SemaDeclCXX.cpp revision 7756afa6273cf708b5e3fbd6a6478eb2cada27e2
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeOrdering.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Lex/Preprocessor.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getLocStart(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getLocStart(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getLocStart(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129                                                      CXXMethodDecl *Method) {
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137  if (!Proto)
138    return;
139
140  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142  // If this function can throw any exceptions, make a note of that.
143  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144    ClearExceptions();
145    ComputedEST = EST;
146    return;
147  }
148
149  // FIXME: If the call to this decl is using any of its default arguments, we
150  // need to search them for potentially-throwing calls.
151
152  // If this function has a basic noexcept, it doesn't affect the outcome.
153  if (EST == EST_BasicNoexcept)
154    return;
155
156  // If we have a throw-all spec at this point, ignore the function.
157  if (ComputedEST == EST_None)
158    return;
159
160  // If we're still at noexcept(true) and there's a nothrow() callee,
161  // change to that specification.
162  if (EST == EST_DynamicNone) {
163    if (ComputedEST == EST_BasicNoexcept)
164      ComputedEST = EST_DynamicNone;
165    return;
166  }
167
168  // Check out noexcept specs.
169  if (EST == EST_ComputedNoexcept) {
170    FunctionProtoType::NoexceptResult NR =
171        Proto->getNoexceptSpec(Self->Context);
172    assert(NR != FunctionProtoType::NR_NoNoexcept &&
173           "Must have noexcept result for EST_ComputedNoexcept.");
174    assert(NR != FunctionProtoType::NR_Dependent &&
175           "Should not generate implicit declarations for dependent cases, "
176           "and don't know how to handle them anyway.");
177
178    // noexcept(false) -> no spec on the new function
179    if (NR == FunctionProtoType::NR_Throw) {
180      ClearExceptions();
181      ComputedEST = EST_None;
182    }
183    // noexcept(true) won't change anything either.
184    return;
185  }
186
187  assert(EST == EST_Dynamic && "EST case not considered earlier.");
188  assert(ComputedEST != EST_None &&
189         "Shouldn't collect exceptions when throw-all is guaranteed.");
190  ComputedEST = EST_Dynamic;
191  // Record the exceptions in this function's exception specification.
192  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193                                          EEnd = Proto->exception_end();
194       E != EEnd; ++E)
195    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196      Exceptions.push_back(*E);
197}
198
199void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201    return;
202
203  // FIXME:
204  //
205  // C++0x [except.spec]p14:
206  //   [An] implicit exception-specification specifies the type-id T if and
207  // only if T is allowed by the exception-specification of a function directly
208  // invoked by f's implicit definition; f shall allow all exceptions if any
209  // function it directly invokes allows all exceptions, and f shall allow no
210  // exceptions if every function it directly invokes allows no exceptions.
211  //
212  // Note in particular that if an implicit exception-specification is generated
213  // for a function containing a throw-expression, that specification can still
214  // be noexcept(true).
215  //
216  // Note also that 'directly invoked' is not defined in the standard, and there
217  // is no indication that we should only consider potentially-evaluated calls.
218  //
219  // Ultimately we should implement the intent of the standard: the exception
220  // specification should be the set of exceptions which can be thrown by the
221  // implicit definition. For now, we assume that any non-nothrow expression can
222  // throw any exception.
223
224  if (Self->canThrow(E))
225    ComputedEST = EST_None;
226}
227
228bool
229Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230                              SourceLocation EqualLoc) {
231  if (RequireCompleteType(Param->getLocation(), Param->getType(),
232                          diag::err_typecheck_decl_incomplete_type)) {
233    Param->setInvalidDecl();
234    return true;
235  }
236
237  // C++ [dcl.fct.default]p5
238  //   A default argument expression is implicitly converted (clause
239  //   4) to the parameter type. The default argument expression has
240  //   the same semantic constraints as the initializer expression in
241  //   a declaration of a variable of the parameter type, using the
242  //   copy-initialization semantics (8.5).
243  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244                                                                    Param);
245  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246                                                           EqualLoc);
247  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249                                      MultiExprArg(*this, &Arg, 1));
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679// the requirements of a constexpr function definition or a constexpr
680// constructor definition. If so, return true. If not, produce appropriate
681// diagnostics and return false.
682//
683// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
684bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686  if (MD && MD->isInstance()) {
687    // C++11 [dcl.constexpr]p4:
688    //  The definition of a constexpr constructor shall satisfy the following
689    //  constraints:
690    //  - the class shall not have any virtual base classes;
691    const CXXRecordDecl *RD = MD->getParent();
692    if (RD->getNumVBases()) {
693      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695        << RD->getNumVBases();
696      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697             E = RD->vbases_end(); I != E; ++I)
698        Diag(I->getLocStart(),
699             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700      return false;
701    }
702  }
703
704  if (!isa<CXXConstructorDecl>(NewFD)) {
705    // C++11 [dcl.constexpr]p3:
706    //  The definition of a constexpr function shall satisfy the following
707    //  constraints:
708    // - it shall not be virtual;
709    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710    if (Method && Method->isVirtual()) {
711      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713      // If it's not obvious why this function is virtual, find an overridden
714      // function which uses the 'virtual' keyword.
715      const CXXMethodDecl *WrittenVirtual = Method;
716      while (!WrittenVirtual->isVirtualAsWritten())
717        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718      if (WrittenVirtual != Method)
719        Diag(WrittenVirtual->getLocation(),
720             diag::note_overridden_virtual_function);
721      return false;
722    }
723
724    // - its return type shall be a literal type;
725    QualType RT = NewFD->getResultType();
726    if (!RT->isDependentType() &&
727        RequireLiteralType(NewFD->getLocation(), RT,
728                           diag::err_constexpr_non_literal_return))
729      return false;
730  }
731
732  // - each of its parameter types shall be a literal type;
733  if (!CheckConstexprParameterTypes(*this, NewFD))
734    return false;
735
736  return true;
737}
738
739/// Check the given declaration statement is legal within a constexpr function
740/// body. C++0x [dcl.constexpr]p3,p4.
741///
742/// \return true if the body is OK, false if we have diagnosed a problem.
743static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744                                   DeclStmt *DS) {
745  // C++0x [dcl.constexpr]p3 and p4:
746  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
747  //  contain only
748  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750    switch ((*DclIt)->getKind()) {
751    case Decl::StaticAssert:
752    case Decl::Using:
753    case Decl::UsingShadow:
754    case Decl::UsingDirective:
755    case Decl::UnresolvedUsingTypename:
756      //   - static_assert-declarations
757      //   - using-declarations,
758      //   - using-directives,
759      continue;
760
761    case Decl::Typedef:
762    case Decl::TypeAlias: {
763      //   - typedef declarations and alias-declarations that do not define
764      //     classes or enumerations,
765      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767        // Don't allow variably-modified types in constexpr functions.
768        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770          << TL.getSourceRange() << TL.getType()
771          << isa<CXXConstructorDecl>(Dcl);
772        return false;
773      }
774      continue;
775    }
776
777    case Decl::Enum:
778    case Decl::CXXRecord:
779      // As an extension, we allow the declaration (but not the definition) of
780      // classes and enumerations in all declarations, not just in typedef and
781      // alias declarations.
782      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784          << isa<CXXConstructorDecl>(Dcl);
785        return false;
786      }
787      continue;
788
789    case Decl::Var:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793
794    default:
795      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796        << isa<CXXConstructorDecl>(Dcl);
797      return false;
798    }
799  }
800
801  return true;
802}
803
804/// Check that the given field is initialized within a constexpr constructor.
805///
806/// \param Dcl The constexpr constructor being checked.
807/// \param Field The field being checked. This may be a member of an anonymous
808///        struct or union nested within the class being checked.
809/// \param Inits All declarations, including anonymous struct/union members and
810///        indirect members, for which any initialization was provided.
811/// \param Diagnosed Set to true if an error is produced.
812static void CheckConstexprCtorInitializer(Sema &SemaRef,
813                                          const FunctionDecl *Dcl,
814                                          FieldDecl *Field,
815                                          llvm::SmallSet<Decl*, 16> &Inits,
816                                          bool &Diagnosed) {
817  if (Field->isUnnamedBitfield())
818    return;
819
820  if (Field->isAnonymousStructOrUnion() &&
821      Field->getType()->getAsCXXRecordDecl()->isEmpty())
822    return;
823
824  if (!Inits.count(Field)) {
825    if (!Diagnosed) {
826      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827      Diagnosed = true;
828    }
829    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830  } else if (Field->isAnonymousStructOrUnion()) {
831    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833         I != E; ++I)
834      // If an anonymous union contains an anonymous struct of which any member
835      // is initialized, all members must be initialized.
836      if (!RD->isUnion() || Inits.count(*I))
837        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
838  }
839}
840
841/// Check the body for the given constexpr function declaration only contains
842/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843///
844/// \return true if the body is OK, false if we have diagnosed a problem.
845bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // DR1359:
903    // - every non-variant non-static data member and base class sub-object
904    //   shall be initialized;
905    // - if the class is a non-empty union, or for each non-empty anonymous
906    //   union member of a non-union class, exactly one non-static data member
907    //   shall be initialized;
908    if (RD->isUnion()) {
909      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911        return false;
912      }
913    } else if (!Constructor->isDependentContext() &&
914               !Constructor->isDelegatingConstructor()) {
915      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917      // Skip detailed checking if we have enough initializers, and we would
918      // allow at most one initializer per member.
919      bool AnyAnonStructUnionMembers = false;
920      unsigned Fields = 0;
921      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922           E = RD->field_end(); I != E; ++I, ++Fields) {
923        if (I->isAnonymousStructOrUnion()) {
924          AnyAnonStructUnionMembers = true;
925          break;
926        }
927      }
928      if (AnyAnonStructUnionMembers ||
929          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930        // Check initialization of non-static data members. Base classes are
931        // always initialized so do not need to be checked. Dependent bases
932        // might not have initializers in the member initializer list.
933        llvm::SmallSet<Decl*, 16> Inits;
934        for (CXXConstructorDecl::init_const_iterator
935               I = Constructor->init_begin(), E = Constructor->init_end();
936             I != E; ++I) {
937          if (FieldDecl *FD = (*I)->getMember())
938            Inits.insert(FD);
939          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940            Inits.insert(ID->chain_begin(), ID->chain_end());
941        }
942
943        bool Diagnosed = false;
944        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945             E = RD->field_end(); I != E; ++I)
946          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
947        if (Diagnosed)
948          return false;
949      }
950    }
951  } else {
952    if (ReturnStmts.empty()) {
953      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954      return false;
955    }
956    if (ReturnStmts.size() > 1) {
957      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960      return false;
961    }
962  }
963
964  // C++11 [dcl.constexpr]p5:
965  //   if no function argument values exist such that the function invocation
966  //   substitution would produce a constant expression, the program is
967  //   ill-formed; no diagnostic required.
968  // C++11 [dcl.constexpr]p3:
969  //   - every constructor call and implicit conversion used in initializing the
970  //     return value shall be one of those allowed in a constant expression.
971  // C++11 [dcl.constexpr]p4:
972  //   - every constructor involved in initializing non-static data members and
973  //     base class sub-objects shall be a constexpr constructor.
974  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977      << isa<CXXConstructorDecl>(Dcl);
978    for (size_t I = 0, N = Diags.size(); I != N; ++I)
979      Diag(Diags[I].first, Diags[I].second);
980    return false;
981  }
982
983  return true;
984}
985
986/// isCurrentClassName - Determine whether the identifier II is the
987/// name of the class type currently being defined. In the case of
988/// nested classes, this will only return true if II is the name of
989/// the innermost class.
990bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991                              const CXXScopeSpec *SS) {
992  assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994  CXXRecordDecl *CurDecl;
995  if (SS && SS->isSet() && !SS->isInvalid()) {
996    DeclContext *DC = computeDeclContext(*SS, true);
997    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998  } else
999    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001  if (CurDecl && CurDecl->getIdentifier())
1002    return &II == CurDecl->getIdentifier();
1003  else
1004    return false;
1005}
1006
1007/// \brief Check the validity of a C++ base class specifier.
1008///
1009/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010/// and returns NULL otherwise.
1011CXXBaseSpecifier *
1012Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013                         SourceRange SpecifierRange,
1014                         bool Virtual, AccessSpecifier Access,
1015                         TypeSourceInfo *TInfo,
1016                         SourceLocation EllipsisLoc) {
1017  QualType BaseType = TInfo->getType();
1018
1019  // C++ [class.union]p1:
1020  //   A union shall not have base classes.
1021  if (Class->isUnion()) {
1022    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023      << SpecifierRange;
1024    return 0;
1025  }
1026
1027  if (EllipsisLoc.isValid() &&
1028      !TInfo->getType()->containsUnexpandedParameterPack()) {
1029    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030      << TInfo->getTypeLoc().getSourceRange();
1031    EllipsisLoc = SourceLocation();
1032  }
1033
1034  if (BaseType->isDependentType())
1035    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036                                          Class->getTagKind() == TTK_Class,
1037                                          Access, TInfo, EllipsisLoc);
1038
1039  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041  // Base specifiers must be record types.
1042  if (!BaseType->isRecordType()) {
1043    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044    return 0;
1045  }
1046
1047  // C++ [class.union]p1:
1048  //   A union shall not be used as a base class.
1049  if (BaseType->isUnionType()) {
1050    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051    return 0;
1052  }
1053
1054  // C++ [class.derived]p2:
1055  //   The class-name in a base-specifier shall not be an incompletely
1056  //   defined class.
1057  if (RequireCompleteType(BaseLoc, BaseType,
1058                          diag::err_incomplete_base_class, SpecifierRange)) {
1059    Class->setInvalidDecl();
1060    return 0;
1061  }
1062
1063  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1064  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1065  assert(BaseDecl && "Record type has no declaration");
1066  BaseDecl = BaseDecl->getDefinition();
1067  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1068  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1069  assert(CXXBaseDecl && "Base type is not a C++ type");
1070
1071  // C++ [class]p3:
1072  //   If a class is marked final and it appears as a base-type-specifier in
1073  //   base-clause, the program is ill-formed.
1074  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1075    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1076      << CXXBaseDecl->getDeclName();
1077    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1078      << CXXBaseDecl->getDeclName();
1079    return 0;
1080  }
1081
1082  if (BaseDecl->isInvalidDecl())
1083    Class->setInvalidDecl();
1084
1085  // Create the base specifier.
1086  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1087                                        Class->getTagKind() == TTK_Class,
1088                                        Access, TInfo, EllipsisLoc);
1089}
1090
1091/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1092/// one entry in the base class list of a class specifier, for
1093/// example:
1094///    class foo : public bar, virtual private baz {
1095/// 'public bar' and 'virtual private baz' are each base-specifiers.
1096BaseResult
1097Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1098                         bool Virtual, AccessSpecifier Access,
1099                         ParsedType basetype, SourceLocation BaseLoc,
1100                         SourceLocation EllipsisLoc) {
1101  if (!classdecl)
1102    return true;
1103
1104  AdjustDeclIfTemplate(classdecl);
1105  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1106  if (!Class)
1107    return true;
1108
1109  TypeSourceInfo *TInfo = 0;
1110  GetTypeFromParser(basetype, &TInfo);
1111
1112  if (EllipsisLoc.isInvalid() &&
1113      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1114                                      UPPC_BaseType))
1115    return true;
1116
1117  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1118                                                      Virtual, Access, TInfo,
1119                                                      EllipsisLoc))
1120    return BaseSpec;
1121
1122  return true;
1123}
1124
1125/// \brief Performs the actual work of attaching the given base class
1126/// specifiers to a C++ class.
1127bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1128                                unsigned NumBases) {
1129 if (NumBases == 0)
1130    return false;
1131
1132  // Used to keep track of which base types we have already seen, so
1133  // that we can properly diagnose redundant direct base types. Note
1134  // that the key is always the unqualified canonical type of the base
1135  // class.
1136  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1137
1138  // Copy non-redundant base specifiers into permanent storage.
1139  unsigned NumGoodBases = 0;
1140  bool Invalid = false;
1141  for (unsigned idx = 0; idx < NumBases; ++idx) {
1142    QualType NewBaseType
1143      = Context.getCanonicalType(Bases[idx]->getType());
1144    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1145
1146    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1147    if (KnownBase) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getLocStart(),
1152           diag::err_duplicate_base_class)
1153        << KnownBase->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBase = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOpts().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOpts().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442static bool InitializationHasSideEffects(const FieldDecl &FD) {
1443  if (!FD.getType().isNull()) {
1444    if (const CXXRecordDecl *RD = FD.getType()->getAsCXXRecordDecl()) {
1445      return !RD->isCompleteDefinition() ||
1446             !RD->hasTrivialDefaultConstructor() ||
1447             !RD->hasTrivialDestructor();
1448    }
1449  }
1450  return false;
1451}
1452
1453/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1454/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1455/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1456/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1457/// present (but parsing it has been deferred).
1458Decl *
1459Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1460                               MultiTemplateParamsArg TemplateParameterLists,
1461                               Expr *BW, const VirtSpecifiers &VS,
1462                               InClassInitStyle InitStyle) {
1463  const DeclSpec &DS = D.getDeclSpec();
1464  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1465  DeclarationName Name = NameInfo.getName();
1466  SourceLocation Loc = NameInfo.getLoc();
1467
1468  // For anonymous bitfields, the location should point to the type.
1469  if (Loc.isInvalid())
1470    Loc = D.getLocStart();
1471
1472  Expr *BitWidth = static_cast<Expr*>(BW);
1473
1474  assert(isa<CXXRecordDecl>(CurContext));
1475  assert(!DS.isFriendSpecified());
1476
1477  bool isFunc = D.isDeclarationOfFunction();
1478
1479  // C++ 9.2p6: A member shall not be declared to have automatic storage
1480  // duration (auto, register) or with the extern storage-class-specifier.
1481  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1482  // data members and cannot be applied to names declared const or static,
1483  // and cannot be applied to reference members.
1484  switch (DS.getStorageClassSpec()) {
1485    case DeclSpec::SCS_unspecified:
1486    case DeclSpec::SCS_typedef:
1487    case DeclSpec::SCS_static:
1488      // FALL THROUGH.
1489      break;
1490    case DeclSpec::SCS_mutable:
1491      if (isFunc) {
1492        if (DS.getStorageClassSpecLoc().isValid())
1493          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1494        else
1495          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1496
1497        // FIXME: It would be nicer if the keyword was ignored only for this
1498        // declarator. Otherwise we could get follow-up errors.
1499        D.getMutableDeclSpec().ClearStorageClassSpecs();
1500      }
1501      break;
1502    default:
1503      if (DS.getStorageClassSpecLoc().isValid())
1504        Diag(DS.getStorageClassSpecLoc(),
1505             diag::err_storageclass_invalid_for_member);
1506      else
1507        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1508      D.getMutableDeclSpec().ClearStorageClassSpecs();
1509  }
1510
1511  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1512                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1513                      !isFunc);
1514
1515  Decl *Member;
1516  if (isInstField) {
1517    CXXScopeSpec &SS = D.getCXXScopeSpec();
1518
1519    // Data members must have identifiers for names.
1520    if (!Name.isIdentifier()) {
1521      Diag(Loc, diag::err_bad_variable_name)
1522        << Name;
1523      return 0;
1524    }
1525
1526    IdentifierInfo *II = Name.getAsIdentifierInfo();
1527
1528    // Member field could not be with "template" keyword.
1529    // So TemplateParameterLists should be empty in this case.
1530    if (TemplateParameterLists.size()) {
1531      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1532      if (TemplateParams->size()) {
1533        // There is no such thing as a member field template.
1534        Diag(D.getIdentifierLoc(), diag::err_template_member)
1535            << II
1536            << SourceRange(TemplateParams->getTemplateLoc(),
1537                TemplateParams->getRAngleLoc());
1538      } else {
1539        // There is an extraneous 'template<>' for this member.
1540        Diag(TemplateParams->getTemplateLoc(),
1541            diag::err_template_member_noparams)
1542            << II
1543            << SourceRange(TemplateParams->getTemplateLoc(),
1544                TemplateParams->getRAngleLoc());
1545      }
1546      return 0;
1547    }
1548
1549    if (SS.isSet() && !SS.isInvalid()) {
1550      // The user provided a superfluous scope specifier inside a class
1551      // definition:
1552      //
1553      // class X {
1554      //   int X::member;
1555      // };
1556      if (DeclContext *DC = computeDeclContext(SS, false))
1557        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1558      else
1559        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1560          << Name << SS.getRange();
1561
1562      SS.clear();
1563    }
1564
1565    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1566                         InitStyle, AS);
1567    assert(Member && "HandleField never returns null");
1568  } else {
1569    assert(InitStyle == ICIS_NoInit);
1570
1571    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1572    if (!Member) {
1573      return 0;
1574    }
1575
1576    // Non-instance-fields can't have a bitfield.
1577    if (BitWidth) {
1578      if (Member->isInvalidDecl()) {
1579        // don't emit another diagnostic.
1580      } else if (isa<VarDecl>(Member)) {
1581        // C++ 9.6p3: A bit-field shall not be a static member.
1582        // "static member 'A' cannot be a bit-field"
1583        Diag(Loc, diag::err_static_not_bitfield)
1584          << Name << BitWidth->getSourceRange();
1585      } else if (isa<TypedefDecl>(Member)) {
1586        // "typedef member 'x' cannot be a bit-field"
1587        Diag(Loc, diag::err_typedef_not_bitfield)
1588          << Name << BitWidth->getSourceRange();
1589      } else {
1590        // A function typedef ("typedef int f(); f a;").
1591        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1592        Diag(Loc, diag::err_not_integral_type_bitfield)
1593          << Name << cast<ValueDecl>(Member)->getType()
1594          << BitWidth->getSourceRange();
1595      }
1596
1597      BitWidth = 0;
1598      Member->setInvalidDecl();
1599    }
1600
1601    Member->setAccess(AS);
1602
1603    // If we have declared a member function template, set the access of the
1604    // templated declaration as well.
1605    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1606      FunTmpl->getTemplatedDecl()->setAccess(AS);
1607  }
1608
1609  if (VS.isOverrideSpecified()) {
1610    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1611    if (!MD || !MD->isVirtual()) {
1612      Diag(Member->getLocStart(),
1613           diag::override_keyword_only_allowed_on_virtual_member_functions)
1614        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1615    } else
1616      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1617  }
1618  if (VS.isFinalSpecified()) {
1619    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1620    if (!MD || !MD->isVirtual()) {
1621      Diag(Member->getLocStart(),
1622           diag::override_keyword_only_allowed_on_virtual_member_functions)
1623      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1624    } else
1625      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1626  }
1627
1628  if (VS.getLastLocation().isValid()) {
1629    // Update the end location of a method that has a virt-specifiers.
1630    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1631      MD->setRangeEnd(VS.getLastLocation());
1632  }
1633
1634  CheckOverrideControl(Member);
1635
1636  assert((Name || isInstField) && "No identifier for non-field ?");
1637
1638  if (isInstField) {
1639    FieldDecl *FD = cast<FieldDecl>(Member);
1640    FieldCollector->Add(FD);
1641
1642    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1643                                 FD->getLocation())
1644          != DiagnosticsEngine::Ignored) {
1645      // Remember all explicit private FieldDecls that have a name, no side
1646      // effects and are not part of a dependent type declaration.
1647      if (!FD->isImplicit() && FD->getDeclName() &&
1648          FD->getAccess() == AS_private &&
1649          !FD->getParent()->getTypeForDecl()->isDependentType() &&
1650          !InitializationHasSideEffects(*FD))
1651        UnusedPrivateFields.insert(FD);
1652    }
1653  }
1654
1655  return Member;
1656}
1657
1658/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1659/// in-class initializer for a non-static C++ class member, and after
1660/// instantiating an in-class initializer in a class template. Such actions
1661/// are deferred until the class is complete.
1662void
1663Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1664                                       Expr *InitExpr) {
1665  FieldDecl *FD = cast<FieldDecl>(D);
1666  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1667         "must set init style when field is created");
1668
1669  if (!InitExpr) {
1670    FD->setInvalidDecl();
1671    FD->removeInClassInitializer();
1672    return;
1673  }
1674
1675  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1676    FD->setInvalidDecl();
1677    FD->removeInClassInitializer();
1678    return;
1679  }
1680
1681  ExprResult Init = InitExpr;
1682  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1683    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1684      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1685        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1686    }
1687    Expr **Inits = &InitExpr;
1688    unsigned NumInits = 1;
1689    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1690    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1691        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1692        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1693    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1694    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1695    if (Init.isInvalid()) {
1696      FD->setInvalidDecl();
1697      return;
1698    }
1699
1700    CheckImplicitConversions(Init.get(), InitLoc);
1701  }
1702
1703  // C++0x [class.base.init]p7:
1704  //   The initialization of each base and member constitutes a
1705  //   full-expression.
1706  Init = MaybeCreateExprWithCleanups(Init);
1707  if (Init.isInvalid()) {
1708    FD->setInvalidDecl();
1709    return;
1710  }
1711
1712  InitExpr = Init.release();
1713
1714  FD->setInClassInitializer(InitExpr);
1715}
1716
1717/// \brief Find the direct and/or virtual base specifiers that
1718/// correspond to the given base type, for use in base initialization
1719/// within a constructor.
1720static bool FindBaseInitializer(Sema &SemaRef,
1721                                CXXRecordDecl *ClassDecl,
1722                                QualType BaseType,
1723                                const CXXBaseSpecifier *&DirectBaseSpec,
1724                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1725  // First, check for a direct base class.
1726  DirectBaseSpec = 0;
1727  for (CXXRecordDecl::base_class_const_iterator Base
1728         = ClassDecl->bases_begin();
1729       Base != ClassDecl->bases_end(); ++Base) {
1730    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1731      // We found a direct base of this type. That's what we're
1732      // initializing.
1733      DirectBaseSpec = &*Base;
1734      break;
1735    }
1736  }
1737
1738  // Check for a virtual base class.
1739  // FIXME: We might be able to short-circuit this if we know in advance that
1740  // there are no virtual bases.
1741  VirtualBaseSpec = 0;
1742  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1743    // We haven't found a base yet; search the class hierarchy for a
1744    // virtual base class.
1745    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1746                       /*DetectVirtual=*/false);
1747    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1748                              BaseType, Paths)) {
1749      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1750           Path != Paths.end(); ++Path) {
1751        if (Path->back().Base->isVirtual()) {
1752          VirtualBaseSpec = Path->back().Base;
1753          break;
1754        }
1755      }
1756    }
1757  }
1758
1759  return DirectBaseSpec || VirtualBaseSpec;
1760}
1761
1762/// \brief Handle a C++ member initializer using braced-init-list syntax.
1763MemInitResult
1764Sema::ActOnMemInitializer(Decl *ConstructorD,
1765                          Scope *S,
1766                          CXXScopeSpec &SS,
1767                          IdentifierInfo *MemberOrBase,
1768                          ParsedType TemplateTypeTy,
1769                          const DeclSpec &DS,
1770                          SourceLocation IdLoc,
1771                          Expr *InitList,
1772                          SourceLocation EllipsisLoc) {
1773  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1774                             DS, IdLoc, InitList,
1775                             EllipsisLoc);
1776}
1777
1778/// \brief Handle a C++ member initializer using parentheses syntax.
1779MemInitResult
1780Sema::ActOnMemInitializer(Decl *ConstructorD,
1781                          Scope *S,
1782                          CXXScopeSpec &SS,
1783                          IdentifierInfo *MemberOrBase,
1784                          ParsedType TemplateTypeTy,
1785                          const DeclSpec &DS,
1786                          SourceLocation IdLoc,
1787                          SourceLocation LParenLoc,
1788                          Expr **Args, unsigned NumArgs,
1789                          SourceLocation RParenLoc,
1790                          SourceLocation EllipsisLoc) {
1791  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1792                                           RParenLoc);
1793  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1794                             DS, IdLoc, List, EllipsisLoc);
1795}
1796
1797namespace {
1798
1799// Callback to only accept typo corrections that can be a valid C++ member
1800// intializer: either a non-static field member or a base class.
1801class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1802 public:
1803  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1804      : ClassDecl(ClassDecl) {}
1805
1806  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1807    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1808      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1809        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1810      else
1811        return isa<TypeDecl>(ND);
1812    }
1813    return false;
1814  }
1815
1816 private:
1817  CXXRecordDecl *ClassDecl;
1818};
1819
1820}
1821
1822/// \brief Handle a C++ member initializer.
1823MemInitResult
1824Sema::BuildMemInitializer(Decl *ConstructorD,
1825                          Scope *S,
1826                          CXXScopeSpec &SS,
1827                          IdentifierInfo *MemberOrBase,
1828                          ParsedType TemplateTypeTy,
1829                          const DeclSpec &DS,
1830                          SourceLocation IdLoc,
1831                          Expr *Init,
1832                          SourceLocation EllipsisLoc) {
1833  if (!ConstructorD)
1834    return true;
1835
1836  AdjustDeclIfTemplate(ConstructorD);
1837
1838  CXXConstructorDecl *Constructor
1839    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1840  if (!Constructor) {
1841    // The user wrote a constructor initializer on a function that is
1842    // not a C++ constructor. Ignore the error for now, because we may
1843    // have more member initializers coming; we'll diagnose it just
1844    // once in ActOnMemInitializers.
1845    return true;
1846  }
1847
1848  CXXRecordDecl *ClassDecl = Constructor->getParent();
1849
1850  // C++ [class.base.init]p2:
1851  //   Names in a mem-initializer-id are looked up in the scope of the
1852  //   constructor's class and, if not found in that scope, are looked
1853  //   up in the scope containing the constructor's definition.
1854  //   [Note: if the constructor's class contains a member with the
1855  //   same name as a direct or virtual base class of the class, a
1856  //   mem-initializer-id naming the member or base class and composed
1857  //   of a single identifier refers to the class member. A
1858  //   mem-initializer-id for the hidden base class may be specified
1859  //   using a qualified name. ]
1860  if (!SS.getScopeRep() && !TemplateTypeTy) {
1861    // Look for a member, first.
1862    DeclContext::lookup_result Result
1863      = ClassDecl->lookup(MemberOrBase);
1864    if (Result.first != Result.second) {
1865      ValueDecl *Member;
1866      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1867          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1868        if (EllipsisLoc.isValid())
1869          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1870            << MemberOrBase
1871            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1872
1873        return BuildMemberInitializer(Member, Init, IdLoc);
1874      }
1875    }
1876  }
1877  // It didn't name a member, so see if it names a class.
1878  QualType BaseType;
1879  TypeSourceInfo *TInfo = 0;
1880
1881  if (TemplateTypeTy) {
1882    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1883  } else if (DS.getTypeSpecType() == TST_decltype) {
1884    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1885  } else {
1886    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1887    LookupParsedName(R, S, &SS);
1888
1889    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1890    if (!TyD) {
1891      if (R.isAmbiguous()) return true;
1892
1893      // We don't want access-control diagnostics here.
1894      R.suppressDiagnostics();
1895
1896      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1897        bool NotUnknownSpecialization = false;
1898        DeclContext *DC = computeDeclContext(SS, false);
1899        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1900          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1901
1902        if (!NotUnknownSpecialization) {
1903          // When the scope specifier can refer to a member of an unknown
1904          // specialization, we take it as a type name.
1905          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1906                                       SS.getWithLocInContext(Context),
1907                                       *MemberOrBase, IdLoc);
1908          if (BaseType.isNull())
1909            return true;
1910
1911          R.clear();
1912          R.setLookupName(MemberOrBase);
1913        }
1914      }
1915
1916      // If no results were found, try to correct typos.
1917      TypoCorrection Corr;
1918      MemInitializerValidatorCCC Validator(ClassDecl);
1919      if (R.empty() && BaseType.isNull() &&
1920          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1921                              Validator, ClassDecl))) {
1922        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1923        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1924        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1925          // We have found a non-static data member with a similar
1926          // name to what was typed; complain and initialize that
1927          // member.
1928          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1929            << MemberOrBase << true << CorrectedQuotedStr
1930            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1931          Diag(Member->getLocation(), diag::note_previous_decl)
1932            << CorrectedQuotedStr;
1933
1934          return BuildMemberInitializer(Member, Init, IdLoc);
1935        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1936          const CXXBaseSpecifier *DirectBaseSpec;
1937          const CXXBaseSpecifier *VirtualBaseSpec;
1938          if (FindBaseInitializer(*this, ClassDecl,
1939                                  Context.getTypeDeclType(Type),
1940                                  DirectBaseSpec, VirtualBaseSpec)) {
1941            // We have found a direct or virtual base class with a
1942            // similar name to what was typed; complain and initialize
1943            // that base class.
1944            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1945              << MemberOrBase << false << CorrectedQuotedStr
1946              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1947
1948            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1949                                                             : VirtualBaseSpec;
1950            Diag(BaseSpec->getLocStart(),
1951                 diag::note_base_class_specified_here)
1952              << BaseSpec->getType()
1953              << BaseSpec->getSourceRange();
1954
1955            TyD = Type;
1956          }
1957        }
1958      }
1959
1960      if (!TyD && BaseType.isNull()) {
1961        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1962          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1963        return true;
1964      }
1965    }
1966
1967    if (BaseType.isNull()) {
1968      BaseType = Context.getTypeDeclType(TyD);
1969      if (SS.isSet()) {
1970        NestedNameSpecifier *Qualifier =
1971          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1972
1973        // FIXME: preserve source range information
1974        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1975      }
1976    }
1977  }
1978
1979  if (!TInfo)
1980    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1981
1982  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1983}
1984
1985/// Checks a member initializer expression for cases where reference (or
1986/// pointer) members are bound to by-value parameters (or their addresses).
1987static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1988                                               Expr *Init,
1989                                               SourceLocation IdLoc) {
1990  QualType MemberTy = Member->getType();
1991
1992  // We only handle pointers and references currently.
1993  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1994  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1995    return;
1996
1997  const bool IsPointer = MemberTy->isPointerType();
1998  if (IsPointer) {
1999    if (const UnaryOperator *Op
2000          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2001      // The only case we're worried about with pointers requires taking the
2002      // address.
2003      if (Op->getOpcode() != UO_AddrOf)
2004        return;
2005
2006      Init = Op->getSubExpr();
2007    } else {
2008      // We only handle address-of expression initializers for pointers.
2009      return;
2010    }
2011  }
2012
2013  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2014    // Taking the address of a temporary will be diagnosed as a hard error.
2015    if (IsPointer)
2016      return;
2017
2018    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2019      << Member << Init->getSourceRange();
2020  } else if (const DeclRefExpr *DRE
2021               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2022    // We only warn when referring to a non-reference parameter declaration.
2023    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2024    if (!Parameter || Parameter->getType()->isReferenceType())
2025      return;
2026
2027    S.Diag(Init->getExprLoc(),
2028           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2029                     : diag::warn_bind_ref_member_to_parameter)
2030      << Member << Parameter << Init->getSourceRange();
2031  } else {
2032    // Other initializers are fine.
2033    return;
2034  }
2035
2036  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2037    << (unsigned)IsPointer;
2038}
2039
2040/// Checks an initializer expression for use of uninitialized fields, such as
2041/// containing the field that is being initialized. Returns true if there is an
2042/// uninitialized field was used an updates the SourceLocation parameter; false
2043/// otherwise.
2044static bool InitExprContainsUninitializedFields(const Stmt *S,
2045                                                const ValueDecl *LhsField,
2046                                                SourceLocation *L) {
2047  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2048
2049  if (isa<CallExpr>(S)) {
2050    // Do not descend into function calls or constructors, as the use
2051    // of an uninitialized field may be valid. One would have to inspect
2052    // the contents of the function/ctor to determine if it is safe or not.
2053    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2054    // may be safe, depending on what the function/ctor does.
2055    return false;
2056  }
2057  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2058    const NamedDecl *RhsField = ME->getMemberDecl();
2059
2060    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2061      // The member expression points to a static data member.
2062      assert(VD->isStaticDataMember() &&
2063             "Member points to non-static data member!");
2064      (void)VD;
2065      return false;
2066    }
2067
2068    if (isa<EnumConstantDecl>(RhsField)) {
2069      // The member expression points to an enum.
2070      return false;
2071    }
2072
2073    if (RhsField == LhsField) {
2074      // Initializing a field with itself. Throw a warning.
2075      // But wait; there are exceptions!
2076      // Exception #1:  The field may not belong to this record.
2077      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2078      const Expr *base = ME->getBase();
2079      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2080        // Even though the field matches, it does not belong to this record.
2081        return false;
2082      }
2083      // None of the exceptions triggered; return true to indicate an
2084      // uninitialized field was used.
2085      *L = ME->getMemberLoc();
2086      return true;
2087    }
2088  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2089    // sizeof/alignof doesn't reference contents, do not warn.
2090    return false;
2091  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2092    // address-of doesn't reference contents (the pointer may be dereferenced
2093    // in the same expression but it would be rare; and weird).
2094    if (UOE->getOpcode() == UO_AddrOf)
2095      return false;
2096  }
2097  for (Stmt::const_child_range it = S->children(); it; ++it) {
2098    if (!*it) {
2099      // An expression such as 'member(arg ?: "")' may trigger this.
2100      continue;
2101    }
2102    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2103      return true;
2104  }
2105  return false;
2106}
2107
2108MemInitResult
2109Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2110                             SourceLocation IdLoc) {
2111  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2112  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2113  assert((DirectMember || IndirectMember) &&
2114         "Member must be a FieldDecl or IndirectFieldDecl");
2115
2116  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2117    return true;
2118
2119  if (Member->isInvalidDecl())
2120    return true;
2121
2122  // Diagnose value-uses of fields to initialize themselves, e.g.
2123  //   foo(foo)
2124  // where foo is not also a parameter to the constructor.
2125  // TODO: implement -Wuninitialized and fold this into that framework.
2126  Expr **Args;
2127  unsigned NumArgs;
2128  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2129    Args = ParenList->getExprs();
2130    NumArgs = ParenList->getNumExprs();
2131  } else {
2132    InitListExpr *InitList = cast<InitListExpr>(Init);
2133    Args = InitList->getInits();
2134    NumArgs = InitList->getNumInits();
2135  }
2136
2137  // Mark FieldDecl as being used if it is a non-primitive type and the
2138  // initializer does not call the default constructor (which is trivial
2139  // for all entries in UnusedPrivateFields).
2140  // FIXME: Make this smarter once more side effect-free types can be
2141  // determined.
2142  if (NumArgs > 0) {
2143    if (Member->getType()->isRecordType()) {
2144      UnusedPrivateFields.remove(Member);
2145    } else {
2146      for (unsigned i = 0; i < NumArgs; ++i) {
2147        if (Args[i]->HasSideEffects(Context)) {
2148          UnusedPrivateFields.remove(Member);
2149          break;
2150        }
2151      }
2152    }
2153  }
2154
2155  for (unsigned i = 0; i < NumArgs; ++i) {
2156    SourceLocation L;
2157    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2158      // FIXME: Return true in the case when other fields are used before being
2159      // uninitialized. For example, let this field be the i'th field. When
2160      // initializing the i'th field, throw a warning if any of the >= i'th
2161      // fields are used, as they are not yet initialized.
2162      // Right now we are only handling the case where the i'th field uses
2163      // itself in its initializer.
2164      Diag(L, diag::warn_field_is_uninit);
2165    }
2166  }
2167
2168  SourceRange InitRange = Init->getSourceRange();
2169
2170  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2171    // Can't check initialization for a member of dependent type or when
2172    // any of the arguments are type-dependent expressions.
2173    DiscardCleanupsInEvaluationContext();
2174  } else {
2175    bool InitList = false;
2176    if (isa<InitListExpr>(Init)) {
2177      InitList = true;
2178      Args = &Init;
2179      NumArgs = 1;
2180
2181      if (isStdInitializerList(Member->getType(), 0)) {
2182        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2183            << /*at end of ctor*/1 << InitRange;
2184      }
2185    }
2186
2187    // Initialize the member.
2188    InitializedEntity MemberEntity =
2189      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2190                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2191    InitializationKind Kind =
2192      InitList ? InitializationKind::CreateDirectList(IdLoc)
2193               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2194                                                  InitRange.getEnd());
2195
2196    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2197    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2198                                            MultiExprArg(*this, Args, NumArgs),
2199                                            0);
2200    if (MemberInit.isInvalid())
2201      return true;
2202
2203    CheckImplicitConversions(MemberInit.get(),
2204                             InitRange.getBegin());
2205
2206    // C++0x [class.base.init]p7:
2207    //   The initialization of each base and member constitutes a
2208    //   full-expression.
2209    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2210    if (MemberInit.isInvalid())
2211      return true;
2212
2213    // If we are in a dependent context, template instantiation will
2214    // perform this type-checking again. Just save the arguments that we
2215    // received.
2216    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2217    // of the information that we have about the member
2218    // initializer. However, deconstructing the ASTs is a dicey process,
2219    // and this approach is far more likely to get the corner cases right.
2220    if (CurContext->isDependentContext()) {
2221      // The existing Init will do fine.
2222    } else {
2223      Init = MemberInit.get();
2224      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2225    }
2226  }
2227
2228  if (DirectMember) {
2229    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2230                                            InitRange.getBegin(), Init,
2231                                            InitRange.getEnd());
2232  } else {
2233    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2234                                            InitRange.getBegin(), Init,
2235                                            InitRange.getEnd());
2236  }
2237}
2238
2239MemInitResult
2240Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2241                                 CXXRecordDecl *ClassDecl) {
2242  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2243  if (!LangOpts.CPlusPlus0x)
2244    return Diag(NameLoc, diag::err_delegating_ctor)
2245      << TInfo->getTypeLoc().getLocalSourceRange();
2246  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2247
2248  bool InitList = true;
2249  Expr **Args = &Init;
2250  unsigned NumArgs = 1;
2251  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2252    InitList = false;
2253    Args = ParenList->getExprs();
2254    NumArgs = ParenList->getNumExprs();
2255  }
2256
2257  SourceRange InitRange = Init->getSourceRange();
2258  // Initialize the object.
2259  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2260                                     QualType(ClassDecl->getTypeForDecl(), 0));
2261  InitializationKind Kind =
2262    InitList ? InitializationKind::CreateDirectList(NameLoc)
2263             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2264                                                InitRange.getEnd());
2265  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2266  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2267                                              MultiExprArg(*this, Args,NumArgs),
2268                                              0);
2269  if (DelegationInit.isInvalid())
2270    return true;
2271
2272  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2273         "Delegating constructor with no target?");
2274
2275  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2276
2277  // C++0x [class.base.init]p7:
2278  //   The initialization of each base and member constitutes a
2279  //   full-expression.
2280  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2281  if (DelegationInit.isInvalid())
2282    return true;
2283
2284  // If we are in a dependent context, template instantiation will
2285  // perform this type-checking again. Just save the arguments that we
2286  // received in a ParenListExpr.
2287  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2288  // of the information that we have about the base
2289  // initializer. However, deconstructing the ASTs is a dicey process,
2290  // and this approach is far more likely to get the corner cases right.
2291  if (CurContext->isDependentContext())
2292    DelegationInit = Owned(Init);
2293
2294  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2295                                          DelegationInit.takeAs<Expr>(),
2296                                          InitRange.getEnd());
2297}
2298
2299MemInitResult
2300Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2301                           Expr *Init, CXXRecordDecl *ClassDecl,
2302                           SourceLocation EllipsisLoc) {
2303  SourceLocation BaseLoc
2304    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2305
2306  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2307    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2308             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2309
2310  // C++ [class.base.init]p2:
2311  //   [...] Unless the mem-initializer-id names a nonstatic data
2312  //   member of the constructor's class or a direct or virtual base
2313  //   of that class, the mem-initializer is ill-formed. A
2314  //   mem-initializer-list can initialize a base class using any
2315  //   name that denotes that base class type.
2316  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2317
2318  SourceRange InitRange = Init->getSourceRange();
2319  if (EllipsisLoc.isValid()) {
2320    // This is a pack expansion.
2321    if (!BaseType->containsUnexpandedParameterPack())  {
2322      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2323        << SourceRange(BaseLoc, InitRange.getEnd());
2324
2325      EllipsisLoc = SourceLocation();
2326    }
2327  } else {
2328    // Check for any unexpanded parameter packs.
2329    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2330      return true;
2331
2332    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2333      return true;
2334  }
2335
2336  // Check for direct and virtual base classes.
2337  const CXXBaseSpecifier *DirectBaseSpec = 0;
2338  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2339  if (!Dependent) {
2340    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2341                                       BaseType))
2342      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2343
2344    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2345                        VirtualBaseSpec);
2346
2347    // C++ [base.class.init]p2:
2348    // Unless the mem-initializer-id names a nonstatic data member of the
2349    // constructor's class or a direct or virtual base of that class, the
2350    // mem-initializer is ill-formed.
2351    if (!DirectBaseSpec && !VirtualBaseSpec) {
2352      // If the class has any dependent bases, then it's possible that
2353      // one of those types will resolve to the same type as
2354      // BaseType. Therefore, just treat this as a dependent base
2355      // class initialization.  FIXME: Should we try to check the
2356      // initialization anyway? It seems odd.
2357      if (ClassDecl->hasAnyDependentBases())
2358        Dependent = true;
2359      else
2360        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2361          << BaseType << Context.getTypeDeclType(ClassDecl)
2362          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2363    }
2364  }
2365
2366  if (Dependent) {
2367    DiscardCleanupsInEvaluationContext();
2368
2369    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2370                                            /*IsVirtual=*/false,
2371                                            InitRange.getBegin(), Init,
2372                                            InitRange.getEnd(), EllipsisLoc);
2373  }
2374
2375  // C++ [base.class.init]p2:
2376  //   If a mem-initializer-id is ambiguous because it designates both
2377  //   a direct non-virtual base class and an inherited virtual base
2378  //   class, the mem-initializer is ill-formed.
2379  if (DirectBaseSpec && VirtualBaseSpec)
2380    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2381      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2382
2383  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2384  if (!BaseSpec)
2385    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2386
2387  // Initialize the base.
2388  bool InitList = true;
2389  Expr **Args = &Init;
2390  unsigned NumArgs = 1;
2391  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2392    InitList = false;
2393    Args = ParenList->getExprs();
2394    NumArgs = ParenList->getNumExprs();
2395  }
2396
2397  InitializedEntity BaseEntity =
2398    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2399  InitializationKind Kind =
2400    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2401             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2402                                                InitRange.getEnd());
2403  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2404  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2405                                          MultiExprArg(*this, Args, NumArgs),
2406                                          0);
2407  if (BaseInit.isInvalid())
2408    return true;
2409
2410  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2411
2412  // C++0x [class.base.init]p7:
2413  //   The initialization of each base and member constitutes a
2414  //   full-expression.
2415  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2416  if (BaseInit.isInvalid())
2417    return true;
2418
2419  // If we are in a dependent context, template instantiation will
2420  // perform this type-checking again. Just save the arguments that we
2421  // received in a ParenListExpr.
2422  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2423  // of the information that we have about the base
2424  // initializer. However, deconstructing the ASTs is a dicey process,
2425  // and this approach is far more likely to get the corner cases right.
2426  if (CurContext->isDependentContext())
2427    BaseInit = Owned(Init);
2428
2429  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2430                                          BaseSpec->isVirtual(),
2431                                          InitRange.getBegin(),
2432                                          BaseInit.takeAs<Expr>(),
2433                                          InitRange.getEnd(), EllipsisLoc);
2434}
2435
2436// Create a static_cast\<T&&>(expr).
2437static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2438  QualType ExprType = E->getType();
2439  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2440  SourceLocation ExprLoc = E->getLocStart();
2441  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2442      TargetType, ExprLoc);
2443
2444  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2445                                   SourceRange(ExprLoc, ExprLoc),
2446                                   E->getSourceRange()).take();
2447}
2448
2449/// ImplicitInitializerKind - How an implicit base or member initializer should
2450/// initialize its base or member.
2451enum ImplicitInitializerKind {
2452  IIK_Default,
2453  IIK_Copy,
2454  IIK_Move
2455};
2456
2457static bool
2458BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2459                             ImplicitInitializerKind ImplicitInitKind,
2460                             CXXBaseSpecifier *BaseSpec,
2461                             bool IsInheritedVirtualBase,
2462                             CXXCtorInitializer *&CXXBaseInit) {
2463  InitializedEntity InitEntity
2464    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2465                                        IsInheritedVirtualBase);
2466
2467  ExprResult BaseInit;
2468
2469  switch (ImplicitInitKind) {
2470  case IIK_Default: {
2471    InitializationKind InitKind
2472      = InitializationKind::CreateDefault(Constructor->getLocation());
2473    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2474    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2475                               MultiExprArg(SemaRef, 0, 0));
2476    break;
2477  }
2478
2479  case IIK_Move:
2480  case IIK_Copy: {
2481    bool Moving = ImplicitInitKind == IIK_Move;
2482    ParmVarDecl *Param = Constructor->getParamDecl(0);
2483    QualType ParamType = Param->getType().getNonReferenceType();
2484
2485    Expr *CopyCtorArg =
2486      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2487                          SourceLocation(), Param, false,
2488                          Constructor->getLocation(), ParamType,
2489                          VK_LValue, 0);
2490
2491    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2492
2493    // Cast to the base class to avoid ambiguities.
2494    QualType ArgTy =
2495      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2496                                       ParamType.getQualifiers());
2497
2498    if (Moving) {
2499      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2500    }
2501
2502    CXXCastPath BasePath;
2503    BasePath.push_back(BaseSpec);
2504    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2505                                            CK_UncheckedDerivedToBase,
2506                                            Moving ? VK_XValue : VK_LValue,
2507                                            &BasePath).take();
2508
2509    InitializationKind InitKind
2510      = InitializationKind::CreateDirect(Constructor->getLocation(),
2511                                         SourceLocation(), SourceLocation());
2512    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2513                                   &CopyCtorArg, 1);
2514    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2515                               MultiExprArg(&CopyCtorArg, 1));
2516    break;
2517  }
2518  }
2519
2520  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2521  if (BaseInit.isInvalid())
2522    return true;
2523
2524  CXXBaseInit =
2525    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2526               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2527                                                        SourceLocation()),
2528                                             BaseSpec->isVirtual(),
2529                                             SourceLocation(),
2530                                             BaseInit.takeAs<Expr>(),
2531                                             SourceLocation(),
2532                                             SourceLocation());
2533
2534  return false;
2535}
2536
2537static bool RefersToRValueRef(Expr *MemRef) {
2538  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2539  return Referenced->getType()->isRValueReferenceType();
2540}
2541
2542static bool
2543BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2544                               ImplicitInitializerKind ImplicitInitKind,
2545                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2546                               CXXCtorInitializer *&CXXMemberInit) {
2547  if (Field->isInvalidDecl())
2548    return true;
2549
2550  SourceLocation Loc = Constructor->getLocation();
2551
2552  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2553    bool Moving = ImplicitInitKind == IIK_Move;
2554    ParmVarDecl *Param = Constructor->getParamDecl(0);
2555    QualType ParamType = Param->getType().getNonReferenceType();
2556
2557    // Suppress copying zero-width bitfields.
2558    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2559      return false;
2560
2561    Expr *MemberExprBase =
2562      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2563                          SourceLocation(), Param, false,
2564                          Loc, ParamType, VK_LValue, 0);
2565
2566    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2567
2568    if (Moving) {
2569      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2570    }
2571
2572    // Build a reference to this field within the parameter.
2573    CXXScopeSpec SS;
2574    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2575                              Sema::LookupMemberName);
2576    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2577                                  : cast<ValueDecl>(Field), AS_public);
2578    MemberLookup.resolveKind();
2579    ExprResult CtorArg
2580      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2581                                         ParamType, Loc,
2582                                         /*IsArrow=*/false,
2583                                         SS,
2584                                         /*TemplateKWLoc=*/SourceLocation(),
2585                                         /*FirstQualifierInScope=*/0,
2586                                         MemberLookup,
2587                                         /*TemplateArgs=*/0);
2588    if (CtorArg.isInvalid())
2589      return true;
2590
2591    // C++11 [class.copy]p15:
2592    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2593    //     with static_cast<T&&>(x.m);
2594    if (RefersToRValueRef(CtorArg.get())) {
2595      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2596    }
2597
2598    // When the field we are copying is an array, create index variables for
2599    // each dimension of the array. We use these index variables to subscript
2600    // the source array, and other clients (e.g., CodeGen) will perform the
2601    // necessary iteration with these index variables.
2602    SmallVector<VarDecl *, 4> IndexVariables;
2603    QualType BaseType = Field->getType();
2604    QualType SizeType = SemaRef.Context.getSizeType();
2605    bool InitializingArray = false;
2606    while (const ConstantArrayType *Array
2607                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2608      InitializingArray = true;
2609      // Create the iteration variable for this array index.
2610      IdentifierInfo *IterationVarName = 0;
2611      {
2612        SmallString<8> Str;
2613        llvm::raw_svector_ostream OS(Str);
2614        OS << "__i" << IndexVariables.size();
2615        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2616      }
2617      VarDecl *IterationVar
2618        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2619                          IterationVarName, SizeType,
2620                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2621                          SC_None, SC_None);
2622      IndexVariables.push_back(IterationVar);
2623
2624      // Create a reference to the iteration variable.
2625      ExprResult IterationVarRef
2626        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2627      assert(!IterationVarRef.isInvalid() &&
2628             "Reference to invented variable cannot fail!");
2629      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2630      assert(!IterationVarRef.isInvalid() &&
2631             "Conversion of invented variable cannot fail!");
2632
2633      // Subscript the array with this iteration variable.
2634      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2635                                                        IterationVarRef.take(),
2636                                                        Loc);
2637      if (CtorArg.isInvalid())
2638        return true;
2639
2640      BaseType = Array->getElementType();
2641    }
2642
2643    // The array subscript expression is an lvalue, which is wrong for moving.
2644    if (Moving && InitializingArray)
2645      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2646
2647    // Construct the entity that we will be initializing. For an array, this
2648    // will be first element in the array, which may require several levels
2649    // of array-subscript entities.
2650    SmallVector<InitializedEntity, 4> Entities;
2651    Entities.reserve(1 + IndexVariables.size());
2652    if (Indirect)
2653      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2654    else
2655      Entities.push_back(InitializedEntity::InitializeMember(Field));
2656    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2657      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2658                                                              0,
2659                                                              Entities.back()));
2660
2661    // Direct-initialize to use the copy constructor.
2662    InitializationKind InitKind =
2663      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2664
2665    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2666    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2667                                   &CtorArgE, 1);
2668
2669    ExprResult MemberInit
2670      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2671                        MultiExprArg(&CtorArgE, 1));
2672    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2673    if (MemberInit.isInvalid())
2674      return true;
2675
2676    if (Indirect) {
2677      assert(IndexVariables.size() == 0 &&
2678             "Indirect field improperly initialized");
2679      CXXMemberInit
2680        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2681                                                   Loc, Loc,
2682                                                   MemberInit.takeAs<Expr>(),
2683                                                   Loc);
2684    } else
2685      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2686                                                 Loc, MemberInit.takeAs<Expr>(),
2687                                                 Loc,
2688                                                 IndexVariables.data(),
2689                                                 IndexVariables.size());
2690    return false;
2691  }
2692
2693  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2694
2695  QualType FieldBaseElementType =
2696    SemaRef.Context.getBaseElementType(Field->getType());
2697
2698  if (FieldBaseElementType->isRecordType()) {
2699    InitializedEntity InitEntity
2700      = Indirect? InitializedEntity::InitializeMember(Indirect)
2701                : InitializedEntity::InitializeMember(Field);
2702    InitializationKind InitKind =
2703      InitializationKind::CreateDefault(Loc);
2704
2705    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2706    ExprResult MemberInit =
2707      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2708
2709    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2710    if (MemberInit.isInvalid())
2711      return true;
2712
2713    if (Indirect)
2714      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2715                                                               Indirect, Loc,
2716                                                               Loc,
2717                                                               MemberInit.get(),
2718                                                               Loc);
2719    else
2720      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2721                                                               Field, Loc, Loc,
2722                                                               MemberInit.get(),
2723                                                               Loc);
2724    return false;
2725  }
2726
2727  if (!Field->getParent()->isUnion()) {
2728    if (FieldBaseElementType->isReferenceType()) {
2729      SemaRef.Diag(Constructor->getLocation(),
2730                   diag::err_uninitialized_member_in_ctor)
2731      << (int)Constructor->isImplicit()
2732      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2733      << 0 << Field->getDeclName();
2734      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2735      return true;
2736    }
2737
2738    if (FieldBaseElementType.isConstQualified()) {
2739      SemaRef.Diag(Constructor->getLocation(),
2740                   diag::err_uninitialized_member_in_ctor)
2741      << (int)Constructor->isImplicit()
2742      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2743      << 1 << Field->getDeclName();
2744      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2745      return true;
2746    }
2747  }
2748
2749  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2750      FieldBaseElementType->isObjCRetainableType() &&
2751      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2752      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2753    // Instant objects:
2754    //   Default-initialize Objective-C pointers to NULL.
2755    CXXMemberInit
2756      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2757                                                 Loc, Loc,
2758                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2759                                                 Loc);
2760    return false;
2761  }
2762
2763  // Nothing to initialize.
2764  CXXMemberInit = 0;
2765  return false;
2766}
2767
2768namespace {
2769struct BaseAndFieldInfo {
2770  Sema &S;
2771  CXXConstructorDecl *Ctor;
2772  bool AnyErrorsInInits;
2773  ImplicitInitializerKind IIK;
2774  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2775  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2776
2777  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2778    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2779    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2780    if (Generated && Ctor->isCopyConstructor())
2781      IIK = IIK_Copy;
2782    else if (Generated && Ctor->isMoveConstructor())
2783      IIK = IIK_Move;
2784    else
2785      IIK = IIK_Default;
2786  }
2787
2788  bool isImplicitCopyOrMove() const {
2789    switch (IIK) {
2790    case IIK_Copy:
2791    case IIK_Move:
2792      return true;
2793
2794    case IIK_Default:
2795      return false;
2796    }
2797
2798    llvm_unreachable("Invalid ImplicitInitializerKind!");
2799  }
2800};
2801}
2802
2803/// \brief Determine whether the given indirect field declaration is somewhere
2804/// within an anonymous union.
2805static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2806  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2807                                      CEnd = F->chain_end();
2808       C != CEnd; ++C)
2809    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2810      if (Record->isUnion())
2811        return true;
2812
2813  return false;
2814}
2815
2816/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2817/// array type.
2818static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2819  if (T->isIncompleteArrayType())
2820    return true;
2821
2822  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2823    if (!ArrayT->getSize())
2824      return true;
2825
2826    T = ArrayT->getElementType();
2827  }
2828
2829  return false;
2830}
2831
2832static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2833                                    FieldDecl *Field,
2834                                    IndirectFieldDecl *Indirect = 0) {
2835
2836  // Overwhelmingly common case: we have a direct initializer for this field.
2837  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2838    Info.AllToInit.push_back(Init);
2839    return false;
2840  }
2841
2842  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2843  // has a brace-or-equal-initializer, the entity is initialized as specified
2844  // in [dcl.init].
2845  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2846    CXXCtorInitializer *Init;
2847    if (Indirect)
2848      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2849                                                      SourceLocation(),
2850                                                      SourceLocation(), 0,
2851                                                      SourceLocation());
2852    else
2853      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2854                                                      SourceLocation(),
2855                                                      SourceLocation(), 0,
2856                                                      SourceLocation());
2857    Info.AllToInit.push_back(Init);
2858
2859    // Check whether this initializer makes the field "used".
2860    Expr *InitExpr = Field->getInClassInitializer();
2861    if (Field->getType()->isRecordType() ||
2862        (InitExpr && InitExpr->HasSideEffects(SemaRef.Context)))
2863      SemaRef.UnusedPrivateFields.remove(Field);
2864
2865    return false;
2866  }
2867
2868  // Don't build an implicit initializer for union members if none was
2869  // explicitly specified.
2870  if (Field->getParent()->isUnion() ||
2871      (Indirect && isWithinAnonymousUnion(Indirect)))
2872    return false;
2873
2874  // Don't initialize incomplete or zero-length arrays.
2875  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2876    return false;
2877
2878  // Don't try to build an implicit initializer if there were semantic
2879  // errors in any of the initializers (and therefore we might be
2880  // missing some that the user actually wrote).
2881  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2882    return false;
2883
2884  CXXCtorInitializer *Init = 0;
2885  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2886                                     Indirect, Init))
2887    return true;
2888
2889  if (Init)
2890    Info.AllToInit.push_back(Init);
2891
2892  return false;
2893}
2894
2895bool
2896Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2897                               CXXCtorInitializer *Initializer) {
2898  assert(Initializer->isDelegatingInitializer());
2899  Constructor->setNumCtorInitializers(1);
2900  CXXCtorInitializer **initializer =
2901    new (Context) CXXCtorInitializer*[1];
2902  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2903  Constructor->setCtorInitializers(initializer);
2904
2905  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2906    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2907    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2908  }
2909
2910  DelegatingCtorDecls.push_back(Constructor);
2911
2912  return false;
2913}
2914
2915bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2916                               CXXCtorInitializer **Initializers,
2917                               unsigned NumInitializers,
2918                               bool AnyErrors) {
2919  if (Constructor->isDependentContext()) {
2920    // Just store the initializers as written, they will be checked during
2921    // instantiation.
2922    if (NumInitializers > 0) {
2923      Constructor->setNumCtorInitializers(NumInitializers);
2924      CXXCtorInitializer **baseOrMemberInitializers =
2925        new (Context) CXXCtorInitializer*[NumInitializers];
2926      memcpy(baseOrMemberInitializers, Initializers,
2927             NumInitializers * sizeof(CXXCtorInitializer*));
2928      Constructor->setCtorInitializers(baseOrMemberInitializers);
2929    }
2930
2931    return false;
2932  }
2933
2934  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2935
2936  // We need to build the initializer AST according to order of construction
2937  // and not what user specified in the Initializers list.
2938  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2939  if (!ClassDecl)
2940    return true;
2941
2942  bool HadError = false;
2943
2944  for (unsigned i = 0; i < NumInitializers; i++) {
2945    CXXCtorInitializer *Member = Initializers[i];
2946
2947    if (Member->isBaseInitializer())
2948      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2949    else
2950      Info.AllBaseFields[Member->getAnyMember()] = Member;
2951  }
2952
2953  // Keep track of the direct virtual bases.
2954  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2955  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2956       E = ClassDecl->bases_end(); I != E; ++I) {
2957    if (I->isVirtual())
2958      DirectVBases.insert(I);
2959  }
2960
2961  // Push virtual bases before others.
2962  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2963       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2964
2965    if (CXXCtorInitializer *Value
2966        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2967      Info.AllToInit.push_back(Value);
2968    } else if (!AnyErrors) {
2969      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2970      CXXCtorInitializer *CXXBaseInit;
2971      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2972                                       VBase, IsInheritedVirtualBase,
2973                                       CXXBaseInit)) {
2974        HadError = true;
2975        continue;
2976      }
2977
2978      Info.AllToInit.push_back(CXXBaseInit);
2979    }
2980  }
2981
2982  // Non-virtual bases.
2983  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2984       E = ClassDecl->bases_end(); Base != E; ++Base) {
2985    // Virtuals are in the virtual base list and already constructed.
2986    if (Base->isVirtual())
2987      continue;
2988
2989    if (CXXCtorInitializer *Value
2990          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2991      Info.AllToInit.push_back(Value);
2992    } else if (!AnyErrors) {
2993      CXXCtorInitializer *CXXBaseInit;
2994      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2995                                       Base, /*IsInheritedVirtualBase=*/false,
2996                                       CXXBaseInit)) {
2997        HadError = true;
2998        continue;
2999      }
3000
3001      Info.AllToInit.push_back(CXXBaseInit);
3002    }
3003  }
3004
3005  // Fields.
3006  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3007                               MemEnd = ClassDecl->decls_end();
3008       Mem != MemEnd; ++Mem) {
3009    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3010      // C++ [class.bit]p2:
3011      //   A declaration for a bit-field that omits the identifier declares an
3012      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3013      //   initialized.
3014      if (F->isUnnamedBitfield())
3015        continue;
3016
3017      // If we're not generating the implicit copy/move constructor, then we'll
3018      // handle anonymous struct/union fields based on their individual
3019      // indirect fields.
3020      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3021        continue;
3022
3023      if (CollectFieldInitializer(*this, Info, F))
3024        HadError = true;
3025      continue;
3026    }
3027
3028    // Beyond this point, we only consider default initialization.
3029    if (Info.IIK != IIK_Default)
3030      continue;
3031
3032    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3033      if (F->getType()->isIncompleteArrayType()) {
3034        assert(ClassDecl->hasFlexibleArrayMember() &&
3035               "Incomplete array type is not valid");
3036        continue;
3037      }
3038
3039      // Initialize each field of an anonymous struct individually.
3040      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3041        HadError = true;
3042
3043      continue;
3044    }
3045  }
3046
3047  NumInitializers = Info.AllToInit.size();
3048  if (NumInitializers > 0) {
3049    Constructor->setNumCtorInitializers(NumInitializers);
3050    CXXCtorInitializer **baseOrMemberInitializers =
3051      new (Context) CXXCtorInitializer*[NumInitializers];
3052    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3053           NumInitializers * sizeof(CXXCtorInitializer*));
3054    Constructor->setCtorInitializers(baseOrMemberInitializers);
3055
3056    // Constructors implicitly reference the base and member
3057    // destructors.
3058    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3059                                           Constructor->getParent());
3060  }
3061
3062  return HadError;
3063}
3064
3065static void *GetKeyForTopLevelField(FieldDecl *Field) {
3066  // For anonymous unions, use the class declaration as the key.
3067  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3068    if (RT->getDecl()->isAnonymousStructOrUnion())
3069      return static_cast<void *>(RT->getDecl());
3070  }
3071  return static_cast<void *>(Field);
3072}
3073
3074static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3075  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3076}
3077
3078static void *GetKeyForMember(ASTContext &Context,
3079                             CXXCtorInitializer *Member) {
3080  if (!Member->isAnyMemberInitializer())
3081    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3082
3083  // For fields injected into the class via declaration of an anonymous union,
3084  // use its anonymous union class declaration as the unique key.
3085  FieldDecl *Field = Member->getAnyMember();
3086
3087  // If the field is a member of an anonymous struct or union, our key
3088  // is the anonymous record decl that's a direct child of the class.
3089  RecordDecl *RD = Field->getParent();
3090  if (RD->isAnonymousStructOrUnion()) {
3091    while (true) {
3092      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3093      if (Parent->isAnonymousStructOrUnion())
3094        RD = Parent;
3095      else
3096        break;
3097    }
3098
3099    return static_cast<void *>(RD);
3100  }
3101
3102  return static_cast<void *>(Field);
3103}
3104
3105static void
3106DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3107                                  const CXXConstructorDecl *Constructor,
3108                                  CXXCtorInitializer **Inits,
3109                                  unsigned NumInits) {
3110  if (Constructor->getDeclContext()->isDependentContext())
3111    return;
3112
3113  // Don't check initializers order unless the warning is enabled at the
3114  // location of at least one initializer.
3115  bool ShouldCheckOrder = false;
3116  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3117    CXXCtorInitializer *Init = Inits[InitIndex];
3118    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3119                                         Init->getSourceLocation())
3120          != DiagnosticsEngine::Ignored) {
3121      ShouldCheckOrder = true;
3122      break;
3123    }
3124  }
3125  if (!ShouldCheckOrder)
3126    return;
3127
3128  // Build the list of bases and members in the order that they'll
3129  // actually be initialized.  The explicit initializers should be in
3130  // this same order but may be missing things.
3131  SmallVector<const void*, 32> IdealInitKeys;
3132
3133  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3134
3135  // 1. Virtual bases.
3136  for (CXXRecordDecl::base_class_const_iterator VBase =
3137       ClassDecl->vbases_begin(),
3138       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3139    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3140
3141  // 2. Non-virtual bases.
3142  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3143       E = ClassDecl->bases_end(); Base != E; ++Base) {
3144    if (Base->isVirtual())
3145      continue;
3146    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3147  }
3148
3149  // 3. Direct fields.
3150  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3151       E = ClassDecl->field_end(); Field != E; ++Field) {
3152    if (Field->isUnnamedBitfield())
3153      continue;
3154
3155    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3156  }
3157
3158  unsigned NumIdealInits = IdealInitKeys.size();
3159  unsigned IdealIndex = 0;
3160
3161  CXXCtorInitializer *PrevInit = 0;
3162  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3163    CXXCtorInitializer *Init = Inits[InitIndex];
3164    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3165
3166    // Scan forward to try to find this initializer in the idealized
3167    // initializers list.
3168    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3169      if (InitKey == IdealInitKeys[IdealIndex])
3170        break;
3171
3172    // If we didn't find this initializer, it must be because we
3173    // scanned past it on a previous iteration.  That can only
3174    // happen if we're out of order;  emit a warning.
3175    if (IdealIndex == NumIdealInits && PrevInit) {
3176      Sema::SemaDiagnosticBuilder D =
3177        SemaRef.Diag(PrevInit->getSourceLocation(),
3178                     diag::warn_initializer_out_of_order);
3179
3180      if (PrevInit->isAnyMemberInitializer())
3181        D << 0 << PrevInit->getAnyMember()->getDeclName();
3182      else
3183        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3184
3185      if (Init->isAnyMemberInitializer())
3186        D << 0 << Init->getAnyMember()->getDeclName();
3187      else
3188        D << 1 << Init->getTypeSourceInfo()->getType();
3189
3190      // Move back to the initializer's location in the ideal list.
3191      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3192        if (InitKey == IdealInitKeys[IdealIndex])
3193          break;
3194
3195      assert(IdealIndex != NumIdealInits &&
3196             "initializer not found in initializer list");
3197    }
3198
3199    PrevInit = Init;
3200  }
3201}
3202
3203namespace {
3204bool CheckRedundantInit(Sema &S,
3205                        CXXCtorInitializer *Init,
3206                        CXXCtorInitializer *&PrevInit) {
3207  if (!PrevInit) {
3208    PrevInit = Init;
3209    return false;
3210  }
3211
3212  if (FieldDecl *Field = Init->getMember())
3213    S.Diag(Init->getSourceLocation(),
3214           diag::err_multiple_mem_initialization)
3215      << Field->getDeclName()
3216      << Init->getSourceRange();
3217  else {
3218    const Type *BaseClass = Init->getBaseClass();
3219    assert(BaseClass && "neither field nor base");
3220    S.Diag(Init->getSourceLocation(),
3221           diag::err_multiple_base_initialization)
3222      << QualType(BaseClass, 0)
3223      << Init->getSourceRange();
3224  }
3225  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3226    << 0 << PrevInit->getSourceRange();
3227
3228  return true;
3229}
3230
3231typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3232typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3233
3234bool CheckRedundantUnionInit(Sema &S,
3235                             CXXCtorInitializer *Init,
3236                             RedundantUnionMap &Unions) {
3237  FieldDecl *Field = Init->getAnyMember();
3238  RecordDecl *Parent = Field->getParent();
3239  NamedDecl *Child = Field;
3240
3241  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3242    if (Parent->isUnion()) {
3243      UnionEntry &En = Unions[Parent];
3244      if (En.first && En.first != Child) {
3245        S.Diag(Init->getSourceLocation(),
3246               diag::err_multiple_mem_union_initialization)
3247          << Field->getDeclName()
3248          << Init->getSourceRange();
3249        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3250          << 0 << En.second->getSourceRange();
3251        return true;
3252      }
3253      if (!En.first) {
3254        En.first = Child;
3255        En.second = Init;
3256      }
3257      if (!Parent->isAnonymousStructOrUnion())
3258        return false;
3259    }
3260
3261    Child = Parent;
3262    Parent = cast<RecordDecl>(Parent->getDeclContext());
3263  }
3264
3265  return false;
3266}
3267}
3268
3269/// ActOnMemInitializers - Handle the member initializers for a constructor.
3270void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3271                                SourceLocation ColonLoc,
3272                                CXXCtorInitializer **meminits,
3273                                unsigned NumMemInits,
3274                                bool AnyErrors) {
3275  if (!ConstructorDecl)
3276    return;
3277
3278  AdjustDeclIfTemplate(ConstructorDecl);
3279
3280  CXXConstructorDecl *Constructor
3281    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3282
3283  if (!Constructor) {
3284    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3285    return;
3286  }
3287
3288  CXXCtorInitializer **MemInits =
3289    reinterpret_cast<CXXCtorInitializer **>(meminits);
3290
3291  // Mapping for the duplicate initializers check.
3292  // For member initializers, this is keyed with a FieldDecl*.
3293  // For base initializers, this is keyed with a Type*.
3294  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3295
3296  // Mapping for the inconsistent anonymous-union initializers check.
3297  RedundantUnionMap MemberUnions;
3298
3299  bool HadError = false;
3300  for (unsigned i = 0; i < NumMemInits; i++) {
3301    CXXCtorInitializer *Init = MemInits[i];
3302
3303    // Set the source order index.
3304    Init->setSourceOrder(i);
3305
3306    if (Init->isAnyMemberInitializer()) {
3307      FieldDecl *Field = Init->getAnyMember();
3308      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3309          CheckRedundantUnionInit(*this, Init, MemberUnions))
3310        HadError = true;
3311    } else if (Init->isBaseInitializer()) {
3312      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3313      if (CheckRedundantInit(*this, Init, Members[Key]))
3314        HadError = true;
3315    } else {
3316      assert(Init->isDelegatingInitializer());
3317      // This must be the only initializer
3318      if (i != 0 || NumMemInits > 1) {
3319        Diag(MemInits[0]->getSourceLocation(),
3320             diag::err_delegating_initializer_alone)
3321          << MemInits[0]->getSourceRange();
3322        HadError = true;
3323        // We will treat this as being the only initializer.
3324      }
3325      SetDelegatingInitializer(Constructor, MemInits[i]);
3326      // Return immediately as the initializer is set.
3327      return;
3328    }
3329  }
3330
3331  if (HadError)
3332    return;
3333
3334  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3335
3336  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3337}
3338
3339void
3340Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3341                                             CXXRecordDecl *ClassDecl) {
3342  // Ignore dependent contexts. Also ignore unions, since their members never
3343  // have destructors implicitly called.
3344  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3345    return;
3346
3347  // FIXME: all the access-control diagnostics are positioned on the
3348  // field/base declaration.  That's probably good; that said, the
3349  // user might reasonably want to know why the destructor is being
3350  // emitted, and we currently don't say.
3351
3352  // Non-static data members.
3353  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3354       E = ClassDecl->field_end(); I != E; ++I) {
3355    FieldDecl *Field = *I;
3356    if (Field->isInvalidDecl())
3357      continue;
3358
3359    // Don't destroy incomplete or zero-length arrays.
3360    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3361      continue;
3362
3363    QualType FieldType = Context.getBaseElementType(Field->getType());
3364
3365    const RecordType* RT = FieldType->getAs<RecordType>();
3366    if (!RT)
3367      continue;
3368
3369    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3370    if (FieldClassDecl->isInvalidDecl())
3371      continue;
3372    if (FieldClassDecl->hasIrrelevantDestructor())
3373      continue;
3374    // The destructor for an implicit anonymous union member is never invoked.
3375    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3376      continue;
3377
3378    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3379    assert(Dtor && "No dtor found for FieldClassDecl!");
3380    CheckDestructorAccess(Field->getLocation(), Dtor,
3381                          PDiag(diag::err_access_dtor_field)
3382                            << Field->getDeclName()
3383                            << FieldType);
3384
3385    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3386    DiagnoseUseOfDecl(Dtor, Location);
3387  }
3388
3389  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3390
3391  // Bases.
3392  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3393       E = ClassDecl->bases_end(); Base != E; ++Base) {
3394    // Bases are always records in a well-formed non-dependent class.
3395    const RecordType *RT = Base->getType()->getAs<RecordType>();
3396
3397    // Remember direct virtual bases.
3398    if (Base->isVirtual())
3399      DirectVirtualBases.insert(RT);
3400
3401    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3402    // If our base class is invalid, we probably can't get its dtor anyway.
3403    if (BaseClassDecl->isInvalidDecl())
3404      continue;
3405    if (BaseClassDecl->hasIrrelevantDestructor())
3406      continue;
3407
3408    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3409    assert(Dtor && "No dtor found for BaseClassDecl!");
3410
3411    // FIXME: caret should be on the start of the class name
3412    CheckDestructorAccess(Base->getLocStart(), Dtor,
3413                          PDiag(diag::err_access_dtor_base)
3414                            << Base->getType()
3415                            << Base->getSourceRange(),
3416                          Context.getTypeDeclType(ClassDecl));
3417
3418    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3419    DiagnoseUseOfDecl(Dtor, Location);
3420  }
3421
3422  // Virtual bases.
3423  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3424       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3425
3426    // Bases are always records in a well-formed non-dependent class.
3427    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3428
3429    // Ignore direct virtual bases.
3430    if (DirectVirtualBases.count(RT))
3431      continue;
3432
3433    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3434    // If our base class is invalid, we probably can't get its dtor anyway.
3435    if (BaseClassDecl->isInvalidDecl())
3436      continue;
3437    if (BaseClassDecl->hasIrrelevantDestructor())
3438      continue;
3439
3440    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3441    assert(Dtor && "No dtor found for BaseClassDecl!");
3442    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3443                          PDiag(diag::err_access_dtor_vbase)
3444                            << VBase->getType(),
3445                          Context.getTypeDeclType(ClassDecl));
3446
3447    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3448    DiagnoseUseOfDecl(Dtor, Location);
3449  }
3450}
3451
3452void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3453  if (!CDtorDecl)
3454    return;
3455
3456  if (CXXConstructorDecl *Constructor
3457      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3458    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3459}
3460
3461bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3462                                  unsigned DiagID, AbstractDiagSelID SelID) {
3463  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3464    unsigned DiagID;
3465    AbstractDiagSelID SelID;
3466
3467  public:
3468    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3469      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3470
3471    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3472      if (SelID == -1)
3473        S.Diag(Loc, DiagID) << T;
3474      else
3475        S.Diag(Loc, DiagID) << SelID << T;
3476    }
3477  } Diagnoser(DiagID, SelID);
3478
3479  return RequireNonAbstractType(Loc, T, Diagnoser);
3480}
3481
3482bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3483                                  TypeDiagnoser &Diagnoser) {
3484  if (!getLangOpts().CPlusPlus)
3485    return false;
3486
3487  if (const ArrayType *AT = Context.getAsArrayType(T))
3488    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3489
3490  if (const PointerType *PT = T->getAs<PointerType>()) {
3491    // Find the innermost pointer type.
3492    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3493      PT = T;
3494
3495    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3496      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3497  }
3498
3499  const RecordType *RT = T->getAs<RecordType>();
3500  if (!RT)
3501    return false;
3502
3503  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3504
3505  // We can't answer whether something is abstract until it has a
3506  // definition.  If it's currently being defined, we'll walk back
3507  // over all the declarations when we have a full definition.
3508  const CXXRecordDecl *Def = RD->getDefinition();
3509  if (!Def || Def->isBeingDefined())
3510    return false;
3511
3512  if (!RD->isAbstract())
3513    return false;
3514
3515  Diagnoser.diagnose(*this, Loc, T);
3516  DiagnoseAbstractType(RD);
3517
3518  return true;
3519}
3520
3521void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3522  // Check if we've already emitted the list of pure virtual functions
3523  // for this class.
3524  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3525    return;
3526
3527  CXXFinalOverriderMap FinalOverriders;
3528  RD->getFinalOverriders(FinalOverriders);
3529
3530  // Keep a set of seen pure methods so we won't diagnose the same method
3531  // more than once.
3532  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3533
3534  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3535                                   MEnd = FinalOverriders.end();
3536       M != MEnd;
3537       ++M) {
3538    for (OverridingMethods::iterator SO = M->second.begin(),
3539                                  SOEnd = M->second.end();
3540         SO != SOEnd; ++SO) {
3541      // C++ [class.abstract]p4:
3542      //   A class is abstract if it contains or inherits at least one
3543      //   pure virtual function for which the final overrider is pure
3544      //   virtual.
3545
3546      //
3547      if (SO->second.size() != 1)
3548        continue;
3549
3550      if (!SO->second.front().Method->isPure())
3551        continue;
3552
3553      if (!SeenPureMethods.insert(SO->second.front().Method))
3554        continue;
3555
3556      Diag(SO->second.front().Method->getLocation(),
3557           diag::note_pure_virtual_function)
3558        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3559    }
3560  }
3561
3562  if (!PureVirtualClassDiagSet)
3563    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3564  PureVirtualClassDiagSet->insert(RD);
3565}
3566
3567namespace {
3568struct AbstractUsageInfo {
3569  Sema &S;
3570  CXXRecordDecl *Record;
3571  CanQualType AbstractType;
3572  bool Invalid;
3573
3574  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3575    : S(S), Record(Record),
3576      AbstractType(S.Context.getCanonicalType(
3577                   S.Context.getTypeDeclType(Record))),
3578      Invalid(false) {}
3579
3580  void DiagnoseAbstractType() {
3581    if (Invalid) return;
3582    S.DiagnoseAbstractType(Record);
3583    Invalid = true;
3584  }
3585
3586  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3587};
3588
3589struct CheckAbstractUsage {
3590  AbstractUsageInfo &Info;
3591  const NamedDecl *Ctx;
3592
3593  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3594    : Info(Info), Ctx(Ctx) {}
3595
3596  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3597    switch (TL.getTypeLocClass()) {
3598#define ABSTRACT_TYPELOC(CLASS, PARENT)
3599#define TYPELOC(CLASS, PARENT) \
3600    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3601#include "clang/AST/TypeLocNodes.def"
3602    }
3603  }
3604
3605  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3606    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3607    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3608      if (!TL.getArg(I))
3609        continue;
3610
3611      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3612      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3613    }
3614  }
3615
3616  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3617    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3618  }
3619
3620  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3621    // Visit the type parameters from a permissive context.
3622    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3623      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3624      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3625        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3626          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3627      // TODO: other template argument types?
3628    }
3629  }
3630
3631  // Visit pointee types from a permissive context.
3632#define CheckPolymorphic(Type) \
3633  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3634    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3635  }
3636  CheckPolymorphic(PointerTypeLoc)
3637  CheckPolymorphic(ReferenceTypeLoc)
3638  CheckPolymorphic(MemberPointerTypeLoc)
3639  CheckPolymorphic(BlockPointerTypeLoc)
3640  CheckPolymorphic(AtomicTypeLoc)
3641
3642  /// Handle all the types we haven't given a more specific
3643  /// implementation for above.
3644  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3645    // Every other kind of type that we haven't called out already
3646    // that has an inner type is either (1) sugar or (2) contains that
3647    // inner type in some way as a subobject.
3648    if (TypeLoc Next = TL.getNextTypeLoc())
3649      return Visit(Next, Sel);
3650
3651    // If there's no inner type and we're in a permissive context,
3652    // don't diagnose.
3653    if (Sel == Sema::AbstractNone) return;
3654
3655    // Check whether the type matches the abstract type.
3656    QualType T = TL.getType();
3657    if (T->isArrayType()) {
3658      Sel = Sema::AbstractArrayType;
3659      T = Info.S.Context.getBaseElementType(T);
3660    }
3661    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3662    if (CT != Info.AbstractType) return;
3663
3664    // It matched; do some magic.
3665    if (Sel == Sema::AbstractArrayType) {
3666      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3667        << T << TL.getSourceRange();
3668    } else {
3669      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3670        << Sel << T << TL.getSourceRange();
3671    }
3672    Info.DiagnoseAbstractType();
3673  }
3674};
3675
3676void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3677                                  Sema::AbstractDiagSelID Sel) {
3678  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3679}
3680
3681}
3682
3683/// Check for invalid uses of an abstract type in a method declaration.
3684static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3685                                    CXXMethodDecl *MD) {
3686  // No need to do the check on definitions, which require that
3687  // the return/param types be complete.
3688  if (MD->doesThisDeclarationHaveABody())
3689    return;
3690
3691  // For safety's sake, just ignore it if we don't have type source
3692  // information.  This should never happen for non-implicit methods,
3693  // but...
3694  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3695    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3696}
3697
3698/// Check for invalid uses of an abstract type within a class definition.
3699static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3700                                    CXXRecordDecl *RD) {
3701  for (CXXRecordDecl::decl_iterator
3702         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3703    Decl *D = *I;
3704    if (D->isImplicit()) continue;
3705
3706    // Methods and method templates.
3707    if (isa<CXXMethodDecl>(D)) {
3708      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3709    } else if (isa<FunctionTemplateDecl>(D)) {
3710      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3711      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3712
3713    // Fields and static variables.
3714    } else if (isa<FieldDecl>(D)) {
3715      FieldDecl *FD = cast<FieldDecl>(D);
3716      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3717        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3718    } else if (isa<VarDecl>(D)) {
3719      VarDecl *VD = cast<VarDecl>(D);
3720      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3721        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3722
3723    // Nested classes and class templates.
3724    } else if (isa<CXXRecordDecl>(D)) {
3725      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3726    } else if (isa<ClassTemplateDecl>(D)) {
3727      CheckAbstractClassUsage(Info,
3728                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3729    }
3730  }
3731}
3732
3733/// \brief Perform semantic checks on a class definition that has been
3734/// completing, introducing implicitly-declared members, checking for
3735/// abstract types, etc.
3736void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3737  if (!Record)
3738    return;
3739
3740  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3741    AbstractUsageInfo Info(*this, Record);
3742    CheckAbstractClassUsage(Info, Record);
3743  }
3744
3745  // If this is not an aggregate type and has no user-declared constructor,
3746  // complain about any non-static data members of reference or const scalar
3747  // type, since they will never get initializers.
3748  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3749      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3750      !Record->isLambda()) {
3751    bool Complained = false;
3752    for (RecordDecl::field_iterator F = Record->field_begin(),
3753                                 FEnd = Record->field_end();
3754         F != FEnd; ++F) {
3755      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3756        continue;
3757
3758      if (F->getType()->isReferenceType() ||
3759          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3760        if (!Complained) {
3761          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3762            << Record->getTagKind() << Record;
3763          Complained = true;
3764        }
3765
3766        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3767          << F->getType()->isReferenceType()
3768          << F->getDeclName();
3769      }
3770    }
3771  }
3772
3773  if (Record->isDynamicClass() && !Record->isDependentType())
3774    DynamicClasses.push_back(Record);
3775
3776  if (Record->getIdentifier()) {
3777    // C++ [class.mem]p13:
3778    //   If T is the name of a class, then each of the following shall have a
3779    //   name different from T:
3780    //     - every member of every anonymous union that is a member of class T.
3781    //
3782    // C++ [class.mem]p14:
3783    //   In addition, if class T has a user-declared constructor (12.1), every
3784    //   non-static data member of class T shall have a name different from T.
3785    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3786         R.first != R.second; ++R.first) {
3787      NamedDecl *D = *R.first;
3788      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3789          isa<IndirectFieldDecl>(D)) {
3790        Diag(D->getLocation(), diag::err_member_name_of_class)
3791          << D->getDeclName();
3792        break;
3793      }
3794    }
3795  }
3796
3797  // Warn if the class has virtual methods but non-virtual public destructor.
3798  if (Record->isPolymorphic() && !Record->isDependentType()) {
3799    CXXDestructorDecl *dtor = Record->getDestructor();
3800    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3801      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3802           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3803  }
3804
3805  // See if a method overloads virtual methods in a base
3806  /// class without overriding any.
3807  if (!Record->isDependentType()) {
3808    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3809                                     MEnd = Record->method_end();
3810         M != MEnd; ++M) {
3811      if (!M->isStatic())
3812        DiagnoseHiddenVirtualMethods(Record, *M);
3813    }
3814  }
3815
3816  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3817  // function that is not a constructor declares that member function to be
3818  // const. [...] The class of which that function is a member shall be
3819  // a literal type.
3820  //
3821  // If the class has virtual bases, any constexpr members will already have
3822  // been diagnosed by the checks performed on the member declaration, so
3823  // suppress this (less useful) diagnostic.
3824  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3825      !Record->isLiteral() && !Record->getNumVBases()) {
3826    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3827                                     MEnd = Record->method_end();
3828         M != MEnd; ++M) {
3829      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3830        switch (Record->getTemplateSpecializationKind()) {
3831        case TSK_ImplicitInstantiation:
3832        case TSK_ExplicitInstantiationDeclaration:
3833        case TSK_ExplicitInstantiationDefinition:
3834          // If a template instantiates to a non-literal type, but its members
3835          // instantiate to constexpr functions, the template is technically
3836          // ill-formed, but we allow it for sanity.
3837          continue;
3838
3839        case TSK_Undeclared:
3840        case TSK_ExplicitSpecialization:
3841          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3842                             diag::err_constexpr_method_non_literal);
3843          break;
3844        }
3845
3846        // Only produce one error per class.
3847        break;
3848      }
3849    }
3850  }
3851
3852  // Declare inherited constructors. We do this eagerly here because:
3853  // - The standard requires an eager diagnostic for conflicting inherited
3854  //   constructors from different classes.
3855  // - The lazy declaration of the other implicit constructors is so as to not
3856  //   waste space and performance on classes that are not meant to be
3857  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3858  //   have inherited constructors.
3859  DeclareInheritedConstructors(Record);
3860
3861  if (!Record->isDependentType())
3862    CheckExplicitlyDefaultedMethods(Record);
3863}
3864
3865void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3866  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3867                                      ME = Record->method_end();
3868       MI != ME; ++MI)
3869    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3870      CheckExplicitlyDefaultedSpecialMember(*MI);
3871}
3872
3873/// Is the special member function which would be selected to perform the
3874/// specified operation on the specified class type a constexpr constructor?
3875static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3876                                     Sema::CXXSpecialMember CSM,
3877                                     bool ConstArg) {
3878  Sema::SpecialMemberOverloadResult *SMOR =
3879      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3880                            false, false, false, false);
3881  if (!SMOR || !SMOR->getMethod())
3882    // A constructor we wouldn't select can't be "involved in initializing"
3883    // anything.
3884    return true;
3885  return SMOR->getMethod()->isConstexpr();
3886}
3887
3888/// Determine whether the specified special member function would be constexpr
3889/// if it were implicitly defined.
3890static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3891                                              Sema::CXXSpecialMember CSM,
3892                                              bool ConstArg) {
3893  if (!S.getLangOpts().CPlusPlus0x)
3894    return false;
3895
3896  // C++11 [dcl.constexpr]p4:
3897  // In the definition of a constexpr constructor [...]
3898  switch (CSM) {
3899  case Sema::CXXDefaultConstructor:
3900  case Sema::CXXCopyConstructor:
3901  case Sema::CXXMoveConstructor:
3902    break;
3903
3904  case Sema::CXXCopyAssignment:
3905  case Sema::CXXMoveAssignment:
3906  case Sema::CXXDestructor:
3907  case Sema::CXXInvalid:
3908    return false;
3909  }
3910
3911  //   -- if the class is a non-empty union, or for each non-empty anonymous
3912  //      union member of a non-union class, exactly one non-static data member
3913  //      shall be initialized; [DR1359]
3914  if (ClassDecl->isUnion())
3915    // FIXME: In the default constructor case, we should check that the
3916    // in-class initializer is actually a constant expression.
3917    return CSM != Sema::CXXDefaultConstructor ||
3918           ClassDecl->hasInClassInitializer();
3919
3920  //   -- the class shall not have any virtual base classes;
3921  if (ClassDecl->getNumVBases())
3922    return false;
3923
3924  //   -- every constructor involved in initializing [...] base class
3925  //      sub-objects shall be a constexpr constructor;
3926  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3927                                       BEnd = ClassDecl->bases_end();
3928       B != BEnd; ++B) {
3929    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3930    if (!BaseType) continue;
3931
3932    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3933    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3934      return false;
3935  }
3936
3937  //   -- every constructor involved in initializing non-static data members
3938  //      [...] shall be a constexpr constructor;
3939  //   -- every non-static data member and base class sub-object shall be
3940  //      initialized
3941  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3942                               FEnd = ClassDecl->field_end();
3943       F != FEnd; ++F) {
3944    if (F->isInvalidDecl())
3945      continue;
3946    if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) {
3947      // -- every assignment-expression that is an initializer-clause appearing
3948      //    directly or indirectly within a brace-or-equal-initializer for a
3949      //    non-static data member [...] shall be a constant expression;
3950      //
3951      // We consider this bullet to be a defect, since it results in this type
3952      // having a non-constexpr default constructor:
3953      //   struct S {
3954      //     int a = 0;
3955      //     int b = a;
3956      //   };
3957      // FIXME: We should still check that the constructor selected for this
3958      // initialization (if any) is constexpr.
3959    } else if (const RecordType *RecordTy =
3960                   S.Context.getBaseElementType(F->getType())->
3961                       getAs<RecordType>()) {
3962      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3963      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3964        return false;
3965    } else if (CSM == Sema::CXXDefaultConstructor) {
3966      // No in-class initializer, and not a class type. This member isn't going
3967      // to be initialized.
3968      return false;
3969    }
3970  }
3971
3972  // All OK, it's constexpr!
3973  return true;
3974}
3975
3976void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
3977  CXXRecordDecl *RD = MD->getParent();
3978  CXXSpecialMember CSM = getSpecialMember(MD);
3979
3980  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
3981         "not an explicitly-defaulted special member");
3982
3983  // Whether this was the first-declared instance of the constructor.
3984  // This affects whether we implicitly add an exception spec and constexpr.
3985  bool First = MD == MD->getCanonicalDecl();
3986
3987  bool HadError = false;
3988
3989  // C++11 [dcl.fct.def.default]p1:
3990  //   A function that is explicitly defaulted shall
3991  //     -- be a special member function (checked elsewhere),
3992  //     -- have the same type (except for ref-qualifiers, and except that a
3993  //        copy operation can take a non-const reference) as an implicit
3994  //        declaration, and
3995  //     -- not have default arguments.
3996  unsigned ExpectedParams = 1;
3997  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
3998    ExpectedParams = 0;
3999  if (MD->getNumParams() != ExpectedParams) {
4000    // This also checks for default arguments: a copy or move constructor with a
4001    // default argument is classified as a default constructor, and assignment
4002    // operations and destructors can't have default arguments.
4003    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4004      << CSM << MD->getSourceRange();
4005    HadError = true;
4006  }
4007
4008  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4009
4010  // Compute implicit exception specification, argument constness, constexpr
4011  // and triviality.
4012  ImplicitExceptionSpecification Spec(*this);
4013  bool CanHaveConstParam = false;
4014  bool Trivial;
4015  switch (CSM) {
4016  case CXXDefaultConstructor:
4017    Spec = ComputeDefaultedDefaultCtorExceptionSpec(RD);
4018    if (Spec.isDelayed())
4019      // Exception specification depends on some deferred part of the class.
4020      // We'll try again when the class's definition has been fully processed.
4021      return;
4022    Trivial = RD->hasTrivialDefaultConstructor();
4023    break;
4024  case CXXCopyConstructor:
4025    llvm::tie(Spec, CanHaveConstParam) =
4026      ComputeDefaultedCopyCtorExceptionSpecAndConst(RD);
4027    Trivial = RD->hasTrivialCopyConstructor();
4028    break;
4029  case CXXCopyAssignment:
4030    llvm::tie(Spec, CanHaveConstParam) =
4031      ComputeDefaultedCopyAssignmentExceptionSpecAndConst(RD);
4032    Trivial = RD->hasTrivialCopyAssignment();
4033    break;
4034  case CXXMoveConstructor:
4035    Spec = ComputeDefaultedMoveCtorExceptionSpec(RD);
4036    Trivial = RD->hasTrivialMoveConstructor();
4037    break;
4038  case CXXMoveAssignment:
4039    Spec = ComputeDefaultedMoveAssignmentExceptionSpec(RD);
4040    Trivial = RD->hasTrivialMoveAssignment();
4041    break;
4042  case CXXDestructor:
4043    Spec = ComputeDefaultedDtorExceptionSpec(RD);
4044    Trivial = RD->hasTrivialDestructor();
4045    break;
4046  case CXXInvalid:
4047    llvm_unreachable("non-special member explicitly defaulted!");
4048  }
4049
4050  QualType ReturnType = Context.VoidTy;
4051  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4052    // Check for return type matching.
4053    ReturnType = Type->getResultType();
4054    QualType ExpectedReturnType =
4055        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4056    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4057      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4058        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4059      HadError = true;
4060    }
4061
4062    // A defaulted special member cannot have cv-qualifiers.
4063    if (Type->getTypeQuals()) {
4064      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4065        << (CSM == CXXMoveAssignment);
4066      HadError = true;
4067    }
4068  }
4069
4070  // Check for parameter type matching.
4071  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4072  bool HasConstParam = false;
4073  if (ExpectedParams && ArgType->isReferenceType()) {
4074    // Argument must be reference to possibly-const T.
4075    QualType ReferentType = ArgType->getPointeeType();
4076    HasConstParam = ReferentType.isConstQualified();
4077
4078    if (ReferentType.isVolatileQualified()) {
4079      Diag(MD->getLocation(),
4080           diag::err_defaulted_special_member_volatile_param) << CSM;
4081      HadError = true;
4082    }
4083
4084    if (HasConstParam && !CanHaveConstParam) {
4085      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4086        Diag(MD->getLocation(),
4087             diag::err_defaulted_special_member_copy_const_param)
4088          << (CSM == CXXCopyAssignment);
4089        // FIXME: Explain why this special member can't be const.
4090      } else {
4091        Diag(MD->getLocation(),
4092             diag::err_defaulted_special_member_move_const_param)
4093          << (CSM == CXXMoveAssignment);
4094      }
4095      HadError = true;
4096    }
4097
4098    // If a function is explicitly defaulted on its first declaration, it shall
4099    // have the same parameter type as if it had been implicitly declared.
4100    // (Presumably this is to prevent it from being trivial?)
4101    if (!HasConstParam && CanHaveConstParam && First)
4102      Diag(MD->getLocation(),
4103           diag::err_defaulted_special_member_copy_non_const_param)
4104        << (CSM == CXXCopyAssignment);
4105  } else if (ExpectedParams) {
4106    // A copy assignment operator can take its argument by value, but a
4107    // defaulted one cannot.
4108    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4109    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4110    HadError = true;
4111  }
4112
4113  // Rebuild the type with the implicit exception specification added.
4114  FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4115  Spec.getEPI(EPI);
4116  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4117    Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4118
4119  // C++11 [dcl.fct.def.default]p2:
4120  //   An explicitly-defaulted function may be declared constexpr only if it
4121  //   would have been implicitly declared as constexpr,
4122  // Do not apply this rule to members of class templates, since core issue 1358
4123  // makes such functions always instantiate to constexpr functions. For
4124  // non-constructors, this is checked elsewhere.
4125  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4126                                                     HasConstParam);
4127  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4128      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4129    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4130    // FIXME: Explain why the constructor can't be constexpr.
4131    HadError = true;
4132  }
4133  //   and may have an explicit exception-specification only if it is compatible
4134  //   with the exception-specification on the implicit declaration.
4135  if (Type->hasExceptionSpec() &&
4136      CheckEquivalentExceptionSpec(
4137        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4138        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4139    HadError = true;
4140
4141  //   If a function is explicitly defaulted on its first declaration,
4142  if (First) {
4143    //  -- it is implicitly considered to be constexpr if the implicit
4144    //     definition would be,
4145    MD->setConstexpr(Constexpr);
4146
4147    //  -- it is implicitly considered to have the same exception-specification
4148    //     as if it had been implicitly declared,
4149    MD->setType(QualType(ImplicitType, 0));
4150
4151    // Such a function is also trivial if the implicitly-declared function
4152    // would have been.
4153    MD->setTrivial(Trivial);
4154  }
4155
4156  if (ShouldDeleteSpecialMember(MD, CSM)) {
4157    if (First) {
4158      MD->setDeletedAsWritten();
4159    } else {
4160      // C++11 [dcl.fct.def.default]p4:
4161      //   [For a] user-provided explicitly-defaulted function [...] if such a
4162      //   function is implicitly defined as deleted, the program is ill-formed.
4163      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4164      HadError = true;
4165    }
4166  }
4167
4168  if (HadError)
4169    MD->setInvalidDecl();
4170}
4171
4172namespace {
4173struct SpecialMemberDeletionInfo {
4174  Sema &S;
4175  CXXMethodDecl *MD;
4176  Sema::CXXSpecialMember CSM;
4177  bool Diagnose;
4178
4179  // Properties of the special member, computed for convenience.
4180  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4181  SourceLocation Loc;
4182
4183  bool AllFieldsAreConst;
4184
4185  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4186                            Sema::CXXSpecialMember CSM, bool Diagnose)
4187    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4188      IsConstructor(false), IsAssignment(false), IsMove(false),
4189      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4190      AllFieldsAreConst(true) {
4191    switch (CSM) {
4192      case Sema::CXXDefaultConstructor:
4193      case Sema::CXXCopyConstructor:
4194        IsConstructor = true;
4195        break;
4196      case Sema::CXXMoveConstructor:
4197        IsConstructor = true;
4198        IsMove = true;
4199        break;
4200      case Sema::CXXCopyAssignment:
4201        IsAssignment = true;
4202        break;
4203      case Sema::CXXMoveAssignment:
4204        IsAssignment = true;
4205        IsMove = true;
4206        break;
4207      case Sema::CXXDestructor:
4208        break;
4209      case Sema::CXXInvalid:
4210        llvm_unreachable("invalid special member kind");
4211    }
4212
4213    if (MD->getNumParams()) {
4214      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4215      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4216    }
4217  }
4218
4219  bool inUnion() const { return MD->getParent()->isUnion(); }
4220
4221  /// Look up the corresponding special member in the given class.
4222  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4223    unsigned TQ = MD->getTypeQualifiers();
4224    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4225                                 MD->getRefQualifier() == RQ_RValue,
4226                                 TQ & Qualifiers::Const,
4227                                 TQ & Qualifiers::Volatile);
4228  }
4229
4230  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4231
4232  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4233  bool shouldDeleteForField(FieldDecl *FD);
4234  bool shouldDeleteForAllConstMembers();
4235
4236  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4237  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4238                                    Sema::SpecialMemberOverloadResult *SMOR,
4239                                    bool IsDtorCallInCtor);
4240
4241  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4242};
4243}
4244
4245/// Is the given special member inaccessible when used on the given
4246/// sub-object.
4247bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4248                                             CXXMethodDecl *target) {
4249  /// If we're operating on a base class, the object type is the
4250  /// type of this special member.
4251  QualType objectTy;
4252  AccessSpecifier access = target->getAccess();;
4253  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4254    objectTy = S.Context.getTypeDeclType(MD->getParent());
4255    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4256
4257  // If we're operating on a field, the object type is the type of the field.
4258  } else {
4259    objectTy = S.Context.getTypeDeclType(target->getParent());
4260  }
4261
4262  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4263}
4264
4265/// Check whether we should delete a special member due to the implicit
4266/// definition containing a call to a special member of a subobject.
4267bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4268    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4269    bool IsDtorCallInCtor) {
4270  CXXMethodDecl *Decl = SMOR->getMethod();
4271  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4272
4273  int DiagKind = -1;
4274
4275  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4276    DiagKind = !Decl ? 0 : 1;
4277  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4278    DiagKind = 2;
4279  else if (!isAccessible(Subobj, Decl))
4280    DiagKind = 3;
4281  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4282           !Decl->isTrivial()) {
4283    // A member of a union must have a trivial corresponding special member.
4284    // As a weird special case, a destructor call from a union's constructor
4285    // must be accessible and non-deleted, but need not be trivial. Such a
4286    // destructor is never actually called, but is semantically checked as
4287    // if it were.
4288    DiagKind = 4;
4289  }
4290
4291  if (DiagKind == -1)
4292    return false;
4293
4294  if (Diagnose) {
4295    if (Field) {
4296      S.Diag(Field->getLocation(),
4297             diag::note_deleted_special_member_class_subobject)
4298        << CSM << MD->getParent() << /*IsField*/true
4299        << Field << DiagKind << IsDtorCallInCtor;
4300    } else {
4301      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4302      S.Diag(Base->getLocStart(),
4303             diag::note_deleted_special_member_class_subobject)
4304        << CSM << MD->getParent() << /*IsField*/false
4305        << Base->getType() << DiagKind << IsDtorCallInCtor;
4306    }
4307
4308    if (DiagKind == 1)
4309      S.NoteDeletedFunction(Decl);
4310    // FIXME: Explain inaccessibility if DiagKind == 3.
4311  }
4312
4313  return true;
4314}
4315
4316/// Check whether we should delete a special member function due to having a
4317/// direct or virtual base class or static data member of class type M.
4318bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4319    CXXRecordDecl *Class, Subobject Subobj) {
4320  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4321
4322  // C++11 [class.ctor]p5:
4323  // -- any direct or virtual base class, or non-static data member with no
4324  //    brace-or-equal-initializer, has class type M (or array thereof) and
4325  //    either M has no default constructor or overload resolution as applied
4326  //    to M's default constructor results in an ambiguity or in a function
4327  //    that is deleted or inaccessible
4328  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4329  // -- a direct or virtual base class B that cannot be copied/moved because
4330  //    overload resolution, as applied to B's corresponding special member,
4331  //    results in an ambiguity or a function that is deleted or inaccessible
4332  //    from the defaulted special member
4333  // C++11 [class.dtor]p5:
4334  // -- any direct or virtual base class [...] has a type with a destructor
4335  //    that is deleted or inaccessible
4336  if (!(CSM == Sema::CXXDefaultConstructor &&
4337        Field && Field->hasInClassInitializer()) &&
4338      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4339    return true;
4340
4341  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4342  // -- any direct or virtual base class or non-static data member has a
4343  //    type with a destructor that is deleted or inaccessible
4344  if (IsConstructor) {
4345    Sema::SpecialMemberOverloadResult *SMOR =
4346        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4347                              false, false, false, false, false);
4348    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4349      return true;
4350  }
4351
4352  return false;
4353}
4354
4355/// Check whether we should delete a special member function due to the class
4356/// having a particular direct or virtual base class.
4357bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4358  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4359  return shouldDeleteForClassSubobject(BaseClass, Base);
4360}
4361
4362/// Check whether we should delete a special member function due to the class
4363/// having a particular non-static data member.
4364bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4365  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4366  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4367
4368  if (CSM == Sema::CXXDefaultConstructor) {
4369    // For a default constructor, all references must be initialized in-class
4370    // and, if a union, it must have a non-const member.
4371    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4372      if (Diagnose)
4373        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4374          << MD->getParent() << FD << FieldType << /*Reference*/0;
4375      return true;
4376    }
4377    // C++11 [class.ctor]p5: any non-variant non-static data member of
4378    // const-qualified type (or array thereof) with no
4379    // brace-or-equal-initializer does not have a user-provided default
4380    // constructor.
4381    if (!inUnion() && FieldType.isConstQualified() &&
4382        !FD->hasInClassInitializer() &&
4383        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4384      if (Diagnose)
4385        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4386          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4387      return true;
4388    }
4389
4390    if (inUnion() && !FieldType.isConstQualified())
4391      AllFieldsAreConst = false;
4392  } else if (CSM == Sema::CXXCopyConstructor) {
4393    // For a copy constructor, data members must not be of rvalue reference
4394    // type.
4395    if (FieldType->isRValueReferenceType()) {
4396      if (Diagnose)
4397        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4398          << MD->getParent() << FD << FieldType;
4399      return true;
4400    }
4401  } else if (IsAssignment) {
4402    // For an assignment operator, data members must not be of reference type.
4403    if (FieldType->isReferenceType()) {
4404      if (Diagnose)
4405        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4406          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4407      return true;
4408    }
4409    if (!FieldRecord && FieldType.isConstQualified()) {
4410      // C++11 [class.copy]p23:
4411      // -- a non-static data member of const non-class type (or array thereof)
4412      if (Diagnose)
4413        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4414          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4415      return true;
4416    }
4417  }
4418
4419  if (FieldRecord) {
4420    // Some additional restrictions exist on the variant members.
4421    if (!inUnion() && FieldRecord->isUnion() &&
4422        FieldRecord->isAnonymousStructOrUnion()) {
4423      bool AllVariantFieldsAreConst = true;
4424
4425      // FIXME: Handle anonymous unions declared within anonymous unions.
4426      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4427                                         UE = FieldRecord->field_end();
4428           UI != UE; ++UI) {
4429        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4430
4431        if (!UnionFieldType.isConstQualified())
4432          AllVariantFieldsAreConst = false;
4433
4434        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4435        if (UnionFieldRecord &&
4436            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4437          return true;
4438      }
4439
4440      // At least one member in each anonymous union must be non-const
4441      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4442          FieldRecord->field_begin() != FieldRecord->field_end()) {
4443        if (Diagnose)
4444          S.Diag(FieldRecord->getLocation(),
4445                 diag::note_deleted_default_ctor_all_const)
4446            << MD->getParent() << /*anonymous union*/1;
4447        return true;
4448      }
4449
4450      // Don't check the implicit member of the anonymous union type.
4451      // This is technically non-conformant, but sanity demands it.
4452      return false;
4453    }
4454
4455    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4456      return true;
4457  }
4458
4459  return false;
4460}
4461
4462/// C++11 [class.ctor] p5:
4463///   A defaulted default constructor for a class X is defined as deleted if
4464/// X is a union and all of its variant members are of const-qualified type.
4465bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4466  // This is a silly definition, because it gives an empty union a deleted
4467  // default constructor. Don't do that.
4468  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4469      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4470    if (Diagnose)
4471      S.Diag(MD->getParent()->getLocation(),
4472             diag::note_deleted_default_ctor_all_const)
4473        << MD->getParent() << /*not anonymous union*/0;
4474    return true;
4475  }
4476  return false;
4477}
4478
4479/// Determine whether a defaulted special member function should be defined as
4480/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4481/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4482bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4483                                     bool Diagnose) {
4484  assert(!MD->isInvalidDecl());
4485  CXXRecordDecl *RD = MD->getParent();
4486  assert(!RD->isDependentType() && "do deletion after instantiation");
4487  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4488    return false;
4489
4490  // C++11 [expr.lambda.prim]p19:
4491  //   The closure type associated with a lambda-expression has a
4492  //   deleted (8.4.3) default constructor and a deleted copy
4493  //   assignment operator.
4494  if (RD->isLambda() &&
4495      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4496    if (Diagnose)
4497      Diag(RD->getLocation(), diag::note_lambda_decl);
4498    return true;
4499  }
4500
4501  // For an anonymous struct or union, the copy and assignment special members
4502  // will never be used, so skip the check. For an anonymous union declared at
4503  // namespace scope, the constructor and destructor are used.
4504  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4505      RD->isAnonymousStructOrUnion())
4506    return false;
4507
4508  // C++11 [class.copy]p7, p18:
4509  //   If the class definition declares a move constructor or move assignment
4510  //   operator, an implicitly declared copy constructor or copy assignment
4511  //   operator is defined as deleted.
4512  if (MD->isImplicit() &&
4513      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4514    CXXMethodDecl *UserDeclaredMove = 0;
4515
4516    // In Microsoft mode, a user-declared move only causes the deletion of the
4517    // corresponding copy operation, not both copy operations.
4518    if (RD->hasUserDeclaredMoveConstructor() &&
4519        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4520      if (!Diagnose) return true;
4521      UserDeclaredMove = RD->getMoveConstructor();
4522      assert(UserDeclaredMove);
4523    } else if (RD->hasUserDeclaredMoveAssignment() &&
4524               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4525      if (!Diagnose) return true;
4526      UserDeclaredMove = RD->getMoveAssignmentOperator();
4527      assert(UserDeclaredMove);
4528    }
4529
4530    if (UserDeclaredMove) {
4531      Diag(UserDeclaredMove->getLocation(),
4532           diag::note_deleted_copy_user_declared_move)
4533        << (CSM == CXXCopyAssignment) << RD
4534        << UserDeclaredMove->isMoveAssignmentOperator();
4535      return true;
4536    }
4537  }
4538
4539  // Do access control from the special member function
4540  ContextRAII MethodContext(*this, MD);
4541
4542  // C++11 [class.dtor]p5:
4543  // -- for a virtual destructor, lookup of the non-array deallocation function
4544  //    results in an ambiguity or in a function that is deleted or inaccessible
4545  if (CSM == CXXDestructor && MD->isVirtual()) {
4546    FunctionDecl *OperatorDelete = 0;
4547    DeclarationName Name =
4548      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4549    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4550                                 OperatorDelete, false)) {
4551      if (Diagnose)
4552        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4553      return true;
4554    }
4555  }
4556
4557  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4558
4559  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4560                                          BE = RD->bases_end(); BI != BE; ++BI)
4561    if (!BI->isVirtual() &&
4562        SMI.shouldDeleteForBase(BI))
4563      return true;
4564
4565  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4566                                          BE = RD->vbases_end(); BI != BE; ++BI)
4567    if (SMI.shouldDeleteForBase(BI))
4568      return true;
4569
4570  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4571                                     FE = RD->field_end(); FI != FE; ++FI)
4572    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4573        SMI.shouldDeleteForField(*FI))
4574      return true;
4575
4576  if (SMI.shouldDeleteForAllConstMembers())
4577    return true;
4578
4579  return false;
4580}
4581
4582/// \brief Data used with FindHiddenVirtualMethod
4583namespace {
4584  struct FindHiddenVirtualMethodData {
4585    Sema *S;
4586    CXXMethodDecl *Method;
4587    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4588    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4589  };
4590}
4591
4592/// \brief Member lookup function that determines whether a given C++
4593/// method overloads virtual methods in a base class without overriding any,
4594/// to be used with CXXRecordDecl::lookupInBases().
4595static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4596                                    CXXBasePath &Path,
4597                                    void *UserData) {
4598  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4599
4600  FindHiddenVirtualMethodData &Data
4601    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4602
4603  DeclarationName Name = Data.Method->getDeclName();
4604  assert(Name.getNameKind() == DeclarationName::Identifier);
4605
4606  bool foundSameNameMethod = false;
4607  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4608  for (Path.Decls = BaseRecord->lookup(Name);
4609       Path.Decls.first != Path.Decls.second;
4610       ++Path.Decls.first) {
4611    NamedDecl *D = *Path.Decls.first;
4612    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4613      MD = MD->getCanonicalDecl();
4614      foundSameNameMethod = true;
4615      // Interested only in hidden virtual methods.
4616      if (!MD->isVirtual())
4617        continue;
4618      // If the method we are checking overrides a method from its base
4619      // don't warn about the other overloaded methods.
4620      if (!Data.S->IsOverload(Data.Method, MD, false))
4621        return true;
4622      // Collect the overload only if its hidden.
4623      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4624        overloadedMethods.push_back(MD);
4625    }
4626  }
4627
4628  if (foundSameNameMethod)
4629    Data.OverloadedMethods.append(overloadedMethods.begin(),
4630                                   overloadedMethods.end());
4631  return foundSameNameMethod;
4632}
4633
4634/// \brief See if a method overloads virtual methods in a base class without
4635/// overriding any.
4636void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4637  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4638                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4639    return;
4640  if (!MD->getDeclName().isIdentifier())
4641    return;
4642
4643  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4644                     /*bool RecordPaths=*/false,
4645                     /*bool DetectVirtual=*/false);
4646  FindHiddenVirtualMethodData Data;
4647  Data.Method = MD;
4648  Data.S = this;
4649
4650  // Keep the base methods that were overriden or introduced in the subclass
4651  // by 'using' in a set. A base method not in this set is hidden.
4652  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4653       res.first != res.second; ++res.first) {
4654    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4655      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4656                                          E = MD->end_overridden_methods();
4657           I != E; ++I)
4658        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4659    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4660      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4661        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4662  }
4663
4664  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4665      !Data.OverloadedMethods.empty()) {
4666    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4667      << MD << (Data.OverloadedMethods.size() > 1);
4668
4669    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4670      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4671      Diag(overloadedMD->getLocation(),
4672           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4673    }
4674  }
4675}
4676
4677void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4678                                             Decl *TagDecl,
4679                                             SourceLocation LBrac,
4680                                             SourceLocation RBrac,
4681                                             AttributeList *AttrList) {
4682  if (!TagDecl)
4683    return;
4684
4685  AdjustDeclIfTemplate(TagDecl);
4686
4687  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4688              // strict aliasing violation!
4689              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4690              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4691
4692  CheckCompletedCXXClass(
4693                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4694}
4695
4696/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4697/// special functions, such as the default constructor, copy
4698/// constructor, or destructor, to the given C++ class (C++
4699/// [special]p1).  This routine can only be executed just before the
4700/// definition of the class is complete.
4701void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4702  if (!ClassDecl->hasUserDeclaredConstructor())
4703    ++ASTContext::NumImplicitDefaultConstructors;
4704
4705  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4706    ++ASTContext::NumImplicitCopyConstructors;
4707
4708  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4709    ++ASTContext::NumImplicitMoveConstructors;
4710
4711  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4712    ++ASTContext::NumImplicitCopyAssignmentOperators;
4713
4714    // If we have a dynamic class, then the copy assignment operator may be
4715    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4716    // it shows up in the right place in the vtable and that we diagnose
4717    // problems with the implicit exception specification.
4718    if (ClassDecl->isDynamicClass())
4719      DeclareImplicitCopyAssignment(ClassDecl);
4720  }
4721
4722  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4723    ++ASTContext::NumImplicitMoveAssignmentOperators;
4724
4725    // Likewise for the move assignment operator.
4726    if (ClassDecl->isDynamicClass())
4727      DeclareImplicitMoveAssignment(ClassDecl);
4728  }
4729
4730  if (!ClassDecl->hasUserDeclaredDestructor()) {
4731    ++ASTContext::NumImplicitDestructors;
4732
4733    // If we have a dynamic class, then the destructor may be virtual, so we
4734    // have to declare the destructor immediately. This ensures that, e.g., it
4735    // shows up in the right place in the vtable and that we diagnose problems
4736    // with the implicit exception specification.
4737    if (ClassDecl->isDynamicClass())
4738      DeclareImplicitDestructor(ClassDecl);
4739  }
4740}
4741
4742void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4743  if (!D)
4744    return;
4745
4746  int NumParamList = D->getNumTemplateParameterLists();
4747  for (int i = 0; i < NumParamList; i++) {
4748    TemplateParameterList* Params = D->getTemplateParameterList(i);
4749    for (TemplateParameterList::iterator Param = Params->begin(),
4750                                      ParamEnd = Params->end();
4751          Param != ParamEnd; ++Param) {
4752      NamedDecl *Named = cast<NamedDecl>(*Param);
4753      if (Named->getDeclName()) {
4754        S->AddDecl(Named);
4755        IdResolver.AddDecl(Named);
4756      }
4757    }
4758  }
4759}
4760
4761void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4762  if (!D)
4763    return;
4764
4765  TemplateParameterList *Params = 0;
4766  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4767    Params = Template->getTemplateParameters();
4768  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4769           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4770    Params = PartialSpec->getTemplateParameters();
4771  else
4772    return;
4773
4774  for (TemplateParameterList::iterator Param = Params->begin(),
4775                                    ParamEnd = Params->end();
4776       Param != ParamEnd; ++Param) {
4777    NamedDecl *Named = cast<NamedDecl>(*Param);
4778    if (Named->getDeclName()) {
4779      S->AddDecl(Named);
4780      IdResolver.AddDecl(Named);
4781    }
4782  }
4783}
4784
4785void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4786  if (!RecordD) return;
4787  AdjustDeclIfTemplate(RecordD);
4788  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4789  PushDeclContext(S, Record);
4790}
4791
4792void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4793  if (!RecordD) return;
4794  PopDeclContext();
4795}
4796
4797/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4798/// parsing a top-level (non-nested) C++ class, and we are now
4799/// parsing those parts of the given Method declaration that could
4800/// not be parsed earlier (C++ [class.mem]p2), such as default
4801/// arguments. This action should enter the scope of the given
4802/// Method declaration as if we had just parsed the qualified method
4803/// name. However, it should not bring the parameters into scope;
4804/// that will be performed by ActOnDelayedCXXMethodParameter.
4805void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4806}
4807
4808/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4809/// C++ method declaration. We're (re-)introducing the given
4810/// function parameter into scope for use in parsing later parts of
4811/// the method declaration. For example, we could see an
4812/// ActOnParamDefaultArgument event for this parameter.
4813void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4814  if (!ParamD)
4815    return;
4816
4817  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4818
4819  // If this parameter has an unparsed default argument, clear it out
4820  // to make way for the parsed default argument.
4821  if (Param->hasUnparsedDefaultArg())
4822    Param->setDefaultArg(0);
4823
4824  S->AddDecl(Param);
4825  if (Param->getDeclName())
4826    IdResolver.AddDecl(Param);
4827}
4828
4829/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4830/// processing the delayed method declaration for Method. The method
4831/// declaration is now considered finished. There may be a separate
4832/// ActOnStartOfFunctionDef action later (not necessarily
4833/// immediately!) for this method, if it was also defined inside the
4834/// class body.
4835void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4836  if (!MethodD)
4837    return;
4838
4839  AdjustDeclIfTemplate(MethodD);
4840
4841  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4842
4843  // Now that we have our default arguments, check the constructor
4844  // again. It could produce additional diagnostics or affect whether
4845  // the class has implicitly-declared destructors, among other
4846  // things.
4847  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4848    CheckConstructor(Constructor);
4849
4850  // Check the default arguments, which we may have added.
4851  if (!Method->isInvalidDecl())
4852    CheckCXXDefaultArguments(Method);
4853}
4854
4855/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4856/// the well-formedness of the constructor declarator @p D with type @p
4857/// R. If there are any errors in the declarator, this routine will
4858/// emit diagnostics and set the invalid bit to true.  In any case, the type
4859/// will be updated to reflect a well-formed type for the constructor and
4860/// returned.
4861QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4862                                          StorageClass &SC) {
4863  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4864
4865  // C++ [class.ctor]p3:
4866  //   A constructor shall not be virtual (10.3) or static (9.4). A
4867  //   constructor can be invoked for a const, volatile or const
4868  //   volatile object. A constructor shall not be declared const,
4869  //   volatile, or const volatile (9.3.2).
4870  if (isVirtual) {
4871    if (!D.isInvalidType())
4872      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4873        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4874        << SourceRange(D.getIdentifierLoc());
4875    D.setInvalidType();
4876  }
4877  if (SC == SC_Static) {
4878    if (!D.isInvalidType())
4879      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4880        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4881        << SourceRange(D.getIdentifierLoc());
4882    D.setInvalidType();
4883    SC = SC_None;
4884  }
4885
4886  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4887  if (FTI.TypeQuals != 0) {
4888    if (FTI.TypeQuals & Qualifiers::Const)
4889      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4890        << "const" << SourceRange(D.getIdentifierLoc());
4891    if (FTI.TypeQuals & Qualifiers::Volatile)
4892      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4893        << "volatile" << SourceRange(D.getIdentifierLoc());
4894    if (FTI.TypeQuals & Qualifiers::Restrict)
4895      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4896        << "restrict" << SourceRange(D.getIdentifierLoc());
4897    D.setInvalidType();
4898  }
4899
4900  // C++0x [class.ctor]p4:
4901  //   A constructor shall not be declared with a ref-qualifier.
4902  if (FTI.hasRefQualifier()) {
4903    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4904      << FTI.RefQualifierIsLValueRef
4905      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4906    D.setInvalidType();
4907  }
4908
4909  // Rebuild the function type "R" without any type qualifiers (in
4910  // case any of the errors above fired) and with "void" as the
4911  // return type, since constructors don't have return types.
4912  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4913  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4914    return R;
4915
4916  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4917  EPI.TypeQuals = 0;
4918  EPI.RefQualifier = RQ_None;
4919
4920  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4921                                 Proto->getNumArgs(), EPI);
4922}
4923
4924/// CheckConstructor - Checks a fully-formed constructor for
4925/// well-formedness, issuing any diagnostics required. Returns true if
4926/// the constructor declarator is invalid.
4927void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4928  CXXRecordDecl *ClassDecl
4929    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4930  if (!ClassDecl)
4931    return Constructor->setInvalidDecl();
4932
4933  // C++ [class.copy]p3:
4934  //   A declaration of a constructor for a class X is ill-formed if
4935  //   its first parameter is of type (optionally cv-qualified) X and
4936  //   either there are no other parameters or else all other
4937  //   parameters have default arguments.
4938  if (!Constructor->isInvalidDecl() &&
4939      ((Constructor->getNumParams() == 1) ||
4940       (Constructor->getNumParams() > 1 &&
4941        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4942      Constructor->getTemplateSpecializationKind()
4943                                              != TSK_ImplicitInstantiation) {
4944    QualType ParamType = Constructor->getParamDecl(0)->getType();
4945    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4946    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4947      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4948      const char *ConstRef
4949        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4950                                                        : " const &";
4951      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4952        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4953
4954      // FIXME: Rather that making the constructor invalid, we should endeavor
4955      // to fix the type.
4956      Constructor->setInvalidDecl();
4957    }
4958  }
4959}
4960
4961/// CheckDestructor - Checks a fully-formed destructor definition for
4962/// well-formedness, issuing any diagnostics required.  Returns true
4963/// on error.
4964bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4965  CXXRecordDecl *RD = Destructor->getParent();
4966
4967  if (Destructor->isVirtual()) {
4968    SourceLocation Loc;
4969
4970    if (!Destructor->isImplicit())
4971      Loc = Destructor->getLocation();
4972    else
4973      Loc = RD->getLocation();
4974
4975    // If we have a virtual destructor, look up the deallocation function
4976    FunctionDecl *OperatorDelete = 0;
4977    DeclarationName Name =
4978    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4979    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4980      return true;
4981
4982    MarkFunctionReferenced(Loc, OperatorDelete);
4983
4984    Destructor->setOperatorDelete(OperatorDelete);
4985  }
4986
4987  return false;
4988}
4989
4990static inline bool
4991FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4992  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4993          FTI.ArgInfo[0].Param &&
4994          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4995}
4996
4997/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4998/// the well-formednes of the destructor declarator @p D with type @p
4999/// R. If there are any errors in the declarator, this routine will
5000/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5001/// will be updated to reflect a well-formed type for the destructor and
5002/// returned.
5003QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5004                                         StorageClass& SC) {
5005  // C++ [class.dtor]p1:
5006  //   [...] A typedef-name that names a class is a class-name
5007  //   (7.1.3); however, a typedef-name that names a class shall not
5008  //   be used as the identifier in the declarator for a destructor
5009  //   declaration.
5010  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5011  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5012    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5013      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5014  else if (const TemplateSpecializationType *TST =
5015             DeclaratorType->getAs<TemplateSpecializationType>())
5016    if (TST->isTypeAlias())
5017      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5018        << DeclaratorType << 1;
5019
5020  // C++ [class.dtor]p2:
5021  //   A destructor is used to destroy objects of its class type. A
5022  //   destructor takes no parameters, and no return type can be
5023  //   specified for it (not even void). The address of a destructor
5024  //   shall not be taken. A destructor shall not be static. A
5025  //   destructor can be invoked for a const, volatile or const
5026  //   volatile object. A destructor shall not be declared const,
5027  //   volatile or const volatile (9.3.2).
5028  if (SC == SC_Static) {
5029    if (!D.isInvalidType())
5030      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5031        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5032        << SourceRange(D.getIdentifierLoc())
5033        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5034
5035    SC = SC_None;
5036  }
5037  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5038    // Destructors don't have return types, but the parser will
5039    // happily parse something like:
5040    //
5041    //   class X {
5042    //     float ~X();
5043    //   };
5044    //
5045    // The return type will be eliminated later.
5046    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5047      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5048      << SourceRange(D.getIdentifierLoc());
5049  }
5050
5051  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5052  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5053    if (FTI.TypeQuals & Qualifiers::Const)
5054      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5055        << "const" << SourceRange(D.getIdentifierLoc());
5056    if (FTI.TypeQuals & Qualifiers::Volatile)
5057      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5058        << "volatile" << SourceRange(D.getIdentifierLoc());
5059    if (FTI.TypeQuals & Qualifiers::Restrict)
5060      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5061        << "restrict" << SourceRange(D.getIdentifierLoc());
5062    D.setInvalidType();
5063  }
5064
5065  // C++0x [class.dtor]p2:
5066  //   A destructor shall not be declared with a ref-qualifier.
5067  if (FTI.hasRefQualifier()) {
5068    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5069      << FTI.RefQualifierIsLValueRef
5070      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5071    D.setInvalidType();
5072  }
5073
5074  // Make sure we don't have any parameters.
5075  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5076    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5077
5078    // Delete the parameters.
5079    FTI.freeArgs();
5080    D.setInvalidType();
5081  }
5082
5083  // Make sure the destructor isn't variadic.
5084  if (FTI.isVariadic) {
5085    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5086    D.setInvalidType();
5087  }
5088
5089  // Rebuild the function type "R" without any type qualifiers or
5090  // parameters (in case any of the errors above fired) and with
5091  // "void" as the return type, since destructors don't have return
5092  // types.
5093  if (!D.isInvalidType())
5094    return R;
5095
5096  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5097  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5098  EPI.Variadic = false;
5099  EPI.TypeQuals = 0;
5100  EPI.RefQualifier = RQ_None;
5101  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5102}
5103
5104/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5105/// well-formednes of the conversion function declarator @p D with
5106/// type @p R. If there are any errors in the declarator, this routine
5107/// will emit diagnostics and return true. Otherwise, it will return
5108/// false. Either way, the type @p R will be updated to reflect a
5109/// well-formed type for the conversion operator.
5110void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5111                                     StorageClass& SC) {
5112  // C++ [class.conv.fct]p1:
5113  //   Neither parameter types nor return type can be specified. The
5114  //   type of a conversion function (8.3.5) is "function taking no
5115  //   parameter returning conversion-type-id."
5116  if (SC == SC_Static) {
5117    if (!D.isInvalidType())
5118      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5119        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5120        << SourceRange(D.getIdentifierLoc());
5121    D.setInvalidType();
5122    SC = SC_None;
5123  }
5124
5125  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5126
5127  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5128    // Conversion functions don't have return types, but the parser will
5129    // happily parse something like:
5130    //
5131    //   class X {
5132    //     float operator bool();
5133    //   };
5134    //
5135    // The return type will be changed later anyway.
5136    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5137      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5138      << SourceRange(D.getIdentifierLoc());
5139    D.setInvalidType();
5140  }
5141
5142  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5143
5144  // Make sure we don't have any parameters.
5145  if (Proto->getNumArgs() > 0) {
5146    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5147
5148    // Delete the parameters.
5149    D.getFunctionTypeInfo().freeArgs();
5150    D.setInvalidType();
5151  } else if (Proto->isVariadic()) {
5152    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5153    D.setInvalidType();
5154  }
5155
5156  // Diagnose "&operator bool()" and other such nonsense.  This
5157  // is actually a gcc extension which we don't support.
5158  if (Proto->getResultType() != ConvType) {
5159    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5160      << Proto->getResultType();
5161    D.setInvalidType();
5162    ConvType = Proto->getResultType();
5163  }
5164
5165  // C++ [class.conv.fct]p4:
5166  //   The conversion-type-id shall not represent a function type nor
5167  //   an array type.
5168  if (ConvType->isArrayType()) {
5169    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5170    ConvType = Context.getPointerType(ConvType);
5171    D.setInvalidType();
5172  } else if (ConvType->isFunctionType()) {
5173    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5174    ConvType = Context.getPointerType(ConvType);
5175    D.setInvalidType();
5176  }
5177
5178  // Rebuild the function type "R" without any parameters (in case any
5179  // of the errors above fired) and with the conversion type as the
5180  // return type.
5181  if (D.isInvalidType())
5182    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5183
5184  // C++0x explicit conversion operators.
5185  if (D.getDeclSpec().isExplicitSpecified())
5186    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5187         getLangOpts().CPlusPlus0x ?
5188           diag::warn_cxx98_compat_explicit_conversion_functions :
5189           diag::ext_explicit_conversion_functions)
5190      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5191}
5192
5193/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5194/// the declaration of the given C++ conversion function. This routine
5195/// is responsible for recording the conversion function in the C++
5196/// class, if possible.
5197Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5198  assert(Conversion && "Expected to receive a conversion function declaration");
5199
5200  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5201
5202  // Make sure we aren't redeclaring the conversion function.
5203  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5204
5205  // C++ [class.conv.fct]p1:
5206  //   [...] A conversion function is never used to convert a
5207  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5208  //   same object type (or a reference to it), to a (possibly
5209  //   cv-qualified) base class of that type (or a reference to it),
5210  //   or to (possibly cv-qualified) void.
5211  // FIXME: Suppress this warning if the conversion function ends up being a
5212  // virtual function that overrides a virtual function in a base class.
5213  QualType ClassType
5214    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5215  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5216    ConvType = ConvTypeRef->getPointeeType();
5217  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5218      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5219    /* Suppress diagnostics for instantiations. */;
5220  else if (ConvType->isRecordType()) {
5221    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5222    if (ConvType == ClassType)
5223      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5224        << ClassType;
5225    else if (IsDerivedFrom(ClassType, ConvType))
5226      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5227        <<  ClassType << ConvType;
5228  } else if (ConvType->isVoidType()) {
5229    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5230      << ClassType << ConvType;
5231  }
5232
5233  if (FunctionTemplateDecl *ConversionTemplate
5234                                = Conversion->getDescribedFunctionTemplate())
5235    return ConversionTemplate;
5236
5237  return Conversion;
5238}
5239
5240//===----------------------------------------------------------------------===//
5241// Namespace Handling
5242//===----------------------------------------------------------------------===//
5243
5244
5245
5246/// ActOnStartNamespaceDef - This is called at the start of a namespace
5247/// definition.
5248Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5249                                   SourceLocation InlineLoc,
5250                                   SourceLocation NamespaceLoc,
5251                                   SourceLocation IdentLoc,
5252                                   IdentifierInfo *II,
5253                                   SourceLocation LBrace,
5254                                   AttributeList *AttrList) {
5255  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5256  // For anonymous namespace, take the location of the left brace.
5257  SourceLocation Loc = II ? IdentLoc : LBrace;
5258  bool IsInline = InlineLoc.isValid();
5259  bool IsInvalid = false;
5260  bool IsStd = false;
5261  bool AddToKnown = false;
5262  Scope *DeclRegionScope = NamespcScope->getParent();
5263
5264  NamespaceDecl *PrevNS = 0;
5265  if (II) {
5266    // C++ [namespace.def]p2:
5267    //   The identifier in an original-namespace-definition shall not
5268    //   have been previously defined in the declarative region in
5269    //   which the original-namespace-definition appears. The
5270    //   identifier in an original-namespace-definition is the name of
5271    //   the namespace. Subsequently in that declarative region, it is
5272    //   treated as an original-namespace-name.
5273    //
5274    // Since namespace names are unique in their scope, and we don't
5275    // look through using directives, just look for any ordinary names.
5276
5277    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5278    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5279    Decl::IDNS_Namespace;
5280    NamedDecl *PrevDecl = 0;
5281    for (DeclContext::lookup_result R
5282         = CurContext->getRedeclContext()->lookup(II);
5283         R.first != R.second; ++R.first) {
5284      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5285        PrevDecl = *R.first;
5286        break;
5287      }
5288    }
5289
5290    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5291
5292    if (PrevNS) {
5293      // This is an extended namespace definition.
5294      if (IsInline != PrevNS->isInline()) {
5295        // inline-ness must match
5296        if (PrevNS->isInline()) {
5297          // The user probably just forgot the 'inline', so suggest that it
5298          // be added back.
5299          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5300            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5301        } else {
5302          Diag(Loc, diag::err_inline_namespace_mismatch)
5303            << IsInline;
5304        }
5305        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5306
5307        IsInline = PrevNS->isInline();
5308      }
5309    } else if (PrevDecl) {
5310      // This is an invalid name redefinition.
5311      Diag(Loc, diag::err_redefinition_different_kind)
5312        << II;
5313      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5314      IsInvalid = true;
5315      // Continue on to push Namespc as current DeclContext and return it.
5316    } else if (II->isStr("std") &&
5317               CurContext->getRedeclContext()->isTranslationUnit()) {
5318      // This is the first "real" definition of the namespace "std", so update
5319      // our cache of the "std" namespace to point at this definition.
5320      PrevNS = getStdNamespace();
5321      IsStd = true;
5322      AddToKnown = !IsInline;
5323    } else {
5324      // We've seen this namespace for the first time.
5325      AddToKnown = !IsInline;
5326    }
5327  } else {
5328    // Anonymous namespaces.
5329
5330    // Determine whether the parent already has an anonymous namespace.
5331    DeclContext *Parent = CurContext->getRedeclContext();
5332    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5333      PrevNS = TU->getAnonymousNamespace();
5334    } else {
5335      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5336      PrevNS = ND->getAnonymousNamespace();
5337    }
5338
5339    if (PrevNS && IsInline != PrevNS->isInline()) {
5340      // inline-ness must match
5341      Diag(Loc, diag::err_inline_namespace_mismatch)
5342        << IsInline;
5343      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5344
5345      // Recover by ignoring the new namespace's inline status.
5346      IsInline = PrevNS->isInline();
5347    }
5348  }
5349
5350  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5351                                                 StartLoc, Loc, II, PrevNS);
5352  if (IsInvalid)
5353    Namespc->setInvalidDecl();
5354
5355  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5356
5357  // FIXME: Should we be merging attributes?
5358  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5359    PushNamespaceVisibilityAttr(Attr, Loc);
5360
5361  if (IsStd)
5362    StdNamespace = Namespc;
5363  if (AddToKnown)
5364    KnownNamespaces[Namespc] = false;
5365
5366  if (II) {
5367    PushOnScopeChains(Namespc, DeclRegionScope);
5368  } else {
5369    // Link the anonymous namespace into its parent.
5370    DeclContext *Parent = CurContext->getRedeclContext();
5371    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5372      TU->setAnonymousNamespace(Namespc);
5373    } else {
5374      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5375    }
5376
5377    CurContext->addDecl(Namespc);
5378
5379    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5380    //   behaves as if it were replaced by
5381    //     namespace unique { /* empty body */ }
5382    //     using namespace unique;
5383    //     namespace unique { namespace-body }
5384    //   where all occurrences of 'unique' in a translation unit are
5385    //   replaced by the same identifier and this identifier differs
5386    //   from all other identifiers in the entire program.
5387
5388    // We just create the namespace with an empty name and then add an
5389    // implicit using declaration, just like the standard suggests.
5390    //
5391    // CodeGen enforces the "universally unique" aspect by giving all
5392    // declarations semantically contained within an anonymous
5393    // namespace internal linkage.
5394
5395    if (!PrevNS) {
5396      UsingDirectiveDecl* UD
5397        = UsingDirectiveDecl::Create(Context, CurContext,
5398                                     /* 'using' */ LBrace,
5399                                     /* 'namespace' */ SourceLocation(),
5400                                     /* qualifier */ NestedNameSpecifierLoc(),
5401                                     /* identifier */ SourceLocation(),
5402                                     Namespc,
5403                                     /* Ancestor */ CurContext);
5404      UD->setImplicit();
5405      CurContext->addDecl(UD);
5406    }
5407  }
5408
5409  // Although we could have an invalid decl (i.e. the namespace name is a
5410  // redefinition), push it as current DeclContext and try to continue parsing.
5411  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5412  // for the namespace has the declarations that showed up in that particular
5413  // namespace definition.
5414  PushDeclContext(NamespcScope, Namespc);
5415  return Namespc;
5416}
5417
5418/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5419/// is a namespace alias, returns the namespace it points to.
5420static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5421  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5422    return AD->getNamespace();
5423  return dyn_cast_or_null<NamespaceDecl>(D);
5424}
5425
5426/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5427/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5428void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5429  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5430  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5431  Namespc->setRBraceLoc(RBrace);
5432  PopDeclContext();
5433  if (Namespc->hasAttr<VisibilityAttr>())
5434    PopPragmaVisibility(true, RBrace);
5435}
5436
5437CXXRecordDecl *Sema::getStdBadAlloc() const {
5438  return cast_or_null<CXXRecordDecl>(
5439                                  StdBadAlloc.get(Context.getExternalSource()));
5440}
5441
5442NamespaceDecl *Sema::getStdNamespace() const {
5443  return cast_or_null<NamespaceDecl>(
5444                                 StdNamespace.get(Context.getExternalSource()));
5445}
5446
5447/// \brief Retrieve the special "std" namespace, which may require us to
5448/// implicitly define the namespace.
5449NamespaceDecl *Sema::getOrCreateStdNamespace() {
5450  if (!StdNamespace) {
5451    // The "std" namespace has not yet been defined, so build one implicitly.
5452    StdNamespace = NamespaceDecl::Create(Context,
5453                                         Context.getTranslationUnitDecl(),
5454                                         /*Inline=*/false,
5455                                         SourceLocation(), SourceLocation(),
5456                                         &PP.getIdentifierTable().get("std"),
5457                                         /*PrevDecl=*/0);
5458    getStdNamespace()->setImplicit(true);
5459  }
5460
5461  return getStdNamespace();
5462}
5463
5464bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5465  assert(getLangOpts().CPlusPlus &&
5466         "Looking for std::initializer_list outside of C++.");
5467
5468  // We're looking for implicit instantiations of
5469  // template <typename E> class std::initializer_list.
5470
5471  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5472    return false;
5473
5474  ClassTemplateDecl *Template = 0;
5475  const TemplateArgument *Arguments = 0;
5476
5477  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5478
5479    ClassTemplateSpecializationDecl *Specialization =
5480        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5481    if (!Specialization)
5482      return false;
5483
5484    Template = Specialization->getSpecializedTemplate();
5485    Arguments = Specialization->getTemplateArgs().data();
5486  } else if (const TemplateSpecializationType *TST =
5487                 Ty->getAs<TemplateSpecializationType>()) {
5488    Template = dyn_cast_or_null<ClassTemplateDecl>(
5489        TST->getTemplateName().getAsTemplateDecl());
5490    Arguments = TST->getArgs();
5491  }
5492  if (!Template)
5493    return false;
5494
5495  if (!StdInitializerList) {
5496    // Haven't recognized std::initializer_list yet, maybe this is it.
5497    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5498    if (TemplateClass->getIdentifier() !=
5499            &PP.getIdentifierTable().get("initializer_list") ||
5500        !getStdNamespace()->InEnclosingNamespaceSetOf(
5501            TemplateClass->getDeclContext()))
5502      return false;
5503    // This is a template called std::initializer_list, but is it the right
5504    // template?
5505    TemplateParameterList *Params = Template->getTemplateParameters();
5506    if (Params->getMinRequiredArguments() != 1)
5507      return false;
5508    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5509      return false;
5510
5511    // It's the right template.
5512    StdInitializerList = Template;
5513  }
5514
5515  if (Template != StdInitializerList)
5516    return false;
5517
5518  // This is an instance of std::initializer_list. Find the argument type.
5519  if (Element)
5520    *Element = Arguments[0].getAsType();
5521  return true;
5522}
5523
5524static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5525  NamespaceDecl *Std = S.getStdNamespace();
5526  if (!Std) {
5527    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5528    return 0;
5529  }
5530
5531  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5532                      Loc, Sema::LookupOrdinaryName);
5533  if (!S.LookupQualifiedName(Result, Std)) {
5534    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5535    return 0;
5536  }
5537  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5538  if (!Template) {
5539    Result.suppressDiagnostics();
5540    // We found something weird. Complain about the first thing we found.
5541    NamedDecl *Found = *Result.begin();
5542    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5543    return 0;
5544  }
5545
5546  // We found some template called std::initializer_list. Now verify that it's
5547  // correct.
5548  TemplateParameterList *Params = Template->getTemplateParameters();
5549  if (Params->getMinRequiredArguments() != 1 ||
5550      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5551    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5552    return 0;
5553  }
5554
5555  return Template;
5556}
5557
5558QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5559  if (!StdInitializerList) {
5560    StdInitializerList = LookupStdInitializerList(*this, Loc);
5561    if (!StdInitializerList)
5562      return QualType();
5563  }
5564
5565  TemplateArgumentListInfo Args(Loc, Loc);
5566  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5567                                       Context.getTrivialTypeSourceInfo(Element,
5568                                                                        Loc)));
5569  return Context.getCanonicalType(
5570      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5571}
5572
5573bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5574  // C++ [dcl.init.list]p2:
5575  //   A constructor is an initializer-list constructor if its first parameter
5576  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5577  //   std::initializer_list<E> for some type E, and either there are no other
5578  //   parameters or else all other parameters have default arguments.
5579  if (Ctor->getNumParams() < 1 ||
5580      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5581    return false;
5582
5583  QualType ArgType = Ctor->getParamDecl(0)->getType();
5584  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5585    ArgType = RT->getPointeeType().getUnqualifiedType();
5586
5587  return isStdInitializerList(ArgType, 0);
5588}
5589
5590/// \brief Determine whether a using statement is in a context where it will be
5591/// apply in all contexts.
5592static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5593  switch (CurContext->getDeclKind()) {
5594    case Decl::TranslationUnit:
5595      return true;
5596    case Decl::LinkageSpec:
5597      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5598    default:
5599      return false;
5600  }
5601}
5602
5603namespace {
5604
5605// Callback to only accept typo corrections that are namespaces.
5606class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5607 public:
5608  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5609    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5610      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5611    }
5612    return false;
5613  }
5614};
5615
5616}
5617
5618static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5619                                       CXXScopeSpec &SS,
5620                                       SourceLocation IdentLoc,
5621                                       IdentifierInfo *Ident) {
5622  NamespaceValidatorCCC Validator;
5623  R.clear();
5624  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5625                                               R.getLookupKind(), Sc, &SS,
5626                                               Validator)) {
5627    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5628    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5629    if (DeclContext *DC = S.computeDeclContext(SS, false))
5630      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5631        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5632        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5633    else
5634      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5635        << Ident << CorrectedQuotedStr
5636        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5637
5638    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5639         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5640
5641    R.addDecl(Corrected.getCorrectionDecl());
5642    return true;
5643  }
5644  return false;
5645}
5646
5647Decl *Sema::ActOnUsingDirective(Scope *S,
5648                                          SourceLocation UsingLoc,
5649                                          SourceLocation NamespcLoc,
5650                                          CXXScopeSpec &SS,
5651                                          SourceLocation IdentLoc,
5652                                          IdentifierInfo *NamespcName,
5653                                          AttributeList *AttrList) {
5654  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5655  assert(NamespcName && "Invalid NamespcName.");
5656  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5657
5658  // This can only happen along a recovery path.
5659  while (S->getFlags() & Scope::TemplateParamScope)
5660    S = S->getParent();
5661  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5662
5663  UsingDirectiveDecl *UDir = 0;
5664  NestedNameSpecifier *Qualifier = 0;
5665  if (SS.isSet())
5666    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5667
5668  // Lookup namespace name.
5669  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5670  LookupParsedName(R, S, &SS);
5671  if (R.isAmbiguous())
5672    return 0;
5673
5674  if (R.empty()) {
5675    R.clear();
5676    // Allow "using namespace std;" or "using namespace ::std;" even if
5677    // "std" hasn't been defined yet, for GCC compatibility.
5678    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5679        NamespcName->isStr("std")) {
5680      Diag(IdentLoc, diag::ext_using_undefined_std);
5681      R.addDecl(getOrCreateStdNamespace());
5682      R.resolveKind();
5683    }
5684    // Otherwise, attempt typo correction.
5685    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5686  }
5687
5688  if (!R.empty()) {
5689    NamedDecl *Named = R.getFoundDecl();
5690    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5691        && "expected namespace decl");
5692    // C++ [namespace.udir]p1:
5693    //   A using-directive specifies that the names in the nominated
5694    //   namespace can be used in the scope in which the
5695    //   using-directive appears after the using-directive. During
5696    //   unqualified name lookup (3.4.1), the names appear as if they
5697    //   were declared in the nearest enclosing namespace which
5698    //   contains both the using-directive and the nominated
5699    //   namespace. [Note: in this context, "contains" means "contains
5700    //   directly or indirectly". ]
5701
5702    // Find enclosing context containing both using-directive and
5703    // nominated namespace.
5704    NamespaceDecl *NS = getNamespaceDecl(Named);
5705    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5706    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5707      CommonAncestor = CommonAncestor->getParent();
5708
5709    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5710                                      SS.getWithLocInContext(Context),
5711                                      IdentLoc, Named, CommonAncestor);
5712
5713    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5714        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5715      Diag(IdentLoc, diag::warn_using_directive_in_header);
5716    }
5717
5718    PushUsingDirective(S, UDir);
5719  } else {
5720    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5721  }
5722
5723  // FIXME: We ignore attributes for now.
5724  return UDir;
5725}
5726
5727void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5728  // If the scope has an associated entity and the using directive is at
5729  // namespace or translation unit scope, add the UsingDirectiveDecl into
5730  // its lookup structure so qualified name lookup can find it.
5731  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5732  if (Ctx && !Ctx->isFunctionOrMethod())
5733    Ctx->addDecl(UDir);
5734  else
5735    // Otherwise, it is at block sope. The using-directives will affect lookup
5736    // only to the end of the scope.
5737    S->PushUsingDirective(UDir);
5738}
5739
5740
5741Decl *Sema::ActOnUsingDeclaration(Scope *S,
5742                                  AccessSpecifier AS,
5743                                  bool HasUsingKeyword,
5744                                  SourceLocation UsingLoc,
5745                                  CXXScopeSpec &SS,
5746                                  UnqualifiedId &Name,
5747                                  AttributeList *AttrList,
5748                                  bool IsTypeName,
5749                                  SourceLocation TypenameLoc) {
5750  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5751
5752  switch (Name.getKind()) {
5753  case UnqualifiedId::IK_ImplicitSelfParam:
5754  case UnqualifiedId::IK_Identifier:
5755  case UnqualifiedId::IK_OperatorFunctionId:
5756  case UnqualifiedId::IK_LiteralOperatorId:
5757  case UnqualifiedId::IK_ConversionFunctionId:
5758    break;
5759
5760  case UnqualifiedId::IK_ConstructorName:
5761  case UnqualifiedId::IK_ConstructorTemplateId:
5762    // C++11 inheriting constructors.
5763    Diag(Name.getLocStart(),
5764         getLangOpts().CPlusPlus0x ?
5765           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5766           //        instead once inheriting constructors work.
5767           diag::err_using_decl_constructor_unsupported :
5768           diag::err_using_decl_constructor)
5769      << SS.getRange();
5770
5771    if (getLangOpts().CPlusPlus0x) break;
5772
5773    return 0;
5774
5775  case UnqualifiedId::IK_DestructorName:
5776    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5777      << SS.getRange();
5778    return 0;
5779
5780  case UnqualifiedId::IK_TemplateId:
5781    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5782      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5783    return 0;
5784  }
5785
5786  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5787  DeclarationName TargetName = TargetNameInfo.getName();
5788  if (!TargetName)
5789    return 0;
5790
5791  // Warn about using declarations.
5792  // TODO: store that the declaration was written without 'using' and
5793  // talk about access decls instead of using decls in the
5794  // diagnostics.
5795  if (!HasUsingKeyword) {
5796    UsingLoc = Name.getLocStart();
5797
5798    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5799      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5800  }
5801
5802  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5803      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5804    return 0;
5805
5806  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5807                                        TargetNameInfo, AttrList,
5808                                        /* IsInstantiation */ false,
5809                                        IsTypeName, TypenameLoc);
5810  if (UD)
5811    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5812
5813  return UD;
5814}
5815
5816/// \brief Determine whether a using declaration considers the given
5817/// declarations as "equivalent", e.g., if they are redeclarations of
5818/// the same entity or are both typedefs of the same type.
5819static bool
5820IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5821                         bool &SuppressRedeclaration) {
5822  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5823    SuppressRedeclaration = false;
5824    return true;
5825  }
5826
5827  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5828    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5829      SuppressRedeclaration = true;
5830      return Context.hasSameType(TD1->getUnderlyingType(),
5831                                 TD2->getUnderlyingType());
5832    }
5833
5834  return false;
5835}
5836
5837
5838/// Determines whether to create a using shadow decl for a particular
5839/// decl, given the set of decls existing prior to this using lookup.
5840bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5841                                const LookupResult &Previous) {
5842  // Diagnose finding a decl which is not from a base class of the
5843  // current class.  We do this now because there are cases where this
5844  // function will silently decide not to build a shadow decl, which
5845  // will pre-empt further diagnostics.
5846  //
5847  // We don't need to do this in C++0x because we do the check once on
5848  // the qualifier.
5849  //
5850  // FIXME: diagnose the following if we care enough:
5851  //   struct A { int foo; };
5852  //   struct B : A { using A::foo; };
5853  //   template <class T> struct C : A {};
5854  //   template <class T> struct D : C<T> { using B::foo; } // <---
5855  // This is invalid (during instantiation) in C++03 because B::foo
5856  // resolves to the using decl in B, which is not a base class of D<T>.
5857  // We can't diagnose it immediately because C<T> is an unknown
5858  // specialization.  The UsingShadowDecl in D<T> then points directly
5859  // to A::foo, which will look well-formed when we instantiate.
5860  // The right solution is to not collapse the shadow-decl chain.
5861  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5862    DeclContext *OrigDC = Orig->getDeclContext();
5863
5864    // Handle enums and anonymous structs.
5865    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5866    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5867    while (OrigRec->isAnonymousStructOrUnion())
5868      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5869
5870    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5871      if (OrigDC == CurContext) {
5872        Diag(Using->getLocation(),
5873             diag::err_using_decl_nested_name_specifier_is_current_class)
5874          << Using->getQualifierLoc().getSourceRange();
5875        Diag(Orig->getLocation(), diag::note_using_decl_target);
5876        return true;
5877      }
5878
5879      Diag(Using->getQualifierLoc().getBeginLoc(),
5880           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5881        << Using->getQualifier()
5882        << cast<CXXRecordDecl>(CurContext)
5883        << Using->getQualifierLoc().getSourceRange();
5884      Diag(Orig->getLocation(), diag::note_using_decl_target);
5885      return true;
5886    }
5887  }
5888
5889  if (Previous.empty()) return false;
5890
5891  NamedDecl *Target = Orig;
5892  if (isa<UsingShadowDecl>(Target))
5893    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5894
5895  // If the target happens to be one of the previous declarations, we
5896  // don't have a conflict.
5897  //
5898  // FIXME: but we might be increasing its access, in which case we
5899  // should redeclare it.
5900  NamedDecl *NonTag = 0, *Tag = 0;
5901  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5902         I != E; ++I) {
5903    NamedDecl *D = (*I)->getUnderlyingDecl();
5904    bool Result;
5905    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5906      return Result;
5907
5908    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5909  }
5910
5911  if (Target->isFunctionOrFunctionTemplate()) {
5912    FunctionDecl *FD;
5913    if (isa<FunctionTemplateDecl>(Target))
5914      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5915    else
5916      FD = cast<FunctionDecl>(Target);
5917
5918    NamedDecl *OldDecl = 0;
5919    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5920    case Ovl_Overload:
5921      return false;
5922
5923    case Ovl_NonFunction:
5924      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5925      break;
5926
5927    // We found a decl with the exact signature.
5928    case Ovl_Match:
5929      // If we're in a record, we want to hide the target, so we
5930      // return true (without a diagnostic) to tell the caller not to
5931      // build a shadow decl.
5932      if (CurContext->isRecord())
5933        return true;
5934
5935      // If we're not in a record, this is an error.
5936      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5937      break;
5938    }
5939
5940    Diag(Target->getLocation(), diag::note_using_decl_target);
5941    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5942    return true;
5943  }
5944
5945  // Target is not a function.
5946
5947  if (isa<TagDecl>(Target)) {
5948    // No conflict between a tag and a non-tag.
5949    if (!Tag) return false;
5950
5951    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5952    Diag(Target->getLocation(), diag::note_using_decl_target);
5953    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5954    return true;
5955  }
5956
5957  // No conflict between a tag and a non-tag.
5958  if (!NonTag) return false;
5959
5960  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5961  Diag(Target->getLocation(), diag::note_using_decl_target);
5962  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5963  return true;
5964}
5965
5966/// Builds a shadow declaration corresponding to a 'using' declaration.
5967UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5968                                            UsingDecl *UD,
5969                                            NamedDecl *Orig) {
5970
5971  // If we resolved to another shadow declaration, just coalesce them.
5972  NamedDecl *Target = Orig;
5973  if (isa<UsingShadowDecl>(Target)) {
5974    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5975    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5976  }
5977
5978  UsingShadowDecl *Shadow
5979    = UsingShadowDecl::Create(Context, CurContext,
5980                              UD->getLocation(), UD, Target);
5981  UD->addShadowDecl(Shadow);
5982
5983  Shadow->setAccess(UD->getAccess());
5984  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5985    Shadow->setInvalidDecl();
5986
5987  if (S)
5988    PushOnScopeChains(Shadow, S);
5989  else
5990    CurContext->addDecl(Shadow);
5991
5992
5993  return Shadow;
5994}
5995
5996/// Hides a using shadow declaration.  This is required by the current
5997/// using-decl implementation when a resolvable using declaration in a
5998/// class is followed by a declaration which would hide or override
5999/// one or more of the using decl's targets; for example:
6000///
6001///   struct Base { void foo(int); };
6002///   struct Derived : Base {
6003///     using Base::foo;
6004///     void foo(int);
6005///   };
6006///
6007/// The governing language is C++03 [namespace.udecl]p12:
6008///
6009///   When a using-declaration brings names from a base class into a
6010///   derived class scope, member functions in the derived class
6011///   override and/or hide member functions with the same name and
6012///   parameter types in a base class (rather than conflicting).
6013///
6014/// There are two ways to implement this:
6015///   (1) optimistically create shadow decls when they're not hidden
6016///       by existing declarations, or
6017///   (2) don't create any shadow decls (or at least don't make them
6018///       visible) until we've fully parsed/instantiated the class.
6019/// The problem with (1) is that we might have to retroactively remove
6020/// a shadow decl, which requires several O(n) operations because the
6021/// decl structures are (very reasonably) not designed for removal.
6022/// (2) avoids this but is very fiddly and phase-dependent.
6023void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6024  if (Shadow->getDeclName().getNameKind() ==
6025        DeclarationName::CXXConversionFunctionName)
6026    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6027
6028  // Remove it from the DeclContext...
6029  Shadow->getDeclContext()->removeDecl(Shadow);
6030
6031  // ...and the scope, if applicable...
6032  if (S) {
6033    S->RemoveDecl(Shadow);
6034    IdResolver.RemoveDecl(Shadow);
6035  }
6036
6037  // ...and the using decl.
6038  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6039
6040  // TODO: complain somehow if Shadow was used.  It shouldn't
6041  // be possible for this to happen, because...?
6042}
6043
6044/// Builds a using declaration.
6045///
6046/// \param IsInstantiation - Whether this call arises from an
6047///   instantiation of an unresolved using declaration.  We treat
6048///   the lookup differently for these declarations.
6049NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6050                                       SourceLocation UsingLoc,
6051                                       CXXScopeSpec &SS,
6052                                       const DeclarationNameInfo &NameInfo,
6053                                       AttributeList *AttrList,
6054                                       bool IsInstantiation,
6055                                       bool IsTypeName,
6056                                       SourceLocation TypenameLoc) {
6057  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6058  SourceLocation IdentLoc = NameInfo.getLoc();
6059  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6060
6061  // FIXME: We ignore attributes for now.
6062
6063  if (SS.isEmpty()) {
6064    Diag(IdentLoc, diag::err_using_requires_qualname);
6065    return 0;
6066  }
6067
6068  // Do the redeclaration lookup in the current scope.
6069  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6070                        ForRedeclaration);
6071  Previous.setHideTags(false);
6072  if (S) {
6073    LookupName(Previous, S);
6074
6075    // It is really dumb that we have to do this.
6076    LookupResult::Filter F = Previous.makeFilter();
6077    while (F.hasNext()) {
6078      NamedDecl *D = F.next();
6079      if (!isDeclInScope(D, CurContext, S))
6080        F.erase();
6081    }
6082    F.done();
6083  } else {
6084    assert(IsInstantiation && "no scope in non-instantiation");
6085    assert(CurContext->isRecord() && "scope not record in instantiation");
6086    LookupQualifiedName(Previous, CurContext);
6087  }
6088
6089  // Check for invalid redeclarations.
6090  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6091    return 0;
6092
6093  // Check for bad qualifiers.
6094  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6095    return 0;
6096
6097  DeclContext *LookupContext = computeDeclContext(SS);
6098  NamedDecl *D;
6099  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6100  if (!LookupContext) {
6101    if (IsTypeName) {
6102      // FIXME: not all declaration name kinds are legal here
6103      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6104                                              UsingLoc, TypenameLoc,
6105                                              QualifierLoc,
6106                                              IdentLoc, NameInfo.getName());
6107    } else {
6108      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6109                                           QualifierLoc, NameInfo);
6110    }
6111  } else {
6112    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6113                          NameInfo, IsTypeName);
6114  }
6115  D->setAccess(AS);
6116  CurContext->addDecl(D);
6117
6118  if (!LookupContext) return D;
6119  UsingDecl *UD = cast<UsingDecl>(D);
6120
6121  if (RequireCompleteDeclContext(SS, LookupContext)) {
6122    UD->setInvalidDecl();
6123    return UD;
6124  }
6125
6126  // The normal rules do not apply to inheriting constructor declarations.
6127  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6128    if (CheckInheritingConstructorUsingDecl(UD))
6129      UD->setInvalidDecl();
6130    return UD;
6131  }
6132
6133  // Otherwise, look up the target name.
6134
6135  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6136
6137  // Unlike most lookups, we don't always want to hide tag
6138  // declarations: tag names are visible through the using declaration
6139  // even if hidden by ordinary names, *except* in a dependent context
6140  // where it's important for the sanity of two-phase lookup.
6141  if (!IsInstantiation)
6142    R.setHideTags(false);
6143
6144  // For the purposes of this lookup, we have a base object type
6145  // equal to that of the current context.
6146  if (CurContext->isRecord()) {
6147    R.setBaseObjectType(
6148                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6149  }
6150
6151  LookupQualifiedName(R, LookupContext);
6152
6153  if (R.empty()) {
6154    Diag(IdentLoc, diag::err_no_member)
6155      << NameInfo.getName() << LookupContext << SS.getRange();
6156    UD->setInvalidDecl();
6157    return UD;
6158  }
6159
6160  if (R.isAmbiguous()) {
6161    UD->setInvalidDecl();
6162    return UD;
6163  }
6164
6165  if (IsTypeName) {
6166    // If we asked for a typename and got a non-type decl, error out.
6167    if (!R.getAsSingle<TypeDecl>()) {
6168      Diag(IdentLoc, diag::err_using_typename_non_type);
6169      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6170        Diag((*I)->getUnderlyingDecl()->getLocation(),
6171             diag::note_using_decl_target);
6172      UD->setInvalidDecl();
6173      return UD;
6174    }
6175  } else {
6176    // If we asked for a non-typename and we got a type, error out,
6177    // but only if this is an instantiation of an unresolved using
6178    // decl.  Otherwise just silently find the type name.
6179    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6180      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6181      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6182      UD->setInvalidDecl();
6183      return UD;
6184    }
6185  }
6186
6187  // C++0x N2914 [namespace.udecl]p6:
6188  // A using-declaration shall not name a namespace.
6189  if (R.getAsSingle<NamespaceDecl>()) {
6190    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6191      << SS.getRange();
6192    UD->setInvalidDecl();
6193    return UD;
6194  }
6195
6196  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6197    if (!CheckUsingShadowDecl(UD, *I, Previous))
6198      BuildUsingShadowDecl(S, UD, *I);
6199  }
6200
6201  return UD;
6202}
6203
6204/// Additional checks for a using declaration referring to a constructor name.
6205bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6206  assert(!UD->isTypeName() && "expecting a constructor name");
6207
6208  const Type *SourceType = UD->getQualifier()->getAsType();
6209  assert(SourceType &&
6210         "Using decl naming constructor doesn't have type in scope spec.");
6211  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6212
6213  // Check whether the named type is a direct base class.
6214  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6215  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6216  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6217       BaseIt != BaseE; ++BaseIt) {
6218    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6219    if (CanonicalSourceType == BaseType)
6220      break;
6221    if (BaseIt->getType()->isDependentType())
6222      break;
6223  }
6224
6225  if (BaseIt == BaseE) {
6226    // Did not find SourceType in the bases.
6227    Diag(UD->getUsingLocation(),
6228         diag::err_using_decl_constructor_not_in_direct_base)
6229      << UD->getNameInfo().getSourceRange()
6230      << QualType(SourceType, 0) << TargetClass;
6231    return true;
6232  }
6233
6234  if (!CurContext->isDependentContext())
6235    BaseIt->setInheritConstructors();
6236
6237  return false;
6238}
6239
6240/// Checks that the given using declaration is not an invalid
6241/// redeclaration.  Note that this is checking only for the using decl
6242/// itself, not for any ill-formedness among the UsingShadowDecls.
6243bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6244                                       bool isTypeName,
6245                                       const CXXScopeSpec &SS,
6246                                       SourceLocation NameLoc,
6247                                       const LookupResult &Prev) {
6248  // C++03 [namespace.udecl]p8:
6249  // C++0x [namespace.udecl]p10:
6250  //   A using-declaration is a declaration and can therefore be used
6251  //   repeatedly where (and only where) multiple declarations are
6252  //   allowed.
6253  //
6254  // That's in non-member contexts.
6255  if (!CurContext->getRedeclContext()->isRecord())
6256    return false;
6257
6258  NestedNameSpecifier *Qual
6259    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6260
6261  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6262    NamedDecl *D = *I;
6263
6264    bool DTypename;
6265    NestedNameSpecifier *DQual;
6266    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6267      DTypename = UD->isTypeName();
6268      DQual = UD->getQualifier();
6269    } else if (UnresolvedUsingValueDecl *UD
6270                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6271      DTypename = false;
6272      DQual = UD->getQualifier();
6273    } else if (UnresolvedUsingTypenameDecl *UD
6274                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6275      DTypename = true;
6276      DQual = UD->getQualifier();
6277    } else continue;
6278
6279    // using decls differ if one says 'typename' and the other doesn't.
6280    // FIXME: non-dependent using decls?
6281    if (isTypeName != DTypename) continue;
6282
6283    // using decls differ if they name different scopes (but note that
6284    // template instantiation can cause this check to trigger when it
6285    // didn't before instantiation).
6286    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6287        Context.getCanonicalNestedNameSpecifier(DQual))
6288      continue;
6289
6290    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6291    Diag(D->getLocation(), diag::note_using_decl) << 1;
6292    return true;
6293  }
6294
6295  return false;
6296}
6297
6298
6299/// Checks that the given nested-name qualifier used in a using decl
6300/// in the current context is appropriately related to the current
6301/// scope.  If an error is found, diagnoses it and returns true.
6302bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6303                                   const CXXScopeSpec &SS,
6304                                   SourceLocation NameLoc) {
6305  DeclContext *NamedContext = computeDeclContext(SS);
6306
6307  if (!CurContext->isRecord()) {
6308    // C++03 [namespace.udecl]p3:
6309    // C++0x [namespace.udecl]p8:
6310    //   A using-declaration for a class member shall be a member-declaration.
6311
6312    // If we weren't able to compute a valid scope, it must be a
6313    // dependent class scope.
6314    if (!NamedContext || NamedContext->isRecord()) {
6315      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6316        << SS.getRange();
6317      return true;
6318    }
6319
6320    // Otherwise, everything is known to be fine.
6321    return false;
6322  }
6323
6324  // The current scope is a record.
6325
6326  // If the named context is dependent, we can't decide much.
6327  if (!NamedContext) {
6328    // FIXME: in C++0x, we can diagnose if we can prove that the
6329    // nested-name-specifier does not refer to a base class, which is
6330    // still possible in some cases.
6331
6332    // Otherwise we have to conservatively report that things might be
6333    // okay.
6334    return false;
6335  }
6336
6337  if (!NamedContext->isRecord()) {
6338    // Ideally this would point at the last name in the specifier,
6339    // but we don't have that level of source info.
6340    Diag(SS.getRange().getBegin(),
6341         diag::err_using_decl_nested_name_specifier_is_not_class)
6342      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6343    return true;
6344  }
6345
6346  if (!NamedContext->isDependentContext() &&
6347      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6348    return true;
6349
6350  if (getLangOpts().CPlusPlus0x) {
6351    // C++0x [namespace.udecl]p3:
6352    //   In a using-declaration used as a member-declaration, the
6353    //   nested-name-specifier shall name a base class of the class
6354    //   being defined.
6355
6356    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6357                                 cast<CXXRecordDecl>(NamedContext))) {
6358      if (CurContext == NamedContext) {
6359        Diag(NameLoc,
6360             diag::err_using_decl_nested_name_specifier_is_current_class)
6361          << SS.getRange();
6362        return true;
6363      }
6364
6365      Diag(SS.getRange().getBegin(),
6366           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6367        << (NestedNameSpecifier*) SS.getScopeRep()
6368        << cast<CXXRecordDecl>(CurContext)
6369        << SS.getRange();
6370      return true;
6371    }
6372
6373    return false;
6374  }
6375
6376  // C++03 [namespace.udecl]p4:
6377  //   A using-declaration used as a member-declaration shall refer
6378  //   to a member of a base class of the class being defined [etc.].
6379
6380  // Salient point: SS doesn't have to name a base class as long as
6381  // lookup only finds members from base classes.  Therefore we can
6382  // diagnose here only if we can prove that that can't happen,
6383  // i.e. if the class hierarchies provably don't intersect.
6384
6385  // TODO: it would be nice if "definitely valid" results were cached
6386  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6387  // need to be repeated.
6388
6389  struct UserData {
6390    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6391
6392    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6393      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6394      Data->Bases.insert(Base);
6395      return true;
6396    }
6397
6398    bool hasDependentBases(const CXXRecordDecl *Class) {
6399      return !Class->forallBases(collect, this);
6400    }
6401
6402    /// Returns true if the base is dependent or is one of the
6403    /// accumulated base classes.
6404    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6405      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6406      return !Data->Bases.count(Base);
6407    }
6408
6409    bool mightShareBases(const CXXRecordDecl *Class) {
6410      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6411    }
6412  };
6413
6414  UserData Data;
6415
6416  // Returns false if we find a dependent base.
6417  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6418    return false;
6419
6420  // Returns false if the class has a dependent base or if it or one
6421  // of its bases is present in the base set of the current context.
6422  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6423    return false;
6424
6425  Diag(SS.getRange().getBegin(),
6426       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6427    << (NestedNameSpecifier*) SS.getScopeRep()
6428    << cast<CXXRecordDecl>(CurContext)
6429    << SS.getRange();
6430
6431  return true;
6432}
6433
6434Decl *Sema::ActOnAliasDeclaration(Scope *S,
6435                                  AccessSpecifier AS,
6436                                  MultiTemplateParamsArg TemplateParamLists,
6437                                  SourceLocation UsingLoc,
6438                                  UnqualifiedId &Name,
6439                                  TypeResult Type) {
6440  // Skip up to the relevant declaration scope.
6441  while (S->getFlags() & Scope::TemplateParamScope)
6442    S = S->getParent();
6443  assert((S->getFlags() & Scope::DeclScope) &&
6444         "got alias-declaration outside of declaration scope");
6445
6446  if (Type.isInvalid())
6447    return 0;
6448
6449  bool Invalid = false;
6450  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6451  TypeSourceInfo *TInfo = 0;
6452  GetTypeFromParser(Type.get(), &TInfo);
6453
6454  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6455    return 0;
6456
6457  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6458                                      UPPC_DeclarationType)) {
6459    Invalid = true;
6460    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6461                                             TInfo->getTypeLoc().getBeginLoc());
6462  }
6463
6464  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6465  LookupName(Previous, S);
6466
6467  // Warn about shadowing the name of a template parameter.
6468  if (Previous.isSingleResult() &&
6469      Previous.getFoundDecl()->isTemplateParameter()) {
6470    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6471    Previous.clear();
6472  }
6473
6474  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6475         "name in alias declaration must be an identifier");
6476  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6477                                               Name.StartLocation,
6478                                               Name.Identifier, TInfo);
6479
6480  NewTD->setAccess(AS);
6481
6482  if (Invalid)
6483    NewTD->setInvalidDecl();
6484
6485  CheckTypedefForVariablyModifiedType(S, NewTD);
6486  Invalid |= NewTD->isInvalidDecl();
6487
6488  bool Redeclaration = false;
6489
6490  NamedDecl *NewND;
6491  if (TemplateParamLists.size()) {
6492    TypeAliasTemplateDecl *OldDecl = 0;
6493    TemplateParameterList *OldTemplateParams = 0;
6494
6495    if (TemplateParamLists.size() != 1) {
6496      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6497        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6498         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6499    }
6500    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6501
6502    // Only consider previous declarations in the same scope.
6503    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6504                         /*ExplicitInstantiationOrSpecialization*/false);
6505    if (!Previous.empty()) {
6506      Redeclaration = true;
6507
6508      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6509      if (!OldDecl && !Invalid) {
6510        Diag(UsingLoc, diag::err_redefinition_different_kind)
6511          << Name.Identifier;
6512
6513        NamedDecl *OldD = Previous.getRepresentativeDecl();
6514        if (OldD->getLocation().isValid())
6515          Diag(OldD->getLocation(), diag::note_previous_definition);
6516
6517        Invalid = true;
6518      }
6519
6520      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6521        if (TemplateParameterListsAreEqual(TemplateParams,
6522                                           OldDecl->getTemplateParameters(),
6523                                           /*Complain=*/true,
6524                                           TPL_TemplateMatch))
6525          OldTemplateParams = OldDecl->getTemplateParameters();
6526        else
6527          Invalid = true;
6528
6529        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6530        if (!Invalid &&
6531            !Context.hasSameType(OldTD->getUnderlyingType(),
6532                                 NewTD->getUnderlyingType())) {
6533          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6534          // but we can't reasonably accept it.
6535          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6536            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6537          if (OldTD->getLocation().isValid())
6538            Diag(OldTD->getLocation(), diag::note_previous_definition);
6539          Invalid = true;
6540        }
6541      }
6542    }
6543
6544    // Merge any previous default template arguments into our parameters,
6545    // and check the parameter list.
6546    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6547                                   TPC_TypeAliasTemplate))
6548      return 0;
6549
6550    TypeAliasTemplateDecl *NewDecl =
6551      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6552                                    Name.Identifier, TemplateParams,
6553                                    NewTD);
6554
6555    NewDecl->setAccess(AS);
6556
6557    if (Invalid)
6558      NewDecl->setInvalidDecl();
6559    else if (OldDecl)
6560      NewDecl->setPreviousDeclaration(OldDecl);
6561
6562    NewND = NewDecl;
6563  } else {
6564    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6565    NewND = NewTD;
6566  }
6567
6568  if (!Redeclaration)
6569    PushOnScopeChains(NewND, S);
6570
6571  return NewND;
6572}
6573
6574Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6575                                             SourceLocation NamespaceLoc,
6576                                             SourceLocation AliasLoc,
6577                                             IdentifierInfo *Alias,
6578                                             CXXScopeSpec &SS,
6579                                             SourceLocation IdentLoc,
6580                                             IdentifierInfo *Ident) {
6581
6582  // Lookup the namespace name.
6583  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6584  LookupParsedName(R, S, &SS);
6585
6586  // Check if we have a previous declaration with the same name.
6587  NamedDecl *PrevDecl
6588    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6589                       ForRedeclaration);
6590  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6591    PrevDecl = 0;
6592
6593  if (PrevDecl) {
6594    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6595      // We already have an alias with the same name that points to the same
6596      // namespace, so don't create a new one.
6597      // FIXME: At some point, we'll want to create the (redundant)
6598      // declaration to maintain better source information.
6599      if (!R.isAmbiguous() && !R.empty() &&
6600          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6601        return 0;
6602    }
6603
6604    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6605      diag::err_redefinition_different_kind;
6606    Diag(AliasLoc, DiagID) << Alias;
6607    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6608    return 0;
6609  }
6610
6611  if (R.isAmbiguous())
6612    return 0;
6613
6614  if (R.empty()) {
6615    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6616      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6617      return 0;
6618    }
6619  }
6620
6621  NamespaceAliasDecl *AliasDecl =
6622    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6623                               Alias, SS.getWithLocInContext(Context),
6624                               IdentLoc, R.getFoundDecl());
6625
6626  PushOnScopeChains(AliasDecl, S);
6627  return AliasDecl;
6628}
6629
6630namespace {
6631  /// \brief Scoped object used to handle the state changes required in Sema
6632  /// to implicitly define the body of a C++ member function;
6633  class ImplicitlyDefinedFunctionScope {
6634    Sema &S;
6635    Sema::ContextRAII SavedContext;
6636
6637  public:
6638    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6639      : S(S), SavedContext(S, Method)
6640    {
6641      S.PushFunctionScope();
6642      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6643    }
6644
6645    ~ImplicitlyDefinedFunctionScope() {
6646      S.PopExpressionEvaluationContext();
6647      S.PopFunctionScopeInfo();
6648    }
6649  };
6650}
6651
6652Sema::ImplicitExceptionSpecification
6653Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6654  // C++ [except.spec]p14:
6655  //   An implicitly declared special member function (Clause 12) shall have an
6656  //   exception-specification. [...]
6657  ImplicitExceptionSpecification ExceptSpec(*this);
6658  if (ClassDecl->isInvalidDecl())
6659    return ExceptSpec;
6660
6661  // Direct base-class constructors.
6662  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6663                                       BEnd = ClassDecl->bases_end();
6664       B != BEnd; ++B) {
6665    if (B->isVirtual()) // Handled below.
6666      continue;
6667
6668    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6669      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6670      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6671      // If this is a deleted function, add it anyway. This might be conformant
6672      // with the standard. This might not. I'm not sure. It might not matter.
6673      if (Constructor)
6674        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6675    }
6676  }
6677
6678  // Virtual base-class constructors.
6679  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6680                                       BEnd = ClassDecl->vbases_end();
6681       B != BEnd; ++B) {
6682    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6683      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6684      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6685      // If this is a deleted function, add it anyway. This might be conformant
6686      // with the standard. This might not. I'm not sure. It might not matter.
6687      if (Constructor)
6688        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6689    }
6690  }
6691
6692  // Field constructors.
6693  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6694                               FEnd = ClassDecl->field_end();
6695       F != FEnd; ++F) {
6696    if (F->hasInClassInitializer()) {
6697      if (Expr *E = F->getInClassInitializer())
6698        ExceptSpec.CalledExpr(E);
6699      else if (!F->isInvalidDecl())
6700        ExceptSpec.SetDelayed();
6701    } else if (const RecordType *RecordTy
6702              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6703      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6704      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6705      // If this is a deleted function, add it anyway. This might be conformant
6706      // with the standard. This might not. I'm not sure. It might not matter.
6707      // In particular, the problem is that this function never gets called. It
6708      // might just be ill-formed because this function attempts to refer to
6709      // a deleted function here.
6710      if (Constructor)
6711        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6712    }
6713  }
6714
6715  return ExceptSpec;
6716}
6717
6718CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6719                                                     CXXRecordDecl *ClassDecl) {
6720  // C++ [class.ctor]p5:
6721  //   A default constructor for a class X is a constructor of class X
6722  //   that can be called without an argument. If there is no
6723  //   user-declared constructor for class X, a default constructor is
6724  //   implicitly declared. An implicitly-declared default constructor
6725  //   is an inline public member of its class.
6726  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6727         "Should not build implicit default constructor!");
6728
6729  ImplicitExceptionSpecification Spec =
6730    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6731  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6732
6733  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6734                                                     CXXDefaultConstructor,
6735                                                     false);
6736
6737  // Create the actual constructor declaration.
6738  CanQualType ClassType
6739    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6740  SourceLocation ClassLoc = ClassDecl->getLocation();
6741  DeclarationName Name
6742    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6743  DeclarationNameInfo NameInfo(Name, ClassLoc);
6744  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6745      Context, ClassDecl, ClassLoc, NameInfo,
6746      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6747      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6748      Constexpr);
6749  DefaultCon->setAccess(AS_public);
6750  DefaultCon->setDefaulted();
6751  DefaultCon->setImplicit();
6752  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6753
6754  // Note that we have declared this constructor.
6755  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6756
6757  if (Scope *S = getScopeForContext(ClassDecl))
6758    PushOnScopeChains(DefaultCon, S, false);
6759  ClassDecl->addDecl(DefaultCon);
6760
6761  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6762    DefaultCon->setDeletedAsWritten();
6763
6764  return DefaultCon;
6765}
6766
6767void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6768                                            CXXConstructorDecl *Constructor) {
6769  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6770          !Constructor->doesThisDeclarationHaveABody() &&
6771          !Constructor->isDeleted()) &&
6772    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6773
6774  CXXRecordDecl *ClassDecl = Constructor->getParent();
6775  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6776
6777  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6778  DiagnosticErrorTrap Trap(Diags);
6779  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6780      Trap.hasErrorOccurred()) {
6781    Diag(CurrentLocation, diag::note_member_synthesized_at)
6782      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6783    Constructor->setInvalidDecl();
6784    return;
6785  }
6786
6787  SourceLocation Loc = Constructor->getLocation();
6788  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6789
6790  Constructor->setUsed();
6791  MarkVTableUsed(CurrentLocation, ClassDecl);
6792
6793  if (ASTMutationListener *L = getASTMutationListener()) {
6794    L->CompletedImplicitDefinition(Constructor);
6795  }
6796}
6797
6798/// Get any existing defaulted default constructor for the given class. Do not
6799/// implicitly define one if it does not exist.
6800static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6801                                                             CXXRecordDecl *D) {
6802  ASTContext &Context = Self.Context;
6803  QualType ClassType = Context.getTypeDeclType(D);
6804  DeclarationName ConstructorName
6805    = Context.DeclarationNames.getCXXConstructorName(
6806                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6807
6808  DeclContext::lookup_const_iterator Con, ConEnd;
6809  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6810       Con != ConEnd; ++Con) {
6811    // A function template cannot be defaulted.
6812    if (isa<FunctionTemplateDecl>(*Con))
6813      continue;
6814
6815    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6816    if (Constructor->isDefaultConstructor())
6817      return Constructor->isDefaulted() ? Constructor : 0;
6818  }
6819  return 0;
6820}
6821
6822void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6823  if (!D) return;
6824  AdjustDeclIfTemplate(D);
6825
6826  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6827  CXXConstructorDecl *CtorDecl
6828    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6829
6830  if (!CtorDecl) return;
6831
6832  // Compute the exception specification for the default constructor.
6833  const FunctionProtoType *CtorTy =
6834    CtorDecl->getType()->castAs<FunctionProtoType>();
6835  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6836    // FIXME: Don't do this unless the exception spec is needed.
6837    ImplicitExceptionSpecification Spec =
6838      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6839    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6840    assert(EPI.ExceptionSpecType != EST_Delayed);
6841
6842    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6843  }
6844
6845  // If the default constructor is explicitly defaulted, checking the exception
6846  // specification is deferred until now.
6847  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6848      !ClassDecl->isDependentType())
6849    CheckExplicitlyDefaultedSpecialMember(CtorDecl);
6850}
6851
6852void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6853  // We start with an initial pass over the base classes to collect those that
6854  // inherit constructors from. If there are none, we can forgo all further
6855  // processing.
6856  typedef SmallVector<const RecordType *, 4> BasesVector;
6857  BasesVector BasesToInheritFrom;
6858  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6859                                          BaseE = ClassDecl->bases_end();
6860         BaseIt != BaseE; ++BaseIt) {
6861    if (BaseIt->getInheritConstructors()) {
6862      QualType Base = BaseIt->getType();
6863      if (Base->isDependentType()) {
6864        // If we inherit constructors from anything that is dependent, just
6865        // abort processing altogether. We'll get another chance for the
6866        // instantiations.
6867        return;
6868      }
6869      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6870    }
6871  }
6872  if (BasesToInheritFrom.empty())
6873    return;
6874
6875  // Now collect the constructors that we already have in the current class.
6876  // Those take precedence over inherited constructors.
6877  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6878  //   unless there is a user-declared constructor with the same signature in
6879  //   the class where the using-declaration appears.
6880  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6881  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6882                                    CtorE = ClassDecl->ctor_end();
6883       CtorIt != CtorE; ++CtorIt) {
6884    ExistingConstructors.insert(
6885        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6886  }
6887
6888  DeclarationName CreatedCtorName =
6889      Context.DeclarationNames.getCXXConstructorName(
6890          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6891
6892  // Now comes the true work.
6893  // First, we keep a map from constructor types to the base that introduced
6894  // them. Needed for finding conflicting constructors. We also keep the
6895  // actually inserted declarations in there, for pretty diagnostics.
6896  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6897  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6898  ConstructorToSourceMap InheritedConstructors;
6899  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6900                             BaseE = BasesToInheritFrom.end();
6901       BaseIt != BaseE; ++BaseIt) {
6902    const RecordType *Base = *BaseIt;
6903    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6904    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6905    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6906                                      CtorE = BaseDecl->ctor_end();
6907         CtorIt != CtorE; ++CtorIt) {
6908      // Find the using declaration for inheriting this base's constructors.
6909      // FIXME: Don't perform name lookup just to obtain a source location!
6910      DeclarationName Name =
6911          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6912      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6913      LookupQualifiedName(Result, CurContext);
6914      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6915      SourceLocation UsingLoc = UD ? UD->getLocation() :
6916                                     ClassDecl->getLocation();
6917
6918      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6919      //   from the class X named in the using-declaration consists of actual
6920      //   constructors and notional constructors that result from the
6921      //   transformation of defaulted parameters as follows:
6922      //   - all non-template default constructors of X, and
6923      //   - for each non-template constructor of X that has at least one
6924      //     parameter with a default argument, the set of constructors that
6925      //     results from omitting any ellipsis parameter specification and
6926      //     successively omitting parameters with a default argument from the
6927      //     end of the parameter-type-list.
6928      CXXConstructorDecl *BaseCtor = *CtorIt;
6929      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6930      const FunctionProtoType *BaseCtorType =
6931          BaseCtor->getType()->getAs<FunctionProtoType>();
6932
6933      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6934                    maxParams = BaseCtor->getNumParams();
6935           params <= maxParams; ++params) {
6936        // Skip default constructors. They're never inherited.
6937        if (params == 0)
6938          continue;
6939        // Skip copy and move constructors for the same reason.
6940        if (CanBeCopyOrMove && params == 1)
6941          continue;
6942
6943        // Build up a function type for this particular constructor.
6944        // FIXME: The working paper does not consider that the exception spec
6945        // for the inheriting constructor might be larger than that of the
6946        // source. This code doesn't yet, either. When it does, this code will
6947        // need to be delayed until after exception specifications and in-class
6948        // member initializers are attached.
6949        const Type *NewCtorType;
6950        if (params == maxParams)
6951          NewCtorType = BaseCtorType;
6952        else {
6953          SmallVector<QualType, 16> Args;
6954          for (unsigned i = 0; i < params; ++i) {
6955            Args.push_back(BaseCtorType->getArgType(i));
6956          }
6957          FunctionProtoType::ExtProtoInfo ExtInfo =
6958              BaseCtorType->getExtProtoInfo();
6959          ExtInfo.Variadic = false;
6960          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6961                                                Args.data(), params, ExtInfo)
6962                       .getTypePtr();
6963        }
6964        const Type *CanonicalNewCtorType =
6965            Context.getCanonicalType(NewCtorType);
6966
6967        // Now that we have the type, first check if the class already has a
6968        // constructor with this signature.
6969        if (ExistingConstructors.count(CanonicalNewCtorType))
6970          continue;
6971
6972        // Then we check if we have already declared an inherited constructor
6973        // with this signature.
6974        std::pair<ConstructorToSourceMap::iterator, bool> result =
6975            InheritedConstructors.insert(std::make_pair(
6976                CanonicalNewCtorType,
6977                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6978        if (!result.second) {
6979          // Already in the map. If it came from a different class, that's an
6980          // error. Not if it's from the same.
6981          CanQualType PreviousBase = result.first->second.first;
6982          if (CanonicalBase != PreviousBase) {
6983            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6984            const CXXConstructorDecl *PrevBaseCtor =
6985                PrevCtor->getInheritedConstructor();
6986            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6987
6988            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6989            Diag(BaseCtor->getLocation(),
6990                 diag::note_using_decl_constructor_conflict_current_ctor);
6991            Diag(PrevBaseCtor->getLocation(),
6992                 diag::note_using_decl_constructor_conflict_previous_ctor);
6993            Diag(PrevCtor->getLocation(),
6994                 diag::note_using_decl_constructor_conflict_previous_using);
6995          }
6996          continue;
6997        }
6998
6999        // OK, we're there, now add the constructor.
7000        // C++0x [class.inhctor]p8: [...] that would be performed by a
7001        //   user-written inline constructor [...]
7002        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7003        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7004            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7005            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7006            /*ImplicitlyDeclared=*/true,
7007            // FIXME: Due to a defect in the standard, we treat inherited
7008            // constructors as constexpr even if that makes them ill-formed.
7009            /*Constexpr=*/BaseCtor->isConstexpr());
7010        NewCtor->setAccess(BaseCtor->getAccess());
7011
7012        // Build up the parameter decls and add them.
7013        SmallVector<ParmVarDecl *, 16> ParamDecls;
7014        for (unsigned i = 0; i < params; ++i) {
7015          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7016                                                   UsingLoc, UsingLoc,
7017                                                   /*IdentifierInfo=*/0,
7018                                                   BaseCtorType->getArgType(i),
7019                                                   /*TInfo=*/0, SC_None,
7020                                                   SC_None, /*DefaultArg=*/0));
7021        }
7022        NewCtor->setParams(ParamDecls);
7023        NewCtor->setInheritedConstructor(BaseCtor);
7024
7025        ClassDecl->addDecl(NewCtor);
7026        result.first->second.second = NewCtor;
7027      }
7028    }
7029  }
7030}
7031
7032Sema::ImplicitExceptionSpecification
7033Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7034  // C++ [except.spec]p14:
7035  //   An implicitly declared special member function (Clause 12) shall have
7036  //   an exception-specification.
7037  ImplicitExceptionSpecification ExceptSpec(*this);
7038  if (ClassDecl->isInvalidDecl())
7039    return ExceptSpec;
7040
7041  // Direct base-class destructors.
7042  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7043                                       BEnd = ClassDecl->bases_end();
7044       B != BEnd; ++B) {
7045    if (B->isVirtual()) // Handled below.
7046      continue;
7047
7048    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7049      ExceptSpec.CalledDecl(B->getLocStart(),
7050                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7051  }
7052
7053  // Virtual base-class destructors.
7054  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7055                                       BEnd = ClassDecl->vbases_end();
7056       B != BEnd; ++B) {
7057    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7058      ExceptSpec.CalledDecl(B->getLocStart(),
7059                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7060  }
7061
7062  // Field destructors.
7063  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7064                               FEnd = ClassDecl->field_end();
7065       F != FEnd; ++F) {
7066    if (const RecordType *RecordTy
7067        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7068      ExceptSpec.CalledDecl(F->getLocation(),
7069                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7070  }
7071
7072  return ExceptSpec;
7073}
7074
7075CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7076  // C++ [class.dtor]p2:
7077  //   If a class has no user-declared destructor, a destructor is
7078  //   declared implicitly. An implicitly-declared destructor is an
7079  //   inline public member of its class.
7080
7081  ImplicitExceptionSpecification Spec =
7082      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7083  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7084
7085  // Create the actual destructor declaration.
7086  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7087
7088  CanQualType ClassType
7089    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7090  SourceLocation ClassLoc = ClassDecl->getLocation();
7091  DeclarationName Name
7092    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7093  DeclarationNameInfo NameInfo(Name, ClassLoc);
7094  CXXDestructorDecl *Destructor
7095      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7096                                  /*isInline=*/true,
7097                                  /*isImplicitlyDeclared=*/true);
7098  Destructor->setAccess(AS_public);
7099  Destructor->setDefaulted();
7100  Destructor->setImplicit();
7101  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7102
7103  // Note that we have declared this destructor.
7104  ++ASTContext::NumImplicitDestructorsDeclared;
7105
7106  // Introduce this destructor into its scope.
7107  if (Scope *S = getScopeForContext(ClassDecl))
7108    PushOnScopeChains(Destructor, S, false);
7109  ClassDecl->addDecl(Destructor);
7110
7111  // This could be uniqued if it ever proves significant.
7112  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7113
7114  AddOverriddenMethods(ClassDecl, Destructor);
7115
7116  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7117    Destructor->setDeletedAsWritten();
7118
7119  return Destructor;
7120}
7121
7122void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7123                                    CXXDestructorDecl *Destructor) {
7124  assert((Destructor->isDefaulted() &&
7125          !Destructor->doesThisDeclarationHaveABody() &&
7126          !Destructor->isDeleted()) &&
7127         "DefineImplicitDestructor - call it for implicit default dtor");
7128  CXXRecordDecl *ClassDecl = Destructor->getParent();
7129  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7130
7131  if (Destructor->isInvalidDecl())
7132    return;
7133
7134  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7135
7136  DiagnosticErrorTrap Trap(Diags);
7137  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7138                                         Destructor->getParent());
7139
7140  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7141    Diag(CurrentLocation, diag::note_member_synthesized_at)
7142      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7143
7144    Destructor->setInvalidDecl();
7145    return;
7146  }
7147
7148  SourceLocation Loc = Destructor->getLocation();
7149  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7150  Destructor->setImplicitlyDefined(true);
7151  Destructor->setUsed();
7152  MarkVTableUsed(CurrentLocation, ClassDecl);
7153
7154  if (ASTMutationListener *L = getASTMutationListener()) {
7155    L->CompletedImplicitDefinition(Destructor);
7156  }
7157}
7158
7159/// \brief Perform any semantic analysis which needs to be delayed until all
7160/// pending class member declarations have been parsed.
7161void Sema::ActOnFinishCXXMemberDecls() {
7162  // Now we have parsed all exception specifications, determine the implicit
7163  // exception specifications for destructors.
7164  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7165       i != e; ++i) {
7166    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7167    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7168  }
7169  DelayedDestructorExceptionSpecs.clear();
7170
7171  // Perform any deferred checking of exception specifications for virtual
7172  // destructors.
7173  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7174       i != e; ++i) {
7175    const CXXDestructorDecl *Dtor =
7176        DelayedDestructorExceptionSpecChecks[i].first;
7177    assert(!Dtor->getParent()->isDependentType() &&
7178           "Should not ever add destructors of templates into the list.");
7179    CheckOverridingFunctionExceptionSpec(Dtor,
7180        DelayedDestructorExceptionSpecChecks[i].second);
7181  }
7182  DelayedDestructorExceptionSpecChecks.clear();
7183}
7184
7185void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7186                                         CXXDestructorDecl *destructor,
7187                                         bool WasDelayed) {
7188  // C++11 [class.dtor]p3:
7189  //   A declaration of a destructor that does not have an exception-
7190  //   specification is implicitly considered to have the same exception-
7191  //   specification as an implicit declaration.
7192  const FunctionProtoType *dtorType = destructor->getType()->
7193                                        getAs<FunctionProtoType>();
7194  if (!WasDelayed && dtorType->hasExceptionSpec())
7195    return;
7196
7197  ImplicitExceptionSpecification exceptSpec =
7198      ComputeDefaultedDtorExceptionSpec(classDecl);
7199
7200  // Replace the destructor's type, building off the existing one. Fortunately,
7201  // the only thing of interest in the destructor type is its extended info.
7202  // The return and arguments are fixed.
7203  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7204  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7205  epi.NumExceptions = exceptSpec.size();
7206  epi.Exceptions = exceptSpec.data();
7207  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7208
7209  destructor->setType(ty);
7210
7211  // If we can't compute the exception specification for this destructor yet
7212  // (because it depends on an exception specification which we have not parsed
7213  // yet), make a note that we need to try again when the class is complete.
7214  if (epi.ExceptionSpecType == EST_Delayed) {
7215    assert(!WasDelayed && "couldn't compute destructor exception spec");
7216    DelayedDestructorExceptionSpecs.push_back(destructor);
7217  }
7218
7219  // FIXME: If the destructor has a body that could throw, and the newly created
7220  // spec doesn't allow exceptions, we should emit a warning, because this
7221  // change in behavior can break conforming C++03 programs at runtime.
7222  // However, we don't have a body yet, so it needs to be done somewhere else.
7223}
7224
7225/// \brief Builds a statement that copies/moves the given entity from \p From to
7226/// \c To.
7227///
7228/// This routine is used to copy/move the members of a class with an
7229/// implicitly-declared copy/move assignment operator. When the entities being
7230/// copied are arrays, this routine builds for loops to copy them.
7231///
7232/// \param S The Sema object used for type-checking.
7233///
7234/// \param Loc The location where the implicit copy/move is being generated.
7235///
7236/// \param T The type of the expressions being copied/moved. Both expressions
7237/// must have this type.
7238///
7239/// \param To The expression we are copying/moving to.
7240///
7241/// \param From The expression we are copying/moving from.
7242///
7243/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7244/// Otherwise, it's a non-static member subobject.
7245///
7246/// \param Copying Whether we're copying or moving.
7247///
7248/// \param Depth Internal parameter recording the depth of the recursion.
7249///
7250/// \returns A statement or a loop that copies the expressions.
7251static StmtResult
7252BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7253                      Expr *To, Expr *From,
7254                      bool CopyingBaseSubobject, bool Copying,
7255                      unsigned Depth = 0) {
7256  // C++0x [class.copy]p28:
7257  //   Each subobject is assigned in the manner appropriate to its type:
7258  //
7259  //     - if the subobject is of class type, as if by a call to operator= with
7260  //       the subobject as the object expression and the corresponding
7261  //       subobject of x as a single function argument (as if by explicit
7262  //       qualification; that is, ignoring any possible virtual overriding
7263  //       functions in more derived classes);
7264  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7265    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7266
7267    // Look for operator=.
7268    DeclarationName Name
7269      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7270    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7271    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7272
7273    // Filter out any result that isn't a copy/move-assignment operator.
7274    LookupResult::Filter F = OpLookup.makeFilter();
7275    while (F.hasNext()) {
7276      NamedDecl *D = F.next();
7277      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7278        if (Method->isCopyAssignmentOperator() ||
7279            (!Copying && Method->isMoveAssignmentOperator()))
7280          continue;
7281
7282      F.erase();
7283    }
7284    F.done();
7285
7286    // Suppress the protected check (C++ [class.protected]) for each of the
7287    // assignment operators we found. This strange dance is required when
7288    // we're assigning via a base classes's copy-assignment operator. To
7289    // ensure that we're getting the right base class subobject (without
7290    // ambiguities), we need to cast "this" to that subobject type; to
7291    // ensure that we don't go through the virtual call mechanism, we need
7292    // to qualify the operator= name with the base class (see below). However,
7293    // this means that if the base class has a protected copy assignment
7294    // operator, the protected member access check will fail. So, we
7295    // rewrite "protected" access to "public" access in this case, since we
7296    // know by construction that we're calling from a derived class.
7297    if (CopyingBaseSubobject) {
7298      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7299           L != LEnd; ++L) {
7300        if (L.getAccess() == AS_protected)
7301          L.setAccess(AS_public);
7302      }
7303    }
7304
7305    // Create the nested-name-specifier that will be used to qualify the
7306    // reference to operator=; this is required to suppress the virtual
7307    // call mechanism.
7308    CXXScopeSpec SS;
7309    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7310    SS.MakeTrivial(S.Context,
7311                   NestedNameSpecifier::Create(S.Context, 0, false,
7312                                               CanonicalT),
7313                   Loc);
7314
7315    // Create the reference to operator=.
7316    ExprResult OpEqualRef
7317      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7318                                   /*TemplateKWLoc=*/SourceLocation(),
7319                                   /*FirstQualifierInScope=*/0,
7320                                   OpLookup,
7321                                   /*TemplateArgs=*/0,
7322                                   /*SuppressQualifierCheck=*/true);
7323    if (OpEqualRef.isInvalid())
7324      return StmtError();
7325
7326    // Build the call to the assignment operator.
7327
7328    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7329                                                  OpEqualRef.takeAs<Expr>(),
7330                                                  Loc, &From, 1, Loc);
7331    if (Call.isInvalid())
7332      return StmtError();
7333
7334    return S.Owned(Call.takeAs<Stmt>());
7335  }
7336
7337  //     - if the subobject is of scalar type, the built-in assignment
7338  //       operator is used.
7339  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7340  if (!ArrayTy) {
7341    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7342    if (Assignment.isInvalid())
7343      return StmtError();
7344
7345    return S.Owned(Assignment.takeAs<Stmt>());
7346  }
7347
7348  //     - if the subobject is an array, each element is assigned, in the
7349  //       manner appropriate to the element type;
7350
7351  // Construct a loop over the array bounds, e.g.,
7352  //
7353  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7354  //
7355  // that will copy each of the array elements.
7356  QualType SizeType = S.Context.getSizeType();
7357
7358  // Create the iteration variable.
7359  IdentifierInfo *IterationVarName = 0;
7360  {
7361    SmallString<8> Str;
7362    llvm::raw_svector_ostream OS(Str);
7363    OS << "__i" << Depth;
7364    IterationVarName = &S.Context.Idents.get(OS.str());
7365  }
7366  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7367                                          IterationVarName, SizeType,
7368                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7369                                          SC_None, SC_None);
7370
7371  // Initialize the iteration variable to zero.
7372  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7373  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7374
7375  // Create a reference to the iteration variable; we'll use this several
7376  // times throughout.
7377  Expr *IterationVarRef
7378    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7379  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7380  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7381  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7382
7383  // Create the DeclStmt that holds the iteration variable.
7384  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7385
7386  // Create the comparison against the array bound.
7387  llvm::APInt Upper
7388    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7389  Expr *Comparison
7390    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7391                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7392                                     BO_NE, S.Context.BoolTy,
7393                                     VK_RValue, OK_Ordinary, Loc);
7394
7395  // Create the pre-increment of the iteration variable.
7396  Expr *Increment
7397    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7398                                    VK_LValue, OK_Ordinary, Loc);
7399
7400  // Subscript the "from" and "to" expressions with the iteration variable.
7401  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7402                                                         IterationVarRefRVal,
7403                                                         Loc));
7404  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7405                                                       IterationVarRefRVal,
7406                                                       Loc));
7407  if (!Copying) // Cast to rvalue
7408    From = CastForMoving(S, From);
7409
7410  // Build the copy/move for an individual element of the array.
7411  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7412                                          To, From, CopyingBaseSubobject,
7413                                          Copying, Depth + 1);
7414  if (Copy.isInvalid())
7415    return StmtError();
7416
7417  // Construct the loop that copies all elements of this array.
7418  return S.ActOnForStmt(Loc, Loc, InitStmt,
7419                        S.MakeFullExpr(Comparison),
7420                        0, S.MakeFullExpr(Increment),
7421                        Loc, Copy.take());
7422}
7423
7424std::pair<Sema::ImplicitExceptionSpecification, bool>
7425Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7426                                                   CXXRecordDecl *ClassDecl) {
7427  if (ClassDecl->isInvalidDecl())
7428    return std::make_pair(ImplicitExceptionSpecification(*this), true);
7429
7430  // C++ [class.copy]p10:
7431  //   If the class definition does not explicitly declare a copy
7432  //   assignment operator, one is declared implicitly.
7433  //   The implicitly-defined copy assignment operator for a class X
7434  //   will have the form
7435  //
7436  //       X& X::operator=(const X&)
7437  //
7438  //   if
7439  bool HasConstCopyAssignment = true;
7440
7441  //       -- each direct base class B of X has a copy assignment operator
7442  //          whose parameter is of type const B&, const volatile B& or B,
7443  //          and
7444  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7445                                       BaseEnd = ClassDecl->bases_end();
7446       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7447    // We'll handle this below
7448    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7449      continue;
7450
7451    assert(!Base->getType()->isDependentType() &&
7452           "Cannot generate implicit members for class with dependent bases.");
7453    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7454    HasConstCopyAssignment &=
7455      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7456                                    false, 0);
7457  }
7458
7459  // In C++11, the above citation has "or virtual" added
7460  if (LangOpts.CPlusPlus0x) {
7461    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7462                                         BaseEnd = ClassDecl->vbases_end();
7463         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7464      assert(!Base->getType()->isDependentType() &&
7465             "Cannot generate implicit members for class with dependent bases.");
7466      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7467      HasConstCopyAssignment &=
7468        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7469                                      false, 0);
7470    }
7471  }
7472
7473  //       -- for all the nonstatic data members of X that are of a class
7474  //          type M (or array thereof), each such class type has a copy
7475  //          assignment operator whose parameter is of type const M&,
7476  //          const volatile M& or M.
7477  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7478                                  FieldEnd = ClassDecl->field_end();
7479       HasConstCopyAssignment && Field != FieldEnd;
7480       ++Field) {
7481    QualType FieldType = Context.getBaseElementType(Field->getType());
7482    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7483      HasConstCopyAssignment &=
7484        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7485                                      false, 0);
7486    }
7487  }
7488
7489  //   Otherwise, the implicitly declared copy assignment operator will
7490  //   have the form
7491  //
7492  //       X& X::operator=(X&)
7493
7494  // C++ [except.spec]p14:
7495  //   An implicitly declared special member function (Clause 12) shall have an
7496  //   exception-specification. [...]
7497
7498  // It is unspecified whether or not an implicit copy assignment operator
7499  // attempts to deduplicate calls to assignment operators of virtual bases are
7500  // made. As such, this exception specification is effectively unspecified.
7501  // Based on a similar decision made for constness in C++0x, we're erring on
7502  // the side of assuming such calls to be made regardless of whether they
7503  // actually happen.
7504  ImplicitExceptionSpecification ExceptSpec(*this);
7505  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7506  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7507                                       BaseEnd = ClassDecl->bases_end();
7508       Base != BaseEnd; ++Base) {
7509    if (Base->isVirtual())
7510      continue;
7511
7512    CXXRecordDecl *BaseClassDecl
7513      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7514    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7515                                                            ArgQuals, false, 0))
7516      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7517  }
7518
7519  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7520                                       BaseEnd = ClassDecl->vbases_end();
7521       Base != BaseEnd; ++Base) {
7522    CXXRecordDecl *BaseClassDecl
7523      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7524    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7525                                                            ArgQuals, false, 0))
7526      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7527  }
7528
7529  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7530                                  FieldEnd = ClassDecl->field_end();
7531       Field != FieldEnd;
7532       ++Field) {
7533    QualType FieldType = Context.getBaseElementType(Field->getType());
7534    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7535      if (CXXMethodDecl *CopyAssign =
7536          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7537        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7538    }
7539  }
7540
7541  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7542}
7543
7544CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7545  // Note: The following rules are largely analoguous to the copy
7546  // constructor rules. Note that virtual bases are not taken into account
7547  // for determining the argument type of the operator. Note also that
7548  // operators taking an object instead of a reference are allowed.
7549
7550  ImplicitExceptionSpecification Spec(*this);
7551  bool Const;
7552  llvm::tie(Spec, Const) =
7553    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7554
7555  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7556  QualType RetType = Context.getLValueReferenceType(ArgType);
7557  if (Const)
7558    ArgType = ArgType.withConst();
7559  ArgType = Context.getLValueReferenceType(ArgType);
7560
7561  //   An implicitly-declared copy assignment operator is an inline public
7562  //   member of its class.
7563  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7564  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7565  SourceLocation ClassLoc = ClassDecl->getLocation();
7566  DeclarationNameInfo NameInfo(Name, ClassLoc);
7567  CXXMethodDecl *CopyAssignment
7568    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7569                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7570                            /*TInfo=*/0, /*isStatic=*/false,
7571                            /*StorageClassAsWritten=*/SC_None,
7572                            /*isInline=*/true, /*isConstexpr=*/false,
7573                            SourceLocation());
7574  CopyAssignment->setAccess(AS_public);
7575  CopyAssignment->setDefaulted();
7576  CopyAssignment->setImplicit();
7577  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7578
7579  // Add the parameter to the operator.
7580  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7581                                               ClassLoc, ClassLoc, /*Id=*/0,
7582                                               ArgType, /*TInfo=*/0,
7583                                               SC_None,
7584                                               SC_None, 0);
7585  CopyAssignment->setParams(FromParam);
7586
7587  // Note that we have added this copy-assignment operator.
7588  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7589
7590  if (Scope *S = getScopeForContext(ClassDecl))
7591    PushOnScopeChains(CopyAssignment, S, false);
7592  ClassDecl->addDecl(CopyAssignment);
7593
7594  // C++0x [class.copy]p19:
7595  //   ....  If the class definition does not explicitly declare a copy
7596  //   assignment operator, there is no user-declared move constructor, and
7597  //   there is no user-declared move assignment operator, a copy assignment
7598  //   operator is implicitly declared as defaulted.
7599  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7600    CopyAssignment->setDeletedAsWritten();
7601
7602  AddOverriddenMethods(ClassDecl, CopyAssignment);
7603  return CopyAssignment;
7604}
7605
7606void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7607                                        CXXMethodDecl *CopyAssignOperator) {
7608  assert((CopyAssignOperator->isDefaulted() &&
7609          CopyAssignOperator->isOverloadedOperator() &&
7610          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7611          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7612          !CopyAssignOperator->isDeleted()) &&
7613         "DefineImplicitCopyAssignment called for wrong function");
7614
7615  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7616
7617  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7618    CopyAssignOperator->setInvalidDecl();
7619    return;
7620  }
7621
7622  CopyAssignOperator->setUsed();
7623
7624  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7625  DiagnosticErrorTrap Trap(Diags);
7626
7627  // C++0x [class.copy]p30:
7628  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7629  //   for a non-union class X performs memberwise copy assignment of its
7630  //   subobjects. The direct base classes of X are assigned first, in the
7631  //   order of their declaration in the base-specifier-list, and then the
7632  //   immediate non-static data members of X are assigned, in the order in
7633  //   which they were declared in the class definition.
7634
7635  // The statements that form the synthesized function body.
7636  ASTOwningVector<Stmt*> Statements(*this);
7637
7638  // The parameter for the "other" object, which we are copying from.
7639  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7640  Qualifiers OtherQuals = Other->getType().getQualifiers();
7641  QualType OtherRefType = Other->getType();
7642  if (const LValueReferenceType *OtherRef
7643                                = OtherRefType->getAs<LValueReferenceType>()) {
7644    OtherRefType = OtherRef->getPointeeType();
7645    OtherQuals = OtherRefType.getQualifiers();
7646  }
7647
7648  // Our location for everything implicitly-generated.
7649  SourceLocation Loc = CopyAssignOperator->getLocation();
7650
7651  // Construct a reference to the "other" object. We'll be using this
7652  // throughout the generated ASTs.
7653  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7654  assert(OtherRef && "Reference to parameter cannot fail!");
7655
7656  // Construct the "this" pointer. We'll be using this throughout the generated
7657  // ASTs.
7658  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7659  assert(This && "Reference to this cannot fail!");
7660
7661  // Assign base classes.
7662  bool Invalid = false;
7663  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7664       E = ClassDecl->bases_end(); Base != E; ++Base) {
7665    // Form the assignment:
7666    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7667    QualType BaseType = Base->getType().getUnqualifiedType();
7668    if (!BaseType->isRecordType()) {
7669      Invalid = true;
7670      continue;
7671    }
7672
7673    CXXCastPath BasePath;
7674    BasePath.push_back(Base);
7675
7676    // Construct the "from" expression, which is an implicit cast to the
7677    // appropriately-qualified base type.
7678    Expr *From = OtherRef;
7679    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7680                             CK_UncheckedDerivedToBase,
7681                             VK_LValue, &BasePath).take();
7682
7683    // Dereference "this".
7684    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7685
7686    // Implicitly cast "this" to the appropriately-qualified base type.
7687    To = ImpCastExprToType(To.take(),
7688                           Context.getCVRQualifiedType(BaseType,
7689                                     CopyAssignOperator->getTypeQualifiers()),
7690                           CK_UncheckedDerivedToBase,
7691                           VK_LValue, &BasePath);
7692
7693    // Build the copy.
7694    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7695                                            To.get(), From,
7696                                            /*CopyingBaseSubobject=*/true,
7697                                            /*Copying=*/true);
7698    if (Copy.isInvalid()) {
7699      Diag(CurrentLocation, diag::note_member_synthesized_at)
7700        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7701      CopyAssignOperator->setInvalidDecl();
7702      return;
7703    }
7704
7705    // Success! Record the copy.
7706    Statements.push_back(Copy.takeAs<Expr>());
7707  }
7708
7709  // \brief Reference to the __builtin_memcpy function.
7710  Expr *BuiltinMemCpyRef = 0;
7711  // \brief Reference to the __builtin_objc_memmove_collectable function.
7712  Expr *CollectableMemCpyRef = 0;
7713
7714  // Assign non-static members.
7715  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7716                                  FieldEnd = ClassDecl->field_end();
7717       Field != FieldEnd; ++Field) {
7718    if (Field->isUnnamedBitfield())
7719      continue;
7720
7721    // Check for members of reference type; we can't copy those.
7722    if (Field->getType()->isReferenceType()) {
7723      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7724        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7725      Diag(Field->getLocation(), diag::note_declared_at);
7726      Diag(CurrentLocation, diag::note_member_synthesized_at)
7727        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7728      Invalid = true;
7729      continue;
7730    }
7731
7732    // Check for members of const-qualified, non-class type.
7733    QualType BaseType = Context.getBaseElementType(Field->getType());
7734    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7735      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7736        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7737      Diag(Field->getLocation(), diag::note_declared_at);
7738      Diag(CurrentLocation, diag::note_member_synthesized_at)
7739        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7740      Invalid = true;
7741      continue;
7742    }
7743
7744    // Suppress assigning zero-width bitfields.
7745    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7746      continue;
7747
7748    QualType FieldType = Field->getType().getNonReferenceType();
7749    if (FieldType->isIncompleteArrayType()) {
7750      assert(ClassDecl->hasFlexibleArrayMember() &&
7751             "Incomplete array type is not valid");
7752      continue;
7753    }
7754
7755    // Build references to the field in the object we're copying from and to.
7756    CXXScopeSpec SS; // Intentionally empty
7757    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7758                              LookupMemberName);
7759    MemberLookup.addDecl(*Field);
7760    MemberLookup.resolveKind();
7761    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7762                                               Loc, /*IsArrow=*/false,
7763                                               SS, SourceLocation(), 0,
7764                                               MemberLookup, 0);
7765    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7766                                             Loc, /*IsArrow=*/true,
7767                                             SS, SourceLocation(), 0,
7768                                             MemberLookup, 0);
7769    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7770    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7771
7772    // If the field should be copied with __builtin_memcpy rather than via
7773    // explicit assignments, do so. This optimization only applies for arrays
7774    // of scalars and arrays of class type with trivial copy-assignment
7775    // operators.
7776    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7777        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7778      // Compute the size of the memory buffer to be copied.
7779      QualType SizeType = Context.getSizeType();
7780      llvm::APInt Size(Context.getTypeSize(SizeType),
7781                       Context.getTypeSizeInChars(BaseType).getQuantity());
7782      for (const ConstantArrayType *Array
7783              = Context.getAsConstantArrayType(FieldType);
7784           Array;
7785           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7786        llvm::APInt ArraySize
7787          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7788        Size *= ArraySize;
7789      }
7790
7791      // Take the address of the field references for "from" and "to".
7792      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7793      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7794
7795      bool NeedsCollectableMemCpy =
7796          (BaseType->isRecordType() &&
7797           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7798
7799      if (NeedsCollectableMemCpy) {
7800        if (!CollectableMemCpyRef) {
7801          // Create a reference to the __builtin_objc_memmove_collectable function.
7802          LookupResult R(*this,
7803                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7804                         Loc, LookupOrdinaryName);
7805          LookupName(R, TUScope, true);
7806
7807          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7808          if (!CollectableMemCpy) {
7809            // Something went horribly wrong earlier, and we will have
7810            // complained about it.
7811            Invalid = true;
7812            continue;
7813          }
7814
7815          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7816                                                  CollectableMemCpy->getType(),
7817                                                  VK_LValue, Loc, 0).take();
7818          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7819        }
7820      }
7821      // Create a reference to the __builtin_memcpy builtin function.
7822      else if (!BuiltinMemCpyRef) {
7823        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7824                       LookupOrdinaryName);
7825        LookupName(R, TUScope, true);
7826
7827        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7828        if (!BuiltinMemCpy) {
7829          // Something went horribly wrong earlier, and we will have complained
7830          // about it.
7831          Invalid = true;
7832          continue;
7833        }
7834
7835        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7836                                            BuiltinMemCpy->getType(),
7837                                            VK_LValue, Loc, 0).take();
7838        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7839      }
7840
7841      ASTOwningVector<Expr*> CallArgs(*this);
7842      CallArgs.push_back(To.takeAs<Expr>());
7843      CallArgs.push_back(From.takeAs<Expr>());
7844      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7845      ExprResult Call = ExprError();
7846      if (NeedsCollectableMemCpy)
7847        Call = ActOnCallExpr(/*Scope=*/0,
7848                             CollectableMemCpyRef,
7849                             Loc, move_arg(CallArgs),
7850                             Loc);
7851      else
7852        Call = ActOnCallExpr(/*Scope=*/0,
7853                             BuiltinMemCpyRef,
7854                             Loc, move_arg(CallArgs),
7855                             Loc);
7856
7857      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7858      Statements.push_back(Call.takeAs<Expr>());
7859      continue;
7860    }
7861
7862    // Build the copy of this field.
7863    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7864                                            To.get(), From.get(),
7865                                            /*CopyingBaseSubobject=*/false,
7866                                            /*Copying=*/true);
7867    if (Copy.isInvalid()) {
7868      Diag(CurrentLocation, diag::note_member_synthesized_at)
7869        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7870      CopyAssignOperator->setInvalidDecl();
7871      return;
7872    }
7873
7874    // Success! Record the copy.
7875    Statements.push_back(Copy.takeAs<Stmt>());
7876  }
7877
7878  if (!Invalid) {
7879    // Add a "return *this;"
7880    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7881
7882    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7883    if (Return.isInvalid())
7884      Invalid = true;
7885    else {
7886      Statements.push_back(Return.takeAs<Stmt>());
7887
7888      if (Trap.hasErrorOccurred()) {
7889        Diag(CurrentLocation, diag::note_member_synthesized_at)
7890          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7891        Invalid = true;
7892      }
7893    }
7894  }
7895
7896  if (Invalid) {
7897    CopyAssignOperator->setInvalidDecl();
7898    return;
7899  }
7900
7901  StmtResult Body;
7902  {
7903    CompoundScopeRAII CompoundScope(*this);
7904    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7905                             /*isStmtExpr=*/false);
7906    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7907  }
7908  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7909
7910  if (ASTMutationListener *L = getASTMutationListener()) {
7911    L->CompletedImplicitDefinition(CopyAssignOperator);
7912  }
7913}
7914
7915Sema::ImplicitExceptionSpecification
7916Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7917  ImplicitExceptionSpecification ExceptSpec(*this);
7918
7919  if (ClassDecl->isInvalidDecl())
7920    return ExceptSpec;
7921
7922  // C++0x [except.spec]p14:
7923  //   An implicitly declared special member function (Clause 12) shall have an
7924  //   exception-specification. [...]
7925
7926  // It is unspecified whether or not an implicit move assignment operator
7927  // attempts to deduplicate calls to assignment operators of virtual bases are
7928  // made. As such, this exception specification is effectively unspecified.
7929  // Based on a similar decision made for constness in C++0x, we're erring on
7930  // the side of assuming such calls to be made regardless of whether they
7931  // actually happen.
7932  // Note that a move constructor is not implicitly declared when there are
7933  // virtual bases, but it can still be user-declared and explicitly defaulted.
7934  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7935                                       BaseEnd = ClassDecl->bases_end();
7936       Base != BaseEnd; ++Base) {
7937    if (Base->isVirtual())
7938      continue;
7939
7940    CXXRecordDecl *BaseClassDecl
7941      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7942    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7943                                                           false, 0))
7944      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7945  }
7946
7947  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7948                                       BaseEnd = ClassDecl->vbases_end();
7949       Base != BaseEnd; ++Base) {
7950    CXXRecordDecl *BaseClassDecl
7951      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7952    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7953                                                           false, 0))
7954      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7955  }
7956
7957  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7958                                  FieldEnd = ClassDecl->field_end();
7959       Field != FieldEnd;
7960       ++Field) {
7961    QualType FieldType = Context.getBaseElementType(Field->getType());
7962    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7963      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7964                                                             false, 0))
7965        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
7966    }
7967  }
7968
7969  return ExceptSpec;
7970}
7971
7972/// Determine whether the class type has any direct or indirect virtual base
7973/// classes which have a non-trivial move assignment operator.
7974static bool
7975hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
7976  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7977                                          BaseEnd = ClassDecl->vbases_end();
7978       Base != BaseEnd; ++Base) {
7979    CXXRecordDecl *BaseClass =
7980        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7981
7982    // Try to declare the move assignment. If it would be deleted, then the
7983    // class does not have a non-trivial move assignment.
7984    if (BaseClass->needsImplicitMoveAssignment())
7985      S.DeclareImplicitMoveAssignment(BaseClass);
7986
7987    // If the class has both a trivial move assignment and a non-trivial move
7988    // assignment, hasTrivialMoveAssignment() is false.
7989    if (BaseClass->hasDeclaredMoveAssignment() &&
7990        !BaseClass->hasTrivialMoveAssignment())
7991      return true;
7992  }
7993
7994  return false;
7995}
7996
7997/// Determine whether the given type either has a move constructor or is
7998/// trivially copyable.
7999static bool
8000hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8001  Type = S.Context.getBaseElementType(Type);
8002
8003  // FIXME: Technically, non-trivially-copyable non-class types, such as
8004  // reference types, are supposed to return false here, but that appears
8005  // to be a standard defect.
8006  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8007  if (!ClassDecl || !ClassDecl->getDefinition())
8008    return true;
8009
8010  if (Type.isTriviallyCopyableType(S.Context))
8011    return true;
8012
8013  if (IsConstructor) {
8014    if (ClassDecl->needsImplicitMoveConstructor())
8015      S.DeclareImplicitMoveConstructor(ClassDecl);
8016    return ClassDecl->hasDeclaredMoveConstructor();
8017  }
8018
8019  if (ClassDecl->needsImplicitMoveAssignment())
8020    S.DeclareImplicitMoveAssignment(ClassDecl);
8021  return ClassDecl->hasDeclaredMoveAssignment();
8022}
8023
8024/// Determine whether all non-static data members and direct or virtual bases
8025/// of class \p ClassDecl have either a move operation, or are trivially
8026/// copyable.
8027static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8028                                            bool IsConstructor) {
8029  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8030                                          BaseEnd = ClassDecl->bases_end();
8031       Base != BaseEnd; ++Base) {
8032    if (Base->isVirtual())
8033      continue;
8034
8035    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8036      return false;
8037  }
8038
8039  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8040                                          BaseEnd = ClassDecl->vbases_end();
8041       Base != BaseEnd; ++Base) {
8042    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8043      return false;
8044  }
8045
8046  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8047                                     FieldEnd = ClassDecl->field_end();
8048       Field != FieldEnd; ++Field) {
8049    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8050      return false;
8051  }
8052
8053  return true;
8054}
8055
8056CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8057  // C++11 [class.copy]p20:
8058  //   If the definition of a class X does not explicitly declare a move
8059  //   assignment operator, one will be implicitly declared as defaulted
8060  //   if and only if:
8061  //
8062  //   - [first 4 bullets]
8063  assert(ClassDecl->needsImplicitMoveAssignment());
8064
8065  // [Checked after we build the declaration]
8066  //   - the move assignment operator would not be implicitly defined as
8067  //     deleted,
8068
8069  // [DR1402]:
8070  //   - X has no direct or indirect virtual base class with a non-trivial
8071  //     move assignment operator, and
8072  //   - each of X's non-static data members and direct or virtual base classes
8073  //     has a type that either has a move assignment operator or is trivially
8074  //     copyable.
8075  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8076      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8077    ClassDecl->setFailedImplicitMoveAssignment();
8078    return 0;
8079  }
8080
8081  // Note: The following rules are largely analoguous to the move
8082  // constructor rules.
8083
8084  ImplicitExceptionSpecification Spec(
8085      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8086
8087  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8088  QualType RetType = Context.getLValueReferenceType(ArgType);
8089  ArgType = Context.getRValueReferenceType(ArgType);
8090
8091  //   An implicitly-declared move assignment operator is an inline public
8092  //   member of its class.
8093  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8094  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8095  SourceLocation ClassLoc = ClassDecl->getLocation();
8096  DeclarationNameInfo NameInfo(Name, ClassLoc);
8097  CXXMethodDecl *MoveAssignment
8098    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8099                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8100                            /*TInfo=*/0, /*isStatic=*/false,
8101                            /*StorageClassAsWritten=*/SC_None,
8102                            /*isInline=*/true,
8103                            /*isConstexpr=*/false,
8104                            SourceLocation());
8105  MoveAssignment->setAccess(AS_public);
8106  MoveAssignment->setDefaulted();
8107  MoveAssignment->setImplicit();
8108  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8109
8110  // Add the parameter to the operator.
8111  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8112                                               ClassLoc, ClassLoc, /*Id=*/0,
8113                                               ArgType, /*TInfo=*/0,
8114                                               SC_None,
8115                                               SC_None, 0);
8116  MoveAssignment->setParams(FromParam);
8117
8118  // Note that we have added this copy-assignment operator.
8119  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8120
8121  // C++0x [class.copy]p9:
8122  //   If the definition of a class X does not explicitly declare a move
8123  //   assignment operator, one will be implicitly declared as defaulted if and
8124  //   only if:
8125  //   [...]
8126  //   - the move assignment operator would not be implicitly defined as
8127  //     deleted.
8128  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8129    // Cache this result so that we don't try to generate this over and over
8130    // on every lookup, leaking memory and wasting time.
8131    ClassDecl->setFailedImplicitMoveAssignment();
8132    return 0;
8133  }
8134
8135  if (Scope *S = getScopeForContext(ClassDecl))
8136    PushOnScopeChains(MoveAssignment, S, false);
8137  ClassDecl->addDecl(MoveAssignment);
8138
8139  AddOverriddenMethods(ClassDecl, MoveAssignment);
8140  return MoveAssignment;
8141}
8142
8143void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8144                                        CXXMethodDecl *MoveAssignOperator) {
8145  assert((MoveAssignOperator->isDefaulted() &&
8146          MoveAssignOperator->isOverloadedOperator() &&
8147          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8148          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8149          !MoveAssignOperator->isDeleted()) &&
8150         "DefineImplicitMoveAssignment called for wrong function");
8151
8152  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8153
8154  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8155    MoveAssignOperator->setInvalidDecl();
8156    return;
8157  }
8158
8159  MoveAssignOperator->setUsed();
8160
8161  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8162  DiagnosticErrorTrap Trap(Diags);
8163
8164  // C++0x [class.copy]p28:
8165  //   The implicitly-defined or move assignment operator for a non-union class
8166  //   X performs memberwise move assignment of its subobjects. The direct base
8167  //   classes of X are assigned first, in the order of their declaration in the
8168  //   base-specifier-list, and then the immediate non-static data members of X
8169  //   are assigned, in the order in which they were declared in the class
8170  //   definition.
8171
8172  // The statements that form the synthesized function body.
8173  ASTOwningVector<Stmt*> Statements(*this);
8174
8175  // The parameter for the "other" object, which we are move from.
8176  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8177  QualType OtherRefType = Other->getType()->
8178      getAs<RValueReferenceType>()->getPointeeType();
8179  assert(OtherRefType.getQualifiers() == 0 &&
8180         "Bad argument type of defaulted move assignment");
8181
8182  // Our location for everything implicitly-generated.
8183  SourceLocation Loc = MoveAssignOperator->getLocation();
8184
8185  // Construct a reference to the "other" object. We'll be using this
8186  // throughout the generated ASTs.
8187  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8188  assert(OtherRef && "Reference to parameter cannot fail!");
8189  // Cast to rvalue.
8190  OtherRef = CastForMoving(*this, OtherRef);
8191
8192  // Construct the "this" pointer. We'll be using this throughout the generated
8193  // ASTs.
8194  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8195  assert(This && "Reference to this cannot fail!");
8196
8197  // Assign base classes.
8198  bool Invalid = false;
8199  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8200       E = ClassDecl->bases_end(); Base != E; ++Base) {
8201    // Form the assignment:
8202    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8203    QualType BaseType = Base->getType().getUnqualifiedType();
8204    if (!BaseType->isRecordType()) {
8205      Invalid = true;
8206      continue;
8207    }
8208
8209    CXXCastPath BasePath;
8210    BasePath.push_back(Base);
8211
8212    // Construct the "from" expression, which is an implicit cast to the
8213    // appropriately-qualified base type.
8214    Expr *From = OtherRef;
8215    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8216                             VK_XValue, &BasePath).take();
8217
8218    // Dereference "this".
8219    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8220
8221    // Implicitly cast "this" to the appropriately-qualified base type.
8222    To = ImpCastExprToType(To.take(),
8223                           Context.getCVRQualifiedType(BaseType,
8224                                     MoveAssignOperator->getTypeQualifiers()),
8225                           CK_UncheckedDerivedToBase,
8226                           VK_LValue, &BasePath);
8227
8228    // Build the move.
8229    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8230                                            To.get(), From,
8231                                            /*CopyingBaseSubobject=*/true,
8232                                            /*Copying=*/false);
8233    if (Move.isInvalid()) {
8234      Diag(CurrentLocation, diag::note_member_synthesized_at)
8235        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8236      MoveAssignOperator->setInvalidDecl();
8237      return;
8238    }
8239
8240    // Success! Record the move.
8241    Statements.push_back(Move.takeAs<Expr>());
8242  }
8243
8244  // \brief Reference to the __builtin_memcpy function.
8245  Expr *BuiltinMemCpyRef = 0;
8246  // \brief Reference to the __builtin_objc_memmove_collectable function.
8247  Expr *CollectableMemCpyRef = 0;
8248
8249  // Assign non-static members.
8250  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8251                                  FieldEnd = ClassDecl->field_end();
8252       Field != FieldEnd; ++Field) {
8253    if (Field->isUnnamedBitfield())
8254      continue;
8255
8256    // Check for members of reference type; we can't move those.
8257    if (Field->getType()->isReferenceType()) {
8258      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8259        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8260      Diag(Field->getLocation(), diag::note_declared_at);
8261      Diag(CurrentLocation, diag::note_member_synthesized_at)
8262        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8263      Invalid = true;
8264      continue;
8265    }
8266
8267    // Check for members of const-qualified, non-class type.
8268    QualType BaseType = Context.getBaseElementType(Field->getType());
8269    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8270      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8271        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8272      Diag(Field->getLocation(), diag::note_declared_at);
8273      Diag(CurrentLocation, diag::note_member_synthesized_at)
8274        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8275      Invalid = true;
8276      continue;
8277    }
8278
8279    // Suppress assigning zero-width bitfields.
8280    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8281      continue;
8282
8283    QualType FieldType = Field->getType().getNonReferenceType();
8284    if (FieldType->isIncompleteArrayType()) {
8285      assert(ClassDecl->hasFlexibleArrayMember() &&
8286             "Incomplete array type is not valid");
8287      continue;
8288    }
8289
8290    // Build references to the field in the object we're copying from and to.
8291    CXXScopeSpec SS; // Intentionally empty
8292    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8293                              LookupMemberName);
8294    MemberLookup.addDecl(*Field);
8295    MemberLookup.resolveKind();
8296    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8297                                               Loc, /*IsArrow=*/false,
8298                                               SS, SourceLocation(), 0,
8299                                               MemberLookup, 0);
8300    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8301                                             Loc, /*IsArrow=*/true,
8302                                             SS, SourceLocation(), 0,
8303                                             MemberLookup, 0);
8304    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8305    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8306
8307    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8308        "Member reference with rvalue base must be rvalue except for reference "
8309        "members, which aren't allowed for move assignment.");
8310
8311    // If the field should be copied with __builtin_memcpy rather than via
8312    // explicit assignments, do so. This optimization only applies for arrays
8313    // of scalars and arrays of class type with trivial move-assignment
8314    // operators.
8315    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8316        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8317      // Compute the size of the memory buffer to be copied.
8318      QualType SizeType = Context.getSizeType();
8319      llvm::APInt Size(Context.getTypeSize(SizeType),
8320                       Context.getTypeSizeInChars(BaseType).getQuantity());
8321      for (const ConstantArrayType *Array
8322              = Context.getAsConstantArrayType(FieldType);
8323           Array;
8324           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8325        llvm::APInt ArraySize
8326          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8327        Size *= ArraySize;
8328      }
8329
8330      // Take the address of the field references for "from" and "to". We
8331      // directly construct UnaryOperators here because semantic analysis
8332      // does not permit us to take the address of an xvalue.
8333      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8334                             Context.getPointerType(From.get()->getType()),
8335                             VK_RValue, OK_Ordinary, Loc);
8336      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8337                           Context.getPointerType(To.get()->getType()),
8338                           VK_RValue, OK_Ordinary, Loc);
8339
8340      bool NeedsCollectableMemCpy =
8341          (BaseType->isRecordType() &&
8342           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8343
8344      if (NeedsCollectableMemCpy) {
8345        if (!CollectableMemCpyRef) {
8346          // Create a reference to the __builtin_objc_memmove_collectable function.
8347          LookupResult R(*this,
8348                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8349                         Loc, LookupOrdinaryName);
8350          LookupName(R, TUScope, true);
8351
8352          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8353          if (!CollectableMemCpy) {
8354            // Something went horribly wrong earlier, and we will have
8355            // complained about it.
8356            Invalid = true;
8357            continue;
8358          }
8359
8360          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8361                                                  CollectableMemCpy->getType(),
8362                                                  VK_LValue, Loc, 0).take();
8363          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8364        }
8365      }
8366      // Create a reference to the __builtin_memcpy builtin function.
8367      else if (!BuiltinMemCpyRef) {
8368        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8369                       LookupOrdinaryName);
8370        LookupName(R, TUScope, true);
8371
8372        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8373        if (!BuiltinMemCpy) {
8374          // Something went horribly wrong earlier, and we will have complained
8375          // about it.
8376          Invalid = true;
8377          continue;
8378        }
8379
8380        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8381                                            BuiltinMemCpy->getType(),
8382                                            VK_LValue, Loc, 0).take();
8383        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8384      }
8385
8386      ASTOwningVector<Expr*> CallArgs(*this);
8387      CallArgs.push_back(To.takeAs<Expr>());
8388      CallArgs.push_back(From.takeAs<Expr>());
8389      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8390      ExprResult Call = ExprError();
8391      if (NeedsCollectableMemCpy)
8392        Call = ActOnCallExpr(/*Scope=*/0,
8393                             CollectableMemCpyRef,
8394                             Loc, move_arg(CallArgs),
8395                             Loc);
8396      else
8397        Call = ActOnCallExpr(/*Scope=*/0,
8398                             BuiltinMemCpyRef,
8399                             Loc, move_arg(CallArgs),
8400                             Loc);
8401
8402      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8403      Statements.push_back(Call.takeAs<Expr>());
8404      continue;
8405    }
8406
8407    // Build the move of this field.
8408    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8409                                            To.get(), From.get(),
8410                                            /*CopyingBaseSubobject=*/false,
8411                                            /*Copying=*/false);
8412    if (Move.isInvalid()) {
8413      Diag(CurrentLocation, diag::note_member_synthesized_at)
8414        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8415      MoveAssignOperator->setInvalidDecl();
8416      return;
8417    }
8418
8419    // Success! Record the copy.
8420    Statements.push_back(Move.takeAs<Stmt>());
8421  }
8422
8423  if (!Invalid) {
8424    // Add a "return *this;"
8425    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8426
8427    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8428    if (Return.isInvalid())
8429      Invalid = true;
8430    else {
8431      Statements.push_back(Return.takeAs<Stmt>());
8432
8433      if (Trap.hasErrorOccurred()) {
8434        Diag(CurrentLocation, diag::note_member_synthesized_at)
8435          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8436        Invalid = true;
8437      }
8438    }
8439  }
8440
8441  if (Invalid) {
8442    MoveAssignOperator->setInvalidDecl();
8443    return;
8444  }
8445
8446  StmtResult Body;
8447  {
8448    CompoundScopeRAII CompoundScope(*this);
8449    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8450                             /*isStmtExpr=*/false);
8451    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8452  }
8453  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8454
8455  if (ASTMutationListener *L = getASTMutationListener()) {
8456    L->CompletedImplicitDefinition(MoveAssignOperator);
8457  }
8458}
8459
8460std::pair<Sema::ImplicitExceptionSpecification, bool>
8461Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8462  if (ClassDecl->isInvalidDecl())
8463    return std::make_pair(ImplicitExceptionSpecification(*this), true);
8464
8465  // C++ [class.copy]p5:
8466  //   The implicitly-declared copy constructor for a class X will
8467  //   have the form
8468  //
8469  //       X::X(const X&)
8470  //
8471  //   if
8472  // FIXME: It ought to be possible to store this on the record.
8473  bool HasConstCopyConstructor = true;
8474
8475  //     -- each direct or virtual base class B of X has a copy
8476  //        constructor whose first parameter is of type const B& or
8477  //        const volatile B&, and
8478  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8479                                       BaseEnd = ClassDecl->bases_end();
8480       HasConstCopyConstructor && Base != BaseEnd;
8481       ++Base) {
8482    // Virtual bases are handled below.
8483    if (Base->isVirtual())
8484      continue;
8485
8486    CXXRecordDecl *BaseClassDecl
8487      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8488    HasConstCopyConstructor &=
8489      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8490  }
8491
8492  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8493                                       BaseEnd = ClassDecl->vbases_end();
8494       HasConstCopyConstructor && Base != BaseEnd;
8495       ++Base) {
8496    CXXRecordDecl *BaseClassDecl
8497      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8498    HasConstCopyConstructor &=
8499      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8500  }
8501
8502  //     -- for all the nonstatic data members of X that are of a
8503  //        class type M (or array thereof), each such class type
8504  //        has a copy constructor whose first parameter is of type
8505  //        const M& or const volatile M&.
8506  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8507                                  FieldEnd = ClassDecl->field_end();
8508       HasConstCopyConstructor && Field != FieldEnd;
8509       ++Field) {
8510    QualType FieldType = Context.getBaseElementType(Field->getType());
8511    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8512      HasConstCopyConstructor &=
8513        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8514    }
8515  }
8516  //   Otherwise, the implicitly declared copy constructor will have
8517  //   the form
8518  //
8519  //       X::X(X&)
8520
8521  // C++ [except.spec]p14:
8522  //   An implicitly declared special member function (Clause 12) shall have an
8523  //   exception-specification. [...]
8524  ImplicitExceptionSpecification ExceptSpec(*this);
8525  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8526  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8527                                       BaseEnd = ClassDecl->bases_end();
8528       Base != BaseEnd;
8529       ++Base) {
8530    // Virtual bases are handled below.
8531    if (Base->isVirtual())
8532      continue;
8533
8534    CXXRecordDecl *BaseClassDecl
8535      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8536    if (CXXConstructorDecl *CopyConstructor =
8537          LookupCopyingConstructor(BaseClassDecl, Quals))
8538      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8539  }
8540  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8541                                       BaseEnd = ClassDecl->vbases_end();
8542       Base != BaseEnd;
8543       ++Base) {
8544    CXXRecordDecl *BaseClassDecl
8545      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8546    if (CXXConstructorDecl *CopyConstructor =
8547          LookupCopyingConstructor(BaseClassDecl, Quals))
8548      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8549  }
8550  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8551                                  FieldEnd = ClassDecl->field_end();
8552       Field != FieldEnd;
8553       ++Field) {
8554    QualType FieldType = Context.getBaseElementType(Field->getType());
8555    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8556      if (CXXConstructorDecl *CopyConstructor =
8557        LookupCopyingConstructor(FieldClassDecl, Quals))
8558      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8559    }
8560  }
8561
8562  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8563}
8564
8565CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8566                                                    CXXRecordDecl *ClassDecl) {
8567  // C++ [class.copy]p4:
8568  //   If the class definition does not explicitly declare a copy
8569  //   constructor, one is declared implicitly.
8570
8571  ImplicitExceptionSpecification Spec(*this);
8572  bool Const;
8573  llvm::tie(Spec, Const) =
8574    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8575
8576  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8577  QualType ArgType = ClassType;
8578  if (Const)
8579    ArgType = ArgType.withConst();
8580  ArgType = Context.getLValueReferenceType(ArgType);
8581
8582  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8583
8584  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8585                                                     CXXCopyConstructor,
8586                                                     Const);
8587
8588  DeclarationName Name
8589    = Context.DeclarationNames.getCXXConstructorName(
8590                                           Context.getCanonicalType(ClassType));
8591  SourceLocation ClassLoc = ClassDecl->getLocation();
8592  DeclarationNameInfo NameInfo(Name, ClassLoc);
8593
8594  //   An implicitly-declared copy constructor is an inline public
8595  //   member of its class.
8596  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8597      Context, ClassDecl, ClassLoc, NameInfo,
8598      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8599      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8600      Constexpr);
8601  CopyConstructor->setAccess(AS_public);
8602  CopyConstructor->setDefaulted();
8603  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8604
8605  // Note that we have declared this constructor.
8606  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8607
8608  // Add the parameter to the constructor.
8609  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8610                                               ClassLoc, ClassLoc,
8611                                               /*IdentifierInfo=*/0,
8612                                               ArgType, /*TInfo=*/0,
8613                                               SC_None,
8614                                               SC_None, 0);
8615  CopyConstructor->setParams(FromParam);
8616
8617  if (Scope *S = getScopeForContext(ClassDecl))
8618    PushOnScopeChains(CopyConstructor, S, false);
8619  ClassDecl->addDecl(CopyConstructor);
8620
8621  // C++11 [class.copy]p8:
8622  //   ... If the class definition does not explicitly declare a copy
8623  //   constructor, there is no user-declared move constructor, and there is no
8624  //   user-declared move assignment operator, a copy constructor is implicitly
8625  //   declared as defaulted.
8626  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8627    CopyConstructor->setDeletedAsWritten();
8628
8629  return CopyConstructor;
8630}
8631
8632void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8633                                   CXXConstructorDecl *CopyConstructor) {
8634  assert((CopyConstructor->isDefaulted() &&
8635          CopyConstructor->isCopyConstructor() &&
8636          !CopyConstructor->doesThisDeclarationHaveABody() &&
8637          !CopyConstructor->isDeleted()) &&
8638         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8639
8640  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8641  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8642
8643  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8644  DiagnosticErrorTrap Trap(Diags);
8645
8646  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8647      Trap.hasErrorOccurred()) {
8648    Diag(CurrentLocation, diag::note_member_synthesized_at)
8649      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8650    CopyConstructor->setInvalidDecl();
8651  }  else {
8652    Sema::CompoundScopeRAII CompoundScope(*this);
8653    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8654                                               CopyConstructor->getLocation(),
8655                                               MultiStmtArg(*this, 0, 0),
8656                                               /*isStmtExpr=*/false)
8657                                                              .takeAs<Stmt>());
8658    CopyConstructor->setImplicitlyDefined(true);
8659  }
8660
8661  CopyConstructor->setUsed();
8662  if (ASTMutationListener *L = getASTMutationListener()) {
8663    L->CompletedImplicitDefinition(CopyConstructor);
8664  }
8665}
8666
8667Sema::ImplicitExceptionSpecification
8668Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8669  // C++ [except.spec]p14:
8670  //   An implicitly declared special member function (Clause 12) shall have an
8671  //   exception-specification. [...]
8672  ImplicitExceptionSpecification ExceptSpec(*this);
8673  if (ClassDecl->isInvalidDecl())
8674    return ExceptSpec;
8675
8676  // Direct base-class constructors.
8677  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8678                                       BEnd = ClassDecl->bases_end();
8679       B != BEnd; ++B) {
8680    if (B->isVirtual()) // Handled below.
8681      continue;
8682
8683    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8684      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8685      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8686      // If this is a deleted function, add it anyway. This might be conformant
8687      // with the standard. This might not. I'm not sure. It might not matter.
8688      if (Constructor)
8689        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8690    }
8691  }
8692
8693  // Virtual base-class constructors.
8694  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8695                                       BEnd = ClassDecl->vbases_end();
8696       B != BEnd; ++B) {
8697    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8698      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8699      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8700      // If this is a deleted function, add it anyway. This might be conformant
8701      // with the standard. This might not. I'm not sure. It might not matter.
8702      if (Constructor)
8703        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8704    }
8705  }
8706
8707  // Field constructors.
8708  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8709                               FEnd = ClassDecl->field_end();
8710       F != FEnd; ++F) {
8711    if (const RecordType *RecordTy
8712              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8713      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8714      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8715      // If this is a deleted function, add it anyway. This might be conformant
8716      // with the standard. This might not. I'm not sure. It might not matter.
8717      // In particular, the problem is that this function never gets called. It
8718      // might just be ill-formed because this function attempts to refer to
8719      // a deleted function here.
8720      if (Constructor)
8721        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8722    }
8723  }
8724
8725  return ExceptSpec;
8726}
8727
8728CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8729                                                    CXXRecordDecl *ClassDecl) {
8730  // C++11 [class.copy]p9:
8731  //   If the definition of a class X does not explicitly declare a move
8732  //   constructor, one will be implicitly declared as defaulted if and only if:
8733  //
8734  //   - [first 4 bullets]
8735  assert(ClassDecl->needsImplicitMoveConstructor());
8736
8737  // [Checked after we build the declaration]
8738  //   - the move assignment operator would not be implicitly defined as
8739  //     deleted,
8740
8741  // [DR1402]:
8742  //   - each of X's non-static data members and direct or virtual base classes
8743  //     has a type that either has a move constructor or is trivially copyable.
8744  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8745    ClassDecl->setFailedImplicitMoveConstructor();
8746    return 0;
8747  }
8748
8749  ImplicitExceptionSpecification Spec(
8750      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8751
8752  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8753  QualType ArgType = Context.getRValueReferenceType(ClassType);
8754
8755  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8756
8757  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8758                                                     CXXMoveConstructor,
8759                                                     false);
8760
8761  DeclarationName Name
8762    = Context.DeclarationNames.getCXXConstructorName(
8763                                           Context.getCanonicalType(ClassType));
8764  SourceLocation ClassLoc = ClassDecl->getLocation();
8765  DeclarationNameInfo NameInfo(Name, ClassLoc);
8766
8767  // C++0x [class.copy]p11:
8768  //   An implicitly-declared copy/move constructor is an inline public
8769  //   member of its class.
8770  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8771      Context, ClassDecl, ClassLoc, NameInfo,
8772      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8773      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8774      Constexpr);
8775  MoveConstructor->setAccess(AS_public);
8776  MoveConstructor->setDefaulted();
8777  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8778
8779  // Add the parameter to the constructor.
8780  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8781                                               ClassLoc, ClassLoc,
8782                                               /*IdentifierInfo=*/0,
8783                                               ArgType, /*TInfo=*/0,
8784                                               SC_None,
8785                                               SC_None, 0);
8786  MoveConstructor->setParams(FromParam);
8787
8788  // C++0x [class.copy]p9:
8789  //   If the definition of a class X does not explicitly declare a move
8790  //   constructor, one will be implicitly declared as defaulted if and only if:
8791  //   [...]
8792  //   - the move constructor would not be implicitly defined as deleted.
8793  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8794    // Cache this result so that we don't try to generate this over and over
8795    // on every lookup, leaking memory and wasting time.
8796    ClassDecl->setFailedImplicitMoveConstructor();
8797    return 0;
8798  }
8799
8800  // Note that we have declared this constructor.
8801  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8802
8803  if (Scope *S = getScopeForContext(ClassDecl))
8804    PushOnScopeChains(MoveConstructor, S, false);
8805  ClassDecl->addDecl(MoveConstructor);
8806
8807  return MoveConstructor;
8808}
8809
8810void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8811                                   CXXConstructorDecl *MoveConstructor) {
8812  assert((MoveConstructor->isDefaulted() &&
8813          MoveConstructor->isMoveConstructor() &&
8814          !MoveConstructor->doesThisDeclarationHaveABody() &&
8815          !MoveConstructor->isDeleted()) &&
8816         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8817
8818  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8819  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8820
8821  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8822  DiagnosticErrorTrap Trap(Diags);
8823
8824  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8825      Trap.hasErrorOccurred()) {
8826    Diag(CurrentLocation, diag::note_member_synthesized_at)
8827      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8828    MoveConstructor->setInvalidDecl();
8829  }  else {
8830    Sema::CompoundScopeRAII CompoundScope(*this);
8831    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8832                                               MoveConstructor->getLocation(),
8833                                               MultiStmtArg(*this, 0, 0),
8834                                               /*isStmtExpr=*/false)
8835                                                              .takeAs<Stmt>());
8836    MoveConstructor->setImplicitlyDefined(true);
8837  }
8838
8839  MoveConstructor->setUsed();
8840
8841  if (ASTMutationListener *L = getASTMutationListener()) {
8842    L->CompletedImplicitDefinition(MoveConstructor);
8843  }
8844}
8845
8846bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8847  return FD->isDeleted() &&
8848         (FD->isDefaulted() || FD->isImplicit()) &&
8849         isa<CXXMethodDecl>(FD);
8850}
8851
8852/// \brief Mark the call operator of the given lambda closure type as "used".
8853static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8854  CXXMethodDecl *CallOperator
8855    = cast<CXXMethodDecl>(
8856        *Lambda->lookup(
8857          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8858  CallOperator->setReferenced();
8859  CallOperator->setUsed();
8860}
8861
8862void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8863       SourceLocation CurrentLocation,
8864       CXXConversionDecl *Conv)
8865{
8866  CXXRecordDecl *Lambda = Conv->getParent();
8867
8868  // Make sure that the lambda call operator is marked used.
8869  markLambdaCallOperatorUsed(*this, Lambda);
8870
8871  Conv->setUsed();
8872
8873  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8874  DiagnosticErrorTrap Trap(Diags);
8875
8876  // Return the address of the __invoke function.
8877  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8878  CXXMethodDecl *Invoke
8879    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8880  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8881                                       VK_LValue, Conv->getLocation()).take();
8882  assert(FunctionRef && "Can't refer to __invoke function?");
8883  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8884  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8885                                           Conv->getLocation(),
8886                                           Conv->getLocation()));
8887
8888  // Fill in the __invoke function with a dummy implementation. IR generation
8889  // will fill in the actual details.
8890  Invoke->setUsed();
8891  Invoke->setReferenced();
8892  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8893                                             Conv->getLocation()));
8894
8895  if (ASTMutationListener *L = getASTMutationListener()) {
8896    L->CompletedImplicitDefinition(Conv);
8897    L->CompletedImplicitDefinition(Invoke);
8898  }
8899}
8900
8901void Sema::DefineImplicitLambdaToBlockPointerConversion(
8902       SourceLocation CurrentLocation,
8903       CXXConversionDecl *Conv)
8904{
8905  Conv->setUsed();
8906
8907  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8908  DiagnosticErrorTrap Trap(Diags);
8909
8910  // Copy-initialize the lambda object as needed to capture it.
8911  Expr *This = ActOnCXXThis(CurrentLocation).take();
8912  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8913
8914  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8915                                                        Conv->getLocation(),
8916                                                        Conv, DerefThis);
8917
8918  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8919  // behavior.  Note that only the general conversion function does this
8920  // (since it's unusable otherwise); in the case where we inline the
8921  // block literal, it has block literal lifetime semantics.
8922  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8923    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8924                                          CK_CopyAndAutoreleaseBlockObject,
8925                                          BuildBlock.get(), 0, VK_RValue);
8926
8927  if (BuildBlock.isInvalid()) {
8928    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8929    Conv->setInvalidDecl();
8930    return;
8931  }
8932
8933  // Create the return statement that returns the block from the conversion
8934  // function.
8935  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8936  if (Return.isInvalid()) {
8937    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8938    Conv->setInvalidDecl();
8939    return;
8940  }
8941
8942  // Set the body of the conversion function.
8943  Stmt *ReturnS = Return.take();
8944  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8945                                           Conv->getLocation(),
8946                                           Conv->getLocation()));
8947
8948  // We're done; notify the mutation listener, if any.
8949  if (ASTMutationListener *L = getASTMutationListener()) {
8950    L->CompletedImplicitDefinition(Conv);
8951  }
8952}
8953
8954/// \brief Determine whether the given list arguments contains exactly one
8955/// "real" (non-default) argument.
8956static bool hasOneRealArgument(MultiExprArg Args) {
8957  switch (Args.size()) {
8958  case 0:
8959    return false;
8960
8961  default:
8962    if (!Args.get()[1]->isDefaultArgument())
8963      return false;
8964
8965    // fall through
8966  case 1:
8967    return !Args.get()[0]->isDefaultArgument();
8968  }
8969
8970  return false;
8971}
8972
8973ExprResult
8974Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8975                            CXXConstructorDecl *Constructor,
8976                            MultiExprArg ExprArgs,
8977                            bool HadMultipleCandidates,
8978                            bool RequiresZeroInit,
8979                            unsigned ConstructKind,
8980                            SourceRange ParenRange) {
8981  bool Elidable = false;
8982
8983  // C++0x [class.copy]p34:
8984  //   When certain criteria are met, an implementation is allowed to
8985  //   omit the copy/move construction of a class object, even if the
8986  //   copy/move constructor and/or destructor for the object have
8987  //   side effects. [...]
8988  //     - when a temporary class object that has not been bound to a
8989  //       reference (12.2) would be copied/moved to a class object
8990  //       with the same cv-unqualified type, the copy/move operation
8991  //       can be omitted by constructing the temporary object
8992  //       directly into the target of the omitted copy/move
8993  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8994      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
8995    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8996    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8997  }
8998
8999  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9000                               Elidable, move(ExprArgs), HadMultipleCandidates,
9001                               RequiresZeroInit, ConstructKind, ParenRange);
9002}
9003
9004/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9005/// including handling of its default argument expressions.
9006ExprResult
9007Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9008                            CXXConstructorDecl *Constructor, bool Elidable,
9009                            MultiExprArg ExprArgs,
9010                            bool HadMultipleCandidates,
9011                            bool RequiresZeroInit,
9012                            unsigned ConstructKind,
9013                            SourceRange ParenRange) {
9014  unsigned NumExprs = ExprArgs.size();
9015  Expr **Exprs = (Expr **)ExprArgs.release();
9016
9017  for (specific_attr_iterator<NonNullAttr>
9018           i = Constructor->specific_attr_begin<NonNullAttr>(),
9019           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9020    const NonNullAttr *NonNull = *i;
9021    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9022  }
9023
9024  MarkFunctionReferenced(ConstructLoc, Constructor);
9025  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9026                                        Constructor, Elidable, Exprs, NumExprs,
9027                                        HadMultipleCandidates, /*FIXME*/false,
9028                                        RequiresZeroInit,
9029              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9030                                        ParenRange));
9031}
9032
9033bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9034                                        CXXConstructorDecl *Constructor,
9035                                        MultiExprArg Exprs,
9036                                        bool HadMultipleCandidates) {
9037  // FIXME: Provide the correct paren SourceRange when available.
9038  ExprResult TempResult =
9039    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9040                          move(Exprs), HadMultipleCandidates, false,
9041                          CXXConstructExpr::CK_Complete, SourceRange());
9042  if (TempResult.isInvalid())
9043    return true;
9044
9045  Expr *Temp = TempResult.takeAs<Expr>();
9046  CheckImplicitConversions(Temp, VD->getLocation());
9047  MarkFunctionReferenced(VD->getLocation(), Constructor);
9048  Temp = MaybeCreateExprWithCleanups(Temp);
9049  VD->setInit(Temp);
9050
9051  return false;
9052}
9053
9054void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9055  if (VD->isInvalidDecl()) return;
9056
9057  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9058  if (ClassDecl->isInvalidDecl()) return;
9059  if (ClassDecl->hasIrrelevantDestructor()) return;
9060  if (ClassDecl->isDependentContext()) return;
9061
9062  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9063  MarkFunctionReferenced(VD->getLocation(), Destructor);
9064  CheckDestructorAccess(VD->getLocation(), Destructor,
9065                        PDiag(diag::err_access_dtor_var)
9066                        << VD->getDeclName()
9067                        << VD->getType());
9068  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9069
9070  if (!VD->hasGlobalStorage()) return;
9071
9072  // Emit warning for non-trivial dtor in global scope (a real global,
9073  // class-static, function-static).
9074  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9075
9076  // TODO: this should be re-enabled for static locals by !CXAAtExit
9077  if (!VD->isStaticLocal())
9078    Diag(VD->getLocation(), diag::warn_global_destructor);
9079}
9080
9081/// \brief Given a constructor and the set of arguments provided for the
9082/// constructor, convert the arguments and add any required default arguments
9083/// to form a proper call to this constructor.
9084///
9085/// \returns true if an error occurred, false otherwise.
9086bool
9087Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9088                              MultiExprArg ArgsPtr,
9089                              SourceLocation Loc,
9090                              ASTOwningVector<Expr*> &ConvertedArgs,
9091                              bool AllowExplicit) {
9092  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9093  unsigned NumArgs = ArgsPtr.size();
9094  Expr **Args = (Expr **)ArgsPtr.get();
9095
9096  const FunctionProtoType *Proto
9097    = Constructor->getType()->getAs<FunctionProtoType>();
9098  assert(Proto && "Constructor without a prototype?");
9099  unsigned NumArgsInProto = Proto->getNumArgs();
9100
9101  // If too few arguments are available, we'll fill in the rest with defaults.
9102  if (NumArgs < NumArgsInProto)
9103    ConvertedArgs.reserve(NumArgsInProto);
9104  else
9105    ConvertedArgs.reserve(NumArgs);
9106
9107  VariadicCallType CallType =
9108    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9109  SmallVector<Expr *, 8> AllArgs;
9110  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9111                                        Proto, 0, Args, NumArgs, AllArgs,
9112                                        CallType, AllowExplicit);
9113  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9114
9115  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9116
9117  // FIXME: Missing call to CheckFunctionCall or equivalent
9118
9119  return Invalid;
9120}
9121
9122static inline bool
9123CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9124                                       const FunctionDecl *FnDecl) {
9125  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9126  if (isa<NamespaceDecl>(DC)) {
9127    return SemaRef.Diag(FnDecl->getLocation(),
9128                        diag::err_operator_new_delete_declared_in_namespace)
9129      << FnDecl->getDeclName();
9130  }
9131
9132  if (isa<TranslationUnitDecl>(DC) &&
9133      FnDecl->getStorageClass() == SC_Static) {
9134    return SemaRef.Diag(FnDecl->getLocation(),
9135                        diag::err_operator_new_delete_declared_static)
9136      << FnDecl->getDeclName();
9137  }
9138
9139  return false;
9140}
9141
9142static inline bool
9143CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9144                            CanQualType ExpectedResultType,
9145                            CanQualType ExpectedFirstParamType,
9146                            unsigned DependentParamTypeDiag,
9147                            unsigned InvalidParamTypeDiag) {
9148  QualType ResultType =
9149    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9150
9151  // Check that the result type is not dependent.
9152  if (ResultType->isDependentType())
9153    return SemaRef.Diag(FnDecl->getLocation(),
9154                        diag::err_operator_new_delete_dependent_result_type)
9155    << FnDecl->getDeclName() << ExpectedResultType;
9156
9157  // Check that the result type is what we expect.
9158  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9159    return SemaRef.Diag(FnDecl->getLocation(),
9160                        diag::err_operator_new_delete_invalid_result_type)
9161    << FnDecl->getDeclName() << ExpectedResultType;
9162
9163  // A function template must have at least 2 parameters.
9164  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9165    return SemaRef.Diag(FnDecl->getLocation(),
9166                      diag::err_operator_new_delete_template_too_few_parameters)
9167        << FnDecl->getDeclName();
9168
9169  // The function decl must have at least 1 parameter.
9170  if (FnDecl->getNumParams() == 0)
9171    return SemaRef.Diag(FnDecl->getLocation(),
9172                        diag::err_operator_new_delete_too_few_parameters)
9173      << FnDecl->getDeclName();
9174
9175  // Check the the first parameter type is not dependent.
9176  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9177  if (FirstParamType->isDependentType())
9178    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9179      << FnDecl->getDeclName() << ExpectedFirstParamType;
9180
9181  // Check that the first parameter type is what we expect.
9182  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9183      ExpectedFirstParamType)
9184    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9185    << FnDecl->getDeclName() << ExpectedFirstParamType;
9186
9187  return false;
9188}
9189
9190static bool
9191CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9192  // C++ [basic.stc.dynamic.allocation]p1:
9193  //   A program is ill-formed if an allocation function is declared in a
9194  //   namespace scope other than global scope or declared static in global
9195  //   scope.
9196  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9197    return true;
9198
9199  CanQualType SizeTy =
9200    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9201
9202  // C++ [basic.stc.dynamic.allocation]p1:
9203  //  The return type shall be void*. The first parameter shall have type
9204  //  std::size_t.
9205  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9206                                  SizeTy,
9207                                  diag::err_operator_new_dependent_param_type,
9208                                  diag::err_operator_new_param_type))
9209    return true;
9210
9211  // C++ [basic.stc.dynamic.allocation]p1:
9212  //  The first parameter shall not have an associated default argument.
9213  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9214    return SemaRef.Diag(FnDecl->getLocation(),
9215                        diag::err_operator_new_default_arg)
9216      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9217
9218  return false;
9219}
9220
9221static bool
9222CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9223  // C++ [basic.stc.dynamic.deallocation]p1:
9224  //   A program is ill-formed if deallocation functions are declared in a
9225  //   namespace scope other than global scope or declared static in global
9226  //   scope.
9227  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9228    return true;
9229
9230  // C++ [basic.stc.dynamic.deallocation]p2:
9231  //   Each deallocation function shall return void and its first parameter
9232  //   shall be void*.
9233  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9234                                  SemaRef.Context.VoidPtrTy,
9235                                 diag::err_operator_delete_dependent_param_type,
9236                                 diag::err_operator_delete_param_type))
9237    return true;
9238
9239  return false;
9240}
9241
9242/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9243/// of this overloaded operator is well-formed. If so, returns false;
9244/// otherwise, emits appropriate diagnostics and returns true.
9245bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9246  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9247         "Expected an overloaded operator declaration");
9248
9249  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9250
9251  // C++ [over.oper]p5:
9252  //   The allocation and deallocation functions, operator new,
9253  //   operator new[], operator delete and operator delete[], are
9254  //   described completely in 3.7.3. The attributes and restrictions
9255  //   found in the rest of this subclause do not apply to them unless
9256  //   explicitly stated in 3.7.3.
9257  if (Op == OO_Delete || Op == OO_Array_Delete)
9258    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9259
9260  if (Op == OO_New || Op == OO_Array_New)
9261    return CheckOperatorNewDeclaration(*this, FnDecl);
9262
9263  // C++ [over.oper]p6:
9264  //   An operator function shall either be a non-static member
9265  //   function or be a non-member function and have at least one
9266  //   parameter whose type is a class, a reference to a class, an
9267  //   enumeration, or a reference to an enumeration.
9268  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9269    if (MethodDecl->isStatic())
9270      return Diag(FnDecl->getLocation(),
9271                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9272  } else {
9273    bool ClassOrEnumParam = false;
9274    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9275                                   ParamEnd = FnDecl->param_end();
9276         Param != ParamEnd; ++Param) {
9277      QualType ParamType = (*Param)->getType().getNonReferenceType();
9278      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9279          ParamType->isEnumeralType()) {
9280        ClassOrEnumParam = true;
9281        break;
9282      }
9283    }
9284
9285    if (!ClassOrEnumParam)
9286      return Diag(FnDecl->getLocation(),
9287                  diag::err_operator_overload_needs_class_or_enum)
9288        << FnDecl->getDeclName();
9289  }
9290
9291  // C++ [over.oper]p8:
9292  //   An operator function cannot have default arguments (8.3.6),
9293  //   except where explicitly stated below.
9294  //
9295  // Only the function-call operator allows default arguments
9296  // (C++ [over.call]p1).
9297  if (Op != OO_Call) {
9298    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9299         Param != FnDecl->param_end(); ++Param) {
9300      if ((*Param)->hasDefaultArg())
9301        return Diag((*Param)->getLocation(),
9302                    diag::err_operator_overload_default_arg)
9303          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9304    }
9305  }
9306
9307  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9308    { false, false, false }
9309#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9310    , { Unary, Binary, MemberOnly }
9311#include "clang/Basic/OperatorKinds.def"
9312  };
9313
9314  bool CanBeUnaryOperator = OperatorUses[Op][0];
9315  bool CanBeBinaryOperator = OperatorUses[Op][1];
9316  bool MustBeMemberOperator = OperatorUses[Op][2];
9317
9318  // C++ [over.oper]p8:
9319  //   [...] Operator functions cannot have more or fewer parameters
9320  //   than the number required for the corresponding operator, as
9321  //   described in the rest of this subclause.
9322  unsigned NumParams = FnDecl->getNumParams()
9323                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9324  if (Op != OO_Call &&
9325      ((NumParams == 1 && !CanBeUnaryOperator) ||
9326       (NumParams == 2 && !CanBeBinaryOperator) ||
9327       (NumParams < 1) || (NumParams > 2))) {
9328    // We have the wrong number of parameters.
9329    unsigned ErrorKind;
9330    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9331      ErrorKind = 2;  // 2 -> unary or binary.
9332    } else if (CanBeUnaryOperator) {
9333      ErrorKind = 0;  // 0 -> unary
9334    } else {
9335      assert(CanBeBinaryOperator &&
9336             "All non-call overloaded operators are unary or binary!");
9337      ErrorKind = 1;  // 1 -> binary
9338    }
9339
9340    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9341      << FnDecl->getDeclName() << NumParams << ErrorKind;
9342  }
9343
9344  // Overloaded operators other than operator() cannot be variadic.
9345  if (Op != OO_Call &&
9346      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9347    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9348      << FnDecl->getDeclName();
9349  }
9350
9351  // Some operators must be non-static member functions.
9352  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9353    return Diag(FnDecl->getLocation(),
9354                diag::err_operator_overload_must_be_member)
9355      << FnDecl->getDeclName();
9356  }
9357
9358  // C++ [over.inc]p1:
9359  //   The user-defined function called operator++ implements the
9360  //   prefix and postfix ++ operator. If this function is a member
9361  //   function with no parameters, or a non-member function with one
9362  //   parameter of class or enumeration type, it defines the prefix
9363  //   increment operator ++ for objects of that type. If the function
9364  //   is a member function with one parameter (which shall be of type
9365  //   int) or a non-member function with two parameters (the second
9366  //   of which shall be of type int), it defines the postfix
9367  //   increment operator ++ for objects of that type.
9368  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9369    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9370    bool ParamIsInt = false;
9371    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9372      ParamIsInt = BT->getKind() == BuiltinType::Int;
9373
9374    if (!ParamIsInt)
9375      return Diag(LastParam->getLocation(),
9376                  diag::err_operator_overload_post_incdec_must_be_int)
9377        << LastParam->getType() << (Op == OO_MinusMinus);
9378  }
9379
9380  return false;
9381}
9382
9383/// CheckLiteralOperatorDeclaration - Check whether the declaration
9384/// of this literal operator function is well-formed. If so, returns
9385/// false; otherwise, emits appropriate diagnostics and returns true.
9386bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9387  if (isa<CXXMethodDecl>(FnDecl)) {
9388    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9389      << FnDecl->getDeclName();
9390    return true;
9391  }
9392
9393  if (FnDecl->isExternC()) {
9394    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9395    return true;
9396  }
9397
9398  bool Valid = false;
9399
9400  // This might be the definition of a literal operator template.
9401  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9402  // This might be a specialization of a literal operator template.
9403  if (!TpDecl)
9404    TpDecl = FnDecl->getPrimaryTemplate();
9405
9406  // template <char...> type operator "" name() is the only valid template
9407  // signature, and the only valid signature with no parameters.
9408  if (TpDecl) {
9409    if (FnDecl->param_size() == 0) {
9410      // Must have only one template parameter
9411      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9412      if (Params->size() == 1) {
9413        NonTypeTemplateParmDecl *PmDecl =
9414          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9415
9416        // The template parameter must be a char parameter pack.
9417        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9418            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9419          Valid = true;
9420      }
9421    }
9422  } else if (FnDecl->param_size()) {
9423    // Check the first parameter
9424    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9425
9426    QualType T = (*Param)->getType().getUnqualifiedType();
9427
9428    // unsigned long long int, long double, and any character type are allowed
9429    // as the only parameters.
9430    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9431        Context.hasSameType(T, Context.LongDoubleTy) ||
9432        Context.hasSameType(T, Context.CharTy) ||
9433        Context.hasSameType(T, Context.WCharTy) ||
9434        Context.hasSameType(T, Context.Char16Ty) ||
9435        Context.hasSameType(T, Context.Char32Ty)) {
9436      if (++Param == FnDecl->param_end())
9437        Valid = true;
9438      goto FinishedParams;
9439    }
9440
9441    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9442    const PointerType *PT = T->getAs<PointerType>();
9443    if (!PT)
9444      goto FinishedParams;
9445    T = PT->getPointeeType();
9446    if (!T.isConstQualified() || T.isVolatileQualified())
9447      goto FinishedParams;
9448    T = T.getUnqualifiedType();
9449
9450    // Move on to the second parameter;
9451    ++Param;
9452
9453    // If there is no second parameter, the first must be a const char *
9454    if (Param == FnDecl->param_end()) {
9455      if (Context.hasSameType(T, Context.CharTy))
9456        Valid = true;
9457      goto FinishedParams;
9458    }
9459
9460    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9461    // are allowed as the first parameter to a two-parameter function
9462    if (!(Context.hasSameType(T, Context.CharTy) ||
9463          Context.hasSameType(T, Context.WCharTy) ||
9464          Context.hasSameType(T, Context.Char16Ty) ||
9465          Context.hasSameType(T, Context.Char32Ty)))
9466      goto FinishedParams;
9467
9468    // The second and final parameter must be an std::size_t
9469    T = (*Param)->getType().getUnqualifiedType();
9470    if (Context.hasSameType(T, Context.getSizeType()) &&
9471        ++Param == FnDecl->param_end())
9472      Valid = true;
9473  }
9474
9475  // FIXME: This diagnostic is absolutely terrible.
9476FinishedParams:
9477  if (!Valid) {
9478    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9479      << FnDecl->getDeclName();
9480    return true;
9481  }
9482
9483  // A parameter-declaration-clause containing a default argument is not
9484  // equivalent to any of the permitted forms.
9485  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9486                                    ParamEnd = FnDecl->param_end();
9487       Param != ParamEnd; ++Param) {
9488    if ((*Param)->hasDefaultArg()) {
9489      Diag((*Param)->getDefaultArgRange().getBegin(),
9490           diag::err_literal_operator_default_argument)
9491        << (*Param)->getDefaultArgRange();
9492      break;
9493    }
9494  }
9495
9496  StringRef LiteralName
9497    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9498  if (LiteralName[0] != '_') {
9499    // C++11 [usrlit.suffix]p1:
9500    //   Literal suffix identifiers that do not start with an underscore
9501    //   are reserved for future standardization.
9502    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9503  }
9504
9505  return false;
9506}
9507
9508/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9509/// linkage specification, including the language and (if present)
9510/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9511/// the location of the language string literal, which is provided
9512/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9513/// the '{' brace. Otherwise, this linkage specification does not
9514/// have any braces.
9515Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9516                                           SourceLocation LangLoc,
9517                                           StringRef Lang,
9518                                           SourceLocation LBraceLoc) {
9519  LinkageSpecDecl::LanguageIDs Language;
9520  if (Lang == "\"C\"")
9521    Language = LinkageSpecDecl::lang_c;
9522  else if (Lang == "\"C++\"")
9523    Language = LinkageSpecDecl::lang_cxx;
9524  else {
9525    Diag(LangLoc, diag::err_bad_language);
9526    return 0;
9527  }
9528
9529  // FIXME: Add all the various semantics of linkage specifications
9530
9531  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9532                                               ExternLoc, LangLoc, Language);
9533  CurContext->addDecl(D);
9534  PushDeclContext(S, D);
9535  return D;
9536}
9537
9538/// ActOnFinishLinkageSpecification - Complete the definition of
9539/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9540/// valid, it's the position of the closing '}' brace in a linkage
9541/// specification that uses braces.
9542Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9543                                            Decl *LinkageSpec,
9544                                            SourceLocation RBraceLoc) {
9545  if (LinkageSpec) {
9546    if (RBraceLoc.isValid()) {
9547      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9548      LSDecl->setRBraceLoc(RBraceLoc);
9549    }
9550    PopDeclContext();
9551  }
9552  return LinkageSpec;
9553}
9554
9555/// \brief Perform semantic analysis for the variable declaration that
9556/// occurs within a C++ catch clause, returning the newly-created
9557/// variable.
9558VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9559                                         TypeSourceInfo *TInfo,
9560                                         SourceLocation StartLoc,
9561                                         SourceLocation Loc,
9562                                         IdentifierInfo *Name) {
9563  bool Invalid = false;
9564  QualType ExDeclType = TInfo->getType();
9565
9566  // Arrays and functions decay.
9567  if (ExDeclType->isArrayType())
9568    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9569  else if (ExDeclType->isFunctionType())
9570    ExDeclType = Context.getPointerType(ExDeclType);
9571
9572  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9573  // The exception-declaration shall not denote a pointer or reference to an
9574  // incomplete type, other than [cv] void*.
9575  // N2844 forbids rvalue references.
9576  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9577    Diag(Loc, diag::err_catch_rvalue_ref);
9578    Invalid = true;
9579  }
9580
9581  QualType BaseType = ExDeclType;
9582  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9583  unsigned DK = diag::err_catch_incomplete;
9584  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9585    BaseType = Ptr->getPointeeType();
9586    Mode = 1;
9587    DK = diag::err_catch_incomplete_ptr;
9588  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9589    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9590    BaseType = Ref->getPointeeType();
9591    Mode = 2;
9592    DK = diag::err_catch_incomplete_ref;
9593  }
9594  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9595      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9596    Invalid = true;
9597
9598  if (!Invalid && !ExDeclType->isDependentType() &&
9599      RequireNonAbstractType(Loc, ExDeclType,
9600                             diag::err_abstract_type_in_decl,
9601                             AbstractVariableType))
9602    Invalid = true;
9603
9604  // Only the non-fragile NeXT runtime currently supports C++ catches
9605  // of ObjC types, and no runtime supports catching ObjC types by value.
9606  if (!Invalid && getLangOpts().ObjC1) {
9607    QualType T = ExDeclType;
9608    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9609      T = RT->getPointeeType();
9610
9611    if (T->isObjCObjectType()) {
9612      Diag(Loc, diag::err_objc_object_catch);
9613      Invalid = true;
9614    } else if (T->isObjCObjectPointerType()) {
9615      if (!getLangOpts().ObjCNonFragileABI)
9616        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9617    }
9618  }
9619
9620  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9621                                    ExDeclType, TInfo, SC_None, SC_None);
9622  ExDecl->setExceptionVariable(true);
9623
9624  // In ARC, infer 'retaining' for variables of retainable type.
9625  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9626    Invalid = true;
9627
9628  if (!Invalid && !ExDeclType->isDependentType()) {
9629    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9630      // C++ [except.handle]p16:
9631      //   The object declared in an exception-declaration or, if the
9632      //   exception-declaration does not specify a name, a temporary (12.2) is
9633      //   copy-initialized (8.5) from the exception object. [...]
9634      //   The object is destroyed when the handler exits, after the destruction
9635      //   of any automatic objects initialized within the handler.
9636      //
9637      // We just pretend to initialize the object with itself, then make sure
9638      // it can be destroyed later.
9639      QualType initType = ExDeclType;
9640
9641      InitializedEntity entity =
9642        InitializedEntity::InitializeVariable(ExDecl);
9643      InitializationKind initKind =
9644        InitializationKind::CreateCopy(Loc, SourceLocation());
9645
9646      Expr *opaqueValue =
9647        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9648      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9649      ExprResult result = sequence.Perform(*this, entity, initKind,
9650                                           MultiExprArg(&opaqueValue, 1));
9651      if (result.isInvalid())
9652        Invalid = true;
9653      else {
9654        // If the constructor used was non-trivial, set this as the
9655        // "initializer".
9656        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9657        if (!construct->getConstructor()->isTrivial()) {
9658          Expr *init = MaybeCreateExprWithCleanups(construct);
9659          ExDecl->setInit(init);
9660        }
9661
9662        // And make sure it's destructable.
9663        FinalizeVarWithDestructor(ExDecl, recordType);
9664      }
9665    }
9666  }
9667
9668  if (Invalid)
9669    ExDecl->setInvalidDecl();
9670
9671  return ExDecl;
9672}
9673
9674/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9675/// handler.
9676Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9677  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9678  bool Invalid = D.isInvalidType();
9679
9680  // Check for unexpanded parameter packs.
9681  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9682                                               UPPC_ExceptionType)) {
9683    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9684                                             D.getIdentifierLoc());
9685    Invalid = true;
9686  }
9687
9688  IdentifierInfo *II = D.getIdentifier();
9689  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9690                                             LookupOrdinaryName,
9691                                             ForRedeclaration)) {
9692    // The scope should be freshly made just for us. There is just no way
9693    // it contains any previous declaration.
9694    assert(!S->isDeclScope(PrevDecl));
9695    if (PrevDecl->isTemplateParameter()) {
9696      // Maybe we will complain about the shadowed template parameter.
9697      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9698      PrevDecl = 0;
9699    }
9700  }
9701
9702  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9703    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9704      << D.getCXXScopeSpec().getRange();
9705    Invalid = true;
9706  }
9707
9708  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9709                                              D.getLocStart(),
9710                                              D.getIdentifierLoc(),
9711                                              D.getIdentifier());
9712  if (Invalid)
9713    ExDecl->setInvalidDecl();
9714
9715  // Add the exception declaration into this scope.
9716  if (II)
9717    PushOnScopeChains(ExDecl, S);
9718  else
9719    CurContext->addDecl(ExDecl);
9720
9721  ProcessDeclAttributes(S, ExDecl, D);
9722  return ExDecl;
9723}
9724
9725Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9726                                         Expr *AssertExpr,
9727                                         Expr *AssertMessageExpr_,
9728                                         SourceLocation RParenLoc) {
9729  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9730
9731  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9732    // In a static_assert-declaration, the constant-expression shall be a
9733    // constant expression that can be contextually converted to bool.
9734    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9735    if (Converted.isInvalid())
9736      return 0;
9737
9738    llvm::APSInt Cond;
9739    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9740          diag::err_static_assert_expression_is_not_constant,
9741          /*AllowFold=*/false).isInvalid())
9742      return 0;
9743
9744    if (!Cond) {
9745      llvm::SmallString<256> MsgBuffer;
9746      llvm::raw_svector_ostream Msg(MsgBuffer);
9747      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9748      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9749        << Msg.str() << AssertExpr->getSourceRange();
9750    }
9751  }
9752
9753  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9754    return 0;
9755
9756  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9757                                        AssertExpr, AssertMessage, RParenLoc);
9758
9759  CurContext->addDecl(Decl);
9760  return Decl;
9761}
9762
9763/// \brief Perform semantic analysis of the given friend type declaration.
9764///
9765/// \returns A friend declaration that.
9766FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9767                                      SourceLocation FriendLoc,
9768                                      TypeSourceInfo *TSInfo) {
9769  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9770
9771  QualType T = TSInfo->getType();
9772  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9773
9774  // C++03 [class.friend]p2:
9775  //   An elaborated-type-specifier shall be used in a friend declaration
9776  //   for a class.*
9777  //
9778  //   * The class-key of the elaborated-type-specifier is required.
9779  if (!ActiveTemplateInstantiations.empty()) {
9780    // Do not complain about the form of friend template types during
9781    // template instantiation; we will already have complained when the
9782    // template was declared.
9783  } else if (!T->isElaboratedTypeSpecifier()) {
9784    // If we evaluated the type to a record type, suggest putting
9785    // a tag in front.
9786    if (const RecordType *RT = T->getAs<RecordType>()) {
9787      RecordDecl *RD = RT->getDecl();
9788
9789      std::string InsertionText = std::string(" ") + RD->getKindName();
9790
9791      Diag(TypeRange.getBegin(),
9792           getLangOpts().CPlusPlus0x ?
9793             diag::warn_cxx98_compat_unelaborated_friend_type :
9794             diag::ext_unelaborated_friend_type)
9795        << (unsigned) RD->getTagKind()
9796        << T
9797        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9798                                      InsertionText);
9799    } else {
9800      Diag(FriendLoc,
9801           getLangOpts().CPlusPlus0x ?
9802             diag::warn_cxx98_compat_nonclass_type_friend :
9803             diag::ext_nonclass_type_friend)
9804        << T
9805        << SourceRange(FriendLoc, TypeRange.getEnd());
9806    }
9807  } else if (T->getAs<EnumType>()) {
9808    Diag(FriendLoc,
9809         getLangOpts().CPlusPlus0x ?
9810           diag::warn_cxx98_compat_enum_friend :
9811           diag::ext_enum_friend)
9812      << T
9813      << SourceRange(FriendLoc, TypeRange.getEnd());
9814  }
9815
9816  // C++0x [class.friend]p3:
9817  //   If the type specifier in a friend declaration designates a (possibly
9818  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9819  //   the friend declaration is ignored.
9820
9821  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9822  // in [class.friend]p3 that we do not implement.
9823
9824  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9825}
9826
9827/// Handle a friend tag declaration where the scope specifier was
9828/// templated.
9829Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9830                                    unsigned TagSpec, SourceLocation TagLoc,
9831                                    CXXScopeSpec &SS,
9832                                    IdentifierInfo *Name, SourceLocation NameLoc,
9833                                    AttributeList *Attr,
9834                                    MultiTemplateParamsArg TempParamLists) {
9835  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9836
9837  bool isExplicitSpecialization = false;
9838  bool Invalid = false;
9839
9840  if (TemplateParameterList *TemplateParams
9841        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9842                                                  TempParamLists.get(),
9843                                                  TempParamLists.size(),
9844                                                  /*friend*/ true,
9845                                                  isExplicitSpecialization,
9846                                                  Invalid)) {
9847    if (TemplateParams->size() > 0) {
9848      // This is a declaration of a class template.
9849      if (Invalid)
9850        return 0;
9851
9852      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9853                                SS, Name, NameLoc, Attr,
9854                                TemplateParams, AS_public,
9855                                /*ModulePrivateLoc=*/SourceLocation(),
9856                                TempParamLists.size() - 1,
9857                   (TemplateParameterList**) TempParamLists.release()).take();
9858    } else {
9859      // The "template<>" header is extraneous.
9860      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9861        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9862      isExplicitSpecialization = true;
9863    }
9864  }
9865
9866  if (Invalid) return 0;
9867
9868  bool isAllExplicitSpecializations = true;
9869  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9870    if (TempParamLists.get()[I]->size()) {
9871      isAllExplicitSpecializations = false;
9872      break;
9873    }
9874  }
9875
9876  // FIXME: don't ignore attributes.
9877
9878  // If it's explicit specializations all the way down, just forget
9879  // about the template header and build an appropriate non-templated
9880  // friend.  TODO: for source fidelity, remember the headers.
9881  if (isAllExplicitSpecializations) {
9882    if (SS.isEmpty()) {
9883      bool Owned = false;
9884      bool IsDependent = false;
9885      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9886                      Attr, AS_public,
9887                      /*ModulePrivateLoc=*/SourceLocation(),
9888                      MultiTemplateParamsArg(), Owned, IsDependent,
9889                      /*ScopedEnumKWLoc=*/SourceLocation(),
9890                      /*ScopedEnumUsesClassTag=*/false,
9891                      /*UnderlyingType=*/TypeResult());
9892    }
9893
9894    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9895    ElaboratedTypeKeyword Keyword
9896      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9897    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9898                                   *Name, NameLoc);
9899    if (T.isNull())
9900      return 0;
9901
9902    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9903    if (isa<DependentNameType>(T)) {
9904      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9905      TL.setElaboratedKeywordLoc(TagLoc);
9906      TL.setQualifierLoc(QualifierLoc);
9907      TL.setNameLoc(NameLoc);
9908    } else {
9909      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9910      TL.setElaboratedKeywordLoc(TagLoc);
9911      TL.setQualifierLoc(QualifierLoc);
9912      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9913    }
9914
9915    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9916                                            TSI, FriendLoc);
9917    Friend->setAccess(AS_public);
9918    CurContext->addDecl(Friend);
9919    return Friend;
9920  }
9921
9922  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9923
9924
9925
9926  // Handle the case of a templated-scope friend class.  e.g.
9927  //   template <class T> class A<T>::B;
9928  // FIXME: we don't support these right now.
9929  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9930  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9931  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9932  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9933  TL.setElaboratedKeywordLoc(TagLoc);
9934  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9935  TL.setNameLoc(NameLoc);
9936
9937  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9938                                          TSI, FriendLoc);
9939  Friend->setAccess(AS_public);
9940  Friend->setUnsupportedFriend(true);
9941  CurContext->addDecl(Friend);
9942  return Friend;
9943}
9944
9945
9946/// Handle a friend type declaration.  This works in tandem with
9947/// ActOnTag.
9948///
9949/// Notes on friend class templates:
9950///
9951/// We generally treat friend class declarations as if they were
9952/// declaring a class.  So, for example, the elaborated type specifier
9953/// in a friend declaration is required to obey the restrictions of a
9954/// class-head (i.e. no typedefs in the scope chain), template
9955/// parameters are required to match up with simple template-ids, &c.
9956/// However, unlike when declaring a template specialization, it's
9957/// okay to refer to a template specialization without an empty
9958/// template parameter declaration, e.g.
9959///   friend class A<T>::B<unsigned>;
9960/// We permit this as a special case; if there are any template
9961/// parameters present at all, require proper matching, i.e.
9962///   template <> template <class T> friend class A<int>::B;
9963Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9964                                MultiTemplateParamsArg TempParams) {
9965  SourceLocation Loc = DS.getLocStart();
9966
9967  assert(DS.isFriendSpecified());
9968  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9969
9970  // Try to convert the decl specifier to a type.  This works for
9971  // friend templates because ActOnTag never produces a ClassTemplateDecl
9972  // for a TUK_Friend.
9973  Declarator TheDeclarator(DS, Declarator::MemberContext);
9974  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9975  QualType T = TSI->getType();
9976  if (TheDeclarator.isInvalidType())
9977    return 0;
9978
9979  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9980    return 0;
9981
9982  // This is definitely an error in C++98.  It's probably meant to
9983  // be forbidden in C++0x, too, but the specification is just
9984  // poorly written.
9985  //
9986  // The problem is with declarations like the following:
9987  //   template <T> friend A<T>::foo;
9988  // where deciding whether a class C is a friend or not now hinges
9989  // on whether there exists an instantiation of A that causes
9990  // 'foo' to equal C.  There are restrictions on class-heads
9991  // (which we declare (by fiat) elaborated friend declarations to
9992  // be) that makes this tractable.
9993  //
9994  // FIXME: handle "template <> friend class A<T>;", which
9995  // is possibly well-formed?  Who even knows?
9996  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9997    Diag(Loc, diag::err_tagless_friend_type_template)
9998      << DS.getSourceRange();
9999    return 0;
10000  }
10001
10002  // C++98 [class.friend]p1: A friend of a class is a function
10003  //   or class that is not a member of the class . . .
10004  // This is fixed in DR77, which just barely didn't make the C++03
10005  // deadline.  It's also a very silly restriction that seriously
10006  // affects inner classes and which nobody else seems to implement;
10007  // thus we never diagnose it, not even in -pedantic.
10008  //
10009  // But note that we could warn about it: it's always useless to
10010  // friend one of your own members (it's not, however, worthless to
10011  // friend a member of an arbitrary specialization of your template).
10012
10013  Decl *D;
10014  if (unsigned NumTempParamLists = TempParams.size())
10015    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10016                                   NumTempParamLists,
10017                                   TempParams.release(),
10018                                   TSI,
10019                                   DS.getFriendSpecLoc());
10020  else
10021    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10022
10023  if (!D)
10024    return 0;
10025
10026  D->setAccess(AS_public);
10027  CurContext->addDecl(D);
10028
10029  return D;
10030}
10031
10032Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10033                                    MultiTemplateParamsArg TemplateParams) {
10034  const DeclSpec &DS = D.getDeclSpec();
10035
10036  assert(DS.isFriendSpecified());
10037  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10038
10039  SourceLocation Loc = D.getIdentifierLoc();
10040  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10041
10042  // C++ [class.friend]p1
10043  //   A friend of a class is a function or class....
10044  // Note that this sees through typedefs, which is intended.
10045  // It *doesn't* see through dependent types, which is correct
10046  // according to [temp.arg.type]p3:
10047  //   If a declaration acquires a function type through a
10048  //   type dependent on a template-parameter and this causes
10049  //   a declaration that does not use the syntactic form of a
10050  //   function declarator to have a function type, the program
10051  //   is ill-formed.
10052  if (!TInfo->getType()->isFunctionType()) {
10053    Diag(Loc, diag::err_unexpected_friend);
10054
10055    // It might be worthwhile to try to recover by creating an
10056    // appropriate declaration.
10057    return 0;
10058  }
10059
10060  // C++ [namespace.memdef]p3
10061  //  - If a friend declaration in a non-local class first declares a
10062  //    class or function, the friend class or function is a member
10063  //    of the innermost enclosing namespace.
10064  //  - The name of the friend is not found by simple name lookup
10065  //    until a matching declaration is provided in that namespace
10066  //    scope (either before or after the class declaration granting
10067  //    friendship).
10068  //  - If a friend function is called, its name may be found by the
10069  //    name lookup that considers functions from namespaces and
10070  //    classes associated with the types of the function arguments.
10071  //  - When looking for a prior declaration of a class or a function
10072  //    declared as a friend, scopes outside the innermost enclosing
10073  //    namespace scope are not considered.
10074
10075  CXXScopeSpec &SS = D.getCXXScopeSpec();
10076  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10077  DeclarationName Name = NameInfo.getName();
10078  assert(Name);
10079
10080  // Check for unexpanded parameter packs.
10081  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10082      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10083      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10084    return 0;
10085
10086  // The context we found the declaration in, or in which we should
10087  // create the declaration.
10088  DeclContext *DC;
10089  Scope *DCScope = S;
10090  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10091                        ForRedeclaration);
10092
10093  // FIXME: there are different rules in local classes
10094
10095  // There are four cases here.
10096  //   - There's no scope specifier, in which case we just go to the
10097  //     appropriate scope and look for a function or function template
10098  //     there as appropriate.
10099  // Recover from invalid scope qualifiers as if they just weren't there.
10100  if (SS.isInvalid() || !SS.isSet()) {
10101    // C++0x [namespace.memdef]p3:
10102    //   If the name in a friend declaration is neither qualified nor
10103    //   a template-id and the declaration is a function or an
10104    //   elaborated-type-specifier, the lookup to determine whether
10105    //   the entity has been previously declared shall not consider
10106    //   any scopes outside the innermost enclosing namespace.
10107    // C++0x [class.friend]p11:
10108    //   If a friend declaration appears in a local class and the name
10109    //   specified is an unqualified name, a prior declaration is
10110    //   looked up without considering scopes that are outside the
10111    //   innermost enclosing non-class scope. For a friend function
10112    //   declaration, if there is no prior declaration, the program is
10113    //   ill-formed.
10114    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10115    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10116
10117    // Find the appropriate context according to the above.
10118    DC = CurContext;
10119    while (true) {
10120      // Skip class contexts.  If someone can cite chapter and verse
10121      // for this behavior, that would be nice --- it's what GCC and
10122      // EDG do, and it seems like a reasonable intent, but the spec
10123      // really only says that checks for unqualified existing
10124      // declarations should stop at the nearest enclosing namespace,
10125      // not that they should only consider the nearest enclosing
10126      // namespace.
10127      while (DC->isRecord() || DC->isTransparentContext())
10128        DC = DC->getParent();
10129
10130      LookupQualifiedName(Previous, DC);
10131
10132      // TODO: decide what we think about using declarations.
10133      if (isLocal || !Previous.empty())
10134        break;
10135
10136      if (isTemplateId) {
10137        if (isa<TranslationUnitDecl>(DC)) break;
10138      } else {
10139        if (DC->isFileContext()) break;
10140      }
10141      DC = DC->getParent();
10142    }
10143
10144    // C++ [class.friend]p1: A friend of a class is a function or
10145    //   class that is not a member of the class . . .
10146    // C++11 changes this for both friend types and functions.
10147    // Most C++ 98 compilers do seem to give an error here, so
10148    // we do, too.
10149    if (!Previous.empty() && DC->Equals(CurContext))
10150      Diag(DS.getFriendSpecLoc(),
10151           getLangOpts().CPlusPlus0x ?
10152             diag::warn_cxx98_compat_friend_is_member :
10153             diag::err_friend_is_member);
10154
10155    DCScope = getScopeForDeclContext(S, DC);
10156
10157    // C++ [class.friend]p6:
10158    //   A function can be defined in a friend declaration of a class if and
10159    //   only if the class is a non-local class (9.8), the function name is
10160    //   unqualified, and the function has namespace scope.
10161    if (isLocal && D.isFunctionDefinition()) {
10162      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10163    }
10164
10165  //   - There's a non-dependent scope specifier, in which case we
10166  //     compute it and do a previous lookup there for a function
10167  //     or function template.
10168  } else if (!SS.getScopeRep()->isDependent()) {
10169    DC = computeDeclContext(SS);
10170    if (!DC) return 0;
10171
10172    if (RequireCompleteDeclContext(SS, DC)) return 0;
10173
10174    LookupQualifiedName(Previous, DC);
10175
10176    // Ignore things found implicitly in the wrong scope.
10177    // TODO: better diagnostics for this case.  Suggesting the right
10178    // qualified scope would be nice...
10179    LookupResult::Filter F = Previous.makeFilter();
10180    while (F.hasNext()) {
10181      NamedDecl *D = F.next();
10182      if (!DC->InEnclosingNamespaceSetOf(
10183              D->getDeclContext()->getRedeclContext()))
10184        F.erase();
10185    }
10186    F.done();
10187
10188    if (Previous.empty()) {
10189      D.setInvalidType();
10190      Diag(Loc, diag::err_qualified_friend_not_found)
10191          << Name << TInfo->getType();
10192      return 0;
10193    }
10194
10195    // C++ [class.friend]p1: A friend of a class is a function or
10196    //   class that is not a member of the class . . .
10197    if (DC->Equals(CurContext))
10198      Diag(DS.getFriendSpecLoc(),
10199           getLangOpts().CPlusPlus0x ?
10200             diag::warn_cxx98_compat_friend_is_member :
10201             diag::err_friend_is_member);
10202
10203    if (D.isFunctionDefinition()) {
10204      // C++ [class.friend]p6:
10205      //   A function can be defined in a friend declaration of a class if and
10206      //   only if the class is a non-local class (9.8), the function name is
10207      //   unqualified, and the function has namespace scope.
10208      SemaDiagnosticBuilder DB
10209        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10210
10211      DB << SS.getScopeRep();
10212      if (DC->isFileContext())
10213        DB << FixItHint::CreateRemoval(SS.getRange());
10214      SS.clear();
10215    }
10216
10217  //   - There's a scope specifier that does not match any template
10218  //     parameter lists, in which case we use some arbitrary context,
10219  //     create a method or method template, and wait for instantiation.
10220  //   - There's a scope specifier that does match some template
10221  //     parameter lists, which we don't handle right now.
10222  } else {
10223    if (D.isFunctionDefinition()) {
10224      // C++ [class.friend]p6:
10225      //   A function can be defined in a friend declaration of a class if and
10226      //   only if the class is a non-local class (9.8), the function name is
10227      //   unqualified, and the function has namespace scope.
10228      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10229        << SS.getScopeRep();
10230    }
10231
10232    DC = CurContext;
10233    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10234  }
10235
10236  if (!DC->isRecord()) {
10237    // This implies that it has to be an operator or function.
10238    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10239        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10240        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10241      Diag(Loc, diag::err_introducing_special_friend) <<
10242        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10243         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10244      return 0;
10245    }
10246  }
10247
10248  // FIXME: This is an egregious hack to cope with cases where the scope stack
10249  // does not contain the declaration context, i.e., in an out-of-line
10250  // definition of a class.
10251  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10252  if (!DCScope) {
10253    FakeDCScope.setEntity(DC);
10254    DCScope = &FakeDCScope;
10255  }
10256
10257  bool AddToScope = true;
10258  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10259                                          move(TemplateParams), AddToScope);
10260  if (!ND) return 0;
10261
10262  assert(ND->getDeclContext() == DC);
10263  assert(ND->getLexicalDeclContext() == CurContext);
10264
10265  // Add the function declaration to the appropriate lookup tables,
10266  // adjusting the redeclarations list as necessary.  We don't
10267  // want to do this yet if the friending class is dependent.
10268  //
10269  // Also update the scope-based lookup if the target context's
10270  // lookup context is in lexical scope.
10271  if (!CurContext->isDependentContext()) {
10272    DC = DC->getRedeclContext();
10273    DC->makeDeclVisibleInContext(ND);
10274    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10275      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10276  }
10277
10278  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10279                                       D.getIdentifierLoc(), ND,
10280                                       DS.getFriendSpecLoc());
10281  FrD->setAccess(AS_public);
10282  CurContext->addDecl(FrD);
10283
10284  if (ND->isInvalidDecl())
10285    FrD->setInvalidDecl();
10286  else {
10287    FunctionDecl *FD;
10288    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10289      FD = FTD->getTemplatedDecl();
10290    else
10291      FD = cast<FunctionDecl>(ND);
10292
10293    // Mark templated-scope function declarations as unsupported.
10294    if (FD->getNumTemplateParameterLists())
10295      FrD->setUnsupportedFriend(true);
10296  }
10297
10298  return ND;
10299}
10300
10301void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10302  AdjustDeclIfTemplate(Dcl);
10303
10304  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10305  if (!Fn) {
10306    Diag(DelLoc, diag::err_deleted_non_function);
10307    return;
10308  }
10309  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10310    Diag(DelLoc, diag::err_deleted_decl_not_first);
10311    Diag(Prev->getLocation(), diag::note_previous_declaration);
10312    // If the declaration wasn't the first, we delete the function anyway for
10313    // recovery.
10314  }
10315  Fn->setDeletedAsWritten();
10316
10317  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10318  if (!MD)
10319    return;
10320
10321  // A deleted special member function is trivial if the corresponding
10322  // implicitly-declared function would have been.
10323  switch (getSpecialMember(MD)) {
10324  case CXXInvalid:
10325    break;
10326  case CXXDefaultConstructor:
10327    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10328    break;
10329  case CXXCopyConstructor:
10330    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10331    break;
10332  case CXXMoveConstructor:
10333    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10334    break;
10335  case CXXCopyAssignment:
10336    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10337    break;
10338  case CXXMoveAssignment:
10339    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10340    break;
10341  case CXXDestructor:
10342    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10343    break;
10344  }
10345}
10346
10347void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10348  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10349
10350  if (MD) {
10351    if (MD->getParent()->isDependentType()) {
10352      MD->setDefaulted();
10353      MD->setExplicitlyDefaulted();
10354      return;
10355    }
10356
10357    CXXSpecialMember Member = getSpecialMember(MD);
10358    if (Member == CXXInvalid) {
10359      Diag(DefaultLoc, diag::err_default_special_members);
10360      return;
10361    }
10362
10363    MD->setDefaulted();
10364    MD->setExplicitlyDefaulted();
10365
10366    // If this definition appears within the record, do the checking when
10367    // the record is complete.
10368    const FunctionDecl *Primary = MD;
10369    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10370      // Find the uninstantiated declaration that actually had the '= default'
10371      // on it.
10372      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10373
10374    if (Primary == Primary->getCanonicalDecl())
10375      return;
10376
10377    switch (Member) {
10378    case CXXDefaultConstructor: {
10379      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10380      CheckExplicitlyDefaultedSpecialMember(CD);
10381      if (!CD->isInvalidDecl())
10382        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10383      break;
10384    }
10385
10386    case CXXCopyConstructor: {
10387      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10388      CheckExplicitlyDefaultedSpecialMember(CD);
10389      if (!CD->isInvalidDecl())
10390        DefineImplicitCopyConstructor(DefaultLoc, CD);
10391      break;
10392    }
10393
10394    case CXXCopyAssignment: {
10395      CheckExplicitlyDefaultedSpecialMember(MD);
10396      if (!MD->isInvalidDecl())
10397        DefineImplicitCopyAssignment(DefaultLoc, MD);
10398      break;
10399    }
10400
10401    case CXXDestructor: {
10402      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10403      CheckExplicitlyDefaultedSpecialMember(DD);
10404      if (!DD->isInvalidDecl())
10405        DefineImplicitDestructor(DefaultLoc, DD);
10406      break;
10407    }
10408
10409    case CXXMoveConstructor: {
10410      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10411      CheckExplicitlyDefaultedSpecialMember(CD);
10412      if (!CD->isInvalidDecl())
10413        DefineImplicitMoveConstructor(DefaultLoc, CD);
10414      break;
10415    }
10416
10417    case CXXMoveAssignment: {
10418      CheckExplicitlyDefaultedSpecialMember(MD);
10419      if (!MD->isInvalidDecl())
10420        DefineImplicitMoveAssignment(DefaultLoc, MD);
10421      break;
10422    }
10423
10424    case CXXInvalid:
10425      llvm_unreachable("Invalid special member.");
10426    }
10427  } else {
10428    Diag(DefaultLoc, diag::err_default_special_members);
10429  }
10430}
10431
10432static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10433  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10434    Stmt *SubStmt = *CI;
10435    if (!SubStmt)
10436      continue;
10437    if (isa<ReturnStmt>(SubStmt))
10438      Self.Diag(SubStmt->getLocStart(),
10439           diag::err_return_in_constructor_handler);
10440    if (!isa<Expr>(SubStmt))
10441      SearchForReturnInStmt(Self, SubStmt);
10442  }
10443}
10444
10445void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10446  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10447    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10448    SearchForReturnInStmt(*this, Handler);
10449  }
10450}
10451
10452bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10453                                             const CXXMethodDecl *Old) {
10454  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10455  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10456
10457  if (Context.hasSameType(NewTy, OldTy) ||
10458      NewTy->isDependentType() || OldTy->isDependentType())
10459    return false;
10460
10461  // Check if the return types are covariant
10462  QualType NewClassTy, OldClassTy;
10463
10464  /// Both types must be pointers or references to classes.
10465  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10466    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10467      NewClassTy = NewPT->getPointeeType();
10468      OldClassTy = OldPT->getPointeeType();
10469    }
10470  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10471    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10472      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10473        NewClassTy = NewRT->getPointeeType();
10474        OldClassTy = OldRT->getPointeeType();
10475      }
10476    }
10477  }
10478
10479  // The return types aren't either both pointers or references to a class type.
10480  if (NewClassTy.isNull()) {
10481    Diag(New->getLocation(),
10482         diag::err_different_return_type_for_overriding_virtual_function)
10483      << New->getDeclName() << NewTy << OldTy;
10484    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10485
10486    return true;
10487  }
10488
10489  // C++ [class.virtual]p6:
10490  //   If the return type of D::f differs from the return type of B::f, the
10491  //   class type in the return type of D::f shall be complete at the point of
10492  //   declaration of D::f or shall be the class type D.
10493  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10494    if (!RT->isBeingDefined() &&
10495        RequireCompleteType(New->getLocation(), NewClassTy,
10496                            diag::err_covariant_return_incomplete,
10497                            New->getDeclName()))
10498    return true;
10499  }
10500
10501  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10502    // Check if the new class derives from the old class.
10503    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10504      Diag(New->getLocation(),
10505           diag::err_covariant_return_not_derived)
10506      << New->getDeclName() << NewTy << OldTy;
10507      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10508      return true;
10509    }
10510
10511    // Check if we the conversion from derived to base is valid.
10512    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10513                    diag::err_covariant_return_inaccessible_base,
10514                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10515                    // FIXME: Should this point to the return type?
10516                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10517      // FIXME: this note won't trigger for delayed access control
10518      // diagnostics, and it's impossible to get an undelayed error
10519      // here from access control during the original parse because
10520      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10521      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10522      return true;
10523    }
10524  }
10525
10526  // The qualifiers of the return types must be the same.
10527  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10528    Diag(New->getLocation(),
10529         diag::err_covariant_return_type_different_qualifications)
10530    << New->getDeclName() << NewTy << OldTy;
10531    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10532    return true;
10533  };
10534
10535
10536  // The new class type must have the same or less qualifiers as the old type.
10537  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10538    Diag(New->getLocation(),
10539         diag::err_covariant_return_type_class_type_more_qualified)
10540    << New->getDeclName() << NewTy << OldTy;
10541    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10542    return true;
10543  };
10544
10545  return false;
10546}
10547
10548/// \brief Mark the given method pure.
10549///
10550/// \param Method the method to be marked pure.
10551///
10552/// \param InitRange the source range that covers the "0" initializer.
10553bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10554  SourceLocation EndLoc = InitRange.getEnd();
10555  if (EndLoc.isValid())
10556    Method->setRangeEnd(EndLoc);
10557
10558  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10559    Method->setPure();
10560    return false;
10561  }
10562
10563  if (!Method->isInvalidDecl())
10564    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10565      << Method->getDeclName() << InitRange;
10566  return true;
10567}
10568
10569/// \brief Determine whether the given declaration is a static data member.
10570static bool isStaticDataMember(Decl *D) {
10571  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10572  if (!Var)
10573    return false;
10574
10575  return Var->isStaticDataMember();
10576}
10577/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10578/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10579/// is a fresh scope pushed for just this purpose.
10580///
10581/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10582/// static data member of class X, names should be looked up in the scope of
10583/// class X.
10584void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10585  // If there is no declaration, there was an error parsing it.
10586  if (D == 0 || D->isInvalidDecl()) return;
10587
10588  // We should only get called for declarations with scope specifiers, like:
10589  //   int foo::bar;
10590  assert(D->isOutOfLine());
10591  EnterDeclaratorContext(S, D->getDeclContext());
10592
10593  // If we are parsing the initializer for a static data member, push a
10594  // new expression evaluation context that is associated with this static
10595  // data member.
10596  if (isStaticDataMember(D))
10597    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10598}
10599
10600/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10601/// initializer for the out-of-line declaration 'D'.
10602void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10603  // If there is no declaration, there was an error parsing it.
10604  if (D == 0 || D->isInvalidDecl()) return;
10605
10606  if (isStaticDataMember(D))
10607    PopExpressionEvaluationContext();
10608
10609  assert(D->isOutOfLine());
10610  ExitDeclaratorContext(S);
10611}
10612
10613/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10614/// C++ if/switch/while/for statement.
10615/// e.g: "if (int x = f()) {...}"
10616DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10617  // C++ 6.4p2:
10618  // The declarator shall not specify a function or an array.
10619  // The type-specifier-seq shall not contain typedef and shall not declare a
10620  // new class or enumeration.
10621  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10622         "Parser allowed 'typedef' as storage class of condition decl.");
10623
10624  Decl *Dcl = ActOnDeclarator(S, D);
10625  if (!Dcl)
10626    return true;
10627
10628  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10629    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10630      << D.getSourceRange();
10631    return true;
10632  }
10633
10634  return Dcl;
10635}
10636
10637void Sema::LoadExternalVTableUses() {
10638  if (!ExternalSource)
10639    return;
10640
10641  SmallVector<ExternalVTableUse, 4> VTables;
10642  ExternalSource->ReadUsedVTables(VTables);
10643  SmallVector<VTableUse, 4> NewUses;
10644  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10645    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10646      = VTablesUsed.find(VTables[I].Record);
10647    // Even if a definition wasn't required before, it may be required now.
10648    if (Pos != VTablesUsed.end()) {
10649      if (!Pos->second && VTables[I].DefinitionRequired)
10650        Pos->second = true;
10651      continue;
10652    }
10653
10654    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10655    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10656  }
10657
10658  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10659}
10660
10661void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10662                          bool DefinitionRequired) {
10663  // Ignore any vtable uses in unevaluated operands or for classes that do
10664  // not have a vtable.
10665  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10666      CurContext->isDependentContext() ||
10667      ExprEvalContexts.back().Context == Unevaluated)
10668    return;
10669
10670  // Try to insert this class into the map.
10671  LoadExternalVTableUses();
10672  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10673  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10674    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10675  if (!Pos.second) {
10676    // If we already had an entry, check to see if we are promoting this vtable
10677    // to required a definition. If so, we need to reappend to the VTableUses
10678    // list, since we may have already processed the first entry.
10679    if (DefinitionRequired && !Pos.first->second) {
10680      Pos.first->second = true;
10681    } else {
10682      // Otherwise, we can early exit.
10683      return;
10684    }
10685  }
10686
10687  // Local classes need to have their virtual members marked
10688  // immediately. For all other classes, we mark their virtual members
10689  // at the end of the translation unit.
10690  if (Class->isLocalClass())
10691    MarkVirtualMembersReferenced(Loc, Class);
10692  else
10693    VTableUses.push_back(std::make_pair(Class, Loc));
10694}
10695
10696bool Sema::DefineUsedVTables() {
10697  LoadExternalVTableUses();
10698  if (VTableUses.empty())
10699    return false;
10700
10701  // Note: The VTableUses vector could grow as a result of marking
10702  // the members of a class as "used", so we check the size each
10703  // time through the loop and prefer indices (with are stable) to
10704  // iterators (which are not).
10705  bool DefinedAnything = false;
10706  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10707    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10708    if (!Class)
10709      continue;
10710
10711    SourceLocation Loc = VTableUses[I].second;
10712
10713    // If this class has a key function, but that key function is
10714    // defined in another translation unit, we don't need to emit the
10715    // vtable even though we're using it.
10716    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10717    if (KeyFunction && !KeyFunction->hasBody()) {
10718      switch (KeyFunction->getTemplateSpecializationKind()) {
10719      case TSK_Undeclared:
10720      case TSK_ExplicitSpecialization:
10721      case TSK_ExplicitInstantiationDeclaration:
10722        // The key function is in another translation unit.
10723        continue;
10724
10725      case TSK_ExplicitInstantiationDefinition:
10726      case TSK_ImplicitInstantiation:
10727        // We will be instantiating the key function.
10728        break;
10729      }
10730    } else if (!KeyFunction) {
10731      // If we have a class with no key function that is the subject
10732      // of an explicit instantiation declaration, suppress the
10733      // vtable; it will live with the explicit instantiation
10734      // definition.
10735      bool IsExplicitInstantiationDeclaration
10736        = Class->getTemplateSpecializationKind()
10737                                      == TSK_ExplicitInstantiationDeclaration;
10738      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10739                                 REnd = Class->redecls_end();
10740           R != REnd; ++R) {
10741        TemplateSpecializationKind TSK
10742          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10743        if (TSK == TSK_ExplicitInstantiationDeclaration)
10744          IsExplicitInstantiationDeclaration = true;
10745        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10746          IsExplicitInstantiationDeclaration = false;
10747          break;
10748        }
10749      }
10750
10751      if (IsExplicitInstantiationDeclaration)
10752        continue;
10753    }
10754
10755    // Mark all of the virtual members of this class as referenced, so
10756    // that we can build a vtable. Then, tell the AST consumer that a
10757    // vtable for this class is required.
10758    DefinedAnything = true;
10759    MarkVirtualMembersReferenced(Loc, Class);
10760    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10761    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10762
10763    // Optionally warn if we're emitting a weak vtable.
10764    if (Class->getLinkage() == ExternalLinkage &&
10765        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10766      const FunctionDecl *KeyFunctionDef = 0;
10767      if (!KeyFunction ||
10768          (KeyFunction->hasBody(KeyFunctionDef) &&
10769           KeyFunctionDef->isInlined()))
10770        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10771             TSK_ExplicitInstantiationDefinition
10772             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10773          << Class;
10774    }
10775  }
10776  VTableUses.clear();
10777
10778  return DefinedAnything;
10779}
10780
10781void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10782                                        const CXXRecordDecl *RD) {
10783  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10784       e = RD->method_end(); i != e; ++i) {
10785    CXXMethodDecl *MD = *i;
10786
10787    // C++ [basic.def.odr]p2:
10788    //   [...] A virtual member function is used if it is not pure. [...]
10789    if (MD->isVirtual() && !MD->isPure())
10790      MarkFunctionReferenced(Loc, MD);
10791  }
10792
10793  // Only classes that have virtual bases need a VTT.
10794  if (RD->getNumVBases() == 0)
10795    return;
10796
10797  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10798           e = RD->bases_end(); i != e; ++i) {
10799    const CXXRecordDecl *Base =
10800        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10801    if (Base->getNumVBases() == 0)
10802      continue;
10803    MarkVirtualMembersReferenced(Loc, Base);
10804  }
10805}
10806
10807/// SetIvarInitializers - This routine builds initialization ASTs for the
10808/// Objective-C implementation whose ivars need be initialized.
10809void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10810  if (!getLangOpts().CPlusPlus)
10811    return;
10812  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10813    SmallVector<ObjCIvarDecl*, 8> ivars;
10814    CollectIvarsToConstructOrDestruct(OID, ivars);
10815    if (ivars.empty())
10816      return;
10817    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10818    for (unsigned i = 0; i < ivars.size(); i++) {
10819      FieldDecl *Field = ivars[i];
10820      if (Field->isInvalidDecl())
10821        continue;
10822
10823      CXXCtorInitializer *Member;
10824      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10825      InitializationKind InitKind =
10826        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10827
10828      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10829      ExprResult MemberInit =
10830        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10831      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10832      // Note, MemberInit could actually come back empty if no initialization
10833      // is required (e.g., because it would call a trivial default constructor)
10834      if (!MemberInit.get() || MemberInit.isInvalid())
10835        continue;
10836
10837      Member =
10838        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10839                                         SourceLocation(),
10840                                         MemberInit.takeAs<Expr>(),
10841                                         SourceLocation());
10842      AllToInit.push_back(Member);
10843
10844      // Be sure that the destructor is accessible and is marked as referenced.
10845      if (const RecordType *RecordTy
10846                  = Context.getBaseElementType(Field->getType())
10847                                                        ->getAs<RecordType>()) {
10848                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10849        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10850          MarkFunctionReferenced(Field->getLocation(), Destructor);
10851          CheckDestructorAccess(Field->getLocation(), Destructor,
10852                            PDiag(diag::err_access_dtor_ivar)
10853                              << Context.getBaseElementType(Field->getType()));
10854        }
10855      }
10856    }
10857    ObjCImplementation->setIvarInitializers(Context,
10858                                            AllToInit.data(), AllToInit.size());
10859  }
10860}
10861
10862static
10863void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10864                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10865                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10866                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10867                           Sema &S) {
10868  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10869                                                   CE = Current.end();
10870  if (Ctor->isInvalidDecl())
10871    return;
10872
10873  const FunctionDecl *FNTarget = 0;
10874  CXXConstructorDecl *Target;
10875
10876  // We ignore the result here since if we don't have a body, Target will be
10877  // null below.
10878  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10879  Target
10880= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10881
10882  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10883                     // Avoid dereferencing a null pointer here.
10884                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10885
10886  if (!Current.insert(Canonical))
10887    return;
10888
10889  // We know that beyond here, we aren't chaining into a cycle.
10890  if (!Target || !Target->isDelegatingConstructor() ||
10891      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10892    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10893      Valid.insert(*CI);
10894    Current.clear();
10895  // We've hit a cycle.
10896  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10897             Current.count(TCanonical)) {
10898    // If we haven't diagnosed this cycle yet, do so now.
10899    if (!Invalid.count(TCanonical)) {
10900      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10901             diag::warn_delegating_ctor_cycle)
10902        << Ctor;
10903
10904      // Don't add a note for a function delegating directo to itself.
10905      if (TCanonical != Canonical)
10906        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10907
10908      CXXConstructorDecl *C = Target;
10909      while (C->getCanonicalDecl() != Canonical) {
10910        (void)C->getTargetConstructor()->hasBody(FNTarget);
10911        assert(FNTarget && "Ctor cycle through bodiless function");
10912
10913        C
10914       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10915        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10916      }
10917    }
10918
10919    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10920      Invalid.insert(*CI);
10921    Current.clear();
10922  } else {
10923    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10924  }
10925}
10926
10927
10928void Sema::CheckDelegatingCtorCycles() {
10929  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10930
10931  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10932                                                   CE = Current.end();
10933
10934  for (DelegatingCtorDeclsType::iterator
10935         I = DelegatingCtorDecls.begin(ExternalSource),
10936         E = DelegatingCtorDecls.end();
10937       I != E; ++I) {
10938   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10939  }
10940
10941  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10942    (*CI)->setInvalidDecl();
10943}
10944
10945namespace {
10946  /// \brief AST visitor that finds references to the 'this' expression.
10947  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
10948    Sema &S;
10949
10950  public:
10951    explicit FindCXXThisExpr(Sema &S) : S(S) { }
10952
10953    bool VisitCXXThisExpr(CXXThisExpr *E) {
10954      S.Diag(E->getLocation(), diag::err_this_static_member_func)
10955        << E->isImplicit();
10956      return false;
10957    }
10958  };
10959}
10960
10961bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
10962  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10963  if (!TSInfo)
10964    return false;
10965
10966  TypeLoc TL = TSInfo->getTypeLoc();
10967  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
10968  if (!ProtoTL)
10969    return false;
10970
10971  // C++11 [expr.prim.general]p3:
10972  //   [The expression this] shall not appear before the optional
10973  //   cv-qualifier-seq and it shall not appear within the declaration of a
10974  //   static member function (although its type and value category are defined
10975  //   within a static member function as they are within a non-static member
10976  //   function). [ Note: this is because declaration matching does not occur
10977  //  until the complete declarator is known. - end note ]
10978  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
10979  FindCXXThisExpr Finder(*this);
10980
10981  // If the return type came after the cv-qualifier-seq, check it now.
10982  if (Proto->hasTrailingReturn() &&
10983      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
10984    return true;
10985
10986  // Check the exception specification.
10987  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
10988    return true;
10989
10990  return checkThisInStaticMemberFunctionAttributes(Method);
10991}
10992
10993bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
10994  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10995  if (!TSInfo)
10996    return false;
10997
10998  TypeLoc TL = TSInfo->getTypeLoc();
10999  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11000  if (!ProtoTL)
11001    return false;
11002
11003  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11004  FindCXXThisExpr Finder(*this);
11005
11006  switch (Proto->getExceptionSpecType()) {
11007  case EST_Uninstantiated:
11008  case EST_BasicNoexcept:
11009  case EST_Delayed:
11010  case EST_DynamicNone:
11011  case EST_MSAny:
11012  case EST_None:
11013    break;
11014
11015  case EST_ComputedNoexcept:
11016    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11017      return true;
11018
11019  case EST_Dynamic:
11020    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11021         EEnd = Proto->exception_end();
11022         E != EEnd; ++E) {
11023      if (!Finder.TraverseType(*E))
11024        return true;
11025    }
11026    break;
11027  }
11028
11029  return false;
11030}
11031
11032bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11033  FindCXXThisExpr Finder(*this);
11034
11035  // Check attributes.
11036  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11037       A != AEnd; ++A) {
11038    // FIXME: This should be emitted by tblgen.
11039    Expr *Arg = 0;
11040    ArrayRef<Expr *> Args;
11041    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11042      Arg = G->getArg();
11043    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11044      Arg = G->getArg();
11045    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11046      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11047    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11048      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11049    else if (ExclusiveLockFunctionAttr *ELF
11050               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11051      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11052    else if (SharedLockFunctionAttr *SLF
11053               = dyn_cast<SharedLockFunctionAttr>(*A))
11054      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11055    else if (ExclusiveTrylockFunctionAttr *ETLF
11056               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11057      Arg = ETLF->getSuccessValue();
11058      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11059    } else if (SharedTrylockFunctionAttr *STLF
11060                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11061      Arg = STLF->getSuccessValue();
11062      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11063    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11064      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11065    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11066      Arg = LR->getArg();
11067    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11068      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11069    else if (ExclusiveLocksRequiredAttr *ELR
11070               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11071      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11072    else if (SharedLocksRequiredAttr *SLR
11073               = dyn_cast<SharedLocksRequiredAttr>(*A))
11074      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11075
11076    if (Arg && !Finder.TraverseStmt(Arg))
11077      return true;
11078
11079    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11080      if (!Finder.TraverseStmt(Args[I]))
11081        return true;
11082    }
11083  }
11084
11085  return false;
11086}
11087
11088void
11089Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11090                                  ArrayRef<ParsedType> DynamicExceptions,
11091                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11092                                  Expr *NoexceptExpr,
11093                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11094                                  FunctionProtoType::ExtProtoInfo &EPI) {
11095  Exceptions.clear();
11096  EPI.ExceptionSpecType = EST;
11097  if (EST == EST_Dynamic) {
11098    Exceptions.reserve(DynamicExceptions.size());
11099    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11100      // FIXME: Preserve type source info.
11101      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11102
11103      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11104      collectUnexpandedParameterPacks(ET, Unexpanded);
11105      if (!Unexpanded.empty()) {
11106        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11107                                         UPPC_ExceptionType,
11108                                         Unexpanded);
11109        continue;
11110      }
11111
11112      // Check that the type is valid for an exception spec, and
11113      // drop it if not.
11114      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11115        Exceptions.push_back(ET);
11116    }
11117    EPI.NumExceptions = Exceptions.size();
11118    EPI.Exceptions = Exceptions.data();
11119    return;
11120  }
11121
11122  if (EST == EST_ComputedNoexcept) {
11123    // If an error occurred, there's no expression here.
11124    if (NoexceptExpr) {
11125      assert((NoexceptExpr->isTypeDependent() ||
11126              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11127              Context.BoolTy) &&
11128             "Parser should have made sure that the expression is boolean");
11129      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11130        EPI.ExceptionSpecType = EST_BasicNoexcept;
11131        return;
11132      }
11133
11134      if (!NoexceptExpr->isValueDependent())
11135        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11136                         diag::err_noexcept_needs_constant_expression,
11137                         /*AllowFold*/ false).take();
11138      EPI.NoexceptExpr = NoexceptExpr;
11139    }
11140    return;
11141  }
11142}
11143
11144/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11145Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11146  // Implicitly declared functions (e.g. copy constructors) are
11147  // __host__ __device__
11148  if (D->isImplicit())
11149    return CFT_HostDevice;
11150
11151  if (D->hasAttr<CUDAGlobalAttr>())
11152    return CFT_Global;
11153
11154  if (D->hasAttr<CUDADeviceAttr>()) {
11155    if (D->hasAttr<CUDAHostAttr>())
11156      return CFT_HostDevice;
11157    else
11158      return CFT_Device;
11159  }
11160
11161  return CFT_Host;
11162}
11163
11164bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11165                           CUDAFunctionTarget CalleeTarget) {
11166  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11167  // Callable from the device only."
11168  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11169    return true;
11170
11171  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11172  // Callable from the host only."
11173  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11174  // Callable from the host only."
11175  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11176      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11177    return true;
11178
11179  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11180    return true;
11181
11182  return false;
11183}
11184