SemaDeclCXX.cpp revision 73b39cf02eaa346c6d7a76c32bf13759de7516db
1dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//
3dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//                     The LLVM Compiler Infrastructure
4dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//
5dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block// This file is distributed under the University of Illinois Open Source
6dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block// License. See LICENSE.TXT for details.
7dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//
8dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//===----------------------------------------------------------------------===//
9dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//
10dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//  This file implements semantic analysis for C++ declarations.
11dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//
12dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//===----------------------------------------------------------------------===//
13dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
14dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "Sema.h"
15dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "SemaInherit.h"
16dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/AST/ASTConsumer.h"
17dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/AST/ASTContext.h"
18dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/AST/DeclVisitor.h"
19dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/AST/TypeOrdering.h"
20dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/AST/StmtVisitor.h"
21dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/Basic/PartialDiagnostic.h"
22dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/Lex/Preprocessor.h"
23dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "clang/Parse/DeclSpec.h"
24dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "llvm/ADT/STLExtras.h"
25dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include "llvm/Support/Compiler.h"
26dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include <algorithm> // for std::equal
27dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block#include <map>
28dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
29dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Blockusing namespace clang;
30dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
31dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//===----------------------------------------------------------------------===//
32dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block// CheckDefaultArgumentVisitor
33dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block//===----------------------------------------------------------------------===//
34dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
35dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Blocknamespace {
36dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// the default argument of a parameter to determine whether it
38dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// contains any ill-formed subexpressions. For example, this will
39dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// diagnose the use of local variables or parameters within the
40dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// default argument expression.
41dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Expr *DefaultArg;
44dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Sema *S;
45dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
46dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  public:
47dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      : DefaultArg(defarg), S(s) {}
49dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
50dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    bool VisitExpr(Expr *Node);
51dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    bool VisitDeclRefExpr(DeclRefExpr *DRE);
5221939df44de1705786c545cd1bf519d47250322dBen Murdoch    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  };
54dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
55dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// VisitExpr - Visit all of the children of this expression.
56dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    bool IsInvalid = false;
58dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    for (Stmt::child_iterator I = Node->child_begin(),
59dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block         E = Node->child_end(); I != E; ++I)
60dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      IsInvalid |= Visit(*I);
61dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return IsInvalid;
62dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  }
63dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
64dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// determine whether this declaration can be used in the default
66dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// argument expression.
67dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    NamedDecl *Decl = DRE->getDecl();
69dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      // C++ [dcl.fct.default]p9
71dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   Default arguments are evaluated each time the function is
72dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   called. The order of evaluation of function arguments is
73dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   unspecified. Consequently, parameters of a function shall not
74dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   be used in default argument expressions, even if they are not
75dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   evaluated. Parameters of a function declared before a default
76dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   argument expression are in scope and can hide namespace and
77dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   class member names.
78dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      return S->Diag(DRE->getSourceRange().getBegin(),
79dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                     diag::err_param_default_argument_references_param)
80dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block         << Param->getDeclName() << DefaultArg->getSourceRange();
81dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      // C++ [dcl.fct.default]p7
83dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   Local variables shall not be used in default argument
84dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      //   expressions.
8521939df44de1705786c545cd1bf519d47250322dBen Murdoch      if (VDecl->isBlockVarDecl())
86dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block        return S->Diag(DRE->getSourceRange().getBegin(),
87dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                       diag::err_param_default_argument_references_local)
8821939df44de1705786c545cd1bf519d47250322dBen Murdoch          << VDecl->getDeclName() << DefaultArg->getSourceRange();
8921939df44de1705786c545cd1bf519d47250322dBen Murdoch    }
90dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
9121939df44de1705786c545cd1bf519d47250322dBen Murdoch    return false;
92dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  }
93dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
94dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    // C++ [dcl.fct.default]p8:
97dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    //   The keyword this shall not be used in a default argument of a
98dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    //   member function.
99dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return S->Diag(ThisE->getSourceRange().getBegin(),
100dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                   diag::err_param_default_argument_references_this)
101dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block               << ThisE->getSourceRange();
102dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  }
103dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block}
104dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
105dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Blockbool
10621939df44de1705786c545cd1bf519d47250322dBen MurdochSema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                              SourceLocation EqualLoc)
108dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block{
109dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  QualType ParamType = Param->getType();
110dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
111dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                          diag::err_typecheck_decl_incomplete_type)) {
113dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Param->setInvalidDecl();
114dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return true;
115dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  }
116dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
117dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  Expr *Arg = (Expr *)DefaultArg.get();
118dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
119dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  // C++ [dcl.fct.default]p5
120dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  //   A default argument expression is implicitly converted (clause
121dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  //   4) to the parameter type. The default argument expression has
122dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  //   the same semantic constraints as the initializer expression in
123dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  //   a declaration of a variable of the parameter type, using the
124dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  //   copy-initialization semantics (8.5).
125dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                            Param->getDeclName(), /*DirectInit=*/false))
127dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return true;
128dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
129dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
131dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  // Okay: add the default argument to the parameter
132dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  Param->setDefaultArg(Arg);
133dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
134dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  DefaultArg.release();
135dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
136dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  return false;
137dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block}
138dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
139dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// ActOnParamDefaultArgument - Check whether the default argument
140dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// provided for a function parameter is well-formed. If so, attach it
141dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// to the parameter declaration.
142dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Blockvoid
143dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve BlockSema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                                ExprArg defarg) {
145dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (!param || !defarg.get())
146dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return;
147dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
148dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  UnparsedDefaultArgLocs.erase(Param);
150dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
151dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  QualType ParamType = Param->getType();
153dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
154dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  // Default arguments are only permitted in C++
155dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (!getLangOptions().CPlusPlus) {
156dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Diag(EqualLoc, diag::err_param_default_argument)
157dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block      << DefaultArg->getSourceRange();
158dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Param->setInvalidDecl();
159dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return;
160dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  }
161dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
162dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  // Check that the default argument is well-formed
163dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Param->setInvalidDecl();
166dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return;
167dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  }
168dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
169dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block}
171dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
172dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// ActOnParamUnparsedDefaultArgument - We've seen a default
173dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// argument for a function parameter, but we can't parse it yet
174dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// because we're inside a class definition. Note that this default
175dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// argument will be parsed later.
176dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Blockvoid Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                                             SourceLocation EqualLoc,
178dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block                                             SourceLocation ArgLoc) {
179dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (!param)
180dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return;
181dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
182dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (Param)
184dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    Param->setUnparsedDefaultArg();
185dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
186dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  UnparsedDefaultArgLocs[Param] = ArgLoc;
187dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block}
188dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
189dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// the default argument for the parameter param failed.
191dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Blockvoid Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  if (!param)
193dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block    return;
194dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
195dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
197dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  Param->setInvalidDecl();
198dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
199dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block  UnparsedDefaultArgLocs.erase(Param);
200dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block}
201dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block
202dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// CheckExtraCXXDefaultArguments - Check for any extra default
203dcc8cf2e65d1aa555cce12431a16547e66b469eeSteve Block/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
258    ParmVarDecl *OldParam = Old->getParamDecl(p);
259    ParmVarDecl *NewParam = New->getParamDecl(p);
260
261    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
262      Diag(NewParam->getLocation(),
263           diag::err_param_default_argument_redefinition)
264        << NewParam->getDefaultArg()->getSourceRange();
265      Diag(OldParam->getLocation(), diag::note_previous_definition);
266      Invalid = true;
267    } else if (OldParam->getDefaultArg()) {
268      // Merge the old default argument into the new parameter
269      NewParam->setDefaultArg(OldParam->getDefaultArg());
270    }
271  }
272
273  if (CheckEquivalentExceptionSpec(
274          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
275          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
276    Invalid = true;
277  }
278
279  return Invalid;
280}
281
282/// CheckCXXDefaultArguments - Verify that the default arguments for a
283/// function declaration are well-formed according to C++
284/// [dcl.fct.default].
285void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
286  unsigned NumParams = FD->getNumParams();
287  unsigned p;
288
289  // Find first parameter with a default argument
290  for (p = 0; p < NumParams; ++p) {
291    ParmVarDecl *Param = FD->getParamDecl(p);
292    if (Param->hasDefaultArg())
293      break;
294  }
295
296  // C++ [dcl.fct.default]p4:
297  //   In a given function declaration, all parameters
298  //   subsequent to a parameter with a default argument shall
299  //   have default arguments supplied in this or previous
300  //   declarations. A default argument shall not be redefined
301  //   by a later declaration (not even to the same value).
302  unsigned LastMissingDefaultArg = 0;
303  for(; p < NumParams; ++p) {
304    ParmVarDecl *Param = FD->getParamDecl(p);
305    if (!Param->hasDefaultArg()) {
306      if (Param->isInvalidDecl())
307        /* We already complained about this parameter. */;
308      else if (Param->getIdentifier())
309        Diag(Param->getLocation(),
310             diag::err_param_default_argument_missing_name)
311          << Param->getIdentifier();
312      else
313        Diag(Param->getLocation(),
314             diag::err_param_default_argument_missing);
315
316      LastMissingDefaultArg = p;
317    }
318  }
319
320  if (LastMissingDefaultArg > 0) {
321    // Some default arguments were missing. Clear out all of the
322    // default arguments up to (and including) the last missing
323    // default argument, so that we leave the function parameters
324    // in a semantically valid state.
325    for (p = 0; p <= LastMissingDefaultArg; ++p) {
326      ParmVarDecl *Param = FD->getParamDecl(p);
327      if (Param->hasDefaultArg()) {
328        if (!Param->hasUnparsedDefaultArg())
329          Param->getDefaultArg()->Destroy(Context);
330        Param->setDefaultArg(0);
331      }
332    }
333  }
334}
335
336/// isCurrentClassName - Determine whether the identifier II is the
337/// name of the class type currently being defined. In the case of
338/// nested classes, this will only return true if II is the name of
339/// the innermost class.
340bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
341                              const CXXScopeSpec *SS) {
342  CXXRecordDecl *CurDecl;
343  if (SS && SS->isSet() && !SS->isInvalid()) {
344    DeclContext *DC = computeDeclContext(*SS, true);
345    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
346  } else
347    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
348
349  if (CurDecl)
350    return &II == CurDecl->getIdentifier();
351  else
352    return false;
353}
354
355/// \brief Check the validity of a C++ base class specifier.
356///
357/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
358/// and returns NULL otherwise.
359CXXBaseSpecifier *
360Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
361                         SourceRange SpecifierRange,
362                         bool Virtual, AccessSpecifier Access,
363                         QualType BaseType,
364                         SourceLocation BaseLoc) {
365  // C++ [class.union]p1:
366  //   A union shall not have base classes.
367  if (Class->isUnion()) {
368    Diag(Class->getLocation(), diag::err_base_clause_on_union)
369      << SpecifierRange;
370    return 0;
371  }
372
373  if (BaseType->isDependentType())
374    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
375                                Class->getTagKind() == RecordDecl::TK_class,
376                                Access, BaseType);
377
378  // Base specifiers must be record types.
379  if (!BaseType->isRecordType()) {
380    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
381    return 0;
382  }
383
384  // C++ [class.union]p1:
385  //   A union shall not be used as a base class.
386  if (BaseType->isUnionType()) {
387    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
388    return 0;
389  }
390
391  // C++ [class.derived]p2:
392  //   The class-name in a base-specifier shall not be an incompletely
393  //   defined class.
394  if (RequireCompleteType(BaseLoc, BaseType,
395                          PDiag(diag::err_incomplete_base_class)
396                            << SpecifierRange))
397    return 0;
398
399  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
400  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
401  assert(BaseDecl && "Record type has no declaration");
402  BaseDecl = BaseDecl->getDefinition(Context);
403  assert(BaseDecl && "Base type is not incomplete, but has no definition");
404  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
405  assert(CXXBaseDecl && "Base type is not a C++ type");
406  if (!CXXBaseDecl->isEmpty())
407    Class->setEmpty(false);
408  if (CXXBaseDecl->isPolymorphic())
409    Class->setPolymorphic(true);
410
411  // C++ [dcl.init.aggr]p1:
412  //   An aggregate is [...] a class with [...] no base classes [...].
413  Class->setAggregate(false);
414  Class->setPOD(false);
415
416  if (Virtual) {
417    // C++ [class.ctor]p5:
418    //   A constructor is trivial if its class has no virtual base classes.
419    Class->setHasTrivialConstructor(false);
420
421    // C++ [class.copy]p6:
422    //   A copy constructor is trivial if its class has no virtual base classes.
423    Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if its class has no virtual
427    //   base classes.
428    Class->setHasTrivialCopyAssignment(false);
429
430    // C++0x [meta.unary.prop] is_empty:
431    //    T is a class type, but not a union type, with ... no virtual base
432    //    classes
433    Class->setEmpty(false);
434  } else {
435    // C++ [class.ctor]p5:
436    //   A constructor is trivial if all the direct base classes of its
437    //   class have trivial constructors.
438    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
439      Class->setHasTrivialConstructor(false);
440
441    // C++ [class.copy]p6:
442    //   A copy constructor is trivial if all the direct base classes of its
443    //   class have trivial copy constructors.
444    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
445      Class->setHasTrivialCopyConstructor(false);
446
447    // C++ [class.copy]p11:
448    //   A copy assignment operator is trivial if all the direct base classes
449    //   of its class have trivial copy assignment operators.
450    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
451      Class->setHasTrivialCopyAssignment(false);
452  }
453
454  // C++ [class.ctor]p3:
455  //   A destructor is trivial if all the direct base classes of its class
456  //   have trivial destructors.
457  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
458    Class->setHasTrivialDestructor(false);
459
460  // Create the base specifier.
461  // FIXME: Allocate via ASTContext?
462  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                              Class->getTagKind() == RecordDecl::TK_class,
464                              Access, BaseType);
465}
466
467/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
468/// one entry in the base class list of a class specifier, for
469/// example:
470///    class foo : public bar, virtual private baz {
471/// 'public bar' and 'virtual private baz' are each base-specifiers.
472Sema::BaseResult
473Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
474                         bool Virtual, AccessSpecifier Access,
475                         TypeTy *basetype, SourceLocation BaseLoc) {
476  if (!classdecl)
477    return true;
478
479  AdjustDeclIfTemplate(classdecl);
480  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
481  QualType BaseType = GetTypeFromParser(basetype);
482  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
483                                                      Virtual, Access,
484                                                      BaseType, BaseLoc))
485    return BaseSpec;
486
487  return true;
488}
489
490/// \brief Performs the actual work of attaching the given base class
491/// specifiers to a C++ class.
492bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
493                                unsigned NumBases) {
494 if (NumBases == 0)
495    return false;
496
497  // Used to keep track of which base types we have already seen, so
498  // that we can properly diagnose redundant direct base types. Note
499  // that the key is always the unqualified canonical type of the base
500  // class.
501  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
502
503  // Copy non-redundant base specifiers into permanent storage.
504  unsigned NumGoodBases = 0;
505  bool Invalid = false;
506  for (unsigned idx = 0; idx < NumBases; ++idx) {
507    QualType NewBaseType
508      = Context.getCanonicalType(Bases[idx]->getType());
509    NewBaseType = NewBaseType.getUnqualifiedType();
510
511    if (KnownBaseTypes[NewBaseType]) {
512      // C++ [class.mi]p3:
513      //   A class shall not be specified as a direct base class of a
514      //   derived class more than once.
515      Diag(Bases[idx]->getSourceRange().getBegin(),
516           diag::err_duplicate_base_class)
517        << KnownBaseTypes[NewBaseType]->getType()
518        << Bases[idx]->getSourceRange();
519
520      // Delete the duplicate base class specifier; we're going to
521      // overwrite its pointer later.
522      Context.Deallocate(Bases[idx]);
523
524      Invalid = true;
525    } else {
526      // Okay, add this new base class.
527      KnownBaseTypes[NewBaseType] = Bases[idx];
528      Bases[NumGoodBases++] = Bases[idx];
529    }
530  }
531
532  // Attach the remaining base class specifiers to the derived class.
533  Class->setBases(Context, Bases, NumGoodBases);
534
535  // Delete the remaining (good) base class specifiers, since their
536  // data has been copied into the CXXRecordDecl.
537  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
538    Context.Deallocate(Bases[idx]);
539
540  return Invalid;
541}
542
543/// ActOnBaseSpecifiers - Attach the given base specifiers to the
544/// class, after checking whether there are any duplicate base
545/// classes.
546void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
547                               unsigned NumBases) {
548  if (!ClassDecl || !Bases || !NumBases)
549    return;
550
551  AdjustDeclIfTemplate(ClassDecl);
552  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
553                       (CXXBaseSpecifier**)(Bases), NumBases);
554}
555
556//===----------------------------------------------------------------------===//
557// C++ class member Handling
558//===----------------------------------------------------------------------===//
559
560/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
561/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
562/// bitfield width if there is one and 'InitExpr' specifies the initializer if
563/// any.
564Sema::DeclPtrTy
565Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
566                               MultiTemplateParamsArg TemplateParameterLists,
567                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
568  const DeclSpec &DS = D.getDeclSpec();
569  DeclarationName Name = GetNameForDeclarator(D);
570  Expr *BitWidth = static_cast<Expr*>(BW);
571  Expr *Init = static_cast<Expr*>(InitExpr);
572  SourceLocation Loc = D.getIdentifierLoc();
573
574  bool isFunc = D.isFunctionDeclarator();
575
576  assert(!DS.isFriendSpecified());
577
578  // C++ 9.2p6: A member shall not be declared to have automatic storage
579  // duration (auto, register) or with the extern storage-class-specifier.
580  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
581  // data members and cannot be applied to names declared const or static,
582  // and cannot be applied to reference members.
583  switch (DS.getStorageClassSpec()) {
584    case DeclSpec::SCS_unspecified:
585    case DeclSpec::SCS_typedef:
586    case DeclSpec::SCS_static:
587      // FALL THROUGH.
588      break;
589    case DeclSpec::SCS_mutable:
590      if (isFunc) {
591        if (DS.getStorageClassSpecLoc().isValid())
592          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
593        else
594          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
595
596        // FIXME: It would be nicer if the keyword was ignored only for this
597        // declarator. Otherwise we could get follow-up errors.
598        D.getMutableDeclSpec().ClearStorageClassSpecs();
599      } else {
600        QualType T = GetTypeForDeclarator(D, S);
601        diag::kind err = static_cast<diag::kind>(0);
602        if (T->isReferenceType())
603          err = diag::err_mutable_reference;
604        else if (T.isConstQualified())
605          err = diag::err_mutable_const;
606        if (err != 0) {
607          if (DS.getStorageClassSpecLoc().isValid())
608            Diag(DS.getStorageClassSpecLoc(), err);
609          else
610            Diag(DS.getThreadSpecLoc(), err);
611          // FIXME: It would be nicer if the keyword was ignored only for this
612          // declarator. Otherwise we could get follow-up errors.
613          D.getMutableDeclSpec().ClearStorageClassSpecs();
614        }
615      }
616      break;
617    default:
618      if (DS.getStorageClassSpecLoc().isValid())
619        Diag(DS.getStorageClassSpecLoc(),
620             diag::err_storageclass_invalid_for_member);
621      else
622        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
623      D.getMutableDeclSpec().ClearStorageClassSpecs();
624  }
625
626  if (!isFunc &&
627      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
628      D.getNumTypeObjects() == 0) {
629    // Check also for this case:
630    //
631    // typedef int f();
632    // f a;
633    //
634    QualType TDType = GetTypeFromParser(DS.getTypeRep());
635    isFunc = TDType->isFunctionType();
636  }
637
638  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
639                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
640                      !isFunc);
641
642  Decl *Member;
643  if (isInstField) {
644    // FIXME: Check for template parameters!
645    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
646                         AS);
647    assert(Member && "HandleField never returns null");
648  } else {
649    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
650               .getAs<Decl>();
651    if (!Member) {
652      if (BitWidth) DeleteExpr(BitWidth);
653      return DeclPtrTy();
654    }
655
656    // Non-instance-fields can't have a bitfield.
657    if (BitWidth) {
658      if (Member->isInvalidDecl()) {
659        // don't emit another diagnostic.
660      } else if (isa<VarDecl>(Member)) {
661        // C++ 9.6p3: A bit-field shall not be a static member.
662        // "static member 'A' cannot be a bit-field"
663        Diag(Loc, diag::err_static_not_bitfield)
664          << Name << BitWidth->getSourceRange();
665      } else if (isa<TypedefDecl>(Member)) {
666        // "typedef member 'x' cannot be a bit-field"
667        Diag(Loc, diag::err_typedef_not_bitfield)
668          << Name << BitWidth->getSourceRange();
669      } else {
670        // A function typedef ("typedef int f(); f a;").
671        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
672        Diag(Loc, diag::err_not_integral_type_bitfield)
673          << Name << cast<ValueDecl>(Member)->getType()
674          << BitWidth->getSourceRange();
675      }
676
677      DeleteExpr(BitWidth);
678      BitWidth = 0;
679      Member->setInvalidDecl();
680    }
681
682    Member->setAccess(AS);
683
684    // If we have declared a member function template, set the access of the
685    // templated declaration as well.
686    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
687      FunTmpl->getTemplatedDecl()->setAccess(AS);
688  }
689
690  assert((Name || isInstField) && "No identifier for non-field ?");
691
692  if (Init)
693    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
694  if (Deleted) // FIXME: Source location is not very good.
695    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
696
697  if (isInstField) {
698    FieldCollector->Add(cast<FieldDecl>(Member));
699    return DeclPtrTy();
700  }
701  return DeclPtrTy::make(Member);
702}
703
704/// ActOnMemInitializer - Handle a C++ member initializer.
705Sema::MemInitResult
706Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
707                          Scope *S,
708                          const CXXScopeSpec &SS,
709                          IdentifierInfo *MemberOrBase,
710                          TypeTy *TemplateTypeTy,
711                          SourceLocation IdLoc,
712                          SourceLocation LParenLoc,
713                          ExprTy **Args, unsigned NumArgs,
714                          SourceLocation *CommaLocs,
715                          SourceLocation RParenLoc) {
716  if (!ConstructorD)
717    return true;
718
719  AdjustDeclIfTemplate(ConstructorD);
720
721  CXXConstructorDecl *Constructor
722    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
723  if (!Constructor) {
724    // The user wrote a constructor initializer on a function that is
725    // not a C++ constructor. Ignore the error for now, because we may
726    // have more member initializers coming; we'll diagnose it just
727    // once in ActOnMemInitializers.
728    return true;
729  }
730
731  CXXRecordDecl *ClassDecl = Constructor->getParent();
732
733  // C++ [class.base.init]p2:
734  //   Names in a mem-initializer-id are looked up in the scope of the
735  //   constructor’s class and, if not found in that scope, are looked
736  //   up in the scope containing the constructor’s
737  //   definition. [Note: if the constructor’s class contains a member
738  //   with the same name as a direct or virtual base class of the
739  //   class, a mem-initializer-id naming the member or base class and
740  //   composed of a single identifier refers to the class member. A
741  //   mem-initializer-id for the hidden base class may be specified
742  //   using a qualified name. ]
743  if (!SS.getScopeRep() && !TemplateTypeTy) {
744    // Look for a member, first.
745    FieldDecl *Member = 0;
746    DeclContext::lookup_result Result
747      = ClassDecl->lookup(MemberOrBase);
748    if (Result.first != Result.second)
749      Member = dyn_cast<FieldDecl>(*Result.first);
750
751    // FIXME: Handle members of an anonymous union.
752
753    if (Member)
754      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
755                                    RParenLoc);
756  }
757  // It didn't name a member, so see if it names a class.
758  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
759                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
760  if (!BaseTy)
761    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763
764  QualType BaseType = GetTypeFromParser(BaseTy);
765
766  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
767                              RParenLoc, ClassDecl);
768}
769
770Sema::MemInitResult
771Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
772                             unsigned NumArgs, SourceLocation IdLoc,
773                             SourceLocation RParenLoc) {
774  bool HasDependentArg = false;
775  for (unsigned i = 0; i < NumArgs; i++)
776    HasDependentArg |= Args[i]->isTypeDependent();
777
778  CXXConstructorDecl *C = 0;
779  QualType FieldType = Member->getType();
780  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
781    FieldType = Array->getElementType();
782  if (FieldType->isDependentType()) {
783    // Can't check init for dependent type.
784  } else if (FieldType->getAs<RecordType>()) {
785    if (!HasDependentArg)
786      C = PerformInitializationByConstructor(
787            FieldType, (Expr **)Args, NumArgs, IdLoc,
788            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
789  } else if (NumArgs != 1) {
790    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
791                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
792  } else if (!HasDependentArg) {
793    Expr *NewExp = (Expr*)Args[0];
794    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
795      return true;
796    Args[0] = NewExp;
797  }
798  // FIXME: Perform direct initialization of the member.
799  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
800                                                  NumArgs, C, IdLoc);
801}
802
803Sema::MemInitResult
804Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
805                           unsigned NumArgs, SourceLocation IdLoc,
806                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
807  bool HasDependentArg = false;
808  for (unsigned i = 0; i < NumArgs; i++)
809    HasDependentArg |= Args[i]->isTypeDependent();
810
811  if (!BaseType->isDependentType()) {
812    if (!BaseType->isRecordType())
813      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
814        << BaseType << SourceRange(IdLoc, RParenLoc);
815
816    // C++ [class.base.init]p2:
817    //   [...] Unless the mem-initializer-id names a nonstatic data
818    //   member of the constructor’s class or a direct or virtual base
819    //   of that class, the mem-initializer is ill-formed. A
820    //   mem-initializer-list can initialize a base class using any
821    //   name that denotes that base class type.
822
823    // First, check for a direct base class.
824    const CXXBaseSpecifier *DirectBaseSpec = 0;
825    for (CXXRecordDecl::base_class_const_iterator Base =
826         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
827      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
828          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
829        // We found a direct base of this type. That's what we're
830        // initializing.
831        DirectBaseSpec = &*Base;
832        break;
833      }
834    }
835
836    // Check for a virtual base class.
837    // FIXME: We might be able to short-circuit this if we know in advance that
838    // there are no virtual bases.
839    const CXXBaseSpecifier *VirtualBaseSpec = 0;
840    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
841      // We haven't found a base yet; search the class hierarchy for a
842      // virtual base class.
843      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
844                      /*DetectVirtual=*/false);
845      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
846        for (BasePaths::paths_iterator Path = Paths.begin();
847             Path != Paths.end(); ++Path) {
848          if (Path->back().Base->isVirtual()) {
849            VirtualBaseSpec = Path->back().Base;
850            break;
851          }
852        }
853      }
854    }
855
856    // C++ [base.class.init]p2:
857    //   If a mem-initializer-id is ambiguous because it designates both
858    //   a direct non-virtual base class and an inherited virtual base
859    //   class, the mem-initializer is ill-formed.
860    if (DirectBaseSpec && VirtualBaseSpec)
861      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
862        << BaseType << SourceRange(IdLoc, RParenLoc);
863    // C++ [base.class.init]p2:
864    // Unless the mem-initializer-id names a nonstatic data membeer of the
865    // constructor's class ot a direst or virtual base of that class, the
866    // mem-initializer is ill-formed.
867    if (!DirectBaseSpec && !VirtualBaseSpec)
868      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
869      << BaseType << ClassDecl->getNameAsCString()
870      << SourceRange(IdLoc, RParenLoc);
871  }
872
873  CXXConstructorDecl *C = 0;
874  if (!BaseType->isDependentType() && !HasDependentArg) {
875    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
876                                            Context.getCanonicalType(BaseType));
877    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
878                                           IdLoc, SourceRange(IdLoc, RParenLoc),
879                                           Name, IK_Direct);
880  }
881
882  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
883                                                  NumArgs, C, IdLoc);
884}
885
886void
887Sema::BuildBaseOrMemberInitializers(ASTContext &C,
888                                 CXXConstructorDecl *Constructor,
889                                 CXXBaseOrMemberInitializer **Initializers,
890                                 unsigned NumInitializers
891                                 ) {
892  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
893  llvm::SmallVector<FieldDecl *, 4>Members;
894
895  Constructor->setBaseOrMemberInitializers(C,
896                                           Initializers, NumInitializers,
897                                           Bases, Members);
898  for (unsigned int i = 0; i < Bases.size(); i++)
899    Diag(Bases[i]->getSourceRange().getBegin(),
900         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
901  for (unsigned int i = 0; i < Members.size(); i++)
902    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
903          << 1 << Members[i]->getType();
904}
905
906static void *GetKeyForTopLevelField(FieldDecl *Field) {
907  // For anonymous unions, use the class declaration as the key.
908  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
909    if (RT->getDecl()->isAnonymousStructOrUnion())
910      return static_cast<void *>(RT->getDecl());
911  }
912  return static_cast<void *>(Field);
913}
914
915static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
916                             bool MemberMaybeAnon=false) {
917  // For fields injected into the class via declaration of an anonymous union,
918  // use its anonymous union class declaration as the unique key.
919  if (FieldDecl *Field = Member->getMember()) {
920    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
921    // data member of the class. Data member used in the initializer list is
922    // in AnonUnionMember field.
923    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
924      Field = Member->getAnonUnionMember();
925    if (Field->getDeclContext()->isRecord()) {
926      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
927      if (RD->isAnonymousStructOrUnion())
928        return static_cast<void *>(RD);
929    }
930    return static_cast<void *>(Field);
931  }
932  return static_cast<RecordType *>(Member->getBaseClass());
933}
934
935void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
936                                SourceLocation ColonLoc,
937                                MemInitTy **MemInits, unsigned NumMemInits) {
938  if (!ConstructorDecl)
939    return;
940
941  AdjustDeclIfTemplate(ConstructorDecl);
942
943  CXXConstructorDecl *Constructor
944    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
945
946  if (!Constructor) {
947    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
948    return;
949  }
950
951  if (!Constructor->isDependentContext()) {
952    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
953    bool err = false;
954    for (unsigned i = 0; i < NumMemInits; i++) {
955      CXXBaseOrMemberInitializer *Member =
956        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
957      void *KeyToMember = GetKeyForMember(Member);
958      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
959      if (!PrevMember) {
960        PrevMember = Member;
961        continue;
962      }
963      if (FieldDecl *Field = Member->getMember())
964        Diag(Member->getSourceLocation(),
965             diag::error_multiple_mem_initialization)
966        << Field->getNameAsString();
967      else {
968        Type *BaseClass = Member->getBaseClass();
969        assert(BaseClass && "ActOnMemInitializers - neither field or base");
970        Diag(Member->getSourceLocation(),
971             diag::error_multiple_base_initialization)
972          << BaseClass->getDesugaredType(true);
973      }
974      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
975        << 0;
976      err = true;
977    }
978
979    if (err)
980      return;
981  }
982
983  BuildBaseOrMemberInitializers(Context, Constructor,
984                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
985                      NumMemInits);
986
987  if (Constructor->isDependentContext())
988    return;
989
990  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
991      Diagnostic::Ignored &&
992      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
993      Diagnostic::Ignored)
994    return;
995
996  // Also issue warning if order of ctor-initializer list does not match order
997  // of 1) base class declarations and 2) order of non-static data members.
998  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
999
1000  CXXRecordDecl *ClassDecl
1001    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1002  // Push virtual bases before others.
1003  for (CXXRecordDecl::base_class_iterator VBase =
1004       ClassDecl->vbases_begin(),
1005       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1006    AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
1007
1008  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1009       E = ClassDecl->bases_end(); Base != E; ++Base) {
1010    // Virtuals are alread in the virtual base list and are constructed
1011    // first.
1012    if (Base->isVirtual())
1013      continue;
1014    AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
1015  }
1016
1017  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1018       E = ClassDecl->field_end(); Field != E; ++Field)
1019    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1020
1021  int Last = AllBaseOrMembers.size();
1022  int curIndex = 0;
1023  CXXBaseOrMemberInitializer *PrevMember = 0;
1024  for (unsigned i = 0; i < NumMemInits; i++) {
1025    CXXBaseOrMemberInitializer *Member =
1026      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1027    void *MemberInCtorList = GetKeyForMember(Member, true);
1028
1029    for (; curIndex < Last; curIndex++)
1030      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1031        break;
1032    if (curIndex == Last) {
1033      assert(PrevMember && "Member not in member list?!");
1034      // Initializer as specified in ctor-initializer list is out of order.
1035      // Issue a warning diagnostic.
1036      if (PrevMember->isBaseInitializer()) {
1037        // Diagnostics is for an initialized base class.
1038        Type *BaseClass = PrevMember->getBaseClass();
1039        Diag(PrevMember->getSourceLocation(),
1040             diag::warn_base_initialized)
1041              << BaseClass->getDesugaredType(true);
1042      } else {
1043        FieldDecl *Field = PrevMember->getMember();
1044        Diag(PrevMember->getSourceLocation(),
1045             diag::warn_field_initialized)
1046          << Field->getNameAsString();
1047      }
1048      // Also the note!
1049      if (FieldDecl *Field = Member->getMember())
1050        Diag(Member->getSourceLocation(),
1051             diag::note_fieldorbase_initialized_here) << 0
1052          << Field->getNameAsString();
1053      else {
1054        Type *BaseClass = Member->getBaseClass();
1055        Diag(Member->getSourceLocation(),
1056             diag::note_fieldorbase_initialized_here) << 1
1057          << BaseClass->getDesugaredType(true);
1058      }
1059      for (curIndex = 0; curIndex < Last; curIndex++)
1060        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1061          break;
1062    }
1063    PrevMember = Member;
1064  }
1065}
1066
1067void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1068  if (!CDtorDecl)
1069    return;
1070
1071  AdjustDeclIfTemplate(CDtorDecl);
1072
1073  if (CXXConstructorDecl *Constructor
1074      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1075    BuildBaseOrMemberInitializers(Context,
1076                                     Constructor,
1077                                     (CXXBaseOrMemberInitializer **)0, 0);
1078}
1079
1080namespace {
1081  /// PureVirtualMethodCollector - traverses a class and its superclasses
1082  /// and determines if it has any pure virtual methods.
1083  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1084    ASTContext &Context;
1085
1086  public:
1087    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1088
1089  private:
1090    MethodList Methods;
1091
1092    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1093
1094  public:
1095    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1096      : Context(Ctx) {
1097
1098      MethodList List;
1099      Collect(RD, List);
1100
1101      // Copy the temporary list to methods, and make sure to ignore any
1102      // null entries.
1103      for (size_t i = 0, e = List.size(); i != e; ++i) {
1104        if (List[i])
1105          Methods.push_back(List[i]);
1106      }
1107    }
1108
1109    bool empty() const { return Methods.empty(); }
1110
1111    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1112    MethodList::const_iterator methods_end() { return Methods.end(); }
1113  };
1114
1115  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1116                                           MethodList& Methods) {
1117    // First, collect the pure virtual methods for the base classes.
1118    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1119         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1120      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1121        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1122        if (BaseDecl && BaseDecl->isAbstract())
1123          Collect(BaseDecl, Methods);
1124      }
1125    }
1126
1127    // Next, zero out any pure virtual methods that this class overrides.
1128    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1129
1130    MethodSetTy OverriddenMethods;
1131    size_t MethodsSize = Methods.size();
1132
1133    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1134         i != e; ++i) {
1135      // Traverse the record, looking for methods.
1136      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1137        // If the method is pure virtual, add it to the methods vector.
1138        if (MD->isPure()) {
1139          Methods.push_back(MD);
1140          continue;
1141        }
1142
1143        // Otherwise, record all the overridden methods in our set.
1144        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1145             E = MD->end_overridden_methods(); I != E; ++I) {
1146          // Keep track of the overridden methods.
1147          OverriddenMethods.insert(*I);
1148        }
1149      }
1150    }
1151
1152    // Now go through the methods and zero out all the ones we know are
1153    // overridden.
1154    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1155      if (OverriddenMethods.count(Methods[i]))
1156        Methods[i] = 0;
1157    }
1158
1159  }
1160}
1161
1162
1163bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1164                                  unsigned DiagID, AbstractDiagSelID SelID,
1165                                  const CXXRecordDecl *CurrentRD) {
1166  if (SelID == -1)
1167    return RequireNonAbstractType(Loc, T,
1168                                  PDiag(DiagID), CurrentRD);
1169  else
1170    return RequireNonAbstractType(Loc, T,
1171                                  PDiag(DiagID) << SelID, CurrentRD);
1172}
1173
1174bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1175                                  const PartialDiagnostic &PD,
1176                                  const CXXRecordDecl *CurrentRD) {
1177  if (!getLangOptions().CPlusPlus)
1178    return false;
1179
1180  if (const ArrayType *AT = Context.getAsArrayType(T))
1181    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1182                                  CurrentRD);
1183
1184  if (const PointerType *PT = T->getAs<PointerType>()) {
1185    // Find the innermost pointer type.
1186    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1187      PT = T;
1188
1189    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1190      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1191  }
1192
1193  const RecordType *RT = T->getAs<RecordType>();
1194  if (!RT)
1195    return false;
1196
1197  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1198  if (!RD)
1199    return false;
1200
1201  if (CurrentRD && CurrentRD != RD)
1202    return false;
1203
1204  if (!RD->isAbstract())
1205    return false;
1206
1207  Diag(Loc, PD) << RD->getDeclName();
1208
1209  // Check if we've already emitted the list of pure virtual functions for this
1210  // class.
1211  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1212    return true;
1213
1214  PureVirtualMethodCollector Collector(Context, RD);
1215
1216  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1217       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1218    const CXXMethodDecl *MD = *I;
1219
1220    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1221      MD->getDeclName();
1222  }
1223
1224  if (!PureVirtualClassDiagSet)
1225    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1226  PureVirtualClassDiagSet->insert(RD);
1227
1228  return true;
1229}
1230
1231namespace {
1232  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1233    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1234    Sema &SemaRef;
1235    CXXRecordDecl *AbstractClass;
1236
1237    bool VisitDeclContext(const DeclContext *DC) {
1238      bool Invalid = false;
1239
1240      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1241           E = DC->decls_end(); I != E; ++I)
1242        Invalid |= Visit(*I);
1243
1244      return Invalid;
1245    }
1246
1247  public:
1248    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1249      : SemaRef(SemaRef), AbstractClass(ac) {
1250        Visit(SemaRef.Context.getTranslationUnitDecl());
1251    }
1252
1253    bool VisitFunctionDecl(const FunctionDecl *FD) {
1254      if (FD->isThisDeclarationADefinition()) {
1255        // No need to do the check if we're in a definition, because it requires
1256        // that the return/param types are complete.
1257        // because that requires
1258        return VisitDeclContext(FD);
1259      }
1260
1261      // Check the return type.
1262      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1263      bool Invalid =
1264        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1265                                       diag::err_abstract_type_in_decl,
1266                                       Sema::AbstractReturnType,
1267                                       AbstractClass);
1268
1269      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1270           E = FD->param_end(); I != E; ++I) {
1271        const ParmVarDecl *VD = *I;
1272        Invalid |=
1273          SemaRef.RequireNonAbstractType(VD->getLocation(),
1274                                         VD->getOriginalType(),
1275                                         diag::err_abstract_type_in_decl,
1276                                         Sema::AbstractParamType,
1277                                         AbstractClass);
1278      }
1279
1280      return Invalid;
1281    }
1282
1283    bool VisitDecl(const Decl* D) {
1284      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1285        return VisitDeclContext(DC);
1286
1287      return false;
1288    }
1289  };
1290}
1291
1292void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1293                                             DeclPtrTy TagDecl,
1294                                             SourceLocation LBrac,
1295                                             SourceLocation RBrac) {
1296  if (!TagDecl)
1297    return;
1298
1299  AdjustDeclIfTemplate(TagDecl);
1300  ActOnFields(S, RLoc, TagDecl,
1301              (DeclPtrTy*)FieldCollector->getCurFields(),
1302              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1303
1304  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1305  if (!RD->isAbstract()) {
1306    // Collect all the pure virtual methods and see if this is an abstract
1307    // class after all.
1308    PureVirtualMethodCollector Collector(Context, RD);
1309    if (!Collector.empty())
1310      RD->setAbstract(true);
1311  }
1312
1313  if (RD->isAbstract())
1314    AbstractClassUsageDiagnoser(*this, RD);
1315
1316  if (!RD->isDependentType())
1317    AddImplicitlyDeclaredMembersToClass(RD);
1318}
1319
1320/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1321/// special functions, such as the default constructor, copy
1322/// constructor, or destructor, to the given C++ class (C++
1323/// [special]p1).  This routine can only be executed just before the
1324/// definition of the class is complete.
1325void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1326  CanQualType ClassType
1327    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1328
1329  // FIXME: Implicit declarations have exception specifications, which are
1330  // the union of the specifications of the implicitly called functions.
1331
1332  if (!ClassDecl->hasUserDeclaredConstructor()) {
1333    // C++ [class.ctor]p5:
1334    //   A default constructor for a class X is a constructor of class X
1335    //   that can be called without an argument. If there is no
1336    //   user-declared constructor for class X, a default constructor is
1337    //   implicitly declared. An implicitly-declared default constructor
1338    //   is an inline public member of its class.
1339    DeclarationName Name
1340      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1341    CXXConstructorDecl *DefaultCon =
1342      CXXConstructorDecl::Create(Context, ClassDecl,
1343                                 ClassDecl->getLocation(), Name,
1344                                 Context.getFunctionType(Context.VoidTy,
1345                                                         0, 0, false, 0),
1346                                 /*DInfo=*/0,
1347                                 /*isExplicit=*/false,
1348                                 /*isInline=*/true,
1349                                 /*isImplicitlyDeclared=*/true);
1350    DefaultCon->setAccess(AS_public);
1351    DefaultCon->setImplicit();
1352    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1353    ClassDecl->addDecl(DefaultCon);
1354  }
1355
1356  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1357    // C++ [class.copy]p4:
1358    //   If the class definition does not explicitly declare a copy
1359    //   constructor, one is declared implicitly.
1360
1361    // C++ [class.copy]p5:
1362    //   The implicitly-declared copy constructor for a class X will
1363    //   have the form
1364    //
1365    //       X::X(const X&)
1366    //
1367    //   if
1368    bool HasConstCopyConstructor = true;
1369
1370    //     -- each direct or virtual base class B of X has a copy
1371    //        constructor whose first parameter is of type const B& or
1372    //        const volatile B&, and
1373    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1374         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1375      const CXXRecordDecl *BaseClassDecl
1376        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1377      HasConstCopyConstructor
1378        = BaseClassDecl->hasConstCopyConstructor(Context);
1379    }
1380
1381    //     -- for all the nonstatic data members of X that are of a
1382    //        class type M (or array thereof), each such class type
1383    //        has a copy constructor whose first parameter is of type
1384    //        const M& or const volatile M&.
1385    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1386         HasConstCopyConstructor && Field != ClassDecl->field_end();
1387         ++Field) {
1388      QualType FieldType = (*Field)->getType();
1389      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1390        FieldType = Array->getElementType();
1391      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1392        const CXXRecordDecl *FieldClassDecl
1393          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1394        HasConstCopyConstructor
1395          = FieldClassDecl->hasConstCopyConstructor(Context);
1396      }
1397    }
1398
1399    //   Otherwise, the implicitly declared copy constructor will have
1400    //   the form
1401    //
1402    //       X::X(X&)
1403    QualType ArgType = ClassType;
1404    if (HasConstCopyConstructor)
1405      ArgType = ArgType.withConst();
1406    ArgType = Context.getLValueReferenceType(ArgType);
1407
1408    //   An implicitly-declared copy constructor is an inline public
1409    //   member of its class.
1410    DeclarationName Name
1411      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1412    CXXConstructorDecl *CopyConstructor
1413      = CXXConstructorDecl::Create(Context, ClassDecl,
1414                                   ClassDecl->getLocation(), Name,
1415                                   Context.getFunctionType(Context.VoidTy,
1416                                                           &ArgType, 1,
1417                                                           false, 0),
1418                                   /*DInfo=*/0,
1419                                   /*isExplicit=*/false,
1420                                   /*isInline=*/true,
1421                                   /*isImplicitlyDeclared=*/true);
1422    CopyConstructor->setAccess(AS_public);
1423    CopyConstructor->setImplicit();
1424    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1425
1426    // Add the parameter to the constructor.
1427    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1428                                                 ClassDecl->getLocation(),
1429                                                 /*IdentifierInfo=*/0,
1430                                                 ArgType, /*DInfo=*/0,
1431                                                 VarDecl::None, 0);
1432    CopyConstructor->setParams(Context, &FromParam, 1);
1433    ClassDecl->addDecl(CopyConstructor);
1434  }
1435
1436  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1437    // Note: The following rules are largely analoguous to the copy
1438    // constructor rules. Note that virtual bases are not taken into account
1439    // for determining the argument type of the operator. Note also that
1440    // operators taking an object instead of a reference are allowed.
1441    //
1442    // C++ [class.copy]p10:
1443    //   If the class definition does not explicitly declare a copy
1444    //   assignment operator, one is declared implicitly.
1445    //   The implicitly-defined copy assignment operator for a class X
1446    //   will have the form
1447    //
1448    //       X& X::operator=(const X&)
1449    //
1450    //   if
1451    bool HasConstCopyAssignment = true;
1452
1453    //       -- each direct base class B of X has a copy assignment operator
1454    //          whose parameter is of type const B&, const volatile B& or B,
1455    //          and
1456    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1457         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1458      const CXXRecordDecl *BaseClassDecl
1459        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1460      const CXXMethodDecl *MD = 0;
1461      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1462                                                                     MD);
1463    }
1464
1465    //       -- for all the nonstatic data members of X that are of a class
1466    //          type M (or array thereof), each such class type has a copy
1467    //          assignment operator whose parameter is of type const M&,
1468    //          const volatile M& or M.
1469    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1470         HasConstCopyAssignment && Field != ClassDecl->field_end();
1471         ++Field) {
1472      QualType FieldType = (*Field)->getType();
1473      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1474        FieldType = Array->getElementType();
1475      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1476        const CXXRecordDecl *FieldClassDecl
1477          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1478        const CXXMethodDecl *MD = 0;
1479        HasConstCopyAssignment
1480          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1481      }
1482    }
1483
1484    //   Otherwise, the implicitly declared copy assignment operator will
1485    //   have the form
1486    //
1487    //       X& X::operator=(X&)
1488    QualType ArgType = ClassType;
1489    QualType RetType = Context.getLValueReferenceType(ArgType);
1490    if (HasConstCopyAssignment)
1491      ArgType = ArgType.withConst();
1492    ArgType = Context.getLValueReferenceType(ArgType);
1493
1494    //   An implicitly-declared copy assignment operator is an inline public
1495    //   member of its class.
1496    DeclarationName Name =
1497      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1498    CXXMethodDecl *CopyAssignment =
1499      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1500                            Context.getFunctionType(RetType, &ArgType, 1,
1501                                                    false, 0),
1502                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1503    CopyAssignment->setAccess(AS_public);
1504    CopyAssignment->setImplicit();
1505    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1506    CopyAssignment->setCopyAssignment(true);
1507
1508    // Add the parameter to the operator.
1509    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1510                                                 ClassDecl->getLocation(),
1511                                                 /*IdentifierInfo=*/0,
1512                                                 ArgType, /*DInfo=*/0,
1513                                                 VarDecl::None, 0);
1514    CopyAssignment->setParams(Context, &FromParam, 1);
1515
1516    // Don't call addedAssignmentOperator. There is no way to distinguish an
1517    // implicit from an explicit assignment operator.
1518    ClassDecl->addDecl(CopyAssignment);
1519  }
1520
1521  if (!ClassDecl->hasUserDeclaredDestructor()) {
1522    // C++ [class.dtor]p2:
1523    //   If a class has no user-declared destructor, a destructor is
1524    //   declared implicitly. An implicitly-declared destructor is an
1525    //   inline public member of its class.
1526    DeclarationName Name
1527      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1528    CXXDestructorDecl *Destructor
1529      = CXXDestructorDecl::Create(Context, ClassDecl,
1530                                  ClassDecl->getLocation(), Name,
1531                                  Context.getFunctionType(Context.VoidTy,
1532                                                          0, 0, false, 0),
1533                                  /*isInline=*/true,
1534                                  /*isImplicitlyDeclared=*/true);
1535    Destructor->setAccess(AS_public);
1536    Destructor->setImplicit();
1537    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1538    ClassDecl->addDecl(Destructor);
1539  }
1540}
1541
1542void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1543  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1544  if (!Template)
1545    return;
1546
1547  TemplateParameterList *Params = Template->getTemplateParameters();
1548  for (TemplateParameterList::iterator Param = Params->begin(),
1549                                    ParamEnd = Params->end();
1550       Param != ParamEnd; ++Param) {
1551    NamedDecl *Named = cast<NamedDecl>(*Param);
1552    if (Named->getDeclName()) {
1553      S->AddDecl(DeclPtrTy::make(Named));
1554      IdResolver.AddDecl(Named);
1555    }
1556  }
1557}
1558
1559/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1560/// parsing a top-level (non-nested) C++ class, and we are now
1561/// parsing those parts of the given Method declaration that could
1562/// not be parsed earlier (C++ [class.mem]p2), such as default
1563/// arguments. This action should enter the scope of the given
1564/// Method declaration as if we had just parsed the qualified method
1565/// name. However, it should not bring the parameters into scope;
1566/// that will be performed by ActOnDelayedCXXMethodParameter.
1567void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1568  if (!MethodD)
1569    return;
1570
1571  AdjustDeclIfTemplate(MethodD);
1572
1573  CXXScopeSpec SS;
1574  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1575  QualType ClassTy
1576    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1577  SS.setScopeRep(
1578    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1579  ActOnCXXEnterDeclaratorScope(S, SS);
1580}
1581
1582/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1583/// C++ method declaration. We're (re-)introducing the given
1584/// function parameter into scope for use in parsing later parts of
1585/// the method declaration. For example, we could see an
1586/// ActOnParamDefaultArgument event for this parameter.
1587void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1588  if (!ParamD)
1589    return;
1590
1591  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1592
1593  // If this parameter has an unparsed default argument, clear it out
1594  // to make way for the parsed default argument.
1595  if (Param->hasUnparsedDefaultArg())
1596    Param->setDefaultArg(0);
1597
1598  S->AddDecl(DeclPtrTy::make(Param));
1599  if (Param->getDeclName())
1600    IdResolver.AddDecl(Param);
1601}
1602
1603/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1604/// processing the delayed method declaration for Method. The method
1605/// declaration is now considered finished. There may be a separate
1606/// ActOnStartOfFunctionDef action later (not necessarily
1607/// immediately!) for this method, if it was also defined inside the
1608/// class body.
1609void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1610  if (!MethodD)
1611    return;
1612
1613  AdjustDeclIfTemplate(MethodD);
1614
1615  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1616  CXXScopeSpec SS;
1617  QualType ClassTy
1618    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1619  SS.setScopeRep(
1620    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1621  ActOnCXXExitDeclaratorScope(S, SS);
1622
1623  // Now that we have our default arguments, check the constructor
1624  // again. It could produce additional diagnostics or affect whether
1625  // the class has implicitly-declared destructors, among other
1626  // things.
1627  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1628    CheckConstructor(Constructor);
1629
1630  // Check the default arguments, which we may have added.
1631  if (!Method->isInvalidDecl())
1632    CheckCXXDefaultArguments(Method);
1633}
1634
1635/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1636/// the well-formedness of the constructor declarator @p D with type @p
1637/// R. If there are any errors in the declarator, this routine will
1638/// emit diagnostics and set the invalid bit to true.  In any case, the type
1639/// will be updated to reflect a well-formed type for the constructor and
1640/// returned.
1641QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1642                                          FunctionDecl::StorageClass &SC) {
1643  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1644
1645  // C++ [class.ctor]p3:
1646  //   A constructor shall not be virtual (10.3) or static (9.4). A
1647  //   constructor can be invoked for a const, volatile or const
1648  //   volatile object. A constructor shall not be declared const,
1649  //   volatile, or const volatile (9.3.2).
1650  if (isVirtual) {
1651    if (!D.isInvalidType())
1652      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1653        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1654        << SourceRange(D.getIdentifierLoc());
1655    D.setInvalidType();
1656  }
1657  if (SC == FunctionDecl::Static) {
1658    if (!D.isInvalidType())
1659      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1660        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1661        << SourceRange(D.getIdentifierLoc());
1662    D.setInvalidType();
1663    SC = FunctionDecl::None;
1664  }
1665
1666  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1667  if (FTI.TypeQuals != 0) {
1668    if (FTI.TypeQuals & QualType::Const)
1669      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1670        << "const" << SourceRange(D.getIdentifierLoc());
1671    if (FTI.TypeQuals & QualType::Volatile)
1672      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1673        << "volatile" << SourceRange(D.getIdentifierLoc());
1674    if (FTI.TypeQuals & QualType::Restrict)
1675      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1676        << "restrict" << SourceRange(D.getIdentifierLoc());
1677  }
1678
1679  // Rebuild the function type "R" without any type qualifiers (in
1680  // case any of the errors above fired) and with "void" as the
1681  // return type, since constructors don't have return types. We
1682  // *always* have to do this, because GetTypeForDeclarator will
1683  // put in a result type of "int" when none was specified.
1684  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1685  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1686                                 Proto->getNumArgs(),
1687                                 Proto->isVariadic(), 0);
1688}
1689
1690/// CheckConstructor - Checks a fully-formed constructor for
1691/// well-formedness, issuing any diagnostics required. Returns true if
1692/// the constructor declarator is invalid.
1693void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1694  CXXRecordDecl *ClassDecl
1695    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1696  if (!ClassDecl)
1697    return Constructor->setInvalidDecl();
1698
1699  // C++ [class.copy]p3:
1700  //   A declaration of a constructor for a class X is ill-formed if
1701  //   its first parameter is of type (optionally cv-qualified) X and
1702  //   either there are no other parameters or else all other
1703  //   parameters have default arguments.
1704  if (!Constructor->isInvalidDecl() &&
1705      ((Constructor->getNumParams() == 1) ||
1706       (Constructor->getNumParams() > 1 &&
1707        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1708    QualType ParamType = Constructor->getParamDecl(0)->getType();
1709    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1710    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1711      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1712      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1713        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1714      Constructor->setInvalidDecl();
1715    }
1716  }
1717
1718  // Notify the class that we've added a constructor.
1719  ClassDecl->addedConstructor(Context, Constructor);
1720}
1721
1722static inline bool
1723FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1724  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1725          FTI.ArgInfo[0].Param &&
1726          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1727}
1728
1729/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1730/// the well-formednes of the destructor declarator @p D with type @p
1731/// R. If there are any errors in the declarator, this routine will
1732/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1733/// will be updated to reflect a well-formed type for the destructor and
1734/// returned.
1735QualType Sema::CheckDestructorDeclarator(Declarator &D,
1736                                         FunctionDecl::StorageClass& SC) {
1737  // C++ [class.dtor]p1:
1738  //   [...] A typedef-name that names a class is a class-name
1739  //   (7.1.3); however, a typedef-name that names a class shall not
1740  //   be used as the identifier in the declarator for a destructor
1741  //   declaration.
1742  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1743  if (isa<TypedefType>(DeclaratorType)) {
1744    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1745      << DeclaratorType;
1746    D.setInvalidType();
1747  }
1748
1749  // C++ [class.dtor]p2:
1750  //   A destructor is used to destroy objects of its class type. A
1751  //   destructor takes no parameters, and no return type can be
1752  //   specified for it (not even void). The address of a destructor
1753  //   shall not be taken. A destructor shall not be static. A
1754  //   destructor can be invoked for a const, volatile or const
1755  //   volatile object. A destructor shall not be declared const,
1756  //   volatile or const volatile (9.3.2).
1757  if (SC == FunctionDecl::Static) {
1758    if (!D.isInvalidType())
1759      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1760        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1761        << SourceRange(D.getIdentifierLoc());
1762    SC = FunctionDecl::None;
1763    D.setInvalidType();
1764  }
1765  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1766    // Destructors don't have return types, but the parser will
1767    // happily parse something like:
1768    //
1769    //   class X {
1770    //     float ~X();
1771    //   };
1772    //
1773    // The return type will be eliminated later.
1774    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1775      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1776      << SourceRange(D.getIdentifierLoc());
1777  }
1778
1779  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1780  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1781    if (FTI.TypeQuals & QualType::Const)
1782      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1783        << "const" << SourceRange(D.getIdentifierLoc());
1784    if (FTI.TypeQuals & QualType::Volatile)
1785      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1786        << "volatile" << SourceRange(D.getIdentifierLoc());
1787    if (FTI.TypeQuals & QualType::Restrict)
1788      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1789        << "restrict" << SourceRange(D.getIdentifierLoc());
1790    D.setInvalidType();
1791  }
1792
1793  // Make sure we don't have any parameters.
1794  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1795    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1796
1797    // Delete the parameters.
1798    FTI.freeArgs();
1799    D.setInvalidType();
1800  }
1801
1802  // Make sure the destructor isn't variadic.
1803  if (FTI.isVariadic) {
1804    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1805    D.setInvalidType();
1806  }
1807
1808  // Rebuild the function type "R" without any type qualifiers or
1809  // parameters (in case any of the errors above fired) and with
1810  // "void" as the return type, since destructors don't have return
1811  // types. We *always* have to do this, because GetTypeForDeclarator
1812  // will put in a result type of "int" when none was specified.
1813  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1814}
1815
1816/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1817/// well-formednes of the conversion function declarator @p D with
1818/// type @p R. If there are any errors in the declarator, this routine
1819/// will emit diagnostics and return true. Otherwise, it will return
1820/// false. Either way, the type @p R will be updated to reflect a
1821/// well-formed type for the conversion operator.
1822void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1823                                     FunctionDecl::StorageClass& SC) {
1824  // C++ [class.conv.fct]p1:
1825  //   Neither parameter types nor return type can be specified. The
1826  //   type of a conversion function (8.3.5) is "function taking no
1827  //   parameter returning conversion-type-id."
1828  if (SC == FunctionDecl::Static) {
1829    if (!D.isInvalidType())
1830      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1831        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1832        << SourceRange(D.getIdentifierLoc());
1833    D.setInvalidType();
1834    SC = FunctionDecl::None;
1835  }
1836  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1837    // Conversion functions don't have return types, but the parser will
1838    // happily parse something like:
1839    //
1840    //   class X {
1841    //     float operator bool();
1842    //   };
1843    //
1844    // The return type will be changed later anyway.
1845    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1846      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1847      << SourceRange(D.getIdentifierLoc());
1848  }
1849
1850  // Make sure we don't have any parameters.
1851  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1852    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1853
1854    // Delete the parameters.
1855    D.getTypeObject(0).Fun.freeArgs();
1856    D.setInvalidType();
1857  }
1858
1859  // Make sure the conversion function isn't variadic.
1860  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1861    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1862    D.setInvalidType();
1863  }
1864
1865  // C++ [class.conv.fct]p4:
1866  //   The conversion-type-id shall not represent a function type nor
1867  //   an array type.
1868  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1869  if (ConvType->isArrayType()) {
1870    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1871    ConvType = Context.getPointerType(ConvType);
1872    D.setInvalidType();
1873  } else if (ConvType->isFunctionType()) {
1874    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1875    ConvType = Context.getPointerType(ConvType);
1876    D.setInvalidType();
1877  }
1878
1879  // Rebuild the function type "R" without any parameters (in case any
1880  // of the errors above fired) and with the conversion type as the
1881  // return type.
1882  R = Context.getFunctionType(ConvType, 0, 0, false,
1883                              R->getAsFunctionProtoType()->getTypeQuals());
1884
1885  // C++0x explicit conversion operators.
1886  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1887    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1888         diag::warn_explicit_conversion_functions)
1889      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1890}
1891
1892/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1893/// the declaration of the given C++ conversion function. This routine
1894/// is responsible for recording the conversion function in the C++
1895/// class, if possible.
1896Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1897  assert(Conversion && "Expected to receive a conversion function declaration");
1898
1899  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1900
1901  // Make sure we aren't redeclaring the conversion function.
1902  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1903
1904  // C++ [class.conv.fct]p1:
1905  //   [...] A conversion function is never used to convert a
1906  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1907  //   same object type (or a reference to it), to a (possibly
1908  //   cv-qualified) base class of that type (or a reference to it),
1909  //   or to (possibly cv-qualified) void.
1910  // FIXME: Suppress this warning if the conversion function ends up being a
1911  // virtual function that overrides a virtual function in a base class.
1912  QualType ClassType
1913    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1914  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1915    ConvType = ConvTypeRef->getPointeeType();
1916  if (ConvType->isRecordType()) {
1917    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1918    if (ConvType == ClassType)
1919      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1920        << ClassType;
1921    else if (IsDerivedFrom(ClassType, ConvType))
1922      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1923        <<  ClassType << ConvType;
1924  } else if (ConvType->isVoidType()) {
1925    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1926      << ClassType << ConvType;
1927  }
1928
1929  if (Conversion->getPreviousDeclaration()) {
1930    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
1931    if (FunctionTemplateDecl *ConversionTemplate
1932          = Conversion->getDescribedFunctionTemplate())
1933      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
1934    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1935    for (OverloadedFunctionDecl::function_iterator
1936           Conv = Conversions->function_begin(),
1937           ConvEnd = Conversions->function_end();
1938         Conv != ConvEnd; ++Conv) {
1939      if (*Conv == ExpectedPrevDecl) {
1940        *Conv = Conversion;
1941        return DeclPtrTy::make(Conversion);
1942      }
1943    }
1944    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1945  } else if (FunctionTemplateDecl *ConversionTemplate
1946               = Conversion->getDescribedFunctionTemplate())
1947    ClassDecl->addConversionFunction(Context, ConversionTemplate);
1948  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
1949    ClassDecl->addConversionFunction(Context, Conversion);
1950
1951  return DeclPtrTy::make(Conversion);
1952}
1953
1954//===----------------------------------------------------------------------===//
1955// Namespace Handling
1956//===----------------------------------------------------------------------===//
1957
1958/// ActOnStartNamespaceDef - This is called at the start of a namespace
1959/// definition.
1960Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1961                                             SourceLocation IdentLoc,
1962                                             IdentifierInfo *II,
1963                                             SourceLocation LBrace) {
1964  NamespaceDecl *Namespc =
1965      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1966  Namespc->setLBracLoc(LBrace);
1967
1968  Scope *DeclRegionScope = NamespcScope->getParent();
1969
1970  if (II) {
1971    // C++ [namespace.def]p2:
1972    // The identifier in an original-namespace-definition shall not have been
1973    // previously defined in the declarative region in which the
1974    // original-namespace-definition appears. The identifier in an
1975    // original-namespace-definition is the name of the namespace. Subsequently
1976    // in that declarative region, it is treated as an original-namespace-name.
1977
1978    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1979                                     true);
1980
1981    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1982      // This is an extended namespace definition.
1983      // Attach this namespace decl to the chain of extended namespace
1984      // definitions.
1985      OrigNS->setNextNamespace(Namespc);
1986      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1987
1988      // Remove the previous declaration from the scope.
1989      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1990        IdResolver.RemoveDecl(OrigNS);
1991        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1992      }
1993    } else if (PrevDecl) {
1994      // This is an invalid name redefinition.
1995      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1996       << Namespc->getDeclName();
1997      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1998      Namespc->setInvalidDecl();
1999      // Continue on to push Namespc as current DeclContext and return it.
2000    }
2001
2002    PushOnScopeChains(Namespc, DeclRegionScope);
2003  } else {
2004    // FIXME: Handle anonymous namespaces
2005  }
2006
2007  // Although we could have an invalid decl (i.e. the namespace name is a
2008  // redefinition), push it as current DeclContext and try to continue parsing.
2009  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2010  // for the namespace has the declarations that showed up in that particular
2011  // namespace definition.
2012  PushDeclContext(NamespcScope, Namespc);
2013  return DeclPtrTy::make(Namespc);
2014}
2015
2016/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2017/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2018void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2019  Decl *Dcl = D.getAs<Decl>();
2020  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2021  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2022  Namespc->setRBracLoc(RBrace);
2023  PopDeclContext();
2024}
2025
2026Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2027                                          SourceLocation UsingLoc,
2028                                          SourceLocation NamespcLoc,
2029                                          const CXXScopeSpec &SS,
2030                                          SourceLocation IdentLoc,
2031                                          IdentifierInfo *NamespcName,
2032                                          AttributeList *AttrList) {
2033  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2034  assert(NamespcName && "Invalid NamespcName.");
2035  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2036  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2037
2038  UsingDirectiveDecl *UDir = 0;
2039
2040  // Lookup namespace name.
2041  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2042                                    LookupNamespaceName, false);
2043  if (R.isAmbiguous()) {
2044    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2045    return DeclPtrTy();
2046  }
2047  if (NamedDecl *NS = R) {
2048    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2049    // C++ [namespace.udir]p1:
2050    //   A using-directive specifies that the names in the nominated
2051    //   namespace can be used in the scope in which the
2052    //   using-directive appears after the using-directive. During
2053    //   unqualified name lookup (3.4.1), the names appear as if they
2054    //   were declared in the nearest enclosing namespace which
2055    //   contains both the using-directive and the nominated
2056    //   namespace. [Note: in this context, "contains" means "contains
2057    //   directly or indirectly". ]
2058
2059    // Find enclosing context containing both using-directive and
2060    // nominated namespace.
2061    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2062    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2063      CommonAncestor = CommonAncestor->getParent();
2064
2065    UDir = UsingDirectiveDecl::Create(Context,
2066                                      CurContext, UsingLoc,
2067                                      NamespcLoc,
2068                                      SS.getRange(),
2069                                      (NestedNameSpecifier *)SS.getScopeRep(),
2070                                      IdentLoc,
2071                                      cast<NamespaceDecl>(NS),
2072                                      CommonAncestor);
2073    PushUsingDirective(S, UDir);
2074  } else {
2075    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2076  }
2077
2078  // FIXME: We ignore attributes for now.
2079  delete AttrList;
2080  return DeclPtrTy::make(UDir);
2081}
2082
2083void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2084  // If scope has associated entity, then using directive is at namespace
2085  // or translation unit scope. We add UsingDirectiveDecls, into
2086  // it's lookup structure.
2087  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2088    Ctx->addDecl(UDir);
2089  else
2090    // Otherwise it is block-sope. using-directives will affect lookup
2091    // only to the end of scope.
2092    S->PushUsingDirective(DeclPtrTy::make(UDir));
2093}
2094
2095
2096Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2097                                            SourceLocation UsingLoc,
2098                                            const CXXScopeSpec &SS,
2099                                            SourceLocation IdentLoc,
2100                                            IdentifierInfo *TargetName,
2101                                            OverloadedOperatorKind Op,
2102                                            AttributeList *AttrList,
2103                                            bool IsTypeName) {
2104  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2105  assert((TargetName || Op) && "Invalid TargetName.");
2106  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2107  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2108
2109  UsingDecl *UsingAlias = 0;
2110
2111  DeclarationName Name;
2112  if (TargetName)
2113    Name = TargetName;
2114  else
2115    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2116
2117  // FIXME: Implement this properly!
2118  if (isUnknownSpecialization(SS)) {
2119    Diag(IdentLoc, diag::err_using_dependent_unsupported);
2120    delete AttrList;
2121    return DeclPtrTy();
2122  }
2123
2124  if (SS.isEmpty()) {
2125    Diag(IdentLoc, diag::err_using_requires_qualname);
2126    return DeclPtrTy();
2127  }
2128
2129  NestedNameSpecifier *NNS =
2130    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2131
2132  DeclContext *LookupContext = 0;
2133
2134  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2135    // C++0x N2914 [namespace.udecl]p3:
2136    // A using-declaration used as a member-declaration shall refer to a member
2137    // of a base class of the class being defined, shall refer to a member of an
2138    // anonymous union that is a member of a base class of the class being
2139    // defined, or shall refer to an enumerator for an enumeration type that is
2140    // a member of a base class of the class being defined.
2141    const Type *Ty = NNS->getAsType();
2142    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2143      Diag(SS.getRange().getBegin(),
2144           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2145        << NNS << RD->getDeclName();
2146      return DeclPtrTy();
2147    }
2148
2149    LookupContext = cast<RecordType>(Ty)->getDecl();
2150  } else {
2151    // C++0x N2914 [namespace.udecl]p8:
2152    // A using-declaration for a class member shall be a member-declaration.
2153    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2154      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2155        << SS.getRange();
2156      return DeclPtrTy();
2157    }
2158
2159    // C++0x N2914 [namespace.udecl]p9:
2160    // In a using-declaration, a prefix :: refers to the global namespace.
2161    if (NNS->getKind() == NestedNameSpecifier::Global)
2162      LookupContext = Context.getTranslationUnitDecl();
2163    else
2164      LookupContext = NNS->getAsNamespace();
2165  }
2166
2167
2168  // Lookup target name.
2169  LookupResult R = LookupQualifiedName(LookupContext,
2170                                       Name, LookupOrdinaryName);
2171
2172  if (!R) {
2173    Diag(IdentLoc, diag::err_typecheck_no_member) << Name << SS.getRange();
2174    return DeclPtrTy();
2175  }
2176
2177  NamedDecl *ND = R.getAsDecl();
2178
2179  if (IsTypeName && !isa<TypeDecl>(ND)) {
2180    Diag(IdentLoc, diag::err_using_typename_non_type);
2181    return DeclPtrTy();
2182  }
2183
2184  // C++0x N2914 [namespace.udecl]p6:
2185  // A using-declaration shall not name a namespace.
2186  if (isa<NamespaceDecl>(ND)) {
2187    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2188      << SS.getRange();
2189    return DeclPtrTy();
2190  }
2191
2192  UsingAlias =
2193    UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2194                      ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2195  PushOnScopeChains(UsingAlias, S);
2196
2197  // FIXME: We ignore attributes for now.
2198  delete AttrList;
2199  return DeclPtrTy::make(UsingAlias);
2200}
2201
2202/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2203/// is a namespace alias, returns the namespace it points to.
2204static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2205  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2206    return AD->getNamespace();
2207  return dyn_cast_or_null<NamespaceDecl>(D);
2208}
2209
2210Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2211                                             SourceLocation NamespaceLoc,
2212                                             SourceLocation AliasLoc,
2213                                             IdentifierInfo *Alias,
2214                                             const CXXScopeSpec &SS,
2215                                             SourceLocation IdentLoc,
2216                                             IdentifierInfo *Ident) {
2217
2218  // Lookup the namespace name.
2219  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2220
2221  // Check if we have a previous declaration with the same name.
2222  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2223    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2224      // We already have an alias with the same name that points to the same
2225      // namespace, so don't create a new one.
2226      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2227        return DeclPtrTy();
2228    }
2229
2230    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2231      diag::err_redefinition_different_kind;
2232    Diag(AliasLoc, DiagID) << Alias;
2233    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2234    return DeclPtrTy();
2235  }
2236
2237  if (R.isAmbiguous()) {
2238    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2239    return DeclPtrTy();
2240  }
2241
2242  if (!R) {
2243    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2244    return DeclPtrTy();
2245  }
2246
2247  NamespaceAliasDecl *AliasDecl =
2248    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2249                               Alias, SS.getRange(),
2250                               (NestedNameSpecifier *)SS.getScopeRep(),
2251                               IdentLoc, R);
2252
2253  CurContext->addDecl(AliasDecl);
2254  return DeclPtrTy::make(AliasDecl);
2255}
2256
2257void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2258                                            CXXConstructorDecl *Constructor) {
2259  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2260          !Constructor->isUsed()) &&
2261    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2262
2263  CXXRecordDecl *ClassDecl
2264    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2265  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2266  // Before the implicitly-declared default constructor for a class is
2267  // implicitly defined, all the implicitly-declared default constructors
2268  // for its base class and its non-static data members shall have been
2269  // implicitly defined.
2270  bool err = false;
2271  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2272       E = ClassDecl->bases_end(); Base != E; ++Base) {
2273    CXXRecordDecl *BaseClassDecl
2274      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2275    if (!BaseClassDecl->hasTrivialConstructor()) {
2276      if (CXXConstructorDecl *BaseCtor =
2277            BaseClassDecl->getDefaultConstructor(Context))
2278        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2279      else {
2280        Diag(CurrentLocation, diag::err_defining_default_ctor)
2281          << Context.getTagDeclType(ClassDecl) << 1
2282          << Context.getTagDeclType(BaseClassDecl);
2283        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2284              << Context.getTagDeclType(BaseClassDecl);
2285        err = true;
2286      }
2287    }
2288  }
2289  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2290       E = ClassDecl->field_end(); Field != E; ++Field) {
2291    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2292    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2293      FieldType = Array->getElementType();
2294    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2295      CXXRecordDecl *FieldClassDecl
2296        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2297      if (!FieldClassDecl->hasTrivialConstructor()) {
2298        if (CXXConstructorDecl *FieldCtor =
2299            FieldClassDecl->getDefaultConstructor(Context))
2300          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2301        else {
2302          Diag(CurrentLocation, diag::err_defining_default_ctor)
2303          << Context.getTagDeclType(ClassDecl) << 0 <<
2304              Context.getTagDeclType(FieldClassDecl);
2305          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2306          << Context.getTagDeclType(FieldClassDecl);
2307          err = true;
2308        }
2309      }
2310    } else if (FieldType->isReferenceType()) {
2311      Diag(CurrentLocation, diag::err_unintialized_member)
2312        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2313      Diag((*Field)->getLocation(), diag::note_declared_at);
2314      err = true;
2315    } else if (FieldType.isConstQualified()) {
2316      Diag(CurrentLocation, diag::err_unintialized_member)
2317        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2318       Diag((*Field)->getLocation(), diag::note_declared_at);
2319      err = true;
2320    }
2321  }
2322  if (!err)
2323    Constructor->setUsed();
2324  else
2325    Constructor->setInvalidDecl();
2326}
2327
2328void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2329                                            CXXDestructorDecl *Destructor) {
2330  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2331         "DefineImplicitDestructor - call it for implicit default dtor");
2332
2333  CXXRecordDecl *ClassDecl
2334  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2335  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2336  // C++ [class.dtor] p5
2337  // Before the implicitly-declared default destructor for a class is
2338  // implicitly defined, all the implicitly-declared default destructors
2339  // for its base class and its non-static data members shall have been
2340  // implicitly defined.
2341  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2342       E = ClassDecl->bases_end(); Base != E; ++Base) {
2343    CXXRecordDecl *BaseClassDecl
2344      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2345    if (!BaseClassDecl->hasTrivialDestructor()) {
2346      if (CXXDestructorDecl *BaseDtor =
2347          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2348        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2349      else
2350        assert(false &&
2351               "DefineImplicitDestructor - missing dtor in a base class");
2352    }
2353  }
2354
2355  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2356       E = ClassDecl->field_end(); Field != E; ++Field) {
2357    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2358    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2359      FieldType = Array->getElementType();
2360    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2361      CXXRecordDecl *FieldClassDecl
2362        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2363      if (!FieldClassDecl->hasTrivialDestructor()) {
2364        if (CXXDestructorDecl *FieldDtor =
2365            const_cast<CXXDestructorDecl*>(
2366                                        FieldClassDecl->getDestructor(Context)))
2367          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2368        else
2369          assert(false &&
2370          "DefineImplicitDestructor - missing dtor in class of a data member");
2371      }
2372    }
2373  }
2374  Destructor->setUsed();
2375}
2376
2377void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2378                                          CXXMethodDecl *MethodDecl) {
2379  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2380          MethodDecl->getOverloadedOperator() == OO_Equal &&
2381          !MethodDecl->isUsed()) &&
2382         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2383
2384  CXXRecordDecl *ClassDecl
2385    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2386
2387  // C++[class.copy] p12
2388  // Before the implicitly-declared copy assignment operator for a class is
2389  // implicitly defined, all implicitly-declared copy assignment operators
2390  // for its direct base classes and its nonstatic data members shall have
2391  // been implicitly defined.
2392  bool err = false;
2393  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2394       E = ClassDecl->bases_end(); Base != E; ++Base) {
2395    CXXRecordDecl *BaseClassDecl
2396      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2397    if (CXXMethodDecl *BaseAssignOpMethod =
2398          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2399      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2400  }
2401  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2402       E = ClassDecl->field_end(); Field != E; ++Field) {
2403    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2404    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2405      FieldType = Array->getElementType();
2406    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2407      CXXRecordDecl *FieldClassDecl
2408        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2409      if (CXXMethodDecl *FieldAssignOpMethod =
2410          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2411        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2412    } else if (FieldType->isReferenceType()) {
2413      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2414      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2415      Diag(Field->getLocation(), diag::note_declared_at);
2416      Diag(CurrentLocation, diag::note_first_required_here);
2417      err = true;
2418    } else if (FieldType.isConstQualified()) {
2419      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2420      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2421      Diag(Field->getLocation(), diag::note_declared_at);
2422      Diag(CurrentLocation, diag::note_first_required_here);
2423      err = true;
2424    }
2425  }
2426  if (!err)
2427    MethodDecl->setUsed();
2428}
2429
2430CXXMethodDecl *
2431Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2432                              CXXRecordDecl *ClassDecl) {
2433  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2434  QualType RHSType(LHSType);
2435  // If class's assignment operator argument is const/volatile qualified,
2436  // look for operator = (const/volatile B&). Otherwise, look for
2437  // operator = (B&).
2438  if (ParmDecl->getType().isConstQualified())
2439    RHSType.addConst();
2440  if (ParmDecl->getType().isVolatileQualified())
2441    RHSType.addVolatile();
2442  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2443                                                          LHSType,
2444                                                          SourceLocation()));
2445  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2446                                                          RHSType,
2447                                                          SourceLocation()));
2448  Expr *Args[2] = { &*LHS, &*RHS };
2449  OverloadCandidateSet CandidateSet;
2450  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2451                              CandidateSet);
2452  OverloadCandidateSet::iterator Best;
2453  if (BestViableFunction(CandidateSet,
2454                         ClassDecl->getLocation(), Best) == OR_Success)
2455    return cast<CXXMethodDecl>(Best->Function);
2456  assert(false &&
2457         "getAssignOperatorMethod - copy assignment operator method not found");
2458  return 0;
2459}
2460
2461void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2462                                   CXXConstructorDecl *CopyConstructor,
2463                                   unsigned TypeQuals) {
2464  assert((CopyConstructor->isImplicit() &&
2465          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2466          !CopyConstructor->isUsed()) &&
2467         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2468
2469  CXXRecordDecl *ClassDecl
2470    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2471  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2472  // C++ [class.copy] p209
2473  // Before the implicitly-declared copy constructor for a class is
2474  // implicitly defined, all the implicitly-declared copy constructors
2475  // for its base class and its non-static data members shall have been
2476  // implicitly defined.
2477  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2478       Base != ClassDecl->bases_end(); ++Base) {
2479    CXXRecordDecl *BaseClassDecl
2480      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2481    if (CXXConstructorDecl *BaseCopyCtor =
2482        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2483      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2484  }
2485  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2486                                  FieldEnd = ClassDecl->field_end();
2487       Field != FieldEnd; ++Field) {
2488    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2489    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2490      FieldType = Array->getElementType();
2491    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2492      CXXRecordDecl *FieldClassDecl
2493        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2494      if (CXXConstructorDecl *FieldCopyCtor =
2495          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2496        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2497    }
2498  }
2499  CopyConstructor->setUsed();
2500}
2501
2502Sema::OwningExprResult
2503Sema::BuildCXXConstructExpr(QualType DeclInitType,
2504                            CXXConstructorDecl *Constructor,
2505                            Expr **Exprs, unsigned NumExprs) {
2506  bool Elidable = false;
2507
2508  // [class.copy]p15:
2509  // Whenever a temporary class object is copied using a copy constructor, and
2510  // this object and the copy have the same cv-unqualified type, an
2511  // implementation is permitted to treat the original and the copy as two
2512  // different ways of referring to the same object and not perform a copy at
2513  //all, even if the class copy constructor or destructor have side effects.
2514
2515  // FIXME: Is this enough?
2516  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2517    Expr *E = Exprs[0];
2518    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2519      E = BE->getSubExpr();
2520
2521    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2522      Elidable = true;
2523  }
2524
2525  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2526                               Exprs, NumExprs);
2527}
2528
2529/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2530/// including handling of its default argument expressions.
2531Sema::OwningExprResult
2532Sema::BuildCXXConstructExpr(QualType DeclInitType,
2533                            CXXConstructorDecl *Constructor,
2534                            bool Elidable,
2535                            Expr **Exprs,
2536                            unsigned NumExprs) {
2537  ExprOwningPtr<CXXConstructExpr> Temp(this,
2538                                       CXXConstructExpr::Create(Context,
2539                                                                DeclInitType,
2540                                                                Constructor,
2541                                                                Elidable,
2542                                                                Exprs,
2543                                                                NumExprs));
2544  // Default arguments must be added to constructor call expression.
2545  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2546  unsigned NumArgsInProto = FDecl->param_size();
2547  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2548    ParmVarDecl *Param = FDecl->getParamDecl(j);
2549
2550    OwningExprResult ArgExpr =
2551      BuildCXXDefaultArgExpr(/*FIXME:*/SourceLocation(),
2552                             FDecl, Param);
2553    if (ArgExpr.isInvalid())
2554      return ExprError();
2555
2556    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2557  }
2558  return move(Temp);
2559}
2560
2561Sema::OwningExprResult
2562Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2563                                  QualType Ty,
2564                                  SourceLocation TyBeginLoc,
2565                                  MultiExprArg Args,
2566                                  SourceLocation RParenLoc) {
2567  CXXTemporaryObjectExpr *E
2568    = new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc,
2569                                           (Expr **)Args.get(),
2570                                           Args.size(), RParenLoc);
2571
2572  ExprOwningPtr<CXXTemporaryObjectExpr> Temp(this, E);
2573
2574    // Default arguments must be added to constructor call expression.
2575  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2576  unsigned NumArgsInProto = FDecl->param_size();
2577  for (unsigned j = Args.size(); j != NumArgsInProto; j++) {
2578    ParmVarDecl *Param = FDecl->getParamDecl(j);
2579
2580    OwningExprResult ArgExpr = BuildCXXDefaultArgExpr(TyBeginLoc, FDecl, Param);
2581    if (ArgExpr.isInvalid())
2582      return ExprError();
2583
2584    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2585  }
2586
2587  Args.release();
2588  return move(Temp);
2589}
2590
2591
2592bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2593                                        CXXConstructorDecl *Constructor,
2594                                        QualType DeclInitType,
2595                                        Expr **Exprs, unsigned NumExprs) {
2596  OwningExprResult TempResult = BuildCXXConstructExpr(DeclInitType, Constructor,
2597                                                      Exprs, NumExprs);
2598  if (TempResult.isInvalid())
2599    return true;
2600
2601  Expr *Temp = TempResult.takeAs<Expr>();
2602  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2603  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2604  VD->setInit(Context, Temp);
2605
2606  return false;
2607}
2608
2609void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2610{
2611  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2612                                  DeclInitType->getAs<RecordType>()->getDecl());
2613  if (!ClassDecl->hasTrivialDestructor())
2614    if (CXXDestructorDecl *Destructor =
2615        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2616      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2617}
2618
2619/// AddCXXDirectInitializerToDecl - This action is called immediately after
2620/// ActOnDeclarator, when a C++ direct initializer is present.
2621/// e.g: "int x(1);"
2622void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2623                                         SourceLocation LParenLoc,
2624                                         MultiExprArg Exprs,
2625                                         SourceLocation *CommaLocs,
2626                                         SourceLocation RParenLoc) {
2627  unsigned NumExprs = Exprs.size();
2628  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2629  Decl *RealDecl = Dcl.getAs<Decl>();
2630
2631  // If there is no declaration, there was an error parsing it.  Just ignore
2632  // the initializer.
2633  if (RealDecl == 0)
2634    return;
2635
2636  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2637  if (!VDecl) {
2638    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2639    RealDecl->setInvalidDecl();
2640    return;
2641  }
2642
2643  // We will represent direct-initialization similarly to copy-initialization:
2644  //    int x(1);  -as-> int x = 1;
2645  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2646  //
2647  // Clients that want to distinguish between the two forms, can check for
2648  // direct initializer using VarDecl::hasCXXDirectInitializer().
2649  // A major benefit is that clients that don't particularly care about which
2650  // exactly form was it (like the CodeGen) can handle both cases without
2651  // special case code.
2652
2653  // If either the declaration has a dependent type or if any of the expressions
2654  // is type-dependent, we represent the initialization via a ParenListExpr for
2655  // later use during template instantiation.
2656  if (VDecl->getType()->isDependentType() ||
2657      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2658    // Let clients know that initialization was done with a direct initializer.
2659    VDecl->setCXXDirectInitializer(true);
2660
2661    // Store the initialization expressions as a ParenListExpr.
2662    unsigned NumExprs = Exprs.size();
2663    VDecl->setInit(Context,
2664                   new (Context) ParenListExpr(Context, LParenLoc,
2665                                               (Expr **)Exprs.release(),
2666                                               NumExprs, RParenLoc));
2667    return;
2668  }
2669
2670
2671  // C++ 8.5p11:
2672  // The form of initialization (using parentheses or '=') is generally
2673  // insignificant, but does matter when the entity being initialized has a
2674  // class type.
2675  QualType DeclInitType = VDecl->getType();
2676  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2677    DeclInitType = Array->getElementType();
2678
2679  // FIXME: This isn't the right place to complete the type.
2680  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2681                          diag::err_typecheck_decl_incomplete_type)) {
2682    VDecl->setInvalidDecl();
2683    return;
2684  }
2685
2686  if (VDecl->getType()->isRecordType()) {
2687    CXXConstructorDecl *Constructor
2688      = PerformInitializationByConstructor(DeclInitType,
2689                                           (Expr **)Exprs.get(), NumExprs,
2690                                           VDecl->getLocation(),
2691                                           SourceRange(VDecl->getLocation(),
2692                                                       RParenLoc),
2693                                           VDecl->getDeclName(),
2694                                           IK_Direct);
2695    if (!Constructor)
2696      RealDecl->setInvalidDecl();
2697    else {
2698      VDecl->setCXXDirectInitializer(true);
2699      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2700                                       (Expr**)Exprs.release(), NumExprs))
2701        RealDecl->setInvalidDecl();
2702      FinalizeVarWithDestructor(VDecl, DeclInitType);
2703    }
2704    return;
2705  }
2706
2707  if (NumExprs > 1) {
2708    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2709      << SourceRange(VDecl->getLocation(), RParenLoc);
2710    RealDecl->setInvalidDecl();
2711    return;
2712  }
2713
2714  // Let clients know that initialization was done with a direct initializer.
2715  VDecl->setCXXDirectInitializer(true);
2716
2717  assert(NumExprs == 1 && "Expected 1 expression");
2718  // Set the init expression, handles conversions.
2719  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2720                       /*DirectInit=*/true);
2721}
2722
2723/// PerformInitializationByConstructor - Perform initialization by
2724/// constructor (C++ [dcl.init]p14), which may occur as part of
2725/// direct-initialization or copy-initialization. We are initializing
2726/// an object of type @p ClassType with the given arguments @p
2727/// Args. @p Loc is the location in the source code where the
2728/// initializer occurs (e.g., a declaration, member initializer,
2729/// functional cast, etc.) while @p Range covers the whole
2730/// initialization. @p InitEntity is the entity being initialized,
2731/// which may by the name of a declaration or a type. @p Kind is the
2732/// kind of initialization we're performing, which affects whether
2733/// explicit constructors will be considered. When successful, returns
2734/// the constructor that will be used to perform the initialization;
2735/// when the initialization fails, emits a diagnostic and returns
2736/// null.
2737CXXConstructorDecl *
2738Sema::PerformInitializationByConstructor(QualType ClassType,
2739                                         Expr **Args, unsigned NumArgs,
2740                                         SourceLocation Loc, SourceRange Range,
2741                                         DeclarationName InitEntity,
2742                                         InitializationKind Kind) {
2743  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2744  assert(ClassRec && "Can only initialize a class type here");
2745
2746  // C++ [dcl.init]p14:
2747  //
2748  //   If the initialization is direct-initialization, or if it is
2749  //   copy-initialization where the cv-unqualified version of the
2750  //   source type is the same class as, or a derived class of, the
2751  //   class of the destination, constructors are considered. The
2752  //   applicable constructors are enumerated (13.3.1.3), and the
2753  //   best one is chosen through overload resolution (13.3). The
2754  //   constructor so selected is called to initialize the object,
2755  //   with the initializer expression(s) as its argument(s). If no
2756  //   constructor applies, or the overload resolution is ambiguous,
2757  //   the initialization is ill-formed.
2758  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2759  OverloadCandidateSet CandidateSet;
2760
2761  // Add constructors to the overload set.
2762  DeclarationName ConstructorName
2763    = Context.DeclarationNames.getCXXConstructorName(
2764                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2765  DeclContext::lookup_const_iterator Con, ConEnd;
2766  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2767       Con != ConEnd; ++Con) {
2768    // Find the constructor (which may be a template).
2769    CXXConstructorDecl *Constructor = 0;
2770    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
2771    if (ConstructorTmpl)
2772      Constructor
2773        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2774    else
2775      Constructor = cast<CXXConstructorDecl>(*Con);
2776
2777    if ((Kind == IK_Direct) ||
2778        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2779        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
2780      if (ConstructorTmpl)
2781        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
2782                                     Args, NumArgs, CandidateSet);
2783      else
2784        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2785    }
2786  }
2787
2788  // FIXME: When we decide not to synthesize the implicitly-declared
2789  // constructors, we'll need to make them appear here.
2790
2791  OverloadCandidateSet::iterator Best;
2792  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2793  case OR_Success:
2794    // We found a constructor. Return it.
2795    return cast<CXXConstructorDecl>(Best->Function);
2796
2797  case OR_No_Viable_Function:
2798    if (InitEntity)
2799      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2800        << InitEntity << Range;
2801    else
2802      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2803        << ClassType << Range;
2804    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2805    return 0;
2806
2807  case OR_Ambiguous:
2808    if (InitEntity)
2809      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2810    else
2811      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2812    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2813    return 0;
2814
2815  case OR_Deleted:
2816    if (InitEntity)
2817      Diag(Loc, diag::err_ovl_deleted_init)
2818        << Best->Function->isDeleted()
2819        << InitEntity << Range;
2820    else
2821      Diag(Loc, diag::err_ovl_deleted_init)
2822        << Best->Function->isDeleted()
2823        << InitEntity << Range;
2824    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2825    return 0;
2826  }
2827
2828  return 0;
2829}
2830
2831/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2832/// determine whether they are reference-related,
2833/// reference-compatible, reference-compatible with added
2834/// qualification, or incompatible, for use in C++ initialization by
2835/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2836/// type, and the first type (T1) is the pointee type of the reference
2837/// type being initialized.
2838Sema::ReferenceCompareResult
2839Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2840                                   bool& DerivedToBase) {
2841  assert(!T1->isReferenceType() &&
2842    "T1 must be the pointee type of the reference type");
2843  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2844
2845  T1 = Context.getCanonicalType(T1);
2846  T2 = Context.getCanonicalType(T2);
2847  QualType UnqualT1 = T1.getUnqualifiedType();
2848  QualType UnqualT2 = T2.getUnqualifiedType();
2849
2850  // C++ [dcl.init.ref]p4:
2851  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2852  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2853  //   T1 is a base class of T2.
2854  if (UnqualT1 == UnqualT2)
2855    DerivedToBase = false;
2856  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2857    DerivedToBase = true;
2858  else
2859    return Ref_Incompatible;
2860
2861  // At this point, we know that T1 and T2 are reference-related (at
2862  // least).
2863
2864  // C++ [dcl.init.ref]p4:
2865  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2866  //   reference-related to T2 and cv1 is the same cv-qualification
2867  //   as, or greater cv-qualification than, cv2. For purposes of
2868  //   overload resolution, cases for which cv1 is greater
2869  //   cv-qualification than cv2 are identified as
2870  //   reference-compatible with added qualification (see 13.3.3.2).
2871  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2872    return Ref_Compatible;
2873  else if (T1.isMoreQualifiedThan(T2))
2874    return Ref_Compatible_With_Added_Qualification;
2875  else
2876    return Ref_Related;
2877}
2878
2879/// CheckReferenceInit - Check the initialization of a reference
2880/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2881/// the initializer (either a simple initializer or an initializer
2882/// list), and DeclType is the type of the declaration. When ICS is
2883/// non-null, this routine will compute the implicit conversion
2884/// sequence according to C++ [over.ics.ref] and will not produce any
2885/// diagnostics; when ICS is null, it will emit diagnostics when any
2886/// errors are found. Either way, a return value of true indicates
2887/// that there was a failure, a return value of false indicates that
2888/// the reference initialization succeeded.
2889///
2890/// When @p SuppressUserConversions, user-defined conversions are
2891/// suppressed.
2892/// When @p AllowExplicit, we also permit explicit user-defined
2893/// conversion functions.
2894/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2895bool
2896Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2897                         bool SuppressUserConversions,
2898                         bool AllowExplicit, bool ForceRValue,
2899                         ImplicitConversionSequence *ICS) {
2900  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2901
2902  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2903  QualType T2 = Init->getType();
2904
2905  // If the initializer is the address of an overloaded function, try
2906  // to resolve the overloaded function. If all goes well, T2 is the
2907  // type of the resulting function.
2908  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2909    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2910                                                          ICS != 0);
2911    if (Fn) {
2912      // Since we're performing this reference-initialization for
2913      // real, update the initializer with the resulting function.
2914      if (!ICS) {
2915        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2916          return true;
2917
2918        FixOverloadedFunctionReference(Init, Fn);
2919      }
2920
2921      T2 = Fn->getType();
2922    }
2923  }
2924
2925  // Compute some basic properties of the types and the initializer.
2926  bool isRValRef = DeclType->isRValueReferenceType();
2927  bool DerivedToBase = false;
2928  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2929                                                  Init->isLvalue(Context);
2930  ReferenceCompareResult RefRelationship
2931    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2932
2933  // Most paths end in a failed conversion.
2934  if (ICS)
2935    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2936
2937  // C++ [dcl.init.ref]p5:
2938  //   A reference to type "cv1 T1" is initialized by an expression
2939  //   of type "cv2 T2" as follows:
2940
2941  //     -- If the initializer expression
2942
2943  // Rvalue references cannot bind to lvalues (N2812).
2944  // There is absolutely no situation where they can. In particular, note that
2945  // this is ill-formed, even if B has a user-defined conversion to A&&:
2946  //   B b;
2947  //   A&& r = b;
2948  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2949    if (!ICS)
2950      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2951        << Init->getSourceRange();
2952    return true;
2953  }
2954
2955  bool BindsDirectly = false;
2956  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2957  //          reference-compatible with "cv2 T2," or
2958  //
2959  // Note that the bit-field check is skipped if we are just computing
2960  // the implicit conversion sequence (C++ [over.best.ics]p2).
2961  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2962      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2963    BindsDirectly = true;
2964
2965    if (ICS) {
2966      // C++ [over.ics.ref]p1:
2967      //   When a parameter of reference type binds directly (8.5.3)
2968      //   to an argument expression, the implicit conversion sequence
2969      //   is the identity conversion, unless the argument expression
2970      //   has a type that is a derived class of the parameter type,
2971      //   in which case the implicit conversion sequence is a
2972      //   derived-to-base Conversion (13.3.3.1).
2973      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2974      ICS->Standard.First = ICK_Identity;
2975      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2976      ICS->Standard.Third = ICK_Identity;
2977      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2978      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2979      ICS->Standard.ReferenceBinding = true;
2980      ICS->Standard.DirectBinding = true;
2981      ICS->Standard.RRefBinding = false;
2982      ICS->Standard.CopyConstructor = 0;
2983
2984      // Nothing more to do: the inaccessibility/ambiguity check for
2985      // derived-to-base conversions is suppressed when we're
2986      // computing the implicit conversion sequence (C++
2987      // [over.best.ics]p2).
2988      return false;
2989    } else {
2990      // Perform the conversion.
2991      // FIXME: Binding to a subobject of the lvalue is going to require more
2992      // AST annotation than this.
2993      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2994    }
2995  }
2996
2997  //       -- has a class type (i.e., T2 is a class type) and can be
2998  //          implicitly converted to an lvalue of type "cv3 T3,"
2999  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3000  //          92) (this conversion is selected by enumerating the
3001  //          applicable conversion functions (13.3.1.6) and choosing
3002  //          the best one through overload resolution (13.3)),
3003  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3004      !RequireCompleteType(SourceLocation(), T2, 0)) {
3005    // FIXME: Look for conversions in base classes!
3006    CXXRecordDecl *T2RecordDecl
3007      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3008
3009    OverloadCandidateSet CandidateSet;
3010    OverloadedFunctionDecl *Conversions
3011      = T2RecordDecl->getConversionFunctions();
3012    for (OverloadedFunctionDecl::function_iterator Func
3013           = Conversions->function_begin();
3014         Func != Conversions->function_end(); ++Func) {
3015      FunctionTemplateDecl *ConvTemplate
3016        = dyn_cast<FunctionTemplateDecl>(*Func);
3017      CXXConversionDecl *Conv;
3018      if (ConvTemplate)
3019        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3020      else
3021        Conv = cast<CXXConversionDecl>(*Func);
3022
3023      // If the conversion function doesn't return a reference type,
3024      // it can't be considered for this conversion.
3025      if (Conv->getConversionType()->isLValueReferenceType() &&
3026          (AllowExplicit || !Conv->isExplicit())) {
3027        if (ConvTemplate)
3028          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3029                                         CandidateSet);
3030        else
3031          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3032      }
3033    }
3034
3035    OverloadCandidateSet::iterator Best;
3036    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3037    case OR_Success:
3038      // This is a direct binding.
3039      BindsDirectly = true;
3040
3041      if (ICS) {
3042        // C++ [over.ics.ref]p1:
3043        //
3044        //   [...] If the parameter binds directly to the result of
3045        //   applying a conversion function to the argument
3046        //   expression, the implicit conversion sequence is a
3047        //   user-defined conversion sequence (13.3.3.1.2), with the
3048        //   second standard conversion sequence either an identity
3049        //   conversion or, if the conversion function returns an
3050        //   entity of a type that is a derived class of the parameter
3051        //   type, a derived-to-base Conversion.
3052        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3053        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3054        ICS->UserDefined.After = Best->FinalConversion;
3055        ICS->UserDefined.ConversionFunction = Best->Function;
3056        assert(ICS->UserDefined.After.ReferenceBinding &&
3057               ICS->UserDefined.After.DirectBinding &&
3058               "Expected a direct reference binding!");
3059        return false;
3060      } else {
3061        // Perform the conversion.
3062        // FIXME: Binding to a subobject of the lvalue is going to require more
3063        // AST annotation than this.
3064        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3065      }
3066      break;
3067
3068    case OR_Ambiguous:
3069      assert(false && "Ambiguous reference binding conversions not implemented.");
3070      return true;
3071
3072    case OR_No_Viable_Function:
3073    case OR_Deleted:
3074      // There was no suitable conversion, or we found a deleted
3075      // conversion; continue with other checks.
3076      break;
3077    }
3078  }
3079
3080  if (BindsDirectly) {
3081    // C++ [dcl.init.ref]p4:
3082    //   [...] In all cases where the reference-related or
3083    //   reference-compatible relationship of two types is used to
3084    //   establish the validity of a reference binding, and T1 is a
3085    //   base class of T2, a program that necessitates such a binding
3086    //   is ill-formed if T1 is an inaccessible (clause 11) or
3087    //   ambiguous (10.2) base class of T2.
3088    //
3089    // Note that we only check this condition when we're allowed to
3090    // complain about errors, because we should not be checking for
3091    // ambiguity (or inaccessibility) unless the reference binding
3092    // actually happens.
3093    if (DerivedToBase)
3094      return CheckDerivedToBaseConversion(T2, T1,
3095                                          Init->getSourceRange().getBegin(),
3096                                          Init->getSourceRange());
3097    else
3098      return false;
3099  }
3100
3101  //     -- Otherwise, the reference shall be to a non-volatile const
3102  //        type (i.e., cv1 shall be const), or the reference shall be an
3103  //        rvalue reference and the initializer expression shall be an rvalue.
3104  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3105    if (!ICS)
3106      Diag(Init->getSourceRange().getBegin(),
3107           diag::err_not_reference_to_const_init)
3108        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3109        << T2 << Init->getSourceRange();
3110    return true;
3111  }
3112
3113  //       -- If the initializer expression is an rvalue, with T2 a
3114  //          class type, and "cv1 T1" is reference-compatible with
3115  //          "cv2 T2," the reference is bound in one of the
3116  //          following ways (the choice is implementation-defined):
3117  //
3118  //          -- The reference is bound to the object represented by
3119  //             the rvalue (see 3.10) or to a sub-object within that
3120  //             object.
3121  //
3122  //          -- A temporary of type "cv1 T2" [sic] is created, and
3123  //             a constructor is called to copy the entire rvalue
3124  //             object into the temporary. The reference is bound to
3125  //             the temporary or to a sub-object within the
3126  //             temporary.
3127  //
3128  //          The constructor that would be used to make the copy
3129  //          shall be callable whether or not the copy is actually
3130  //          done.
3131  //
3132  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3133  // freedom, so we will always take the first option and never build
3134  // a temporary in this case. FIXME: We will, however, have to check
3135  // for the presence of a copy constructor in C++98/03 mode.
3136  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3137      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3138    if (ICS) {
3139      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3140      ICS->Standard.First = ICK_Identity;
3141      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3142      ICS->Standard.Third = ICK_Identity;
3143      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3144      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3145      ICS->Standard.ReferenceBinding = true;
3146      ICS->Standard.DirectBinding = false;
3147      ICS->Standard.RRefBinding = isRValRef;
3148      ICS->Standard.CopyConstructor = 0;
3149    } else {
3150      // FIXME: Binding to a subobject of the rvalue is going to require more
3151      // AST annotation than this.
3152      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3153    }
3154    return false;
3155  }
3156
3157  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3158  //          initialized from the initializer expression using the
3159  //          rules for a non-reference copy initialization (8.5). The
3160  //          reference is then bound to the temporary. If T1 is
3161  //          reference-related to T2, cv1 must be the same
3162  //          cv-qualification as, or greater cv-qualification than,
3163  //          cv2; otherwise, the program is ill-formed.
3164  if (RefRelationship == Ref_Related) {
3165    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3166    // we would be reference-compatible or reference-compatible with
3167    // added qualification. But that wasn't the case, so the reference
3168    // initialization fails.
3169    if (!ICS)
3170      Diag(Init->getSourceRange().getBegin(),
3171           diag::err_reference_init_drops_quals)
3172        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3173        << T2 << Init->getSourceRange();
3174    return true;
3175  }
3176
3177  // If at least one of the types is a class type, the types are not
3178  // related, and we aren't allowed any user conversions, the
3179  // reference binding fails. This case is important for breaking
3180  // recursion, since TryImplicitConversion below will attempt to
3181  // create a temporary through the use of a copy constructor.
3182  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3183      (T1->isRecordType() || T2->isRecordType())) {
3184    if (!ICS)
3185      Diag(Init->getSourceRange().getBegin(),
3186           diag::err_typecheck_convert_incompatible)
3187        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3188    return true;
3189  }
3190
3191  // Actually try to convert the initializer to T1.
3192  if (ICS) {
3193    // C++ [over.ics.ref]p2:
3194    //
3195    //   When a parameter of reference type is not bound directly to
3196    //   an argument expression, the conversion sequence is the one
3197    //   required to convert the argument expression to the
3198    //   underlying type of the reference according to
3199    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3200    //   to copy-initializing a temporary of the underlying type with
3201    //   the argument expression. Any difference in top-level
3202    //   cv-qualification is subsumed by the initialization itself
3203    //   and does not constitute a conversion.
3204    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3205                                 /*AllowExplicit=*/false,
3206                                 /*ForceRValue=*/false);
3207
3208    // Of course, that's still a reference binding.
3209    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3210      ICS->Standard.ReferenceBinding = true;
3211      ICS->Standard.RRefBinding = isRValRef;
3212    } else if(ICS->ConversionKind ==
3213              ImplicitConversionSequence::UserDefinedConversion) {
3214      ICS->UserDefined.After.ReferenceBinding = true;
3215      ICS->UserDefined.After.RRefBinding = isRValRef;
3216    }
3217    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3218  } else {
3219    return PerformImplicitConversion(Init, T1, "initializing");
3220  }
3221}
3222
3223/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3224/// of this overloaded operator is well-formed. If so, returns false;
3225/// otherwise, emits appropriate diagnostics and returns true.
3226bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3227  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3228         "Expected an overloaded operator declaration");
3229
3230  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3231
3232  // C++ [over.oper]p5:
3233  //   The allocation and deallocation functions, operator new,
3234  //   operator new[], operator delete and operator delete[], are
3235  //   described completely in 3.7.3. The attributes and restrictions
3236  //   found in the rest of this subclause do not apply to them unless
3237  //   explicitly stated in 3.7.3.
3238  // FIXME: Write a separate routine for checking this. For now, just allow it.
3239  if (Op == OO_New || Op == OO_Array_New ||
3240      Op == OO_Delete || Op == OO_Array_Delete)
3241    return false;
3242
3243  // C++ [over.oper]p6:
3244  //   An operator function shall either be a non-static member
3245  //   function or be a non-member function and have at least one
3246  //   parameter whose type is a class, a reference to a class, an
3247  //   enumeration, or a reference to an enumeration.
3248  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3249    if (MethodDecl->isStatic())
3250      return Diag(FnDecl->getLocation(),
3251                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3252  } else {
3253    bool ClassOrEnumParam = false;
3254    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3255                                   ParamEnd = FnDecl->param_end();
3256         Param != ParamEnd; ++Param) {
3257      QualType ParamType = (*Param)->getType().getNonReferenceType();
3258      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3259          ParamType->isEnumeralType()) {
3260        ClassOrEnumParam = true;
3261        break;
3262      }
3263    }
3264
3265    if (!ClassOrEnumParam)
3266      return Diag(FnDecl->getLocation(),
3267                  diag::err_operator_overload_needs_class_or_enum)
3268        << FnDecl->getDeclName();
3269  }
3270
3271  // C++ [over.oper]p8:
3272  //   An operator function cannot have default arguments (8.3.6),
3273  //   except where explicitly stated below.
3274  //
3275  // Only the function-call operator allows default arguments
3276  // (C++ [over.call]p1).
3277  if (Op != OO_Call) {
3278    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3279         Param != FnDecl->param_end(); ++Param) {
3280      if ((*Param)->hasUnparsedDefaultArg())
3281        return Diag((*Param)->getLocation(),
3282                    diag::err_operator_overload_default_arg)
3283          << FnDecl->getDeclName();
3284      else if (Expr *DefArg = (*Param)->getDefaultArg())
3285        return Diag((*Param)->getLocation(),
3286                    diag::err_operator_overload_default_arg)
3287          << FnDecl->getDeclName() << DefArg->getSourceRange();
3288    }
3289  }
3290
3291  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3292    { false, false, false }
3293#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3294    , { Unary, Binary, MemberOnly }
3295#include "clang/Basic/OperatorKinds.def"
3296  };
3297
3298  bool CanBeUnaryOperator = OperatorUses[Op][0];
3299  bool CanBeBinaryOperator = OperatorUses[Op][1];
3300  bool MustBeMemberOperator = OperatorUses[Op][2];
3301
3302  // C++ [over.oper]p8:
3303  //   [...] Operator functions cannot have more or fewer parameters
3304  //   than the number required for the corresponding operator, as
3305  //   described in the rest of this subclause.
3306  unsigned NumParams = FnDecl->getNumParams()
3307                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3308  if (Op != OO_Call &&
3309      ((NumParams == 1 && !CanBeUnaryOperator) ||
3310       (NumParams == 2 && !CanBeBinaryOperator) ||
3311       (NumParams < 1) || (NumParams > 2))) {
3312    // We have the wrong number of parameters.
3313    unsigned ErrorKind;
3314    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3315      ErrorKind = 2;  // 2 -> unary or binary.
3316    } else if (CanBeUnaryOperator) {
3317      ErrorKind = 0;  // 0 -> unary
3318    } else {
3319      assert(CanBeBinaryOperator &&
3320             "All non-call overloaded operators are unary or binary!");
3321      ErrorKind = 1;  // 1 -> binary
3322    }
3323
3324    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3325      << FnDecl->getDeclName() << NumParams << ErrorKind;
3326  }
3327
3328  // Overloaded operators other than operator() cannot be variadic.
3329  if (Op != OO_Call &&
3330      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3331    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3332      << FnDecl->getDeclName();
3333  }
3334
3335  // Some operators must be non-static member functions.
3336  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3337    return Diag(FnDecl->getLocation(),
3338                diag::err_operator_overload_must_be_member)
3339      << FnDecl->getDeclName();
3340  }
3341
3342  // C++ [over.inc]p1:
3343  //   The user-defined function called operator++ implements the
3344  //   prefix and postfix ++ operator. If this function is a member
3345  //   function with no parameters, or a non-member function with one
3346  //   parameter of class or enumeration type, it defines the prefix
3347  //   increment operator ++ for objects of that type. If the function
3348  //   is a member function with one parameter (which shall be of type
3349  //   int) or a non-member function with two parameters (the second
3350  //   of which shall be of type int), it defines the postfix
3351  //   increment operator ++ for objects of that type.
3352  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3353    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3354    bool ParamIsInt = false;
3355    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3356      ParamIsInt = BT->getKind() == BuiltinType::Int;
3357
3358    if (!ParamIsInt)
3359      return Diag(LastParam->getLocation(),
3360                  diag::err_operator_overload_post_incdec_must_be_int)
3361        << LastParam->getType() << (Op == OO_MinusMinus);
3362  }
3363
3364  // Notify the class if it got an assignment operator.
3365  if (Op == OO_Equal) {
3366    // Would have returned earlier otherwise.
3367    assert(isa<CXXMethodDecl>(FnDecl) &&
3368      "Overloaded = not member, but not filtered.");
3369    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3370    Method->setCopyAssignment(true);
3371    Method->getParent()->addedAssignmentOperator(Context, Method);
3372  }
3373
3374  return false;
3375}
3376
3377/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3378/// linkage specification, including the language and (if present)
3379/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3380/// the location of the language string literal, which is provided
3381/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3382/// the '{' brace. Otherwise, this linkage specification does not
3383/// have any braces.
3384Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3385                                                     SourceLocation ExternLoc,
3386                                                     SourceLocation LangLoc,
3387                                                     const char *Lang,
3388                                                     unsigned StrSize,
3389                                                     SourceLocation LBraceLoc) {
3390  LinkageSpecDecl::LanguageIDs Language;
3391  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3392    Language = LinkageSpecDecl::lang_c;
3393  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3394    Language = LinkageSpecDecl::lang_cxx;
3395  else {
3396    Diag(LangLoc, diag::err_bad_language);
3397    return DeclPtrTy();
3398  }
3399
3400  // FIXME: Add all the various semantics of linkage specifications
3401
3402  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3403                                               LangLoc, Language,
3404                                               LBraceLoc.isValid());
3405  CurContext->addDecl(D);
3406  PushDeclContext(S, D);
3407  return DeclPtrTy::make(D);
3408}
3409
3410/// ActOnFinishLinkageSpecification - Completely the definition of
3411/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3412/// valid, it's the position of the closing '}' brace in a linkage
3413/// specification that uses braces.
3414Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3415                                                      DeclPtrTy LinkageSpec,
3416                                                      SourceLocation RBraceLoc) {
3417  if (LinkageSpec)
3418    PopDeclContext();
3419  return LinkageSpec;
3420}
3421
3422/// \brief Perform semantic analysis for the variable declaration that
3423/// occurs within a C++ catch clause, returning the newly-created
3424/// variable.
3425VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3426                                         DeclaratorInfo *DInfo,
3427                                         IdentifierInfo *Name,
3428                                         SourceLocation Loc,
3429                                         SourceRange Range) {
3430  bool Invalid = false;
3431
3432  // Arrays and functions decay.
3433  if (ExDeclType->isArrayType())
3434    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3435  else if (ExDeclType->isFunctionType())
3436    ExDeclType = Context.getPointerType(ExDeclType);
3437
3438  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3439  // The exception-declaration shall not denote a pointer or reference to an
3440  // incomplete type, other than [cv] void*.
3441  // N2844 forbids rvalue references.
3442  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3443    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3444    Invalid = true;
3445  }
3446
3447  QualType BaseType = ExDeclType;
3448  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3449  unsigned DK = diag::err_catch_incomplete;
3450  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3451    BaseType = Ptr->getPointeeType();
3452    Mode = 1;
3453    DK = diag::err_catch_incomplete_ptr;
3454  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3455    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3456    BaseType = Ref->getPointeeType();
3457    Mode = 2;
3458    DK = diag::err_catch_incomplete_ref;
3459  }
3460  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3461      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3462    Invalid = true;
3463
3464  if (!Invalid && !ExDeclType->isDependentType() &&
3465      RequireNonAbstractType(Loc, ExDeclType,
3466                             diag::err_abstract_type_in_decl,
3467                             AbstractVariableType))
3468    Invalid = true;
3469
3470  // FIXME: Need to test for ability to copy-construct and destroy the
3471  // exception variable.
3472
3473  // FIXME: Need to check for abstract classes.
3474
3475  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3476                                    Name, ExDeclType, DInfo, VarDecl::None);
3477
3478  if (Invalid)
3479    ExDecl->setInvalidDecl();
3480
3481  return ExDecl;
3482}
3483
3484/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3485/// handler.
3486Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3487  DeclaratorInfo *DInfo = 0;
3488  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3489
3490  bool Invalid = D.isInvalidType();
3491  IdentifierInfo *II = D.getIdentifier();
3492  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3493    // The scope should be freshly made just for us. There is just no way
3494    // it contains any previous declaration.
3495    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3496    if (PrevDecl->isTemplateParameter()) {
3497      // Maybe we will complain about the shadowed template parameter.
3498      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3499    }
3500  }
3501
3502  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3503    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3504      << D.getCXXScopeSpec().getRange();
3505    Invalid = true;
3506  }
3507
3508  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3509                                              D.getIdentifier(),
3510                                              D.getIdentifierLoc(),
3511                                            D.getDeclSpec().getSourceRange());
3512
3513  if (Invalid)
3514    ExDecl->setInvalidDecl();
3515
3516  // Add the exception declaration into this scope.
3517  if (II)
3518    PushOnScopeChains(ExDecl, S);
3519  else
3520    CurContext->addDecl(ExDecl);
3521
3522  ProcessDeclAttributes(S, ExDecl, D);
3523  return DeclPtrTy::make(ExDecl);
3524}
3525
3526Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3527                                                   ExprArg assertexpr,
3528                                                   ExprArg assertmessageexpr) {
3529  Expr *AssertExpr = (Expr *)assertexpr.get();
3530  StringLiteral *AssertMessage =
3531    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3532
3533  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3534    llvm::APSInt Value(32);
3535    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3536      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3537        AssertExpr->getSourceRange();
3538      return DeclPtrTy();
3539    }
3540
3541    if (Value == 0) {
3542      std::string str(AssertMessage->getStrData(),
3543                      AssertMessage->getByteLength());
3544      Diag(AssertLoc, diag::err_static_assert_failed)
3545        << str << AssertExpr->getSourceRange();
3546    }
3547  }
3548
3549  assertexpr.release();
3550  assertmessageexpr.release();
3551  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3552                                        AssertExpr, AssertMessage);
3553
3554  CurContext->addDecl(Decl);
3555  return DeclPtrTy::make(Decl);
3556}
3557
3558Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3559                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3560                                      bool IsDefinition) {
3561  Declarator *D = DU.dyn_cast<Declarator*>();
3562  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3563
3564  assert(DS.isFriendSpecified());
3565  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3566
3567  // If there's no declarator, then this can only be a friend class
3568  // declaration (or else it's just syntactically invalid).
3569  if (!D) {
3570    SourceLocation Loc = DS.getSourceRange().getBegin();
3571
3572    QualType T;
3573    DeclContext *DC;
3574
3575    // In C++0x, we just accept any old type.
3576    if (getLangOptions().CPlusPlus0x) {
3577      bool invalid = false;
3578      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3579      if (invalid)
3580        return DeclPtrTy();
3581
3582      // The semantic context in which to create the decl.  If it's not
3583      // a record decl (or we don't yet know if it is), create it in the
3584      // current context.
3585      DC = CurContext;
3586      if (const RecordType *RT = T->getAs<RecordType>())
3587        DC = RT->getDecl()->getDeclContext();
3588
3589    // The C++98 rules are somewhat more complex.
3590    } else {
3591      // C++ [class.friend]p2:
3592      //   An elaborated-type-specifier shall be used in a friend declaration
3593      //   for a class.*
3594      //   * The class-key of the elaborated-type-specifier is required.
3595      CXXRecordDecl *RD = 0;
3596
3597      switch (DS.getTypeSpecType()) {
3598      case DeclSpec::TST_class:
3599      case DeclSpec::TST_struct:
3600      case DeclSpec::TST_union:
3601        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3602        if (!RD) return DeclPtrTy();
3603        break;
3604
3605      case DeclSpec::TST_typename:
3606        if (const RecordType *RT =
3607            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3608          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3609        // fallthrough
3610      default:
3611        if (RD) {
3612          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3613            << (RD->isUnion())
3614            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3615                                         RD->isUnion() ? " union" : " class");
3616          return DeclPtrTy::make(RD);
3617        }
3618
3619        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3620          << DS.getSourceRange();
3621        return DeclPtrTy();
3622      }
3623
3624      // The record declaration we get from friend declarations is not
3625      // canonicalized; see ActOnTag.
3626
3627      // C++ [class.friend]p2: A class shall not be defined inside
3628      //   a friend declaration.
3629      if (RD->isDefinition())
3630        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3631          << RD->getSourceRange();
3632
3633      // C++98 [class.friend]p1: A friend of a class is a function
3634      //   or class that is not a member of the class . . .
3635      // But that's a silly restriction which nobody implements for
3636      // inner classes, and C++0x removes it anyway, so we only report
3637      // this (as a warning) if we're being pedantic.
3638      //
3639      // Also, definitions currently get treated in a way that causes
3640      // this error, so only report it if we didn't see a definition.
3641      else if (RD->getDeclContext() == CurContext &&
3642               !getLangOptions().CPlusPlus0x)
3643        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3644
3645      T = QualType(RD->getTypeForDecl(), 0);
3646      DC = RD->getDeclContext();
3647    }
3648
3649    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3650                                                   DS.getFriendSpecLoc());
3651    FCD->setLexicalDeclContext(CurContext);
3652
3653    if (CurContext->isDependentContext())
3654      CurContext->addHiddenDecl(FCD);
3655    else
3656      CurContext->addDecl(FCD);
3657
3658    return DeclPtrTy::make(FCD);
3659  }
3660
3661  // We have a declarator.
3662  assert(D);
3663
3664  SourceLocation Loc = D->getIdentifierLoc();
3665  DeclaratorInfo *DInfo = 0;
3666  QualType T = GetTypeForDeclarator(*D, S, &DInfo);
3667
3668  // C++ [class.friend]p1
3669  //   A friend of a class is a function or class....
3670  // Note that this sees through typedefs, which is intended.
3671  if (!T->isFunctionType()) {
3672    Diag(Loc, diag::err_unexpected_friend);
3673
3674    // It might be worthwhile to try to recover by creating an
3675    // appropriate declaration.
3676    return DeclPtrTy();
3677  }
3678
3679  // C++ [namespace.memdef]p3
3680  //  - If a friend declaration in a non-local class first declares a
3681  //    class or function, the friend class or function is a member
3682  //    of the innermost enclosing namespace.
3683  //  - The name of the friend is not found by simple name lookup
3684  //    until a matching declaration is provided in that namespace
3685  //    scope (either before or after the class declaration granting
3686  //    friendship).
3687  //  - If a friend function is called, its name may be found by the
3688  //    name lookup that considers functions from namespaces and
3689  //    classes associated with the types of the function arguments.
3690  //  - When looking for a prior declaration of a class or a function
3691  //    declared as a friend, scopes outside the innermost enclosing
3692  //    namespace scope are not considered.
3693
3694  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3695  DeclarationName Name = GetNameForDeclarator(*D);
3696  assert(Name);
3697
3698  // The existing declaration we found.
3699  FunctionDecl *FD = NULL;
3700
3701  // The context we found the declaration in, or in which we should
3702  // create the declaration.
3703  DeclContext *DC;
3704
3705  // FIXME: handle local classes
3706
3707  // Recover from invalid scope qualifiers as if they just weren't there.
3708  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3709    DC = computeDeclContext(ScopeQual);
3710
3711    // FIXME: handle dependent contexts
3712    if (!DC) return DeclPtrTy();
3713
3714    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3715
3716    // If searching in that context implicitly found a declaration in
3717    // a different context, treat it like it wasn't found at all.
3718    // TODO: better diagnostics for this case.  Suggesting the right
3719    // qualified scope would be nice...
3720    if (!Dec || Dec->getDeclContext() != DC) {
3721      D->setInvalidType();
3722      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3723      return DeclPtrTy();
3724    }
3725
3726    // C++ [class.friend]p1: A friend of a class is a function or
3727    //   class that is not a member of the class . . .
3728    if (DC == CurContext)
3729      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3730
3731    FD = cast<FunctionDecl>(Dec);
3732
3733  // Otherwise walk out to the nearest namespace scope looking for matches.
3734  } else {
3735    // TODO: handle local class contexts.
3736
3737    DC = CurContext;
3738    while (true) {
3739      // Skip class contexts.  If someone can cite chapter and verse
3740      // for this behavior, that would be nice --- it's what GCC and
3741      // EDG do, and it seems like a reasonable intent, but the spec
3742      // really only says that checks for unqualified existing
3743      // declarations should stop at the nearest enclosing namespace,
3744      // not that they should only consider the nearest enclosing
3745      // namespace.
3746      while (DC->isRecord()) DC = DC->getParent();
3747
3748      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3749
3750      // TODO: decide what we think about using declarations.
3751      if (Dec) {
3752        FD = cast<FunctionDecl>(Dec);
3753        break;
3754      }
3755      if (DC->isFileContext()) break;
3756      DC = DC->getParent();
3757    }
3758
3759    // C++ [class.friend]p1: A friend of a class is a function or
3760    //   class that is not a member of the class . . .
3761    // C++0x changes this for both friend types and functions.
3762    // Most C++ 98 compilers do seem to give an error here, so
3763    // we do, too.
3764    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3765      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3766  }
3767
3768  bool Redeclaration = (FD != 0);
3769
3770  // If we found a match, create a friend function declaration with
3771  // that function as the previous declaration.
3772  if (Redeclaration) {
3773    // Create it in the semantic context of the original declaration.
3774    DC = FD->getDeclContext();
3775
3776  // If we didn't find something matching the type exactly, create
3777  // a declaration.  This declaration should only be findable via
3778  // argument-dependent lookup.
3779  } else {
3780    assert(DC->isFileContext());
3781
3782    // This implies that it has to be an operator or function.
3783    if (D->getKind() == Declarator::DK_Constructor ||
3784        D->getKind() == Declarator::DK_Destructor ||
3785        D->getKind() == Declarator::DK_Conversion) {
3786      Diag(Loc, diag::err_introducing_special_friend) <<
3787        (D->getKind() == Declarator::DK_Constructor ? 0 :
3788         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3789      return DeclPtrTy();
3790    }
3791  }
3792
3793  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T, DInfo,
3794                                          /* PrevDecl = */ FD,
3795                                          MultiTemplateParamsArg(*this),
3796                                          IsDefinition,
3797                                          Redeclaration);
3798  FD = cast_or_null<FriendFunctionDecl>(ND);
3799
3800  assert(FD->getDeclContext() == DC);
3801  assert(FD->getLexicalDeclContext() == CurContext);
3802
3803  // If this is a dependent context, just add the decl to the
3804  // class's decl list and don't both with the lookup tables.  This
3805  // doesn't affect lookup because any call that might find this
3806  // function via ADL necessarily has to involve dependently-typed
3807  // arguments and hence can't be resolved until
3808  // template-instantiation anyway.
3809  if (CurContext->isDependentContext())
3810    CurContext->addHiddenDecl(FD);
3811  else
3812    CurContext->addDecl(FD);
3813
3814  return DeclPtrTy::make(FD);
3815}
3816
3817void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3818  AdjustDeclIfTemplate(dcl);
3819
3820  Decl *Dcl = dcl.getAs<Decl>();
3821  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3822  if (!Fn) {
3823    Diag(DelLoc, diag::err_deleted_non_function);
3824    return;
3825  }
3826  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3827    Diag(DelLoc, diag::err_deleted_decl_not_first);
3828    Diag(Prev->getLocation(), diag::note_previous_declaration);
3829    // If the declaration wasn't the first, we delete the function anyway for
3830    // recovery.
3831  }
3832  Fn->setDeleted();
3833}
3834
3835static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3836  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3837       ++CI) {
3838    Stmt *SubStmt = *CI;
3839    if (!SubStmt)
3840      continue;
3841    if (isa<ReturnStmt>(SubStmt))
3842      Self.Diag(SubStmt->getSourceRange().getBegin(),
3843           diag::err_return_in_constructor_handler);
3844    if (!isa<Expr>(SubStmt))
3845      SearchForReturnInStmt(Self, SubStmt);
3846  }
3847}
3848
3849void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3850  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3851    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3852    SearchForReturnInStmt(*this, Handler);
3853  }
3854}
3855
3856bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3857                                             const CXXMethodDecl *Old) {
3858  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3859  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3860
3861  QualType CNewTy = Context.getCanonicalType(NewTy);
3862  QualType COldTy = Context.getCanonicalType(OldTy);
3863
3864  if (CNewTy == COldTy &&
3865      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3866    return false;
3867
3868  // Check if the return types are covariant
3869  QualType NewClassTy, OldClassTy;
3870
3871  /// Both types must be pointers or references to classes.
3872  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3873    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3874      NewClassTy = NewPT->getPointeeType();
3875      OldClassTy = OldPT->getPointeeType();
3876    }
3877  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3878    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3879      NewClassTy = NewRT->getPointeeType();
3880      OldClassTy = OldRT->getPointeeType();
3881    }
3882  }
3883
3884  // The return types aren't either both pointers or references to a class type.
3885  if (NewClassTy.isNull()) {
3886    Diag(New->getLocation(),
3887         diag::err_different_return_type_for_overriding_virtual_function)
3888      << New->getDeclName() << NewTy << OldTy;
3889    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3890
3891    return true;
3892  }
3893
3894  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3895    // Check if the new class derives from the old class.
3896    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3897      Diag(New->getLocation(),
3898           diag::err_covariant_return_not_derived)
3899      << New->getDeclName() << NewTy << OldTy;
3900      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3901      return true;
3902    }
3903
3904    // Check if we the conversion from derived to base is valid.
3905    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3906                      diag::err_covariant_return_inaccessible_base,
3907                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3908                      // FIXME: Should this point to the return type?
3909                      New->getLocation(), SourceRange(), New->getDeclName())) {
3910      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3911      return true;
3912    }
3913  }
3914
3915  // The qualifiers of the return types must be the same.
3916  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3917    Diag(New->getLocation(),
3918         diag::err_covariant_return_type_different_qualifications)
3919    << New->getDeclName() << NewTy << OldTy;
3920    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3921    return true;
3922  };
3923
3924
3925  // The new class type must have the same or less qualifiers as the old type.
3926  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3927    Diag(New->getLocation(),
3928         diag::err_covariant_return_type_class_type_more_qualified)
3929    << New->getDeclName() << NewTy << OldTy;
3930    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3931    return true;
3932  };
3933
3934  return false;
3935}
3936
3937bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3938                                                const CXXMethodDecl *Old)
3939{
3940  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3941                                  diag::note_overridden_virtual_function,
3942                                  Old->getType()->getAsFunctionProtoType(),
3943                                  Old->getLocation(),
3944                                  New->getType()->getAsFunctionProtoType(),
3945                                  New->getLocation());
3946}
3947
3948/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3949/// initializer for the declaration 'Dcl'.
3950/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3951/// static data member of class X, names should be looked up in the scope of
3952/// class X.
3953void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3954  AdjustDeclIfTemplate(Dcl);
3955
3956  Decl *D = Dcl.getAs<Decl>();
3957  // If there is no declaration, there was an error parsing it.
3958  if (D == 0)
3959    return;
3960
3961  // Check whether it is a declaration with a nested name specifier like
3962  // int foo::bar;
3963  if (!D->isOutOfLine())
3964    return;
3965
3966  // C++ [basic.lookup.unqual]p13
3967  //
3968  // A name used in the definition of a static data member of class X
3969  // (after the qualified-id of the static member) is looked up as if the name
3970  // was used in a member function of X.
3971
3972  // Change current context into the context of the initializing declaration.
3973  EnterDeclaratorContext(S, D->getDeclContext());
3974}
3975
3976/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3977/// initializer for the declaration 'Dcl'.
3978void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3979  AdjustDeclIfTemplate(Dcl);
3980
3981  Decl *D = Dcl.getAs<Decl>();
3982  // If there is no declaration, there was an error parsing it.
3983  if (D == 0)
3984    return;
3985
3986  // Check whether it is a declaration with a nested name specifier like
3987  // int foo::bar;
3988  if (!D->isOutOfLine())
3989    return;
3990
3991  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3992  ExitDeclaratorContext(S);
3993}
3994