FD);
1166      }
1167
1168      // Check the return type.
1169      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1170      bool Invalid =
1171        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1172                                       diag::err_abstract_type_in_decl,
1173                                       Sema::AbstractReturnType,
1174                                       AbstractClass);
1175
1176      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1177           E = FD->param_end(); I != E; ++I) {
1178        const ParmVarDecl *VD = *I;
1179        Invalid |=
1180          SemaRef.RequireNonAbstractType(VD->getLocation(),
1181                                         VD->getOriginalType(),
1182                                         diag::err_abstract_type_in_decl,
1183                                         Sema::AbstractParamType,
1184                                         AbstractClass);
1185      }
1186
1187      return Invalid;
1188    }
1189
1190    bool VisitDecl(const Decl* D) {
1191      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1192        return VisitDeclContext(DC);
1193
1194      return false;
1195    }
1196  };
1197}
1198
1199void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1200                                             DeclPtrTy TagDecl,
1201                                             SourceLocation LBrac,
1202                                             SourceLocation RBrac) {
1203  if (!TagDecl)
1204    return;
1205
1206  AdjustDeclIfTemplate(TagDecl);
1207  ActOnFields(S, RLoc, TagDecl,
1208              (DeclPtrTy*)FieldCollector->getCurFields(),
1209              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1210
1211  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1212  if (!RD->isAbstract()) {
1213    // Collect all the pure virtual methods and see if this is an abstract
1214    // class after all.
1215    PureVirtualMethodCollector Collector(Context, RD);
1216    if (!Collector.empty())
1217      RD->setAbstract(true);
1218  }
1219
1220  if (RD->isAbstract())
1221    AbstractClassUsageDiagnoser(*this, RD);
1222
1223  if (!RD->isDependentType())
1224    AddImplicitlyDeclaredMembersToClass(RD);
1225}
1226
1227/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1228/// special functions, such as the default constructor, copy
1229/// constructor, or destructor, to the given C++ class (C++
1230/// [special]p1).  This routine can only be executed just before the
1231/// definition of the class is complete.
1232void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1233  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1234  ClassType = Context.getCanonicalType(ClassType);
1235
1236  // FIXME: Implicit declarations have exception specifications, which are
1237  // the union of the specifications of the implicitly called functions.
1238
1239  if (!ClassDecl->hasUserDeclaredConstructor()) {
1240    // C++ [class.ctor]p5:
1241    //   A default constructor for a class X is a constructor of class X
1242    //   that can be called without an argument. If there is no
1243    //   user-declared constructor for class X, a default constructor is
1244    //   implicitly declared. An implicitly-declared default constructor
1245    //   is an inline public member of its class.
1246    DeclarationName Name
1247      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1248    CXXConstructorDecl *DefaultCon =
1249      CXXConstructorDecl::Create(Context, ClassDecl,
1250                                 ClassDecl->getLocation(), Name,
1251                                 Context.getFunctionType(Context.VoidTy,
1252                                                         0, 0, false, 0),
1253                                 /*isExplicit=*/false,
1254                                 /*isInline=*/true,
1255                                 /*isImplicitlyDeclared=*/true);
1256    DefaultCon->setAccess(AS_public);
1257    DefaultCon->setImplicit();
1258    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1259    ClassDecl->addDecl(DefaultCon);
1260  }
1261
1262  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1263    // C++ [class.copy]p4:
1264    //   If the class definition does not explicitly declare a copy
1265    //   constructor, one is declared implicitly.
1266
1267    // C++ [class.copy]p5:
1268    //   The implicitly-declared copy constructor for a class X will
1269    //   have the form
1270    //
1271    //       X::X(const X&)
1272    //
1273    //   if
1274    bool HasConstCopyConstructor = true;
1275
1276    //     -- each direct or virtual base class B of X has a copy
1277    //        constructor whose first parameter is of type const B& or
1278    //        const volatile B&, and
1279    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1280         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1281      const CXXRecordDecl *BaseClassDecl
1282        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1283      HasConstCopyConstructor
1284        = BaseClassDecl->hasConstCopyConstructor(Context);
1285    }
1286
1287    //     -- for all the nonstatic data members of X that are of a
1288    //        class type M (or array thereof), each such class type
1289    //        has a copy constructor whose first parameter is of type
1290    //        const M& or const volatile M&.
1291    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1292         HasConstCopyConstructor && Field != ClassDecl->field_end();
1293         ++Field) {
1294      QualType FieldType = (*Field)->getType();
1295      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1296        FieldType = Array->getElementType();
1297      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1298        const CXXRecordDecl *FieldClassDecl
1299          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1300        HasConstCopyConstructor
1301          = FieldClassDecl->hasConstCopyConstructor(Context);
1302      }
1303    }
1304
1305    //   Otherwise, the implicitly declared copy constructor will have
1306    //   the form
1307    //
1308    //       X::X(X&)
1309    QualType ArgType = ClassType;
1310    if (HasConstCopyConstructor)
1311      ArgType = ArgType.withConst();
1312    ArgType = Context.getLValueReferenceType(ArgType);
1313
1314    //   An implicitly-declared copy constructor is an inline public
1315    //   member of its class.
1316    DeclarationName Name
1317      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1318    CXXConstructorDecl *CopyConstructor
1319      = CXXConstructorDecl::Create(Context, ClassDecl,
1320                                   ClassDecl->getLocation(), Name,
1321                                   Context.getFunctionType(Context.VoidTy,
1322                                                           &ArgType, 1,
1323                                                           false, 0),
1324                                   /*isExplicit=*/false,
1325                                   /*isInline=*/true,
1326                                   /*isImplicitlyDeclared=*/true);
1327    CopyConstructor->setAccess(AS_public);
1328    CopyConstructor->setImplicit();
1329    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1330
1331    // Add the parameter to the constructor.
1332    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1333                                                 ClassDecl->getLocation(),
1334                                                 /*IdentifierInfo=*/0,
1335                                                 ArgType, VarDecl::None, 0);
1336    CopyConstructor->setParams(Context, &FromParam, 1);
1337    ClassDecl->addDecl(CopyConstructor);
1338  }
1339
1340  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1341    // Note: The following rules are largely analoguous to the copy
1342    // constructor rules. Note that virtual bases are not taken into account
1343    // for determining the argument type of the operator. Note also that
1344    // operators taking an object instead of a reference are allowed.
1345    //
1346    // C++ [class.copy]p10:
1347    //   If the class definition does not explicitly declare a copy
1348    //   assignment operator, one is declared implicitly.
1349    //   The implicitly-defined copy assignment operator for a class X
1350    //   will have the form
1351    //
1352    //       X& X::operator=(const X&)
1353    //
1354    //   if
1355    bool HasConstCopyAssignment = true;
1356
1357    //       -- each direct base class B of X has a copy assignment operator
1358    //          whose parameter is of type const B&, const volatile B& or B,
1359    //          and
1360    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1361         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1362      const CXXRecordDecl *BaseClassDecl
1363        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1364      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1365    }
1366
1367    //       -- for all the nonstatic data members of X that are of a class
1368    //          type M (or array thereof), each such class type has a copy
1369    //          assignment operator whose parameter is of type const M&,
1370    //          const volatile M& or M.
1371    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1372         HasConstCopyAssignment && Field != ClassDecl->field_end();
1373         ++Field) {
1374      QualType FieldType = (*Field)->getType();
1375      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1376        FieldType = Array->getElementType();
1377      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1378        const CXXRecordDecl *FieldClassDecl
1379          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1380        HasConstCopyAssignment
1381          = FieldClassDecl->hasConstCopyAssignment(Context);
1382      }
1383    }
1384
1385    //   Otherwise, the implicitly declared copy assignment operator will
1386    //   have the form
1387    //
1388    //       X& X::operator=(X&)
1389    QualType ArgType = ClassType;
1390    QualType RetType = Context.getLValueReferenceType(ArgType);
1391    if (HasConstCopyAssignment)
1392      ArgType = ArgType.withConst();
1393    ArgType = Context.getLValueReferenceType(ArgType);
1394
1395    //   An implicitly-declared copy assignment operator is an inline public
1396    //   member of its class.
1397    DeclarationName Name =
1398      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1399    CXXMethodDecl *CopyAssignment =
1400      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1401                            Context.getFunctionType(RetType, &ArgType, 1,
1402                                                    false, 0),
1403                            /*isStatic=*/false, /*isInline=*/true);
1404    CopyAssignment->setAccess(AS_public);
1405    CopyAssignment->setImplicit();
1406    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1407
1408    // Add the parameter to the operator.
1409    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1410                                                 ClassDecl->getLocation(),
1411                                                 /*IdentifierInfo=*/0,
1412                                                 ArgType, VarDecl::None, 0);
1413    CopyAssignment->setParams(Context, &FromParam, 1);
1414
1415    // Don't call addedAssignmentOperator. There is no way to distinguish an
1416    // implicit from an explicit assignment operator.
1417    ClassDecl->addDecl(CopyAssignment);
1418  }
1419
1420  if (!ClassDecl->hasUserDeclaredDestructor()) {
1421    // C++ [class.dtor]p2:
1422    //   If a class has no user-declared destructor, a destructor is
1423    //   declared implicitly. An implicitly-declared destructor is an
1424    //   inline public member of its class.
1425    DeclarationName Name
1426      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1427    CXXDestructorDecl *Destructor
1428      = CXXDestructorDecl::Create(Context, ClassDecl,
1429                                  ClassDecl->getLocation(), Name,
1430                                  Context.getFunctionType(Context.VoidTy,
1431                                                          0, 0, false, 0),
1432                                  /*isInline=*/true,
1433                                  /*isImplicitlyDeclared=*/true);
1434    Destructor->setAccess(AS_public);
1435    Destructor->setImplicit();
1436    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1437    ClassDecl->addDecl(Destructor);
1438  }
1439}
1440
1441void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1442  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1443  if (!Template)
1444    return;
1445
1446  TemplateParameterList *Params = Template->getTemplateParameters();
1447  for (TemplateParameterList::iterator Param = Params->begin(),
1448                                    ParamEnd = Params->end();
1449       Param != ParamEnd; ++Param) {
1450    NamedDecl *Named = cast<NamedDecl>(*Param);
1451    if (Named->getDeclName()) {
1452      S->AddDecl(DeclPtrTy::make(Named));
1453      IdResolver.AddDecl(Named);
1454    }
1455  }
1456}
1457
1458/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1459/// parsing a top-level (non-nested) C++ class, and we are now
1460/// parsing those parts of the given Method declaration that could
1461/// not be parsed earlier (C++ [class.mem]p2), such as default
1462/// arguments. This action should enter the scope of the given
1463/// Method declaration as if we had just parsed the qualified method
1464/// name. However, it should not bring the parameters into scope;
1465/// that will be performed by ActOnDelayedCXXMethodParameter.
1466void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1467  if (!MethodD)
1468    return;
1469
1470  CXXScopeSpec SS;
1471  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1472  QualType ClassTy
1473    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1474  SS.setScopeRep(
1475    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1476  ActOnCXXEnterDeclaratorScope(S, SS);
1477}
1478
1479/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1480/// C++ method declaration. We're (re-)introducing the given
1481/// function parameter into scope for use in parsing later parts of
1482/// the method declaration. For example, we could see an
1483/// ActOnParamDefaultArgument event for this parameter.
1484void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1485  if (!ParamD)
1486    return;
1487
1488  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1489
1490  // If this parameter has an unparsed default argument, clear it out
1491  // to make way for the parsed default argument.
1492  if (Param->hasUnparsedDefaultArg())
1493    Param->setDefaultArg(0);
1494
1495  S->AddDecl(DeclPtrTy::make(Param));
1496  if (Param->getDeclName())
1497    IdResolver.AddDecl(Param);
1498}
1499
1500/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1501/// processing the delayed method declaration for Method. The method
1502/// declaration is now considered finished. There may be a separate
1503/// ActOnStartOfFunctionDef action later (not necessarily
1504/// immediately!) for this method, if it was also defined inside the
1505/// class body.
1506void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1507  if (!MethodD)
1508    return;
1509
1510  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1511  CXXScopeSpec SS;
1512  QualType ClassTy
1513    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1514  SS.setScopeRep(
1515    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1516  ActOnCXXExitDeclaratorScope(S, SS);
1517
1518  // Now that we have our default arguments, check the constructor
1519  // again. It could produce additional diagnostics or affect whether
1520  // the class has implicitly-declared destructors, among other
1521  // things.
1522  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1523    CheckConstructor(Constructor);
1524
1525  // Check the default arguments, which we may have added.
1526  if (!Method->isInvalidDecl())
1527    CheckCXXDefaultArguments(Method);
1528}
1529
1530/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1531/// the well-formedness of the constructor declarator @p D with type @p
1532/// R. If there are any errors in the declarator, this routine will
1533/// emit diagnostics and set the invalid bit to true.  In any case, the type
1534/// will be updated to reflect a well-formed type for the constructor and
1535/// returned.
1536QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1537                                          FunctionDecl::StorageClass &SC) {
1538  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1539
1540  // C++ [class.ctor]p3:
1541  //   A constructor shall not be virtual (10.3) or static (9.4). A
1542  //   constructor can be invoked for a const, volatile or const
1543  //   volatile object. A constructor shall not be declared const,
1544  //   volatile, or const volatile (9.3.2).
1545  if (isVirtual) {
1546    if (!D.isInvalidType())
1547      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1548        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1549        << SourceRange(D.getIdentifierLoc());
1550    D.setInvalidType();
1551  }
1552  if (SC == FunctionDecl::Static) {
1553    if (!D.isInvalidType())
1554      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1555        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1556        << SourceRange(D.getIdentifierLoc());
1557    D.setInvalidType();
1558    SC = FunctionDecl::None;
1559  }
1560
1561  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1562  if (FTI.TypeQuals != 0) {
1563    if (FTI.TypeQuals & QualType::Const)
1564      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1565        << "const" << SourceRange(D.getIdentifierLoc());
1566    if (FTI.TypeQuals & QualType::Volatile)
1567      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1568        << "volatile" << SourceRange(D.getIdentifierLoc());
1569    if (FTI.TypeQuals & QualType::Restrict)
1570      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1571        << "restrict" << SourceRange(D.getIdentifierLoc());
1572  }
1573
1574  // Rebuild the function type "R" without any type qualifiers (in
1575  // case any of the errors above fired) and with "void" as the
1576  // return type, since constructors don't have return types. We
1577  // *always* have to do this, because GetTypeForDeclarator will
1578  // put in a result type of "int" when none was specified.
1579  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1580  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1581                                 Proto->getNumArgs(),
1582                                 Proto->isVariadic(), 0);
1583}
1584
1585/// CheckConstructor - Checks a fully-formed constructor for
1586/// well-formedness, issuing any diagnostics required. Returns true if
1587/// the constructor declarator is invalid.
1588void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1589  CXXRecordDecl *ClassDecl
1590    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1591  if (!ClassDecl)
1592    return Constructor->setInvalidDecl();
1593
1594  // C++ [class.copy]p3:
1595  //   A declaration of a constructor for a class X is ill-formed if
1596  //   its first parameter is of type (optionally cv-qualified) X and
1597  //   either there are no other parameters or else all other
1598  //   parameters have default arguments.
1599  if (!Constructor->isInvalidDecl() &&
1600      ((Constructor->getNumParams() == 1) ||
1601       (Constructor->getNumParams() > 1 &&
1602        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1603    QualType ParamType = Constructor->getParamDecl(0)->getType();
1604    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1605    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1606      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1607      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1608        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1609      Constructor->setInvalidDecl();
1610    }
1611  }
1612
1613  // Notify the class that we've added a constructor.
1614  ClassDecl->addedConstructor(Context, Constructor);
1615}
1616
1617static inline bool
1618FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1619  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1620          FTI.ArgInfo[0].Param &&
1621          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1622}
1623
1624/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1625/// the well-formednes of the destructor declarator @p D with type @p
1626/// R. If there are any errors in the declarator, this routine will
1627/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1628/// will be updated to reflect a well-formed type for the destructor and
1629/// returned.
1630QualType Sema::CheckDestructorDeclarator(Declarator &D,
1631                                         FunctionDecl::StorageClass& SC) {
1632  // C++ [class.dtor]p1:
1633  //   [...] A typedef-name that names a class is a class-name
1634  //   (7.1.3); however, a typedef-name that names a class shall not
1635  //   be used as the identifier in the declarator for a destructor
1636  //   declaration.
1637  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1638  if (isa<TypedefType>(DeclaratorType)) {
1639    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1640      << DeclaratorType;
1641    D.setInvalidType();
1642  }
1643
1644  // C++ [class.dtor]p2:
1645  //   A destructor is used to destroy objects of its class type. A
1646  //   destructor takes no parameters, and no return type can be
1647  //   specified for it (not even void). The address of a destructor
1648  //   shall not be taken. A destructor shall not be static. A
1649  //   destructor can be invoked for a const, volatile or const
1650  //   volatile object. A destructor shall not be declared const,
1651  //   volatile or const volatile (9.3.2).
1652  if (SC == FunctionDecl::Static) {
1653    if (!D.isInvalidType())
1654      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1655        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1656        << SourceRange(D.getIdentifierLoc());
1657    SC = FunctionDecl::None;
1658    D.setInvalidType();
1659  }
1660  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1661    // Destructors don't have return types, but the parser will
1662    // happily parse something like:
1663    //
1664    //   class X {
1665    //     float ~X();
1666    //   };
1667    //
1668    // The return type will be eliminated later.
1669    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1670      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1671      << SourceRange(D.getIdentifierLoc());
1672  }
1673
1674  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1675  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1676    if (FTI.TypeQuals & QualType::Const)
1677      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1678        << "const" << SourceRange(D.getIdentifierLoc());
1679    if (FTI.TypeQuals & QualType::Volatile)
1680      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1681        << "volatile" << SourceRange(D.getIdentifierLoc());
1682    if (FTI.TypeQuals & QualType::Restrict)
1683      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1684        << "restrict" << SourceRange(D.getIdentifierLoc());
1685    D.setInvalidType();
1686  }
1687
1688  // Make sure we don't have any parameters.
1689  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1690    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1691
1692    // Delete the parameters.
1693    FTI.freeArgs();
1694    D.setInvalidType();
1695  }
1696
1697  // Make sure the destructor isn't variadic.
1698  if (FTI.isVariadic) {
1699    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1700    D.setInvalidType();
1701  }
1702
1703  // Rebuild the function type "R" without any type qualifiers or
1704  // parameters (in case any of the errors above fired) and with
1705  // "void" as the return type, since destructors don't have return
1706  // types. We *always* have to do this, because GetTypeForDeclarator
1707  // will put in a result type of "int" when none was specified.
1708  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1709}
1710
1711/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1712/// well-formednes of the conversion function declarator @p D with
1713/// type @p R. If there are any errors in the declarator, this routine
1714/// will emit diagnostics and return true. Otherwise, it will return
1715/// false. Either way, the type @p R will be updated to reflect a
1716/// well-formed type for the conversion operator.
1717void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1718                                     FunctionDecl::StorageClass& SC) {
1719  // C++ [class.conv.fct]p1:
1720  //   Neither parameter types nor return type can be specified. The
1721  //   type of a conversion function (8.3.5) is “function taking no
1722  //   parameter returning conversion-type-id.”
1723  if (SC == FunctionDecl::Static) {
1724    if (!D.isInvalidType())
1725      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1726        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1727        << SourceRange(D.getIdentifierLoc());
1728    D.setInvalidType();
1729    SC = FunctionDecl::None;
1730  }
1731  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1732    // Conversion functions don't have return types, but the parser will
1733    // happily parse something like:
1734    //
1735    //   class X {
1736    //     float operator bool();
1737    //   };
1738    //
1739    // The return type will be changed later anyway.
1740    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1741      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1742      << SourceRange(D.getIdentifierLoc());
1743  }
1744
1745  // Make sure we don't have any parameters.
1746  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1747    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1748
1749    // Delete the parameters.
1750    D.getTypeObject(0).Fun.freeArgs();
1751    D.setInvalidType();
1752  }
1753
1754  // Make sure the conversion function isn't variadic.
1755  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1756    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1757    D.setInvalidType();
1758  }
1759
1760  // C++ [class.conv.fct]p4:
1761  //   The conversion-type-id shall not represent a function type nor
1762  //   an array type.
1763  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1764  if (ConvType->isArrayType()) {
1765    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1766    ConvType = Context.getPointerType(ConvType);
1767    D.setInvalidType();
1768  } else if (ConvType->isFunctionType()) {
1769    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1770    ConvType = Context.getPointerType(ConvType);
1771    D.setInvalidType();
1772  }
1773
1774  // Rebuild the function type "R" without any parameters (in case any
1775  // of the errors above fired) and with the conversion type as the
1776  // return type.
1777  R = Context.getFunctionType(ConvType, 0, 0, false,
1778                              R->getAsFunctionProtoType()->getTypeQuals());
1779
1780  // C++0x explicit conversion operators.
1781  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1782    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1783         diag::warn_explicit_conversion_functions)
1784      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1785}
1786
1787/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1788/// the declaration of the given C++ conversion function. This routine
1789/// is responsible for recording the conversion function in the C++
1790/// class, if possible.
1791Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1792  assert(Conversion && "Expected to receive a conversion function declaration");
1793
1794  // Set the lexical context of this conversion function
1795  Conversion->setLexicalDeclContext(CurContext);
1796
1797  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1798
1799  // Make sure we aren't redeclaring the conversion function.
1800  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1801
1802  // C++ [class.conv.fct]p1:
1803  //   [...] A conversion function is never used to convert a
1804  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1805  //   same object type (or a reference to it), to a (possibly
1806  //   cv-qualified) base class of that type (or a reference to it),
1807  //   or to (possibly cv-qualified) void.
1808  // FIXME: Suppress this warning if the conversion function ends up being a
1809  // virtual function that overrides a virtual function in a base class.
1810  QualType ClassType
1811    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1812  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1813    ConvType = ConvTypeRef->getPointeeType();
1814  if (ConvType->isRecordType()) {
1815    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1816    if (ConvType == ClassType)
1817      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1818        << ClassType;
1819    else if (IsDerivedFrom(ClassType, ConvType))
1820      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1821        <<  ClassType << ConvType;
1822  } else if (ConvType->isVoidType()) {
1823    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1824      << ClassType << ConvType;
1825  }
1826
1827  if (Conversion->getPreviousDeclaration()) {
1828    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1829    for (OverloadedFunctionDecl::function_iterator
1830           Conv = Conversions->function_begin(),
1831           ConvEnd = Conversions->function_end();
1832         Conv != ConvEnd; ++Conv) {
1833      if (*Conv
1834            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1835        *Conv = Conversion;
1836        return DeclPtrTy::make(Conversion);
1837      }
1838    }
1839    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1840  } else
1841    ClassDecl->addConversionFunction(Context, Conversion);
1842
1843  return DeclPtrTy::make(Conversion);
1844}
1845
1846//===----------------------------------------------------------------------===//
1847// Namespace Handling
1848//===----------------------------------------------------------------------===//
1849
1850/// ActOnStartNamespaceDef - This is called at the start of a namespace
1851/// definition.
1852Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1853                                             SourceLocation IdentLoc,
1854                                             IdentifierInfo *II,
1855                                             SourceLocation LBrace) {
1856  NamespaceDecl *Namespc =
1857      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1858  Namespc->setLBracLoc(LBrace);
1859
1860  Scope *DeclRegionScope = NamespcScope->getParent();
1861
1862  if (II) {
1863    // C++ [namespace.def]p2:
1864    // The identifier in an original-namespace-definition shall not have been
1865    // previously defined in the declarative region in which the
1866    // original-namespace-definition appears. The identifier in an
1867    // original-namespace-definition is the name of the namespace. Subsequently
1868    // in that declarative region, it is treated as an original-namespace-name.
1869
1870    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1871                                     true);
1872
1873    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1874      // This is an extended namespace definition.
1875      // Attach this namespace decl to the chain of extended namespace
1876      // definitions.
1877      OrigNS->setNextNamespace(Namespc);
1878      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1879
1880      // Remove the previous declaration from the scope.
1881      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1882        IdResolver.RemoveDecl(OrigNS);
1883        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1884      }
1885    } else if (PrevDecl) {
1886      // This is an invalid name redefinition.
1887      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1888       << Namespc->getDeclName();
1889      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1890      Namespc->setInvalidDecl();
1891      // Continue on to push Namespc as current DeclContext and return it.
1892    }
1893
1894    PushOnScopeChains(Namespc, DeclRegionScope);
1895  } else {
1896    // FIXME: Handle anonymous namespaces
1897  }
1898
1899  // Although we could have an invalid decl (i.e. the namespace name is a
1900  // redefinition), push it as current DeclContext and try to continue parsing.
1901  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1902  // for the namespace has the declarations that showed up in that particular
1903  // namespace definition.
1904  PushDeclContext(NamespcScope, Namespc);
1905  return DeclPtrTy::make(Namespc);
1906}
1907
1908/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1909/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1910void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1911  Decl *Dcl = D.getAs<Decl>();
1912  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1913  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1914  Namespc->setRBracLoc(RBrace);
1915  PopDeclContext();
1916}
1917
1918Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1919                                          SourceLocation UsingLoc,
1920                                          SourceLocation NamespcLoc,
1921                                          const CXXScopeSpec &SS,
1922                                          SourceLocation IdentLoc,
1923                                          IdentifierInfo *NamespcName,
1924                                          AttributeList *AttrList) {
1925  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1926  assert(NamespcName && "Invalid NamespcName.");
1927  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1928  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1929
1930  UsingDirectiveDecl *UDir = 0;
1931
1932  // Lookup namespace name.
1933  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1934                                    LookupNamespaceName, false);
1935  if (R.isAmbiguous()) {
1936    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1937    return DeclPtrTy();
1938  }
1939  if (NamedDecl *NS = R) {
1940    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1941    // C++ [namespace.udir]p1:
1942    //   A using-directive specifies that the names in the nominated
1943    //   namespace can be used in the scope in which the
1944    //   using-directive appears after the using-directive. During
1945    //   unqualified name lookup (3.4.1), the names appear as if they
1946    //   were declared in the nearest enclosing namespace which
1947    //   contains both the using-directive and the nominated
1948    //   namespace. [Note: in this context, “contains” means “contains
1949    //   directly or indirectly”. ]
1950
1951    // Find enclosing context containing both using-directive and
1952    // nominated namespace.
1953    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1954    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1955      CommonAncestor = CommonAncestor->getParent();
1956
1957    UDir = UsingDirectiveDecl::Create(Context,
1958                                      CurContext, UsingLoc,
1959                                      NamespcLoc,
1960                                      SS.getRange(),
1961                                      (NestedNameSpecifier *)SS.getScopeRep(),
1962                                      IdentLoc,
1963                                      cast<NamespaceDecl>(NS),
1964                                      CommonAncestor);
1965    PushUsingDirective(S, UDir);
1966  } else {
1967    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1968  }
1969
1970  // FIXME: We ignore attributes for now.
1971  delete AttrList;
1972  return DeclPtrTy::make(UDir);
1973}
1974
1975void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1976  // If scope has associated entity, then using directive is at namespace
1977  // or translation unit scope. We add UsingDirectiveDecls, into
1978  // it's lookup structure.
1979  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1980    Ctx->addDecl(UDir);
1981  else
1982    // Otherwise it is block-sope. using-directives will affect lookup
1983    // only to the end of scope.
1984    S->PushUsingDirective(DeclPtrTy::make(UDir));
1985}
1986
1987
1988Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1989                                          SourceLocation UsingLoc,
1990                                          const CXXScopeSpec &SS,
1991                                          SourceLocation IdentLoc,
1992                                          IdentifierInfo *TargetName,
1993                                          OverloadedOperatorKind Op,
1994                                          AttributeList *AttrList,
1995                                          bool IsTypeName) {
1996  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1997  assert((TargetName || Op) && "Invalid TargetName.");
1998  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1999  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2000
2001  UsingDecl *UsingAlias = 0;
2002
2003  DeclarationName Name;
2004  if (TargetName)
2005    Name = TargetName;
2006  else
2007    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2008
2009  // Lookup target name.
2010  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2011
2012  if (NamedDecl *NS = R) {
2013    if (IsTypeName && !isa<TypeDecl>(NS)) {
2014      Diag(IdentLoc, diag::err_using_typename_non_type);
2015    }
2016    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2017        NS->getLocation(), UsingLoc, NS,
2018        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2019        IsTypeName);
2020    PushOnScopeChains(UsingAlias, S);
2021  } else {
2022    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2023  }
2024
2025  // FIXME: We ignore attributes for now.
2026  delete AttrList;
2027  return DeclPtrTy::make(UsingAlias);
2028}
2029
2030/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2031/// is a namespace alias, returns the namespace it points to.
2032static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2033  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2034    return AD->getNamespace();
2035  return dyn_cast_or_null<NamespaceDecl>(D);
2036}
2037
2038Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2039                                             SourceLocation NamespaceLoc,
2040                                             SourceLocation AliasLoc,
2041                                             IdentifierInfo *Alias,
2042                                             const CXXScopeSpec &SS,
2043                                             SourceLocation IdentLoc,
2044                                             IdentifierInfo *Ident) {
2045
2046  // Lookup the namespace name.
2047  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2048
2049  // Check if we have a previous declaration with the same name.
2050  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2051    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2052      // We already have an alias with the same name that points to the same
2053      // namespace, so don't create a new one.
2054      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2055        return DeclPtrTy();
2056    }
2057
2058    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2059      diag::err_redefinition_different_kind;
2060    Diag(AliasLoc, DiagID) << Alias;
2061    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2062    return DeclPtrTy();
2063  }
2064
2065  if (R.isAmbiguous()) {
2066    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2067    return DeclPtrTy();
2068  }
2069
2070  if (!R) {
2071    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2072    return DeclPtrTy();
2073  }
2074
2075  NamespaceAliasDecl *AliasDecl =
2076    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2077                               Alias, SS.getRange(),
2078                               (NestedNameSpecifier *)SS.getScopeRep(),
2079                               IdentLoc, R);
2080
2081  CurContext->addDecl(AliasDecl);
2082  return DeclPtrTy::make(AliasDecl);
2083}
2084
2085void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2086                                            CXXConstructorDecl *Constructor) {
2087  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2088          !Constructor->isUsed()) &&
2089    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2090
2091  CXXRecordDecl *ClassDecl
2092    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2093  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2094  // Before the implicitly-declared default constructor for a class is
2095  // implicitly defined, all the implicitly-declared default constructors
2096  // for its base class and its non-static data members shall have been
2097  // implicitly defined.
2098  bool err = false;
2099  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2100       E = ClassDecl->bases_end(); Base != E; ++Base) {
2101    CXXRecordDecl *BaseClassDecl
2102      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2103    if (!BaseClassDecl->hasTrivialConstructor()) {
2104      if (CXXConstructorDecl *BaseCtor =
2105            BaseClassDecl->getDefaultConstructor(Context))
2106        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2107      else {
2108        Diag(CurrentLocation, diag::err_defining_default_ctor)
2109          << Context.getTagDeclType(ClassDecl) << 1
2110          << Context.getTagDeclType(BaseClassDecl);
2111        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2112              << Context.getTagDeclType(BaseClassDecl);
2113        err = true;
2114      }
2115    }
2116  }
2117  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2118       E = ClassDecl->field_end(); Field != E; ++Field) {
2119    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2120    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2121      FieldType = Array->getElementType();
2122    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2123      CXXRecordDecl *FieldClassDecl
2124        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2125      if (!FieldClassDecl->hasTrivialConstructor()) {
2126        if (CXXConstructorDecl *FieldCtor =
2127            FieldClassDecl->getDefaultConstructor(Context))
2128          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2129        else {
2130          Diag(CurrentLocation, diag::err_defining_default_ctor)
2131          << Context.getTagDeclType(ClassDecl) << 0 <<
2132              Context.getTagDeclType(FieldClassDecl);
2133          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2134          << Context.getTagDeclType(FieldClassDecl);
2135          err = true;
2136        }
2137      }
2138    }
2139    else if (FieldType->isReferenceType()) {
2140      Diag(CurrentLocation, diag::err_unintialized_member)
2141        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2142      Diag((*Field)->getLocation(), diag::note_declared_at);
2143      err = true;
2144    }
2145    else if (FieldType.isConstQualified()) {
2146      Diag(CurrentLocation, diag::err_unintialized_member)
2147        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2148       Diag((*Field)->getLocation(), diag::note_declared_at);
2149      err = true;
2150    }
2151  }
2152  if (!err)
2153    Constructor->setUsed();
2154  else
2155    Constructor->setInvalidDecl();
2156}
2157
2158void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2159                                            CXXDestructorDecl *Destructor) {
2160  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2161         "DefineImplicitDestructor - call it for implicit default dtor");
2162
2163  CXXRecordDecl *ClassDecl
2164  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2165  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2166  // C++ [class.dtor] p5
2167  // Before the implicitly-declared default destructor for a class is
2168  // implicitly defined, all the implicitly-declared default destructors
2169  // for its base class and its non-static data members shall have been
2170  // implicitly defined.
2171  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2172       E = ClassDecl->bases_end(); Base != E; ++Base) {
2173    CXXRecordDecl *BaseClassDecl
2174      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2175    if (!BaseClassDecl->hasTrivialDestructor()) {
2176      if (CXXDestructorDecl *BaseDtor =
2177          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2178        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2179      else
2180        assert(false &&
2181               "DefineImplicitDestructor - missing dtor in a base class");
2182    }
2183  }
2184
2185  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2186       E = ClassDecl->field_end(); Field != E; ++Field) {
2187    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2188    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2189      FieldType = Array->getElementType();
2190    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2191      CXXRecordDecl *FieldClassDecl
2192        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2193      if (!FieldClassDecl->hasTrivialDestructor()) {
2194        if (CXXDestructorDecl *FieldDtor =
2195            const_cast<CXXDestructorDecl*>(
2196                                        FieldClassDecl->getDestructor(Context)))
2197          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2198        else
2199          assert(false &&
2200          "DefineImplicitDestructor - missing dtor in class of a data member");
2201      }
2202    }
2203  }
2204  Destructor->setUsed();
2205}
2206
2207void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2208                                          CXXMethodDecl *MethodDecl) {
2209  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2210          MethodDecl->getOverloadedOperator() == OO_Equal &&
2211          !MethodDecl->isUsed()) &&
2212         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2213
2214  CXXRecordDecl *ClassDecl
2215    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2216
2217  // C++[class.copy] p12
2218  // Before the implicitly-declared copy assignment operator for a class is
2219  // implicitly defined, all implicitly-declared copy assignment operators
2220  // for its direct base classes and its nonstatic data members shall have
2221  // been implicitly defined.
2222  bool err = false;
2223  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2224       E = ClassDecl->bases_end(); Base != E; ++Base) {
2225    CXXRecordDecl *BaseClassDecl
2226      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2227    if (CXXMethodDecl *BaseAssignOpMethod =
2228          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2229      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2230  }
2231  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2232       E = ClassDecl->field_end(); Field != E; ++Field) {
2233    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2234    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2235      FieldType = Array->getElementType();
2236    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2237      CXXRecordDecl *FieldClassDecl
2238        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2239      if (CXXMethodDecl *FieldAssignOpMethod =
2240          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2241        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2242    }
2243    else if (FieldType->isReferenceType()) {
2244      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2245      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2246      Diag(Field->getLocation(), diag::note_declared_at);
2247      Diag(CurrentLocation, diag::note_first_required_here);
2248      err = true;
2249    }
2250    else if (FieldType.isConstQualified()) {
2251      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2252      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2253      Diag(Field->getLocation(), diag::note_declared_at);
2254      Diag(CurrentLocation, diag::note_first_required_here);
2255      err = true;
2256    }
2257  }
2258  if (!err)
2259    MethodDecl->setUsed();
2260}
2261
2262CXXMethodDecl *
2263Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2264                              CXXRecordDecl *ClassDecl) {
2265  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2266  QualType RHSType(LHSType);
2267  // If class's assignment operator argument is const/volatile qualified,
2268  // look for operator = (const/volatile B&). Otherwise, look for
2269  // operator = (B&).
2270  if (ParmDecl->getType().isConstQualified())
2271    RHSType.addConst();
2272  if (ParmDecl->getType().isVolatileQualified())
2273    RHSType.addVolatile();
2274  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2275                                                          LHSType,
2276                                                          SourceLocation()));
2277  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2278                                                          RHSType,
2279                                                          SourceLocation()));
2280  Expr *Args[2] = { &*LHS, &*RHS };
2281  OverloadCandidateSet CandidateSet;
2282  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2283                              CandidateSet);
2284  OverloadCandidateSet::iterator Best;
2285  if (BestViableFunction(CandidateSet,
2286                         ClassDecl->getLocation(), Best) == OR_Success)
2287    return cast<CXXMethodDecl>(Best->Function);
2288  assert(false &&
2289         "getAssignOperatorMethod - copy assignment operator method not found");
2290  return 0;
2291}
2292
2293void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2294                                   CXXConstructorDecl *CopyConstructor,
2295                                   unsigned TypeQuals) {
2296  assert((CopyConstructor->isImplicit() &&
2297          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2298          !CopyConstructor->isUsed()) &&
2299         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2300
2301  CXXRecordDecl *ClassDecl
2302    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2303  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2304  // C++ [class.copy] p209
2305  // Before the implicitly-declared copy constructor for a class is
2306  // implicitly defined, all the implicitly-declared copy constructors
2307  // for its base class and its non-static data members shall have been
2308  // implicitly defined.
2309  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2310       Base != ClassDecl->bases_end(); ++Base) {
2311    CXXRecordDecl *BaseClassDecl
2312      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2313    if (CXXConstructorDecl *BaseCopyCtor =
2314        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2315      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2316  }
2317  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2318                                  FieldEnd = ClassDecl->field_end();
2319       Field != FieldEnd; ++Field) {
2320    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2321    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2322      FieldType = Array->getElementType();
2323    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2324      CXXRecordDecl *FieldClassDecl
2325        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2326      if (CXXConstructorDecl *FieldCopyCtor =
2327          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2328        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2329    }
2330  }
2331  CopyConstructor->setUsed();
2332}
2333
2334void Sema::InitializeVarWithConstructor(VarDecl *VD,
2335                                        CXXConstructorDecl *Constructor,
2336                                        QualType DeclInitType,
2337                                        Expr **Exprs, unsigned NumExprs) {
2338  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2339                                        false, Exprs, NumExprs);
2340  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2341  VD->setInit(Context, Temp);
2342}
2343
2344void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2345{
2346  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2347                                  DeclInitType->getAsRecordType()->getDecl());
2348  if (!ClassDecl->hasTrivialDestructor())
2349    if (CXXDestructorDecl *Destructor =
2350        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2351      MarkDeclarationReferenced(Loc, Destructor);
2352}
2353
2354/// AddCXXDirectInitializerToDecl - This action is called immediately after
2355/// ActOnDeclarator, when a C++ direct initializer is present.
2356/// e.g: "int x(1);"
2357void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2358                                         SourceLocation LParenLoc,
2359                                         MultiExprArg Exprs,
2360                                         SourceLocation *CommaLocs,
2361                                         SourceLocation RParenLoc) {
2362  unsigned NumExprs = Exprs.size();
2363  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2364  Decl *RealDecl = Dcl.getAs<Decl>();
2365
2366  // If there is no declaration, there was an error parsing it.  Just ignore
2367  // the initializer.
2368  if (RealDecl == 0)
2369    return;
2370
2371  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2372  if (!VDecl) {
2373    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2374    RealDecl->setInvalidDecl();
2375    return;
2376  }
2377
2378  // FIXME: Need to handle dependent types and expressions here.
2379
2380  // We will treat direct-initialization as a copy-initialization:
2381  //    int x(1);  -as-> int x = 1;
2382  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2383  //
2384  // Clients that want to distinguish between the two forms, can check for
2385  // direct initializer using VarDecl::hasCXXDirectInitializer().
2386  // A major benefit is that clients that don't particularly care about which
2387  // exactly form was it (like the CodeGen) can handle both cases without
2388  // special case code.
2389
2390  // C++ 8.5p11:
2391  // The form of initialization (using parentheses or '=') is generally
2392  // insignificant, but does matter when the entity being initialized has a
2393  // class type.
2394  QualType DeclInitType = VDecl->getType();
2395  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2396    DeclInitType = Array->getElementType();
2397
2398  // FIXME: This isn't the right place to complete the type.
2399  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2400                          diag::err_typecheck_decl_incomplete_type)) {
2401    VDecl->setInvalidDecl();
2402    return;
2403  }
2404
2405  if (VDecl->getType()->isRecordType()) {
2406    CXXConstructorDecl *Constructor
2407      = PerformInitializationByConstructor(DeclInitType,
2408                                           (Expr **)Exprs.get(), NumExprs,
2409                                           VDecl->getLocation(),
2410                                           SourceRange(VDecl->getLocation(),
2411                                                       RParenLoc),
2412                                           VDecl->getDeclName(),
2413                                           IK_Direct);
2414    if (!Constructor)
2415      RealDecl->setInvalidDecl();
2416    else {
2417      VDecl->setCXXDirectInitializer(true);
2418      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2419                                   (Expr**)Exprs.release(), NumExprs);
2420      // FIXME. Must do all that is needed to destroy the object
2421      // on scope exit. For now, just mark the destructor as used.
2422      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2423    }
2424    return;
2425  }
2426
2427  if (NumExprs > 1) {
2428    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2429      << SourceRange(VDecl->getLocation(), RParenLoc);
2430    RealDecl->setInvalidDecl();
2431    return;
2432  }
2433
2434  // Let clients know that initialization was done with a direct initializer.
2435  VDecl->setCXXDirectInitializer(true);
2436
2437  assert(NumExprs == 1 && "Expected 1 expression");
2438  // Set the init expression, handles conversions.
2439  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2440                       /*DirectInit=*/true);
2441}
2442
2443/// PerformInitializationByConstructor - Perform initialization by
2444/// constructor (C++ [dcl.init]p14), which may occur as part of
2445/// direct-initialization or copy-initialization. We are initializing
2446/// an object of type @p ClassType with the given arguments @p
2447/// Args. @p Loc is the location in the source code where the
2448/// initializer occurs (e.g., a declaration, member initializer,
2449/// functional cast, etc.) while @p Range covers the whole
2450/// initialization. @p InitEntity is the entity being initialized,
2451/// which may by the name of a declaration or a type. @p Kind is the
2452/// kind of initialization we're performing, which affects whether
2453/// explicit constructors will be considered. When successful, returns
2454/// the constructor that will be used to perform the initialization;
2455/// when the initialization fails, emits a diagnostic and returns
2456/// null.
2457CXXConstructorDecl *
2458Sema::PerformInitializationByConstructor(QualType ClassType,
2459                                         Expr **Args, unsigned NumArgs,
2460                                         SourceLocation Loc, SourceRange Range,
2461                                         DeclarationName InitEntity,
2462                                         InitializationKind Kind) {
2463  const RecordType *ClassRec = ClassType->getAsRecordType();
2464  assert(ClassRec && "Can only initialize a class type here");
2465
2466  // C++ [dcl.init]p14:
2467  //
2468  //   If the initialization is direct-initialization, or if it is
2469  //   copy-initialization where the cv-unqualified version of the
2470  //   source type is the same class as, or a derived class of, the
2471  //   class of the destination, constructors are considered. The
2472  //   applicable constructors are enumerated (13.3.1.3), and the
2473  //   best one is chosen through overload resolution (13.3). The
2474  //   constructor so selected is called to initialize the object,
2475  //   with the initializer expression(s) as its argument(s). If no
2476  //   constructor applies, or the overload resolution is ambiguous,
2477  //   the initialization is ill-formed.
2478  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2479  OverloadCandidateSet CandidateSet;
2480
2481  // Add constructors to the overload set.
2482  DeclarationName ConstructorName
2483    = Context.DeclarationNames.getCXXConstructorName(
2484                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2485  DeclContext::lookup_const_iterator Con, ConEnd;
2486  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2487       Con != ConEnd; ++Con) {
2488    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2489    if ((Kind == IK_Direct) ||
2490        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2491        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2492      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2493  }
2494
2495  // FIXME: When we decide not to synthesize the implicitly-declared
2496  // constructors, we'll need to make them appear here.
2497
2498  OverloadCandidateSet::iterator Best;
2499  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2500  case OR_Success:
2501    // We found a constructor. Return it.
2502    return cast<CXXConstructorDecl>(Best->Function);
2503
2504  case OR_No_Viable_Function:
2505    if (InitEntity)
2506      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2507        << InitEntity << Range;
2508    else
2509      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2510        << ClassType << Range;
2511    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2512    return 0;
2513
2514  case OR_Ambiguous:
2515    if (InitEntity)
2516      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2517    else
2518      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2519    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2520    return 0;
2521
2522  case OR_Deleted:
2523    if (InitEntity)
2524      Diag(Loc, diag::err_ovl_deleted_init)
2525        << Best->Function->isDeleted()
2526        << InitEntity << Range;
2527    else
2528      Diag(Loc, diag::err_ovl_deleted_init)
2529        << Best->Function->isDeleted()
2530        << InitEntity << Range;
2531    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2532    return 0;
2533  }
2534
2535  return 0;
2536}
2537
2538/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2539/// determine whether they are reference-related,
2540/// reference-compatible, reference-compatible with added
2541/// qualification, or incompatible, for use in C++ initialization by
2542/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2543/// type, and the first type (T1) is the pointee type of the reference
2544/// type being initialized.
2545Sema::ReferenceCompareResult
2546Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2547                                   bool& DerivedToBase) {
2548  assert(!T1->isReferenceType() &&
2549    "T1 must be the pointee type of the reference type");
2550  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2551
2552  T1 = Context.getCanonicalType(T1);
2553  T2 = Context.getCanonicalType(T2);
2554  QualType UnqualT1 = T1.getUnqualifiedType();
2555  QualType UnqualT2 = T2.getUnqualifiedType();
2556
2557  // C++ [dcl.init.ref]p4:
2558  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2559  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2560  //   T1 is a base class of T2.
2561  if (UnqualT1 == UnqualT2)
2562    DerivedToBase = false;
2563  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2564    DerivedToBase = true;
2565  else
2566    return Ref_Incompatible;
2567
2568  // At this point, we know that T1 and T2 are reference-related (at
2569  // least).
2570
2571  // C++ [dcl.init.ref]p4:
2572  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2573  //   reference-related to T2 and cv1 is the same cv-qualification
2574  //   as, or greater cv-qualification than, cv2. For purposes of
2575  //   overload resolution, cases for which cv1 is greater
2576  //   cv-qualification than cv2 are identified as
2577  //   reference-compatible with added qualification (see 13.3.3.2).
2578  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2579    return Ref_Compatible;
2580  else if (T1.isMoreQualifiedThan(T2))
2581    return Ref_Compatible_With_Added_Qualification;
2582  else
2583    return Ref_Related;
2584}
2585
2586/// CheckReferenceInit - Check the initialization of a reference
2587/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2588/// the initializer (either a simple initializer or an initializer
2589/// list), and DeclType is the type of the declaration. When ICS is
2590/// non-null, this routine will compute the implicit conversion
2591/// sequence according to C++ [over.ics.ref] and will not produce any
2592/// diagnostics; when ICS is null, it will emit diagnostics when any
2593/// errors are found. Either way, a return value of true indicates
2594/// that there was a failure, a return value of false indicates that
2595/// the reference initialization succeeded.
2596///
2597/// When @p SuppressUserConversions, user-defined conversions are
2598/// suppressed.
2599/// When @p AllowExplicit, we also permit explicit user-defined
2600/// conversion functions.
2601/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2602bool
2603Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2604                         ImplicitConversionSequence *ICS,
2605                         bool SuppressUserConversions,
2606                         bool AllowExplicit, bool ForceRValue) {
2607  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2608
2609  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2610  QualType T2 = Init->getType();
2611
2612  // If the initializer is the address of an overloaded function, try
2613  // to resolve the overloaded function. If all goes well, T2 is the
2614  // type of the resulting function.
2615  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2616    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2617                                                          ICS != 0);
2618    if (Fn) {
2619      // Since we're performing this reference-initialization for
2620      // real, update the initializer with the resulting function.
2621      if (!ICS) {
2622        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2623          return true;
2624
2625        FixOverloadedFunctionReference(Init, Fn);
2626      }
2627
2628      T2 = Fn->getType();
2629    }
2630  }
2631
2632  // Compute some basic properties of the types and the initializer.
2633  bool isRValRef = DeclType->isRValueReferenceType();
2634  bool DerivedToBase = false;
2635  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2636                                                  Init->isLvalue(Context);
2637  ReferenceCompareResult RefRelationship
2638    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2639
2640  // Most paths end in a failed conversion.
2641  if (ICS)
2642    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2643
2644  // C++ [dcl.init.ref]p5:
2645  //   A reference to type “cv1 T1” is initialized by an expression
2646  //   of type “cv2 T2” as follows:
2647
2648  //     -- If the initializer expression
2649
2650  // Rvalue references cannot bind to lvalues (N2812).
2651  // There is absolutely no situation where they can. In particular, note that
2652  // this is ill-formed, even if B has a user-defined conversion to A&&:
2653  //   B b;
2654  //   A&& r = b;
2655  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2656    if (!ICS)
2657      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2658        << Init->getSourceRange();
2659    return true;
2660  }
2661
2662  bool BindsDirectly = false;
2663  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2664  //          reference-compatible with “cv2 T2,” or
2665  //
2666  // Note that the bit-field check is skipped if we are just computing
2667  // the implicit conversion sequence (C++ [over.best.ics]p2).
2668  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2669      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2670    BindsDirectly = true;
2671
2672    if (ICS) {
2673      // C++ [over.ics.ref]p1:
2674      //   When a parameter of reference type binds directly (8.5.3)
2675      //   to an argument expression, the implicit conversion sequence
2676      //   is the identity conversion, unless the argument expression
2677      //   has a type that is a derived class of the parameter type,
2678      //   in which case the implicit conversion sequence is a
2679      //   derived-to-base Conversion (13.3.3.1).
2680      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2681      ICS->Standard.First = ICK_Identity;
2682      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2683      ICS->Standard.Third = ICK_Identity;
2684      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2685      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2686      ICS->Standard.ReferenceBinding = true;
2687      ICS->Standard.DirectBinding = true;
2688      ICS->Standard.RRefBinding = false;
2689      ICS->Standard.CopyConstructor = 0;
2690
2691      // Nothing more to do: the inaccessibility/ambiguity check for
2692      // derived-to-base conversions is suppressed when we're
2693      // computing the implicit conversion sequence (C++
2694      // [over.best.ics]p2).
2695      return false;
2696    } else {
2697      // Perform the conversion.
2698      // FIXME: Binding to a subobject of the lvalue is going to require more
2699      // AST annotation than this.
2700      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2701    }
2702  }
2703
2704  //       -- has a class type (i.e., T2 is a class type) and can be
2705  //          implicitly converted to an lvalue of type “cv3 T3,”
2706  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2707  //          92) (this conversion is selected by enumerating the
2708  //          applicable conversion functions (13.3.1.6) and choosing
2709  //          the best one through overload resolution (13.3)),
2710  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2711    // FIXME: Look for conversions in base classes!
2712    CXXRecordDecl *T2RecordDecl
2713      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2714
2715    OverloadCandidateSet CandidateSet;
2716    OverloadedFunctionDecl *Conversions
2717      = T2RecordDecl->getConversionFunctions();
2718    for (OverloadedFunctionDecl::function_iterator Func
2719           = Conversions->function_begin();
2720         Func != Conversions->function_end(); ++Func) {
2721      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2722
2723      // If the conversion function doesn't return a reference type,
2724      // it can't be considered for this conversion.
2725      if (Conv->getConversionType()->isLValueReferenceType() &&
2726          (AllowExplicit || !Conv->isExplicit()))
2727        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2728    }
2729
2730    OverloadCandidateSet::iterator Best;
2731    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2732    case OR_Success:
2733      // This is a direct binding.
2734      BindsDirectly = true;
2735
2736      if (ICS) {
2737        // C++ [over.ics.ref]p1:
2738        //
2739        //   [...] If the parameter binds directly to the result of
2740        //   applying a conversion function to the argument
2741        //   expression, the implicit conversion sequence is a
2742        //   user-defined conversion sequence (13.3.3.1.2), with the
2743        //   second standard conversion sequence either an identity
2744        //   conversion or, if the conversion function returns an
2745        //   entity of a type that is a derived class of the parameter
2746        //   type, a derived-to-base Conversion.
2747        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2748        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2749        ICS->UserDefined.After = Best->FinalConversion;
2750        ICS->UserDefined.ConversionFunction = Best->Function;
2751        assert(ICS->UserDefined.After.ReferenceBinding &&
2752               ICS->UserDefined.After.DirectBinding &&
2753               "Expected a direct reference binding!");
2754        return false;
2755      } else {
2756        // Perform the conversion.
2757        // FIXME: Binding to a subobject of the lvalue is going to require more
2758        // AST annotation than this.
2759        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2760      }
2761      break;
2762
2763    case OR_Ambiguous:
2764      assert(false && "Ambiguous reference binding conversions not implemented.");
2765      return true;
2766
2767    case OR_No_Viable_Function:
2768    case OR_Deleted:
2769      // There was no suitable conversion, or we found a deleted
2770      // conversion; continue with other checks.
2771      break;
2772    }
2773  }
2774
2775  if (BindsDirectly) {
2776    // C++ [dcl.init.ref]p4:
2777    //   [...] In all cases where the reference-related or
2778    //   reference-compatible relationship of two types is used to
2779    //   establish the validity of a reference binding, and T1 is a
2780    //   base class of T2, a program that necessitates such a binding
2781    //   is ill-formed if T1 is an inaccessible (clause 11) or
2782    //   ambiguous (10.2) base class of T2.
2783    //
2784    // Note that we only check this condition when we're allowed to
2785    // complain about errors, because we should not be checking for
2786    // ambiguity (or inaccessibility) unless the reference binding
2787    // actually happens.
2788    if (DerivedToBase)
2789      return CheckDerivedToBaseConversion(T2, T1,
2790                                          Init->getSourceRange().getBegin(),
2791                                          Init->getSourceRange());
2792    else
2793      return false;
2794  }
2795
2796  //     -- Otherwise, the reference shall be to a non-volatile const
2797  //        type (i.e., cv1 shall be const), or the reference shall be an
2798  //        rvalue reference and the initializer expression shall be an rvalue.
2799  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2800    if (!ICS)
2801      Diag(Init->getSourceRange().getBegin(),
2802           diag::err_not_reference_to_const_init)
2803        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2804        << T2 << Init->getSourceRange();
2805    return true;
2806  }
2807
2808  //       -- If the initializer expression is an rvalue, with T2 a
2809  //          class type, and “cv1 T1” is reference-compatible with
2810  //          “cv2 T2,” the reference is bound in one of the
2811  //          following ways (the choice is implementation-defined):
2812  //
2813  //          -- The reference is bound to the object represented by
2814  //             the rvalue (see 3.10) or to a sub-object within that
2815  //             object.
2816  //
2817  //          -- A temporary of type “cv1 T2” [sic] is created, and
2818  //             a constructor is called to copy the entire rvalue
2819  //             object into the temporary. The reference is bound to
2820  //             the temporary or to a sub-object within the
2821  //             temporary.
2822  //
2823  //          The constructor that would be used to make the copy
2824  //          shall be callable whether or not the copy is actually
2825  //          done.
2826  //
2827  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2828  // freedom, so we will always take the first option and never build
2829  // a temporary in this case. FIXME: We will, however, have to check
2830  // for the presence of a copy constructor in C++98/03 mode.
2831  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2832      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2833    if (ICS) {
2834      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2835      ICS->Standard.First = ICK_Identity;
2836      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2837      ICS->Standard.Third = ICK_Identity;
2838      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2839      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2840      ICS->Standard.ReferenceBinding = true;
2841      ICS->Standard.DirectBinding = false;
2842      ICS->Standard.RRefBinding = isRValRef;
2843      ICS->Standard.CopyConstructor = 0;
2844    } else {
2845      // FIXME: Binding to a subobject of the rvalue is going to require more
2846      // AST annotation than this.
2847      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2848    }
2849    return false;
2850  }
2851
2852  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2853  //          initialized from the initializer expression using the
2854  //          rules for a non-reference copy initialization (8.5). The
2855  //          reference is then bound to the temporary. If T1 is
2856  //          reference-related to T2, cv1 must be the same
2857  //          cv-qualification as, or greater cv-qualification than,
2858  //          cv2; otherwise, the program is ill-formed.
2859  if (RefRelationship == Ref_Related) {
2860    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2861    // we would be reference-compatible or reference-compatible with
2862    // added qualification. But that wasn't the case, so the reference
2863    // initialization fails.
2864    if (!ICS)
2865      Diag(Init->getSourceRange().getBegin(),
2866           diag::err_reference_init_drops_quals)
2867        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2868        << T2 << Init->getSourceRange();
2869    return true;
2870  }
2871
2872  // If at least one of the types is a class type, the types are not
2873  // related, and we aren't allowed any user conversions, the
2874  // reference binding fails. This case is important for breaking
2875  // recursion, since TryImplicitConversion below will attempt to
2876  // create a temporary through the use of a copy constructor.
2877  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2878      (T1->isRecordType() || T2->isRecordType())) {
2879    if (!ICS)
2880      Diag(Init->getSourceRange().getBegin(),
2881           diag::err_typecheck_convert_incompatible)
2882        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2883    return true;
2884  }
2885
2886  // Actually try to convert the initializer to T1.
2887  if (ICS) {
2888    // C++ [over.ics.ref]p2:
2889    //
2890    //   When a parameter of reference type is not bound directly to
2891    //   an argument expression, the conversion sequence is the one
2892    //   required to convert the argument expression to the
2893    //   underlying type of the reference according to
2894    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2895    //   to copy-initializing a temporary of the underlying type with
2896    //   the argument expression. Any difference in top-level
2897    //   cv-qualification is subsumed by the initialization itself
2898    //   and does not constitute a conversion.
2899    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2900    // Of course, that's still a reference binding.
2901    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2902      ICS->Standard.ReferenceBinding = true;
2903      ICS->Standard.RRefBinding = isRValRef;
2904    } else if(ICS->ConversionKind ==
2905              ImplicitConversionSequence::UserDefinedConversion) {
2906      ICS->UserDefined.After.ReferenceBinding = true;
2907      ICS->UserDefined.After.RRefBinding = isRValRef;
2908    }
2909    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2910  } else {
2911    return PerformImplicitConversion(Init, T1, "initializing");
2912  }
2913}
2914
2915/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2916/// of this overloaded operator is well-formed. If so, returns false;
2917/// otherwise, emits appropriate diagnostics and returns true.
2918bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2919  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2920         "Expected an overloaded operator declaration");
2921
2922  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2923
2924  // C++ [over.oper]p5:
2925  //   The allocation and deallocation functions, operator new,
2926  //   operator new[], operator delete and operator delete[], are
2927  //   described completely in 3.7.3. The attributes and restrictions
2928  //   found in the rest of this subclause do not apply to them unless
2929  //   explicitly stated in 3.7.3.
2930  // FIXME: Write a separate routine for checking this. For now, just allow it.
2931  if (Op == OO_New || Op == OO_Array_New ||
2932      Op == OO_Delete || Op == OO_Array_Delete)
2933    return false;
2934
2935  // C++ [over.oper]p6:
2936  //   An operator function shall either be a non-static member
2937  //   function or be a non-member function and have at least one
2938  //   parameter whose type is a class, a reference to a class, an
2939  //   enumeration, or a reference to an enumeration.
2940  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2941    if (MethodDecl->isStatic())
2942      return Diag(FnDecl->getLocation(),
2943                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2944  } else {
2945    bool ClassOrEnumParam = false;
2946    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2947                                   ParamEnd = FnDecl->param_end();
2948         Param != ParamEnd; ++Param) {
2949      QualType ParamType = (*Param)->getType().getNonReferenceType();
2950      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2951          ParamType->isEnumeralType()) {
2952        ClassOrEnumParam = true;
2953        break;
2954      }
2955    }
2956
2957    if (!ClassOrEnumParam)
2958      return Diag(FnDecl->getLocation(),
2959                  diag::err_operator_overload_needs_class_or_enum)
2960        << FnDecl->getDeclName();
2961  }
2962
2963  // C++ [over.oper]p8:
2964  //   An operator function cannot have default arguments (8.3.6),
2965  //   except where explicitly stated below.
2966  //
2967  // Only the function-call operator allows default arguments
2968  // (C++ [over.call]p1).
2969  if (Op != OO_Call) {
2970    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2971         Param != FnDecl->param_end(); ++Param) {
2972      if ((*Param)->hasUnparsedDefaultArg())
2973        return Diag((*Param)->getLocation(),
2974                    diag::err_operator_overload_default_arg)
2975          << FnDecl->getDeclName();
2976      else if (Expr *DefArg = (*Param)->getDefaultArg())
2977        return Diag((*Param)->getLocation(),
2978                    diag::err_operator_overload_default_arg)
2979          << FnDecl->getDeclName() << DefArg->getSourceRange();
2980    }
2981  }
2982
2983  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2984    { false, false, false }
2985#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2986    , { Unary, Binary, MemberOnly }
2987#include "clang/Basic/OperatorKinds.def"
2988  };
2989
2990  bool CanBeUnaryOperator = OperatorUses[Op][0];
2991  bool CanBeBinaryOperator = OperatorUses[Op][1];
2992  bool MustBeMemberOperator = OperatorUses[Op][2];
2993
2994  // C++ [over.oper]p8:
2995  //   [...] Operator functions cannot have more or fewer parameters
2996  //   than the number required for the corresponding operator, as
2997  //   described in the rest of this subclause.
2998  unsigned NumParams = FnDecl->getNumParams()
2999                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3000  if (Op != OO_Call &&
3001      ((NumParams == 1 && !CanBeUnaryOperator) ||
3002       (NumParams == 2 && !CanBeBinaryOperator) ||
3003       (NumParams < 1) || (NumParams > 2))) {
3004    // We have the wrong number of parameters.
3005    unsigned ErrorKind;
3006    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3007      ErrorKind = 2;  // 2 -> unary or binary.
3008    } else if (CanBeUnaryOperator) {
3009      ErrorKind = 0;  // 0 -> unary
3010    } else {
3011      assert(CanBeBinaryOperator &&
3012             "All non-call overloaded operators are unary or binary!");
3013      ErrorKind = 1;  // 1 -> binary
3014    }
3015
3016    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3017      << FnDecl->getDeclName() << NumParams << ErrorKind;
3018  }
3019
3020  // Overloaded operators other than operator() cannot be variadic.
3021  if (Op != OO_Call &&
3022      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3023    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3024      << FnDecl->getDeclName();
3025  }
3026
3027  // Some operators must be non-static member functions.
3028  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3029    return Diag(FnDecl->getLocation(),
3030                diag::err_operator_overload_must_be_member)
3031      << FnDecl->getDeclName();
3032  }
3033
3034  // C++ [over.inc]p1:
3035  //   The user-defined function called operator++ implements the
3036  //   prefix and postfix ++ operator. If this function is a member
3037  //   function with no parameters, or a non-member function with one
3038  //   parameter of class or enumeration type, it defines the prefix
3039  //   increment operator ++ for objects of that type. If the function
3040  //   is a member function with one parameter (which shall be of type
3041  //   int) or a non-member function with two parameters (the second
3042  //   of which shall be of type int), it defines the postfix
3043  //   increment operator ++ for objects of that type.
3044  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3045    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3046    bool ParamIsInt = false;
3047    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3048      ParamIsInt = BT->getKind() == BuiltinType::Int;
3049
3050    if (!ParamIsInt)
3051      return Diag(LastParam->getLocation(),
3052                  diag::err_operator_overload_post_incdec_must_be_int)
3053        << LastParam->getType() << (Op == OO_MinusMinus);
3054  }
3055
3056  // Notify the class if it got an assignment operator.
3057  if (Op == OO_Equal) {
3058    // Would have returned earlier otherwise.
3059    assert(isa<CXXMethodDecl>(FnDecl) &&
3060      "Overloaded = not member, but not filtered.");
3061    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3062    Method->getParent()->addedAssignmentOperator(Context, Method);
3063  }
3064
3065  return false;
3066}
3067
3068/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3069/// linkage specification, including the language and (if present)
3070/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3071/// the location of the language string literal, which is provided
3072/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3073/// the '{' brace. Otherwise, this linkage specification does not
3074/// have any braces.
3075Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3076                                                     SourceLocation ExternLoc,
3077                                                     SourceLocation LangLoc,
3078                                                     const char *Lang,
3079                                                     unsigned StrSize,
3080                                                     SourceLocation LBraceLoc) {
3081  LinkageSpecDecl::LanguageIDs Language;
3082  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3083    Language = LinkageSpecDecl::lang_c;
3084  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3085    Language = LinkageSpecDecl::lang_cxx;
3086  else {
3087    Diag(LangLoc, diag::err_bad_language);
3088    return DeclPtrTy();
3089  }
3090
3091  // FIXME: Add all the various semantics of linkage specifications
3092
3093  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3094                                               LangLoc, Language,
3095                                               LBraceLoc.isValid());
3096  CurContext->addDecl(D);
3097  PushDeclContext(S, D);
3098  return DeclPtrTy::make(D);
3099}
3100
3101/// ActOnFinishLinkageSpecification - Completely the definition of
3102/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3103/// valid, it's the position of the closing '}' brace in a linkage
3104/// specification that uses braces.
3105Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3106                                                      DeclPtrTy LinkageSpec,
3107                                                      SourceLocation RBraceLoc) {
3108  if (LinkageSpec)
3109    PopDeclContext();
3110  return LinkageSpec;
3111}
3112
3113/// \brief Perform semantic analysis for the variable declaration that
3114/// occurs within a C++ catch clause, returning the newly-created
3115/// variable.
3116VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3117                                         IdentifierInfo *Name,
3118                                         SourceLocation Loc,
3119                                         SourceRange Range) {
3120  bool Invalid = false;
3121
3122  // Arrays and functions decay.
3123  if (ExDeclType->isArrayType())
3124    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3125  else if (ExDeclType->isFunctionType())
3126    ExDeclType = Context.getPointerType(ExDeclType);
3127
3128  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3129  // The exception-declaration shall not denote a pointer or reference to an
3130  // incomplete type, other than [cv] void*.
3131  // N2844 forbids rvalue references.
3132  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3133    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3134    Invalid = true;
3135  }
3136
3137  QualType BaseType = ExDeclType;
3138  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3139  unsigned DK = diag::err_catch_incomplete;
3140  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3141    BaseType = Ptr->getPointeeType();
3142    Mode = 1;
3143    DK = diag::err_catch_incomplete_ptr;
3144  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3145    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3146    BaseType = Ref->getPointeeType();
3147    Mode = 2;
3148    DK = diag::err_catch_incomplete_ref;
3149  }
3150  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3151      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3152    Invalid = true;
3153
3154  if (!Invalid && !ExDeclType->isDependentType() &&
3155      RequireNonAbstractType(Loc, ExDeclType,
3156                             diag::err_abstract_type_in_decl,
3157                             AbstractVariableType))
3158    Invalid = true;
3159
3160  // FIXME: Need to test for ability to copy-construct and destroy the
3161  // exception variable.
3162
3163  // FIXME: Need to check for abstract classes.
3164
3165  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3166                                    Name, ExDeclType, VarDecl::None,
3167                                    Range.getBegin());
3168
3169  if (Invalid)
3170    ExDecl->setInvalidDecl();
3171
3172  return ExDecl;
3173}
3174
3175/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3176/// handler.
3177Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3178  QualType ExDeclType = GetTypeForDeclarator(D, S);
3179
3180  bool Invalid = D.isInvalidType();
3181  IdentifierInfo *II = D.getIdentifier();
3182  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3183    // The scope should be freshly made just for us. There is just no way
3184    // it contains any previous declaration.
3185    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3186    if (PrevDecl->isTemplateParameter()) {
3187      // Maybe we will complain about the shadowed template parameter.
3188      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3189    }
3190  }
3191
3192  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3193    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3194      << D.getCXXScopeSpec().getRange();
3195    Invalid = true;
3196  }
3197
3198  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3199                                              D.getIdentifier(),
3200                                              D.getIdentifierLoc(),
3201                                            D.getDeclSpec().getSourceRange());
3202
3203  if (Invalid)
3204    ExDecl->setInvalidDecl();
3205
3206  // Add the exception declaration into this scope.
3207  if (II)
3208    PushOnScopeChains(ExDecl, S);
3209  else
3210    CurContext->addDecl(ExDecl);
3211
3212  ProcessDeclAttributes(S, ExDecl, D);
3213  return DeclPtrTy::make(ExDecl);
3214}
3215
3216Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3217                                                   ExprArg assertexpr,
3218                                                   ExprArg assertmessageexpr) {
3219  Expr *AssertExpr = (Expr *)assertexpr.get();
3220  StringLiteral *AssertMessage =
3221    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3222
3223  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3224    llvm::APSInt Value(32);
3225    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3226      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3227        AssertExpr->getSourceRange();
3228      return DeclPtrTy();
3229    }
3230
3231    if (Value == 0) {
3232      std::string str(AssertMessage->getStrData(),
3233                      AssertMessage->getByteLength());
3234      Diag(AssertLoc, diag::err_static_assert_failed)
3235        << str << AssertExpr->getSourceRange();
3236    }
3237  }
3238
3239  assertexpr.release();
3240  assertmessageexpr.release();
3241  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3242                                        AssertExpr, AssertMessage);
3243
3244  CurContext->addDecl(Decl);
3245  return DeclPtrTy::make(Decl);
3246}
3247
3248bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3249  if (!(S->getFlags() & Scope::ClassScope)) {
3250    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3251    return true;
3252  }
3253
3254  return false;
3255}
3256
3257void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3258  Decl *Dcl = dcl.getAs<Decl>();
3259  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3260  if (!Fn) {
3261    Diag(DelLoc, diag::err_deleted_non_function);
3262    return;
3263  }
3264  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3265    Diag(DelLoc, diag::err_deleted_decl_not_first);
3266    Diag(Prev->getLocation(), diag::note_previous_declaration);
3267    // If the declaration wasn't the first, we delete the function anyway for
3268    // recovery.
3269  }
3270  Fn->setDeleted();
3271}
3272
3273static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3274  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3275       ++CI) {
3276    Stmt *SubStmt = *CI;
3277    if (!SubStmt)
3278      continue;
3279    if (isa<ReturnStmt>(SubStmt))
3280      Self.Diag(SubStmt->getSourceRange().getBegin(),
3281           diag::err_return_in_constructor_handler);
3282    if (!isa<Expr>(SubStmt))
3283      SearchForReturnInStmt(Self, SubStmt);
3284  }
3285}
3286
3287void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3288  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3289    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3290    SearchForReturnInStmt(*this, Handler);
3291  }
3292}
3293
3294bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3295                                             const CXXMethodDecl *Old) {
3296  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3297  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3298
3299  QualType CNewTy = Context.getCanonicalType(NewTy);
3300  QualType COldTy = Context.getCanonicalType(OldTy);
3301
3302  if (CNewTy == COldTy &&
3303      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3304    return false;
3305
3306  // Check if the return types are covariant
3307  QualType NewClassTy, OldClassTy;
3308
3309  /// Both types must be pointers or references to classes.
3310  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3311    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3312      NewClassTy = NewPT->getPointeeType();
3313      OldClassTy = OldPT->getPointeeType();
3314    }
3315  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3316    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3317      NewClassTy = NewRT->getPointeeType();
3318      OldClassTy = OldRT->getPointeeType();
3319    }
3320  }
3321
3322  // The return types aren't either both pointers or references to a class type.
3323  if (NewClassTy.isNull()) {
3324    Diag(New->getLocation(),
3325         diag::err_different_return_type_for_overriding_virtual_function)
3326      << New->getDeclName() << NewTy << OldTy;
3327    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3328
3329    return true;
3330  }
3331
3332  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3333    // Check if the new class derives from the old class.
3334    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3335      Diag(New->getLocation(),
3336           diag::err_covariant_return_not_derived)
3337      << New->getDeclName() << NewTy << OldTy;
3338      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3339      return true;
3340    }
3341
3342    // Check if we the conversion from derived to base is valid.
3343    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3344                      diag::err_covariant_return_inaccessible_base,
3345                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3346                      // FIXME: Should this point to the return type?
3347                      New->getLocation(), SourceRange(), New->getDeclName())) {
3348      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3349      return true;
3350    }
3351  }
3352
3353  // The qualifiers of the return types must be the same.
3354  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3355    Diag(New->getLocation(),
3356         diag::err_covariant_return_type_different_qualifications)
3357    << New->getDeclName() << NewTy << OldTy;
3358    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3359    return true;
3360  };
3361
3362
3363  // The new class type must have the same or less qualifiers as the old type.
3364  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3365    Diag(New->getLocation(),
3366         diag::err_covariant_return_type_class_type_more_qualified)
3367    << New->getDeclName() << NewTy << OldTy;
3368    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3369    return true;
3370  };
3371
3372  return false;
3373}
3374
3375bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3376                                                const CXXMethodDecl *Old)
3377{
3378  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3379                                  diag::note_overridden_virtual_function,
3380                                  Old->getType()->getAsFunctionProtoType(),
3381                                  Old->getLocation(),
3382                                  New->getType()->getAsFunctionProtoType(),
3383                                  New->getLocation());
3384}
3385
3386/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3387/// initializer for the declaration 'Dcl'.
3388/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3389/// static data member of class X, names should be looked up in the scope of
3390/// class X.
3391void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3392  Decl *D = Dcl.getAs<Decl>();
3393  // If there is no declaration, there was an error parsing it.
3394  if (D == 0)
3395    return;
3396
3397  // Check whether it is a declaration with a nested name specifier like
3398  // int foo::bar;
3399  if (!D->isOutOfLine())
3400    return;
3401
3402  // C++ [basic.lookup.unqual]p13
3403  //
3404  // A name used in the definition of a static data member of class X
3405  // (after the qualified-id of the static member) is looked up as if the name
3406  // was used in a member function of X.
3407
3408  // Change current context into the context of the initializing declaration.
3409  EnterDeclaratorContext(S, D->getDeclContext());
3410}
3411
3412/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3413/// initializer for the declaration 'Dcl'.
3414void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3415  Decl *D = Dcl.getAs<Decl>();
3416  // If there is no declaration, there was an error parsing it.
3417  if (D == 0)
3418    return;
3419
3420  // Check whether it is a declaration with a nested name specifier like
3421  // int foo::bar;
3422  if (!D->isOutOfLine())
3423    return;
3424
3425  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3426  ExitDeclaratorContext(S);
3427}
3428