SemaDeclCXX.cpp revision 745f5147e065900267c85a5568785a1991d4838f
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++0x [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++0x [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
976  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
977    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
978      << isa<CXXConstructorDecl>(Dcl);
979    for (size_t I = 0, N = Diags.size(); I != N; ++I)
980      Diag(Diags[I].first, Diags[I].second);
981    return false;
982  }
983
984  return true;
985}
986
987/// isCurrentClassName - Determine whether the identifier II is the
988/// name of the class type currently being defined. In the case of
989/// nested classes, this will only return true if II is the name of
990/// the innermost class.
991bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
992                              const CXXScopeSpec *SS) {
993  assert(getLangOptions().CPlusPlus && "No class names in C!");
994
995  CXXRecordDecl *CurDecl;
996  if (SS && SS->isSet() && !SS->isInvalid()) {
997    DeclContext *DC = computeDeclContext(*SS, true);
998    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
999  } else
1000    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1001
1002  if (CurDecl && CurDecl->getIdentifier())
1003    return &II == CurDecl->getIdentifier();
1004  else
1005    return false;
1006}
1007
1008/// \brief Check the validity of a C++ base class specifier.
1009///
1010/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1011/// and returns NULL otherwise.
1012CXXBaseSpecifier *
1013Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1014                         SourceRange SpecifierRange,
1015                         bool Virtual, AccessSpecifier Access,
1016                         TypeSourceInfo *TInfo,
1017                         SourceLocation EllipsisLoc) {
1018  QualType BaseType = TInfo->getType();
1019
1020  // C++ [class.union]p1:
1021  //   A union shall not have base classes.
1022  if (Class->isUnion()) {
1023    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1024      << SpecifierRange;
1025    return 0;
1026  }
1027
1028  if (EllipsisLoc.isValid() &&
1029      !TInfo->getType()->containsUnexpandedParameterPack()) {
1030    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1031      << TInfo->getTypeLoc().getSourceRange();
1032    EllipsisLoc = SourceLocation();
1033  }
1034
1035  if (BaseType->isDependentType())
1036    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1037                                          Class->getTagKind() == TTK_Class,
1038                                          Access, TInfo, EllipsisLoc);
1039
1040  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1041
1042  // Base specifiers must be record types.
1043  if (!BaseType->isRecordType()) {
1044    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1045    return 0;
1046  }
1047
1048  // C++ [class.union]p1:
1049  //   A union shall not be used as a base class.
1050  if (BaseType->isUnionType()) {
1051    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1052    return 0;
1053  }
1054
1055  // C++ [class.derived]p2:
1056  //   The class-name in a base-specifier shall not be an incompletely
1057  //   defined class.
1058  if (RequireCompleteType(BaseLoc, BaseType,
1059                          PDiag(diag::err_incomplete_base_class)
1060                            << SpecifierRange)) {
1061    Class->setInvalidDecl();
1062    return 0;
1063  }
1064
1065  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1066  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1067  assert(BaseDecl && "Record type has no declaration");
1068  BaseDecl = BaseDecl->getDefinition();
1069  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1070  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1071  assert(CXXBaseDecl && "Base type is not a C++ type");
1072
1073  // C++ [class]p3:
1074  //   If a class is marked final and it appears as a base-type-specifier in
1075  //   base-clause, the program is ill-formed.
1076  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1077    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1078      << CXXBaseDecl->getDeclName();
1079    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1080      << CXXBaseDecl->getDeclName();
1081    return 0;
1082  }
1083
1084  if (BaseDecl->isInvalidDecl())
1085    Class->setInvalidDecl();
1086
1087  // Create the base specifier.
1088  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1089                                        Class->getTagKind() == TTK_Class,
1090                                        Access, TInfo, EllipsisLoc);
1091}
1092
1093/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1094/// one entry in the base class list of a class specifier, for
1095/// example:
1096///    class foo : public bar, virtual private baz {
1097/// 'public bar' and 'virtual private baz' are each base-specifiers.
1098BaseResult
1099Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1100                         bool Virtual, AccessSpecifier Access,
1101                         ParsedType basetype, SourceLocation BaseLoc,
1102                         SourceLocation EllipsisLoc) {
1103  if (!classdecl)
1104    return true;
1105
1106  AdjustDeclIfTemplate(classdecl);
1107  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1108  if (!Class)
1109    return true;
1110
1111  TypeSourceInfo *TInfo = 0;
1112  GetTypeFromParser(basetype, &TInfo);
1113
1114  if (EllipsisLoc.isInvalid() &&
1115      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1116                                      UPPC_BaseType))
1117    return true;
1118
1119  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1120                                                      Virtual, Access, TInfo,
1121                                                      EllipsisLoc))
1122    return BaseSpec;
1123
1124  return true;
1125}
1126
1127/// \brief Performs the actual work of attaching the given base class
1128/// specifiers to a C++ class.
1129bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1130                                unsigned NumBases) {
1131 if (NumBases == 0)
1132    return false;
1133
1134  // Used to keep track of which base types we have already seen, so
1135  // that we can properly diagnose redundant direct base types. Note
1136  // that the key is always the unqualified canonical type of the base
1137  // class.
1138  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1139
1140  // Copy non-redundant base specifiers into permanent storage.
1141  unsigned NumGoodBases = 0;
1142  bool Invalid = false;
1143  for (unsigned idx = 0; idx < NumBases; ++idx) {
1144    QualType NewBaseType
1145      = Context.getCanonicalType(Bases[idx]->getType());
1146    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1147    if (KnownBaseTypes[NewBaseType]) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getSourceRange().getBegin(),
1152           diag::err_duplicate_base_class)
1153        << KnownBaseTypes[NewBaseType]->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBaseTypes[NewBaseType] = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOptions().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOptions().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1443/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1444/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1445/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1446/// present but parsing it has been deferred.
1447Decl *
1448Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1449                               MultiTemplateParamsArg TemplateParameterLists,
1450                               Expr *BW, const VirtSpecifiers &VS,
1451                               bool HasDeferredInit) {
1452  const DeclSpec &DS = D.getDeclSpec();
1453  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1454  DeclarationName Name = NameInfo.getName();
1455  SourceLocation Loc = NameInfo.getLoc();
1456
1457  // For anonymous bitfields, the location should point to the type.
1458  if (Loc.isInvalid())
1459    Loc = D.getSourceRange().getBegin();
1460
1461  Expr *BitWidth = static_cast<Expr*>(BW);
1462
1463  assert(isa<CXXRecordDecl>(CurContext));
1464  assert(!DS.isFriendSpecified());
1465
1466  bool isFunc = D.isDeclarationOfFunction();
1467
1468  // C++ 9.2p6: A member shall not be declared to have automatic storage
1469  // duration (auto, register) or with the extern storage-class-specifier.
1470  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1471  // data members and cannot be applied to names declared const or static,
1472  // and cannot be applied to reference members.
1473  switch (DS.getStorageClassSpec()) {
1474    case DeclSpec::SCS_unspecified:
1475    case DeclSpec::SCS_typedef:
1476    case DeclSpec::SCS_static:
1477      // FALL THROUGH.
1478      break;
1479    case DeclSpec::SCS_mutable:
1480      if (isFunc) {
1481        if (DS.getStorageClassSpecLoc().isValid())
1482          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1483        else
1484          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1485
1486        // FIXME: It would be nicer if the keyword was ignored only for this
1487        // declarator. Otherwise we could get follow-up errors.
1488        D.getMutableDeclSpec().ClearStorageClassSpecs();
1489      }
1490      break;
1491    default:
1492      if (DS.getStorageClassSpecLoc().isValid())
1493        Diag(DS.getStorageClassSpecLoc(),
1494             diag::err_storageclass_invalid_for_member);
1495      else
1496        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1497      D.getMutableDeclSpec().ClearStorageClassSpecs();
1498  }
1499
1500  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1501                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1502                      !isFunc);
1503
1504  Decl *Member;
1505  if (isInstField) {
1506    CXXScopeSpec &SS = D.getCXXScopeSpec();
1507
1508    // Data members must have identifiers for names.
1509    if (Name.getNameKind() != DeclarationName::Identifier) {
1510      Diag(Loc, diag::err_bad_variable_name)
1511        << Name;
1512      return 0;
1513    }
1514
1515    IdentifierInfo *II = Name.getAsIdentifierInfo();
1516
1517    // Member field could not be with "template" keyword.
1518    // So TemplateParameterLists should be empty in this case.
1519    if (TemplateParameterLists.size()) {
1520      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1521      if (TemplateParams->size()) {
1522        // There is no such thing as a member field template.
1523        Diag(D.getIdentifierLoc(), diag::err_template_member)
1524            << II
1525            << SourceRange(TemplateParams->getTemplateLoc(),
1526                TemplateParams->getRAngleLoc());
1527      } else {
1528        // There is an extraneous 'template<>' for this member.
1529        Diag(TemplateParams->getTemplateLoc(),
1530            diag::err_template_member_noparams)
1531            << II
1532            << SourceRange(TemplateParams->getTemplateLoc(),
1533                TemplateParams->getRAngleLoc());
1534      }
1535      return 0;
1536    }
1537
1538    if (SS.isSet() && !SS.isInvalid()) {
1539      // The user provided a superfluous scope specifier inside a class
1540      // definition:
1541      //
1542      // class X {
1543      //   int X::member;
1544      // };
1545      DeclContext *DC = 0;
1546      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1547        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1548          << Name << FixItHint::CreateRemoval(SS.getRange());
1549      else
1550        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1551          << Name << SS.getRange();
1552
1553      SS.clear();
1554    }
1555
1556    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1557                         HasDeferredInit, AS);
1558    assert(Member && "HandleField never returns null");
1559  } else {
1560    assert(!HasDeferredInit);
1561
1562    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1563    if (!Member) {
1564      return 0;
1565    }
1566
1567    // Non-instance-fields can't have a bitfield.
1568    if (BitWidth) {
1569      if (Member->isInvalidDecl()) {
1570        // don't emit another diagnostic.
1571      } else if (isa<VarDecl>(Member)) {
1572        // C++ 9.6p3: A bit-field shall not be a static member.
1573        // "static member 'A' cannot be a bit-field"
1574        Diag(Loc, diag::err_static_not_bitfield)
1575          << Name << BitWidth->getSourceRange();
1576      } else if (isa<TypedefDecl>(Member)) {
1577        // "typedef member 'x' cannot be a bit-field"
1578        Diag(Loc, diag::err_typedef_not_bitfield)
1579          << Name << BitWidth->getSourceRange();
1580      } else {
1581        // A function typedef ("typedef int f(); f a;").
1582        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1583        Diag(Loc, diag::err_not_integral_type_bitfield)
1584          << Name << cast<ValueDecl>(Member)->getType()
1585          << BitWidth->getSourceRange();
1586      }
1587
1588      BitWidth = 0;
1589      Member->setInvalidDecl();
1590    }
1591
1592    Member->setAccess(AS);
1593
1594    // If we have declared a member function template, set the access of the
1595    // templated declaration as well.
1596    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1597      FunTmpl->getTemplatedDecl()->setAccess(AS);
1598  }
1599
1600  if (VS.isOverrideSpecified()) {
1601    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1602    if (!MD || !MD->isVirtual()) {
1603      Diag(Member->getLocStart(),
1604           diag::override_keyword_only_allowed_on_virtual_member_functions)
1605        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1606    } else
1607      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1608  }
1609  if (VS.isFinalSpecified()) {
1610    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1611    if (!MD || !MD->isVirtual()) {
1612      Diag(Member->getLocStart(),
1613           diag::override_keyword_only_allowed_on_virtual_member_functions)
1614      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1615    } else
1616      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1617  }
1618
1619  if (VS.getLastLocation().isValid()) {
1620    // Update the end location of a method that has a virt-specifiers.
1621    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1622      MD->setRangeEnd(VS.getLastLocation());
1623  }
1624
1625  CheckOverrideControl(Member);
1626
1627  assert((Name || isInstField) && "No identifier for non-field ?");
1628
1629  if (isInstField)
1630    FieldCollector->Add(cast<FieldDecl>(Member));
1631  return Member;
1632}
1633
1634/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1635/// in-class initializer for a non-static C++ class member, and after
1636/// instantiating an in-class initializer in a class template. Such actions
1637/// are deferred until the class is complete.
1638void
1639Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1640                                       Expr *InitExpr) {
1641  FieldDecl *FD = cast<FieldDecl>(D);
1642
1643  if (!InitExpr) {
1644    FD->setInvalidDecl();
1645    FD->removeInClassInitializer();
1646    return;
1647  }
1648
1649  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1650    FD->setInvalidDecl();
1651    FD->removeInClassInitializer();
1652    return;
1653  }
1654
1655  ExprResult Init = InitExpr;
1656  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1657    // FIXME: if there is no EqualLoc, this is list-initialization.
1658    Init = PerformCopyInitialization(
1659      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1660    if (Init.isInvalid()) {
1661      FD->setInvalidDecl();
1662      return;
1663    }
1664
1665    CheckImplicitConversions(Init.get(), EqualLoc);
1666  }
1667
1668  // C++0x [class.base.init]p7:
1669  //   The initialization of each base and member constitutes a
1670  //   full-expression.
1671  Init = MaybeCreateExprWithCleanups(Init);
1672  if (Init.isInvalid()) {
1673    FD->setInvalidDecl();
1674    return;
1675  }
1676
1677  InitExpr = Init.release();
1678
1679  FD->setInClassInitializer(InitExpr);
1680}
1681
1682/// \brief Find the direct and/or virtual base specifiers that
1683/// correspond to the given base type, for use in base initialization
1684/// within a constructor.
1685static bool FindBaseInitializer(Sema &SemaRef,
1686                                CXXRecordDecl *ClassDecl,
1687                                QualType BaseType,
1688                                const CXXBaseSpecifier *&DirectBaseSpec,
1689                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1690  // First, check for a direct base class.
1691  DirectBaseSpec = 0;
1692  for (CXXRecordDecl::base_class_const_iterator Base
1693         = ClassDecl->bases_begin();
1694       Base != ClassDecl->bases_end(); ++Base) {
1695    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1696      // We found a direct base of this type. That's what we're
1697      // initializing.
1698      DirectBaseSpec = &*Base;
1699      break;
1700    }
1701  }
1702
1703  // Check for a virtual base class.
1704  // FIXME: We might be able to short-circuit this if we know in advance that
1705  // there are no virtual bases.
1706  VirtualBaseSpec = 0;
1707  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1708    // We haven't found a base yet; search the class hierarchy for a
1709    // virtual base class.
1710    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1711                       /*DetectVirtual=*/false);
1712    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1713                              BaseType, Paths)) {
1714      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1715           Path != Paths.end(); ++Path) {
1716        if (Path->back().Base->isVirtual()) {
1717          VirtualBaseSpec = Path->back().Base;
1718          break;
1719        }
1720      }
1721    }
1722  }
1723
1724  return DirectBaseSpec || VirtualBaseSpec;
1725}
1726
1727/// \brief Handle a C++ member initializer using braced-init-list syntax.
1728MemInitResult
1729Sema::ActOnMemInitializer(Decl *ConstructorD,
1730                          Scope *S,
1731                          CXXScopeSpec &SS,
1732                          IdentifierInfo *MemberOrBase,
1733                          ParsedType TemplateTypeTy,
1734                          const DeclSpec &DS,
1735                          SourceLocation IdLoc,
1736                          Expr *InitList,
1737                          SourceLocation EllipsisLoc) {
1738  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1739                             DS, IdLoc, MultiInitializer(InitList),
1740                             EllipsisLoc);
1741}
1742
1743/// \brief Handle a C++ member initializer using parentheses syntax.
1744MemInitResult
1745Sema::ActOnMemInitializer(Decl *ConstructorD,
1746                          Scope *S,
1747                          CXXScopeSpec &SS,
1748                          IdentifierInfo *MemberOrBase,
1749                          ParsedType TemplateTypeTy,
1750                          const DeclSpec &DS,
1751                          SourceLocation IdLoc,
1752                          SourceLocation LParenLoc,
1753                          Expr **Args, unsigned NumArgs,
1754                          SourceLocation RParenLoc,
1755                          SourceLocation EllipsisLoc) {
1756  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1757                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1758                                                         NumArgs, RParenLoc),
1759                             EllipsisLoc);
1760}
1761
1762namespace {
1763
1764// Callback to only accept typo corrections that can be a valid C++ member
1765// intializer: either a non-static field member or a base class.
1766class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1767 public:
1768  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1769      : ClassDecl(ClassDecl) {}
1770
1771  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1772    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1773      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1774        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1775      else
1776        return isa<TypeDecl>(ND);
1777    }
1778    return false;
1779  }
1780
1781 private:
1782  CXXRecordDecl *ClassDecl;
1783};
1784
1785}
1786
1787/// \brief Handle a C++ member initializer.
1788MemInitResult
1789Sema::BuildMemInitializer(Decl *ConstructorD,
1790                          Scope *S,
1791                          CXXScopeSpec &SS,
1792                          IdentifierInfo *MemberOrBase,
1793                          ParsedType TemplateTypeTy,
1794                          const DeclSpec &DS,
1795                          SourceLocation IdLoc,
1796                          const MultiInitializer &Args,
1797                          SourceLocation EllipsisLoc) {
1798  if (!ConstructorD)
1799    return true;
1800
1801  AdjustDeclIfTemplate(ConstructorD);
1802
1803  CXXConstructorDecl *Constructor
1804    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1805  if (!Constructor) {
1806    // The user wrote a constructor initializer on a function that is
1807    // not a C++ constructor. Ignore the error for now, because we may
1808    // have more member initializers coming; we'll diagnose it just
1809    // once in ActOnMemInitializers.
1810    return true;
1811  }
1812
1813  CXXRecordDecl *ClassDecl = Constructor->getParent();
1814
1815  // C++ [class.base.init]p2:
1816  //   Names in a mem-initializer-id are looked up in the scope of the
1817  //   constructor's class and, if not found in that scope, are looked
1818  //   up in the scope containing the constructor's definition.
1819  //   [Note: if the constructor's class contains a member with the
1820  //   same name as a direct or virtual base class of the class, a
1821  //   mem-initializer-id naming the member or base class and composed
1822  //   of a single identifier refers to the class member. A
1823  //   mem-initializer-id for the hidden base class may be specified
1824  //   using a qualified name. ]
1825  if (!SS.getScopeRep() && !TemplateTypeTy) {
1826    // Look for a member, first.
1827    DeclContext::lookup_result Result
1828      = ClassDecl->lookup(MemberOrBase);
1829    if (Result.first != Result.second) {
1830      ValueDecl *Member;
1831      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1832          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1833        if (EllipsisLoc.isValid())
1834          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1835            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1836
1837        return BuildMemberInitializer(Member, Args, IdLoc);
1838      }
1839    }
1840  }
1841  // It didn't name a member, so see if it names a class.
1842  QualType BaseType;
1843  TypeSourceInfo *TInfo = 0;
1844
1845  if (TemplateTypeTy) {
1846    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1847  } else if (DS.getTypeSpecType() == TST_decltype) {
1848    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1849  } else {
1850    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1851    LookupParsedName(R, S, &SS);
1852
1853    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1854    if (!TyD) {
1855      if (R.isAmbiguous()) return true;
1856
1857      // We don't want access-control diagnostics here.
1858      R.suppressDiagnostics();
1859
1860      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1861        bool NotUnknownSpecialization = false;
1862        DeclContext *DC = computeDeclContext(SS, false);
1863        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1864          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1865
1866        if (!NotUnknownSpecialization) {
1867          // When the scope specifier can refer to a member of an unknown
1868          // specialization, we take it as a type name.
1869          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1870                                       SS.getWithLocInContext(Context),
1871                                       *MemberOrBase, IdLoc);
1872          if (BaseType.isNull())
1873            return true;
1874
1875          R.clear();
1876          R.setLookupName(MemberOrBase);
1877        }
1878      }
1879
1880      // If no results were found, try to correct typos.
1881      TypoCorrection Corr;
1882      MemInitializerValidatorCCC Validator(ClassDecl);
1883      if (R.empty() && BaseType.isNull() &&
1884          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1885                              &Validator, ClassDecl))) {
1886        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1887        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1888        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1889          // We have found a non-static data member with a similar
1890          // name to what was typed; complain and initialize that
1891          // member.
1892          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1893            << MemberOrBase << true << CorrectedQuotedStr
1894            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1895          Diag(Member->getLocation(), diag::note_previous_decl)
1896            << CorrectedQuotedStr;
1897
1898          return BuildMemberInitializer(Member, Args, IdLoc);
1899        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1900          const CXXBaseSpecifier *DirectBaseSpec;
1901          const CXXBaseSpecifier *VirtualBaseSpec;
1902          if (FindBaseInitializer(*this, ClassDecl,
1903                                  Context.getTypeDeclType(Type),
1904                                  DirectBaseSpec, VirtualBaseSpec)) {
1905            // We have found a direct or virtual base class with a
1906            // similar name to what was typed; complain and initialize
1907            // that base class.
1908            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1909              << MemberOrBase << false << CorrectedQuotedStr
1910              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1911
1912            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1913                                                             : VirtualBaseSpec;
1914            Diag(BaseSpec->getSourceRange().getBegin(),
1915                 diag::note_base_class_specified_here)
1916              << BaseSpec->getType()
1917              << BaseSpec->getSourceRange();
1918
1919            TyD = Type;
1920          }
1921        }
1922      }
1923
1924      if (!TyD && BaseType.isNull()) {
1925        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1926          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1927        return true;
1928      }
1929    }
1930
1931    if (BaseType.isNull()) {
1932      BaseType = Context.getTypeDeclType(TyD);
1933      if (SS.isSet()) {
1934        NestedNameSpecifier *Qualifier =
1935          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1936
1937        // FIXME: preserve source range information
1938        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1939      }
1940    }
1941  }
1942
1943  if (!TInfo)
1944    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1945
1946  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1947}
1948
1949/// Checks a member initializer expression for cases where reference (or
1950/// pointer) members are bound to by-value parameters (or their addresses).
1951static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1952                                               Expr *Init,
1953                                               SourceLocation IdLoc) {
1954  QualType MemberTy = Member->getType();
1955
1956  // We only handle pointers and references currently.
1957  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1958  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1959    return;
1960
1961  const bool IsPointer = MemberTy->isPointerType();
1962  if (IsPointer) {
1963    if (const UnaryOperator *Op
1964          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1965      // The only case we're worried about with pointers requires taking the
1966      // address.
1967      if (Op->getOpcode() != UO_AddrOf)
1968        return;
1969
1970      Init = Op->getSubExpr();
1971    } else {
1972      // We only handle address-of expression initializers for pointers.
1973      return;
1974    }
1975  }
1976
1977  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1978    // Taking the address of a temporary will be diagnosed as a hard error.
1979    if (IsPointer)
1980      return;
1981
1982    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1983      << Member << Init->getSourceRange();
1984  } else if (const DeclRefExpr *DRE
1985               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1986    // We only warn when referring to a non-reference parameter declaration.
1987    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1988    if (!Parameter || Parameter->getType()->isReferenceType())
1989      return;
1990
1991    S.Diag(Init->getExprLoc(),
1992           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1993                     : diag::warn_bind_ref_member_to_parameter)
1994      << Member << Parameter << Init->getSourceRange();
1995  } else {
1996    // Other initializers are fine.
1997    return;
1998  }
1999
2000  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2001    << (unsigned)IsPointer;
2002}
2003
2004/// Checks an initializer expression for use of uninitialized fields, such as
2005/// containing the field that is being initialized. Returns true if there is an
2006/// uninitialized field was used an updates the SourceLocation parameter; false
2007/// otherwise.
2008static bool InitExprContainsUninitializedFields(const Stmt *S,
2009                                                const ValueDecl *LhsField,
2010                                                SourceLocation *L) {
2011  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2012
2013  if (isa<CallExpr>(S)) {
2014    // Do not descend into function calls or constructors, as the use
2015    // of an uninitialized field may be valid. One would have to inspect
2016    // the contents of the function/ctor to determine if it is safe or not.
2017    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2018    // may be safe, depending on what the function/ctor does.
2019    return false;
2020  }
2021  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2022    const NamedDecl *RhsField = ME->getMemberDecl();
2023
2024    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2025      // The member expression points to a static data member.
2026      assert(VD->isStaticDataMember() &&
2027             "Member points to non-static data member!");
2028      (void)VD;
2029      return false;
2030    }
2031
2032    if (isa<EnumConstantDecl>(RhsField)) {
2033      // The member expression points to an enum.
2034      return false;
2035    }
2036
2037    if (RhsField == LhsField) {
2038      // Initializing a field with itself. Throw a warning.
2039      // But wait; there are exceptions!
2040      // Exception #1:  The field may not belong to this record.
2041      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2042      const Expr *base = ME->getBase();
2043      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2044        // Even though the field matches, it does not belong to this record.
2045        return false;
2046      }
2047      // None of the exceptions triggered; return true to indicate an
2048      // uninitialized field was used.
2049      *L = ME->getMemberLoc();
2050      return true;
2051    }
2052  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2053    // sizeof/alignof doesn't reference contents, do not warn.
2054    return false;
2055  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2056    // address-of doesn't reference contents (the pointer may be dereferenced
2057    // in the same expression but it would be rare; and weird).
2058    if (UOE->getOpcode() == UO_AddrOf)
2059      return false;
2060  }
2061  for (Stmt::const_child_range it = S->children(); it; ++it) {
2062    if (!*it) {
2063      // An expression such as 'member(arg ?: "")' may trigger this.
2064      continue;
2065    }
2066    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2067      return true;
2068  }
2069  return false;
2070}
2071
2072MemInitResult
2073Sema::BuildMemberInitializer(ValueDecl *Member,
2074                             const MultiInitializer &Args,
2075                             SourceLocation IdLoc) {
2076  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2077  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2078  assert((DirectMember || IndirectMember) &&
2079         "Member must be a FieldDecl or IndirectFieldDecl");
2080
2081  if (Args.DiagnoseUnexpandedParameterPack(*this))
2082    return true;
2083
2084  if (Member->isInvalidDecl())
2085    return true;
2086
2087  // Diagnose value-uses of fields to initialize themselves, e.g.
2088  //   foo(foo)
2089  // where foo is not also a parameter to the constructor.
2090  // TODO: implement -Wuninitialized and fold this into that framework.
2091  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2092       I != E; ++I) {
2093    SourceLocation L;
2094    Expr *Arg = *I;
2095    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2096      Arg = DIE->getInit();
2097    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2098      // FIXME: Return true in the case when other fields are used before being
2099      // uninitialized. For example, let this field be the i'th field. When
2100      // initializing the i'th field, throw a warning if any of the >= i'th
2101      // fields are used, as they are not yet initialized.
2102      // Right now we are only handling the case where the i'th field uses
2103      // itself in its initializer.
2104      Diag(L, diag::warn_field_is_uninit);
2105    }
2106  }
2107
2108  bool HasDependentArg = Args.isTypeDependent();
2109
2110  Expr *Init;
2111  if (Member->getType()->isDependentType() || HasDependentArg) {
2112    // Can't check initialization for a member of dependent type or when
2113    // any of the arguments are type-dependent expressions.
2114    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2115
2116    DiscardCleanupsInEvaluationContext();
2117  } else {
2118    // Initialize the member.
2119    InitializedEntity MemberEntity =
2120      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2121                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2122    InitializationKind Kind =
2123      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2124                                       Args.getEndLoc());
2125
2126    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2127    if (MemberInit.isInvalid())
2128      return true;
2129
2130    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2131
2132    // C++0x [class.base.init]p7:
2133    //   The initialization of each base and member constitutes a
2134    //   full-expression.
2135    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2136    if (MemberInit.isInvalid())
2137      return true;
2138
2139    // If we are in a dependent context, template instantiation will
2140    // perform this type-checking again. Just save the arguments that we
2141    // received in a ParenListExpr.
2142    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2143    // of the information that we have about the member
2144    // initializer. However, deconstructing the ASTs is a dicey process,
2145    // and this approach is far more likely to get the corner cases right.
2146    if (CurContext->isDependentContext()) {
2147      Init = Args.CreateInitExpr(Context,
2148                                 Member->getType().getNonReferenceType());
2149    } else {
2150      Init = MemberInit.get();
2151      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2152    }
2153  }
2154
2155  if (DirectMember) {
2156    return new (Context) CXXCtorInitializer(Context, DirectMember,
2157                                                    IdLoc, Args.getStartLoc(),
2158                                                    Init, Args.getEndLoc());
2159  } else {
2160    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2161                                                    IdLoc, Args.getStartLoc(),
2162                                                    Init, Args.getEndLoc());
2163  }
2164}
2165
2166MemInitResult
2167Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2168                                 const MultiInitializer &Args,
2169                                 CXXRecordDecl *ClassDecl) {
2170  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2171  if (!LangOpts.CPlusPlus0x)
2172    return Diag(NameLoc, diag::err_delegating_ctor)
2173      << TInfo->getTypeLoc().getLocalSourceRange();
2174  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2175
2176  // Initialize the object.
2177  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2178                                     QualType(ClassDecl->getTypeForDecl(), 0));
2179  InitializationKind Kind =
2180    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2181                                     Args.getEndLoc());
2182
2183  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2184  if (DelegationInit.isInvalid())
2185    return true;
2186
2187  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2188         "Delegating constructor with no target?");
2189
2190  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2191
2192  // C++0x [class.base.init]p7:
2193  //   The initialization of each base and member constitutes a
2194  //   full-expression.
2195  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2196  if (DelegationInit.isInvalid())
2197    return true;
2198
2199  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2200                                          DelegationInit.takeAs<Expr>(),
2201                                          Args.getEndLoc());
2202}
2203
2204MemInitResult
2205Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2206                           const MultiInitializer &Args,
2207                           CXXRecordDecl *ClassDecl,
2208                           SourceLocation EllipsisLoc) {
2209  bool HasDependentArg = Args.isTypeDependent();
2210
2211  SourceLocation BaseLoc
2212    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2213
2214  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2215    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2216             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2217
2218  // C++ [class.base.init]p2:
2219  //   [...] Unless the mem-initializer-id names a nonstatic data
2220  //   member of the constructor's class or a direct or virtual base
2221  //   of that class, the mem-initializer is ill-formed. A
2222  //   mem-initializer-list can initialize a base class using any
2223  //   name that denotes that base class type.
2224  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2225
2226  if (EllipsisLoc.isValid()) {
2227    // This is a pack expansion.
2228    if (!BaseType->containsUnexpandedParameterPack())  {
2229      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2230        << SourceRange(BaseLoc, Args.getEndLoc());
2231
2232      EllipsisLoc = SourceLocation();
2233    }
2234  } else {
2235    // Check for any unexpanded parameter packs.
2236    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2237      return true;
2238
2239    if (Args.DiagnoseUnexpandedParameterPack(*this))
2240      return true;
2241  }
2242
2243  // Check for direct and virtual base classes.
2244  const CXXBaseSpecifier *DirectBaseSpec = 0;
2245  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2246  if (!Dependent) {
2247    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2248                                       BaseType))
2249      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2250
2251    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2252                        VirtualBaseSpec);
2253
2254    // C++ [base.class.init]p2:
2255    // Unless the mem-initializer-id names a nonstatic data member of the
2256    // constructor's class or a direct or virtual base of that class, the
2257    // mem-initializer is ill-formed.
2258    if (!DirectBaseSpec && !VirtualBaseSpec) {
2259      // If the class has any dependent bases, then it's possible that
2260      // one of those types will resolve to the same type as
2261      // BaseType. Therefore, just treat this as a dependent base
2262      // class initialization.  FIXME: Should we try to check the
2263      // initialization anyway? It seems odd.
2264      if (ClassDecl->hasAnyDependentBases())
2265        Dependent = true;
2266      else
2267        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2268          << BaseType << Context.getTypeDeclType(ClassDecl)
2269          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2270    }
2271  }
2272
2273  if (Dependent) {
2274    // Can't check initialization for a base of dependent type or when
2275    // any of the arguments are type-dependent expressions.
2276    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2277
2278    DiscardCleanupsInEvaluationContext();
2279
2280    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2281                                            /*IsVirtual=*/false,
2282                                            Args.getStartLoc(), BaseInit,
2283                                            Args.getEndLoc(), EllipsisLoc);
2284  }
2285
2286  // C++ [base.class.init]p2:
2287  //   If a mem-initializer-id is ambiguous because it designates both
2288  //   a direct non-virtual base class and an inherited virtual base
2289  //   class, the mem-initializer is ill-formed.
2290  if (DirectBaseSpec && VirtualBaseSpec)
2291    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2292      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2293
2294  CXXBaseSpecifier *BaseSpec
2295    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2296  if (!BaseSpec)
2297    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2298
2299  // Initialize the base.
2300  InitializedEntity BaseEntity =
2301    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2302  InitializationKind Kind =
2303    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2304                                     Args.getEndLoc());
2305
2306  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2307  if (BaseInit.isInvalid())
2308    return true;
2309
2310  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2311
2312  // C++0x [class.base.init]p7:
2313  //   The initialization of each base and member constitutes a
2314  //   full-expression.
2315  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2316  if (BaseInit.isInvalid())
2317    return true;
2318
2319  // If we are in a dependent context, template instantiation will
2320  // perform this type-checking again. Just save the arguments that we
2321  // received in a ParenListExpr.
2322  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2323  // of the information that we have about the base
2324  // initializer. However, deconstructing the ASTs is a dicey process,
2325  // and this approach is far more likely to get the corner cases right.
2326  if (CurContext->isDependentContext())
2327    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2328
2329  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2330                                          BaseSpec->isVirtual(),
2331                                          Args.getStartLoc(),
2332                                          BaseInit.takeAs<Expr>(),
2333                                          Args.getEndLoc(), EllipsisLoc);
2334}
2335
2336// Create a static_cast\<T&&>(expr).
2337static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2338  QualType ExprType = E->getType();
2339  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2340  SourceLocation ExprLoc = E->getLocStart();
2341  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2342      TargetType, ExprLoc);
2343
2344  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2345                                   SourceRange(ExprLoc, ExprLoc),
2346                                   E->getSourceRange()).take();
2347}
2348
2349/// ImplicitInitializerKind - How an implicit base or member initializer should
2350/// initialize its base or member.
2351enum ImplicitInitializerKind {
2352  IIK_Default,
2353  IIK_Copy,
2354  IIK_Move
2355};
2356
2357static bool
2358BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2359                             ImplicitInitializerKind ImplicitInitKind,
2360                             CXXBaseSpecifier *BaseSpec,
2361                             bool IsInheritedVirtualBase,
2362                             CXXCtorInitializer *&CXXBaseInit) {
2363  InitializedEntity InitEntity
2364    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2365                                        IsInheritedVirtualBase);
2366
2367  ExprResult BaseInit;
2368
2369  switch (ImplicitInitKind) {
2370  case IIK_Default: {
2371    InitializationKind InitKind
2372      = InitializationKind::CreateDefault(Constructor->getLocation());
2373    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2374    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2375                               MultiExprArg(SemaRef, 0, 0));
2376    break;
2377  }
2378
2379  case IIK_Move:
2380  case IIK_Copy: {
2381    bool Moving = ImplicitInitKind == IIK_Move;
2382    ParmVarDecl *Param = Constructor->getParamDecl(0);
2383    QualType ParamType = Param->getType().getNonReferenceType();
2384
2385    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2386
2387    Expr *CopyCtorArg =
2388      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2389                          Constructor->getLocation(), ParamType,
2390                          VK_LValue, 0);
2391
2392    // Cast to the base class to avoid ambiguities.
2393    QualType ArgTy =
2394      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2395                                       ParamType.getQualifiers());
2396
2397    if (Moving) {
2398      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2399    }
2400
2401    CXXCastPath BasePath;
2402    BasePath.push_back(BaseSpec);
2403    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2404                                            CK_UncheckedDerivedToBase,
2405                                            Moving ? VK_XValue : VK_LValue,
2406                                            &BasePath).take();
2407
2408    InitializationKind InitKind
2409      = InitializationKind::CreateDirect(Constructor->getLocation(),
2410                                         SourceLocation(), SourceLocation());
2411    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2412                                   &CopyCtorArg, 1);
2413    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2414                               MultiExprArg(&CopyCtorArg, 1));
2415    break;
2416  }
2417  }
2418
2419  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2420  if (BaseInit.isInvalid())
2421    return true;
2422
2423  CXXBaseInit =
2424    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2425               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2426                                                        SourceLocation()),
2427                                             BaseSpec->isVirtual(),
2428                                             SourceLocation(),
2429                                             BaseInit.takeAs<Expr>(),
2430                                             SourceLocation(),
2431                                             SourceLocation());
2432
2433  return false;
2434}
2435
2436static bool RefersToRValueRef(Expr *MemRef) {
2437  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2438  return Referenced->getType()->isRValueReferenceType();
2439}
2440
2441static bool
2442BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2443                               ImplicitInitializerKind ImplicitInitKind,
2444                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2445                               CXXCtorInitializer *&CXXMemberInit) {
2446  if (Field->isInvalidDecl())
2447    return true;
2448
2449  SourceLocation Loc = Constructor->getLocation();
2450
2451  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2452    bool Moving = ImplicitInitKind == IIK_Move;
2453    ParmVarDecl *Param = Constructor->getParamDecl(0);
2454    QualType ParamType = Param->getType().getNonReferenceType();
2455
2456    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2457
2458    // Suppress copying zero-width bitfields.
2459    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2460      return false;
2461
2462    Expr *MemberExprBase =
2463      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2464                          Loc, ParamType, VK_LValue, 0);
2465
2466    if (Moving) {
2467      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2468    }
2469
2470    // Build a reference to this field within the parameter.
2471    CXXScopeSpec SS;
2472    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2473                              Sema::LookupMemberName);
2474    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2475                                  : cast<ValueDecl>(Field), AS_public);
2476    MemberLookup.resolveKind();
2477    ExprResult CtorArg
2478      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2479                                         ParamType, Loc,
2480                                         /*IsArrow=*/false,
2481                                         SS,
2482                                         /*FirstQualifierInScope=*/0,
2483                                         MemberLookup,
2484                                         /*TemplateArgs=*/0);
2485    if (CtorArg.isInvalid())
2486      return true;
2487
2488    // C++11 [class.copy]p15:
2489    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2490    //     with static_cast<T&&>(x.m);
2491    if (RefersToRValueRef(CtorArg.get())) {
2492      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2493    }
2494
2495    // When the field we are copying is an array, create index variables for
2496    // each dimension of the array. We use these index variables to subscript
2497    // the source array, and other clients (e.g., CodeGen) will perform the
2498    // necessary iteration with these index variables.
2499    SmallVector<VarDecl *, 4> IndexVariables;
2500    QualType BaseType = Field->getType();
2501    QualType SizeType = SemaRef.Context.getSizeType();
2502    bool InitializingArray = false;
2503    while (const ConstantArrayType *Array
2504                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2505      InitializingArray = true;
2506      // Create the iteration variable for this array index.
2507      IdentifierInfo *IterationVarName = 0;
2508      {
2509        llvm::SmallString<8> Str;
2510        llvm::raw_svector_ostream OS(Str);
2511        OS << "__i" << IndexVariables.size();
2512        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2513      }
2514      VarDecl *IterationVar
2515        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2516                          IterationVarName, SizeType,
2517                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2518                          SC_None, SC_None);
2519      IndexVariables.push_back(IterationVar);
2520
2521      // Create a reference to the iteration variable.
2522      ExprResult IterationVarRef
2523        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2524      assert(!IterationVarRef.isInvalid() &&
2525             "Reference to invented variable cannot fail!");
2526      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2527      assert(!IterationVarRef.isInvalid() &&
2528             "Conversion of invented variable cannot fail!");
2529
2530      // Subscript the array with this iteration variable.
2531      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2532                                                        IterationVarRef.take(),
2533                                                        Loc);
2534      if (CtorArg.isInvalid())
2535        return true;
2536
2537      BaseType = Array->getElementType();
2538    }
2539
2540    // The array subscript expression is an lvalue, which is wrong for moving.
2541    if (Moving && InitializingArray)
2542      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2543
2544    // Construct the entity that we will be initializing. For an array, this
2545    // will be first element in the array, which may require several levels
2546    // of array-subscript entities.
2547    SmallVector<InitializedEntity, 4> Entities;
2548    Entities.reserve(1 + IndexVariables.size());
2549    if (Indirect)
2550      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2551    else
2552      Entities.push_back(InitializedEntity::InitializeMember(Field));
2553    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2554      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2555                                                              0,
2556                                                              Entities.back()));
2557
2558    // Direct-initialize to use the copy constructor.
2559    InitializationKind InitKind =
2560      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2561
2562    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2563    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2564                                   &CtorArgE, 1);
2565
2566    ExprResult MemberInit
2567      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2568                        MultiExprArg(&CtorArgE, 1));
2569    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2570    if (MemberInit.isInvalid())
2571      return true;
2572
2573    if (Indirect) {
2574      assert(IndexVariables.size() == 0 &&
2575             "Indirect field improperly initialized");
2576      CXXMemberInit
2577        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2578                                                   Loc, Loc,
2579                                                   MemberInit.takeAs<Expr>(),
2580                                                   Loc);
2581    } else
2582      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2583                                                 Loc, MemberInit.takeAs<Expr>(),
2584                                                 Loc,
2585                                                 IndexVariables.data(),
2586                                                 IndexVariables.size());
2587    return false;
2588  }
2589
2590  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2591
2592  QualType FieldBaseElementType =
2593    SemaRef.Context.getBaseElementType(Field->getType());
2594
2595  if (FieldBaseElementType->isRecordType()) {
2596    InitializedEntity InitEntity
2597      = Indirect? InitializedEntity::InitializeMember(Indirect)
2598                : InitializedEntity::InitializeMember(Field);
2599    InitializationKind InitKind =
2600      InitializationKind::CreateDefault(Loc);
2601
2602    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2603    ExprResult MemberInit =
2604      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2605
2606    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2607    if (MemberInit.isInvalid())
2608      return true;
2609
2610    if (Indirect)
2611      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2612                                                               Indirect, Loc,
2613                                                               Loc,
2614                                                               MemberInit.get(),
2615                                                               Loc);
2616    else
2617      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2618                                                               Field, Loc, Loc,
2619                                                               MemberInit.get(),
2620                                                               Loc);
2621    return false;
2622  }
2623
2624  if (!Field->getParent()->isUnion()) {
2625    if (FieldBaseElementType->isReferenceType()) {
2626      SemaRef.Diag(Constructor->getLocation(),
2627                   diag::err_uninitialized_member_in_ctor)
2628      << (int)Constructor->isImplicit()
2629      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2630      << 0 << Field->getDeclName();
2631      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2632      return true;
2633    }
2634
2635    if (FieldBaseElementType.isConstQualified()) {
2636      SemaRef.Diag(Constructor->getLocation(),
2637                   diag::err_uninitialized_member_in_ctor)
2638      << (int)Constructor->isImplicit()
2639      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2640      << 1 << Field->getDeclName();
2641      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2642      return true;
2643    }
2644  }
2645
2646  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2647      FieldBaseElementType->isObjCRetainableType() &&
2648      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2649      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2650    // Instant objects:
2651    //   Default-initialize Objective-C pointers to NULL.
2652    CXXMemberInit
2653      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2654                                                 Loc, Loc,
2655                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2656                                                 Loc);
2657    return false;
2658  }
2659
2660  // Nothing to initialize.
2661  CXXMemberInit = 0;
2662  return false;
2663}
2664
2665namespace {
2666struct BaseAndFieldInfo {
2667  Sema &S;
2668  CXXConstructorDecl *Ctor;
2669  bool AnyErrorsInInits;
2670  ImplicitInitializerKind IIK;
2671  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2672  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2673
2674  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2675    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2676    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2677    if (Generated && Ctor->isCopyConstructor())
2678      IIK = IIK_Copy;
2679    else if (Generated && Ctor->isMoveConstructor())
2680      IIK = IIK_Move;
2681    else
2682      IIK = IIK_Default;
2683  }
2684
2685  bool isImplicitCopyOrMove() const {
2686    switch (IIK) {
2687    case IIK_Copy:
2688    case IIK_Move:
2689      return true;
2690
2691    case IIK_Default:
2692      return false;
2693    }
2694
2695    llvm_unreachable("Invalid ImplicitInitializerKind!");
2696  }
2697};
2698}
2699
2700/// \brief Determine whether the given indirect field declaration is somewhere
2701/// within an anonymous union.
2702static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2703  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2704                                      CEnd = F->chain_end();
2705       C != CEnd; ++C)
2706    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2707      if (Record->isUnion())
2708        return true;
2709
2710  return false;
2711}
2712
2713/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2714/// array type.
2715static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2716  if (T->isIncompleteArrayType())
2717    return true;
2718
2719  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2720    if (!ArrayT->getSize())
2721      return true;
2722
2723    T = ArrayT->getElementType();
2724  }
2725
2726  return false;
2727}
2728
2729static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2730                                    FieldDecl *Field,
2731                                    IndirectFieldDecl *Indirect = 0) {
2732
2733  // Overwhelmingly common case: we have a direct initializer for this field.
2734  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2735    Info.AllToInit.push_back(Init);
2736    return false;
2737  }
2738
2739  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2740  // has a brace-or-equal-initializer, the entity is initialized as specified
2741  // in [dcl.init].
2742  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2743    CXXCtorInitializer *Init;
2744    if (Indirect)
2745      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2746                                                      SourceLocation(),
2747                                                      SourceLocation(), 0,
2748                                                      SourceLocation());
2749    else
2750      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2751                                                      SourceLocation(),
2752                                                      SourceLocation(), 0,
2753                                                      SourceLocation());
2754    Info.AllToInit.push_back(Init);
2755    return false;
2756  }
2757
2758  // Don't build an implicit initializer for union members if none was
2759  // explicitly specified.
2760  if (Field->getParent()->isUnion() ||
2761      (Indirect && isWithinAnonymousUnion(Indirect)))
2762    return false;
2763
2764  // Don't initialize incomplete or zero-length arrays.
2765  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2766    return false;
2767
2768  // Don't try to build an implicit initializer if there were semantic
2769  // errors in any of the initializers (and therefore we might be
2770  // missing some that the user actually wrote).
2771  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2772    return false;
2773
2774  CXXCtorInitializer *Init = 0;
2775  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2776                                     Indirect, Init))
2777    return true;
2778
2779  if (Init)
2780    Info.AllToInit.push_back(Init);
2781
2782  return false;
2783}
2784
2785bool
2786Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2787                               CXXCtorInitializer *Initializer) {
2788  assert(Initializer->isDelegatingInitializer());
2789  Constructor->setNumCtorInitializers(1);
2790  CXXCtorInitializer **initializer =
2791    new (Context) CXXCtorInitializer*[1];
2792  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2793  Constructor->setCtorInitializers(initializer);
2794
2795  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2796    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2797    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2798  }
2799
2800  DelegatingCtorDecls.push_back(Constructor);
2801
2802  return false;
2803}
2804
2805bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2806                               CXXCtorInitializer **Initializers,
2807                               unsigned NumInitializers,
2808                               bool AnyErrors) {
2809  if (Constructor->isDependentContext()) {
2810    // Just store the initializers as written, they will be checked during
2811    // instantiation.
2812    if (NumInitializers > 0) {
2813      Constructor->setNumCtorInitializers(NumInitializers);
2814      CXXCtorInitializer **baseOrMemberInitializers =
2815        new (Context) CXXCtorInitializer*[NumInitializers];
2816      memcpy(baseOrMemberInitializers, Initializers,
2817             NumInitializers * sizeof(CXXCtorInitializer*));
2818      Constructor->setCtorInitializers(baseOrMemberInitializers);
2819    }
2820
2821    return false;
2822  }
2823
2824  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2825
2826  // We need to build the initializer AST according to order of construction
2827  // and not what user specified in the Initializers list.
2828  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2829  if (!ClassDecl)
2830    return true;
2831
2832  bool HadError = false;
2833
2834  for (unsigned i = 0; i < NumInitializers; i++) {
2835    CXXCtorInitializer *Member = Initializers[i];
2836
2837    if (Member->isBaseInitializer())
2838      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2839    else
2840      Info.AllBaseFields[Member->getAnyMember()] = Member;
2841  }
2842
2843  // Keep track of the direct virtual bases.
2844  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2845  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2846       E = ClassDecl->bases_end(); I != E; ++I) {
2847    if (I->isVirtual())
2848      DirectVBases.insert(I);
2849  }
2850
2851  // Push virtual bases before others.
2852  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2853       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2854
2855    if (CXXCtorInitializer *Value
2856        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2857      Info.AllToInit.push_back(Value);
2858    } else if (!AnyErrors) {
2859      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2860      CXXCtorInitializer *CXXBaseInit;
2861      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2862                                       VBase, IsInheritedVirtualBase,
2863                                       CXXBaseInit)) {
2864        HadError = true;
2865        continue;
2866      }
2867
2868      Info.AllToInit.push_back(CXXBaseInit);
2869    }
2870  }
2871
2872  // Non-virtual bases.
2873  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2874       E = ClassDecl->bases_end(); Base != E; ++Base) {
2875    // Virtuals are in the virtual base list and already constructed.
2876    if (Base->isVirtual())
2877      continue;
2878
2879    if (CXXCtorInitializer *Value
2880          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2881      Info.AllToInit.push_back(Value);
2882    } else if (!AnyErrors) {
2883      CXXCtorInitializer *CXXBaseInit;
2884      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2885                                       Base, /*IsInheritedVirtualBase=*/false,
2886                                       CXXBaseInit)) {
2887        HadError = true;
2888        continue;
2889      }
2890
2891      Info.AllToInit.push_back(CXXBaseInit);
2892    }
2893  }
2894
2895  // Fields.
2896  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2897                               MemEnd = ClassDecl->decls_end();
2898       Mem != MemEnd; ++Mem) {
2899    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2900      // C++ [class.bit]p2:
2901      //   A declaration for a bit-field that omits the identifier declares an
2902      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2903      //   initialized.
2904      if (F->isUnnamedBitfield())
2905        continue;
2906
2907      // If we're not generating the implicit copy/move constructor, then we'll
2908      // handle anonymous struct/union fields based on their individual
2909      // indirect fields.
2910      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2911        continue;
2912
2913      if (CollectFieldInitializer(*this, Info, F))
2914        HadError = true;
2915      continue;
2916    }
2917
2918    // Beyond this point, we only consider default initialization.
2919    if (Info.IIK != IIK_Default)
2920      continue;
2921
2922    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2923      if (F->getType()->isIncompleteArrayType()) {
2924        assert(ClassDecl->hasFlexibleArrayMember() &&
2925               "Incomplete array type is not valid");
2926        continue;
2927      }
2928
2929      // Initialize each field of an anonymous struct individually.
2930      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2931        HadError = true;
2932
2933      continue;
2934    }
2935  }
2936
2937  NumInitializers = Info.AllToInit.size();
2938  if (NumInitializers > 0) {
2939    Constructor->setNumCtorInitializers(NumInitializers);
2940    CXXCtorInitializer **baseOrMemberInitializers =
2941      new (Context) CXXCtorInitializer*[NumInitializers];
2942    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2943           NumInitializers * sizeof(CXXCtorInitializer*));
2944    Constructor->setCtorInitializers(baseOrMemberInitializers);
2945
2946    // Constructors implicitly reference the base and member
2947    // destructors.
2948    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2949                                           Constructor->getParent());
2950  }
2951
2952  return HadError;
2953}
2954
2955static void *GetKeyForTopLevelField(FieldDecl *Field) {
2956  // For anonymous unions, use the class declaration as the key.
2957  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2958    if (RT->getDecl()->isAnonymousStructOrUnion())
2959      return static_cast<void *>(RT->getDecl());
2960  }
2961  return static_cast<void *>(Field);
2962}
2963
2964static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2965  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2966}
2967
2968static void *GetKeyForMember(ASTContext &Context,
2969                             CXXCtorInitializer *Member) {
2970  if (!Member->isAnyMemberInitializer())
2971    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2972
2973  // For fields injected into the class via declaration of an anonymous union,
2974  // use its anonymous union class declaration as the unique key.
2975  FieldDecl *Field = Member->getAnyMember();
2976
2977  // If the field is a member of an anonymous struct or union, our key
2978  // is the anonymous record decl that's a direct child of the class.
2979  RecordDecl *RD = Field->getParent();
2980  if (RD->isAnonymousStructOrUnion()) {
2981    while (true) {
2982      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2983      if (Parent->isAnonymousStructOrUnion())
2984        RD = Parent;
2985      else
2986        break;
2987    }
2988
2989    return static_cast<void *>(RD);
2990  }
2991
2992  return static_cast<void *>(Field);
2993}
2994
2995static void
2996DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2997                                  const CXXConstructorDecl *Constructor,
2998                                  CXXCtorInitializer **Inits,
2999                                  unsigned NumInits) {
3000  if (Constructor->getDeclContext()->isDependentContext())
3001    return;
3002
3003  // Don't check initializers order unless the warning is enabled at the
3004  // location of at least one initializer.
3005  bool ShouldCheckOrder = false;
3006  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3007    CXXCtorInitializer *Init = Inits[InitIndex];
3008    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3009                                         Init->getSourceLocation())
3010          != DiagnosticsEngine::Ignored) {
3011      ShouldCheckOrder = true;
3012      break;
3013    }
3014  }
3015  if (!ShouldCheckOrder)
3016    return;
3017
3018  // Build the list of bases and members in the order that they'll
3019  // actually be initialized.  The explicit initializers should be in
3020  // this same order but may be missing things.
3021  SmallVector<const void*, 32> IdealInitKeys;
3022
3023  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3024
3025  // 1. Virtual bases.
3026  for (CXXRecordDecl::base_class_const_iterator VBase =
3027       ClassDecl->vbases_begin(),
3028       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3029    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3030
3031  // 2. Non-virtual bases.
3032  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3033       E = ClassDecl->bases_end(); Base != E; ++Base) {
3034    if (Base->isVirtual())
3035      continue;
3036    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3037  }
3038
3039  // 3. Direct fields.
3040  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3041       E = ClassDecl->field_end(); Field != E; ++Field) {
3042    if (Field->isUnnamedBitfield())
3043      continue;
3044
3045    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3046  }
3047
3048  unsigned NumIdealInits = IdealInitKeys.size();
3049  unsigned IdealIndex = 0;
3050
3051  CXXCtorInitializer *PrevInit = 0;
3052  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3053    CXXCtorInitializer *Init = Inits[InitIndex];
3054    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3055
3056    // Scan forward to try to find this initializer in the idealized
3057    // initializers list.
3058    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3059      if (InitKey == IdealInitKeys[IdealIndex])
3060        break;
3061
3062    // If we didn't find this initializer, it must be because we
3063    // scanned past it on a previous iteration.  That can only
3064    // happen if we're out of order;  emit a warning.
3065    if (IdealIndex == NumIdealInits && PrevInit) {
3066      Sema::SemaDiagnosticBuilder D =
3067        SemaRef.Diag(PrevInit->getSourceLocation(),
3068                     diag::warn_initializer_out_of_order);
3069
3070      if (PrevInit->isAnyMemberInitializer())
3071        D << 0 << PrevInit->getAnyMember()->getDeclName();
3072      else
3073        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3074
3075      if (Init->isAnyMemberInitializer())
3076        D << 0 << Init->getAnyMember()->getDeclName();
3077      else
3078        D << 1 << Init->getTypeSourceInfo()->getType();
3079
3080      // Move back to the initializer's location in the ideal list.
3081      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3082        if (InitKey == IdealInitKeys[IdealIndex])
3083          break;
3084
3085      assert(IdealIndex != NumIdealInits &&
3086             "initializer not found in initializer list");
3087    }
3088
3089    PrevInit = Init;
3090  }
3091}
3092
3093namespace {
3094bool CheckRedundantInit(Sema &S,
3095                        CXXCtorInitializer *Init,
3096                        CXXCtorInitializer *&PrevInit) {
3097  if (!PrevInit) {
3098    PrevInit = Init;
3099    return false;
3100  }
3101
3102  if (FieldDecl *Field = Init->getMember())
3103    S.Diag(Init->getSourceLocation(),
3104           diag::err_multiple_mem_initialization)
3105      << Field->getDeclName()
3106      << Init->getSourceRange();
3107  else {
3108    const Type *BaseClass = Init->getBaseClass();
3109    assert(BaseClass && "neither field nor base");
3110    S.Diag(Init->getSourceLocation(),
3111           diag::err_multiple_base_initialization)
3112      << QualType(BaseClass, 0)
3113      << Init->getSourceRange();
3114  }
3115  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3116    << 0 << PrevInit->getSourceRange();
3117
3118  return true;
3119}
3120
3121typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3122typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3123
3124bool CheckRedundantUnionInit(Sema &S,
3125                             CXXCtorInitializer *Init,
3126                             RedundantUnionMap &Unions) {
3127  FieldDecl *Field = Init->getAnyMember();
3128  RecordDecl *Parent = Field->getParent();
3129  NamedDecl *Child = Field;
3130
3131  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3132    if (Parent->isUnion()) {
3133      UnionEntry &En = Unions[Parent];
3134      if (En.first && En.first != Child) {
3135        S.Diag(Init->getSourceLocation(),
3136               diag::err_multiple_mem_union_initialization)
3137          << Field->getDeclName()
3138          << Init->getSourceRange();
3139        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3140          << 0 << En.second->getSourceRange();
3141        return true;
3142      }
3143      if (!En.first) {
3144        En.first = Child;
3145        En.second = Init;
3146      }
3147      if (!Parent->isAnonymousStructOrUnion())
3148        return false;
3149    }
3150
3151    Child = Parent;
3152    Parent = cast<RecordDecl>(Parent->getDeclContext());
3153  }
3154
3155  return false;
3156}
3157}
3158
3159/// ActOnMemInitializers - Handle the member initializers for a constructor.
3160void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3161                                SourceLocation ColonLoc,
3162                                CXXCtorInitializer **meminits,
3163                                unsigned NumMemInits,
3164                                bool AnyErrors) {
3165  if (!ConstructorDecl)
3166    return;
3167
3168  AdjustDeclIfTemplate(ConstructorDecl);
3169
3170  CXXConstructorDecl *Constructor
3171    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3172
3173  if (!Constructor) {
3174    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3175    return;
3176  }
3177
3178  CXXCtorInitializer **MemInits =
3179    reinterpret_cast<CXXCtorInitializer **>(meminits);
3180
3181  // Mapping for the duplicate initializers check.
3182  // For member initializers, this is keyed with a FieldDecl*.
3183  // For base initializers, this is keyed with a Type*.
3184  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3185
3186  // Mapping for the inconsistent anonymous-union initializers check.
3187  RedundantUnionMap MemberUnions;
3188
3189  bool HadError = false;
3190  for (unsigned i = 0; i < NumMemInits; i++) {
3191    CXXCtorInitializer *Init = MemInits[i];
3192
3193    // Set the source order index.
3194    Init->setSourceOrder(i);
3195
3196    if (Init->isAnyMemberInitializer()) {
3197      FieldDecl *Field = Init->getAnyMember();
3198      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3199          CheckRedundantUnionInit(*this, Init, MemberUnions))
3200        HadError = true;
3201    } else if (Init->isBaseInitializer()) {
3202      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3203      if (CheckRedundantInit(*this, Init, Members[Key]))
3204        HadError = true;
3205    } else {
3206      assert(Init->isDelegatingInitializer());
3207      // This must be the only initializer
3208      if (i != 0 || NumMemInits > 1) {
3209        Diag(MemInits[0]->getSourceLocation(),
3210             diag::err_delegating_initializer_alone)
3211          << MemInits[0]->getSourceRange();
3212        HadError = true;
3213        // We will treat this as being the only initializer.
3214      }
3215      SetDelegatingInitializer(Constructor, MemInits[i]);
3216      // Return immediately as the initializer is set.
3217      return;
3218    }
3219  }
3220
3221  if (HadError)
3222    return;
3223
3224  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3225
3226  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3227}
3228
3229void
3230Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3231                                             CXXRecordDecl *ClassDecl) {
3232  // Ignore dependent contexts. Also ignore unions, since their members never
3233  // have destructors implicitly called.
3234  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3235    return;
3236
3237  // FIXME: all the access-control diagnostics are positioned on the
3238  // field/base declaration.  That's probably good; that said, the
3239  // user might reasonably want to know why the destructor is being
3240  // emitted, and we currently don't say.
3241
3242  // Non-static data members.
3243  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3244       E = ClassDecl->field_end(); I != E; ++I) {
3245    FieldDecl *Field = *I;
3246    if (Field->isInvalidDecl())
3247      continue;
3248
3249    // Don't destroy incomplete or zero-length arrays.
3250    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3251      continue;
3252
3253    QualType FieldType = Context.getBaseElementType(Field->getType());
3254
3255    const RecordType* RT = FieldType->getAs<RecordType>();
3256    if (!RT)
3257      continue;
3258
3259    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3260    if (FieldClassDecl->isInvalidDecl())
3261      continue;
3262    if (FieldClassDecl->hasTrivialDestructor())
3263      continue;
3264
3265    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3266    assert(Dtor && "No dtor found for FieldClassDecl!");
3267    CheckDestructorAccess(Field->getLocation(), Dtor,
3268                          PDiag(diag::err_access_dtor_field)
3269                            << Field->getDeclName()
3270                            << FieldType);
3271
3272    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3273  }
3274
3275  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3276
3277  // Bases.
3278  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3279       E = ClassDecl->bases_end(); Base != E; ++Base) {
3280    // Bases are always records in a well-formed non-dependent class.
3281    const RecordType *RT = Base->getType()->getAs<RecordType>();
3282
3283    // Remember direct virtual bases.
3284    if (Base->isVirtual())
3285      DirectVirtualBases.insert(RT);
3286
3287    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3288    // If our base class is invalid, we probably can't get its dtor anyway.
3289    if (BaseClassDecl->isInvalidDecl())
3290      continue;
3291    // Ignore trivial destructors.
3292    if (BaseClassDecl->hasTrivialDestructor())
3293      continue;
3294
3295    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3296    assert(Dtor && "No dtor found for BaseClassDecl!");
3297
3298    // FIXME: caret should be on the start of the class name
3299    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3300                          PDiag(diag::err_access_dtor_base)
3301                            << Base->getType()
3302                            << Base->getSourceRange());
3303
3304    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3305  }
3306
3307  // Virtual bases.
3308  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3309       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3310
3311    // Bases are always records in a well-formed non-dependent class.
3312    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3313
3314    // Ignore direct virtual bases.
3315    if (DirectVirtualBases.count(RT))
3316      continue;
3317
3318    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3319    // If our base class is invalid, we probably can't get its dtor anyway.
3320    if (BaseClassDecl->isInvalidDecl())
3321      continue;
3322    // Ignore trivial destructors.
3323    if (BaseClassDecl->hasTrivialDestructor())
3324      continue;
3325
3326    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3327    assert(Dtor && "No dtor found for BaseClassDecl!");
3328    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3329                          PDiag(diag::err_access_dtor_vbase)
3330                            << VBase->getType());
3331
3332    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3333  }
3334}
3335
3336void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3337  if (!CDtorDecl)
3338    return;
3339
3340  if (CXXConstructorDecl *Constructor
3341      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3342    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3343}
3344
3345bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3346                                  unsigned DiagID, AbstractDiagSelID SelID) {
3347  if (SelID == -1)
3348    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3349  else
3350    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3351}
3352
3353bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3354                                  const PartialDiagnostic &PD) {
3355  if (!getLangOptions().CPlusPlus)
3356    return false;
3357
3358  if (const ArrayType *AT = Context.getAsArrayType(T))
3359    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3360
3361  if (const PointerType *PT = T->getAs<PointerType>()) {
3362    // Find the innermost pointer type.
3363    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3364      PT = T;
3365
3366    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3367      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3368  }
3369
3370  const RecordType *RT = T->getAs<RecordType>();
3371  if (!RT)
3372    return false;
3373
3374  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3375
3376  // We can't answer whether something is abstract until it has a
3377  // definition.  If it's currently being defined, we'll walk back
3378  // over all the declarations when we have a full definition.
3379  const CXXRecordDecl *Def = RD->getDefinition();
3380  if (!Def || Def->isBeingDefined())
3381    return false;
3382
3383  if (!RD->isAbstract())
3384    return false;
3385
3386  Diag(Loc, PD) << RD->getDeclName();
3387  DiagnoseAbstractType(RD);
3388
3389  return true;
3390}
3391
3392void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3393  // Check if we've already emitted the list of pure virtual functions
3394  // for this class.
3395  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3396    return;
3397
3398  CXXFinalOverriderMap FinalOverriders;
3399  RD->getFinalOverriders(FinalOverriders);
3400
3401  // Keep a set of seen pure methods so we won't diagnose the same method
3402  // more than once.
3403  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3404
3405  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3406                                   MEnd = FinalOverriders.end();
3407       M != MEnd;
3408       ++M) {
3409    for (OverridingMethods::iterator SO = M->second.begin(),
3410                                  SOEnd = M->second.end();
3411         SO != SOEnd; ++SO) {
3412      // C++ [class.abstract]p4:
3413      //   A class is abstract if it contains or inherits at least one
3414      //   pure virtual function for which the final overrider is pure
3415      //   virtual.
3416
3417      //
3418      if (SO->second.size() != 1)
3419        continue;
3420
3421      if (!SO->second.front().Method->isPure())
3422        continue;
3423
3424      if (!SeenPureMethods.insert(SO->second.front().Method))
3425        continue;
3426
3427      Diag(SO->second.front().Method->getLocation(),
3428           diag::note_pure_virtual_function)
3429        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3430    }
3431  }
3432
3433  if (!PureVirtualClassDiagSet)
3434    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3435  PureVirtualClassDiagSet->insert(RD);
3436}
3437
3438namespace {
3439struct AbstractUsageInfo {
3440  Sema &S;
3441  CXXRecordDecl *Record;
3442  CanQualType AbstractType;
3443  bool Invalid;
3444
3445  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3446    : S(S), Record(Record),
3447      AbstractType(S.Context.getCanonicalType(
3448                   S.Context.getTypeDeclType(Record))),
3449      Invalid(false) {}
3450
3451  void DiagnoseAbstractType() {
3452    if (Invalid) return;
3453    S.DiagnoseAbstractType(Record);
3454    Invalid = true;
3455  }
3456
3457  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3458};
3459
3460struct CheckAbstractUsage {
3461  AbstractUsageInfo &Info;
3462  const NamedDecl *Ctx;
3463
3464  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3465    : Info(Info), Ctx(Ctx) {}
3466
3467  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3468    switch (TL.getTypeLocClass()) {
3469#define ABSTRACT_TYPELOC(CLASS, PARENT)
3470#define TYPELOC(CLASS, PARENT) \
3471    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3472#include "clang/AST/TypeLocNodes.def"
3473    }
3474  }
3475
3476  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3477    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3478    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3479      if (!TL.getArg(I))
3480        continue;
3481
3482      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3483      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3484    }
3485  }
3486
3487  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3488    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3489  }
3490
3491  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3492    // Visit the type parameters from a permissive context.
3493    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3494      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3495      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3496        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3497          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3498      // TODO: other template argument types?
3499    }
3500  }
3501
3502  // Visit pointee types from a permissive context.
3503#define CheckPolymorphic(Type) \
3504  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3505    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3506  }
3507  CheckPolymorphic(PointerTypeLoc)
3508  CheckPolymorphic(ReferenceTypeLoc)
3509  CheckPolymorphic(MemberPointerTypeLoc)
3510  CheckPolymorphic(BlockPointerTypeLoc)
3511  CheckPolymorphic(AtomicTypeLoc)
3512
3513  /// Handle all the types we haven't given a more specific
3514  /// implementation for above.
3515  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3516    // Every other kind of type that we haven't called out already
3517    // that has an inner type is either (1) sugar or (2) contains that
3518    // inner type in some way as a subobject.
3519    if (TypeLoc Next = TL.getNextTypeLoc())
3520      return Visit(Next, Sel);
3521
3522    // If there's no inner type and we're in a permissive context,
3523    // don't diagnose.
3524    if (Sel == Sema::AbstractNone) return;
3525
3526    // Check whether the type matches the abstract type.
3527    QualType T = TL.getType();
3528    if (T->isArrayType()) {
3529      Sel = Sema::AbstractArrayType;
3530      T = Info.S.Context.getBaseElementType(T);
3531    }
3532    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3533    if (CT != Info.AbstractType) return;
3534
3535    // It matched; do some magic.
3536    if (Sel == Sema::AbstractArrayType) {
3537      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3538        << T << TL.getSourceRange();
3539    } else {
3540      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3541        << Sel << T << TL.getSourceRange();
3542    }
3543    Info.DiagnoseAbstractType();
3544  }
3545};
3546
3547void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3548                                  Sema::AbstractDiagSelID Sel) {
3549  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3550}
3551
3552}
3553
3554/// Check for invalid uses of an abstract type in a method declaration.
3555static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3556                                    CXXMethodDecl *MD) {
3557  // No need to do the check on definitions, which require that
3558  // the return/param types be complete.
3559  if (MD->doesThisDeclarationHaveABody())
3560    return;
3561
3562  // For safety's sake, just ignore it if we don't have type source
3563  // information.  This should never happen for non-implicit methods,
3564  // but...
3565  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3566    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3567}
3568
3569/// Check for invalid uses of an abstract type within a class definition.
3570static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3571                                    CXXRecordDecl *RD) {
3572  for (CXXRecordDecl::decl_iterator
3573         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3574    Decl *D = *I;
3575    if (D->isImplicit()) continue;
3576
3577    // Methods and method templates.
3578    if (isa<CXXMethodDecl>(D)) {
3579      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3580    } else if (isa<FunctionTemplateDecl>(D)) {
3581      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3582      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3583
3584    // Fields and static variables.
3585    } else if (isa<FieldDecl>(D)) {
3586      FieldDecl *FD = cast<FieldDecl>(D);
3587      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3588        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3589    } else if (isa<VarDecl>(D)) {
3590      VarDecl *VD = cast<VarDecl>(D);
3591      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3592        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3593
3594    // Nested classes and class templates.
3595    } else if (isa<CXXRecordDecl>(D)) {
3596      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3597    } else if (isa<ClassTemplateDecl>(D)) {
3598      CheckAbstractClassUsage(Info,
3599                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3600    }
3601  }
3602}
3603
3604/// \brief Perform semantic checks on a class definition that has been
3605/// completing, introducing implicitly-declared members, checking for
3606/// abstract types, etc.
3607void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3608  if (!Record)
3609    return;
3610
3611  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3612    AbstractUsageInfo Info(*this, Record);
3613    CheckAbstractClassUsage(Info, Record);
3614  }
3615
3616  // If this is not an aggregate type and has no user-declared constructor,
3617  // complain about any non-static data members of reference or const scalar
3618  // type, since they will never get initializers.
3619  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3620      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3621    bool Complained = false;
3622    for (RecordDecl::field_iterator F = Record->field_begin(),
3623                                 FEnd = Record->field_end();
3624         F != FEnd; ++F) {
3625      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3626        continue;
3627
3628      if (F->getType()->isReferenceType() ||
3629          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3630        if (!Complained) {
3631          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3632            << Record->getTagKind() << Record;
3633          Complained = true;
3634        }
3635
3636        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3637          << F->getType()->isReferenceType()
3638          << F->getDeclName();
3639      }
3640    }
3641  }
3642
3643  if (Record->isDynamicClass() && !Record->isDependentType())
3644    DynamicClasses.push_back(Record);
3645
3646  if (Record->getIdentifier()) {
3647    // C++ [class.mem]p13:
3648    //   If T is the name of a class, then each of the following shall have a
3649    //   name different from T:
3650    //     - every member of every anonymous union that is a member of class T.
3651    //
3652    // C++ [class.mem]p14:
3653    //   In addition, if class T has a user-declared constructor (12.1), every
3654    //   non-static data member of class T shall have a name different from T.
3655    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3656         R.first != R.second; ++R.first) {
3657      NamedDecl *D = *R.first;
3658      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3659          isa<IndirectFieldDecl>(D)) {
3660        Diag(D->getLocation(), diag::err_member_name_of_class)
3661          << D->getDeclName();
3662        break;
3663      }
3664    }
3665  }
3666
3667  // Warn if the class has virtual methods but non-virtual public destructor.
3668  if (Record->isPolymorphic() && !Record->isDependentType()) {
3669    CXXDestructorDecl *dtor = Record->getDestructor();
3670    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3671      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3672           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3673  }
3674
3675  // See if a method overloads virtual methods in a base
3676  /// class without overriding any.
3677  if (!Record->isDependentType()) {
3678    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3679                                     MEnd = Record->method_end();
3680         M != MEnd; ++M) {
3681      if (!(*M)->isStatic())
3682        DiagnoseHiddenVirtualMethods(Record, *M);
3683    }
3684  }
3685
3686  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3687  // function that is not a constructor declares that member function to be
3688  // const. [...] The class of which that function is a member shall be
3689  // a literal type.
3690  //
3691  // It's fine to diagnose constructors here too: such constructors cannot
3692  // produce a constant expression, so are ill-formed (no diagnostic required).
3693  //
3694  // If the class has virtual bases, any constexpr members will already have
3695  // been diagnosed by the checks performed on the member declaration, so
3696  // suppress this (less useful) diagnostic.
3697  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3698      !Record->isLiteral() && !Record->getNumVBases()) {
3699    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3700                                     MEnd = Record->method_end();
3701         M != MEnd; ++M) {
3702      if (M->isConstexpr() && M->isInstance()) {
3703        switch (Record->getTemplateSpecializationKind()) {
3704        case TSK_ImplicitInstantiation:
3705        case TSK_ExplicitInstantiationDeclaration:
3706        case TSK_ExplicitInstantiationDefinition:
3707          // If a template instantiates to a non-literal type, but its members
3708          // instantiate to constexpr functions, the template is technically
3709          // ill-formed, but we allow it for sanity. Such members are treated as
3710          // non-constexpr.
3711          (*M)->setConstexpr(false);
3712          continue;
3713
3714        case TSK_Undeclared:
3715        case TSK_ExplicitSpecialization:
3716          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3717                             PDiag(diag::err_constexpr_method_non_literal));
3718          break;
3719        }
3720
3721        // Only produce one error per class.
3722        break;
3723      }
3724    }
3725  }
3726
3727  // Declare inherited constructors. We do this eagerly here because:
3728  // - The standard requires an eager diagnostic for conflicting inherited
3729  //   constructors from different classes.
3730  // - The lazy declaration of the other implicit constructors is so as to not
3731  //   waste space and performance on classes that are not meant to be
3732  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3733  //   have inherited constructors.
3734  DeclareInheritedConstructors(Record);
3735
3736  if (!Record->isDependentType())
3737    CheckExplicitlyDefaultedMethods(Record);
3738}
3739
3740void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3741  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3742                                      ME = Record->method_end();
3743       MI != ME; ++MI) {
3744    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3745      switch (getSpecialMember(*MI)) {
3746      case CXXDefaultConstructor:
3747        CheckExplicitlyDefaultedDefaultConstructor(
3748                                                  cast<CXXConstructorDecl>(*MI));
3749        break;
3750
3751      case CXXDestructor:
3752        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3753        break;
3754
3755      case CXXCopyConstructor:
3756        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3757        break;
3758
3759      case CXXCopyAssignment:
3760        CheckExplicitlyDefaultedCopyAssignment(*MI);
3761        break;
3762
3763      case CXXMoveConstructor:
3764        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3765        break;
3766
3767      case CXXMoveAssignment:
3768        CheckExplicitlyDefaultedMoveAssignment(*MI);
3769        break;
3770
3771      case CXXInvalid:
3772        llvm_unreachable("non-special member explicitly defaulted!");
3773      }
3774    }
3775  }
3776
3777}
3778
3779void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3780  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3781
3782  // Whether this was the first-declared instance of the constructor.
3783  // This affects whether we implicitly add an exception spec (and, eventually,
3784  // constexpr). It is also ill-formed to explicitly default a constructor such
3785  // that it would be deleted. (C++0x [decl.fct.def.default])
3786  bool First = CD == CD->getCanonicalDecl();
3787
3788  bool HadError = false;
3789  if (CD->getNumParams() != 0) {
3790    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3791      << CD->getSourceRange();
3792    HadError = true;
3793  }
3794
3795  ImplicitExceptionSpecification Spec
3796    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3797  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3798  if (EPI.ExceptionSpecType == EST_Delayed) {
3799    // Exception specification depends on some deferred part of the class. We'll
3800    // try again when the class's definition has been fully processed.
3801    return;
3802  }
3803  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3804                          *ExceptionType = Context.getFunctionType(
3805                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3806
3807  // C++11 [dcl.fct.def.default]p2:
3808  //   An explicitly-defaulted function may be declared constexpr only if it
3809  //   would have been implicitly declared as constexpr,
3810  if (CD->isConstexpr()) {
3811    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3812      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3813        << CXXDefaultConstructor;
3814      HadError = true;
3815    }
3816  }
3817  //   and may have an explicit exception-specification only if it is compatible
3818  //   with the exception-specification on the implicit declaration.
3819  if (CtorType->hasExceptionSpec()) {
3820    if (CheckEquivalentExceptionSpec(
3821          PDiag(diag::err_incorrect_defaulted_exception_spec)
3822            << CXXDefaultConstructor,
3823          PDiag(),
3824          ExceptionType, SourceLocation(),
3825          CtorType, CD->getLocation())) {
3826      HadError = true;
3827    }
3828  }
3829
3830  //   If a function is explicitly defaulted on its first declaration,
3831  if (First) {
3832    //  -- it is implicitly considered to be constexpr if the implicit
3833    //     definition would be,
3834    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3835
3836    //  -- it is implicitly considered to have the same
3837    //     exception-specification as if it had been implicitly declared
3838    //
3839    // FIXME: a compatible, but different, explicit exception specification
3840    // will be silently overridden. We should issue a warning if this happens.
3841    EPI.ExtInfo = CtorType->getExtInfo();
3842  }
3843
3844  if (HadError) {
3845    CD->setInvalidDecl();
3846    return;
3847  }
3848
3849  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3850    if (First) {
3851      CD->setDeletedAsWritten();
3852    } else {
3853      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3854        << CXXDefaultConstructor;
3855      CD->setInvalidDecl();
3856    }
3857  }
3858}
3859
3860void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3861  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3862
3863  // Whether this was the first-declared instance of the constructor.
3864  bool First = CD == CD->getCanonicalDecl();
3865
3866  bool HadError = false;
3867  if (CD->getNumParams() != 1) {
3868    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3869      << CD->getSourceRange();
3870    HadError = true;
3871  }
3872
3873  ImplicitExceptionSpecification Spec(Context);
3874  bool Const;
3875  llvm::tie(Spec, Const) =
3876    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3877
3878  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3879  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3880                          *ExceptionType = Context.getFunctionType(
3881                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3882
3883  // Check for parameter type matching.
3884  // This is a copy ctor so we know it's a cv-qualified reference to T.
3885  QualType ArgType = CtorType->getArgType(0);
3886  if (ArgType->getPointeeType().isVolatileQualified()) {
3887    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3888    HadError = true;
3889  }
3890  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3891    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3892    HadError = true;
3893  }
3894
3895  // C++11 [dcl.fct.def.default]p2:
3896  //   An explicitly-defaulted function may be declared constexpr only if it
3897  //   would have been implicitly declared as constexpr,
3898  if (CD->isConstexpr()) {
3899    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3900      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3901        << CXXCopyConstructor;
3902      HadError = true;
3903    }
3904  }
3905  //   and may have an explicit exception-specification only if it is compatible
3906  //   with the exception-specification on the implicit declaration.
3907  if (CtorType->hasExceptionSpec()) {
3908    if (CheckEquivalentExceptionSpec(
3909          PDiag(diag::err_incorrect_defaulted_exception_spec)
3910            << CXXCopyConstructor,
3911          PDiag(),
3912          ExceptionType, SourceLocation(),
3913          CtorType, CD->getLocation())) {
3914      HadError = true;
3915    }
3916  }
3917
3918  //   If a function is explicitly defaulted on its first declaration,
3919  if (First) {
3920    //  -- it is implicitly considered to be constexpr if the implicit
3921    //     definition would be,
3922    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3923
3924    //  -- it is implicitly considered to have the same
3925    //     exception-specification as if it had been implicitly declared, and
3926    //
3927    // FIXME: a compatible, but different, explicit exception specification
3928    // will be silently overridden. We should issue a warning if this happens.
3929    EPI.ExtInfo = CtorType->getExtInfo();
3930
3931    //  -- [...] it shall have the same parameter type as if it had been
3932    //     implicitly declared.
3933    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3934  }
3935
3936  if (HadError) {
3937    CD->setInvalidDecl();
3938    return;
3939  }
3940
3941  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3942    if (First) {
3943      CD->setDeletedAsWritten();
3944    } else {
3945      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3946        << CXXCopyConstructor;
3947      CD->setInvalidDecl();
3948    }
3949  }
3950}
3951
3952void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3953  assert(MD->isExplicitlyDefaulted());
3954
3955  // Whether this was the first-declared instance of the operator
3956  bool First = MD == MD->getCanonicalDecl();
3957
3958  bool HadError = false;
3959  if (MD->getNumParams() != 1) {
3960    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3961      << MD->getSourceRange();
3962    HadError = true;
3963  }
3964
3965  QualType ReturnType =
3966    MD->getType()->getAs<FunctionType>()->getResultType();
3967  if (!ReturnType->isLValueReferenceType() ||
3968      !Context.hasSameType(
3969        Context.getCanonicalType(ReturnType->getPointeeType()),
3970        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3971    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3972    HadError = true;
3973  }
3974
3975  ImplicitExceptionSpecification Spec(Context);
3976  bool Const;
3977  llvm::tie(Spec, Const) =
3978    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3979
3980  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3981  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3982                          *ExceptionType = Context.getFunctionType(
3983                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3984
3985  QualType ArgType = OperType->getArgType(0);
3986  if (!ArgType->isLValueReferenceType()) {
3987    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3988    HadError = true;
3989  } else {
3990    if (ArgType->getPointeeType().isVolatileQualified()) {
3991      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3992      HadError = true;
3993    }
3994    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3995      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3996      HadError = true;
3997    }
3998  }
3999
4000  if (OperType->getTypeQuals()) {
4001    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4002    HadError = true;
4003  }
4004
4005  if (OperType->hasExceptionSpec()) {
4006    if (CheckEquivalentExceptionSpec(
4007          PDiag(diag::err_incorrect_defaulted_exception_spec)
4008            << CXXCopyAssignment,
4009          PDiag(),
4010          ExceptionType, SourceLocation(),
4011          OperType, MD->getLocation())) {
4012      HadError = true;
4013    }
4014  }
4015  if (First) {
4016    // We set the declaration to have the computed exception spec here.
4017    // We duplicate the one parameter type.
4018    EPI.RefQualifier = OperType->getRefQualifier();
4019    EPI.ExtInfo = OperType->getExtInfo();
4020    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4021  }
4022
4023  if (HadError) {
4024    MD->setInvalidDecl();
4025    return;
4026  }
4027
4028  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4029    if (First) {
4030      MD->setDeletedAsWritten();
4031    } else {
4032      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4033        << CXXCopyAssignment;
4034      MD->setInvalidDecl();
4035    }
4036  }
4037}
4038
4039void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4040  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4041
4042  // Whether this was the first-declared instance of the constructor.
4043  bool First = CD == CD->getCanonicalDecl();
4044
4045  bool HadError = false;
4046  if (CD->getNumParams() != 1) {
4047    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4048      << CD->getSourceRange();
4049    HadError = true;
4050  }
4051
4052  ImplicitExceptionSpecification Spec(
4053      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4054
4055  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4056  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4057                          *ExceptionType = Context.getFunctionType(
4058                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4059
4060  // Check for parameter type matching.
4061  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4062  QualType ArgType = CtorType->getArgType(0);
4063  if (ArgType->getPointeeType().isVolatileQualified()) {
4064    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4065    HadError = true;
4066  }
4067  if (ArgType->getPointeeType().isConstQualified()) {
4068    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4069    HadError = true;
4070  }
4071
4072  // C++11 [dcl.fct.def.default]p2:
4073  //   An explicitly-defaulted function may be declared constexpr only if it
4074  //   would have been implicitly declared as constexpr,
4075  if (CD->isConstexpr()) {
4076    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4077      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4078        << CXXMoveConstructor;
4079      HadError = true;
4080    }
4081  }
4082  //   and may have an explicit exception-specification only if it is compatible
4083  //   with the exception-specification on the implicit declaration.
4084  if (CtorType->hasExceptionSpec()) {
4085    if (CheckEquivalentExceptionSpec(
4086          PDiag(diag::err_incorrect_defaulted_exception_spec)
4087            << CXXMoveConstructor,
4088          PDiag(),
4089          ExceptionType, SourceLocation(),
4090          CtorType, CD->getLocation())) {
4091      HadError = true;
4092    }
4093  }
4094
4095  //   If a function is explicitly defaulted on its first declaration,
4096  if (First) {
4097    //  -- it is implicitly considered to be constexpr if the implicit
4098    //     definition would be,
4099    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4100
4101    //  -- it is implicitly considered to have the same
4102    //     exception-specification as if it had been implicitly declared, and
4103    //
4104    // FIXME: a compatible, but different, explicit exception specification
4105    // will be silently overridden. We should issue a warning if this happens.
4106    EPI.ExtInfo = CtorType->getExtInfo();
4107
4108    //  -- [...] it shall have the same parameter type as if it had been
4109    //     implicitly declared.
4110    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4111  }
4112
4113  if (HadError) {
4114    CD->setInvalidDecl();
4115    return;
4116  }
4117
4118  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4119    if (First) {
4120      CD->setDeletedAsWritten();
4121    } else {
4122      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4123        << CXXMoveConstructor;
4124      CD->setInvalidDecl();
4125    }
4126  }
4127}
4128
4129void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4130  assert(MD->isExplicitlyDefaulted());
4131
4132  // Whether this was the first-declared instance of the operator
4133  bool First = MD == MD->getCanonicalDecl();
4134
4135  bool HadError = false;
4136  if (MD->getNumParams() != 1) {
4137    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4138      << MD->getSourceRange();
4139    HadError = true;
4140  }
4141
4142  QualType ReturnType =
4143    MD->getType()->getAs<FunctionType>()->getResultType();
4144  if (!ReturnType->isLValueReferenceType() ||
4145      !Context.hasSameType(
4146        Context.getCanonicalType(ReturnType->getPointeeType()),
4147        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4148    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4149    HadError = true;
4150  }
4151
4152  ImplicitExceptionSpecification Spec(
4153      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4154
4155  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4156  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4157                          *ExceptionType = Context.getFunctionType(
4158                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4159
4160  QualType ArgType = OperType->getArgType(0);
4161  if (!ArgType->isRValueReferenceType()) {
4162    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4163    HadError = true;
4164  } else {
4165    if (ArgType->getPointeeType().isVolatileQualified()) {
4166      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4167      HadError = true;
4168    }
4169    if (ArgType->getPointeeType().isConstQualified()) {
4170      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4171      HadError = true;
4172    }
4173  }
4174
4175  if (OperType->getTypeQuals()) {
4176    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4177    HadError = true;
4178  }
4179
4180  if (OperType->hasExceptionSpec()) {
4181    if (CheckEquivalentExceptionSpec(
4182          PDiag(diag::err_incorrect_defaulted_exception_spec)
4183            << CXXMoveAssignment,
4184          PDiag(),
4185          ExceptionType, SourceLocation(),
4186          OperType, MD->getLocation())) {
4187      HadError = true;
4188    }
4189  }
4190  if (First) {
4191    // We set the declaration to have the computed exception spec here.
4192    // We duplicate the one parameter type.
4193    EPI.RefQualifier = OperType->getRefQualifier();
4194    EPI.ExtInfo = OperType->getExtInfo();
4195    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4196  }
4197
4198  if (HadError) {
4199    MD->setInvalidDecl();
4200    return;
4201  }
4202
4203  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4204    if (First) {
4205      MD->setDeletedAsWritten();
4206    } else {
4207      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4208        << CXXMoveAssignment;
4209      MD->setInvalidDecl();
4210    }
4211  }
4212}
4213
4214void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4215  assert(DD->isExplicitlyDefaulted());
4216
4217  // Whether this was the first-declared instance of the destructor.
4218  bool First = DD == DD->getCanonicalDecl();
4219
4220  ImplicitExceptionSpecification Spec
4221    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4222  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4223  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4224                          *ExceptionType = Context.getFunctionType(
4225                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4226
4227  if (DtorType->hasExceptionSpec()) {
4228    if (CheckEquivalentExceptionSpec(
4229          PDiag(diag::err_incorrect_defaulted_exception_spec)
4230            << CXXDestructor,
4231          PDiag(),
4232          ExceptionType, SourceLocation(),
4233          DtorType, DD->getLocation())) {
4234      DD->setInvalidDecl();
4235      return;
4236    }
4237  }
4238  if (First) {
4239    // We set the declaration to have the computed exception spec here.
4240    // There are no parameters.
4241    EPI.ExtInfo = DtorType->getExtInfo();
4242    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4243  }
4244
4245  if (ShouldDeleteDestructor(DD)) {
4246    if (First) {
4247      DD->setDeletedAsWritten();
4248    } else {
4249      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4250        << CXXDestructor;
4251      DD->setInvalidDecl();
4252    }
4253  }
4254}
4255
4256/// This function implements the following C++0x paragraphs:
4257///  - [class.ctor]/5
4258///  - [class.copy]/11
4259bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4260  assert(!MD->isInvalidDecl());
4261  CXXRecordDecl *RD = MD->getParent();
4262  assert(!RD->isDependentType() && "do deletion after instantiation");
4263  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4264    return false;
4265
4266  bool IsUnion = RD->isUnion();
4267  bool IsConstructor = false;
4268  bool IsAssignment = false;
4269  bool IsMove = false;
4270
4271  bool ConstArg = false;
4272
4273  switch (CSM) {
4274  case CXXDefaultConstructor:
4275    IsConstructor = true;
4276    break;
4277  case CXXCopyConstructor:
4278    IsConstructor = true;
4279    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4280    break;
4281  case CXXMoveConstructor:
4282    IsConstructor = true;
4283    IsMove = true;
4284    break;
4285  default:
4286    llvm_unreachable("function only currently implemented for default ctors");
4287  }
4288
4289  SourceLocation Loc = MD->getLocation();
4290
4291  // Do access control from the special member function
4292  ContextRAII MethodContext(*this, MD);
4293
4294  bool AllConst = true;
4295
4296  // We do this because we should never actually use an anonymous
4297  // union's constructor.
4298  if (IsUnion && RD->isAnonymousStructOrUnion())
4299    return false;
4300
4301  // FIXME: We should put some diagnostic logic right into this function.
4302
4303  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4304                                          BE = RD->bases_end();
4305       BI != BE; ++BI) {
4306    // We'll handle this one later
4307    if (BI->isVirtual())
4308      continue;
4309
4310    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4311    assert(BaseDecl && "base isn't a CXXRecordDecl");
4312
4313    // Unless we have an assignment operator, the base's destructor must
4314    // be accessible and not deleted.
4315    if (!IsAssignment) {
4316      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4317      if (BaseDtor->isDeleted())
4318        return true;
4319      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4320          AR_accessible)
4321        return true;
4322    }
4323
4324    // Finding the corresponding member in the base should lead to a
4325    // unique, accessible, non-deleted function. If we are doing
4326    // a destructor, we have already checked this case.
4327    if (CSM != CXXDestructor) {
4328      SpecialMemberOverloadResult *SMOR =
4329        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4330                            false);
4331      if (!SMOR->hasSuccess())
4332        return true;
4333      CXXMethodDecl *BaseMember = SMOR->getMethod();
4334      if (IsConstructor) {
4335        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4336        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4337                                   PDiag()) != AR_accessible)
4338          return true;
4339
4340        // For a move operation, the corresponding operation must actually
4341        // be a move operation (and not a copy selected by overload
4342        // resolution) unless we are working on a trivially copyable class.
4343        if (IsMove && !BaseCtor->isMoveConstructor() &&
4344            !BaseDecl->isTriviallyCopyable())
4345          return true;
4346      }
4347    }
4348  }
4349
4350  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4351                                          BE = RD->vbases_end();
4352       BI != BE; ++BI) {
4353    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4354    assert(BaseDecl && "base isn't a CXXRecordDecl");
4355
4356    // Unless we have an assignment operator, the base's destructor must
4357    // be accessible and not deleted.
4358    if (!IsAssignment) {
4359      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4360      if (BaseDtor->isDeleted())
4361        return true;
4362      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4363          AR_accessible)
4364        return true;
4365    }
4366
4367    // Finding the corresponding member in the base should lead to a
4368    // unique, accessible, non-deleted function.
4369    if (CSM != CXXDestructor) {
4370      SpecialMemberOverloadResult *SMOR =
4371        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4372                            false);
4373      if (!SMOR->hasSuccess())
4374        return true;
4375      CXXMethodDecl *BaseMember = SMOR->getMethod();
4376      if (IsConstructor) {
4377        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4378        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4379                                   PDiag()) != AR_accessible)
4380          return true;
4381
4382        // For a move operation, the corresponding operation must actually
4383        // be a move operation (and not a copy selected by overload
4384        // resolution) unless we are working on a trivially copyable class.
4385        if (IsMove && !BaseCtor->isMoveConstructor() &&
4386            !BaseDecl->isTriviallyCopyable())
4387          return true;
4388      }
4389    }
4390  }
4391
4392  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4393                                     FE = RD->field_end();
4394       FI != FE; ++FI) {
4395    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4396      continue;
4397
4398    QualType FieldType = Context.getBaseElementType(FI->getType());
4399    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4400
4401    // For a default constructor, all references must be initialized in-class
4402    // and, if a union, it must have a non-const member.
4403    if (CSM == CXXDefaultConstructor) {
4404      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4405        return true;
4406
4407      if (IsUnion && !FieldType.isConstQualified())
4408        AllConst = false;
4409    // For a copy constructor, data members must not be of rvalue reference
4410    // type.
4411    } else if (CSM == CXXCopyConstructor) {
4412      if (FieldType->isRValueReferenceType())
4413        return true;
4414    }
4415
4416    if (FieldRecord) {
4417      // For a default constructor, a const member must have a user-provided
4418      // default constructor or else be explicitly initialized.
4419      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4420          !FI->hasInClassInitializer() &&
4421          !FieldRecord->hasUserProvidedDefaultConstructor())
4422        return true;
4423
4424      // Some additional restrictions exist on the variant members.
4425      if (!IsUnion && FieldRecord->isUnion() &&
4426          FieldRecord->isAnonymousStructOrUnion()) {
4427        // We're okay to reuse AllConst here since we only care about the
4428        // value otherwise if we're in a union.
4429        AllConst = true;
4430
4431        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4432                                           UE = FieldRecord->field_end();
4433             UI != UE; ++UI) {
4434          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4435          CXXRecordDecl *UnionFieldRecord =
4436            UnionFieldType->getAsCXXRecordDecl();
4437
4438          if (!UnionFieldType.isConstQualified())
4439            AllConst = false;
4440
4441          if (UnionFieldRecord) {
4442            // FIXME: Checking for accessibility and validity of this
4443            //        destructor is technically going beyond the
4444            //        standard, but this is believed to be a defect.
4445            if (!IsAssignment) {
4446              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4447              if (FieldDtor->isDeleted())
4448                return true;
4449              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4450                  AR_accessible)
4451                return true;
4452              if (!FieldDtor->isTrivial())
4453                return true;
4454            }
4455
4456            if (CSM != CXXDestructor) {
4457              SpecialMemberOverloadResult *SMOR =
4458                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4459                                    false, false, false);
4460              // FIXME: Checking for accessibility and validity of this
4461              //        corresponding member is technically going beyond the
4462              //        standard, but this is believed to be a defect.
4463              if (!SMOR->hasSuccess())
4464                return true;
4465
4466              CXXMethodDecl *FieldMember = SMOR->getMethod();
4467              // A member of a union must have a trivial corresponding
4468              // constructor.
4469              if (!FieldMember->isTrivial())
4470                return true;
4471
4472              if (IsConstructor) {
4473                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4474                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4475                                           PDiag()) != AR_accessible)
4476                return true;
4477              }
4478            }
4479          }
4480        }
4481
4482        // At least one member in each anonymous union must be non-const
4483        if (CSM == CXXDefaultConstructor && AllConst)
4484          return true;
4485
4486        // Don't try to initialize the anonymous union
4487        // This is technically non-conformant, but sanity demands it.
4488        continue;
4489      }
4490
4491      // Unless we're doing assignment, the field's destructor must be
4492      // accessible and not deleted.
4493      if (!IsAssignment) {
4494        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4495        if (FieldDtor->isDeleted())
4496          return true;
4497        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4498            AR_accessible)
4499          return true;
4500      }
4501
4502      // Check that the corresponding member of the field is accessible,
4503      // unique, and non-deleted. We don't do this if it has an explicit
4504      // initialization when default-constructing.
4505      if (CSM != CXXDestructor &&
4506          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4507        SpecialMemberOverloadResult *SMOR =
4508          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4509                              false);
4510        if (!SMOR->hasSuccess())
4511          return true;
4512
4513        CXXMethodDecl *FieldMember = SMOR->getMethod();
4514        if (IsConstructor) {
4515          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4516          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4517                                     PDiag()) != AR_accessible)
4518          return true;
4519
4520          // For a move operation, the corresponding operation must actually
4521          // be a move operation (and not a copy selected by overload
4522          // resolution) unless we are working on a trivially copyable class.
4523          if (IsMove && !FieldCtor->isMoveConstructor() &&
4524              !FieldRecord->isTriviallyCopyable())
4525            return true;
4526        }
4527
4528        // We need the corresponding member of a union to be trivial so that
4529        // we can safely copy them all simultaneously.
4530        // FIXME: Note that performing the check here (where we rely on the lack
4531        // of an in-class initializer) is technically ill-formed. However, this
4532        // seems most obviously to be a bug in the standard.
4533        if (IsUnion && !FieldMember->isTrivial())
4534          return true;
4535      }
4536    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4537               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4538      // We can't initialize a const member of non-class type to any value.
4539      return true;
4540    }
4541  }
4542
4543  // We can't have all const members in a union when default-constructing,
4544  // or else they're all nonsensical garbage values that can't be changed.
4545  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4546    return true;
4547
4548  return false;
4549}
4550
4551bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4552  CXXRecordDecl *RD = MD->getParent();
4553  assert(!RD->isDependentType() && "do deletion after instantiation");
4554  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4555    return false;
4556
4557  SourceLocation Loc = MD->getLocation();
4558
4559  // Do access control from the constructor
4560  ContextRAII MethodContext(*this, MD);
4561
4562  bool Union = RD->isUnion();
4563
4564  unsigned ArgQuals =
4565    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4566      Qualifiers::Const : 0;
4567
4568  // We do this because we should never actually use an anonymous
4569  // union's constructor.
4570  if (Union && RD->isAnonymousStructOrUnion())
4571    return false;
4572
4573  // FIXME: We should put some diagnostic logic right into this function.
4574
4575  // C++0x [class.copy]/20
4576  //    A defaulted [copy] assignment operator for class X is defined as deleted
4577  //    if X has:
4578
4579  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4580                                          BE = RD->bases_end();
4581       BI != BE; ++BI) {
4582    // We'll handle this one later
4583    if (BI->isVirtual())
4584      continue;
4585
4586    QualType BaseType = BI->getType();
4587    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4588    assert(BaseDecl && "base isn't a CXXRecordDecl");
4589
4590    // -- a [direct base class] B that cannot be [copied] because overload
4591    //    resolution, as applied to B's [copy] assignment operator, results in
4592    //    an ambiguity or a function that is deleted or inaccessible from the
4593    //    assignment operator
4594    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4595                                                      0);
4596    if (!CopyOper || CopyOper->isDeleted())
4597      return true;
4598    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4599      return true;
4600  }
4601
4602  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4603                                          BE = RD->vbases_end();
4604       BI != BE; ++BI) {
4605    QualType BaseType = BI->getType();
4606    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4607    assert(BaseDecl && "base isn't a CXXRecordDecl");
4608
4609    // -- a [virtual base class] B that cannot be [copied] because overload
4610    //    resolution, as applied to B's [copy] assignment operator, results in
4611    //    an ambiguity or a function that is deleted or inaccessible from the
4612    //    assignment operator
4613    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4614                                                      0);
4615    if (!CopyOper || CopyOper->isDeleted())
4616      return true;
4617    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4618      return true;
4619  }
4620
4621  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4622                                     FE = RD->field_end();
4623       FI != FE; ++FI) {
4624    if (FI->isUnnamedBitfield())
4625      continue;
4626
4627    QualType FieldType = Context.getBaseElementType(FI->getType());
4628
4629    // -- a non-static data member of reference type
4630    if (FieldType->isReferenceType())
4631      return true;
4632
4633    // -- a non-static data member of const non-class type (or array thereof)
4634    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4635      return true;
4636
4637    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4638
4639    if (FieldRecord) {
4640      // This is an anonymous union
4641      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4642        // Anonymous unions inside unions do not variant members create
4643        if (!Union) {
4644          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4645                                             UE = FieldRecord->field_end();
4646               UI != UE; ++UI) {
4647            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4648            CXXRecordDecl *UnionFieldRecord =
4649              UnionFieldType->getAsCXXRecordDecl();
4650
4651            // -- a variant member with a non-trivial [copy] assignment operator
4652            //    and X is a union-like class
4653            if (UnionFieldRecord &&
4654                !UnionFieldRecord->hasTrivialCopyAssignment())
4655              return true;
4656          }
4657        }
4658
4659        // Don't try to initalize an anonymous union
4660        continue;
4661      // -- a variant member with a non-trivial [copy] assignment operator
4662      //    and X is a union-like class
4663      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4664          return true;
4665      }
4666
4667      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4668                                                        false, 0);
4669      if (!CopyOper || CopyOper->isDeleted())
4670        return true;
4671      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4672        return true;
4673    }
4674  }
4675
4676  return false;
4677}
4678
4679bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4680  CXXRecordDecl *RD = MD->getParent();
4681  assert(!RD->isDependentType() && "do deletion after instantiation");
4682  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4683    return false;
4684
4685  SourceLocation Loc = MD->getLocation();
4686
4687  // Do access control from the constructor
4688  ContextRAII MethodContext(*this, MD);
4689
4690  bool Union = RD->isUnion();
4691
4692  // We do this because we should never actually use an anonymous
4693  // union's constructor.
4694  if (Union && RD->isAnonymousStructOrUnion())
4695    return false;
4696
4697  // C++0x [class.copy]/20
4698  //    A defaulted [move] assignment operator for class X is defined as deleted
4699  //    if X has:
4700
4701  //    -- for the move constructor, [...] any direct or indirect virtual base
4702  //       class.
4703  if (RD->getNumVBases() != 0)
4704    return true;
4705
4706  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4707                                          BE = RD->bases_end();
4708       BI != BE; ++BI) {
4709
4710    QualType BaseType = BI->getType();
4711    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4712    assert(BaseDecl && "base isn't a CXXRecordDecl");
4713
4714    // -- a [direct base class] B that cannot be [moved] because overload
4715    //    resolution, as applied to B's [move] assignment operator, results in
4716    //    an ambiguity or a function that is deleted or inaccessible from the
4717    //    assignment operator
4718    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4719    if (!MoveOper || MoveOper->isDeleted())
4720      return true;
4721    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4722      return true;
4723
4724    // -- for the move assignment operator, a [direct base class] with a type
4725    //    that does not have a move assignment operator and is not trivially
4726    //    copyable.
4727    if (!MoveOper->isMoveAssignmentOperator() &&
4728        !BaseDecl->isTriviallyCopyable())
4729      return true;
4730  }
4731
4732  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4733                                     FE = RD->field_end();
4734       FI != FE; ++FI) {
4735    if (FI->isUnnamedBitfield())
4736      continue;
4737
4738    QualType FieldType = Context.getBaseElementType(FI->getType());
4739
4740    // -- a non-static data member of reference type
4741    if (FieldType->isReferenceType())
4742      return true;
4743
4744    // -- a non-static data member of const non-class type (or array thereof)
4745    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4746      return true;
4747
4748    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4749
4750    if (FieldRecord) {
4751      // This is an anonymous union
4752      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4753        // Anonymous unions inside unions do not variant members create
4754        if (!Union) {
4755          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4756                                             UE = FieldRecord->field_end();
4757               UI != UE; ++UI) {
4758            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4759            CXXRecordDecl *UnionFieldRecord =
4760              UnionFieldType->getAsCXXRecordDecl();
4761
4762            // -- a variant member with a non-trivial [move] assignment operator
4763            //    and X is a union-like class
4764            if (UnionFieldRecord &&
4765                !UnionFieldRecord->hasTrivialMoveAssignment())
4766              return true;
4767          }
4768        }
4769
4770        // Don't try to initalize an anonymous union
4771        continue;
4772      // -- a variant member with a non-trivial [move] assignment operator
4773      //    and X is a union-like class
4774      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4775          return true;
4776      }
4777
4778      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4779      if (!MoveOper || MoveOper->isDeleted())
4780        return true;
4781      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4782        return true;
4783
4784      // -- for the move assignment operator, a [non-static data member] with a
4785      //    type that does not have a move assignment operator and is not
4786      //    trivially copyable.
4787      if (!MoveOper->isMoveAssignmentOperator() &&
4788          !FieldRecord->isTriviallyCopyable())
4789        return true;
4790    }
4791  }
4792
4793  return false;
4794}
4795
4796bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4797  CXXRecordDecl *RD = DD->getParent();
4798  assert(!RD->isDependentType() && "do deletion after instantiation");
4799  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4800    return false;
4801
4802  SourceLocation Loc = DD->getLocation();
4803
4804  // Do access control from the destructor
4805  ContextRAII CtorContext(*this, DD);
4806
4807  bool Union = RD->isUnion();
4808
4809  // We do this because we should never actually use an anonymous
4810  // union's destructor.
4811  if (Union && RD->isAnonymousStructOrUnion())
4812    return false;
4813
4814  // C++0x [class.dtor]p5
4815  //    A defaulted destructor for a class X is defined as deleted if:
4816  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4817                                          BE = RD->bases_end();
4818       BI != BE; ++BI) {
4819    // We'll handle this one later
4820    if (BI->isVirtual())
4821      continue;
4822
4823    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4824    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4825    assert(BaseDtor && "base has no destructor");
4826
4827    // -- any direct or virtual base class has a deleted destructor or
4828    //    a destructor that is inaccessible from the defaulted destructor
4829    if (BaseDtor->isDeleted())
4830      return true;
4831    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4832        AR_accessible)
4833      return true;
4834  }
4835
4836  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4837                                          BE = RD->vbases_end();
4838       BI != BE; ++BI) {
4839    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4840    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4841    assert(BaseDtor && "base has no destructor");
4842
4843    // -- any direct or virtual base class has a deleted destructor or
4844    //    a destructor that is inaccessible from the defaulted destructor
4845    if (BaseDtor->isDeleted())
4846      return true;
4847    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4848        AR_accessible)
4849      return true;
4850  }
4851
4852  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4853                                     FE = RD->field_end();
4854       FI != FE; ++FI) {
4855    QualType FieldType = Context.getBaseElementType(FI->getType());
4856    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4857    if (FieldRecord) {
4858      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4859         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4860                                            UE = FieldRecord->field_end();
4861              UI != UE; ++UI) {
4862           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4863           CXXRecordDecl *UnionFieldRecord =
4864             UnionFieldType->getAsCXXRecordDecl();
4865
4866           // -- X is a union-like class that has a variant member with a non-
4867           //    trivial destructor.
4868           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4869             return true;
4870         }
4871      // Technically we are supposed to do this next check unconditionally.
4872      // But that makes absolutely no sense.
4873      } else {
4874        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4875
4876        // -- any of the non-static data members has class type M (or array
4877        //    thereof) and M has a deleted destructor or a destructor that is
4878        //    inaccessible from the defaulted destructor
4879        if (FieldDtor->isDeleted())
4880          return true;
4881        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4882          AR_accessible)
4883        return true;
4884
4885        // -- X is a union-like class that has a variant member with a non-
4886        //    trivial destructor.
4887        if (Union && !FieldDtor->isTrivial())
4888          return true;
4889      }
4890    }
4891  }
4892
4893  if (DD->isVirtual()) {
4894    FunctionDecl *OperatorDelete = 0;
4895    DeclarationName Name =
4896      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4897    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4898          false))
4899      return true;
4900  }
4901
4902
4903  return false;
4904}
4905
4906/// \brief Data used with FindHiddenVirtualMethod
4907namespace {
4908  struct FindHiddenVirtualMethodData {
4909    Sema *S;
4910    CXXMethodDecl *Method;
4911    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4912    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4913  };
4914}
4915
4916/// \brief Member lookup function that determines whether a given C++
4917/// method overloads virtual methods in a base class without overriding any,
4918/// to be used with CXXRecordDecl::lookupInBases().
4919static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4920                                    CXXBasePath &Path,
4921                                    void *UserData) {
4922  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4923
4924  FindHiddenVirtualMethodData &Data
4925    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4926
4927  DeclarationName Name = Data.Method->getDeclName();
4928  assert(Name.getNameKind() == DeclarationName::Identifier);
4929
4930  bool foundSameNameMethod = false;
4931  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4932  for (Path.Decls = BaseRecord->lookup(Name);
4933       Path.Decls.first != Path.Decls.second;
4934       ++Path.Decls.first) {
4935    NamedDecl *D = *Path.Decls.first;
4936    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4937      MD = MD->getCanonicalDecl();
4938      foundSameNameMethod = true;
4939      // Interested only in hidden virtual methods.
4940      if (!MD->isVirtual())
4941        continue;
4942      // If the method we are checking overrides a method from its base
4943      // don't warn about the other overloaded methods.
4944      if (!Data.S->IsOverload(Data.Method, MD, false))
4945        return true;
4946      // Collect the overload only if its hidden.
4947      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4948        overloadedMethods.push_back(MD);
4949    }
4950  }
4951
4952  if (foundSameNameMethod)
4953    Data.OverloadedMethods.append(overloadedMethods.begin(),
4954                                   overloadedMethods.end());
4955  return foundSameNameMethod;
4956}
4957
4958/// \brief See if a method overloads virtual methods in a base class without
4959/// overriding any.
4960void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4961  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4962                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4963    return;
4964  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4965    return;
4966
4967  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4968                     /*bool RecordPaths=*/false,
4969                     /*bool DetectVirtual=*/false);
4970  FindHiddenVirtualMethodData Data;
4971  Data.Method = MD;
4972  Data.S = this;
4973
4974  // Keep the base methods that were overriden or introduced in the subclass
4975  // by 'using' in a set. A base method not in this set is hidden.
4976  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4977       res.first != res.second; ++res.first) {
4978    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4979      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4980                                          E = MD->end_overridden_methods();
4981           I != E; ++I)
4982        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4983    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4984      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4985        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4986  }
4987
4988  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4989      !Data.OverloadedMethods.empty()) {
4990    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4991      << MD << (Data.OverloadedMethods.size() > 1);
4992
4993    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4994      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4995      Diag(overloadedMD->getLocation(),
4996           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4997    }
4998  }
4999}
5000
5001void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5002                                             Decl *TagDecl,
5003                                             SourceLocation LBrac,
5004                                             SourceLocation RBrac,
5005                                             AttributeList *AttrList) {
5006  if (!TagDecl)
5007    return;
5008
5009  AdjustDeclIfTemplate(TagDecl);
5010
5011  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5012              // strict aliasing violation!
5013              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5014              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5015
5016  CheckCompletedCXXClass(
5017                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5018}
5019
5020/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5021/// special functions, such as the default constructor, copy
5022/// constructor, or destructor, to the given C++ class (C++
5023/// [special]p1).  This routine can only be executed just before the
5024/// definition of the class is complete.
5025void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5026  if (!ClassDecl->hasUserDeclaredConstructor())
5027    ++ASTContext::NumImplicitDefaultConstructors;
5028
5029  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5030    ++ASTContext::NumImplicitCopyConstructors;
5031
5032  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5033    ++ASTContext::NumImplicitMoveConstructors;
5034
5035  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5036    ++ASTContext::NumImplicitCopyAssignmentOperators;
5037
5038    // If we have a dynamic class, then the copy assignment operator may be
5039    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5040    // it shows up in the right place in the vtable and that we diagnose
5041    // problems with the implicit exception specification.
5042    if (ClassDecl->isDynamicClass())
5043      DeclareImplicitCopyAssignment(ClassDecl);
5044  }
5045
5046  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5047    ++ASTContext::NumImplicitMoveAssignmentOperators;
5048
5049    // Likewise for the move assignment operator.
5050    if (ClassDecl->isDynamicClass())
5051      DeclareImplicitMoveAssignment(ClassDecl);
5052  }
5053
5054  if (!ClassDecl->hasUserDeclaredDestructor()) {
5055    ++ASTContext::NumImplicitDestructors;
5056
5057    // If we have a dynamic class, then the destructor may be virtual, so we
5058    // have to declare the destructor immediately. This ensures that, e.g., it
5059    // shows up in the right place in the vtable and that we diagnose problems
5060    // with the implicit exception specification.
5061    if (ClassDecl->isDynamicClass())
5062      DeclareImplicitDestructor(ClassDecl);
5063  }
5064}
5065
5066void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5067  if (!D)
5068    return;
5069
5070  int NumParamList = D->getNumTemplateParameterLists();
5071  for (int i = 0; i < NumParamList; i++) {
5072    TemplateParameterList* Params = D->getTemplateParameterList(i);
5073    for (TemplateParameterList::iterator Param = Params->begin(),
5074                                      ParamEnd = Params->end();
5075          Param != ParamEnd; ++Param) {
5076      NamedDecl *Named = cast<NamedDecl>(*Param);
5077      if (Named->getDeclName()) {
5078        S->AddDecl(Named);
5079        IdResolver.AddDecl(Named);
5080      }
5081    }
5082  }
5083}
5084
5085void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5086  if (!D)
5087    return;
5088
5089  TemplateParameterList *Params = 0;
5090  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5091    Params = Template->getTemplateParameters();
5092  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5093           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5094    Params = PartialSpec->getTemplateParameters();
5095  else
5096    return;
5097
5098  for (TemplateParameterList::iterator Param = Params->begin(),
5099                                    ParamEnd = Params->end();
5100       Param != ParamEnd; ++Param) {
5101    NamedDecl *Named = cast<NamedDecl>(*Param);
5102    if (Named->getDeclName()) {
5103      S->AddDecl(Named);
5104      IdResolver.AddDecl(Named);
5105    }
5106  }
5107}
5108
5109void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5110  if (!RecordD) return;
5111  AdjustDeclIfTemplate(RecordD);
5112  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5113  PushDeclContext(S, Record);
5114}
5115
5116void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5117  if (!RecordD) return;
5118  PopDeclContext();
5119}
5120
5121/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5122/// parsing a top-level (non-nested) C++ class, and we are now
5123/// parsing those parts of the given Method declaration that could
5124/// not be parsed earlier (C++ [class.mem]p2), such as default
5125/// arguments. This action should enter the scope of the given
5126/// Method declaration as if we had just parsed the qualified method
5127/// name. However, it should not bring the parameters into scope;
5128/// that will be performed by ActOnDelayedCXXMethodParameter.
5129void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5130}
5131
5132/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5133/// C++ method declaration. We're (re-)introducing the given
5134/// function parameter into scope for use in parsing later parts of
5135/// the method declaration. For example, we could see an
5136/// ActOnParamDefaultArgument event for this parameter.
5137void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5138  if (!ParamD)
5139    return;
5140
5141  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5142
5143  // If this parameter has an unparsed default argument, clear it out
5144  // to make way for the parsed default argument.
5145  if (Param->hasUnparsedDefaultArg())
5146    Param->setDefaultArg(0);
5147
5148  S->AddDecl(Param);
5149  if (Param->getDeclName())
5150    IdResolver.AddDecl(Param);
5151}
5152
5153/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5154/// processing the delayed method declaration for Method. The method
5155/// declaration is now considered finished. There may be a separate
5156/// ActOnStartOfFunctionDef action later (not necessarily
5157/// immediately!) for this method, if it was also defined inside the
5158/// class body.
5159void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5160  if (!MethodD)
5161    return;
5162
5163  AdjustDeclIfTemplate(MethodD);
5164
5165  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5166
5167  // Now that we have our default arguments, check the constructor
5168  // again. It could produce additional diagnostics or affect whether
5169  // the class has implicitly-declared destructors, among other
5170  // things.
5171  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5172    CheckConstructor(Constructor);
5173
5174  // Check the default arguments, which we may have added.
5175  if (!Method->isInvalidDecl())
5176    CheckCXXDefaultArguments(Method);
5177}
5178
5179/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5180/// the well-formedness of the constructor declarator @p D with type @p
5181/// R. If there are any errors in the declarator, this routine will
5182/// emit diagnostics and set the invalid bit to true.  In any case, the type
5183/// will be updated to reflect a well-formed type for the constructor and
5184/// returned.
5185QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5186                                          StorageClass &SC) {
5187  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5188
5189  // C++ [class.ctor]p3:
5190  //   A constructor shall not be virtual (10.3) or static (9.4). A
5191  //   constructor can be invoked for a const, volatile or const
5192  //   volatile object. A constructor shall not be declared const,
5193  //   volatile, or const volatile (9.3.2).
5194  if (isVirtual) {
5195    if (!D.isInvalidType())
5196      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5197        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5198        << SourceRange(D.getIdentifierLoc());
5199    D.setInvalidType();
5200  }
5201  if (SC == SC_Static) {
5202    if (!D.isInvalidType())
5203      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5204        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5205        << SourceRange(D.getIdentifierLoc());
5206    D.setInvalidType();
5207    SC = SC_None;
5208  }
5209
5210  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5211  if (FTI.TypeQuals != 0) {
5212    if (FTI.TypeQuals & Qualifiers::Const)
5213      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5214        << "const" << SourceRange(D.getIdentifierLoc());
5215    if (FTI.TypeQuals & Qualifiers::Volatile)
5216      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5217        << "volatile" << SourceRange(D.getIdentifierLoc());
5218    if (FTI.TypeQuals & Qualifiers::Restrict)
5219      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5220        << "restrict" << SourceRange(D.getIdentifierLoc());
5221    D.setInvalidType();
5222  }
5223
5224  // C++0x [class.ctor]p4:
5225  //   A constructor shall not be declared with a ref-qualifier.
5226  if (FTI.hasRefQualifier()) {
5227    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5228      << FTI.RefQualifierIsLValueRef
5229      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5230    D.setInvalidType();
5231  }
5232
5233  // Rebuild the function type "R" without any type qualifiers (in
5234  // case any of the errors above fired) and with "void" as the
5235  // return type, since constructors don't have return types.
5236  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5237  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5238    return R;
5239
5240  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5241  EPI.TypeQuals = 0;
5242  EPI.RefQualifier = RQ_None;
5243
5244  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5245                                 Proto->getNumArgs(), EPI);
5246}
5247
5248/// CheckConstructor - Checks a fully-formed constructor for
5249/// well-formedness, issuing any diagnostics required. Returns true if
5250/// the constructor declarator is invalid.
5251void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5252  CXXRecordDecl *ClassDecl
5253    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5254  if (!ClassDecl)
5255    return Constructor->setInvalidDecl();
5256
5257  // C++ [class.copy]p3:
5258  //   A declaration of a constructor for a class X is ill-formed if
5259  //   its first parameter is of type (optionally cv-qualified) X and
5260  //   either there are no other parameters or else all other
5261  //   parameters have default arguments.
5262  if (!Constructor->isInvalidDecl() &&
5263      ((Constructor->getNumParams() == 1) ||
5264       (Constructor->getNumParams() > 1 &&
5265        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5266      Constructor->getTemplateSpecializationKind()
5267                                              != TSK_ImplicitInstantiation) {
5268    QualType ParamType = Constructor->getParamDecl(0)->getType();
5269    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5270    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5271      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5272      const char *ConstRef
5273        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5274                                                        : " const &";
5275      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5276        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5277
5278      // FIXME: Rather that making the constructor invalid, we should endeavor
5279      // to fix the type.
5280      Constructor->setInvalidDecl();
5281    }
5282  }
5283}
5284
5285/// CheckDestructor - Checks a fully-formed destructor definition for
5286/// well-formedness, issuing any diagnostics required.  Returns true
5287/// on error.
5288bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5289  CXXRecordDecl *RD = Destructor->getParent();
5290
5291  if (Destructor->isVirtual()) {
5292    SourceLocation Loc;
5293
5294    if (!Destructor->isImplicit())
5295      Loc = Destructor->getLocation();
5296    else
5297      Loc = RD->getLocation();
5298
5299    // If we have a virtual destructor, look up the deallocation function
5300    FunctionDecl *OperatorDelete = 0;
5301    DeclarationName Name =
5302    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5303    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5304      return true;
5305
5306    MarkDeclarationReferenced(Loc, OperatorDelete);
5307
5308    Destructor->setOperatorDelete(OperatorDelete);
5309  }
5310
5311  return false;
5312}
5313
5314static inline bool
5315FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5316  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5317          FTI.ArgInfo[0].Param &&
5318          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5319}
5320
5321/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5322/// the well-formednes of the destructor declarator @p D with type @p
5323/// R. If there are any errors in the declarator, this routine will
5324/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5325/// will be updated to reflect a well-formed type for the destructor and
5326/// returned.
5327QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5328                                         StorageClass& SC) {
5329  // C++ [class.dtor]p1:
5330  //   [...] A typedef-name that names a class is a class-name
5331  //   (7.1.3); however, a typedef-name that names a class shall not
5332  //   be used as the identifier in the declarator for a destructor
5333  //   declaration.
5334  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5335  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5336    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5337      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5338  else if (const TemplateSpecializationType *TST =
5339             DeclaratorType->getAs<TemplateSpecializationType>())
5340    if (TST->isTypeAlias())
5341      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5342        << DeclaratorType << 1;
5343
5344  // C++ [class.dtor]p2:
5345  //   A destructor is used to destroy objects of its class type. A
5346  //   destructor takes no parameters, and no return type can be
5347  //   specified for it (not even void). The address of a destructor
5348  //   shall not be taken. A destructor shall not be static. A
5349  //   destructor can be invoked for a const, volatile or const
5350  //   volatile object. A destructor shall not be declared const,
5351  //   volatile or const volatile (9.3.2).
5352  if (SC == SC_Static) {
5353    if (!D.isInvalidType())
5354      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5355        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5356        << SourceRange(D.getIdentifierLoc())
5357        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5358
5359    SC = SC_None;
5360  }
5361  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5362    // Destructors don't have return types, but the parser will
5363    // happily parse something like:
5364    //
5365    //   class X {
5366    //     float ~X();
5367    //   };
5368    //
5369    // The return type will be eliminated later.
5370    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5371      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5372      << SourceRange(D.getIdentifierLoc());
5373  }
5374
5375  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5376  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5377    if (FTI.TypeQuals & Qualifiers::Const)
5378      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5379        << "const" << SourceRange(D.getIdentifierLoc());
5380    if (FTI.TypeQuals & Qualifiers::Volatile)
5381      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5382        << "volatile" << SourceRange(D.getIdentifierLoc());
5383    if (FTI.TypeQuals & Qualifiers::Restrict)
5384      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5385        << "restrict" << SourceRange(D.getIdentifierLoc());
5386    D.setInvalidType();
5387  }
5388
5389  // C++0x [class.dtor]p2:
5390  //   A destructor shall not be declared with a ref-qualifier.
5391  if (FTI.hasRefQualifier()) {
5392    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5393      << FTI.RefQualifierIsLValueRef
5394      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5395    D.setInvalidType();
5396  }
5397
5398  // Make sure we don't have any parameters.
5399  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5400    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5401
5402    // Delete the parameters.
5403    FTI.freeArgs();
5404    D.setInvalidType();
5405  }
5406
5407  // Make sure the destructor isn't variadic.
5408  if (FTI.isVariadic) {
5409    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5410    D.setInvalidType();
5411  }
5412
5413  // Rebuild the function type "R" without any type qualifiers or
5414  // parameters (in case any of the errors above fired) and with
5415  // "void" as the return type, since destructors don't have return
5416  // types.
5417  if (!D.isInvalidType())
5418    return R;
5419
5420  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5421  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5422  EPI.Variadic = false;
5423  EPI.TypeQuals = 0;
5424  EPI.RefQualifier = RQ_None;
5425  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5426}
5427
5428/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5429/// well-formednes of the conversion function declarator @p D with
5430/// type @p R. If there are any errors in the declarator, this routine
5431/// will emit diagnostics and return true. Otherwise, it will return
5432/// false. Either way, the type @p R will be updated to reflect a
5433/// well-formed type for the conversion operator.
5434void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5435                                     StorageClass& SC) {
5436  // C++ [class.conv.fct]p1:
5437  //   Neither parameter types nor return type can be specified. The
5438  //   type of a conversion function (8.3.5) is "function taking no
5439  //   parameter returning conversion-type-id."
5440  if (SC == SC_Static) {
5441    if (!D.isInvalidType())
5442      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5443        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5444        << SourceRange(D.getIdentifierLoc());
5445    D.setInvalidType();
5446    SC = SC_None;
5447  }
5448
5449  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5450
5451  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5452    // Conversion functions don't have return types, but the parser will
5453    // happily parse something like:
5454    //
5455    //   class X {
5456    //     float operator bool();
5457    //   };
5458    //
5459    // The return type will be changed later anyway.
5460    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5461      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5462      << SourceRange(D.getIdentifierLoc());
5463    D.setInvalidType();
5464  }
5465
5466  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5467
5468  // Make sure we don't have any parameters.
5469  if (Proto->getNumArgs() > 0) {
5470    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5471
5472    // Delete the parameters.
5473    D.getFunctionTypeInfo().freeArgs();
5474    D.setInvalidType();
5475  } else if (Proto->isVariadic()) {
5476    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5477    D.setInvalidType();
5478  }
5479
5480  // Diagnose "&operator bool()" and other such nonsense.  This
5481  // is actually a gcc extension which we don't support.
5482  if (Proto->getResultType() != ConvType) {
5483    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5484      << Proto->getResultType();
5485    D.setInvalidType();
5486    ConvType = Proto->getResultType();
5487  }
5488
5489  // C++ [class.conv.fct]p4:
5490  //   The conversion-type-id shall not represent a function type nor
5491  //   an array type.
5492  if (ConvType->isArrayType()) {
5493    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5494    ConvType = Context.getPointerType(ConvType);
5495    D.setInvalidType();
5496  } else if (ConvType->isFunctionType()) {
5497    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5498    ConvType = Context.getPointerType(ConvType);
5499    D.setInvalidType();
5500  }
5501
5502  // Rebuild the function type "R" without any parameters (in case any
5503  // of the errors above fired) and with the conversion type as the
5504  // return type.
5505  if (D.isInvalidType())
5506    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5507
5508  // C++0x explicit conversion operators.
5509  if (D.getDeclSpec().isExplicitSpecified())
5510    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5511         getLangOptions().CPlusPlus0x ?
5512           diag::warn_cxx98_compat_explicit_conversion_functions :
5513           diag::ext_explicit_conversion_functions)
5514      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5515}
5516
5517/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5518/// the declaration of the given C++ conversion function. This routine
5519/// is responsible for recording the conversion function in the C++
5520/// class, if possible.
5521Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5522  assert(Conversion && "Expected to receive a conversion function declaration");
5523
5524  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5525
5526  // Make sure we aren't redeclaring the conversion function.
5527  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5528
5529  // C++ [class.conv.fct]p1:
5530  //   [...] A conversion function is never used to convert a
5531  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5532  //   same object type (or a reference to it), to a (possibly
5533  //   cv-qualified) base class of that type (or a reference to it),
5534  //   or to (possibly cv-qualified) void.
5535  // FIXME: Suppress this warning if the conversion function ends up being a
5536  // virtual function that overrides a virtual function in a base class.
5537  QualType ClassType
5538    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5539  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5540    ConvType = ConvTypeRef->getPointeeType();
5541  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5542      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5543    /* Suppress diagnostics for instantiations. */;
5544  else if (ConvType->isRecordType()) {
5545    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5546    if (ConvType == ClassType)
5547      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5548        << ClassType;
5549    else if (IsDerivedFrom(ClassType, ConvType))
5550      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5551        <<  ClassType << ConvType;
5552  } else if (ConvType->isVoidType()) {
5553    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5554      << ClassType << ConvType;
5555  }
5556
5557  if (FunctionTemplateDecl *ConversionTemplate
5558                                = Conversion->getDescribedFunctionTemplate())
5559    return ConversionTemplate;
5560
5561  return Conversion;
5562}
5563
5564//===----------------------------------------------------------------------===//
5565// Namespace Handling
5566//===----------------------------------------------------------------------===//
5567
5568
5569
5570/// ActOnStartNamespaceDef - This is called at the start of a namespace
5571/// definition.
5572Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5573                                   SourceLocation InlineLoc,
5574                                   SourceLocation NamespaceLoc,
5575                                   SourceLocation IdentLoc,
5576                                   IdentifierInfo *II,
5577                                   SourceLocation LBrace,
5578                                   AttributeList *AttrList) {
5579  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5580  // For anonymous namespace, take the location of the left brace.
5581  SourceLocation Loc = II ? IdentLoc : LBrace;
5582  bool IsInline = InlineLoc.isValid();
5583  bool IsInvalid = false;
5584  bool IsStd = false;
5585  bool AddToKnown = false;
5586  Scope *DeclRegionScope = NamespcScope->getParent();
5587
5588  NamespaceDecl *PrevNS = 0;
5589  if (II) {
5590    // C++ [namespace.def]p2:
5591    //   The identifier in an original-namespace-definition shall not
5592    //   have been previously defined in the declarative region in
5593    //   which the original-namespace-definition appears. The
5594    //   identifier in an original-namespace-definition is the name of
5595    //   the namespace. Subsequently in that declarative region, it is
5596    //   treated as an original-namespace-name.
5597    //
5598    // Since namespace names are unique in their scope, and we don't
5599    // look through using directives, just look for any ordinary names.
5600
5601    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5602    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5603    Decl::IDNS_Namespace;
5604    NamedDecl *PrevDecl = 0;
5605    for (DeclContext::lookup_result R
5606         = CurContext->getRedeclContext()->lookup(II);
5607         R.first != R.second; ++R.first) {
5608      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5609        PrevDecl = *R.first;
5610        break;
5611      }
5612    }
5613
5614    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5615
5616    if (PrevNS) {
5617      // This is an extended namespace definition.
5618      if (IsInline != PrevNS->isInline()) {
5619        // inline-ness must match
5620        if (PrevNS->isInline()) {
5621          // The user probably just forgot the 'inline', so suggest that it
5622          // be added back.
5623          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5624            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5625        } else {
5626          Diag(Loc, diag::err_inline_namespace_mismatch)
5627            << IsInline;
5628        }
5629        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5630
5631        IsInline = PrevNS->isInline();
5632      }
5633    } else if (PrevDecl) {
5634      // This is an invalid name redefinition.
5635      Diag(Loc, diag::err_redefinition_different_kind)
5636        << II;
5637      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5638      IsInvalid = true;
5639      // Continue on to push Namespc as current DeclContext and return it.
5640    } else if (II->isStr("std") &&
5641               CurContext->getRedeclContext()->isTranslationUnit()) {
5642      // This is the first "real" definition of the namespace "std", so update
5643      // our cache of the "std" namespace to point at this definition.
5644      PrevNS = getStdNamespace();
5645      IsStd = true;
5646      AddToKnown = !IsInline;
5647    } else {
5648      // We've seen this namespace for the first time.
5649      AddToKnown = !IsInline;
5650    }
5651  } else {
5652    // Anonymous namespaces.
5653
5654    // Determine whether the parent already has an anonymous namespace.
5655    DeclContext *Parent = CurContext->getRedeclContext();
5656    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5657      PrevNS = TU->getAnonymousNamespace();
5658    } else {
5659      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5660      PrevNS = ND->getAnonymousNamespace();
5661    }
5662
5663    if (PrevNS && IsInline != PrevNS->isInline()) {
5664      // inline-ness must match
5665      Diag(Loc, diag::err_inline_namespace_mismatch)
5666        << IsInline;
5667      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5668
5669      // Recover by ignoring the new namespace's inline status.
5670      IsInline = PrevNS->isInline();
5671    }
5672  }
5673
5674  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5675                                                 StartLoc, Loc, II, PrevNS);
5676  if (IsInvalid)
5677    Namespc->setInvalidDecl();
5678
5679  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5680
5681  // FIXME: Should we be merging attributes?
5682  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5683    PushNamespaceVisibilityAttr(Attr);
5684
5685  if (IsStd)
5686    StdNamespace = Namespc;
5687  if (AddToKnown)
5688    KnownNamespaces[Namespc] = false;
5689
5690  if (II) {
5691    PushOnScopeChains(Namespc, DeclRegionScope);
5692  } else {
5693    // Link the anonymous namespace into its parent.
5694    DeclContext *Parent = CurContext->getRedeclContext();
5695    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5696      TU->setAnonymousNamespace(Namespc);
5697    } else {
5698      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5699    }
5700
5701    CurContext->addDecl(Namespc);
5702
5703    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5704    //   behaves as if it were replaced by
5705    //     namespace unique { /* empty body */ }
5706    //     using namespace unique;
5707    //     namespace unique { namespace-body }
5708    //   where all occurrences of 'unique' in a translation unit are
5709    //   replaced by the same identifier and this identifier differs
5710    //   from all other identifiers in the entire program.
5711
5712    // We just create the namespace with an empty name and then add an
5713    // implicit using declaration, just like the standard suggests.
5714    //
5715    // CodeGen enforces the "universally unique" aspect by giving all
5716    // declarations semantically contained within an anonymous
5717    // namespace internal linkage.
5718
5719    if (!PrevNS) {
5720      UsingDirectiveDecl* UD
5721        = UsingDirectiveDecl::Create(Context, CurContext,
5722                                     /* 'using' */ LBrace,
5723                                     /* 'namespace' */ SourceLocation(),
5724                                     /* qualifier */ NestedNameSpecifierLoc(),
5725                                     /* identifier */ SourceLocation(),
5726                                     Namespc,
5727                                     /* Ancestor */ CurContext);
5728      UD->setImplicit();
5729      CurContext->addDecl(UD);
5730    }
5731  }
5732
5733  // Although we could have an invalid decl (i.e. the namespace name is a
5734  // redefinition), push it as current DeclContext and try to continue parsing.
5735  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5736  // for the namespace has the declarations that showed up in that particular
5737  // namespace definition.
5738  PushDeclContext(NamespcScope, Namespc);
5739  return Namespc;
5740}
5741
5742/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5743/// is a namespace alias, returns the namespace it points to.
5744static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5745  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5746    return AD->getNamespace();
5747  return dyn_cast_or_null<NamespaceDecl>(D);
5748}
5749
5750/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5751/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5752void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5753  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5754  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5755  Namespc->setRBraceLoc(RBrace);
5756  PopDeclContext();
5757  if (Namespc->hasAttr<VisibilityAttr>())
5758    PopPragmaVisibility();
5759}
5760
5761CXXRecordDecl *Sema::getStdBadAlloc() const {
5762  return cast_or_null<CXXRecordDecl>(
5763                                  StdBadAlloc.get(Context.getExternalSource()));
5764}
5765
5766NamespaceDecl *Sema::getStdNamespace() const {
5767  return cast_or_null<NamespaceDecl>(
5768                                 StdNamespace.get(Context.getExternalSource()));
5769}
5770
5771/// \brief Retrieve the special "std" namespace, which may require us to
5772/// implicitly define the namespace.
5773NamespaceDecl *Sema::getOrCreateStdNamespace() {
5774  if (!StdNamespace) {
5775    // The "std" namespace has not yet been defined, so build one implicitly.
5776    StdNamespace = NamespaceDecl::Create(Context,
5777                                         Context.getTranslationUnitDecl(),
5778                                         /*Inline=*/false,
5779                                         SourceLocation(), SourceLocation(),
5780                                         &PP.getIdentifierTable().get("std"),
5781                                         /*PrevDecl=*/0);
5782    getStdNamespace()->setImplicit(true);
5783  }
5784
5785  return getStdNamespace();
5786}
5787
5788bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5789  assert(getLangOptions().CPlusPlus &&
5790         "Looking for std::initializer_list outside of C++.");
5791
5792  // We're looking for implicit instantiations of
5793  // template <typename E> class std::initializer_list.
5794
5795  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5796    return false;
5797
5798  ClassTemplateDecl *Template = 0;
5799  const TemplateArgument *Arguments = 0;
5800
5801  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5802
5803    ClassTemplateSpecializationDecl *Specialization =
5804        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5805    if (!Specialization)
5806      return false;
5807
5808    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5809      return false;
5810
5811    Template = Specialization->getSpecializedTemplate();
5812    Arguments = Specialization->getTemplateArgs().data();
5813  } else if (const TemplateSpecializationType *TST =
5814                 Ty->getAs<TemplateSpecializationType>()) {
5815    Template = dyn_cast_or_null<ClassTemplateDecl>(
5816        TST->getTemplateName().getAsTemplateDecl());
5817    Arguments = TST->getArgs();
5818  }
5819  if (!Template)
5820    return false;
5821
5822  if (!StdInitializerList) {
5823    // Haven't recognized std::initializer_list yet, maybe this is it.
5824    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5825    if (TemplateClass->getIdentifier() !=
5826            &PP.getIdentifierTable().get("initializer_list") ||
5827        !getStdNamespace()->InEnclosingNamespaceSetOf(
5828            TemplateClass->getDeclContext()))
5829      return false;
5830    // This is a template called std::initializer_list, but is it the right
5831    // template?
5832    TemplateParameterList *Params = Template->getTemplateParameters();
5833    if (Params->getMinRequiredArguments() != 1)
5834      return false;
5835    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5836      return false;
5837
5838    // It's the right template.
5839    StdInitializerList = Template;
5840  }
5841
5842  if (Template != StdInitializerList)
5843    return false;
5844
5845  // This is an instance of std::initializer_list. Find the argument type.
5846  if (Element)
5847    *Element = Arguments[0].getAsType();
5848  return true;
5849}
5850
5851static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5852  NamespaceDecl *Std = S.getStdNamespace();
5853  if (!Std) {
5854    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5855    return 0;
5856  }
5857
5858  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5859                      Loc, Sema::LookupOrdinaryName);
5860  if (!S.LookupQualifiedName(Result, Std)) {
5861    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5862    return 0;
5863  }
5864  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5865  if (!Template) {
5866    Result.suppressDiagnostics();
5867    // We found something weird. Complain about the first thing we found.
5868    NamedDecl *Found = *Result.begin();
5869    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5870    return 0;
5871  }
5872
5873  // We found some template called std::initializer_list. Now verify that it's
5874  // correct.
5875  TemplateParameterList *Params = Template->getTemplateParameters();
5876  if (Params->getMinRequiredArguments() != 1 ||
5877      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5878    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5879    return 0;
5880  }
5881
5882  return Template;
5883}
5884
5885QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5886  if (!StdInitializerList) {
5887    StdInitializerList = LookupStdInitializerList(*this, Loc);
5888    if (!StdInitializerList)
5889      return QualType();
5890  }
5891
5892  TemplateArgumentListInfo Args(Loc, Loc);
5893  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5894                                       Context.getTrivialTypeSourceInfo(Element,
5895                                                                        Loc)));
5896  return Context.getCanonicalType(
5897      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5898}
5899
5900bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5901  // C++ [dcl.init.list]p2:
5902  //   A constructor is an initializer-list constructor if its first parameter
5903  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5904  //   std::initializer_list<E> for some type E, and either there are no other
5905  //   parameters or else all other parameters have default arguments.
5906  if (Ctor->getNumParams() < 1 ||
5907      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5908    return false;
5909
5910  QualType ArgType = Ctor->getParamDecl(0)->getType();
5911  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5912    ArgType = RT->getPointeeType().getUnqualifiedType();
5913
5914  return isStdInitializerList(ArgType, 0);
5915}
5916
5917/// \brief Determine whether a using statement is in a context where it will be
5918/// apply in all contexts.
5919static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5920  switch (CurContext->getDeclKind()) {
5921    case Decl::TranslationUnit:
5922      return true;
5923    case Decl::LinkageSpec:
5924      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5925    default:
5926      return false;
5927  }
5928}
5929
5930namespace {
5931
5932// Callback to only accept typo corrections that are namespaces.
5933class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5934 public:
5935  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5936    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5937      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5938    }
5939    return false;
5940  }
5941};
5942
5943}
5944
5945static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5946                                       CXXScopeSpec &SS,
5947                                       SourceLocation IdentLoc,
5948                                       IdentifierInfo *Ident) {
5949  NamespaceValidatorCCC Validator;
5950  R.clear();
5951  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5952                                               R.getLookupKind(), Sc, &SS,
5953                                               &Validator)) {
5954    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5955    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5956    if (DeclContext *DC = S.computeDeclContext(SS, false))
5957      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5958        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5959        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5960    else
5961      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5962        << Ident << CorrectedQuotedStr
5963        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5964
5965    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5966         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5967
5968    Ident = Corrected.getCorrectionAsIdentifierInfo();
5969    R.addDecl(Corrected.getCorrectionDecl());
5970    return true;
5971  }
5972  return false;
5973}
5974
5975Decl *Sema::ActOnUsingDirective(Scope *S,
5976                                          SourceLocation UsingLoc,
5977                                          SourceLocation NamespcLoc,
5978                                          CXXScopeSpec &SS,
5979                                          SourceLocation IdentLoc,
5980                                          IdentifierInfo *NamespcName,
5981                                          AttributeList *AttrList) {
5982  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5983  assert(NamespcName && "Invalid NamespcName.");
5984  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5985
5986  // This can only happen along a recovery path.
5987  while (S->getFlags() & Scope::TemplateParamScope)
5988    S = S->getParent();
5989  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5990
5991  UsingDirectiveDecl *UDir = 0;
5992  NestedNameSpecifier *Qualifier = 0;
5993  if (SS.isSet())
5994    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5995
5996  // Lookup namespace name.
5997  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5998  LookupParsedName(R, S, &SS);
5999  if (R.isAmbiguous())
6000    return 0;
6001
6002  if (R.empty()) {
6003    R.clear();
6004    // Allow "using namespace std;" or "using namespace ::std;" even if
6005    // "std" hasn't been defined yet, for GCC compatibility.
6006    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6007        NamespcName->isStr("std")) {
6008      Diag(IdentLoc, diag::ext_using_undefined_std);
6009      R.addDecl(getOrCreateStdNamespace());
6010      R.resolveKind();
6011    }
6012    // Otherwise, attempt typo correction.
6013    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6014  }
6015
6016  if (!R.empty()) {
6017    NamedDecl *Named = R.getFoundDecl();
6018    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6019        && "expected namespace decl");
6020    // C++ [namespace.udir]p1:
6021    //   A using-directive specifies that the names in the nominated
6022    //   namespace can be used in the scope in which the
6023    //   using-directive appears after the using-directive. During
6024    //   unqualified name lookup (3.4.1), the names appear as if they
6025    //   were declared in the nearest enclosing namespace which
6026    //   contains both the using-directive and the nominated
6027    //   namespace. [Note: in this context, "contains" means "contains
6028    //   directly or indirectly". ]
6029
6030    // Find enclosing context containing both using-directive and
6031    // nominated namespace.
6032    NamespaceDecl *NS = getNamespaceDecl(Named);
6033    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6034    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6035      CommonAncestor = CommonAncestor->getParent();
6036
6037    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6038                                      SS.getWithLocInContext(Context),
6039                                      IdentLoc, Named, CommonAncestor);
6040
6041    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6042        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6043      Diag(IdentLoc, diag::warn_using_directive_in_header);
6044    }
6045
6046    PushUsingDirective(S, UDir);
6047  } else {
6048    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6049  }
6050
6051  // FIXME: We ignore attributes for now.
6052  return UDir;
6053}
6054
6055void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6056  // If scope has associated entity, then using directive is at namespace
6057  // or translation unit scope. We add UsingDirectiveDecls, into
6058  // it's lookup structure.
6059  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6060    Ctx->addDecl(UDir);
6061  else
6062    // Otherwise it is block-sope. using-directives will affect lookup
6063    // only to the end of scope.
6064    S->PushUsingDirective(UDir);
6065}
6066
6067
6068Decl *Sema::ActOnUsingDeclaration(Scope *S,
6069                                  AccessSpecifier AS,
6070                                  bool HasUsingKeyword,
6071                                  SourceLocation UsingLoc,
6072                                  CXXScopeSpec &SS,
6073                                  UnqualifiedId &Name,
6074                                  AttributeList *AttrList,
6075                                  bool IsTypeName,
6076                                  SourceLocation TypenameLoc) {
6077  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6078
6079  switch (Name.getKind()) {
6080  case UnqualifiedId::IK_ImplicitSelfParam:
6081  case UnqualifiedId::IK_Identifier:
6082  case UnqualifiedId::IK_OperatorFunctionId:
6083  case UnqualifiedId::IK_LiteralOperatorId:
6084  case UnqualifiedId::IK_ConversionFunctionId:
6085    break;
6086
6087  case UnqualifiedId::IK_ConstructorName:
6088  case UnqualifiedId::IK_ConstructorTemplateId:
6089    // C++0x inherited constructors.
6090    Diag(Name.getSourceRange().getBegin(),
6091         getLangOptions().CPlusPlus0x ?
6092           diag::warn_cxx98_compat_using_decl_constructor :
6093           diag::err_using_decl_constructor)
6094      << SS.getRange();
6095
6096    if (getLangOptions().CPlusPlus0x) break;
6097
6098    return 0;
6099
6100  case UnqualifiedId::IK_DestructorName:
6101    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6102      << SS.getRange();
6103    return 0;
6104
6105  case UnqualifiedId::IK_TemplateId:
6106    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6107      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6108    return 0;
6109  }
6110
6111  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6112  DeclarationName TargetName = TargetNameInfo.getName();
6113  if (!TargetName)
6114    return 0;
6115
6116  // Warn about using declarations.
6117  // TODO: store that the declaration was written without 'using' and
6118  // talk about access decls instead of using decls in the
6119  // diagnostics.
6120  if (!HasUsingKeyword) {
6121    UsingLoc = Name.getSourceRange().getBegin();
6122
6123    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6124      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6125  }
6126
6127  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6128      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6129    return 0;
6130
6131  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6132                                        TargetNameInfo, AttrList,
6133                                        /* IsInstantiation */ false,
6134                                        IsTypeName, TypenameLoc);
6135  if (UD)
6136    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6137
6138  return UD;
6139}
6140
6141/// \brief Determine whether a using declaration considers the given
6142/// declarations as "equivalent", e.g., if they are redeclarations of
6143/// the same entity or are both typedefs of the same type.
6144static bool
6145IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6146                         bool &SuppressRedeclaration) {
6147  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6148    SuppressRedeclaration = false;
6149    return true;
6150  }
6151
6152  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6153    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6154      SuppressRedeclaration = true;
6155      return Context.hasSameType(TD1->getUnderlyingType(),
6156                                 TD2->getUnderlyingType());
6157    }
6158
6159  return false;
6160}
6161
6162
6163/// Determines whether to create a using shadow decl for a particular
6164/// decl, given the set of decls existing prior to this using lookup.
6165bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6166                                const LookupResult &Previous) {
6167  // Diagnose finding a decl which is not from a base class of the
6168  // current class.  We do this now because there are cases where this
6169  // function will silently decide not to build a shadow decl, which
6170  // will pre-empt further diagnostics.
6171  //
6172  // We don't need to do this in C++0x because we do the check once on
6173  // the qualifier.
6174  //
6175  // FIXME: diagnose the following if we care enough:
6176  //   struct A { int foo; };
6177  //   struct B : A { using A::foo; };
6178  //   template <class T> struct C : A {};
6179  //   template <class T> struct D : C<T> { using B::foo; } // <---
6180  // This is invalid (during instantiation) in C++03 because B::foo
6181  // resolves to the using decl in B, which is not a base class of D<T>.
6182  // We can't diagnose it immediately because C<T> is an unknown
6183  // specialization.  The UsingShadowDecl in D<T> then points directly
6184  // to A::foo, which will look well-formed when we instantiate.
6185  // The right solution is to not collapse the shadow-decl chain.
6186  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6187    DeclContext *OrigDC = Orig->getDeclContext();
6188
6189    // Handle enums and anonymous structs.
6190    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6191    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6192    while (OrigRec->isAnonymousStructOrUnion())
6193      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6194
6195    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6196      if (OrigDC == CurContext) {
6197        Diag(Using->getLocation(),
6198             diag::err_using_decl_nested_name_specifier_is_current_class)
6199          << Using->getQualifierLoc().getSourceRange();
6200        Diag(Orig->getLocation(), diag::note_using_decl_target);
6201        return true;
6202      }
6203
6204      Diag(Using->getQualifierLoc().getBeginLoc(),
6205           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6206        << Using->getQualifier()
6207        << cast<CXXRecordDecl>(CurContext)
6208        << Using->getQualifierLoc().getSourceRange();
6209      Diag(Orig->getLocation(), diag::note_using_decl_target);
6210      return true;
6211    }
6212  }
6213
6214  if (Previous.empty()) return false;
6215
6216  NamedDecl *Target = Orig;
6217  if (isa<UsingShadowDecl>(Target))
6218    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6219
6220  // If the target happens to be one of the previous declarations, we
6221  // don't have a conflict.
6222  //
6223  // FIXME: but we might be increasing its access, in which case we
6224  // should redeclare it.
6225  NamedDecl *NonTag = 0, *Tag = 0;
6226  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6227         I != E; ++I) {
6228    NamedDecl *D = (*I)->getUnderlyingDecl();
6229    bool Result;
6230    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6231      return Result;
6232
6233    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6234  }
6235
6236  if (Target->isFunctionOrFunctionTemplate()) {
6237    FunctionDecl *FD;
6238    if (isa<FunctionTemplateDecl>(Target))
6239      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6240    else
6241      FD = cast<FunctionDecl>(Target);
6242
6243    NamedDecl *OldDecl = 0;
6244    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6245    case Ovl_Overload:
6246      return false;
6247
6248    case Ovl_NonFunction:
6249      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6250      break;
6251
6252    // We found a decl with the exact signature.
6253    case Ovl_Match:
6254      // If we're in a record, we want to hide the target, so we
6255      // return true (without a diagnostic) to tell the caller not to
6256      // build a shadow decl.
6257      if (CurContext->isRecord())
6258        return true;
6259
6260      // If we're not in a record, this is an error.
6261      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6262      break;
6263    }
6264
6265    Diag(Target->getLocation(), diag::note_using_decl_target);
6266    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6267    return true;
6268  }
6269
6270  // Target is not a function.
6271
6272  if (isa<TagDecl>(Target)) {
6273    // No conflict between a tag and a non-tag.
6274    if (!Tag) return false;
6275
6276    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6277    Diag(Target->getLocation(), diag::note_using_decl_target);
6278    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6279    return true;
6280  }
6281
6282  // No conflict between a tag and a non-tag.
6283  if (!NonTag) return false;
6284
6285  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6286  Diag(Target->getLocation(), diag::note_using_decl_target);
6287  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6288  return true;
6289}
6290
6291/// Builds a shadow declaration corresponding to a 'using' declaration.
6292UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6293                                            UsingDecl *UD,
6294                                            NamedDecl *Orig) {
6295
6296  // If we resolved to another shadow declaration, just coalesce them.
6297  NamedDecl *Target = Orig;
6298  if (isa<UsingShadowDecl>(Target)) {
6299    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6300    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6301  }
6302
6303  UsingShadowDecl *Shadow
6304    = UsingShadowDecl::Create(Context, CurContext,
6305                              UD->getLocation(), UD, Target);
6306  UD->addShadowDecl(Shadow);
6307
6308  Shadow->setAccess(UD->getAccess());
6309  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6310    Shadow->setInvalidDecl();
6311
6312  if (S)
6313    PushOnScopeChains(Shadow, S);
6314  else
6315    CurContext->addDecl(Shadow);
6316
6317
6318  return Shadow;
6319}
6320
6321/// Hides a using shadow declaration.  This is required by the current
6322/// using-decl implementation when a resolvable using declaration in a
6323/// class is followed by a declaration which would hide or override
6324/// one or more of the using decl's targets; for example:
6325///
6326///   struct Base { void foo(int); };
6327///   struct Derived : Base {
6328///     using Base::foo;
6329///     void foo(int);
6330///   };
6331///
6332/// The governing language is C++03 [namespace.udecl]p12:
6333///
6334///   When a using-declaration brings names from a base class into a
6335///   derived class scope, member functions in the derived class
6336///   override and/or hide member functions with the same name and
6337///   parameter types in a base class (rather than conflicting).
6338///
6339/// There are two ways to implement this:
6340///   (1) optimistically create shadow decls when they're not hidden
6341///       by existing declarations, or
6342///   (2) don't create any shadow decls (or at least don't make them
6343///       visible) until we've fully parsed/instantiated the class.
6344/// The problem with (1) is that we might have to retroactively remove
6345/// a shadow decl, which requires several O(n) operations because the
6346/// decl structures are (very reasonably) not designed for removal.
6347/// (2) avoids this but is very fiddly and phase-dependent.
6348void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6349  if (Shadow->getDeclName().getNameKind() ==
6350        DeclarationName::CXXConversionFunctionName)
6351    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6352
6353  // Remove it from the DeclContext...
6354  Shadow->getDeclContext()->removeDecl(Shadow);
6355
6356  // ...and the scope, if applicable...
6357  if (S) {
6358    S->RemoveDecl(Shadow);
6359    IdResolver.RemoveDecl(Shadow);
6360  }
6361
6362  // ...and the using decl.
6363  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6364
6365  // TODO: complain somehow if Shadow was used.  It shouldn't
6366  // be possible for this to happen, because...?
6367}
6368
6369/// Builds a using declaration.
6370///
6371/// \param IsInstantiation - Whether this call arises from an
6372///   instantiation of an unresolved using declaration.  We treat
6373///   the lookup differently for these declarations.
6374NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6375                                       SourceLocation UsingLoc,
6376                                       CXXScopeSpec &SS,
6377                                       const DeclarationNameInfo &NameInfo,
6378                                       AttributeList *AttrList,
6379                                       bool IsInstantiation,
6380                                       bool IsTypeName,
6381                                       SourceLocation TypenameLoc) {
6382  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6383  SourceLocation IdentLoc = NameInfo.getLoc();
6384  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6385
6386  // FIXME: We ignore attributes for now.
6387
6388  if (SS.isEmpty()) {
6389    Diag(IdentLoc, diag::err_using_requires_qualname);
6390    return 0;
6391  }
6392
6393  // Do the redeclaration lookup in the current scope.
6394  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6395                        ForRedeclaration);
6396  Previous.setHideTags(false);
6397  if (S) {
6398    LookupName(Previous, S);
6399
6400    // It is really dumb that we have to do this.
6401    LookupResult::Filter F = Previous.makeFilter();
6402    while (F.hasNext()) {
6403      NamedDecl *D = F.next();
6404      if (!isDeclInScope(D, CurContext, S))
6405        F.erase();
6406    }
6407    F.done();
6408  } else {
6409    assert(IsInstantiation && "no scope in non-instantiation");
6410    assert(CurContext->isRecord() && "scope not record in instantiation");
6411    LookupQualifiedName(Previous, CurContext);
6412  }
6413
6414  // Check for invalid redeclarations.
6415  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6416    return 0;
6417
6418  // Check for bad qualifiers.
6419  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6420    return 0;
6421
6422  DeclContext *LookupContext = computeDeclContext(SS);
6423  NamedDecl *D;
6424  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6425  if (!LookupContext) {
6426    if (IsTypeName) {
6427      // FIXME: not all declaration name kinds are legal here
6428      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6429                                              UsingLoc, TypenameLoc,
6430                                              QualifierLoc,
6431                                              IdentLoc, NameInfo.getName());
6432    } else {
6433      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6434                                           QualifierLoc, NameInfo);
6435    }
6436  } else {
6437    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6438                          NameInfo, IsTypeName);
6439  }
6440  D->setAccess(AS);
6441  CurContext->addDecl(D);
6442
6443  if (!LookupContext) return D;
6444  UsingDecl *UD = cast<UsingDecl>(D);
6445
6446  if (RequireCompleteDeclContext(SS, LookupContext)) {
6447    UD->setInvalidDecl();
6448    return UD;
6449  }
6450
6451  // Constructor inheriting using decls get special treatment.
6452  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6453    if (CheckInheritedConstructorUsingDecl(UD))
6454      UD->setInvalidDecl();
6455    return UD;
6456  }
6457
6458  // Otherwise, look up the target name.
6459
6460  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6461
6462  // Unlike most lookups, we don't always want to hide tag
6463  // declarations: tag names are visible through the using declaration
6464  // even if hidden by ordinary names, *except* in a dependent context
6465  // where it's important for the sanity of two-phase lookup.
6466  if (!IsInstantiation)
6467    R.setHideTags(false);
6468
6469  LookupQualifiedName(R, LookupContext);
6470
6471  if (R.empty()) {
6472    Diag(IdentLoc, diag::err_no_member)
6473      << NameInfo.getName() << LookupContext << SS.getRange();
6474    UD->setInvalidDecl();
6475    return UD;
6476  }
6477
6478  if (R.isAmbiguous()) {
6479    UD->setInvalidDecl();
6480    return UD;
6481  }
6482
6483  if (IsTypeName) {
6484    // If we asked for a typename and got a non-type decl, error out.
6485    if (!R.getAsSingle<TypeDecl>()) {
6486      Diag(IdentLoc, diag::err_using_typename_non_type);
6487      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6488        Diag((*I)->getUnderlyingDecl()->getLocation(),
6489             diag::note_using_decl_target);
6490      UD->setInvalidDecl();
6491      return UD;
6492    }
6493  } else {
6494    // If we asked for a non-typename and we got a type, error out,
6495    // but only if this is an instantiation of an unresolved using
6496    // decl.  Otherwise just silently find the type name.
6497    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6498      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6499      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6500      UD->setInvalidDecl();
6501      return UD;
6502    }
6503  }
6504
6505  // C++0x N2914 [namespace.udecl]p6:
6506  // A using-declaration shall not name a namespace.
6507  if (R.getAsSingle<NamespaceDecl>()) {
6508    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6509      << SS.getRange();
6510    UD->setInvalidDecl();
6511    return UD;
6512  }
6513
6514  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6515    if (!CheckUsingShadowDecl(UD, *I, Previous))
6516      BuildUsingShadowDecl(S, UD, *I);
6517  }
6518
6519  return UD;
6520}
6521
6522/// Additional checks for a using declaration referring to a constructor name.
6523bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6524  if (UD->isTypeName()) {
6525    // FIXME: Cannot specify typename when specifying constructor
6526    return true;
6527  }
6528
6529  const Type *SourceType = UD->getQualifier()->getAsType();
6530  assert(SourceType &&
6531         "Using decl naming constructor doesn't have type in scope spec.");
6532  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6533
6534  // Check whether the named type is a direct base class.
6535  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6536  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6537  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6538       BaseIt != BaseE; ++BaseIt) {
6539    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6540    if (CanonicalSourceType == BaseType)
6541      break;
6542  }
6543
6544  if (BaseIt == BaseE) {
6545    // Did not find SourceType in the bases.
6546    Diag(UD->getUsingLocation(),
6547         diag::err_using_decl_constructor_not_in_direct_base)
6548      << UD->getNameInfo().getSourceRange()
6549      << QualType(SourceType, 0) << TargetClass;
6550    return true;
6551  }
6552
6553  BaseIt->setInheritConstructors();
6554
6555  return false;
6556}
6557
6558/// Checks that the given using declaration is not an invalid
6559/// redeclaration.  Note that this is checking only for the using decl
6560/// itself, not for any ill-formedness among the UsingShadowDecls.
6561bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6562                                       bool isTypeName,
6563                                       const CXXScopeSpec &SS,
6564                                       SourceLocation NameLoc,
6565                                       const LookupResult &Prev) {
6566  // C++03 [namespace.udecl]p8:
6567  // C++0x [namespace.udecl]p10:
6568  //   A using-declaration is a declaration and can therefore be used
6569  //   repeatedly where (and only where) multiple declarations are
6570  //   allowed.
6571  //
6572  // That's in non-member contexts.
6573  if (!CurContext->getRedeclContext()->isRecord())
6574    return false;
6575
6576  NestedNameSpecifier *Qual
6577    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6578
6579  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6580    NamedDecl *D = *I;
6581
6582    bool DTypename;
6583    NestedNameSpecifier *DQual;
6584    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6585      DTypename = UD->isTypeName();
6586      DQual = UD->getQualifier();
6587    } else if (UnresolvedUsingValueDecl *UD
6588                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6589      DTypename = false;
6590      DQual = UD->getQualifier();
6591    } else if (UnresolvedUsingTypenameDecl *UD
6592                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6593      DTypename = true;
6594      DQual = UD->getQualifier();
6595    } else continue;
6596
6597    // using decls differ if one says 'typename' and the other doesn't.
6598    // FIXME: non-dependent using decls?
6599    if (isTypeName != DTypename) continue;
6600
6601    // using decls differ if they name different scopes (but note that
6602    // template instantiation can cause this check to trigger when it
6603    // didn't before instantiation).
6604    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6605        Context.getCanonicalNestedNameSpecifier(DQual))
6606      continue;
6607
6608    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6609    Diag(D->getLocation(), diag::note_using_decl) << 1;
6610    return true;
6611  }
6612
6613  return false;
6614}
6615
6616
6617/// Checks that the given nested-name qualifier used in a using decl
6618/// in the current context is appropriately related to the current
6619/// scope.  If an error is found, diagnoses it and returns true.
6620bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6621                                   const CXXScopeSpec &SS,
6622                                   SourceLocation NameLoc) {
6623  DeclContext *NamedContext = computeDeclContext(SS);
6624
6625  if (!CurContext->isRecord()) {
6626    // C++03 [namespace.udecl]p3:
6627    // C++0x [namespace.udecl]p8:
6628    //   A using-declaration for a class member shall be a member-declaration.
6629
6630    // If we weren't able to compute a valid scope, it must be a
6631    // dependent class scope.
6632    if (!NamedContext || NamedContext->isRecord()) {
6633      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6634        << SS.getRange();
6635      return true;
6636    }
6637
6638    // Otherwise, everything is known to be fine.
6639    return false;
6640  }
6641
6642  // The current scope is a record.
6643
6644  // If the named context is dependent, we can't decide much.
6645  if (!NamedContext) {
6646    // FIXME: in C++0x, we can diagnose if we can prove that the
6647    // nested-name-specifier does not refer to a base class, which is
6648    // still possible in some cases.
6649
6650    // Otherwise we have to conservatively report that things might be
6651    // okay.
6652    return false;
6653  }
6654
6655  if (!NamedContext->isRecord()) {
6656    // Ideally this would point at the last name in the specifier,
6657    // but we don't have that level of source info.
6658    Diag(SS.getRange().getBegin(),
6659         diag::err_using_decl_nested_name_specifier_is_not_class)
6660      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6661    return true;
6662  }
6663
6664  if (!NamedContext->isDependentContext() &&
6665      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6666    return true;
6667
6668  if (getLangOptions().CPlusPlus0x) {
6669    // C++0x [namespace.udecl]p3:
6670    //   In a using-declaration used as a member-declaration, the
6671    //   nested-name-specifier shall name a base class of the class
6672    //   being defined.
6673
6674    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6675                                 cast<CXXRecordDecl>(NamedContext))) {
6676      if (CurContext == NamedContext) {
6677        Diag(NameLoc,
6678             diag::err_using_decl_nested_name_specifier_is_current_class)
6679          << SS.getRange();
6680        return true;
6681      }
6682
6683      Diag(SS.getRange().getBegin(),
6684           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6685        << (NestedNameSpecifier*) SS.getScopeRep()
6686        << cast<CXXRecordDecl>(CurContext)
6687        << SS.getRange();
6688      return true;
6689    }
6690
6691    return false;
6692  }
6693
6694  // C++03 [namespace.udecl]p4:
6695  //   A using-declaration used as a member-declaration shall refer
6696  //   to a member of a base class of the class being defined [etc.].
6697
6698  // Salient point: SS doesn't have to name a base class as long as
6699  // lookup only finds members from base classes.  Therefore we can
6700  // diagnose here only if we can prove that that can't happen,
6701  // i.e. if the class hierarchies provably don't intersect.
6702
6703  // TODO: it would be nice if "definitely valid" results were cached
6704  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6705  // need to be repeated.
6706
6707  struct UserData {
6708    llvm::DenseSet<const CXXRecordDecl*> Bases;
6709
6710    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6711      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6712      Data->Bases.insert(Base);
6713      return true;
6714    }
6715
6716    bool hasDependentBases(const CXXRecordDecl *Class) {
6717      return !Class->forallBases(collect, this);
6718    }
6719
6720    /// Returns true if the base is dependent or is one of the
6721    /// accumulated base classes.
6722    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6723      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6724      return !Data->Bases.count(Base);
6725    }
6726
6727    bool mightShareBases(const CXXRecordDecl *Class) {
6728      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6729    }
6730  };
6731
6732  UserData Data;
6733
6734  // Returns false if we find a dependent base.
6735  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6736    return false;
6737
6738  // Returns false if the class has a dependent base or if it or one
6739  // of its bases is present in the base set of the current context.
6740  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6741    return false;
6742
6743  Diag(SS.getRange().getBegin(),
6744       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6745    << (NestedNameSpecifier*) SS.getScopeRep()
6746    << cast<CXXRecordDecl>(CurContext)
6747    << SS.getRange();
6748
6749  return true;
6750}
6751
6752Decl *Sema::ActOnAliasDeclaration(Scope *S,
6753                                  AccessSpecifier AS,
6754                                  MultiTemplateParamsArg TemplateParamLists,
6755                                  SourceLocation UsingLoc,
6756                                  UnqualifiedId &Name,
6757                                  TypeResult Type) {
6758  // Skip up to the relevant declaration scope.
6759  while (S->getFlags() & Scope::TemplateParamScope)
6760    S = S->getParent();
6761  assert((S->getFlags() & Scope::DeclScope) &&
6762         "got alias-declaration outside of declaration scope");
6763
6764  if (Type.isInvalid())
6765    return 0;
6766
6767  bool Invalid = false;
6768  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6769  TypeSourceInfo *TInfo = 0;
6770  GetTypeFromParser(Type.get(), &TInfo);
6771
6772  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6773    return 0;
6774
6775  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6776                                      UPPC_DeclarationType)) {
6777    Invalid = true;
6778    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6779                                             TInfo->getTypeLoc().getBeginLoc());
6780  }
6781
6782  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6783  LookupName(Previous, S);
6784
6785  // Warn about shadowing the name of a template parameter.
6786  if (Previous.isSingleResult() &&
6787      Previous.getFoundDecl()->isTemplateParameter()) {
6788    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6789    Previous.clear();
6790  }
6791
6792  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6793         "name in alias declaration must be an identifier");
6794  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6795                                               Name.StartLocation,
6796                                               Name.Identifier, TInfo);
6797
6798  NewTD->setAccess(AS);
6799
6800  if (Invalid)
6801    NewTD->setInvalidDecl();
6802
6803  CheckTypedefForVariablyModifiedType(S, NewTD);
6804  Invalid |= NewTD->isInvalidDecl();
6805
6806  bool Redeclaration = false;
6807
6808  NamedDecl *NewND;
6809  if (TemplateParamLists.size()) {
6810    TypeAliasTemplateDecl *OldDecl = 0;
6811    TemplateParameterList *OldTemplateParams = 0;
6812
6813    if (TemplateParamLists.size() != 1) {
6814      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6815        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6816         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6817    }
6818    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6819
6820    // Only consider previous declarations in the same scope.
6821    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6822                         /*ExplicitInstantiationOrSpecialization*/false);
6823    if (!Previous.empty()) {
6824      Redeclaration = true;
6825
6826      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6827      if (!OldDecl && !Invalid) {
6828        Diag(UsingLoc, diag::err_redefinition_different_kind)
6829          << Name.Identifier;
6830
6831        NamedDecl *OldD = Previous.getRepresentativeDecl();
6832        if (OldD->getLocation().isValid())
6833          Diag(OldD->getLocation(), diag::note_previous_definition);
6834
6835        Invalid = true;
6836      }
6837
6838      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6839        if (TemplateParameterListsAreEqual(TemplateParams,
6840                                           OldDecl->getTemplateParameters(),
6841                                           /*Complain=*/true,
6842                                           TPL_TemplateMatch))
6843          OldTemplateParams = OldDecl->getTemplateParameters();
6844        else
6845          Invalid = true;
6846
6847        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6848        if (!Invalid &&
6849            !Context.hasSameType(OldTD->getUnderlyingType(),
6850                                 NewTD->getUnderlyingType())) {
6851          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6852          // but we can't reasonably accept it.
6853          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6854            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6855          if (OldTD->getLocation().isValid())
6856            Diag(OldTD->getLocation(), diag::note_previous_definition);
6857          Invalid = true;
6858        }
6859      }
6860    }
6861
6862    // Merge any previous default template arguments into our parameters,
6863    // and check the parameter list.
6864    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6865                                   TPC_TypeAliasTemplate))
6866      return 0;
6867
6868    TypeAliasTemplateDecl *NewDecl =
6869      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6870                                    Name.Identifier, TemplateParams,
6871                                    NewTD);
6872
6873    NewDecl->setAccess(AS);
6874
6875    if (Invalid)
6876      NewDecl->setInvalidDecl();
6877    else if (OldDecl)
6878      NewDecl->setPreviousDeclaration(OldDecl);
6879
6880    NewND = NewDecl;
6881  } else {
6882    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6883    NewND = NewTD;
6884  }
6885
6886  if (!Redeclaration)
6887    PushOnScopeChains(NewND, S);
6888
6889  return NewND;
6890}
6891
6892Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6893                                             SourceLocation NamespaceLoc,
6894                                             SourceLocation AliasLoc,
6895                                             IdentifierInfo *Alias,
6896                                             CXXScopeSpec &SS,
6897                                             SourceLocation IdentLoc,
6898                                             IdentifierInfo *Ident) {
6899
6900  // Lookup the namespace name.
6901  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6902  LookupParsedName(R, S, &SS);
6903
6904  // Check if we have a previous declaration with the same name.
6905  NamedDecl *PrevDecl
6906    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6907                       ForRedeclaration);
6908  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6909    PrevDecl = 0;
6910
6911  if (PrevDecl) {
6912    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6913      // We already have an alias with the same name that points to the same
6914      // namespace, so don't create a new one.
6915      // FIXME: At some point, we'll want to create the (redundant)
6916      // declaration to maintain better source information.
6917      if (!R.isAmbiguous() && !R.empty() &&
6918          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6919        return 0;
6920    }
6921
6922    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6923      diag::err_redefinition_different_kind;
6924    Diag(AliasLoc, DiagID) << Alias;
6925    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6926    return 0;
6927  }
6928
6929  if (R.isAmbiguous())
6930    return 0;
6931
6932  if (R.empty()) {
6933    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6934      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6935      return 0;
6936    }
6937  }
6938
6939  NamespaceAliasDecl *AliasDecl =
6940    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6941                               Alias, SS.getWithLocInContext(Context),
6942                               IdentLoc, R.getFoundDecl());
6943
6944  PushOnScopeChains(AliasDecl, S);
6945  return AliasDecl;
6946}
6947
6948namespace {
6949  /// \brief Scoped object used to handle the state changes required in Sema
6950  /// to implicitly define the body of a C++ member function;
6951  class ImplicitlyDefinedFunctionScope {
6952    Sema &S;
6953    Sema::ContextRAII SavedContext;
6954
6955  public:
6956    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6957      : S(S), SavedContext(S, Method)
6958    {
6959      S.PushFunctionScope();
6960      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6961    }
6962
6963    ~ImplicitlyDefinedFunctionScope() {
6964      S.PopExpressionEvaluationContext();
6965      S.PopFunctionScopeInfo();
6966    }
6967  };
6968}
6969
6970Sema::ImplicitExceptionSpecification
6971Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6972  // C++ [except.spec]p14:
6973  //   An implicitly declared special member function (Clause 12) shall have an
6974  //   exception-specification. [...]
6975  ImplicitExceptionSpecification ExceptSpec(Context);
6976  if (ClassDecl->isInvalidDecl())
6977    return ExceptSpec;
6978
6979  // Direct base-class constructors.
6980  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6981                                       BEnd = ClassDecl->bases_end();
6982       B != BEnd; ++B) {
6983    if (B->isVirtual()) // Handled below.
6984      continue;
6985
6986    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6987      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6988      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6989      // If this is a deleted function, add it anyway. This might be conformant
6990      // with the standard. This might not. I'm not sure. It might not matter.
6991      if (Constructor)
6992        ExceptSpec.CalledDecl(Constructor);
6993    }
6994  }
6995
6996  // Virtual base-class constructors.
6997  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6998                                       BEnd = ClassDecl->vbases_end();
6999       B != BEnd; ++B) {
7000    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7001      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7002      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7003      // If this is a deleted function, add it anyway. This might be conformant
7004      // with the standard. This might not. I'm not sure. It might not matter.
7005      if (Constructor)
7006        ExceptSpec.CalledDecl(Constructor);
7007    }
7008  }
7009
7010  // Field constructors.
7011  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7012                               FEnd = ClassDecl->field_end();
7013       F != FEnd; ++F) {
7014    if (F->hasInClassInitializer()) {
7015      if (Expr *E = F->getInClassInitializer())
7016        ExceptSpec.CalledExpr(E);
7017      else if (!F->isInvalidDecl())
7018        ExceptSpec.SetDelayed();
7019    } else if (const RecordType *RecordTy
7020              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7021      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7022      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7023      // If this is a deleted function, add it anyway. This might be conformant
7024      // with the standard. This might not. I'm not sure. It might not matter.
7025      // In particular, the problem is that this function never gets called. It
7026      // might just be ill-formed because this function attempts to refer to
7027      // a deleted function here.
7028      if (Constructor)
7029        ExceptSpec.CalledDecl(Constructor);
7030    }
7031  }
7032
7033  return ExceptSpec;
7034}
7035
7036CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7037                                                     CXXRecordDecl *ClassDecl) {
7038  // C++ [class.ctor]p5:
7039  //   A default constructor for a class X is a constructor of class X
7040  //   that can be called without an argument. If there is no
7041  //   user-declared constructor for class X, a default constructor is
7042  //   implicitly declared. An implicitly-declared default constructor
7043  //   is an inline public member of its class.
7044  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7045         "Should not build implicit default constructor!");
7046
7047  ImplicitExceptionSpecification Spec =
7048    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7049  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7050
7051  // Create the actual constructor declaration.
7052  CanQualType ClassType
7053    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7054  SourceLocation ClassLoc = ClassDecl->getLocation();
7055  DeclarationName Name
7056    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7057  DeclarationNameInfo NameInfo(Name, ClassLoc);
7058  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7059      Context, ClassDecl, ClassLoc, NameInfo,
7060      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7061      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7062      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7063        getLangOptions().CPlusPlus0x);
7064  DefaultCon->setAccess(AS_public);
7065  DefaultCon->setDefaulted();
7066  DefaultCon->setImplicit();
7067  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7068
7069  // Note that we have declared this constructor.
7070  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7071
7072  if (Scope *S = getScopeForContext(ClassDecl))
7073    PushOnScopeChains(DefaultCon, S, false);
7074  ClassDecl->addDecl(DefaultCon);
7075
7076  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7077    DefaultCon->setDeletedAsWritten();
7078
7079  return DefaultCon;
7080}
7081
7082void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7083                                            CXXConstructorDecl *Constructor) {
7084  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7085          !Constructor->doesThisDeclarationHaveABody() &&
7086          !Constructor->isDeleted()) &&
7087    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7088
7089  CXXRecordDecl *ClassDecl = Constructor->getParent();
7090  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7091
7092  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7093  DiagnosticErrorTrap Trap(Diags);
7094  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7095      Trap.hasErrorOccurred()) {
7096    Diag(CurrentLocation, diag::note_member_synthesized_at)
7097      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7098    Constructor->setInvalidDecl();
7099    return;
7100  }
7101
7102  SourceLocation Loc = Constructor->getLocation();
7103  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7104
7105  Constructor->setUsed();
7106  MarkVTableUsed(CurrentLocation, ClassDecl);
7107
7108  if (ASTMutationListener *L = getASTMutationListener()) {
7109    L->CompletedImplicitDefinition(Constructor);
7110  }
7111}
7112
7113/// Get any existing defaulted default constructor for the given class. Do not
7114/// implicitly define one if it does not exist.
7115static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7116                                                             CXXRecordDecl *D) {
7117  ASTContext &Context = Self.Context;
7118  QualType ClassType = Context.getTypeDeclType(D);
7119  DeclarationName ConstructorName
7120    = Context.DeclarationNames.getCXXConstructorName(
7121                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7122
7123  DeclContext::lookup_const_iterator Con, ConEnd;
7124  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7125       Con != ConEnd; ++Con) {
7126    // A function template cannot be defaulted.
7127    if (isa<FunctionTemplateDecl>(*Con))
7128      continue;
7129
7130    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7131    if (Constructor->isDefaultConstructor())
7132      return Constructor->isDefaulted() ? Constructor : 0;
7133  }
7134  return 0;
7135}
7136
7137void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7138  if (!D) return;
7139  AdjustDeclIfTemplate(D);
7140
7141  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7142  CXXConstructorDecl *CtorDecl
7143    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7144
7145  if (!CtorDecl) return;
7146
7147  // Compute the exception specification for the default constructor.
7148  const FunctionProtoType *CtorTy =
7149    CtorDecl->getType()->castAs<FunctionProtoType>();
7150  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7151    ImplicitExceptionSpecification Spec =
7152      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7153    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7154    assert(EPI.ExceptionSpecType != EST_Delayed);
7155
7156    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7157  }
7158
7159  // If the default constructor is explicitly defaulted, checking the exception
7160  // specification is deferred until now.
7161  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7162      !ClassDecl->isDependentType())
7163    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7164}
7165
7166void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7167  // We start with an initial pass over the base classes to collect those that
7168  // inherit constructors from. If there are none, we can forgo all further
7169  // processing.
7170  typedef SmallVector<const RecordType *, 4> BasesVector;
7171  BasesVector BasesToInheritFrom;
7172  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7173                                          BaseE = ClassDecl->bases_end();
7174         BaseIt != BaseE; ++BaseIt) {
7175    if (BaseIt->getInheritConstructors()) {
7176      QualType Base = BaseIt->getType();
7177      if (Base->isDependentType()) {
7178        // If we inherit constructors from anything that is dependent, just
7179        // abort processing altogether. We'll get another chance for the
7180        // instantiations.
7181        return;
7182      }
7183      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7184    }
7185  }
7186  if (BasesToInheritFrom.empty())
7187    return;
7188
7189  // Now collect the constructors that we already have in the current class.
7190  // Those take precedence over inherited constructors.
7191  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7192  //   unless there is a user-declared constructor with the same signature in
7193  //   the class where the using-declaration appears.
7194  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7195  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7196                                    CtorE = ClassDecl->ctor_end();
7197       CtorIt != CtorE; ++CtorIt) {
7198    ExistingConstructors.insert(
7199        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7200  }
7201
7202  Scope *S = getScopeForContext(ClassDecl);
7203  DeclarationName CreatedCtorName =
7204      Context.DeclarationNames.getCXXConstructorName(
7205          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7206
7207  // Now comes the true work.
7208  // First, we keep a map from constructor types to the base that introduced
7209  // them. Needed for finding conflicting constructors. We also keep the
7210  // actually inserted declarations in there, for pretty diagnostics.
7211  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7212  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7213  ConstructorToSourceMap InheritedConstructors;
7214  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7215                             BaseE = BasesToInheritFrom.end();
7216       BaseIt != BaseE; ++BaseIt) {
7217    const RecordType *Base = *BaseIt;
7218    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7219    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7220    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7221                                      CtorE = BaseDecl->ctor_end();
7222         CtorIt != CtorE; ++CtorIt) {
7223      // Find the using declaration for inheriting this base's constructors.
7224      DeclarationName Name =
7225          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7226      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7227          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7228      SourceLocation UsingLoc = UD ? UD->getLocation() :
7229                                     ClassDecl->getLocation();
7230
7231      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7232      //   from the class X named in the using-declaration consists of actual
7233      //   constructors and notional constructors that result from the
7234      //   transformation of defaulted parameters as follows:
7235      //   - all non-template default constructors of X, and
7236      //   - for each non-template constructor of X that has at least one
7237      //     parameter with a default argument, the set of constructors that
7238      //     results from omitting any ellipsis parameter specification and
7239      //     successively omitting parameters with a default argument from the
7240      //     end of the parameter-type-list.
7241      CXXConstructorDecl *BaseCtor = *CtorIt;
7242      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7243      const FunctionProtoType *BaseCtorType =
7244          BaseCtor->getType()->getAs<FunctionProtoType>();
7245
7246      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7247                    maxParams = BaseCtor->getNumParams();
7248           params <= maxParams; ++params) {
7249        // Skip default constructors. They're never inherited.
7250        if (params == 0)
7251          continue;
7252        // Skip copy and move constructors for the same reason.
7253        if (CanBeCopyOrMove && params == 1)
7254          continue;
7255
7256        // Build up a function type for this particular constructor.
7257        // FIXME: The working paper does not consider that the exception spec
7258        // for the inheriting constructor might be larger than that of the
7259        // source. This code doesn't yet, either. When it does, this code will
7260        // need to be delayed until after exception specifications and in-class
7261        // member initializers are attached.
7262        const Type *NewCtorType;
7263        if (params == maxParams)
7264          NewCtorType = BaseCtorType;
7265        else {
7266          SmallVector<QualType, 16> Args;
7267          for (unsigned i = 0; i < params; ++i) {
7268            Args.push_back(BaseCtorType->getArgType(i));
7269          }
7270          FunctionProtoType::ExtProtoInfo ExtInfo =
7271              BaseCtorType->getExtProtoInfo();
7272          ExtInfo.Variadic = false;
7273          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7274                                                Args.data(), params, ExtInfo)
7275                       .getTypePtr();
7276        }
7277        const Type *CanonicalNewCtorType =
7278            Context.getCanonicalType(NewCtorType);
7279
7280        // Now that we have the type, first check if the class already has a
7281        // constructor with this signature.
7282        if (ExistingConstructors.count(CanonicalNewCtorType))
7283          continue;
7284
7285        // Then we check if we have already declared an inherited constructor
7286        // with this signature.
7287        std::pair<ConstructorToSourceMap::iterator, bool> result =
7288            InheritedConstructors.insert(std::make_pair(
7289                CanonicalNewCtorType,
7290                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7291        if (!result.second) {
7292          // Already in the map. If it came from a different class, that's an
7293          // error. Not if it's from the same.
7294          CanQualType PreviousBase = result.first->second.first;
7295          if (CanonicalBase != PreviousBase) {
7296            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7297            const CXXConstructorDecl *PrevBaseCtor =
7298                PrevCtor->getInheritedConstructor();
7299            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7300
7301            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7302            Diag(BaseCtor->getLocation(),
7303                 diag::note_using_decl_constructor_conflict_current_ctor);
7304            Diag(PrevBaseCtor->getLocation(),
7305                 diag::note_using_decl_constructor_conflict_previous_ctor);
7306            Diag(PrevCtor->getLocation(),
7307                 diag::note_using_decl_constructor_conflict_previous_using);
7308          }
7309          continue;
7310        }
7311
7312        // OK, we're there, now add the constructor.
7313        // C++0x [class.inhctor]p8: [...] that would be performed by a
7314        //   user-written inline constructor [...]
7315        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7316        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7317            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7318            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7319            /*ImplicitlyDeclared=*/true,
7320            // FIXME: Due to a defect in the standard, we treat inherited
7321            // constructors as constexpr even if that makes them ill-formed.
7322            /*Constexpr=*/BaseCtor->isConstexpr());
7323        NewCtor->setAccess(BaseCtor->getAccess());
7324
7325        // Build up the parameter decls and add them.
7326        SmallVector<ParmVarDecl *, 16> ParamDecls;
7327        for (unsigned i = 0; i < params; ++i) {
7328          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7329                                                   UsingLoc, UsingLoc,
7330                                                   /*IdentifierInfo=*/0,
7331                                                   BaseCtorType->getArgType(i),
7332                                                   /*TInfo=*/0, SC_None,
7333                                                   SC_None, /*DefaultArg=*/0));
7334        }
7335        NewCtor->setParams(ParamDecls);
7336        NewCtor->setInheritedConstructor(BaseCtor);
7337
7338        PushOnScopeChains(NewCtor, S, false);
7339        ClassDecl->addDecl(NewCtor);
7340        result.first->second.second = NewCtor;
7341      }
7342    }
7343  }
7344}
7345
7346Sema::ImplicitExceptionSpecification
7347Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7348  // C++ [except.spec]p14:
7349  //   An implicitly declared special member function (Clause 12) shall have
7350  //   an exception-specification.
7351  ImplicitExceptionSpecification ExceptSpec(Context);
7352  if (ClassDecl->isInvalidDecl())
7353    return ExceptSpec;
7354
7355  // Direct base-class destructors.
7356  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7357                                       BEnd = ClassDecl->bases_end();
7358       B != BEnd; ++B) {
7359    if (B->isVirtual()) // Handled below.
7360      continue;
7361
7362    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7363      ExceptSpec.CalledDecl(
7364                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7365  }
7366
7367  // Virtual base-class destructors.
7368  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7369                                       BEnd = ClassDecl->vbases_end();
7370       B != BEnd; ++B) {
7371    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7372      ExceptSpec.CalledDecl(
7373                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7374  }
7375
7376  // Field destructors.
7377  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7378                               FEnd = ClassDecl->field_end();
7379       F != FEnd; ++F) {
7380    if (const RecordType *RecordTy
7381        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7382      ExceptSpec.CalledDecl(
7383                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7384  }
7385
7386  return ExceptSpec;
7387}
7388
7389CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7390  // C++ [class.dtor]p2:
7391  //   If a class has no user-declared destructor, a destructor is
7392  //   declared implicitly. An implicitly-declared destructor is an
7393  //   inline public member of its class.
7394
7395  ImplicitExceptionSpecification Spec =
7396      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7397  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7398
7399  // Create the actual destructor declaration.
7400  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7401
7402  CanQualType ClassType
7403    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7404  SourceLocation ClassLoc = ClassDecl->getLocation();
7405  DeclarationName Name
7406    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7407  DeclarationNameInfo NameInfo(Name, ClassLoc);
7408  CXXDestructorDecl *Destructor
7409      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7410                                  /*isInline=*/true,
7411                                  /*isImplicitlyDeclared=*/true);
7412  Destructor->setAccess(AS_public);
7413  Destructor->setDefaulted();
7414  Destructor->setImplicit();
7415  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7416
7417  // Note that we have declared this destructor.
7418  ++ASTContext::NumImplicitDestructorsDeclared;
7419
7420  // Introduce this destructor into its scope.
7421  if (Scope *S = getScopeForContext(ClassDecl))
7422    PushOnScopeChains(Destructor, S, false);
7423  ClassDecl->addDecl(Destructor);
7424
7425  // This could be uniqued if it ever proves significant.
7426  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7427
7428  if (ShouldDeleteDestructor(Destructor))
7429    Destructor->setDeletedAsWritten();
7430
7431  AddOverriddenMethods(ClassDecl, Destructor);
7432
7433  return Destructor;
7434}
7435
7436void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7437                                    CXXDestructorDecl *Destructor) {
7438  assert((Destructor->isDefaulted() &&
7439          !Destructor->doesThisDeclarationHaveABody()) &&
7440         "DefineImplicitDestructor - call it for implicit default dtor");
7441  CXXRecordDecl *ClassDecl = Destructor->getParent();
7442  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7443
7444  if (Destructor->isInvalidDecl())
7445    return;
7446
7447  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7448
7449  DiagnosticErrorTrap Trap(Diags);
7450  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7451                                         Destructor->getParent());
7452
7453  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7454    Diag(CurrentLocation, diag::note_member_synthesized_at)
7455      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7456
7457    Destructor->setInvalidDecl();
7458    return;
7459  }
7460
7461  SourceLocation Loc = Destructor->getLocation();
7462  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7463  Destructor->setImplicitlyDefined(true);
7464  Destructor->setUsed();
7465  MarkVTableUsed(CurrentLocation, ClassDecl);
7466
7467  if (ASTMutationListener *L = getASTMutationListener()) {
7468    L->CompletedImplicitDefinition(Destructor);
7469  }
7470}
7471
7472void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7473                                         CXXDestructorDecl *destructor) {
7474  // C++11 [class.dtor]p3:
7475  //   A declaration of a destructor that does not have an exception-
7476  //   specification is implicitly considered to have the same exception-
7477  //   specification as an implicit declaration.
7478  const FunctionProtoType *dtorType = destructor->getType()->
7479                                        getAs<FunctionProtoType>();
7480  if (dtorType->hasExceptionSpec())
7481    return;
7482
7483  ImplicitExceptionSpecification exceptSpec =
7484      ComputeDefaultedDtorExceptionSpec(classDecl);
7485
7486  // Replace the destructor's type, building off the existing one. Fortunately,
7487  // the only thing of interest in the destructor type is its extended info.
7488  // The return and arguments are fixed.
7489  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7490  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7491  epi.NumExceptions = exceptSpec.size();
7492  epi.Exceptions = exceptSpec.data();
7493  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7494
7495  destructor->setType(ty);
7496
7497  // FIXME: If the destructor has a body that could throw, and the newly created
7498  // spec doesn't allow exceptions, we should emit a warning, because this
7499  // change in behavior can break conforming C++03 programs at runtime.
7500  // However, we don't have a body yet, so it needs to be done somewhere else.
7501}
7502
7503/// \brief Builds a statement that copies/moves the given entity from \p From to
7504/// \c To.
7505///
7506/// This routine is used to copy/move the members of a class with an
7507/// implicitly-declared copy/move assignment operator. When the entities being
7508/// copied are arrays, this routine builds for loops to copy them.
7509///
7510/// \param S The Sema object used for type-checking.
7511///
7512/// \param Loc The location where the implicit copy/move is being generated.
7513///
7514/// \param T The type of the expressions being copied/moved. Both expressions
7515/// must have this type.
7516///
7517/// \param To The expression we are copying/moving to.
7518///
7519/// \param From The expression we are copying/moving from.
7520///
7521/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7522/// Otherwise, it's a non-static member subobject.
7523///
7524/// \param Copying Whether we're copying or moving.
7525///
7526/// \param Depth Internal parameter recording the depth of the recursion.
7527///
7528/// \returns A statement or a loop that copies the expressions.
7529static StmtResult
7530BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7531                      Expr *To, Expr *From,
7532                      bool CopyingBaseSubobject, bool Copying,
7533                      unsigned Depth = 0) {
7534  // C++0x [class.copy]p28:
7535  //   Each subobject is assigned in the manner appropriate to its type:
7536  //
7537  //     - if the subobject is of class type, as if by a call to operator= with
7538  //       the subobject as the object expression and the corresponding
7539  //       subobject of x as a single function argument (as if by explicit
7540  //       qualification; that is, ignoring any possible virtual overriding
7541  //       functions in more derived classes);
7542  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7543    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7544
7545    // Look for operator=.
7546    DeclarationName Name
7547      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7548    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7549    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7550
7551    // Filter out any result that isn't a copy/move-assignment operator.
7552    LookupResult::Filter F = OpLookup.makeFilter();
7553    while (F.hasNext()) {
7554      NamedDecl *D = F.next();
7555      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7556        if (Copying ? Method->isCopyAssignmentOperator() :
7557                      Method->isMoveAssignmentOperator())
7558          continue;
7559
7560      F.erase();
7561    }
7562    F.done();
7563
7564    // Suppress the protected check (C++ [class.protected]) for each of the
7565    // assignment operators we found. This strange dance is required when
7566    // we're assigning via a base classes's copy-assignment operator. To
7567    // ensure that we're getting the right base class subobject (without
7568    // ambiguities), we need to cast "this" to that subobject type; to
7569    // ensure that we don't go through the virtual call mechanism, we need
7570    // to qualify the operator= name with the base class (see below). However,
7571    // this means that if the base class has a protected copy assignment
7572    // operator, the protected member access check will fail. So, we
7573    // rewrite "protected" access to "public" access in this case, since we
7574    // know by construction that we're calling from a derived class.
7575    if (CopyingBaseSubobject) {
7576      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7577           L != LEnd; ++L) {
7578        if (L.getAccess() == AS_protected)
7579          L.setAccess(AS_public);
7580      }
7581    }
7582
7583    // Create the nested-name-specifier that will be used to qualify the
7584    // reference to operator=; this is required to suppress the virtual
7585    // call mechanism.
7586    CXXScopeSpec SS;
7587    SS.MakeTrivial(S.Context,
7588                   NestedNameSpecifier::Create(S.Context, 0, false,
7589                                               T.getTypePtr()),
7590                   Loc);
7591
7592    // Create the reference to operator=.
7593    ExprResult OpEqualRef
7594      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7595                                   /*FirstQualifierInScope=*/0, OpLookup,
7596                                   /*TemplateArgs=*/0,
7597                                   /*SuppressQualifierCheck=*/true);
7598    if (OpEqualRef.isInvalid())
7599      return StmtError();
7600
7601    // Build the call to the assignment operator.
7602
7603    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7604                                                  OpEqualRef.takeAs<Expr>(),
7605                                                  Loc, &From, 1, Loc);
7606    if (Call.isInvalid())
7607      return StmtError();
7608
7609    return S.Owned(Call.takeAs<Stmt>());
7610  }
7611
7612  //     - if the subobject is of scalar type, the built-in assignment
7613  //       operator is used.
7614  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7615  if (!ArrayTy) {
7616    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7617    if (Assignment.isInvalid())
7618      return StmtError();
7619
7620    return S.Owned(Assignment.takeAs<Stmt>());
7621  }
7622
7623  //     - if the subobject is an array, each element is assigned, in the
7624  //       manner appropriate to the element type;
7625
7626  // Construct a loop over the array bounds, e.g.,
7627  //
7628  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7629  //
7630  // that will copy each of the array elements.
7631  QualType SizeType = S.Context.getSizeType();
7632
7633  // Create the iteration variable.
7634  IdentifierInfo *IterationVarName = 0;
7635  {
7636    llvm::SmallString<8> Str;
7637    llvm::raw_svector_ostream OS(Str);
7638    OS << "__i" << Depth;
7639    IterationVarName = &S.Context.Idents.get(OS.str());
7640  }
7641  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7642                                          IterationVarName, SizeType,
7643                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7644                                          SC_None, SC_None);
7645
7646  // Initialize the iteration variable to zero.
7647  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7648  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7649
7650  // Create a reference to the iteration variable; we'll use this several
7651  // times throughout.
7652  Expr *IterationVarRef
7653    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7654  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7655  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7656  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7657
7658  // Create the DeclStmt that holds the iteration variable.
7659  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7660
7661  // Create the comparison against the array bound.
7662  llvm::APInt Upper
7663    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7664  Expr *Comparison
7665    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7666                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7667                                     BO_NE, S.Context.BoolTy,
7668                                     VK_RValue, OK_Ordinary, Loc);
7669
7670  // Create the pre-increment of the iteration variable.
7671  Expr *Increment
7672    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7673                                    VK_LValue, OK_Ordinary, Loc);
7674
7675  // Subscript the "from" and "to" expressions with the iteration variable.
7676  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7677                                                         IterationVarRefRVal,
7678                                                         Loc));
7679  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7680                                                       IterationVarRefRVal,
7681                                                       Loc));
7682  if (!Copying) // Cast to rvalue
7683    From = CastForMoving(S, From);
7684
7685  // Build the copy/move for an individual element of the array.
7686  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7687                                          To, From, CopyingBaseSubobject,
7688                                          Copying, Depth + 1);
7689  if (Copy.isInvalid())
7690    return StmtError();
7691
7692  // Construct the loop that copies all elements of this array.
7693  return S.ActOnForStmt(Loc, Loc, InitStmt,
7694                        S.MakeFullExpr(Comparison),
7695                        0, S.MakeFullExpr(Increment),
7696                        Loc, Copy.take());
7697}
7698
7699std::pair<Sema::ImplicitExceptionSpecification, bool>
7700Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7701                                                   CXXRecordDecl *ClassDecl) {
7702  if (ClassDecl->isInvalidDecl())
7703    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7704
7705  // C++ [class.copy]p10:
7706  //   If the class definition does not explicitly declare a copy
7707  //   assignment operator, one is declared implicitly.
7708  //   The implicitly-defined copy assignment operator for a class X
7709  //   will have the form
7710  //
7711  //       X& X::operator=(const X&)
7712  //
7713  //   if
7714  bool HasConstCopyAssignment = true;
7715
7716  //       -- each direct base class B of X has a copy assignment operator
7717  //          whose parameter is of type const B&, const volatile B& or B,
7718  //          and
7719  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7720                                       BaseEnd = ClassDecl->bases_end();
7721       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7722    // We'll handle this below
7723    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7724      continue;
7725
7726    assert(!Base->getType()->isDependentType() &&
7727           "Cannot generate implicit members for class with dependent bases.");
7728    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7729    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7730                            &HasConstCopyAssignment);
7731  }
7732
7733  // In C++11, the above citation has "or virtual" added
7734  if (LangOpts.CPlusPlus0x) {
7735    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7736                                         BaseEnd = ClassDecl->vbases_end();
7737         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7738      assert(!Base->getType()->isDependentType() &&
7739             "Cannot generate implicit members for class with dependent bases.");
7740      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7741      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7742                              &HasConstCopyAssignment);
7743    }
7744  }
7745
7746  //       -- for all the nonstatic data members of X that are of a class
7747  //          type M (or array thereof), each such class type has a copy
7748  //          assignment operator whose parameter is of type const M&,
7749  //          const volatile M& or M.
7750  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7751                                  FieldEnd = ClassDecl->field_end();
7752       HasConstCopyAssignment && Field != FieldEnd;
7753       ++Field) {
7754    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7755    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7756      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7757                              &HasConstCopyAssignment);
7758    }
7759  }
7760
7761  //   Otherwise, the implicitly declared copy assignment operator will
7762  //   have the form
7763  //
7764  //       X& X::operator=(X&)
7765
7766  // C++ [except.spec]p14:
7767  //   An implicitly declared special member function (Clause 12) shall have an
7768  //   exception-specification. [...]
7769
7770  // It is unspecified whether or not an implicit copy assignment operator
7771  // attempts to deduplicate calls to assignment operators of virtual bases are
7772  // made. As such, this exception specification is effectively unspecified.
7773  // Based on a similar decision made for constness in C++0x, we're erring on
7774  // the side of assuming such calls to be made regardless of whether they
7775  // actually happen.
7776  ImplicitExceptionSpecification ExceptSpec(Context);
7777  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7778  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7779                                       BaseEnd = ClassDecl->bases_end();
7780       Base != BaseEnd; ++Base) {
7781    if (Base->isVirtual())
7782      continue;
7783
7784    CXXRecordDecl *BaseClassDecl
7785      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7786    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7787                                                            ArgQuals, false, 0))
7788      ExceptSpec.CalledDecl(CopyAssign);
7789  }
7790
7791  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7792                                       BaseEnd = ClassDecl->vbases_end();
7793       Base != BaseEnd; ++Base) {
7794    CXXRecordDecl *BaseClassDecl
7795      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7796    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7797                                                            ArgQuals, false, 0))
7798      ExceptSpec.CalledDecl(CopyAssign);
7799  }
7800
7801  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7802                                  FieldEnd = ClassDecl->field_end();
7803       Field != FieldEnd;
7804       ++Field) {
7805    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7806    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7807      if (CXXMethodDecl *CopyAssign =
7808          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7809        ExceptSpec.CalledDecl(CopyAssign);
7810    }
7811  }
7812
7813  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7814}
7815
7816CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7817  // Note: The following rules are largely analoguous to the copy
7818  // constructor rules. Note that virtual bases are not taken into account
7819  // for determining the argument type of the operator. Note also that
7820  // operators taking an object instead of a reference are allowed.
7821
7822  ImplicitExceptionSpecification Spec(Context);
7823  bool Const;
7824  llvm::tie(Spec, Const) =
7825    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7826
7827  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7828  QualType RetType = Context.getLValueReferenceType(ArgType);
7829  if (Const)
7830    ArgType = ArgType.withConst();
7831  ArgType = Context.getLValueReferenceType(ArgType);
7832
7833  //   An implicitly-declared copy assignment operator is an inline public
7834  //   member of its class.
7835  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7836  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7837  SourceLocation ClassLoc = ClassDecl->getLocation();
7838  DeclarationNameInfo NameInfo(Name, ClassLoc);
7839  CXXMethodDecl *CopyAssignment
7840    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7841                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7842                            /*TInfo=*/0, /*isStatic=*/false,
7843                            /*StorageClassAsWritten=*/SC_None,
7844                            /*isInline=*/true, /*isConstexpr=*/false,
7845                            SourceLocation());
7846  CopyAssignment->setAccess(AS_public);
7847  CopyAssignment->setDefaulted();
7848  CopyAssignment->setImplicit();
7849  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7850
7851  // Add the parameter to the operator.
7852  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7853                                               ClassLoc, ClassLoc, /*Id=*/0,
7854                                               ArgType, /*TInfo=*/0,
7855                                               SC_None,
7856                                               SC_None, 0);
7857  CopyAssignment->setParams(FromParam);
7858
7859  // Note that we have added this copy-assignment operator.
7860  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7861
7862  if (Scope *S = getScopeForContext(ClassDecl))
7863    PushOnScopeChains(CopyAssignment, S, false);
7864  ClassDecl->addDecl(CopyAssignment);
7865
7866  // C++0x [class.copy]p19:
7867  //   ....  If the class definition does not explicitly declare a copy
7868  //   assignment operator, there is no user-declared move constructor, and
7869  //   there is no user-declared move assignment operator, a copy assignment
7870  //   operator is implicitly declared as defaulted.
7871  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7872          !getLangOptions().MicrosoftMode) ||
7873      ClassDecl->hasUserDeclaredMoveAssignment() ||
7874      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7875    CopyAssignment->setDeletedAsWritten();
7876
7877  AddOverriddenMethods(ClassDecl, CopyAssignment);
7878  return CopyAssignment;
7879}
7880
7881void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7882                                        CXXMethodDecl *CopyAssignOperator) {
7883  assert((CopyAssignOperator->isDefaulted() &&
7884          CopyAssignOperator->isOverloadedOperator() &&
7885          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7886          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7887         "DefineImplicitCopyAssignment called for wrong function");
7888
7889  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7890
7891  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7892    CopyAssignOperator->setInvalidDecl();
7893    return;
7894  }
7895
7896  CopyAssignOperator->setUsed();
7897
7898  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7899  DiagnosticErrorTrap Trap(Diags);
7900
7901  // C++0x [class.copy]p30:
7902  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7903  //   for a non-union class X performs memberwise copy assignment of its
7904  //   subobjects. The direct base classes of X are assigned first, in the
7905  //   order of their declaration in the base-specifier-list, and then the
7906  //   immediate non-static data members of X are assigned, in the order in
7907  //   which they were declared in the class definition.
7908
7909  // The statements that form the synthesized function body.
7910  ASTOwningVector<Stmt*> Statements(*this);
7911
7912  // The parameter for the "other" object, which we are copying from.
7913  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7914  Qualifiers OtherQuals = Other->getType().getQualifiers();
7915  QualType OtherRefType = Other->getType();
7916  if (const LValueReferenceType *OtherRef
7917                                = OtherRefType->getAs<LValueReferenceType>()) {
7918    OtherRefType = OtherRef->getPointeeType();
7919    OtherQuals = OtherRefType.getQualifiers();
7920  }
7921
7922  // Our location for everything implicitly-generated.
7923  SourceLocation Loc = CopyAssignOperator->getLocation();
7924
7925  // Construct a reference to the "other" object. We'll be using this
7926  // throughout the generated ASTs.
7927  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7928  assert(OtherRef && "Reference to parameter cannot fail!");
7929
7930  // Construct the "this" pointer. We'll be using this throughout the generated
7931  // ASTs.
7932  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7933  assert(This && "Reference to this cannot fail!");
7934
7935  // Assign base classes.
7936  bool Invalid = false;
7937  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7938       E = ClassDecl->bases_end(); Base != E; ++Base) {
7939    // Form the assignment:
7940    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7941    QualType BaseType = Base->getType().getUnqualifiedType();
7942    if (!BaseType->isRecordType()) {
7943      Invalid = true;
7944      continue;
7945    }
7946
7947    CXXCastPath BasePath;
7948    BasePath.push_back(Base);
7949
7950    // Construct the "from" expression, which is an implicit cast to the
7951    // appropriately-qualified base type.
7952    Expr *From = OtherRef;
7953    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7954                             CK_UncheckedDerivedToBase,
7955                             VK_LValue, &BasePath).take();
7956
7957    // Dereference "this".
7958    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7959
7960    // Implicitly cast "this" to the appropriately-qualified base type.
7961    To = ImpCastExprToType(To.take(),
7962                           Context.getCVRQualifiedType(BaseType,
7963                                     CopyAssignOperator->getTypeQualifiers()),
7964                           CK_UncheckedDerivedToBase,
7965                           VK_LValue, &BasePath);
7966
7967    // Build the copy.
7968    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7969                                            To.get(), From,
7970                                            /*CopyingBaseSubobject=*/true,
7971                                            /*Copying=*/true);
7972    if (Copy.isInvalid()) {
7973      Diag(CurrentLocation, diag::note_member_synthesized_at)
7974        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7975      CopyAssignOperator->setInvalidDecl();
7976      return;
7977    }
7978
7979    // Success! Record the copy.
7980    Statements.push_back(Copy.takeAs<Expr>());
7981  }
7982
7983  // \brief Reference to the __builtin_memcpy function.
7984  Expr *BuiltinMemCpyRef = 0;
7985  // \brief Reference to the __builtin_objc_memmove_collectable function.
7986  Expr *CollectableMemCpyRef = 0;
7987
7988  // Assign non-static members.
7989  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7990                                  FieldEnd = ClassDecl->field_end();
7991       Field != FieldEnd; ++Field) {
7992    if (Field->isUnnamedBitfield())
7993      continue;
7994
7995    // Check for members of reference type; we can't copy those.
7996    if (Field->getType()->isReferenceType()) {
7997      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7998        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7999      Diag(Field->getLocation(), diag::note_declared_at);
8000      Diag(CurrentLocation, diag::note_member_synthesized_at)
8001        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8002      Invalid = true;
8003      continue;
8004    }
8005
8006    // Check for members of const-qualified, non-class type.
8007    QualType BaseType = Context.getBaseElementType(Field->getType());
8008    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8009      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8010        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8011      Diag(Field->getLocation(), diag::note_declared_at);
8012      Diag(CurrentLocation, diag::note_member_synthesized_at)
8013        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8014      Invalid = true;
8015      continue;
8016    }
8017
8018    // Suppress assigning zero-width bitfields.
8019    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8020      continue;
8021
8022    QualType FieldType = Field->getType().getNonReferenceType();
8023    if (FieldType->isIncompleteArrayType()) {
8024      assert(ClassDecl->hasFlexibleArrayMember() &&
8025             "Incomplete array type is not valid");
8026      continue;
8027    }
8028
8029    // Build references to the field in the object we're copying from and to.
8030    CXXScopeSpec SS; // Intentionally empty
8031    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8032                              LookupMemberName);
8033    MemberLookup.addDecl(*Field);
8034    MemberLookup.resolveKind();
8035    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8036                                               Loc, /*IsArrow=*/false,
8037                                               SS, 0, MemberLookup, 0);
8038    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8039                                             Loc, /*IsArrow=*/true,
8040                                             SS, 0, MemberLookup, 0);
8041    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8042    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8043
8044    // If the field should be copied with __builtin_memcpy rather than via
8045    // explicit assignments, do so. This optimization only applies for arrays
8046    // of scalars and arrays of class type with trivial copy-assignment
8047    // operators.
8048    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8049        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8050      // Compute the size of the memory buffer to be copied.
8051      QualType SizeType = Context.getSizeType();
8052      llvm::APInt Size(Context.getTypeSize(SizeType),
8053                       Context.getTypeSizeInChars(BaseType).getQuantity());
8054      for (const ConstantArrayType *Array
8055              = Context.getAsConstantArrayType(FieldType);
8056           Array;
8057           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8058        llvm::APInt ArraySize
8059          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8060        Size *= ArraySize;
8061      }
8062
8063      // Take the address of the field references for "from" and "to".
8064      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8065      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8066
8067      bool NeedsCollectableMemCpy =
8068          (BaseType->isRecordType() &&
8069           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8070
8071      if (NeedsCollectableMemCpy) {
8072        if (!CollectableMemCpyRef) {
8073          // Create a reference to the __builtin_objc_memmove_collectable function.
8074          LookupResult R(*this,
8075                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8076                         Loc, LookupOrdinaryName);
8077          LookupName(R, TUScope, true);
8078
8079          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8080          if (!CollectableMemCpy) {
8081            // Something went horribly wrong earlier, and we will have
8082            // complained about it.
8083            Invalid = true;
8084            continue;
8085          }
8086
8087          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8088                                                  CollectableMemCpy->getType(),
8089                                                  VK_LValue, Loc, 0).take();
8090          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8091        }
8092      }
8093      // Create a reference to the __builtin_memcpy builtin function.
8094      else if (!BuiltinMemCpyRef) {
8095        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8096                       LookupOrdinaryName);
8097        LookupName(R, TUScope, true);
8098
8099        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8100        if (!BuiltinMemCpy) {
8101          // Something went horribly wrong earlier, and we will have complained
8102          // about it.
8103          Invalid = true;
8104          continue;
8105        }
8106
8107        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8108                                            BuiltinMemCpy->getType(),
8109                                            VK_LValue, Loc, 0).take();
8110        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8111      }
8112
8113      ASTOwningVector<Expr*> CallArgs(*this);
8114      CallArgs.push_back(To.takeAs<Expr>());
8115      CallArgs.push_back(From.takeAs<Expr>());
8116      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8117      ExprResult Call = ExprError();
8118      if (NeedsCollectableMemCpy)
8119        Call = ActOnCallExpr(/*Scope=*/0,
8120                             CollectableMemCpyRef,
8121                             Loc, move_arg(CallArgs),
8122                             Loc);
8123      else
8124        Call = ActOnCallExpr(/*Scope=*/0,
8125                             BuiltinMemCpyRef,
8126                             Loc, move_arg(CallArgs),
8127                             Loc);
8128
8129      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8130      Statements.push_back(Call.takeAs<Expr>());
8131      continue;
8132    }
8133
8134    // Build the copy of this field.
8135    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8136                                            To.get(), From.get(),
8137                                            /*CopyingBaseSubobject=*/false,
8138                                            /*Copying=*/true);
8139    if (Copy.isInvalid()) {
8140      Diag(CurrentLocation, diag::note_member_synthesized_at)
8141        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8142      CopyAssignOperator->setInvalidDecl();
8143      return;
8144    }
8145
8146    // Success! Record the copy.
8147    Statements.push_back(Copy.takeAs<Stmt>());
8148  }
8149
8150  if (!Invalid) {
8151    // Add a "return *this;"
8152    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8153
8154    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8155    if (Return.isInvalid())
8156      Invalid = true;
8157    else {
8158      Statements.push_back(Return.takeAs<Stmt>());
8159
8160      if (Trap.hasErrorOccurred()) {
8161        Diag(CurrentLocation, diag::note_member_synthesized_at)
8162          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8163        Invalid = true;
8164      }
8165    }
8166  }
8167
8168  if (Invalid) {
8169    CopyAssignOperator->setInvalidDecl();
8170    return;
8171  }
8172
8173  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8174                                            /*isStmtExpr=*/false);
8175  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8176  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8177
8178  if (ASTMutationListener *L = getASTMutationListener()) {
8179    L->CompletedImplicitDefinition(CopyAssignOperator);
8180  }
8181}
8182
8183Sema::ImplicitExceptionSpecification
8184Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8185  ImplicitExceptionSpecification ExceptSpec(Context);
8186
8187  if (ClassDecl->isInvalidDecl())
8188    return ExceptSpec;
8189
8190  // C++0x [except.spec]p14:
8191  //   An implicitly declared special member function (Clause 12) shall have an
8192  //   exception-specification. [...]
8193
8194  // It is unspecified whether or not an implicit move assignment operator
8195  // attempts to deduplicate calls to assignment operators of virtual bases are
8196  // made. As such, this exception specification is effectively unspecified.
8197  // Based on a similar decision made for constness in C++0x, we're erring on
8198  // the side of assuming such calls to be made regardless of whether they
8199  // actually happen.
8200  // Note that a move constructor is not implicitly declared when there are
8201  // virtual bases, but it can still be user-declared and explicitly defaulted.
8202  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8203                                       BaseEnd = ClassDecl->bases_end();
8204       Base != BaseEnd; ++Base) {
8205    if (Base->isVirtual())
8206      continue;
8207
8208    CXXRecordDecl *BaseClassDecl
8209      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8210    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8211                                                           false, 0))
8212      ExceptSpec.CalledDecl(MoveAssign);
8213  }
8214
8215  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8216                                       BaseEnd = ClassDecl->vbases_end();
8217       Base != BaseEnd; ++Base) {
8218    CXXRecordDecl *BaseClassDecl
8219      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8220    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8221                                                           false, 0))
8222      ExceptSpec.CalledDecl(MoveAssign);
8223  }
8224
8225  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8226                                  FieldEnd = ClassDecl->field_end();
8227       Field != FieldEnd;
8228       ++Field) {
8229    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8230    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8231      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8232                                                             false, 0))
8233        ExceptSpec.CalledDecl(MoveAssign);
8234    }
8235  }
8236
8237  return ExceptSpec;
8238}
8239
8240CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8241  // Note: The following rules are largely analoguous to the move
8242  // constructor rules.
8243
8244  ImplicitExceptionSpecification Spec(
8245      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8246
8247  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8248  QualType RetType = Context.getLValueReferenceType(ArgType);
8249  ArgType = Context.getRValueReferenceType(ArgType);
8250
8251  //   An implicitly-declared move assignment operator is an inline public
8252  //   member of its class.
8253  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8254  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8255  SourceLocation ClassLoc = ClassDecl->getLocation();
8256  DeclarationNameInfo NameInfo(Name, ClassLoc);
8257  CXXMethodDecl *MoveAssignment
8258    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8259                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8260                            /*TInfo=*/0, /*isStatic=*/false,
8261                            /*StorageClassAsWritten=*/SC_None,
8262                            /*isInline=*/true,
8263                            /*isConstexpr=*/false,
8264                            SourceLocation());
8265  MoveAssignment->setAccess(AS_public);
8266  MoveAssignment->setDefaulted();
8267  MoveAssignment->setImplicit();
8268  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8269
8270  // Add the parameter to the operator.
8271  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8272                                               ClassLoc, ClassLoc, /*Id=*/0,
8273                                               ArgType, /*TInfo=*/0,
8274                                               SC_None,
8275                                               SC_None, 0);
8276  MoveAssignment->setParams(FromParam);
8277
8278  // Note that we have added this copy-assignment operator.
8279  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8280
8281  // C++0x [class.copy]p9:
8282  //   If the definition of a class X does not explicitly declare a move
8283  //   assignment operator, one will be implicitly declared as defaulted if and
8284  //   only if:
8285  //   [...]
8286  //   - the move assignment operator would not be implicitly defined as
8287  //     deleted.
8288  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8289    // Cache this result so that we don't try to generate this over and over
8290    // on every lookup, leaking memory and wasting time.
8291    ClassDecl->setFailedImplicitMoveAssignment();
8292    return 0;
8293  }
8294
8295  if (Scope *S = getScopeForContext(ClassDecl))
8296    PushOnScopeChains(MoveAssignment, S, false);
8297  ClassDecl->addDecl(MoveAssignment);
8298
8299  AddOverriddenMethods(ClassDecl, MoveAssignment);
8300  return MoveAssignment;
8301}
8302
8303void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8304                                        CXXMethodDecl *MoveAssignOperator) {
8305  assert((MoveAssignOperator->isDefaulted() &&
8306          MoveAssignOperator->isOverloadedOperator() &&
8307          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8308          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8309         "DefineImplicitMoveAssignment called for wrong function");
8310
8311  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8312
8313  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8314    MoveAssignOperator->setInvalidDecl();
8315    return;
8316  }
8317
8318  MoveAssignOperator->setUsed();
8319
8320  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8321  DiagnosticErrorTrap Trap(Diags);
8322
8323  // C++0x [class.copy]p28:
8324  //   The implicitly-defined or move assignment operator for a non-union class
8325  //   X performs memberwise move assignment of its subobjects. The direct base
8326  //   classes of X are assigned first, in the order of their declaration in the
8327  //   base-specifier-list, and then the immediate non-static data members of X
8328  //   are assigned, in the order in which they were declared in the class
8329  //   definition.
8330
8331  // The statements that form the synthesized function body.
8332  ASTOwningVector<Stmt*> Statements(*this);
8333
8334  // The parameter for the "other" object, which we are move from.
8335  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8336  QualType OtherRefType = Other->getType()->
8337      getAs<RValueReferenceType>()->getPointeeType();
8338  assert(OtherRefType.getQualifiers() == 0 &&
8339         "Bad argument type of defaulted move assignment");
8340
8341  // Our location for everything implicitly-generated.
8342  SourceLocation Loc = MoveAssignOperator->getLocation();
8343
8344  // Construct a reference to the "other" object. We'll be using this
8345  // throughout the generated ASTs.
8346  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8347  assert(OtherRef && "Reference to parameter cannot fail!");
8348  // Cast to rvalue.
8349  OtherRef = CastForMoving(*this, OtherRef);
8350
8351  // Construct the "this" pointer. We'll be using this throughout the generated
8352  // ASTs.
8353  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8354  assert(This && "Reference to this cannot fail!");
8355
8356  // Assign base classes.
8357  bool Invalid = false;
8358  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8359       E = ClassDecl->bases_end(); Base != E; ++Base) {
8360    // Form the assignment:
8361    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8362    QualType BaseType = Base->getType().getUnqualifiedType();
8363    if (!BaseType->isRecordType()) {
8364      Invalid = true;
8365      continue;
8366    }
8367
8368    CXXCastPath BasePath;
8369    BasePath.push_back(Base);
8370
8371    // Construct the "from" expression, which is an implicit cast to the
8372    // appropriately-qualified base type.
8373    Expr *From = OtherRef;
8374    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8375                             VK_XValue, &BasePath).take();
8376
8377    // Dereference "this".
8378    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8379
8380    // Implicitly cast "this" to the appropriately-qualified base type.
8381    To = ImpCastExprToType(To.take(),
8382                           Context.getCVRQualifiedType(BaseType,
8383                                     MoveAssignOperator->getTypeQualifiers()),
8384                           CK_UncheckedDerivedToBase,
8385                           VK_LValue, &BasePath);
8386
8387    // Build the move.
8388    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8389                                            To.get(), From,
8390                                            /*CopyingBaseSubobject=*/true,
8391                                            /*Copying=*/false);
8392    if (Move.isInvalid()) {
8393      Diag(CurrentLocation, diag::note_member_synthesized_at)
8394        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8395      MoveAssignOperator->setInvalidDecl();
8396      return;
8397    }
8398
8399    // Success! Record the move.
8400    Statements.push_back(Move.takeAs<Expr>());
8401  }
8402
8403  // \brief Reference to the __builtin_memcpy function.
8404  Expr *BuiltinMemCpyRef = 0;
8405  // \brief Reference to the __builtin_objc_memmove_collectable function.
8406  Expr *CollectableMemCpyRef = 0;
8407
8408  // Assign non-static members.
8409  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8410                                  FieldEnd = ClassDecl->field_end();
8411       Field != FieldEnd; ++Field) {
8412    if (Field->isUnnamedBitfield())
8413      continue;
8414
8415    // Check for members of reference type; we can't move those.
8416    if (Field->getType()->isReferenceType()) {
8417      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8418        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8419      Diag(Field->getLocation(), diag::note_declared_at);
8420      Diag(CurrentLocation, diag::note_member_synthesized_at)
8421        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8422      Invalid = true;
8423      continue;
8424    }
8425
8426    // Check for members of const-qualified, non-class type.
8427    QualType BaseType = Context.getBaseElementType(Field->getType());
8428    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8429      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8430        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8431      Diag(Field->getLocation(), diag::note_declared_at);
8432      Diag(CurrentLocation, diag::note_member_synthesized_at)
8433        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8434      Invalid = true;
8435      continue;
8436    }
8437
8438    // Suppress assigning zero-width bitfields.
8439    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8440      continue;
8441
8442    QualType FieldType = Field->getType().getNonReferenceType();
8443    if (FieldType->isIncompleteArrayType()) {
8444      assert(ClassDecl->hasFlexibleArrayMember() &&
8445             "Incomplete array type is not valid");
8446      continue;
8447    }
8448
8449    // Build references to the field in the object we're copying from and to.
8450    CXXScopeSpec SS; // Intentionally empty
8451    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8452                              LookupMemberName);
8453    MemberLookup.addDecl(*Field);
8454    MemberLookup.resolveKind();
8455    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8456                                               Loc, /*IsArrow=*/false,
8457                                               SS, 0, MemberLookup, 0);
8458    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8459                                             Loc, /*IsArrow=*/true,
8460                                             SS, 0, MemberLookup, 0);
8461    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8462    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8463
8464    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8465        "Member reference with rvalue base must be rvalue except for reference "
8466        "members, which aren't allowed for move assignment.");
8467
8468    // If the field should be copied with __builtin_memcpy rather than via
8469    // explicit assignments, do so. This optimization only applies for arrays
8470    // of scalars and arrays of class type with trivial move-assignment
8471    // operators.
8472    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8473        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8474      // Compute the size of the memory buffer to be copied.
8475      QualType SizeType = Context.getSizeType();
8476      llvm::APInt Size(Context.getTypeSize(SizeType),
8477                       Context.getTypeSizeInChars(BaseType).getQuantity());
8478      for (const ConstantArrayType *Array
8479              = Context.getAsConstantArrayType(FieldType);
8480           Array;
8481           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8482        llvm::APInt ArraySize
8483          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8484        Size *= ArraySize;
8485      }
8486
8487      // Take the address of the field references for "from" and "to". We
8488      // directly construct UnaryOperators here because semantic analysis
8489      // does not permit us to take the address of an xvalue.
8490      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8491                             Context.getPointerType(From.get()->getType()),
8492                             VK_RValue, OK_Ordinary, Loc);
8493      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8494                           Context.getPointerType(To.get()->getType()),
8495                           VK_RValue, OK_Ordinary, Loc);
8496
8497      bool NeedsCollectableMemCpy =
8498          (BaseType->isRecordType() &&
8499           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8500
8501      if (NeedsCollectableMemCpy) {
8502        if (!CollectableMemCpyRef) {
8503          // Create a reference to the __builtin_objc_memmove_collectable function.
8504          LookupResult R(*this,
8505                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8506                         Loc, LookupOrdinaryName);
8507          LookupName(R, TUScope, true);
8508
8509          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8510          if (!CollectableMemCpy) {
8511            // Something went horribly wrong earlier, and we will have
8512            // complained about it.
8513            Invalid = true;
8514            continue;
8515          }
8516
8517          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8518                                                  CollectableMemCpy->getType(),
8519                                                  VK_LValue, Loc, 0).take();
8520          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8521        }
8522      }
8523      // Create a reference to the __builtin_memcpy builtin function.
8524      else if (!BuiltinMemCpyRef) {
8525        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8526                       LookupOrdinaryName);
8527        LookupName(R, TUScope, true);
8528
8529        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8530        if (!BuiltinMemCpy) {
8531          // Something went horribly wrong earlier, and we will have complained
8532          // about it.
8533          Invalid = true;
8534          continue;
8535        }
8536
8537        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8538                                            BuiltinMemCpy->getType(),
8539                                            VK_LValue, Loc, 0).take();
8540        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8541      }
8542
8543      ASTOwningVector<Expr*> CallArgs(*this);
8544      CallArgs.push_back(To.takeAs<Expr>());
8545      CallArgs.push_back(From.takeAs<Expr>());
8546      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8547      ExprResult Call = ExprError();
8548      if (NeedsCollectableMemCpy)
8549        Call = ActOnCallExpr(/*Scope=*/0,
8550                             CollectableMemCpyRef,
8551                             Loc, move_arg(CallArgs),
8552                             Loc);
8553      else
8554        Call = ActOnCallExpr(/*Scope=*/0,
8555                             BuiltinMemCpyRef,
8556                             Loc, move_arg(CallArgs),
8557                             Loc);
8558
8559      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8560      Statements.push_back(Call.takeAs<Expr>());
8561      continue;
8562    }
8563
8564    // Build the move of this field.
8565    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8566                                            To.get(), From.get(),
8567                                            /*CopyingBaseSubobject=*/false,
8568                                            /*Copying=*/false);
8569    if (Move.isInvalid()) {
8570      Diag(CurrentLocation, diag::note_member_synthesized_at)
8571        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8572      MoveAssignOperator->setInvalidDecl();
8573      return;
8574    }
8575
8576    // Success! Record the copy.
8577    Statements.push_back(Move.takeAs<Stmt>());
8578  }
8579
8580  if (!Invalid) {
8581    // Add a "return *this;"
8582    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8583
8584    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8585    if (Return.isInvalid())
8586      Invalid = true;
8587    else {
8588      Statements.push_back(Return.takeAs<Stmt>());
8589
8590      if (Trap.hasErrorOccurred()) {
8591        Diag(CurrentLocation, diag::note_member_synthesized_at)
8592          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8593        Invalid = true;
8594      }
8595    }
8596  }
8597
8598  if (Invalid) {
8599    MoveAssignOperator->setInvalidDecl();
8600    return;
8601  }
8602
8603  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8604                                            /*isStmtExpr=*/false);
8605  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8606  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8607
8608  if (ASTMutationListener *L = getASTMutationListener()) {
8609    L->CompletedImplicitDefinition(MoveAssignOperator);
8610  }
8611}
8612
8613std::pair<Sema::ImplicitExceptionSpecification, bool>
8614Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8615  if (ClassDecl->isInvalidDecl())
8616    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8617
8618  // C++ [class.copy]p5:
8619  //   The implicitly-declared copy constructor for a class X will
8620  //   have the form
8621  //
8622  //       X::X(const X&)
8623  //
8624  //   if
8625  // FIXME: It ought to be possible to store this on the record.
8626  bool HasConstCopyConstructor = true;
8627
8628  //     -- each direct or virtual base class B of X has a copy
8629  //        constructor whose first parameter is of type const B& or
8630  //        const volatile B&, and
8631  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8632                                       BaseEnd = ClassDecl->bases_end();
8633       HasConstCopyConstructor && Base != BaseEnd;
8634       ++Base) {
8635    // Virtual bases are handled below.
8636    if (Base->isVirtual())
8637      continue;
8638
8639    CXXRecordDecl *BaseClassDecl
8640      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8641    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8642                             &HasConstCopyConstructor);
8643  }
8644
8645  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8646                                       BaseEnd = ClassDecl->vbases_end();
8647       HasConstCopyConstructor && Base != BaseEnd;
8648       ++Base) {
8649    CXXRecordDecl *BaseClassDecl
8650      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8651    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8652                             &HasConstCopyConstructor);
8653  }
8654
8655  //     -- for all the nonstatic data members of X that are of a
8656  //        class type M (or array thereof), each such class type
8657  //        has a copy constructor whose first parameter is of type
8658  //        const M& or const volatile M&.
8659  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8660                                  FieldEnd = ClassDecl->field_end();
8661       HasConstCopyConstructor && Field != FieldEnd;
8662       ++Field) {
8663    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8664    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8665      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8666                               &HasConstCopyConstructor);
8667    }
8668  }
8669  //   Otherwise, the implicitly declared copy constructor will have
8670  //   the form
8671  //
8672  //       X::X(X&)
8673
8674  // C++ [except.spec]p14:
8675  //   An implicitly declared special member function (Clause 12) shall have an
8676  //   exception-specification. [...]
8677  ImplicitExceptionSpecification ExceptSpec(Context);
8678  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8679  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8680                                       BaseEnd = ClassDecl->bases_end();
8681       Base != BaseEnd;
8682       ++Base) {
8683    // Virtual bases are handled below.
8684    if (Base->isVirtual())
8685      continue;
8686
8687    CXXRecordDecl *BaseClassDecl
8688      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8689    if (CXXConstructorDecl *CopyConstructor =
8690          LookupCopyingConstructor(BaseClassDecl, Quals))
8691      ExceptSpec.CalledDecl(CopyConstructor);
8692  }
8693  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8694                                       BaseEnd = ClassDecl->vbases_end();
8695       Base != BaseEnd;
8696       ++Base) {
8697    CXXRecordDecl *BaseClassDecl
8698      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8699    if (CXXConstructorDecl *CopyConstructor =
8700          LookupCopyingConstructor(BaseClassDecl, Quals))
8701      ExceptSpec.CalledDecl(CopyConstructor);
8702  }
8703  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8704                                  FieldEnd = ClassDecl->field_end();
8705       Field != FieldEnd;
8706       ++Field) {
8707    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8708    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8709      if (CXXConstructorDecl *CopyConstructor =
8710        LookupCopyingConstructor(FieldClassDecl, Quals))
8711      ExceptSpec.CalledDecl(CopyConstructor);
8712    }
8713  }
8714
8715  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8716}
8717
8718CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8719                                                    CXXRecordDecl *ClassDecl) {
8720  // C++ [class.copy]p4:
8721  //   If the class definition does not explicitly declare a copy
8722  //   constructor, one is declared implicitly.
8723
8724  ImplicitExceptionSpecification Spec(Context);
8725  bool Const;
8726  llvm::tie(Spec, Const) =
8727    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8728
8729  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8730  QualType ArgType = ClassType;
8731  if (Const)
8732    ArgType = ArgType.withConst();
8733  ArgType = Context.getLValueReferenceType(ArgType);
8734
8735  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8736
8737  DeclarationName Name
8738    = Context.DeclarationNames.getCXXConstructorName(
8739                                           Context.getCanonicalType(ClassType));
8740  SourceLocation ClassLoc = ClassDecl->getLocation();
8741  DeclarationNameInfo NameInfo(Name, ClassLoc);
8742
8743  //   An implicitly-declared copy constructor is an inline public
8744  //   member of its class.
8745  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8746      Context, ClassDecl, ClassLoc, NameInfo,
8747      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8748      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8749      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8750        getLangOptions().CPlusPlus0x);
8751  CopyConstructor->setAccess(AS_public);
8752  CopyConstructor->setDefaulted();
8753  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8754
8755  // Note that we have declared this constructor.
8756  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8757
8758  // Add the parameter to the constructor.
8759  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8760                                               ClassLoc, ClassLoc,
8761                                               /*IdentifierInfo=*/0,
8762                                               ArgType, /*TInfo=*/0,
8763                                               SC_None,
8764                                               SC_None, 0);
8765  CopyConstructor->setParams(FromParam);
8766
8767  if (Scope *S = getScopeForContext(ClassDecl))
8768    PushOnScopeChains(CopyConstructor, S, false);
8769  ClassDecl->addDecl(CopyConstructor);
8770
8771  // C++11 [class.copy]p8:
8772  //   ... If the class definition does not explicitly declare a copy
8773  //   constructor, there is no user-declared move constructor, and there is no
8774  //   user-declared move assignment operator, a copy constructor is implicitly
8775  //   declared as defaulted.
8776  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8777      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8778          !getLangOptions().MicrosoftMode) ||
8779      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8780    CopyConstructor->setDeletedAsWritten();
8781
8782  return CopyConstructor;
8783}
8784
8785void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8786                                   CXXConstructorDecl *CopyConstructor) {
8787  assert((CopyConstructor->isDefaulted() &&
8788          CopyConstructor->isCopyConstructor() &&
8789          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8790         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8791
8792  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8793  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8794
8795  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8796  DiagnosticErrorTrap Trap(Diags);
8797
8798  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8799      Trap.hasErrorOccurred()) {
8800    Diag(CurrentLocation, diag::note_member_synthesized_at)
8801      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8802    CopyConstructor->setInvalidDecl();
8803  }  else {
8804    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8805                                               CopyConstructor->getLocation(),
8806                                               MultiStmtArg(*this, 0, 0),
8807                                               /*isStmtExpr=*/false)
8808                                                              .takeAs<Stmt>());
8809    CopyConstructor->setImplicitlyDefined(true);
8810  }
8811
8812  CopyConstructor->setUsed();
8813  if (ASTMutationListener *L = getASTMutationListener()) {
8814    L->CompletedImplicitDefinition(CopyConstructor);
8815  }
8816}
8817
8818Sema::ImplicitExceptionSpecification
8819Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8820  // C++ [except.spec]p14:
8821  //   An implicitly declared special member function (Clause 12) shall have an
8822  //   exception-specification. [...]
8823  ImplicitExceptionSpecification ExceptSpec(Context);
8824  if (ClassDecl->isInvalidDecl())
8825    return ExceptSpec;
8826
8827  // Direct base-class constructors.
8828  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8829                                       BEnd = ClassDecl->bases_end();
8830       B != BEnd; ++B) {
8831    if (B->isVirtual()) // Handled below.
8832      continue;
8833
8834    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8835      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8836      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8837      // If this is a deleted function, add it anyway. This might be conformant
8838      // with the standard. This might not. I'm not sure. It might not matter.
8839      if (Constructor)
8840        ExceptSpec.CalledDecl(Constructor);
8841    }
8842  }
8843
8844  // Virtual base-class constructors.
8845  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8846                                       BEnd = ClassDecl->vbases_end();
8847       B != BEnd; ++B) {
8848    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8849      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8850      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8851      // If this is a deleted function, add it anyway. This might be conformant
8852      // with the standard. This might not. I'm not sure. It might not matter.
8853      if (Constructor)
8854        ExceptSpec.CalledDecl(Constructor);
8855    }
8856  }
8857
8858  // Field constructors.
8859  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8860                               FEnd = ClassDecl->field_end();
8861       F != FEnd; ++F) {
8862    if (const RecordType *RecordTy
8863              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8864      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8865      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8866      // If this is a deleted function, add it anyway. This might be conformant
8867      // with the standard. This might not. I'm not sure. It might not matter.
8868      // In particular, the problem is that this function never gets called. It
8869      // might just be ill-formed because this function attempts to refer to
8870      // a deleted function here.
8871      if (Constructor)
8872        ExceptSpec.CalledDecl(Constructor);
8873    }
8874  }
8875
8876  return ExceptSpec;
8877}
8878
8879CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8880                                                    CXXRecordDecl *ClassDecl) {
8881  ImplicitExceptionSpecification Spec(
8882      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8883
8884  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8885  QualType ArgType = Context.getRValueReferenceType(ClassType);
8886
8887  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8888
8889  DeclarationName Name
8890    = Context.DeclarationNames.getCXXConstructorName(
8891                                           Context.getCanonicalType(ClassType));
8892  SourceLocation ClassLoc = ClassDecl->getLocation();
8893  DeclarationNameInfo NameInfo(Name, ClassLoc);
8894
8895  // C++0x [class.copy]p11:
8896  //   An implicitly-declared copy/move constructor is an inline public
8897  //   member of its class.
8898  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8899      Context, ClassDecl, ClassLoc, NameInfo,
8900      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8901      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8902      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8903        getLangOptions().CPlusPlus0x);
8904  MoveConstructor->setAccess(AS_public);
8905  MoveConstructor->setDefaulted();
8906  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8907
8908  // Add the parameter to the constructor.
8909  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8910                                               ClassLoc, ClassLoc,
8911                                               /*IdentifierInfo=*/0,
8912                                               ArgType, /*TInfo=*/0,
8913                                               SC_None,
8914                                               SC_None, 0);
8915  MoveConstructor->setParams(FromParam);
8916
8917  // C++0x [class.copy]p9:
8918  //   If the definition of a class X does not explicitly declare a move
8919  //   constructor, one will be implicitly declared as defaulted if and only if:
8920  //   [...]
8921  //   - the move constructor would not be implicitly defined as deleted.
8922  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8923    // Cache this result so that we don't try to generate this over and over
8924    // on every lookup, leaking memory and wasting time.
8925    ClassDecl->setFailedImplicitMoveConstructor();
8926    return 0;
8927  }
8928
8929  // Note that we have declared this constructor.
8930  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8931
8932  if (Scope *S = getScopeForContext(ClassDecl))
8933    PushOnScopeChains(MoveConstructor, S, false);
8934  ClassDecl->addDecl(MoveConstructor);
8935
8936  return MoveConstructor;
8937}
8938
8939void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8940                                   CXXConstructorDecl *MoveConstructor) {
8941  assert((MoveConstructor->isDefaulted() &&
8942          MoveConstructor->isMoveConstructor() &&
8943          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8944         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8945
8946  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8947  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8948
8949  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8950  DiagnosticErrorTrap Trap(Diags);
8951
8952  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8953      Trap.hasErrorOccurred()) {
8954    Diag(CurrentLocation, diag::note_member_synthesized_at)
8955      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8956    MoveConstructor->setInvalidDecl();
8957  }  else {
8958    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8959                                               MoveConstructor->getLocation(),
8960                                               MultiStmtArg(*this, 0, 0),
8961                                               /*isStmtExpr=*/false)
8962                                                              .takeAs<Stmt>());
8963    MoveConstructor->setImplicitlyDefined(true);
8964  }
8965
8966  MoveConstructor->setUsed();
8967
8968  if (ASTMutationListener *L = getASTMutationListener()) {
8969    L->CompletedImplicitDefinition(MoveConstructor);
8970  }
8971}
8972
8973ExprResult
8974Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8975                            CXXConstructorDecl *Constructor,
8976                            MultiExprArg ExprArgs,
8977                            bool HadMultipleCandidates,
8978                            bool RequiresZeroInit,
8979                            unsigned ConstructKind,
8980                            SourceRange ParenRange) {
8981  bool Elidable = false;
8982
8983  // C++0x [class.copy]p34:
8984  //   When certain criteria are met, an implementation is allowed to
8985  //   omit the copy/move construction of a class object, even if the
8986  //   copy/move constructor and/or destructor for the object have
8987  //   side effects. [...]
8988  //     - when a temporary class object that has not been bound to a
8989  //       reference (12.2) would be copied/moved to a class object
8990  //       with the same cv-unqualified type, the copy/move operation
8991  //       can be omitted by constructing the temporary object
8992  //       directly into the target of the omitted copy/move
8993  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8994      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8995    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8996    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8997  }
8998
8999  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9000                               Elidable, move(ExprArgs), HadMultipleCandidates,
9001                               RequiresZeroInit, ConstructKind, ParenRange);
9002}
9003
9004/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9005/// including handling of its default argument expressions.
9006ExprResult
9007Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9008                            CXXConstructorDecl *Constructor, bool Elidable,
9009                            MultiExprArg ExprArgs,
9010                            bool HadMultipleCandidates,
9011                            bool RequiresZeroInit,
9012                            unsigned ConstructKind,
9013                            SourceRange ParenRange) {
9014  unsigned NumExprs = ExprArgs.size();
9015  Expr **Exprs = (Expr **)ExprArgs.release();
9016
9017  for (specific_attr_iterator<NonNullAttr>
9018           i = Constructor->specific_attr_begin<NonNullAttr>(),
9019           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9020    const NonNullAttr *NonNull = *i;
9021    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9022  }
9023
9024  MarkDeclarationReferenced(ConstructLoc, Constructor);
9025  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9026                                        Constructor, Elidable, Exprs, NumExprs,
9027                                        HadMultipleCandidates, RequiresZeroInit,
9028              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9029                                        ParenRange));
9030}
9031
9032bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9033                                        CXXConstructorDecl *Constructor,
9034                                        MultiExprArg Exprs,
9035                                        bool HadMultipleCandidates) {
9036  // FIXME: Provide the correct paren SourceRange when available.
9037  ExprResult TempResult =
9038    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9039                          move(Exprs), HadMultipleCandidates, false,
9040                          CXXConstructExpr::CK_Complete, SourceRange());
9041  if (TempResult.isInvalid())
9042    return true;
9043
9044  Expr *Temp = TempResult.takeAs<Expr>();
9045  CheckImplicitConversions(Temp, VD->getLocation());
9046  MarkDeclarationReferenced(VD->getLocation(), Constructor);
9047  Temp = MaybeCreateExprWithCleanups(Temp);
9048  VD->setInit(Temp);
9049
9050  return false;
9051}
9052
9053void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9054  if (VD->isInvalidDecl()) return;
9055
9056  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9057  if (ClassDecl->isInvalidDecl()) return;
9058  if (ClassDecl->hasTrivialDestructor()) return;
9059  if (ClassDecl->isDependentContext()) return;
9060
9061  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9062  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9063  CheckDestructorAccess(VD->getLocation(), Destructor,
9064                        PDiag(diag::err_access_dtor_var)
9065                        << VD->getDeclName()
9066                        << VD->getType());
9067
9068  if (!VD->hasGlobalStorage()) return;
9069
9070  // Emit warning for non-trivial dtor in global scope (a real global,
9071  // class-static, function-static).
9072  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9073
9074  // TODO: this should be re-enabled for static locals by !CXAAtExit
9075  if (!VD->isStaticLocal())
9076    Diag(VD->getLocation(), diag::warn_global_destructor);
9077}
9078
9079/// AddCXXDirectInitializerToDecl - This action is called immediately after
9080/// ActOnDeclarator, when a C++ direct initializer is present.
9081/// e.g: "int x(1);"
9082void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9083                                         SourceLocation LParenLoc,
9084                                         MultiExprArg Exprs,
9085                                         SourceLocation RParenLoc,
9086                                         bool TypeMayContainAuto) {
9087  // If there is no declaration, there was an error parsing it.  Just ignore
9088  // the initializer.
9089  if (RealDecl == 0)
9090    return;
9091
9092  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9093  if (!VDecl) {
9094    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9095    RealDecl->setInvalidDecl();
9096    return;
9097  }
9098
9099  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9100  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9101    if (Exprs.size() == 0) {
9102      // It isn't possible to write this directly, but it is possible to
9103      // end up in this situation with "auto x(some_pack...);"
9104      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9105        << VDecl->getDeclName() << VDecl->getType()
9106        << VDecl->getSourceRange();
9107      RealDecl->setInvalidDecl();
9108      return;
9109    }
9110
9111    if (Exprs.size() > 1) {
9112      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9113           diag::err_auto_var_init_multiple_expressions)
9114        << VDecl->getDeclName() << VDecl->getType()
9115        << VDecl->getSourceRange();
9116      RealDecl->setInvalidDecl();
9117      return;
9118    }
9119
9120    Expr *Init = Exprs.get()[0];
9121    TypeSourceInfo *DeducedType = 0;
9122    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9123            DAR_Failed)
9124      DiagnoseAutoDeductionFailure(VDecl, Init);
9125    if (!DeducedType) {
9126      RealDecl->setInvalidDecl();
9127      return;
9128    }
9129    VDecl->setTypeSourceInfo(DeducedType);
9130    VDecl->setType(DeducedType->getType());
9131
9132    // In ARC, infer lifetime.
9133    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9134      VDecl->setInvalidDecl();
9135
9136    // If this is a redeclaration, check that the type we just deduced matches
9137    // the previously declared type.
9138    if (VarDecl *Old = VDecl->getPreviousDecl())
9139      MergeVarDeclTypes(VDecl, Old);
9140  }
9141
9142  // We will represent direct-initialization similarly to copy-initialization:
9143  //    int x(1);  -as-> int x = 1;
9144  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9145  //
9146  // Clients that want to distinguish between the two forms, can check for
9147  // direct initializer using VarDecl::hasCXXDirectInitializer().
9148  // A major benefit is that clients that don't particularly care about which
9149  // exactly form was it (like the CodeGen) can handle both cases without
9150  // special case code.
9151
9152  // C++ 8.5p11:
9153  // The form of initialization (using parentheses or '=') is generally
9154  // insignificant, but does matter when the entity being initialized has a
9155  // class type.
9156
9157  if (!VDecl->getType()->isDependentType() &&
9158      !VDecl->getType()->isIncompleteArrayType() &&
9159      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9160                          diag::err_typecheck_decl_incomplete_type)) {
9161    VDecl->setInvalidDecl();
9162    return;
9163  }
9164
9165  // The variable can not have an abstract class type.
9166  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9167                             diag::err_abstract_type_in_decl,
9168                             AbstractVariableType))
9169    VDecl->setInvalidDecl();
9170
9171  const VarDecl *Def;
9172  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9173    Diag(VDecl->getLocation(), diag::err_redefinition)
9174    << VDecl->getDeclName();
9175    Diag(Def->getLocation(), diag::note_previous_definition);
9176    VDecl->setInvalidDecl();
9177    return;
9178  }
9179
9180  // C++ [class.static.data]p4
9181  //   If a static data member is of const integral or const
9182  //   enumeration type, its declaration in the class definition can
9183  //   specify a constant-initializer which shall be an integral
9184  //   constant expression (5.19). In that case, the member can appear
9185  //   in integral constant expressions. The member shall still be
9186  //   defined in a namespace scope if it is used in the program and the
9187  //   namespace scope definition shall not contain an initializer.
9188  //
9189  // We already performed a redefinition check above, but for static
9190  // data members we also need to check whether there was an in-class
9191  // declaration with an initializer.
9192  const VarDecl* PrevInit = 0;
9193  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9194    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9195    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9196    return;
9197  }
9198
9199  bool IsDependent = false;
9200  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9201    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9202      VDecl->setInvalidDecl();
9203      return;
9204    }
9205
9206    if (Exprs.get()[I]->isTypeDependent())
9207      IsDependent = true;
9208  }
9209
9210  // If either the declaration has a dependent type or if any of the
9211  // expressions is type-dependent, we represent the initialization
9212  // via a ParenListExpr for later use during template instantiation.
9213  if (VDecl->getType()->isDependentType() || IsDependent) {
9214    // Let clients know that initialization was done with a direct initializer.
9215    VDecl->setCXXDirectInitializer(true);
9216
9217    // Store the initialization expressions as a ParenListExpr.
9218    unsigned NumExprs = Exprs.size();
9219    VDecl->setInit(new (Context) ParenListExpr(
9220        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9221        VDecl->getType().getNonReferenceType()));
9222    return;
9223  }
9224
9225  // Capture the variable that is being initialized and the style of
9226  // initialization.
9227  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9228
9229  // FIXME: Poor source location information.
9230  InitializationKind Kind
9231    = InitializationKind::CreateDirect(VDecl->getLocation(),
9232                                       LParenLoc, RParenLoc);
9233
9234  QualType T = VDecl->getType();
9235  InitializationSequence InitSeq(*this, Entity, Kind,
9236                                 Exprs.get(), Exprs.size());
9237  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9238  if (Result.isInvalid()) {
9239    VDecl->setInvalidDecl();
9240    return;
9241  } else if (T != VDecl->getType()) {
9242    VDecl->setType(T);
9243    Result.get()->setType(T);
9244  }
9245
9246
9247  Expr *Init = Result.get();
9248  CheckImplicitConversions(Init, LParenLoc);
9249
9250  Init = MaybeCreateExprWithCleanups(Init);
9251  VDecl->setInit(Init);
9252  VDecl->setCXXDirectInitializer(true);
9253
9254  CheckCompleteVariableDeclaration(VDecl);
9255}
9256
9257/// \brief Given a constructor and the set of arguments provided for the
9258/// constructor, convert the arguments and add any required default arguments
9259/// to form a proper call to this constructor.
9260///
9261/// \returns true if an error occurred, false otherwise.
9262bool
9263Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9264                              MultiExprArg ArgsPtr,
9265                              SourceLocation Loc,
9266                              ASTOwningVector<Expr*> &ConvertedArgs) {
9267  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9268  unsigned NumArgs = ArgsPtr.size();
9269  Expr **Args = (Expr **)ArgsPtr.get();
9270
9271  const FunctionProtoType *Proto
9272    = Constructor->getType()->getAs<FunctionProtoType>();
9273  assert(Proto && "Constructor without a prototype?");
9274  unsigned NumArgsInProto = Proto->getNumArgs();
9275
9276  // If too few arguments are available, we'll fill in the rest with defaults.
9277  if (NumArgs < NumArgsInProto)
9278    ConvertedArgs.reserve(NumArgsInProto);
9279  else
9280    ConvertedArgs.reserve(NumArgs);
9281
9282  VariadicCallType CallType =
9283    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9284  SmallVector<Expr *, 8> AllArgs;
9285  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9286                                        Proto, 0, Args, NumArgs, AllArgs,
9287                                        CallType);
9288  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9289    ConvertedArgs.push_back(AllArgs[i]);
9290  return Invalid;
9291}
9292
9293static inline bool
9294CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9295                                       const FunctionDecl *FnDecl) {
9296  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9297  if (isa<NamespaceDecl>(DC)) {
9298    return SemaRef.Diag(FnDecl->getLocation(),
9299                        diag::err_operator_new_delete_declared_in_namespace)
9300      << FnDecl->getDeclName();
9301  }
9302
9303  if (isa<TranslationUnitDecl>(DC) &&
9304      FnDecl->getStorageClass() == SC_Static) {
9305    return SemaRef.Diag(FnDecl->getLocation(),
9306                        diag::err_operator_new_delete_declared_static)
9307      << FnDecl->getDeclName();
9308  }
9309
9310  return false;
9311}
9312
9313static inline bool
9314CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9315                            CanQualType ExpectedResultType,
9316                            CanQualType ExpectedFirstParamType,
9317                            unsigned DependentParamTypeDiag,
9318                            unsigned InvalidParamTypeDiag) {
9319  QualType ResultType =
9320    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9321
9322  // Check that the result type is not dependent.
9323  if (ResultType->isDependentType())
9324    return SemaRef.Diag(FnDecl->getLocation(),
9325                        diag::err_operator_new_delete_dependent_result_type)
9326    << FnDecl->getDeclName() << ExpectedResultType;
9327
9328  // Check that the result type is what we expect.
9329  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9330    return SemaRef.Diag(FnDecl->getLocation(),
9331                        diag::err_operator_new_delete_invalid_result_type)
9332    << FnDecl->getDeclName() << ExpectedResultType;
9333
9334  // A function template must have at least 2 parameters.
9335  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9336    return SemaRef.Diag(FnDecl->getLocation(),
9337                      diag::err_operator_new_delete_template_too_few_parameters)
9338        << FnDecl->getDeclName();
9339
9340  // The function decl must have at least 1 parameter.
9341  if (FnDecl->getNumParams() == 0)
9342    return SemaRef.Diag(FnDecl->getLocation(),
9343                        diag::err_operator_new_delete_too_few_parameters)
9344      << FnDecl->getDeclName();
9345
9346  // Check the the first parameter type is not dependent.
9347  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9348  if (FirstParamType->isDependentType())
9349    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9350      << FnDecl->getDeclName() << ExpectedFirstParamType;
9351
9352  // Check that the first parameter type is what we expect.
9353  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9354      ExpectedFirstParamType)
9355    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9356    << FnDecl->getDeclName() << ExpectedFirstParamType;
9357
9358  return false;
9359}
9360
9361static bool
9362CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9363  // C++ [basic.stc.dynamic.allocation]p1:
9364  //   A program is ill-formed if an allocation function is declared in a
9365  //   namespace scope other than global scope or declared static in global
9366  //   scope.
9367  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9368    return true;
9369
9370  CanQualType SizeTy =
9371    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9372
9373  // C++ [basic.stc.dynamic.allocation]p1:
9374  //  The return type shall be void*. The first parameter shall have type
9375  //  std::size_t.
9376  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9377                                  SizeTy,
9378                                  diag::err_operator_new_dependent_param_type,
9379                                  diag::err_operator_new_param_type))
9380    return true;
9381
9382  // C++ [basic.stc.dynamic.allocation]p1:
9383  //  The first parameter shall not have an associated default argument.
9384  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9385    return SemaRef.Diag(FnDecl->getLocation(),
9386                        diag::err_operator_new_default_arg)
9387      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9388
9389  return false;
9390}
9391
9392static bool
9393CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9394  // C++ [basic.stc.dynamic.deallocation]p1:
9395  //   A program is ill-formed if deallocation functions are declared in a
9396  //   namespace scope other than global scope or declared static in global
9397  //   scope.
9398  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9399    return true;
9400
9401  // C++ [basic.stc.dynamic.deallocation]p2:
9402  //   Each deallocation function shall return void and its first parameter
9403  //   shall be void*.
9404  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9405                                  SemaRef.Context.VoidPtrTy,
9406                                 diag::err_operator_delete_dependent_param_type,
9407                                 diag::err_operator_delete_param_type))
9408    return true;
9409
9410  return false;
9411}
9412
9413/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9414/// of this overloaded operator is well-formed. If so, returns false;
9415/// otherwise, emits appropriate diagnostics and returns true.
9416bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9417  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9418         "Expected an overloaded operator declaration");
9419
9420  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9421
9422  // C++ [over.oper]p5:
9423  //   The allocation and deallocation functions, operator new,
9424  //   operator new[], operator delete and operator delete[], are
9425  //   described completely in 3.7.3. The attributes and restrictions
9426  //   found in the rest of this subclause do not apply to them unless
9427  //   explicitly stated in 3.7.3.
9428  if (Op == OO_Delete || Op == OO_Array_Delete)
9429    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9430
9431  if (Op == OO_New || Op == OO_Array_New)
9432    return CheckOperatorNewDeclaration(*this, FnDecl);
9433
9434  // C++ [over.oper]p6:
9435  //   An operator function shall either be a non-static member
9436  //   function or be a non-member function and have at least one
9437  //   parameter whose type is a class, a reference to a class, an
9438  //   enumeration, or a reference to an enumeration.
9439  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9440    if (MethodDecl->isStatic())
9441      return Diag(FnDecl->getLocation(),
9442                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9443  } else {
9444    bool ClassOrEnumParam = false;
9445    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9446                                   ParamEnd = FnDecl->param_end();
9447         Param != ParamEnd; ++Param) {
9448      QualType ParamType = (*Param)->getType().getNonReferenceType();
9449      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9450          ParamType->isEnumeralType()) {
9451        ClassOrEnumParam = true;
9452        break;
9453      }
9454    }
9455
9456    if (!ClassOrEnumParam)
9457      return Diag(FnDecl->getLocation(),
9458                  diag::err_operator_overload_needs_class_or_enum)
9459        << FnDecl->getDeclName();
9460  }
9461
9462  // C++ [over.oper]p8:
9463  //   An operator function cannot have default arguments (8.3.6),
9464  //   except where explicitly stated below.
9465  //
9466  // Only the function-call operator allows default arguments
9467  // (C++ [over.call]p1).
9468  if (Op != OO_Call) {
9469    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9470         Param != FnDecl->param_end(); ++Param) {
9471      if ((*Param)->hasDefaultArg())
9472        return Diag((*Param)->getLocation(),
9473                    diag::err_operator_overload_default_arg)
9474          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9475    }
9476  }
9477
9478  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9479    { false, false, false }
9480#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9481    , { Unary, Binary, MemberOnly }
9482#include "clang/Basic/OperatorKinds.def"
9483  };
9484
9485  bool CanBeUnaryOperator = OperatorUses[Op][0];
9486  bool CanBeBinaryOperator = OperatorUses[Op][1];
9487  bool MustBeMemberOperator = OperatorUses[Op][2];
9488
9489  // C++ [over.oper]p8:
9490  //   [...] Operator functions cannot have more or fewer parameters
9491  //   than the number required for the corresponding operator, as
9492  //   described in the rest of this subclause.
9493  unsigned NumParams = FnDecl->getNumParams()
9494                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9495  if (Op != OO_Call &&
9496      ((NumParams == 1 && !CanBeUnaryOperator) ||
9497       (NumParams == 2 && !CanBeBinaryOperator) ||
9498       (NumParams < 1) || (NumParams > 2))) {
9499    // We have the wrong number of parameters.
9500    unsigned ErrorKind;
9501    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9502      ErrorKind = 2;  // 2 -> unary or binary.
9503    } else if (CanBeUnaryOperator) {
9504      ErrorKind = 0;  // 0 -> unary
9505    } else {
9506      assert(CanBeBinaryOperator &&
9507             "All non-call overloaded operators are unary or binary!");
9508      ErrorKind = 1;  // 1 -> binary
9509    }
9510
9511    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9512      << FnDecl->getDeclName() << NumParams << ErrorKind;
9513  }
9514
9515  // Overloaded operators other than operator() cannot be variadic.
9516  if (Op != OO_Call &&
9517      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9518    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9519      << FnDecl->getDeclName();
9520  }
9521
9522  // Some operators must be non-static member functions.
9523  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9524    return Diag(FnDecl->getLocation(),
9525                diag::err_operator_overload_must_be_member)
9526      << FnDecl->getDeclName();
9527  }
9528
9529  // C++ [over.inc]p1:
9530  //   The user-defined function called operator++ implements the
9531  //   prefix and postfix ++ operator. If this function is a member
9532  //   function with no parameters, or a non-member function with one
9533  //   parameter of class or enumeration type, it defines the prefix
9534  //   increment operator ++ for objects of that type. If the function
9535  //   is a member function with one parameter (which shall be of type
9536  //   int) or a non-member function with two parameters (the second
9537  //   of which shall be of type int), it defines the postfix
9538  //   increment operator ++ for objects of that type.
9539  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9540    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9541    bool ParamIsInt = false;
9542    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9543      ParamIsInt = BT->getKind() == BuiltinType::Int;
9544
9545    if (!ParamIsInt)
9546      return Diag(LastParam->getLocation(),
9547                  diag::err_operator_overload_post_incdec_must_be_int)
9548        << LastParam->getType() << (Op == OO_MinusMinus);
9549  }
9550
9551  return false;
9552}
9553
9554/// CheckLiteralOperatorDeclaration - Check whether the declaration
9555/// of this literal operator function is well-formed. If so, returns
9556/// false; otherwise, emits appropriate diagnostics and returns true.
9557bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9558  DeclContext *DC = FnDecl->getDeclContext();
9559  Decl::Kind Kind = DC->getDeclKind();
9560  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9561      Kind != Decl::LinkageSpec) {
9562    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9563      << FnDecl->getDeclName();
9564    return true;
9565  }
9566
9567  bool Valid = false;
9568
9569  // template <char...> type operator "" name() is the only valid template
9570  // signature, and the only valid signature with no parameters.
9571  if (FnDecl->param_size() == 0) {
9572    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9573      // Must have only one template parameter
9574      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9575      if (Params->size() == 1) {
9576        NonTypeTemplateParmDecl *PmDecl =
9577          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9578
9579        // The template parameter must be a char parameter pack.
9580        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9581            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9582          Valid = true;
9583      }
9584    }
9585  } else {
9586    // Check the first parameter
9587    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9588
9589    QualType T = (*Param)->getType();
9590
9591    // unsigned long long int, long double, and any character type are allowed
9592    // as the only parameters.
9593    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9594        Context.hasSameType(T, Context.LongDoubleTy) ||
9595        Context.hasSameType(T, Context.CharTy) ||
9596        Context.hasSameType(T, Context.WCharTy) ||
9597        Context.hasSameType(T, Context.Char16Ty) ||
9598        Context.hasSameType(T, Context.Char32Ty)) {
9599      if (++Param == FnDecl->param_end())
9600        Valid = true;
9601      goto FinishedParams;
9602    }
9603
9604    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9605    const PointerType *PT = T->getAs<PointerType>();
9606    if (!PT)
9607      goto FinishedParams;
9608    T = PT->getPointeeType();
9609    if (!T.isConstQualified())
9610      goto FinishedParams;
9611    T = T.getUnqualifiedType();
9612
9613    // Move on to the second parameter;
9614    ++Param;
9615
9616    // If there is no second parameter, the first must be a const char *
9617    if (Param == FnDecl->param_end()) {
9618      if (Context.hasSameType(T, Context.CharTy))
9619        Valid = true;
9620      goto FinishedParams;
9621    }
9622
9623    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9624    // are allowed as the first parameter to a two-parameter function
9625    if (!(Context.hasSameType(T, Context.CharTy) ||
9626          Context.hasSameType(T, Context.WCharTy) ||
9627          Context.hasSameType(T, Context.Char16Ty) ||
9628          Context.hasSameType(T, Context.Char32Ty)))
9629      goto FinishedParams;
9630
9631    // The second and final parameter must be an std::size_t
9632    T = (*Param)->getType().getUnqualifiedType();
9633    if (Context.hasSameType(T, Context.getSizeType()) &&
9634        ++Param == FnDecl->param_end())
9635      Valid = true;
9636  }
9637
9638  // FIXME: This diagnostic is absolutely terrible.
9639FinishedParams:
9640  if (!Valid) {
9641    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9642      << FnDecl->getDeclName();
9643    return true;
9644  }
9645
9646  StringRef LiteralName
9647    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9648  if (LiteralName[0] != '_') {
9649    // C++0x [usrlit.suffix]p1:
9650    //   Literal suffix identifiers that do not start with an underscore are
9651    //   reserved for future standardization.
9652    bool IsHexFloat = true;
9653    if (LiteralName.size() > 1 &&
9654        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9655      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9656        if (!isdigit(LiteralName[I])) {
9657          IsHexFloat = false;
9658          break;
9659        }
9660      }
9661    }
9662
9663    if (IsHexFloat)
9664      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9665        << LiteralName;
9666    else
9667      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9668  }
9669
9670  return false;
9671}
9672
9673/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9674/// linkage specification, including the language and (if present)
9675/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9676/// the location of the language string literal, which is provided
9677/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9678/// the '{' brace. Otherwise, this linkage specification does not
9679/// have any braces.
9680Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9681                                           SourceLocation LangLoc,
9682                                           StringRef Lang,
9683                                           SourceLocation LBraceLoc) {
9684  LinkageSpecDecl::LanguageIDs Language;
9685  if (Lang == "\"C\"")
9686    Language = LinkageSpecDecl::lang_c;
9687  else if (Lang == "\"C++\"")
9688    Language = LinkageSpecDecl::lang_cxx;
9689  else {
9690    Diag(LangLoc, diag::err_bad_language);
9691    return 0;
9692  }
9693
9694  // FIXME: Add all the various semantics of linkage specifications
9695
9696  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9697                                               ExternLoc, LangLoc, Language);
9698  CurContext->addDecl(D);
9699  PushDeclContext(S, D);
9700  return D;
9701}
9702
9703/// ActOnFinishLinkageSpecification - Complete the definition of
9704/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9705/// valid, it's the position of the closing '}' brace in a linkage
9706/// specification that uses braces.
9707Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9708                                            Decl *LinkageSpec,
9709                                            SourceLocation RBraceLoc) {
9710  if (LinkageSpec) {
9711    if (RBraceLoc.isValid()) {
9712      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9713      LSDecl->setRBraceLoc(RBraceLoc);
9714    }
9715    PopDeclContext();
9716  }
9717  return LinkageSpec;
9718}
9719
9720/// \brief Perform semantic analysis for the variable declaration that
9721/// occurs within a C++ catch clause, returning the newly-created
9722/// variable.
9723VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9724                                         TypeSourceInfo *TInfo,
9725                                         SourceLocation StartLoc,
9726                                         SourceLocation Loc,
9727                                         IdentifierInfo *Name) {
9728  bool Invalid = false;
9729  QualType ExDeclType = TInfo->getType();
9730
9731  // Arrays and functions decay.
9732  if (ExDeclType->isArrayType())
9733    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9734  else if (ExDeclType->isFunctionType())
9735    ExDeclType = Context.getPointerType(ExDeclType);
9736
9737  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9738  // The exception-declaration shall not denote a pointer or reference to an
9739  // incomplete type, other than [cv] void*.
9740  // N2844 forbids rvalue references.
9741  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9742    Diag(Loc, diag::err_catch_rvalue_ref);
9743    Invalid = true;
9744  }
9745
9746  QualType BaseType = ExDeclType;
9747  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9748  unsigned DK = diag::err_catch_incomplete;
9749  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9750    BaseType = Ptr->getPointeeType();
9751    Mode = 1;
9752    DK = diag::err_catch_incomplete_ptr;
9753  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9754    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9755    BaseType = Ref->getPointeeType();
9756    Mode = 2;
9757    DK = diag::err_catch_incomplete_ref;
9758  }
9759  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9760      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9761    Invalid = true;
9762
9763  if (!Invalid && !ExDeclType->isDependentType() &&
9764      RequireNonAbstractType(Loc, ExDeclType,
9765                             diag::err_abstract_type_in_decl,
9766                             AbstractVariableType))
9767    Invalid = true;
9768
9769  // Only the non-fragile NeXT runtime currently supports C++ catches
9770  // of ObjC types, and no runtime supports catching ObjC types by value.
9771  if (!Invalid && getLangOptions().ObjC1) {
9772    QualType T = ExDeclType;
9773    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9774      T = RT->getPointeeType();
9775
9776    if (T->isObjCObjectType()) {
9777      Diag(Loc, diag::err_objc_object_catch);
9778      Invalid = true;
9779    } else if (T->isObjCObjectPointerType()) {
9780      if (!getLangOptions().ObjCNonFragileABI)
9781        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9782    }
9783  }
9784
9785  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9786                                    ExDeclType, TInfo, SC_None, SC_None);
9787  ExDecl->setExceptionVariable(true);
9788
9789  // In ARC, infer 'retaining' for variables of retainable type.
9790  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9791    Invalid = true;
9792
9793  if (!Invalid && !ExDeclType->isDependentType()) {
9794    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9795      // C++ [except.handle]p16:
9796      //   The object declared in an exception-declaration or, if the
9797      //   exception-declaration does not specify a name, a temporary (12.2) is
9798      //   copy-initialized (8.5) from the exception object. [...]
9799      //   The object is destroyed when the handler exits, after the destruction
9800      //   of any automatic objects initialized within the handler.
9801      //
9802      // We just pretend to initialize the object with itself, then make sure
9803      // it can be destroyed later.
9804      QualType initType = ExDeclType;
9805
9806      InitializedEntity entity =
9807        InitializedEntity::InitializeVariable(ExDecl);
9808      InitializationKind initKind =
9809        InitializationKind::CreateCopy(Loc, SourceLocation());
9810
9811      Expr *opaqueValue =
9812        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9813      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9814      ExprResult result = sequence.Perform(*this, entity, initKind,
9815                                           MultiExprArg(&opaqueValue, 1));
9816      if (result.isInvalid())
9817        Invalid = true;
9818      else {
9819        // If the constructor used was non-trivial, set this as the
9820        // "initializer".
9821        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9822        if (!construct->getConstructor()->isTrivial()) {
9823          Expr *init = MaybeCreateExprWithCleanups(construct);
9824          ExDecl->setInit(init);
9825        }
9826
9827        // And make sure it's destructable.
9828        FinalizeVarWithDestructor(ExDecl, recordType);
9829      }
9830    }
9831  }
9832
9833  if (Invalid)
9834    ExDecl->setInvalidDecl();
9835
9836  return ExDecl;
9837}
9838
9839/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9840/// handler.
9841Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9842  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9843  bool Invalid = D.isInvalidType();
9844
9845  // Check for unexpanded parameter packs.
9846  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9847                                               UPPC_ExceptionType)) {
9848    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9849                                             D.getIdentifierLoc());
9850    Invalid = true;
9851  }
9852
9853  IdentifierInfo *II = D.getIdentifier();
9854  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9855                                             LookupOrdinaryName,
9856                                             ForRedeclaration)) {
9857    // The scope should be freshly made just for us. There is just no way
9858    // it contains any previous declaration.
9859    assert(!S->isDeclScope(PrevDecl));
9860    if (PrevDecl->isTemplateParameter()) {
9861      // Maybe we will complain about the shadowed template parameter.
9862      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9863      PrevDecl = 0;
9864    }
9865  }
9866
9867  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9868    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9869      << D.getCXXScopeSpec().getRange();
9870    Invalid = true;
9871  }
9872
9873  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9874                                              D.getSourceRange().getBegin(),
9875                                              D.getIdentifierLoc(),
9876                                              D.getIdentifier());
9877  if (Invalid)
9878    ExDecl->setInvalidDecl();
9879
9880  // Add the exception declaration into this scope.
9881  if (II)
9882    PushOnScopeChains(ExDecl, S);
9883  else
9884    CurContext->addDecl(ExDecl);
9885
9886  ProcessDeclAttributes(S, ExDecl, D);
9887  return ExDecl;
9888}
9889
9890Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9891                                         Expr *AssertExpr,
9892                                         Expr *AssertMessageExpr_,
9893                                         SourceLocation RParenLoc) {
9894  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9895
9896  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9897    llvm::APSInt Cond;
9898    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9899                             diag::err_static_assert_expression_is_not_constant,
9900                                        /*AllowFold=*/false))
9901      return 0;
9902
9903    if (!Cond)
9904      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9905        << AssertMessage->getString() << AssertExpr->getSourceRange();
9906  }
9907
9908  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9909    return 0;
9910
9911  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9912                                        AssertExpr, AssertMessage, RParenLoc);
9913
9914  CurContext->addDecl(Decl);
9915  return Decl;
9916}
9917
9918/// \brief Perform semantic analysis of the given friend type declaration.
9919///
9920/// \returns A friend declaration that.
9921FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9922                                      SourceLocation FriendLoc,
9923                                      TypeSourceInfo *TSInfo) {
9924  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9925
9926  QualType T = TSInfo->getType();
9927  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9928
9929  // C++03 [class.friend]p2:
9930  //   An elaborated-type-specifier shall be used in a friend declaration
9931  //   for a class.*
9932  //
9933  //   * The class-key of the elaborated-type-specifier is required.
9934  if (!ActiveTemplateInstantiations.empty()) {
9935    // Do not complain about the form of friend template types during
9936    // template instantiation; we will already have complained when the
9937    // template was declared.
9938  } else if (!T->isElaboratedTypeSpecifier()) {
9939    // If we evaluated the type to a record type, suggest putting
9940    // a tag in front.
9941    if (const RecordType *RT = T->getAs<RecordType>()) {
9942      RecordDecl *RD = RT->getDecl();
9943
9944      std::string InsertionText = std::string(" ") + RD->getKindName();
9945
9946      Diag(TypeRange.getBegin(),
9947           getLangOptions().CPlusPlus0x ?
9948             diag::warn_cxx98_compat_unelaborated_friend_type :
9949             diag::ext_unelaborated_friend_type)
9950        << (unsigned) RD->getTagKind()
9951        << T
9952        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9953                                      InsertionText);
9954    } else {
9955      Diag(FriendLoc,
9956           getLangOptions().CPlusPlus0x ?
9957             diag::warn_cxx98_compat_nonclass_type_friend :
9958             diag::ext_nonclass_type_friend)
9959        << T
9960        << SourceRange(FriendLoc, TypeRange.getEnd());
9961    }
9962  } else if (T->getAs<EnumType>()) {
9963    Diag(FriendLoc,
9964         getLangOptions().CPlusPlus0x ?
9965           diag::warn_cxx98_compat_enum_friend :
9966           diag::ext_enum_friend)
9967      << T
9968      << SourceRange(FriendLoc, TypeRange.getEnd());
9969  }
9970
9971  // C++0x [class.friend]p3:
9972  //   If the type specifier in a friend declaration designates a (possibly
9973  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9974  //   the friend declaration is ignored.
9975
9976  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9977  // in [class.friend]p3 that we do not implement.
9978
9979  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9980}
9981
9982/// Handle a friend tag declaration where the scope specifier was
9983/// templated.
9984Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9985                                    unsigned TagSpec, SourceLocation TagLoc,
9986                                    CXXScopeSpec &SS,
9987                                    IdentifierInfo *Name, SourceLocation NameLoc,
9988                                    AttributeList *Attr,
9989                                    MultiTemplateParamsArg TempParamLists) {
9990  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9991
9992  bool isExplicitSpecialization = false;
9993  bool Invalid = false;
9994
9995  if (TemplateParameterList *TemplateParams
9996        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9997                                                  TempParamLists.get(),
9998                                                  TempParamLists.size(),
9999                                                  /*friend*/ true,
10000                                                  isExplicitSpecialization,
10001                                                  Invalid)) {
10002    if (TemplateParams->size() > 0) {
10003      // This is a declaration of a class template.
10004      if (Invalid)
10005        return 0;
10006
10007      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10008                                SS, Name, NameLoc, Attr,
10009                                TemplateParams, AS_public,
10010                                /*ModulePrivateLoc=*/SourceLocation(),
10011                                TempParamLists.size() - 1,
10012                   (TemplateParameterList**) TempParamLists.release()).take();
10013    } else {
10014      // The "template<>" header is extraneous.
10015      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10016        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10017      isExplicitSpecialization = true;
10018    }
10019  }
10020
10021  if (Invalid) return 0;
10022
10023  bool isAllExplicitSpecializations = true;
10024  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10025    if (TempParamLists.get()[I]->size()) {
10026      isAllExplicitSpecializations = false;
10027      break;
10028    }
10029  }
10030
10031  // FIXME: don't ignore attributes.
10032
10033  // If it's explicit specializations all the way down, just forget
10034  // about the template header and build an appropriate non-templated
10035  // friend.  TODO: for source fidelity, remember the headers.
10036  if (isAllExplicitSpecializations) {
10037    if (SS.isEmpty()) {
10038      bool Owned = false;
10039      bool IsDependent = false;
10040      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10041                      Attr, AS_public,
10042                      /*ModulePrivateLoc=*/SourceLocation(),
10043                      MultiTemplateParamsArg(), Owned, IsDependent,
10044                      /*ScopedEnumKWLoc=*/SourceLocation(),
10045                      /*ScopedEnumUsesClassTag=*/false,
10046                      /*UnderlyingType=*/TypeResult());
10047    }
10048
10049    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10050    ElaboratedTypeKeyword Keyword
10051      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10052    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10053                                   *Name, NameLoc);
10054    if (T.isNull())
10055      return 0;
10056
10057    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10058    if (isa<DependentNameType>(T)) {
10059      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10060      TL.setKeywordLoc(TagLoc);
10061      TL.setQualifierLoc(QualifierLoc);
10062      TL.setNameLoc(NameLoc);
10063    } else {
10064      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10065      TL.setKeywordLoc(TagLoc);
10066      TL.setQualifierLoc(QualifierLoc);
10067      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10068    }
10069
10070    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10071                                            TSI, FriendLoc);
10072    Friend->setAccess(AS_public);
10073    CurContext->addDecl(Friend);
10074    return Friend;
10075  }
10076
10077  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10078
10079
10080
10081  // Handle the case of a templated-scope friend class.  e.g.
10082  //   template <class T> class A<T>::B;
10083  // FIXME: we don't support these right now.
10084  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10085  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10086  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10087  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10088  TL.setKeywordLoc(TagLoc);
10089  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10090  TL.setNameLoc(NameLoc);
10091
10092  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10093                                          TSI, FriendLoc);
10094  Friend->setAccess(AS_public);
10095  Friend->setUnsupportedFriend(true);
10096  CurContext->addDecl(Friend);
10097  return Friend;
10098}
10099
10100
10101/// Handle a friend type declaration.  This works in tandem with
10102/// ActOnTag.
10103///
10104/// Notes on friend class templates:
10105///
10106/// We generally treat friend class declarations as if they were
10107/// declaring a class.  So, for example, the elaborated type specifier
10108/// in a friend declaration is required to obey the restrictions of a
10109/// class-head (i.e. no typedefs in the scope chain), template
10110/// parameters are required to match up with simple template-ids, &c.
10111/// However, unlike when declaring a template specialization, it's
10112/// okay to refer to a template specialization without an empty
10113/// template parameter declaration, e.g.
10114///   friend class A<T>::B<unsigned>;
10115/// We permit this as a special case; if there are any template
10116/// parameters present at all, require proper matching, i.e.
10117///   template <> template <class T> friend class A<int>::B;
10118Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10119                                MultiTemplateParamsArg TempParams) {
10120  SourceLocation Loc = DS.getSourceRange().getBegin();
10121
10122  assert(DS.isFriendSpecified());
10123  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10124
10125  // Try to convert the decl specifier to a type.  This works for
10126  // friend templates because ActOnTag never produces a ClassTemplateDecl
10127  // for a TUK_Friend.
10128  Declarator TheDeclarator(DS, Declarator::MemberContext);
10129  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10130  QualType T = TSI->getType();
10131  if (TheDeclarator.isInvalidType())
10132    return 0;
10133
10134  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10135    return 0;
10136
10137  // This is definitely an error in C++98.  It's probably meant to
10138  // be forbidden in C++0x, too, but the specification is just
10139  // poorly written.
10140  //
10141  // The problem is with declarations like the following:
10142  //   template <T> friend A<T>::foo;
10143  // where deciding whether a class C is a friend or not now hinges
10144  // on whether there exists an instantiation of A that causes
10145  // 'foo' to equal C.  There are restrictions on class-heads
10146  // (which we declare (by fiat) elaborated friend declarations to
10147  // be) that makes this tractable.
10148  //
10149  // FIXME: handle "template <> friend class A<T>;", which
10150  // is possibly well-formed?  Who even knows?
10151  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10152    Diag(Loc, diag::err_tagless_friend_type_template)
10153      << DS.getSourceRange();
10154    return 0;
10155  }
10156
10157  // C++98 [class.friend]p1: A friend of a class is a function
10158  //   or class that is not a member of the class . . .
10159  // This is fixed in DR77, which just barely didn't make the C++03
10160  // deadline.  It's also a very silly restriction that seriously
10161  // affects inner classes and which nobody else seems to implement;
10162  // thus we never diagnose it, not even in -pedantic.
10163  //
10164  // But note that we could warn about it: it's always useless to
10165  // friend one of your own members (it's not, however, worthless to
10166  // friend a member of an arbitrary specialization of your template).
10167
10168  Decl *D;
10169  if (unsigned NumTempParamLists = TempParams.size())
10170    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10171                                   NumTempParamLists,
10172                                   TempParams.release(),
10173                                   TSI,
10174                                   DS.getFriendSpecLoc());
10175  else
10176    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10177
10178  if (!D)
10179    return 0;
10180
10181  D->setAccess(AS_public);
10182  CurContext->addDecl(D);
10183
10184  return D;
10185}
10186
10187Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10188                                    MultiTemplateParamsArg TemplateParams) {
10189  const DeclSpec &DS = D.getDeclSpec();
10190
10191  assert(DS.isFriendSpecified());
10192  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10193
10194  SourceLocation Loc = D.getIdentifierLoc();
10195  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10196
10197  // C++ [class.friend]p1
10198  //   A friend of a class is a function or class....
10199  // Note that this sees through typedefs, which is intended.
10200  // It *doesn't* see through dependent types, which is correct
10201  // according to [temp.arg.type]p3:
10202  //   If a declaration acquires a function type through a
10203  //   type dependent on a template-parameter and this causes
10204  //   a declaration that does not use the syntactic form of a
10205  //   function declarator to have a function type, the program
10206  //   is ill-formed.
10207  if (!TInfo->getType()->isFunctionType()) {
10208    Diag(Loc, diag::err_unexpected_friend);
10209
10210    // It might be worthwhile to try to recover by creating an
10211    // appropriate declaration.
10212    return 0;
10213  }
10214
10215  // C++ [namespace.memdef]p3
10216  //  - If a friend declaration in a non-local class first declares a
10217  //    class or function, the friend class or function is a member
10218  //    of the innermost enclosing namespace.
10219  //  - The name of the friend is not found by simple name lookup
10220  //    until a matching declaration is provided in that namespace
10221  //    scope (either before or after the class declaration granting
10222  //    friendship).
10223  //  - If a friend function is called, its name may be found by the
10224  //    name lookup that considers functions from namespaces and
10225  //    classes associated with the types of the function arguments.
10226  //  - When looking for a prior declaration of a class or a function
10227  //    declared as a friend, scopes outside the innermost enclosing
10228  //    namespace scope are not considered.
10229
10230  CXXScopeSpec &SS = D.getCXXScopeSpec();
10231  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10232  DeclarationName Name = NameInfo.getName();
10233  assert(Name);
10234
10235  // Check for unexpanded parameter packs.
10236  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10237      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10238      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10239    return 0;
10240
10241  // The context we found the declaration in, or in which we should
10242  // create the declaration.
10243  DeclContext *DC;
10244  Scope *DCScope = S;
10245  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10246                        ForRedeclaration);
10247
10248  // FIXME: there are different rules in local classes
10249
10250  // There are four cases here.
10251  //   - There's no scope specifier, in which case we just go to the
10252  //     appropriate scope and look for a function or function template
10253  //     there as appropriate.
10254  // Recover from invalid scope qualifiers as if they just weren't there.
10255  if (SS.isInvalid() || !SS.isSet()) {
10256    // C++0x [namespace.memdef]p3:
10257    //   If the name in a friend declaration is neither qualified nor
10258    //   a template-id and the declaration is a function or an
10259    //   elaborated-type-specifier, the lookup to determine whether
10260    //   the entity has been previously declared shall not consider
10261    //   any scopes outside the innermost enclosing namespace.
10262    // C++0x [class.friend]p11:
10263    //   If a friend declaration appears in a local class and the name
10264    //   specified is an unqualified name, a prior declaration is
10265    //   looked up without considering scopes that are outside the
10266    //   innermost enclosing non-class scope. For a friend function
10267    //   declaration, if there is no prior declaration, the program is
10268    //   ill-formed.
10269    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10270    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10271
10272    // Find the appropriate context according to the above.
10273    DC = CurContext;
10274    while (true) {
10275      // Skip class contexts.  If someone can cite chapter and verse
10276      // for this behavior, that would be nice --- it's what GCC and
10277      // EDG do, and it seems like a reasonable intent, but the spec
10278      // really only says that checks for unqualified existing
10279      // declarations should stop at the nearest enclosing namespace,
10280      // not that they should only consider the nearest enclosing
10281      // namespace.
10282      while (DC->isRecord())
10283        DC = DC->getParent();
10284
10285      LookupQualifiedName(Previous, DC);
10286
10287      // TODO: decide what we think about using declarations.
10288      if (isLocal || !Previous.empty())
10289        break;
10290
10291      if (isTemplateId) {
10292        if (isa<TranslationUnitDecl>(DC)) break;
10293      } else {
10294        if (DC->isFileContext()) break;
10295      }
10296      DC = DC->getParent();
10297    }
10298
10299    // C++ [class.friend]p1: A friend of a class is a function or
10300    //   class that is not a member of the class . . .
10301    // C++11 changes this for both friend types and functions.
10302    // Most C++ 98 compilers do seem to give an error here, so
10303    // we do, too.
10304    if (!Previous.empty() && DC->Equals(CurContext))
10305      Diag(DS.getFriendSpecLoc(),
10306           getLangOptions().CPlusPlus0x ?
10307             diag::warn_cxx98_compat_friend_is_member :
10308             diag::err_friend_is_member);
10309
10310    DCScope = getScopeForDeclContext(S, DC);
10311
10312    // C++ [class.friend]p6:
10313    //   A function can be defined in a friend declaration of a class if and
10314    //   only if the class is a non-local class (9.8), the function name is
10315    //   unqualified, and the function has namespace scope.
10316    if (isLocal && D.isFunctionDefinition()) {
10317      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10318    }
10319
10320  //   - There's a non-dependent scope specifier, in which case we
10321  //     compute it and do a previous lookup there for a function
10322  //     or function template.
10323  } else if (!SS.getScopeRep()->isDependent()) {
10324    DC = computeDeclContext(SS);
10325    if (!DC) return 0;
10326
10327    if (RequireCompleteDeclContext(SS, DC)) return 0;
10328
10329    LookupQualifiedName(Previous, DC);
10330
10331    // Ignore things found implicitly in the wrong scope.
10332    // TODO: better diagnostics for this case.  Suggesting the right
10333    // qualified scope would be nice...
10334    LookupResult::Filter F = Previous.makeFilter();
10335    while (F.hasNext()) {
10336      NamedDecl *D = F.next();
10337      if (!DC->InEnclosingNamespaceSetOf(
10338              D->getDeclContext()->getRedeclContext()))
10339        F.erase();
10340    }
10341    F.done();
10342
10343    if (Previous.empty()) {
10344      D.setInvalidType();
10345      Diag(Loc, diag::err_qualified_friend_not_found)
10346          << Name << TInfo->getType();
10347      return 0;
10348    }
10349
10350    // C++ [class.friend]p1: A friend of a class is a function or
10351    //   class that is not a member of the class . . .
10352    if (DC->Equals(CurContext))
10353      Diag(DS.getFriendSpecLoc(),
10354           getLangOptions().CPlusPlus0x ?
10355             diag::warn_cxx98_compat_friend_is_member :
10356             diag::err_friend_is_member);
10357
10358    if (D.isFunctionDefinition()) {
10359      // C++ [class.friend]p6:
10360      //   A function can be defined in a friend declaration of a class if and
10361      //   only if the class is a non-local class (9.8), the function name is
10362      //   unqualified, and the function has namespace scope.
10363      SemaDiagnosticBuilder DB
10364        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10365
10366      DB << SS.getScopeRep();
10367      if (DC->isFileContext())
10368        DB << FixItHint::CreateRemoval(SS.getRange());
10369      SS.clear();
10370    }
10371
10372  //   - There's a scope specifier that does not match any template
10373  //     parameter lists, in which case we use some arbitrary context,
10374  //     create a method or method template, and wait for instantiation.
10375  //   - There's a scope specifier that does match some template
10376  //     parameter lists, which we don't handle right now.
10377  } else {
10378    if (D.isFunctionDefinition()) {
10379      // C++ [class.friend]p6:
10380      //   A function can be defined in a friend declaration of a class if and
10381      //   only if the class is a non-local class (9.8), the function name is
10382      //   unqualified, and the function has namespace scope.
10383      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10384        << SS.getScopeRep();
10385    }
10386
10387    DC = CurContext;
10388    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10389  }
10390
10391  if (!DC->isRecord()) {
10392    // This implies that it has to be an operator or function.
10393    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10394        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10395        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10396      Diag(Loc, diag::err_introducing_special_friend) <<
10397        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10398         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10399      return 0;
10400    }
10401  }
10402
10403  // FIXME: This is an egregious hack to cope with cases where the scope stack
10404  // does not contain the declaration context, i.e., in an out-of-line
10405  // definition of a class.
10406  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10407  if (!DCScope) {
10408    FakeDCScope.setEntity(DC);
10409    DCScope = &FakeDCScope;
10410  }
10411
10412  bool AddToScope = true;
10413  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10414                                          move(TemplateParams), AddToScope);
10415  if (!ND) return 0;
10416
10417  assert(ND->getDeclContext() == DC);
10418  assert(ND->getLexicalDeclContext() == CurContext);
10419
10420  // Add the function declaration to the appropriate lookup tables,
10421  // adjusting the redeclarations list as necessary.  We don't
10422  // want to do this yet if the friending class is dependent.
10423  //
10424  // Also update the scope-based lookup if the target context's
10425  // lookup context is in lexical scope.
10426  if (!CurContext->isDependentContext()) {
10427    DC = DC->getRedeclContext();
10428    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10429    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10430      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10431  }
10432
10433  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10434                                       D.getIdentifierLoc(), ND,
10435                                       DS.getFriendSpecLoc());
10436  FrD->setAccess(AS_public);
10437  CurContext->addDecl(FrD);
10438
10439  if (ND->isInvalidDecl())
10440    FrD->setInvalidDecl();
10441  else {
10442    FunctionDecl *FD;
10443    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10444      FD = FTD->getTemplatedDecl();
10445    else
10446      FD = cast<FunctionDecl>(ND);
10447
10448    // Mark templated-scope function declarations as unsupported.
10449    if (FD->getNumTemplateParameterLists())
10450      FrD->setUnsupportedFriend(true);
10451  }
10452
10453  return ND;
10454}
10455
10456void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10457  AdjustDeclIfTemplate(Dcl);
10458
10459  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10460  if (!Fn) {
10461    Diag(DelLoc, diag::err_deleted_non_function);
10462    return;
10463  }
10464  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10465    Diag(DelLoc, diag::err_deleted_decl_not_first);
10466    Diag(Prev->getLocation(), diag::note_previous_declaration);
10467    // If the declaration wasn't the first, we delete the function anyway for
10468    // recovery.
10469  }
10470  Fn->setDeletedAsWritten();
10471}
10472
10473void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10474  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10475
10476  if (MD) {
10477    if (MD->getParent()->isDependentType()) {
10478      MD->setDefaulted();
10479      MD->setExplicitlyDefaulted();
10480      return;
10481    }
10482
10483    CXXSpecialMember Member = getSpecialMember(MD);
10484    if (Member == CXXInvalid) {
10485      Diag(DefaultLoc, diag::err_default_special_members);
10486      return;
10487    }
10488
10489    MD->setDefaulted();
10490    MD->setExplicitlyDefaulted();
10491
10492    // If this definition appears within the record, do the checking when
10493    // the record is complete.
10494    const FunctionDecl *Primary = MD;
10495    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10496      // Find the uninstantiated declaration that actually had the '= default'
10497      // on it.
10498      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10499
10500    if (Primary == Primary->getCanonicalDecl())
10501      return;
10502
10503    switch (Member) {
10504    case CXXDefaultConstructor: {
10505      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10506      CheckExplicitlyDefaultedDefaultConstructor(CD);
10507      if (!CD->isInvalidDecl())
10508        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10509      break;
10510    }
10511
10512    case CXXCopyConstructor: {
10513      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10514      CheckExplicitlyDefaultedCopyConstructor(CD);
10515      if (!CD->isInvalidDecl())
10516        DefineImplicitCopyConstructor(DefaultLoc, CD);
10517      break;
10518    }
10519
10520    case CXXCopyAssignment: {
10521      CheckExplicitlyDefaultedCopyAssignment(MD);
10522      if (!MD->isInvalidDecl())
10523        DefineImplicitCopyAssignment(DefaultLoc, MD);
10524      break;
10525    }
10526
10527    case CXXDestructor: {
10528      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10529      CheckExplicitlyDefaultedDestructor(DD);
10530      if (!DD->isInvalidDecl())
10531        DefineImplicitDestructor(DefaultLoc, DD);
10532      break;
10533    }
10534
10535    case CXXMoveConstructor: {
10536      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10537      CheckExplicitlyDefaultedMoveConstructor(CD);
10538      if (!CD->isInvalidDecl())
10539        DefineImplicitMoveConstructor(DefaultLoc, CD);
10540      break;
10541    }
10542
10543    case CXXMoveAssignment: {
10544      CheckExplicitlyDefaultedMoveAssignment(MD);
10545      if (!MD->isInvalidDecl())
10546        DefineImplicitMoveAssignment(DefaultLoc, MD);
10547      break;
10548    }
10549
10550    case CXXInvalid:
10551      llvm_unreachable("Invalid special member.");
10552    }
10553  } else {
10554    Diag(DefaultLoc, diag::err_default_special_members);
10555  }
10556}
10557
10558static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10559  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10560    Stmt *SubStmt = *CI;
10561    if (!SubStmt)
10562      continue;
10563    if (isa<ReturnStmt>(SubStmt))
10564      Self.Diag(SubStmt->getSourceRange().getBegin(),
10565           diag::err_return_in_constructor_handler);
10566    if (!isa<Expr>(SubStmt))
10567      SearchForReturnInStmt(Self, SubStmt);
10568  }
10569}
10570
10571void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10572  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10573    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10574    SearchForReturnInStmt(*this, Handler);
10575  }
10576}
10577
10578bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10579                                             const CXXMethodDecl *Old) {
10580  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10581  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10582
10583  if (Context.hasSameType(NewTy, OldTy) ||
10584      NewTy->isDependentType() || OldTy->isDependentType())
10585    return false;
10586
10587  // Check if the return types are covariant
10588  QualType NewClassTy, OldClassTy;
10589
10590  /// Both types must be pointers or references to classes.
10591  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10592    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10593      NewClassTy = NewPT->getPointeeType();
10594      OldClassTy = OldPT->getPointeeType();
10595    }
10596  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10597    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10598      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10599        NewClassTy = NewRT->getPointeeType();
10600        OldClassTy = OldRT->getPointeeType();
10601      }
10602    }
10603  }
10604
10605  // The return types aren't either both pointers or references to a class type.
10606  if (NewClassTy.isNull()) {
10607    Diag(New->getLocation(),
10608         diag::err_different_return_type_for_overriding_virtual_function)
10609      << New->getDeclName() << NewTy << OldTy;
10610    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10611
10612    return true;
10613  }
10614
10615  // C++ [class.virtual]p6:
10616  //   If the return type of D::f differs from the return type of B::f, the
10617  //   class type in the return type of D::f shall be complete at the point of
10618  //   declaration of D::f or shall be the class type D.
10619  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10620    if (!RT->isBeingDefined() &&
10621        RequireCompleteType(New->getLocation(), NewClassTy,
10622                            PDiag(diag::err_covariant_return_incomplete)
10623                              << New->getDeclName()))
10624    return true;
10625  }
10626
10627  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10628    // Check if the new class derives from the old class.
10629    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10630      Diag(New->getLocation(),
10631           diag::err_covariant_return_not_derived)
10632      << New->getDeclName() << NewTy << OldTy;
10633      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10634      return true;
10635    }
10636
10637    // Check if we the conversion from derived to base is valid.
10638    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10639                    diag::err_covariant_return_inaccessible_base,
10640                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10641                    // FIXME: Should this point to the return type?
10642                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10643      // FIXME: this note won't trigger for delayed access control
10644      // diagnostics, and it's impossible to get an undelayed error
10645      // here from access control during the original parse because
10646      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10647      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10648      return true;
10649    }
10650  }
10651
10652  // The qualifiers of the return types must be the same.
10653  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10654    Diag(New->getLocation(),
10655         diag::err_covariant_return_type_different_qualifications)
10656    << New->getDeclName() << NewTy << OldTy;
10657    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10658    return true;
10659  };
10660
10661
10662  // The new class type must have the same or less qualifiers as the old type.
10663  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10664    Diag(New->getLocation(),
10665         diag::err_covariant_return_type_class_type_more_qualified)
10666    << New->getDeclName() << NewTy << OldTy;
10667    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10668    return true;
10669  };
10670
10671  return false;
10672}
10673
10674/// \brief Mark the given method pure.
10675///
10676/// \param Method the method to be marked pure.
10677///
10678/// \param InitRange the source range that covers the "0" initializer.
10679bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10680  SourceLocation EndLoc = InitRange.getEnd();
10681  if (EndLoc.isValid())
10682    Method->setRangeEnd(EndLoc);
10683
10684  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10685    Method->setPure();
10686    return false;
10687  }
10688
10689  if (!Method->isInvalidDecl())
10690    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10691      << Method->getDeclName() << InitRange;
10692  return true;
10693}
10694
10695/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10696/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10697/// is a fresh scope pushed for just this purpose.
10698///
10699/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10700/// static data member of class X, names should be looked up in the scope of
10701/// class X.
10702void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10703  // If there is no declaration, there was an error parsing it.
10704  if (D == 0 || D->isInvalidDecl()) return;
10705
10706  // We should only get called for declarations with scope specifiers, like:
10707  //   int foo::bar;
10708  assert(D->isOutOfLine());
10709  EnterDeclaratorContext(S, D->getDeclContext());
10710}
10711
10712/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10713/// initializer for the out-of-line declaration 'D'.
10714void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10715  // If there is no declaration, there was an error parsing it.
10716  if (D == 0 || D->isInvalidDecl()) return;
10717
10718  assert(D->isOutOfLine());
10719  ExitDeclaratorContext(S);
10720}
10721
10722/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10723/// C++ if/switch/while/for statement.
10724/// e.g: "if (int x = f()) {...}"
10725DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10726  // C++ 6.4p2:
10727  // The declarator shall not specify a function or an array.
10728  // The type-specifier-seq shall not contain typedef and shall not declare a
10729  // new class or enumeration.
10730  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10731         "Parser allowed 'typedef' as storage class of condition decl.");
10732
10733  Decl *Dcl = ActOnDeclarator(S, D);
10734  if (!Dcl)
10735    return true;
10736
10737  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10738    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10739      << D.getSourceRange();
10740    return true;
10741  }
10742
10743  return Dcl;
10744}
10745
10746void Sema::LoadExternalVTableUses() {
10747  if (!ExternalSource)
10748    return;
10749
10750  SmallVector<ExternalVTableUse, 4> VTables;
10751  ExternalSource->ReadUsedVTables(VTables);
10752  SmallVector<VTableUse, 4> NewUses;
10753  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10754    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10755      = VTablesUsed.find(VTables[I].Record);
10756    // Even if a definition wasn't required before, it may be required now.
10757    if (Pos != VTablesUsed.end()) {
10758      if (!Pos->second && VTables[I].DefinitionRequired)
10759        Pos->second = true;
10760      continue;
10761    }
10762
10763    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10764    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10765  }
10766
10767  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10768}
10769
10770void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10771                          bool DefinitionRequired) {
10772  // Ignore any vtable uses in unevaluated operands or for classes that do
10773  // not have a vtable.
10774  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10775      CurContext->isDependentContext() ||
10776      ExprEvalContexts.back().Context == Unevaluated)
10777    return;
10778
10779  // Try to insert this class into the map.
10780  LoadExternalVTableUses();
10781  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10782  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10783    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10784  if (!Pos.second) {
10785    // If we already had an entry, check to see if we are promoting this vtable
10786    // to required a definition. If so, we need to reappend to the VTableUses
10787    // list, since we may have already processed the first entry.
10788    if (DefinitionRequired && !Pos.first->second) {
10789      Pos.first->second = true;
10790    } else {
10791      // Otherwise, we can early exit.
10792      return;
10793    }
10794  }
10795
10796  // Local classes need to have their virtual members marked
10797  // immediately. For all other classes, we mark their virtual members
10798  // at the end of the translation unit.
10799  if (Class->isLocalClass())
10800    MarkVirtualMembersReferenced(Loc, Class);
10801  else
10802    VTableUses.push_back(std::make_pair(Class, Loc));
10803}
10804
10805bool Sema::DefineUsedVTables() {
10806  LoadExternalVTableUses();
10807  if (VTableUses.empty())
10808    return false;
10809
10810  // Note: The VTableUses vector could grow as a result of marking
10811  // the members of a class as "used", so we check the size each
10812  // time through the loop and prefer indices (with are stable) to
10813  // iterators (which are not).
10814  bool DefinedAnything = false;
10815  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10816    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10817    if (!Class)
10818      continue;
10819
10820    SourceLocation Loc = VTableUses[I].second;
10821
10822    // If this class has a key function, but that key function is
10823    // defined in another translation unit, we don't need to emit the
10824    // vtable even though we're using it.
10825    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10826    if (KeyFunction && !KeyFunction->hasBody()) {
10827      switch (KeyFunction->getTemplateSpecializationKind()) {
10828      case TSK_Undeclared:
10829      case TSK_ExplicitSpecialization:
10830      case TSK_ExplicitInstantiationDeclaration:
10831        // The key function is in another translation unit.
10832        continue;
10833
10834      case TSK_ExplicitInstantiationDefinition:
10835      case TSK_ImplicitInstantiation:
10836        // We will be instantiating the key function.
10837        break;
10838      }
10839    } else if (!KeyFunction) {
10840      // If we have a class with no key function that is the subject
10841      // of an explicit instantiation declaration, suppress the
10842      // vtable; it will live with the explicit instantiation
10843      // definition.
10844      bool IsExplicitInstantiationDeclaration
10845        = Class->getTemplateSpecializationKind()
10846                                      == TSK_ExplicitInstantiationDeclaration;
10847      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10848                                 REnd = Class->redecls_end();
10849           R != REnd; ++R) {
10850        TemplateSpecializationKind TSK
10851          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10852        if (TSK == TSK_ExplicitInstantiationDeclaration)
10853          IsExplicitInstantiationDeclaration = true;
10854        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10855          IsExplicitInstantiationDeclaration = false;
10856          break;
10857        }
10858      }
10859
10860      if (IsExplicitInstantiationDeclaration)
10861        continue;
10862    }
10863
10864    // Mark all of the virtual members of this class as referenced, so
10865    // that we can build a vtable. Then, tell the AST consumer that a
10866    // vtable for this class is required.
10867    DefinedAnything = true;
10868    MarkVirtualMembersReferenced(Loc, Class);
10869    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10870    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10871
10872    // Optionally warn if we're emitting a weak vtable.
10873    if (Class->getLinkage() == ExternalLinkage &&
10874        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10875      const FunctionDecl *KeyFunctionDef = 0;
10876      if (!KeyFunction ||
10877          (KeyFunction->hasBody(KeyFunctionDef) &&
10878           KeyFunctionDef->isInlined()))
10879        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10880             TSK_ExplicitInstantiationDefinition
10881             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10882          << Class;
10883    }
10884  }
10885  VTableUses.clear();
10886
10887  return DefinedAnything;
10888}
10889
10890void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10891                                        const CXXRecordDecl *RD) {
10892  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10893       e = RD->method_end(); i != e; ++i) {
10894    CXXMethodDecl *MD = *i;
10895
10896    // C++ [basic.def.odr]p2:
10897    //   [...] A virtual member function is used if it is not pure. [...]
10898    if (MD->isVirtual() && !MD->isPure())
10899      MarkDeclarationReferenced(Loc, MD);
10900  }
10901
10902  // Only classes that have virtual bases need a VTT.
10903  if (RD->getNumVBases() == 0)
10904    return;
10905
10906  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10907           e = RD->bases_end(); i != e; ++i) {
10908    const CXXRecordDecl *Base =
10909        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10910    if (Base->getNumVBases() == 0)
10911      continue;
10912    MarkVirtualMembersReferenced(Loc, Base);
10913  }
10914}
10915
10916/// SetIvarInitializers - This routine builds initialization ASTs for the
10917/// Objective-C implementation whose ivars need be initialized.
10918void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10919  if (!getLangOptions().CPlusPlus)
10920    return;
10921  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10922    SmallVector<ObjCIvarDecl*, 8> ivars;
10923    CollectIvarsToConstructOrDestruct(OID, ivars);
10924    if (ivars.empty())
10925      return;
10926    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10927    for (unsigned i = 0; i < ivars.size(); i++) {
10928      FieldDecl *Field = ivars[i];
10929      if (Field->isInvalidDecl())
10930        continue;
10931
10932      CXXCtorInitializer *Member;
10933      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10934      InitializationKind InitKind =
10935        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10936
10937      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10938      ExprResult MemberInit =
10939        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10940      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10941      // Note, MemberInit could actually come back empty if no initialization
10942      // is required (e.g., because it would call a trivial default constructor)
10943      if (!MemberInit.get() || MemberInit.isInvalid())
10944        continue;
10945
10946      Member =
10947        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10948                                         SourceLocation(),
10949                                         MemberInit.takeAs<Expr>(),
10950                                         SourceLocation());
10951      AllToInit.push_back(Member);
10952
10953      // Be sure that the destructor is accessible and is marked as referenced.
10954      if (const RecordType *RecordTy
10955                  = Context.getBaseElementType(Field->getType())
10956                                                        ->getAs<RecordType>()) {
10957                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10958        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10959          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10960          CheckDestructorAccess(Field->getLocation(), Destructor,
10961                            PDiag(diag::err_access_dtor_ivar)
10962                              << Context.getBaseElementType(Field->getType()));
10963        }
10964      }
10965    }
10966    ObjCImplementation->setIvarInitializers(Context,
10967                                            AllToInit.data(), AllToInit.size());
10968  }
10969}
10970
10971static
10972void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10973                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10974                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10975                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10976                           Sema &S) {
10977  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10978                                                   CE = Current.end();
10979  if (Ctor->isInvalidDecl())
10980    return;
10981
10982  const FunctionDecl *FNTarget = 0;
10983  CXXConstructorDecl *Target;
10984
10985  // We ignore the result here since if we don't have a body, Target will be
10986  // null below.
10987  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10988  Target
10989= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10990
10991  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10992                     // Avoid dereferencing a null pointer here.
10993                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10994
10995  if (!Current.insert(Canonical))
10996    return;
10997
10998  // We know that beyond here, we aren't chaining into a cycle.
10999  if (!Target || !Target->isDelegatingConstructor() ||
11000      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11001    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11002      Valid.insert(*CI);
11003    Current.clear();
11004  // We've hit a cycle.
11005  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11006             Current.count(TCanonical)) {
11007    // If we haven't diagnosed this cycle yet, do so now.
11008    if (!Invalid.count(TCanonical)) {
11009      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11010             diag::warn_delegating_ctor_cycle)
11011        << Ctor;
11012
11013      // Don't add a note for a function delegating directo to itself.
11014      if (TCanonical != Canonical)
11015        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11016
11017      CXXConstructorDecl *C = Target;
11018      while (C->getCanonicalDecl() != Canonical) {
11019        (void)C->getTargetConstructor()->hasBody(FNTarget);
11020        assert(FNTarget && "Ctor cycle through bodiless function");
11021
11022        C
11023       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11024        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11025      }
11026    }
11027
11028    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11029      Invalid.insert(*CI);
11030    Current.clear();
11031  } else {
11032    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11033  }
11034}
11035
11036
11037void Sema::CheckDelegatingCtorCycles() {
11038  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11039
11040  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11041                                                   CE = Current.end();
11042
11043  for (DelegatingCtorDeclsType::iterator
11044         I = DelegatingCtorDecls.begin(ExternalSource),
11045         E = DelegatingCtorDecls.end();
11046       I != E; ++I) {
11047   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11048  }
11049
11050  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11051    (*CI)->setInvalidDecl();
11052}
11053
11054/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11055Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11056  // Implicitly declared functions (e.g. copy constructors) are
11057  // __host__ __device__
11058  if (D->isImplicit())
11059    return CFT_HostDevice;
11060
11061  if (D->hasAttr<CUDAGlobalAttr>())
11062    return CFT_Global;
11063
11064  if (D->hasAttr<CUDADeviceAttr>()) {
11065    if (D->hasAttr<CUDAHostAttr>())
11066      return CFT_HostDevice;
11067    else
11068      return CFT_Device;
11069  }
11070
11071  return CFT_Host;
11072}
11073
11074bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11075                           CUDAFunctionTarget CalleeTarget) {
11076  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11077  // Callable from the device only."
11078  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11079    return true;
11080
11081  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11082  // Callable from the host only."
11083  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11084  // Callable from the host only."
11085  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11086      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11087    return true;
11088
11089  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11090    return true;
11091
11092  return false;
11093}
11094