SemaDeclCXX.cpp revision 78b810559d89e996e00684335407443936ce34a1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                            MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check that the default argument is well-formed
181  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
182  if (DefaultArgChecker.Visit(DefaultArg)) {
183    Param->setInvalidDecl();
184    return;
185  }
186
187  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
188}
189
190/// ActOnParamUnparsedDefaultArgument - We've seen a default
191/// argument for a function parameter, but we can't parse it yet
192/// because we're inside a class definition. Note that this default
193/// argument will be parsed later.
194void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
195                                             SourceLocation EqualLoc,
196                                             SourceLocation ArgLoc) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201  if (Param)
202    Param->setUnparsedDefaultArg();
203
204  UnparsedDefaultArgLocs[Param] = ArgLoc;
205}
206
207/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
208/// the default argument for the parameter param failed.
209void Sema::ActOnParamDefaultArgumentError(Decl *param) {
210  if (!param)
211    return;
212
213  ParmVarDecl *Param = cast<ParmVarDecl>(param);
214
215  Param->setInvalidDecl();
216
217  UnparsedDefaultArgLocs.erase(Param);
218}
219
220/// CheckExtraCXXDefaultArguments - Check for any extra default
221/// arguments in the declarator, which is not a function declaration
222/// or definition and therefore is not permitted to have default
223/// arguments. This routine should be invoked for every declarator
224/// that is not a function declaration or definition.
225void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
226  // C++ [dcl.fct.default]p3
227  //   A default argument expression shall be specified only in the
228  //   parameter-declaration-clause of a function declaration or in a
229  //   template-parameter (14.1). It shall not be specified for a
230  //   parameter pack. If it is specified in a
231  //   parameter-declaration-clause, it shall not occur within a
232  //   declarator or abstract-declarator of a parameter-declaration.
233  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
234    DeclaratorChunk &chunk = D.getTypeObject(i);
235    if (chunk.Kind == DeclaratorChunk::Function) {
236      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
237        ParmVarDecl *Param =
238          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
239        if (Param->hasUnparsedDefaultArg()) {
240          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
241          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
242            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
243          delete Toks;
244          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
245        } else if (Param->getDefaultArg()) {
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << Param->getDefaultArg()->getSourceRange();
248          Param->setDefaultArg(0);
249        }
250      }
251    }
252  }
253}
254
255// MergeCXXFunctionDecl - Merge two declarations of the same C++
256// function, once we already know that they have the same
257// type. Subroutine of MergeFunctionDecl. Returns true if there was an
258// error, false otherwise.
259bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
260  bool Invalid = false;
261
262  // C++ [dcl.fct.default]p4:
263  //   For non-template functions, default arguments can be added in
264  //   later declarations of a function in the same
265  //   scope. Declarations in different scopes have completely
266  //   distinct sets of default arguments. That is, declarations in
267  //   inner scopes do not acquire default arguments from
268  //   declarations in outer scopes, and vice versa. In a given
269  //   function declaration, all parameters subsequent to a
270  //   parameter with a default argument shall have default
271  //   arguments supplied in this or previous declarations. A
272  //   default argument shall not be redefined by a later
273  //   declaration (not even to the same value).
274  //
275  // C++ [dcl.fct.default]p6:
276  //   Except for member functions of class templates, the default arguments
277  //   in a member function definition that appears outside of the class
278  //   definition are added to the set of default arguments provided by the
279  //   member function declaration in the class definition.
280  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
281    ParmVarDecl *OldParam = Old->getParamDecl(p);
282    ParmVarDecl *NewParam = New->getParamDecl(p);
283
284    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
285      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
286      // hint here. Alternatively, we could walk the type-source information
287      // for NewParam to find the last source location in the type... but it
288      // isn't worth the effort right now. This is the kind of test case that
289      // is hard to get right:
290
291      //   int f(int);
292      //   void g(int (*fp)(int) = f);
293      //   void g(int (*fp)(int) = &f);
294      Diag(NewParam->getLocation(),
295           diag::err_param_default_argument_redefinition)
296        << NewParam->getDefaultArgRange();
297
298      // Look for the function declaration where the default argument was
299      // actually written, which may be a declaration prior to Old.
300      for (FunctionDecl *Older = Old->getPreviousDeclaration();
301           Older; Older = Older->getPreviousDeclaration()) {
302        if (!Older->getParamDecl(p)->hasDefaultArg())
303          break;
304
305        OldParam = Older->getParamDecl(p);
306      }
307
308      Diag(OldParam->getLocation(), diag::note_previous_definition)
309        << OldParam->getDefaultArgRange();
310      Invalid = true;
311    } else if (OldParam->hasDefaultArg()) {
312      // Merge the old default argument into the new parameter.
313      // It's important to use getInit() here;  getDefaultArg()
314      // strips off any top-level CXXExprWithTemporaries.
315      NewParam->setHasInheritedDefaultArg();
316      if (OldParam->hasUninstantiatedDefaultArg())
317        NewParam->setUninstantiatedDefaultArg(
318                                      OldParam->getUninstantiatedDefaultArg());
319      else
320        NewParam->setDefaultArg(OldParam->getInit());
321    } else if (NewParam->hasDefaultArg()) {
322      if (New->getDescribedFunctionTemplate()) {
323        // Paragraph 4, quoted above, only applies to non-template functions.
324        Diag(NewParam->getLocation(),
325             diag::err_param_default_argument_template_redecl)
326          << NewParam->getDefaultArgRange();
327        Diag(Old->getLocation(), diag::note_template_prev_declaration)
328          << false;
329      } else if (New->getTemplateSpecializationKind()
330                   != TSK_ImplicitInstantiation &&
331                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
332        // C++ [temp.expr.spec]p21:
333        //   Default function arguments shall not be specified in a declaration
334        //   or a definition for one of the following explicit specializations:
335        //     - the explicit specialization of a function template;
336        //     - the explicit specialization of a member function template;
337        //     - the explicit specialization of a member function of a class
338        //       template where the class template specialization to which the
339        //       member function specialization belongs is implicitly
340        //       instantiated.
341        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
342          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
343          << New->getDeclName()
344          << NewParam->getDefaultArgRange();
345      } else if (New->getDeclContext()->isDependentContext()) {
346        // C++ [dcl.fct.default]p6 (DR217):
347        //   Default arguments for a member function of a class template shall
348        //   be specified on the initial declaration of the member function
349        //   within the class template.
350        //
351        // Reading the tea leaves a bit in DR217 and its reference to DR205
352        // leads me to the conclusion that one cannot add default function
353        // arguments for an out-of-line definition of a member function of a
354        // dependent type.
355        int WhichKind = 2;
356        if (CXXRecordDecl *Record
357              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
358          if (Record->getDescribedClassTemplate())
359            WhichKind = 0;
360          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
361            WhichKind = 1;
362          else
363            WhichKind = 2;
364        }
365
366        Diag(NewParam->getLocation(),
367             diag::err_param_default_argument_member_template_redecl)
368          << WhichKind
369          << NewParam->getDefaultArgRange();
370      }
371    }
372  }
373
374  if (CheckEquivalentExceptionSpec(Old, New))
375    Invalid = true;
376
377  return Invalid;
378}
379
380/// CheckCXXDefaultArguments - Verify that the default arguments for a
381/// function declaration are well-formed according to C++
382/// [dcl.fct.default].
383void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
384  unsigned NumParams = FD->getNumParams();
385  unsigned p;
386
387  // Find first parameter with a default argument
388  for (p = 0; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (Param->hasDefaultArg())
391      break;
392  }
393
394  // C++ [dcl.fct.default]p4:
395  //   In a given function declaration, all parameters
396  //   subsequent to a parameter with a default argument shall
397  //   have default arguments supplied in this or previous
398  //   declarations. A default argument shall not be redefined
399  //   by a later declaration (not even to the same value).
400  unsigned LastMissingDefaultArg = 0;
401  for (; p < NumParams; ++p) {
402    ParmVarDecl *Param = FD->getParamDecl(p);
403    if (!Param->hasDefaultArg()) {
404      if (Param->isInvalidDecl())
405        /* We already complained about this parameter. */;
406      else if (Param->getIdentifier())
407        Diag(Param->getLocation(),
408             diag::err_param_default_argument_missing_name)
409          << Param->getIdentifier();
410      else
411        Diag(Param->getLocation(),
412             diag::err_param_default_argument_missing);
413
414      LastMissingDefaultArg = p;
415    }
416  }
417
418  if (LastMissingDefaultArg > 0) {
419    // Some default arguments were missing. Clear out all of the
420    // default arguments up to (and including) the last missing
421    // default argument, so that we leave the function parameters
422    // in a semantically valid state.
423    for (p = 0; p <= LastMissingDefaultArg; ++p) {
424      ParmVarDecl *Param = FD->getParamDecl(p);
425      if (Param->hasDefaultArg()) {
426        Param->setDefaultArg(0);
427      }
428    }
429  }
430}
431
432/// isCurrentClassName - Determine whether the identifier II is the
433/// name of the class type currently being defined. In the case of
434/// nested classes, this will only return true if II is the name of
435/// the innermost class.
436bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
437                              const CXXScopeSpec *SS) {
438  assert(getLangOptions().CPlusPlus && "No class names in C!");
439
440  CXXRecordDecl *CurDecl;
441  if (SS && SS->isSet() && !SS->isInvalid()) {
442    DeclContext *DC = computeDeclContext(*SS, true);
443    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
444  } else
445    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
446
447  if (CurDecl && CurDecl->getIdentifier())
448    return &II == CurDecl->getIdentifier();
449  else
450    return false;
451}
452
453/// \brief Check the validity of a C++ base class specifier.
454///
455/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
456/// and returns NULL otherwise.
457CXXBaseSpecifier *
458Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
459                         SourceRange SpecifierRange,
460                         bool Virtual, AccessSpecifier Access,
461                         TypeSourceInfo *TInfo) {
462  QualType BaseType = TInfo->getType();
463
464  // C++ [class.union]p1:
465  //   A union shall not have base classes.
466  if (Class->isUnion()) {
467    Diag(Class->getLocation(), diag::err_base_clause_on_union)
468      << SpecifierRange;
469    return 0;
470  }
471
472  if (BaseType->isDependentType())
473    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
474                                          Class->getTagKind() == TTK_Class,
475                                          Access, TInfo);
476
477  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
478
479  // Base specifiers must be record types.
480  if (!BaseType->isRecordType()) {
481    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
482    return 0;
483  }
484
485  // C++ [class.union]p1:
486  //   A union shall not be used as a base class.
487  if (BaseType->isUnionType()) {
488    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
489    return 0;
490  }
491
492  // C++ [class.derived]p2:
493  //   The class-name in a base-specifier shall not be an incompletely
494  //   defined class.
495  if (RequireCompleteType(BaseLoc, BaseType,
496                          PDiag(diag::err_incomplete_base_class)
497                            << SpecifierRange)) {
498    Class->setInvalidDecl();
499    return 0;
500  }
501
502  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
503  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
504  assert(BaseDecl && "Record type has no declaration");
505  BaseDecl = BaseDecl->getDefinition();
506  assert(BaseDecl && "Base type is not incomplete, but has no definition");
507  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
508  assert(CXXBaseDecl && "Base type is not a C++ type");
509
510  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
511  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
512    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
513    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
514      << BaseType;
515    return 0;
516  }
517
518  if (BaseDecl->isInvalidDecl())
519    Class->setInvalidDecl();
520
521  // Create the base specifier.
522  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
523                                        Class->getTagKind() == TTK_Class,
524                                        Access, TInfo);
525}
526
527/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
528/// one entry in the base class list of a class specifier, for
529/// example:
530///    class foo : public bar, virtual private baz {
531/// 'public bar' and 'virtual private baz' are each base-specifiers.
532BaseResult
533Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
534                         bool Virtual, AccessSpecifier Access,
535                         ParsedType basetype, SourceLocation BaseLoc) {
536  if (!classdecl)
537    return true;
538
539  AdjustDeclIfTemplate(classdecl);
540  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
541  if (!Class)
542    return true;
543
544  TypeSourceInfo *TInfo = 0;
545  GetTypeFromParser(basetype, &TInfo);
546  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
547                                                      Virtual, Access, TInfo))
548    return BaseSpec;
549
550  return true;
551}
552
553/// \brief Performs the actual work of attaching the given base class
554/// specifiers to a C++ class.
555bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
556                                unsigned NumBases) {
557 if (NumBases == 0)
558    return false;
559
560  // Used to keep track of which base types we have already seen, so
561  // that we can properly diagnose redundant direct base types. Note
562  // that the key is always the unqualified canonical type of the base
563  // class.
564  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
565
566  // Copy non-redundant base specifiers into permanent storage.
567  unsigned NumGoodBases = 0;
568  bool Invalid = false;
569  for (unsigned idx = 0; idx < NumBases; ++idx) {
570    QualType NewBaseType
571      = Context.getCanonicalType(Bases[idx]->getType());
572    NewBaseType = NewBaseType.getLocalUnqualifiedType();
573    if (!Class->hasObjectMember()) {
574      if (const RecordType *FDTTy =
575            NewBaseType.getTypePtr()->getAs<RecordType>())
576        if (FDTTy->getDecl()->hasObjectMember())
577          Class->setHasObjectMember(true);
578    }
579
580    if (KnownBaseTypes[NewBaseType]) {
581      // C++ [class.mi]p3:
582      //   A class shall not be specified as a direct base class of a
583      //   derived class more than once.
584      Diag(Bases[idx]->getSourceRange().getBegin(),
585           diag::err_duplicate_base_class)
586        << KnownBaseTypes[NewBaseType]->getType()
587        << Bases[idx]->getSourceRange();
588
589      // Delete the duplicate base class specifier; we're going to
590      // overwrite its pointer later.
591      Context.Deallocate(Bases[idx]);
592
593      Invalid = true;
594    } else {
595      // Okay, add this new base class.
596      KnownBaseTypes[NewBaseType] = Bases[idx];
597      Bases[NumGoodBases++] = Bases[idx];
598    }
599  }
600
601  // Attach the remaining base class specifiers to the derived class.
602  Class->setBases(Bases, NumGoodBases);
603
604  // Delete the remaining (good) base class specifiers, since their
605  // data has been copied into the CXXRecordDecl.
606  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
607    Context.Deallocate(Bases[idx]);
608
609  return Invalid;
610}
611
612/// ActOnBaseSpecifiers - Attach the given base specifiers to the
613/// class, after checking whether there are any duplicate base
614/// classes.
615void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
616                               unsigned NumBases) {
617  if (!ClassDecl || !Bases || !NumBases)
618    return;
619
620  AdjustDeclIfTemplate(ClassDecl);
621  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
622                       (CXXBaseSpecifier**)(Bases), NumBases);
623}
624
625static CXXRecordDecl *GetClassForType(QualType T) {
626  if (const RecordType *RT = T->getAs<RecordType>())
627    return cast<CXXRecordDecl>(RT->getDecl());
628  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
629    return ICT->getDecl();
630  else
631    return 0;
632}
633
634/// \brief Determine whether the type \p Derived is a C++ class that is
635/// derived from the type \p Base.
636bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
637  if (!getLangOptions().CPlusPlus)
638    return false;
639
640  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
641  if (!DerivedRD)
642    return false;
643
644  CXXRecordDecl *BaseRD = GetClassForType(Base);
645  if (!BaseRD)
646    return false;
647
648  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
649  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
650}
651
652/// \brief Determine whether the type \p Derived is a C++ class that is
653/// derived from the type \p Base.
654bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
655  if (!getLangOptions().CPlusPlus)
656    return false;
657
658  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
659  if (!DerivedRD)
660    return false;
661
662  CXXRecordDecl *BaseRD = GetClassForType(Base);
663  if (!BaseRD)
664    return false;
665
666  return DerivedRD->isDerivedFrom(BaseRD, Paths);
667}
668
669void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
670                              CXXCastPath &BasePathArray) {
671  assert(BasePathArray.empty() && "Base path array must be empty!");
672  assert(Paths.isRecordingPaths() && "Must record paths!");
673
674  const CXXBasePath &Path = Paths.front();
675
676  // We first go backward and check if we have a virtual base.
677  // FIXME: It would be better if CXXBasePath had the base specifier for
678  // the nearest virtual base.
679  unsigned Start = 0;
680  for (unsigned I = Path.size(); I != 0; --I) {
681    if (Path[I - 1].Base->isVirtual()) {
682      Start = I - 1;
683      break;
684    }
685  }
686
687  // Now add all bases.
688  for (unsigned I = Start, E = Path.size(); I != E; ++I)
689    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
690}
691
692/// \brief Determine whether the given base path includes a virtual
693/// base class.
694bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
695  for (CXXCastPath::const_iterator B = BasePath.begin(),
696                                BEnd = BasePath.end();
697       B != BEnd; ++B)
698    if ((*B)->isVirtual())
699      return true;
700
701  return false;
702}
703
704/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
705/// conversion (where Derived and Base are class types) is
706/// well-formed, meaning that the conversion is unambiguous (and
707/// that all of the base classes are accessible). Returns true
708/// and emits a diagnostic if the code is ill-formed, returns false
709/// otherwise. Loc is the location where this routine should point to
710/// if there is an error, and Range is the source range to highlight
711/// if there is an error.
712bool
713Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
714                                   unsigned InaccessibleBaseID,
715                                   unsigned AmbigiousBaseConvID,
716                                   SourceLocation Loc, SourceRange Range,
717                                   DeclarationName Name,
718                                   CXXCastPath *BasePath) {
719  // First, determine whether the path from Derived to Base is
720  // ambiguous. This is slightly more expensive than checking whether
721  // the Derived to Base conversion exists, because here we need to
722  // explore multiple paths to determine if there is an ambiguity.
723  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
724                     /*DetectVirtual=*/false);
725  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
726  assert(DerivationOkay &&
727         "Can only be used with a derived-to-base conversion");
728  (void)DerivationOkay;
729
730  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
731    if (InaccessibleBaseID) {
732      // Check that the base class can be accessed.
733      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
734                                   InaccessibleBaseID)) {
735        case AR_inaccessible:
736          return true;
737        case AR_accessible:
738        case AR_dependent:
739        case AR_delayed:
740          break;
741      }
742    }
743
744    // Build a base path if necessary.
745    if (BasePath)
746      BuildBasePathArray(Paths, *BasePath);
747    return false;
748  }
749
750  // We know that the derived-to-base conversion is ambiguous, and
751  // we're going to produce a diagnostic. Perform the derived-to-base
752  // search just one more time to compute all of the possible paths so
753  // that we can print them out. This is more expensive than any of
754  // the previous derived-to-base checks we've done, but at this point
755  // performance isn't as much of an issue.
756  Paths.clear();
757  Paths.setRecordingPaths(true);
758  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
759  assert(StillOkay && "Can only be used with a derived-to-base conversion");
760  (void)StillOkay;
761
762  // Build up a textual representation of the ambiguous paths, e.g.,
763  // D -> B -> A, that will be used to illustrate the ambiguous
764  // conversions in the diagnostic. We only print one of the paths
765  // to each base class subobject.
766  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
767
768  Diag(Loc, AmbigiousBaseConvID)
769  << Derived << Base << PathDisplayStr << Range << Name;
770  return true;
771}
772
773bool
774Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
775                                   SourceLocation Loc, SourceRange Range,
776                                   CXXCastPath *BasePath,
777                                   bool IgnoreAccess) {
778  return CheckDerivedToBaseConversion(Derived, Base,
779                                      IgnoreAccess ? 0
780                                       : diag::err_upcast_to_inaccessible_base,
781                                      diag::err_ambiguous_derived_to_base_conv,
782                                      Loc, Range, DeclarationName(),
783                                      BasePath);
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
823Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
824                                 SourceLocation ASLoc,
825                                 SourceLocation ColonLoc) {
826  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
827  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
828                                                  ASLoc, ColonLoc);
829  CurContext->addHiddenDecl(ASDecl);
830  return ASDecl;
831}
832
833/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
834/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
835/// bitfield width if there is one and 'InitExpr' specifies the initializer if
836/// any.
837Decl *
838Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
839                               MultiTemplateParamsArg TemplateParameterLists,
840                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
841                               bool Deleted) {
842  const DeclSpec &DS = D.getDeclSpec();
843  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
844  DeclarationName Name = NameInfo.getName();
845  SourceLocation Loc = NameInfo.getLoc();
846
847  // For anonymous bitfields, the location should point to the type.
848  if (Loc.isInvalid())
849    Loc = D.getSourceRange().getBegin();
850
851  Expr *BitWidth = static_cast<Expr*>(BW);
852  Expr *Init = static_cast<Expr*>(InitExpr);
853
854  assert(isa<CXXRecordDecl>(CurContext));
855  assert(!DS.isFriendSpecified());
856
857  bool isFunc = false;
858  if (D.isFunctionDeclarator())
859    isFunc = true;
860  else if (D.getNumTypeObjects() == 0 &&
861           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
862    QualType TDType = GetTypeFromParser(DS.getRepAsType());
863    isFunc = TDType->isFunctionType();
864  }
865
866  // C++ 9.2p6: A member shall not be declared to have automatic storage
867  // duration (auto, register) or with the extern storage-class-specifier.
868  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
869  // data members and cannot be applied to names declared const or static,
870  // and cannot be applied to reference members.
871  switch (DS.getStorageClassSpec()) {
872    case DeclSpec::SCS_unspecified:
873    case DeclSpec::SCS_typedef:
874    case DeclSpec::SCS_static:
875      // FALL THROUGH.
876      break;
877    case DeclSpec::SCS_mutable:
878      if (isFunc) {
879        if (DS.getStorageClassSpecLoc().isValid())
880          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
881        else
882          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
883
884        // FIXME: It would be nicer if the keyword was ignored only for this
885        // declarator. Otherwise we could get follow-up errors.
886        D.getMutableDeclSpec().ClearStorageClassSpecs();
887      }
888      break;
889    default:
890      if (DS.getStorageClassSpecLoc().isValid())
891        Diag(DS.getStorageClassSpecLoc(),
892             diag::err_storageclass_invalid_for_member);
893      else
894        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
895      D.getMutableDeclSpec().ClearStorageClassSpecs();
896  }
897
898  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
899                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
900                      !isFunc);
901
902  Decl *Member;
903  if (isInstField) {
904    CXXScopeSpec &SS = D.getCXXScopeSpec();
905
906
907    if (SS.isSet() && !SS.isInvalid()) {
908      // The user provided a superfluous scope specifier inside a class
909      // definition:
910      //
911      // class X {
912      //   int X::member;
913      // };
914      DeclContext *DC = 0;
915      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
916        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
917        << Name << FixItHint::CreateRemoval(SS.getRange());
918      else
919        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
920          << Name << SS.getRange();
921
922      SS.clear();
923    }
924
925    // FIXME: Check for template parameters!
926    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
927                         AS);
928    assert(Member && "HandleField never returns null");
929  } else {
930    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
931    if (!Member) {
932      return 0;
933    }
934
935    // Non-instance-fields can't have a bitfield.
936    if (BitWidth) {
937      if (Member->isInvalidDecl()) {
938        // don't emit another diagnostic.
939      } else if (isa<VarDecl>(Member)) {
940        // C++ 9.6p3: A bit-field shall not be a static member.
941        // "static member 'A' cannot be a bit-field"
942        Diag(Loc, diag::err_static_not_bitfield)
943          << Name << BitWidth->getSourceRange();
944      } else if (isa<TypedefDecl>(Member)) {
945        // "typedef member 'x' cannot be a bit-field"
946        Diag(Loc, diag::err_typedef_not_bitfield)
947          << Name << BitWidth->getSourceRange();
948      } else {
949        // A function typedef ("typedef int f(); f a;").
950        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
951        Diag(Loc, diag::err_not_integral_type_bitfield)
952          << Name << cast<ValueDecl>(Member)->getType()
953          << BitWidth->getSourceRange();
954      }
955
956      BitWidth = 0;
957      Member->setInvalidDecl();
958    }
959
960    Member->setAccess(AS);
961
962    // If we have declared a member function template, set the access of the
963    // templated declaration as well.
964    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
965      FunTmpl->getTemplatedDecl()->setAccess(AS);
966  }
967
968  assert((Name || isInstField) && "No identifier for non-field ?");
969
970  if (Init)
971    AddInitializerToDecl(Member, Init, false);
972  if (Deleted) // FIXME: Source location is not very good.
973    SetDeclDeleted(Member, D.getSourceRange().getBegin());
974
975  if (isInstField) {
976    FieldCollector->Add(cast<FieldDecl>(Member));
977    return 0;
978  }
979  return Member;
980}
981
982/// \brief Find the direct and/or virtual base specifiers that
983/// correspond to the given base type, for use in base initialization
984/// within a constructor.
985static bool FindBaseInitializer(Sema &SemaRef,
986                                CXXRecordDecl *ClassDecl,
987                                QualType BaseType,
988                                const CXXBaseSpecifier *&DirectBaseSpec,
989                                const CXXBaseSpecifier *&VirtualBaseSpec) {
990  // First, check for a direct base class.
991  DirectBaseSpec = 0;
992  for (CXXRecordDecl::base_class_const_iterator Base
993         = ClassDecl->bases_begin();
994       Base != ClassDecl->bases_end(); ++Base) {
995    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
996      // We found a direct base of this type. That's what we're
997      // initializing.
998      DirectBaseSpec = &*Base;
999      break;
1000    }
1001  }
1002
1003  // Check for a virtual base class.
1004  // FIXME: We might be able to short-circuit this if we know in advance that
1005  // there are no virtual bases.
1006  VirtualBaseSpec = 0;
1007  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1008    // We haven't found a base yet; search the class hierarchy for a
1009    // virtual base class.
1010    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1011                       /*DetectVirtual=*/false);
1012    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1013                              BaseType, Paths)) {
1014      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1015           Path != Paths.end(); ++Path) {
1016        if (Path->back().Base->isVirtual()) {
1017          VirtualBaseSpec = Path->back().Base;
1018          break;
1019        }
1020      }
1021    }
1022  }
1023
1024  return DirectBaseSpec || VirtualBaseSpec;
1025}
1026
1027/// ActOnMemInitializer - Handle a C++ member initializer.
1028MemInitResult
1029Sema::ActOnMemInitializer(Decl *ConstructorD,
1030                          Scope *S,
1031                          CXXScopeSpec &SS,
1032                          IdentifierInfo *MemberOrBase,
1033                          ParsedType TemplateTypeTy,
1034                          SourceLocation IdLoc,
1035                          SourceLocation LParenLoc,
1036                          ExprTy **Args, unsigned NumArgs,
1037                          SourceLocation RParenLoc) {
1038  if (!ConstructorD)
1039    return true;
1040
1041  AdjustDeclIfTemplate(ConstructorD);
1042
1043  CXXConstructorDecl *Constructor
1044    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1045  if (!Constructor) {
1046    // The user wrote a constructor initializer on a function that is
1047    // not a C++ constructor. Ignore the error for now, because we may
1048    // have more member initializers coming; we'll diagnose it just
1049    // once in ActOnMemInitializers.
1050    return true;
1051  }
1052
1053  CXXRecordDecl *ClassDecl = Constructor->getParent();
1054
1055  // C++ [class.base.init]p2:
1056  //   Names in a mem-initializer-id are looked up in the scope of the
1057  //   constructor’s class and, if not found in that scope, are looked
1058  //   up in the scope containing the constructor’s
1059  //   definition. [Note: if the constructor’s class contains a member
1060  //   with the same name as a direct or virtual base class of the
1061  //   class, a mem-initializer-id naming the member or base class and
1062  //   composed of a single identifier refers to the class member. A
1063  //   mem-initializer-id for the hidden base class may be specified
1064  //   using a qualified name. ]
1065  if (!SS.getScopeRep() && !TemplateTypeTy) {
1066    // Look for a member, first.
1067    FieldDecl *Member = 0;
1068    DeclContext::lookup_result Result
1069      = ClassDecl->lookup(MemberOrBase);
1070    if (Result.first != Result.second)
1071      Member = dyn_cast<FieldDecl>(*Result.first);
1072
1073    // FIXME: Handle members of an anonymous union.
1074
1075    if (Member)
1076      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1077                                    LParenLoc, RParenLoc);
1078  }
1079  // It didn't name a member, so see if it names a class.
1080  QualType BaseType;
1081  TypeSourceInfo *TInfo = 0;
1082
1083  if (TemplateTypeTy) {
1084    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1085  } else {
1086    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1087    LookupParsedName(R, S, &SS);
1088
1089    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1090    if (!TyD) {
1091      if (R.isAmbiguous()) return true;
1092
1093      // We don't want access-control diagnostics here.
1094      R.suppressDiagnostics();
1095
1096      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1097        bool NotUnknownSpecialization = false;
1098        DeclContext *DC = computeDeclContext(SS, false);
1099        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1100          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1101
1102        if (!NotUnknownSpecialization) {
1103          // When the scope specifier can refer to a member of an unknown
1104          // specialization, we take it as a type name.
1105          BaseType = CheckTypenameType(ETK_None,
1106                                       (NestedNameSpecifier *)SS.getScopeRep(),
1107                                       *MemberOrBase, SourceLocation(),
1108                                       SS.getRange(), IdLoc);
1109          if (BaseType.isNull())
1110            return true;
1111
1112          R.clear();
1113          R.setLookupName(MemberOrBase);
1114        }
1115      }
1116
1117      // If no results were found, try to correct typos.
1118      if (R.empty() && BaseType.isNull() &&
1119          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1120          R.isSingleResult()) {
1121        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1122          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1123            // We have found a non-static data member with a similar
1124            // name to what was typed; complain and initialize that
1125            // member.
1126            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1127              << MemberOrBase << true << R.getLookupName()
1128              << FixItHint::CreateReplacement(R.getNameLoc(),
1129                                              R.getLookupName().getAsString());
1130            Diag(Member->getLocation(), diag::note_previous_decl)
1131              << Member->getDeclName();
1132
1133            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1134                                          LParenLoc, RParenLoc);
1135          }
1136        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1137          const CXXBaseSpecifier *DirectBaseSpec;
1138          const CXXBaseSpecifier *VirtualBaseSpec;
1139          if (FindBaseInitializer(*this, ClassDecl,
1140                                  Context.getTypeDeclType(Type),
1141                                  DirectBaseSpec, VirtualBaseSpec)) {
1142            // We have found a direct or virtual base class with a
1143            // similar name to what was typed; complain and initialize
1144            // that base class.
1145            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1146              << MemberOrBase << false << R.getLookupName()
1147              << FixItHint::CreateReplacement(R.getNameLoc(),
1148                                              R.getLookupName().getAsString());
1149
1150            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1151                                                             : VirtualBaseSpec;
1152            Diag(BaseSpec->getSourceRange().getBegin(),
1153                 diag::note_base_class_specified_here)
1154              << BaseSpec->getType()
1155              << BaseSpec->getSourceRange();
1156
1157            TyD = Type;
1158          }
1159        }
1160      }
1161
1162      if (!TyD && BaseType.isNull()) {
1163        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1164          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1165        return true;
1166      }
1167    }
1168
1169    if (BaseType.isNull()) {
1170      BaseType = Context.getTypeDeclType(TyD);
1171      if (SS.isSet()) {
1172        NestedNameSpecifier *Qualifier =
1173          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1174
1175        // FIXME: preserve source range information
1176        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1177      }
1178    }
1179  }
1180
1181  if (!TInfo)
1182    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1183
1184  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1185                              LParenLoc, RParenLoc, ClassDecl);
1186}
1187
1188/// Checks an initializer expression for use of uninitialized fields, such as
1189/// containing the field that is being initialized. Returns true if there is an
1190/// uninitialized field was used an updates the SourceLocation parameter; false
1191/// otherwise.
1192static bool InitExprContainsUninitializedFields(const Stmt *S,
1193                                                const FieldDecl *LhsField,
1194                                                SourceLocation *L) {
1195  if (isa<CallExpr>(S)) {
1196    // Do not descend into function calls or constructors, as the use
1197    // of an uninitialized field may be valid. One would have to inspect
1198    // the contents of the function/ctor to determine if it is safe or not.
1199    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1200    // may be safe, depending on what the function/ctor does.
1201    return false;
1202  }
1203  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1204    const NamedDecl *RhsField = ME->getMemberDecl();
1205
1206    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1207      // The member expression points to a static data member.
1208      assert(VD->isStaticDataMember() &&
1209             "Member points to non-static data member!");
1210      (void)VD;
1211      return false;
1212    }
1213
1214    if (isa<EnumConstantDecl>(RhsField)) {
1215      // The member expression points to an enum.
1216      return false;
1217    }
1218
1219    if (RhsField == LhsField) {
1220      // Initializing a field with itself. Throw a warning.
1221      // But wait; there are exceptions!
1222      // Exception #1:  The field may not belong to this record.
1223      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1224      const Expr *base = ME->getBase();
1225      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1226        // Even though the field matches, it does not belong to this record.
1227        return false;
1228      }
1229      // None of the exceptions triggered; return true to indicate an
1230      // uninitialized field was used.
1231      *L = ME->getMemberLoc();
1232      return true;
1233    }
1234  } else if (isa<SizeOfAlignOfExpr>(S)) {
1235    // sizeof/alignof doesn't reference contents, do not warn.
1236    return false;
1237  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1238    // address-of doesn't reference contents (the pointer may be dereferenced
1239    // in the same expression but it would be rare; and weird).
1240    if (UOE->getOpcode() == UO_AddrOf)
1241      return false;
1242  }
1243  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1244       it != e; ++it) {
1245    if (!*it) {
1246      // An expression such as 'member(arg ?: "")' may trigger this.
1247      continue;
1248    }
1249    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1250      return true;
1251  }
1252  return false;
1253}
1254
1255MemInitResult
1256Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1257                             unsigned NumArgs, SourceLocation IdLoc,
1258                             SourceLocation LParenLoc,
1259                             SourceLocation RParenLoc) {
1260  if (Member->isInvalidDecl())
1261    return true;
1262
1263  // Diagnose value-uses of fields to initialize themselves, e.g.
1264  //   foo(foo)
1265  // where foo is not also a parameter to the constructor.
1266  // TODO: implement -Wuninitialized and fold this into that framework.
1267  for (unsigned i = 0; i < NumArgs; ++i) {
1268    SourceLocation L;
1269    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1270      // FIXME: Return true in the case when other fields are used before being
1271      // uninitialized. For example, let this field be the i'th field. When
1272      // initializing the i'th field, throw a warning if any of the >= i'th
1273      // fields are used, as they are not yet initialized.
1274      // Right now we are only handling the case where the i'th field uses
1275      // itself in its initializer.
1276      Diag(L, diag::warn_field_is_uninit);
1277    }
1278  }
1279
1280  bool HasDependentArg = false;
1281  for (unsigned i = 0; i < NumArgs; i++)
1282    HasDependentArg |= Args[i]->isTypeDependent();
1283
1284  if (Member->getType()->isDependentType() || HasDependentArg) {
1285    // Can't check initialization for a member of dependent type or when
1286    // any of the arguments are type-dependent expressions.
1287    Expr *Init
1288      = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1289                                    RParenLoc);
1290
1291    // Erase any temporaries within this evaluation context; we're not
1292    // going to track them in the AST, since we'll be rebuilding the
1293    // ASTs during template instantiation.
1294    ExprTemporaries.erase(
1295              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1296                          ExprTemporaries.end());
1297
1298    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1299                                                    LParenLoc,
1300                                                    Init,
1301                                                    RParenLoc);
1302
1303  }
1304
1305  // Initialize the member.
1306  InitializedEntity MemberEntity =
1307    InitializedEntity::InitializeMember(Member, 0);
1308  InitializationKind Kind =
1309    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1310
1311  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1312
1313  ExprResult MemberInit =
1314    InitSeq.Perform(*this, MemberEntity, Kind,
1315                    MultiExprArg(*this, Args, NumArgs), 0);
1316  if (MemberInit.isInvalid())
1317    return true;
1318
1319  CheckImplicitConversions(MemberInit.get(), LParenLoc);
1320
1321  // C++0x [class.base.init]p7:
1322  //   The initialization of each base and member constitutes a
1323  //   full-expression.
1324  MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1325  if (MemberInit.isInvalid())
1326    return true;
1327
1328  // If we are in a dependent context, template instantiation will
1329  // perform this type-checking again. Just save the arguments that we
1330  // received in a ParenListExpr.
1331  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1332  // of the information that we have about the member
1333  // initializer. However, deconstructing the ASTs is a dicey process,
1334  // and this approach is far more likely to get the corner cases right.
1335  if (CurContext->isDependentContext()) {
1336    Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1337                                             RParenLoc);
1338    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1339                                                    LParenLoc,
1340                                                    Init,
1341                                                    RParenLoc);
1342  }
1343
1344  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1345                                                  LParenLoc,
1346                                                  MemberInit.get(),
1347                                                  RParenLoc);
1348}
1349
1350MemInitResult
1351Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1352                           Expr **Args, unsigned NumArgs,
1353                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1354                           CXXRecordDecl *ClassDecl) {
1355  bool HasDependentArg = false;
1356  for (unsigned i = 0; i < NumArgs; i++)
1357    HasDependentArg |= Args[i]->isTypeDependent();
1358
1359  SourceLocation BaseLoc
1360    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1361
1362  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1363    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1364             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1365
1366  // C++ [class.base.init]p2:
1367  //   [...] Unless the mem-initializer-id names a nonstatic data
1368  //   member of the constructor’s class or a direct or virtual base
1369  //   of that class, the mem-initializer is ill-formed. A
1370  //   mem-initializer-list can initialize a base class using any
1371  //   name that denotes that base class type.
1372  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1373
1374  // Check for direct and virtual base classes.
1375  const CXXBaseSpecifier *DirectBaseSpec = 0;
1376  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1377  if (!Dependent) {
1378    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1379                        VirtualBaseSpec);
1380
1381    // C++ [base.class.init]p2:
1382    // Unless the mem-initializer-id names a nonstatic data member of the
1383    // constructor's class or a direct or virtual base of that class, the
1384    // mem-initializer is ill-formed.
1385    if (!DirectBaseSpec && !VirtualBaseSpec) {
1386      // If the class has any dependent bases, then it's possible that
1387      // one of those types will resolve to the same type as
1388      // BaseType. Therefore, just treat this as a dependent base
1389      // class initialization.  FIXME: Should we try to check the
1390      // initialization anyway? It seems odd.
1391      if (ClassDecl->hasAnyDependentBases())
1392        Dependent = true;
1393      else
1394        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1395          << BaseType << Context.getTypeDeclType(ClassDecl)
1396          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1397    }
1398  }
1399
1400  if (Dependent) {
1401    // Can't check initialization for a base of dependent type or when
1402    // any of the arguments are type-dependent expressions.
1403    ExprResult BaseInit
1404      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1405                                          RParenLoc));
1406
1407    // Erase any temporaries within this evaluation context; we're not
1408    // going to track them in the AST, since we'll be rebuilding the
1409    // ASTs during template instantiation.
1410    ExprTemporaries.erase(
1411              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1412                          ExprTemporaries.end());
1413
1414    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1415                                                    /*IsVirtual=*/false,
1416                                                    LParenLoc,
1417                                                    BaseInit.takeAs<Expr>(),
1418                                                    RParenLoc);
1419  }
1420
1421  // C++ [base.class.init]p2:
1422  //   If a mem-initializer-id is ambiguous because it designates both
1423  //   a direct non-virtual base class and an inherited virtual base
1424  //   class, the mem-initializer is ill-formed.
1425  if (DirectBaseSpec && VirtualBaseSpec)
1426    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1427      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1428
1429  CXXBaseSpecifier *BaseSpec
1430    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1431  if (!BaseSpec)
1432    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1433
1434  // Initialize the base.
1435  InitializedEntity BaseEntity =
1436    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1437  InitializationKind Kind =
1438    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1439
1440  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1441
1442  ExprResult BaseInit =
1443    InitSeq.Perform(*this, BaseEntity, Kind,
1444                    MultiExprArg(*this, Args, NumArgs), 0);
1445  if (BaseInit.isInvalid())
1446    return true;
1447
1448  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1449
1450  // C++0x [class.base.init]p7:
1451  //   The initialization of each base and member constitutes a
1452  //   full-expression.
1453  BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1454  if (BaseInit.isInvalid())
1455    return true;
1456
1457  // If we are in a dependent context, template instantiation will
1458  // perform this type-checking again. Just save the arguments that we
1459  // received in a ParenListExpr.
1460  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1461  // of the information that we have about the base
1462  // initializer. However, deconstructing the ASTs is a dicey process,
1463  // and this approach is far more likely to get the corner cases right.
1464  if (CurContext->isDependentContext()) {
1465    ExprResult Init
1466      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1467                                          RParenLoc));
1468    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1469                                                    BaseSpec->isVirtual(),
1470                                                    LParenLoc,
1471                                                    Init.takeAs<Expr>(),
1472                                                    RParenLoc);
1473  }
1474
1475  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1476                                                  BaseSpec->isVirtual(),
1477                                                  LParenLoc,
1478                                                  BaseInit.takeAs<Expr>(),
1479                                                  RParenLoc);
1480}
1481
1482/// ImplicitInitializerKind - How an implicit base or member initializer should
1483/// initialize its base or member.
1484enum ImplicitInitializerKind {
1485  IIK_Default,
1486  IIK_Copy,
1487  IIK_Move
1488};
1489
1490static bool
1491BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1492                             ImplicitInitializerKind ImplicitInitKind,
1493                             CXXBaseSpecifier *BaseSpec,
1494                             bool IsInheritedVirtualBase,
1495                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1496  InitializedEntity InitEntity
1497    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1498                                        IsInheritedVirtualBase);
1499
1500  ExprResult BaseInit;
1501
1502  switch (ImplicitInitKind) {
1503  case IIK_Default: {
1504    InitializationKind InitKind
1505      = InitializationKind::CreateDefault(Constructor->getLocation());
1506    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1507    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1508                               MultiExprArg(SemaRef, 0, 0));
1509    break;
1510  }
1511
1512  case IIK_Copy: {
1513    ParmVarDecl *Param = Constructor->getParamDecl(0);
1514    QualType ParamType = Param->getType().getNonReferenceType();
1515
1516    Expr *CopyCtorArg =
1517      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1518                          Constructor->getLocation(), ParamType, 0);
1519
1520    // Cast to the base class to avoid ambiguities.
1521    QualType ArgTy =
1522      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1523                                       ParamType.getQualifiers());
1524
1525    CXXCastPath BasePath;
1526    BasePath.push_back(BaseSpec);
1527    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1528                              CK_UncheckedDerivedToBase,
1529                              VK_LValue, &BasePath);
1530
1531    InitializationKind InitKind
1532      = InitializationKind::CreateDirect(Constructor->getLocation(),
1533                                         SourceLocation(), SourceLocation());
1534    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1535                                   &CopyCtorArg, 1);
1536    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1537                               MultiExprArg(&CopyCtorArg, 1));
1538    break;
1539  }
1540
1541  case IIK_Move:
1542    assert(false && "Unhandled initializer kind!");
1543  }
1544
1545  if (BaseInit.isInvalid())
1546    return true;
1547
1548  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1549  if (BaseInit.isInvalid())
1550    return true;
1551
1552  CXXBaseInit =
1553    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1554               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1555                                                        SourceLocation()),
1556                                             BaseSpec->isVirtual(),
1557                                             SourceLocation(),
1558                                             BaseInit.takeAs<Expr>(),
1559                                             SourceLocation());
1560
1561  return false;
1562}
1563
1564static bool
1565BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1566                               ImplicitInitializerKind ImplicitInitKind,
1567                               FieldDecl *Field,
1568                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1569  if (Field->isInvalidDecl())
1570    return true;
1571
1572  SourceLocation Loc = Constructor->getLocation();
1573
1574  if (ImplicitInitKind == IIK_Copy) {
1575    ParmVarDecl *Param = Constructor->getParamDecl(0);
1576    QualType ParamType = Param->getType().getNonReferenceType();
1577
1578    Expr *MemberExprBase =
1579      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1580                          Loc, ParamType, 0);
1581
1582    // Build a reference to this field within the parameter.
1583    CXXScopeSpec SS;
1584    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1585                              Sema::LookupMemberName);
1586    MemberLookup.addDecl(Field, AS_public);
1587    MemberLookup.resolveKind();
1588    ExprResult CopyCtorArg
1589      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1590                                         ParamType, Loc,
1591                                         /*IsArrow=*/false,
1592                                         SS,
1593                                         /*FirstQualifierInScope=*/0,
1594                                         MemberLookup,
1595                                         /*TemplateArgs=*/0);
1596    if (CopyCtorArg.isInvalid())
1597      return true;
1598
1599    // When the field we are copying is an array, create index variables for
1600    // each dimension of the array. We use these index variables to subscript
1601    // the source array, and other clients (e.g., CodeGen) will perform the
1602    // necessary iteration with these index variables.
1603    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1604    QualType BaseType = Field->getType();
1605    QualType SizeType = SemaRef.Context.getSizeType();
1606    while (const ConstantArrayType *Array
1607                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1608      // Create the iteration variable for this array index.
1609      IdentifierInfo *IterationVarName = 0;
1610      {
1611        llvm::SmallString<8> Str;
1612        llvm::raw_svector_ostream OS(Str);
1613        OS << "__i" << IndexVariables.size();
1614        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1615      }
1616      VarDecl *IterationVar
1617        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1618                          IterationVarName, SizeType,
1619                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1620                          SC_None, SC_None);
1621      IndexVariables.push_back(IterationVar);
1622
1623      // Create a reference to the iteration variable.
1624      ExprResult IterationVarRef
1625        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1626      assert(!IterationVarRef.isInvalid() &&
1627             "Reference to invented variable cannot fail!");
1628
1629      // Subscript the array with this iteration variable.
1630      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1631                                                            Loc,
1632                                                        IterationVarRef.take(),
1633                                                            Loc);
1634      if (CopyCtorArg.isInvalid())
1635        return true;
1636
1637      BaseType = Array->getElementType();
1638    }
1639
1640    // Construct the entity that we will be initializing. For an array, this
1641    // will be first element in the array, which may require several levels
1642    // of array-subscript entities.
1643    llvm::SmallVector<InitializedEntity, 4> Entities;
1644    Entities.reserve(1 + IndexVariables.size());
1645    Entities.push_back(InitializedEntity::InitializeMember(Field));
1646    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1647      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1648                                                              0,
1649                                                              Entities.back()));
1650
1651    // Direct-initialize to use the copy constructor.
1652    InitializationKind InitKind =
1653      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1654
1655    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1656    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1657                                   &CopyCtorArgE, 1);
1658
1659    ExprResult MemberInit
1660      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1661                        MultiExprArg(&CopyCtorArgE, 1));
1662    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1663    if (MemberInit.isInvalid())
1664      return true;
1665
1666    CXXMemberInit
1667      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1668                                           MemberInit.takeAs<Expr>(), Loc,
1669                                           IndexVariables.data(),
1670                                           IndexVariables.size());
1671    return false;
1672  }
1673
1674  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1675
1676  QualType FieldBaseElementType =
1677    SemaRef.Context.getBaseElementType(Field->getType());
1678
1679  if (FieldBaseElementType->isRecordType()) {
1680    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1681    InitializationKind InitKind =
1682      InitializationKind::CreateDefault(Loc);
1683
1684    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1685    ExprResult MemberInit =
1686      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1687    if (MemberInit.isInvalid())
1688      return true;
1689
1690    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1691    if (MemberInit.isInvalid())
1692      return true;
1693
1694    CXXMemberInit =
1695      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1696                                                       Field, Loc, Loc,
1697                                                       MemberInit.get(),
1698                                                       Loc);
1699    return false;
1700  }
1701
1702  if (FieldBaseElementType->isReferenceType()) {
1703    SemaRef.Diag(Constructor->getLocation(),
1704                 diag::err_uninitialized_member_in_ctor)
1705    << (int)Constructor->isImplicit()
1706    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1707    << 0 << Field->getDeclName();
1708    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1709    return true;
1710  }
1711
1712  if (FieldBaseElementType.isConstQualified()) {
1713    SemaRef.Diag(Constructor->getLocation(),
1714                 diag::err_uninitialized_member_in_ctor)
1715    << (int)Constructor->isImplicit()
1716    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1717    << 1 << Field->getDeclName();
1718    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1719    return true;
1720  }
1721
1722  // Nothing to initialize.
1723  CXXMemberInit = 0;
1724  return false;
1725}
1726
1727namespace {
1728struct BaseAndFieldInfo {
1729  Sema &S;
1730  CXXConstructorDecl *Ctor;
1731  bool AnyErrorsInInits;
1732  ImplicitInitializerKind IIK;
1733  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1734  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1735
1736  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1737    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1738    // FIXME: Handle implicit move constructors.
1739    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1740      IIK = IIK_Copy;
1741    else
1742      IIK = IIK_Default;
1743  }
1744};
1745}
1746
1747static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1748                                   FieldDecl *Top, FieldDecl *Field,
1749                                   CXXBaseOrMemberInitializer *Init) {
1750  // If the member doesn't need to be initialized, Init will still be null.
1751  if (!Init)
1752    return;
1753
1754  Info.AllToInit.push_back(Init);
1755  if (Field != Top) {
1756    Init->setMember(Top);
1757    Init->setAnonUnionMember(Field);
1758  }
1759}
1760
1761static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1762                                    FieldDecl *Top, FieldDecl *Field) {
1763
1764  // Overwhelmingly common case: we have a direct initializer for this field.
1765  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1766    RecordFieldInitializer(Info, Top, Field, Init);
1767    return false;
1768  }
1769
1770  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1771    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1772    assert(FieldClassType && "anonymous struct/union without record type");
1773    CXXRecordDecl *FieldClassDecl
1774      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1775
1776    // Even though union members never have non-trivial default
1777    // constructions in C++03, we still build member initializers for aggregate
1778    // record types which can be union members, and C++0x allows non-trivial
1779    // default constructors for union members, so we ensure that only one
1780    // member is initialized for these.
1781    if (FieldClassDecl->isUnion()) {
1782      // First check for an explicit initializer for one field.
1783      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1784           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1785        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1786          RecordFieldInitializer(Info, Top, *FA, Init);
1787
1788          // Once we've initialized a field of an anonymous union, the union
1789          // field in the class is also initialized, so exit immediately.
1790          return false;
1791        } else if ((*FA)->isAnonymousStructOrUnion()) {
1792          if (CollectFieldInitializer(Info, Top, *FA))
1793            return true;
1794        }
1795      }
1796
1797      // Fallthrough and construct a default initializer for the union as
1798      // a whole, which can call its default constructor if such a thing exists
1799      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1800      // behavior going forward with C++0x, when anonymous unions there are
1801      // finalized, we should revisit this.
1802    } else {
1803      // For structs, we simply descend through to initialize all members where
1804      // necessary.
1805      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1806           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1807        if (CollectFieldInitializer(Info, Top, *FA))
1808          return true;
1809      }
1810    }
1811  }
1812
1813  // Don't try to build an implicit initializer if there were semantic
1814  // errors in any of the initializers (and therefore we might be
1815  // missing some that the user actually wrote).
1816  if (Info.AnyErrorsInInits)
1817    return false;
1818
1819  CXXBaseOrMemberInitializer *Init = 0;
1820  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1821    return true;
1822
1823  RecordFieldInitializer(Info, Top, Field, Init);
1824  return false;
1825}
1826
1827bool
1828Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1829                                  CXXBaseOrMemberInitializer **Initializers,
1830                                  unsigned NumInitializers,
1831                                  bool AnyErrors) {
1832  if (Constructor->getDeclContext()->isDependentContext()) {
1833    // Just store the initializers as written, they will be checked during
1834    // instantiation.
1835    if (NumInitializers > 0) {
1836      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1837      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1838        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1839      memcpy(baseOrMemberInitializers, Initializers,
1840             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1841      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1842    }
1843
1844    return false;
1845  }
1846
1847  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1848
1849  // We need to build the initializer AST according to order of construction
1850  // and not what user specified in the Initializers list.
1851  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1852  if (!ClassDecl)
1853    return true;
1854
1855  bool HadError = false;
1856
1857  for (unsigned i = 0; i < NumInitializers; i++) {
1858    CXXBaseOrMemberInitializer *Member = Initializers[i];
1859
1860    if (Member->isBaseInitializer())
1861      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1862    else
1863      Info.AllBaseFields[Member->getMember()] = Member;
1864  }
1865
1866  // Keep track of the direct virtual bases.
1867  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1868  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1869       E = ClassDecl->bases_end(); I != E; ++I) {
1870    if (I->isVirtual())
1871      DirectVBases.insert(I);
1872  }
1873
1874  // Push virtual bases before others.
1875  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1876       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1877
1878    if (CXXBaseOrMemberInitializer *Value
1879        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1880      Info.AllToInit.push_back(Value);
1881    } else if (!AnyErrors) {
1882      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1883      CXXBaseOrMemberInitializer *CXXBaseInit;
1884      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1885                                       VBase, IsInheritedVirtualBase,
1886                                       CXXBaseInit)) {
1887        HadError = true;
1888        continue;
1889      }
1890
1891      Info.AllToInit.push_back(CXXBaseInit);
1892    }
1893  }
1894
1895  // Non-virtual bases.
1896  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1897       E = ClassDecl->bases_end(); Base != E; ++Base) {
1898    // Virtuals are in the virtual base list and already constructed.
1899    if (Base->isVirtual())
1900      continue;
1901
1902    if (CXXBaseOrMemberInitializer *Value
1903          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1904      Info.AllToInit.push_back(Value);
1905    } else if (!AnyErrors) {
1906      CXXBaseOrMemberInitializer *CXXBaseInit;
1907      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1908                                       Base, /*IsInheritedVirtualBase=*/false,
1909                                       CXXBaseInit)) {
1910        HadError = true;
1911        continue;
1912      }
1913
1914      Info.AllToInit.push_back(CXXBaseInit);
1915    }
1916  }
1917
1918  // Fields.
1919  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1920       E = ClassDecl->field_end(); Field != E; ++Field) {
1921    if ((*Field)->getType()->isIncompleteArrayType()) {
1922      assert(ClassDecl->hasFlexibleArrayMember() &&
1923             "Incomplete array type is not valid");
1924      continue;
1925    }
1926    if (CollectFieldInitializer(Info, *Field, *Field))
1927      HadError = true;
1928  }
1929
1930  NumInitializers = Info.AllToInit.size();
1931  if (NumInitializers > 0) {
1932    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1933    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1934      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1935    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1936           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1937    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1938
1939    // Constructors implicitly reference the base and member
1940    // destructors.
1941    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1942                                           Constructor->getParent());
1943  }
1944
1945  return HadError;
1946}
1947
1948static void *GetKeyForTopLevelField(FieldDecl *Field) {
1949  // For anonymous unions, use the class declaration as the key.
1950  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1951    if (RT->getDecl()->isAnonymousStructOrUnion())
1952      return static_cast<void *>(RT->getDecl());
1953  }
1954  return static_cast<void *>(Field);
1955}
1956
1957static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1958  return Context.getCanonicalType(BaseType).getTypePtr();
1959}
1960
1961static void *GetKeyForMember(ASTContext &Context,
1962                             CXXBaseOrMemberInitializer *Member,
1963                             bool MemberMaybeAnon = false) {
1964  if (!Member->isMemberInitializer())
1965    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1966
1967  // For fields injected into the class via declaration of an anonymous union,
1968  // use its anonymous union class declaration as the unique key.
1969  FieldDecl *Field = Member->getMember();
1970
1971  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1972  // data member of the class. Data member used in the initializer list is
1973  // in AnonUnionMember field.
1974  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1975    Field = Member->getAnonUnionMember();
1976
1977  // If the field is a member of an anonymous struct or union, our key
1978  // is the anonymous record decl that's a direct child of the class.
1979  RecordDecl *RD = Field->getParent();
1980  if (RD->isAnonymousStructOrUnion()) {
1981    while (true) {
1982      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1983      if (Parent->isAnonymousStructOrUnion())
1984        RD = Parent;
1985      else
1986        break;
1987    }
1988
1989    return static_cast<void *>(RD);
1990  }
1991
1992  return static_cast<void *>(Field);
1993}
1994
1995static void
1996DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1997                                  const CXXConstructorDecl *Constructor,
1998                                  CXXBaseOrMemberInitializer **Inits,
1999                                  unsigned NumInits) {
2000  if (Constructor->getDeclContext()->isDependentContext())
2001    return;
2002
2003  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2004        == Diagnostic::Ignored)
2005    return;
2006
2007  // Build the list of bases and members in the order that they'll
2008  // actually be initialized.  The explicit initializers should be in
2009  // this same order but may be missing things.
2010  llvm::SmallVector<const void*, 32> IdealInitKeys;
2011
2012  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2013
2014  // 1. Virtual bases.
2015  for (CXXRecordDecl::base_class_const_iterator VBase =
2016       ClassDecl->vbases_begin(),
2017       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2018    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2019
2020  // 2. Non-virtual bases.
2021  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2022       E = ClassDecl->bases_end(); Base != E; ++Base) {
2023    if (Base->isVirtual())
2024      continue;
2025    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2026  }
2027
2028  // 3. Direct fields.
2029  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2030       E = ClassDecl->field_end(); Field != E; ++Field)
2031    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2032
2033  unsigned NumIdealInits = IdealInitKeys.size();
2034  unsigned IdealIndex = 0;
2035
2036  CXXBaseOrMemberInitializer *PrevInit = 0;
2037  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2038    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2039    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2040
2041    // Scan forward to try to find this initializer in the idealized
2042    // initializers list.
2043    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2044      if (InitKey == IdealInitKeys[IdealIndex])
2045        break;
2046
2047    // If we didn't find this initializer, it must be because we
2048    // scanned past it on a previous iteration.  That can only
2049    // happen if we're out of order;  emit a warning.
2050    if (IdealIndex == NumIdealInits && PrevInit) {
2051      Sema::SemaDiagnosticBuilder D =
2052        SemaRef.Diag(PrevInit->getSourceLocation(),
2053                     diag::warn_initializer_out_of_order);
2054
2055      if (PrevInit->isMemberInitializer())
2056        D << 0 << PrevInit->getMember()->getDeclName();
2057      else
2058        D << 1 << PrevInit->getBaseClassInfo()->getType();
2059
2060      if (Init->isMemberInitializer())
2061        D << 0 << Init->getMember()->getDeclName();
2062      else
2063        D << 1 << Init->getBaseClassInfo()->getType();
2064
2065      // Move back to the initializer's location in the ideal list.
2066      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2067        if (InitKey == IdealInitKeys[IdealIndex])
2068          break;
2069
2070      assert(IdealIndex != NumIdealInits &&
2071             "initializer not found in initializer list");
2072    }
2073
2074    PrevInit = Init;
2075  }
2076}
2077
2078namespace {
2079bool CheckRedundantInit(Sema &S,
2080                        CXXBaseOrMemberInitializer *Init,
2081                        CXXBaseOrMemberInitializer *&PrevInit) {
2082  if (!PrevInit) {
2083    PrevInit = Init;
2084    return false;
2085  }
2086
2087  if (FieldDecl *Field = Init->getMember())
2088    S.Diag(Init->getSourceLocation(),
2089           diag::err_multiple_mem_initialization)
2090      << Field->getDeclName()
2091      << Init->getSourceRange();
2092  else {
2093    Type *BaseClass = Init->getBaseClass();
2094    assert(BaseClass && "neither field nor base");
2095    S.Diag(Init->getSourceLocation(),
2096           diag::err_multiple_base_initialization)
2097      << QualType(BaseClass, 0)
2098      << Init->getSourceRange();
2099  }
2100  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2101    << 0 << PrevInit->getSourceRange();
2102
2103  return true;
2104}
2105
2106typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2107typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2108
2109bool CheckRedundantUnionInit(Sema &S,
2110                             CXXBaseOrMemberInitializer *Init,
2111                             RedundantUnionMap &Unions) {
2112  FieldDecl *Field = Init->getMember();
2113  RecordDecl *Parent = Field->getParent();
2114  if (!Parent->isAnonymousStructOrUnion())
2115    return false;
2116
2117  NamedDecl *Child = Field;
2118  do {
2119    if (Parent->isUnion()) {
2120      UnionEntry &En = Unions[Parent];
2121      if (En.first && En.first != Child) {
2122        S.Diag(Init->getSourceLocation(),
2123               diag::err_multiple_mem_union_initialization)
2124          << Field->getDeclName()
2125          << Init->getSourceRange();
2126        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2127          << 0 << En.second->getSourceRange();
2128        return true;
2129      } else if (!En.first) {
2130        En.first = Child;
2131        En.second = Init;
2132      }
2133    }
2134
2135    Child = Parent;
2136    Parent = cast<RecordDecl>(Parent->getDeclContext());
2137  } while (Parent->isAnonymousStructOrUnion());
2138
2139  return false;
2140}
2141}
2142
2143/// ActOnMemInitializers - Handle the member initializers for a constructor.
2144void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2145                                SourceLocation ColonLoc,
2146                                MemInitTy **meminits, unsigned NumMemInits,
2147                                bool AnyErrors) {
2148  if (!ConstructorDecl)
2149    return;
2150
2151  AdjustDeclIfTemplate(ConstructorDecl);
2152
2153  CXXConstructorDecl *Constructor
2154    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2155
2156  if (!Constructor) {
2157    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2158    return;
2159  }
2160
2161  CXXBaseOrMemberInitializer **MemInits =
2162    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2163
2164  // Mapping for the duplicate initializers check.
2165  // For member initializers, this is keyed with a FieldDecl*.
2166  // For base initializers, this is keyed with a Type*.
2167  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2168
2169  // Mapping for the inconsistent anonymous-union initializers check.
2170  RedundantUnionMap MemberUnions;
2171
2172  bool HadError = false;
2173  for (unsigned i = 0; i < NumMemInits; i++) {
2174    CXXBaseOrMemberInitializer *Init = MemInits[i];
2175
2176    // Set the source order index.
2177    Init->setSourceOrder(i);
2178
2179    if (Init->isMemberInitializer()) {
2180      FieldDecl *Field = Init->getMember();
2181      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2182          CheckRedundantUnionInit(*this, Init, MemberUnions))
2183        HadError = true;
2184    } else {
2185      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2186      if (CheckRedundantInit(*this, Init, Members[Key]))
2187        HadError = true;
2188    }
2189  }
2190
2191  if (HadError)
2192    return;
2193
2194  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2195
2196  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2197}
2198
2199void
2200Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2201                                             CXXRecordDecl *ClassDecl) {
2202  // Ignore dependent contexts.
2203  if (ClassDecl->isDependentContext())
2204    return;
2205
2206  // FIXME: all the access-control diagnostics are positioned on the
2207  // field/base declaration.  That's probably good; that said, the
2208  // user might reasonably want to know why the destructor is being
2209  // emitted, and we currently don't say.
2210
2211  // Non-static data members.
2212  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2213       E = ClassDecl->field_end(); I != E; ++I) {
2214    FieldDecl *Field = *I;
2215    if (Field->isInvalidDecl())
2216      continue;
2217    QualType FieldType = Context.getBaseElementType(Field->getType());
2218
2219    const RecordType* RT = FieldType->getAs<RecordType>();
2220    if (!RT)
2221      continue;
2222
2223    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2224    if (FieldClassDecl->hasTrivialDestructor())
2225      continue;
2226
2227    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2228    CheckDestructorAccess(Field->getLocation(), Dtor,
2229                          PDiag(diag::err_access_dtor_field)
2230                            << Field->getDeclName()
2231                            << FieldType);
2232
2233    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2234  }
2235
2236  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2237
2238  // Bases.
2239  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2240       E = ClassDecl->bases_end(); Base != E; ++Base) {
2241    // Bases are always records in a well-formed non-dependent class.
2242    const RecordType *RT = Base->getType()->getAs<RecordType>();
2243
2244    // Remember direct virtual bases.
2245    if (Base->isVirtual())
2246      DirectVirtualBases.insert(RT);
2247
2248    // Ignore trivial destructors.
2249    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2250    if (BaseClassDecl->hasTrivialDestructor())
2251      continue;
2252
2253    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2254
2255    // FIXME: caret should be on the start of the class name
2256    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2257                          PDiag(diag::err_access_dtor_base)
2258                            << Base->getType()
2259                            << Base->getSourceRange());
2260
2261    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2262  }
2263
2264  // Virtual bases.
2265  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2266       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2267
2268    // Bases are always records in a well-formed non-dependent class.
2269    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2270
2271    // Ignore direct virtual bases.
2272    if (DirectVirtualBases.count(RT))
2273      continue;
2274
2275    // Ignore trivial destructors.
2276    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2277    if (BaseClassDecl->hasTrivialDestructor())
2278      continue;
2279
2280    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2281    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2282                          PDiag(diag::err_access_dtor_vbase)
2283                            << VBase->getType());
2284
2285    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2286  }
2287}
2288
2289void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2290  if (!CDtorDecl)
2291    return;
2292
2293  if (CXXConstructorDecl *Constructor
2294      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2295    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2296}
2297
2298bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2299                                  unsigned DiagID, AbstractDiagSelID SelID) {
2300  if (SelID == -1)
2301    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2302  else
2303    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2304}
2305
2306bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2307                                  const PartialDiagnostic &PD) {
2308  if (!getLangOptions().CPlusPlus)
2309    return false;
2310
2311  if (const ArrayType *AT = Context.getAsArrayType(T))
2312    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2313
2314  if (const PointerType *PT = T->getAs<PointerType>()) {
2315    // Find the innermost pointer type.
2316    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2317      PT = T;
2318
2319    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2320      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2321  }
2322
2323  const RecordType *RT = T->getAs<RecordType>();
2324  if (!RT)
2325    return false;
2326
2327  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2328
2329  // We can't answer whether something is abstract until it has a
2330  // definition.  If it's currently being defined, we'll walk back
2331  // over all the declarations when we have a full definition.
2332  const CXXRecordDecl *Def = RD->getDefinition();
2333  if (!Def || Def->isBeingDefined())
2334    return false;
2335
2336  if (!RD->isAbstract())
2337    return false;
2338
2339  Diag(Loc, PD) << RD->getDeclName();
2340  DiagnoseAbstractType(RD);
2341
2342  return true;
2343}
2344
2345void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2346  // Check if we've already emitted the list of pure virtual functions
2347  // for this class.
2348  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2349    return;
2350
2351  CXXFinalOverriderMap FinalOverriders;
2352  RD->getFinalOverriders(FinalOverriders);
2353
2354  // Keep a set of seen pure methods so we won't diagnose the same method
2355  // more than once.
2356  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2357
2358  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2359                                   MEnd = FinalOverriders.end();
2360       M != MEnd;
2361       ++M) {
2362    for (OverridingMethods::iterator SO = M->second.begin(),
2363                                  SOEnd = M->second.end();
2364         SO != SOEnd; ++SO) {
2365      // C++ [class.abstract]p4:
2366      //   A class is abstract if it contains or inherits at least one
2367      //   pure virtual function for which the final overrider is pure
2368      //   virtual.
2369
2370      //
2371      if (SO->second.size() != 1)
2372        continue;
2373
2374      if (!SO->second.front().Method->isPure())
2375        continue;
2376
2377      if (!SeenPureMethods.insert(SO->second.front().Method))
2378        continue;
2379
2380      Diag(SO->second.front().Method->getLocation(),
2381           diag::note_pure_virtual_function)
2382        << SO->second.front().Method->getDeclName();
2383    }
2384  }
2385
2386  if (!PureVirtualClassDiagSet)
2387    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2388  PureVirtualClassDiagSet->insert(RD);
2389}
2390
2391namespace {
2392struct AbstractUsageInfo {
2393  Sema &S;
2394  CXXRecordDecl *Record;
2395  CanQualType AbstractType;
2396  bool Invalid;
2397
2398  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2399    : S(S), Record(Record),
2400      AbstractType(S.Context.getCanonicalType(
2401                   S.Context.getTypeDeclType(Record))),
2402      Invalid(false) {}
2403
2404  void DiagnoseAbstractType() {
2405    if (Invalid) return;
2406    S.DiagnoseAbstractType(Record);
2407    Invalid = true;
2408  }
2409
2410  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2411};
2412
2413struct CheckAbstractUsage {
2414  AbstractUsageInfo &Info;
2415  const NamedDecl *Ctx;
2416
2417  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2418    : Info(Info), Ctx(Ctx) {}
2419
2420  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2421    switch (TL.getTypeLocClass()) {
2422#define ABSTRACT_TYPELOC(CLASS, PARENT)
2423#define TYPELOC(CLASS, PARENT) \
2424    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2425#include "clang/AST/TypeLocNodes.def"
2426    }
2427  }
2428
2429  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2430    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2431    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2432      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2433      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2434    }
2435  }
2436
2437  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2438    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2439  }
2440
2441  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2442    // Visit the type parameters from a permissive context.
2443    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2444      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2445      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2446        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2447          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2448      // TODO: other template argument types?
2449    }
2450  }
2451
2452  // Visit pointee types from a permissive context.
2453#define CheckPolymorphic(Type) \
2454  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2455    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2456  }
2457  CheckPolymorphic(PointerTypeLoc)
2458  CheckPolymorphic(ReferenceTypeLoc)
2459  CheckPolymorphic(MemberPointerTypeLoc)
2460  CheckPolymorphic(BlockPointerTypeLoc)
2461
2462  /// Handle all the types we haven't given a more specific
2463  /// implementation for above.
2464  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2465    // Every other kind of type that we haven't called out already
2466    // that has an inner type is either (1) sugar or (2) contains that
2467    // inner type in some way as a subobject.
2468    if (TypeLoc Next = TL.getNextTypeLoc())
2469      return Visit(Next, Sel);
2470
2471    // If there's no inner type and we're in a permissive context,
2472    // don't diagnose.
2473    if (Sel == Sema::AbstractNone) return;
2474
2475    // Check whether the type matches the abstract type.
2476    QualType T = TL.getType();
2477    if (T->isArrayType()) {
2478      Sel = Sema::AbstractArrayType;
2479      T = Info.S.Context.getBaseElementType(T);
2480    }
2481    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2482    if (CT != Info.AbstractType) return;
2483
2484    // It matched; do some magic.
2485    if (Sel == Sema::AbstractArrayType) {
2486      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2487        << T << TL.getSourceRange();
2488    } else {
2489      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2490        << Sel << T << TL.getSourceRange();
2491    }
2492    Info.DiagnoseAbstractType();
2493  }
2494};
2495
2496void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2497                                  Sema::AbstractDiagSelID Sel) {
2498  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2499}
2500
2501}
2502
2503/// Check for invalid uses of an abstract type in a method declaration.
2504static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2505                                    CXXMethodDecl *MD) {
2506  // No need to do the check on definitions, which require that
2507  // the return/param types be complete.
2508  if (MD->isThisDeclarationADefinition())
2509    return;
2510
2511  // For safety's sake, just ignore it if we don't have type source
2512  // information.  This should never happen for non-implicit methods,
2513  // but...
2514  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2515    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2516}
2517
2518/// Check for invalid uses of an abstract type within a class definition.
2519static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2520                                    CXXRecordDecl *RD) {
2521  for (CXXRecordDecl::decl_iterator
2522         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2523    Decl *D = *I;
2524    if (D->isImplicit()) continue;
2525
2526    // Methods and method templates.
2527    if (isa<CXXMethodDecl>(D)) {
2528      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2529    } else if (isa<FunctionTemplateDecl>(D)) {
2530      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2531      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2532
2533    // Fields and static variables.
2534    } else if (isa<FieldDecl>(D)) {
2535      FieldDecl *FD = cast<FieldDecl>(D);
2536      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2537        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2538    } else if (isa<VarDecl>(D)) {
2539      VarDecl *VD = cast<VarDecl>(D);
2540      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2541        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2542
2543    // Nested classes and class templates.
2544    } else if (isa<CXXRecordDecl>(D)) {
2545      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2546    } else if (isa<ClassTemplateDecl>(D)) {
2547      CheckAbstractClassUsage(Info,
2548                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2549    }
2550  }
2551}
2552
2553/// \brief Perform semantic checks on a class definition that has been
2554/// completing, introducing implicitly-declared members, checking for
2555/// abstract types, etc.
2556void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2557  if (!Record)
2558    return;
2559
2560  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2561    AbstractUsageInfo Info(*this, Record);
2562    CheckAbstractClassUsage(Info, Record);
2563  }
2564
2565  // If this is not an aggregate type and has no user-declared constructor,
2566  // complain about any non-static data members of reference or const scalar
2567  // type, since they will never get initializers.
2568  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2569      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2570    bool Complained = false;
2571    for (RecordDecl::field_iterator F = Record->field_begin(),
2572                                 FEnd = Record->field_end();
2573         F != FEnd; ++F) {
2574      if (F->getType()->isReferenceType() ||
2575          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2576        if (!Complained) {
2577          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2578            << Record->getTagKind() << Record;
2579          Complained = true;
2580        }
2581
2582        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2583          << F->getType()->isReferenceType()
2584          << F->getDeclName();
2585      }
2586    }
2587  }
2588
2589  if (Record->isDynamicClass())
2590    DynamicClasses.push_back(Record);
2591
2592  if (Record->getIdentifier()) {
2593    // C++ [class.mem]p13:
2594    //   If T is the name of a class, then each of the following shall have a
2595    //   name different from T:
2596    //     - every member of every anonymous union that is a member of class T.
2597    //
2598    // C++ [class.mem]p14:
2599    //   In addition, if class T has a user-declared constructor (12.1), every
2600    //   non-static data member of class T shall have a name different from T.
2601    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2602         R.first != R.second; ++R.first)
2603      if (FieldDecl *Field = dyn_cast<FieldDecl>(*R.first)) {
2604        if (Record->hasUserDeclaredConstructor() ||
2605            !Field->getDeclContext()->Equals(Record)) {
2606        Diag(Field->getLocation(), diag::err_member_name_of_class)
2607          << Field->getDeclName();
2608        break;
2609      }
2610      }
2611  }
2612}
2613
2614void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2615                                             Decl *TagDecl,
2616                                             SourceLocation LBrac,
2617                                             SourceLocation RBrac,
2618                                             AttributeList *AttrList) {
2619  if (!TagDecl)
2620    return;
2621
2622  AdjustDeclIfTemplate(TagDecl);
2623
2624  ActOnFields(S, RLoc, TagDecl,
2625              // strict aliasing violation!
2626              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2627              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2628
2629  CheckCompletedCXXClass(
2630                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2631}
2632
2633namespace {
2634  /// \brief Helper class that collects exception specifications for
2635  /// implicitly-declared special member functions.
2636  class ImplicitExceptionSpecification {
2637    ASTContext &Context;
2638    bool AllowsAllExceptions;
2639    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2640    llvm::SmallVector<QualType, 4> Exceptions;
2641
2642  public:
2643    explicit ImplicitExceptionSpecification(ASTContext &Context)
2644      : Context(Context), AllowsAllExceptions(false) { }
2645
2646    /// \brief Whether the special member function should have any
2647    /// exception specification at all.
2648    bool hasExceptionSpecification() const {
2649      return !AllowsAllExceptions;
2650    }
2651
2652    /// \brief Whether the special member function should have a
2653    /// throw(...) exception specification (a Microsoft extension).
2654    bool hasAnyExceptionSpecification() const {
2655      return false;
2656    }
2657
2658    /// \brief The number of exceptions in the exception specification.
2659    unsigned size() const { return Exceptions.size(); }
2660
2661    /// \brief The set of exceptions in the exception specification.
2662    const QualType *data() const { return Exceptions.data(); }
2663
2664    /// \brief Note that
2665    void CalledDecl(CXXMethodDecl *Method) {
2666      // If we already know that we allow all exceptions, do nothing.
2667      if (AllowsAllExceptions || !Method)
2668        return;
2669
2670      const FunctionProtoType *Proto
2671        = Method->getType()->getAs<FunctionProtoType>();
2672
2673      // If this function can throw any exceptions, make a note of that.
2674      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2675        AllowsAllExceptions = true;
2676        ExceptionsSeen.clear();
2677        Exceptions.clear();
2678        return;
2679      }
2680
2681      // Record the exceptions in this function's exception specification.
2682      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2683                                              EEnd = Proto->exception_end();
2684           E != EEnd; ++E)
2685        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2686          Exceptions.push_back(*E);
2687    }
2688  };
2689}
2690
2691
2692/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2693/// special functions, such as the default constructor, copy
2694/// constructor, or destructor, to the given C++ class (C++
2695/// [special]p1).  This routine can only be executed just before the
2696/// definition of the class is complete.
2697void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2698  if (!ClassDecl->hasUserDeclaredConstructor())
2699    ++ASTContext::NumImplicitDefaultConstructors;
2700
2701  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2702    ++ASTContext::NumImplicitCopyConstructors;
2703
2704  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2705    ++ASTContext::NumImplicitCopyAssignmentOperators;
2706
2707    // If we have a dynamic class, then the copy assignment operator may be
2708    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2709    // it shows up in the right place in the vtable and that we diagnose
2710    // problems with the implicit exception specification.
2711    if (ClassDecl->isDynamicClass())
2712      DeclareImplicitCopyAssignment(ClassDecl);
2713  }
2714
2715  if (!ClassDecl->hasUserDeclaredDestructor()) {
2716    ++ASTContext::NumImplicitDestructors;
2717
2718    // If we have a dynamic class, then the destructor may be virtual, so we
2719    // have to declare the destructor immediately. This ensures that, e.g., it
2720    // shows up in the right place in the vtable and that we diagnose problems
2721    // with the implicit exception specification.
2722    if (ClassDecl->isDynamicClass())
2723      DeclareImplicitDestructor(ClassDecl);
2724  }
2725}
2726
2727void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2728  if (!D)
2729    return;
2730
2731  TemplateParameterList *Params = 0;
2732  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2733    Params = Template->getTemplateParameters();
2734  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2735           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2736    Params = PartialSpec->getTemplateParameters();
2737  else
2738    return;
2739
2740  for (TemplateParameterList::iterator Param = Params->begin(),
2741                                    ParamEnd = Params->end();
2742       Param != ParamEnd; ++Param) {
2743    NamedDecl *Named = cast<NamedDecl>(*Param);
2744    if (Named->getDeclName()) {
2745      S->AddDecl(Named);
2746      IdResolver.AddDecl(Named);
2747    }
2748  }
2749}
2750
2751void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2752  if (!RecordD) return;
2753  AdjustDeclIfTemplate(RecordD);
2754  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2755  PushDeclContext(S, Record);
2756}
2757
2758void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2759  if (!RecordD) return;
2760  PopDeclContext();
2761}
2762
2763/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2764/// parsing a top-level (non-nested) C++ class, and we are now
2765/// parsing those parts of the given Method declaration that could
2766/// not be parsed earlier (C++ [class.mem]p2), such as default
2767/// arguments. This action should enter the scope of the given
2768/// Method declaration as if we had just parsed the qualified method
2769/// name. However, it should not bring the parameters into scope;
2770/// that will be performed by ActOnDelayedCXXMethodParameter.
2771void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2772}
2773
2774/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2775/// C++ method declaration. We're (re-)introducing the given
2776/// function parameter into scope for use in parsing later parts of
2777/// the method declaration. For example, we could see an
2778/// ActOnParamDefaultArgument event for this parameter.
2779void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2780  if (!ParamD)
2781    return;
2782
2783  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2784
2785  // If this parameter has an unparsed default argument, clear it out
2786  // to make way for the parsed default argument.
2787  if (Param->hasUnparsedDefaultArg())
2788    Param->setDefaultArg(0);
2789
2790  S->AddDecl(Param);
2791  if (Param->getDeclName())
2792    IdResolver.AddDecl(Param);
2793}
2794
2795/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2796/// processing the delayed method declaration for Method. The method
2797/// declaration is now considered finished. There may be a separate
2798/// ActOnStartOfFunctionDef action later (not necessarily
2799/// immediately!) for this method, if it was also defined inside the
2800/// class body.
2801void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2802  if (!MethodD)
2803    return;
2804
2805  AdjustDeclIfTemplate(MethodD);
2806
2807  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2808
2809  // Now that we have our default arguments, check the constructor
2810  // again. It could produce additional diagnostics or affect whether
2811  // the class has implicitly-declared destructors, among other
2812  // things.
2813  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2814    CheckConstructor(Constructor);
2815
2816  // Check the default arguments, which we may have added.
2817  if (!Method->isInvalidDecl())
2818    CheckCXXDefaultArguments(Method);
2819}
2820
2821/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2822/// the well-formedness of the constructor declarator @p D with type @p
2823/// R. If there are any errors in the declarator, this routine will
2824/// emit diagnostics and set the invalid bit to true.  In any case, the type
2825/// will be updated to reflect a well-formed type for the constructor and
2826/// returned.
2827QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2828                                          StorageClass &SC) {
2829  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2830
2831  // C++ [class.ctor]p3:
2832  //   A constructor shall not be virtual (10.3) or static (9.4). A
2833  //   constructor can be invoked for a const, volatile or const
2834  //   volatile object. A constructor shall not be declared const,
2835  //   volatile, or const volatile (9.3.2).
2836  if (isVirtual) {
2837    if (!D.isInvalidType())
2838      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2839        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2840        << SourceRange(D.getIdentifierLoc());
2841    D.setInvalidType();
2842  }
2843  if (SC == SC_Static) {
2844    if (!D.isInvalidType())
2845      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2846        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2847        << SourceRange(D.getIdentifierLoc());
2848    D.setInvalidType();
2849    SC = SC_None;
2850  }
2851
2852  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2853  if (FTI.TypeQuals != 0) {
2854    if (FTI.TypeQuals & Qualifiers::Const)
2855      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2856        << "const" << SourceRange(D.getIdentifierLoc());
2857    if (FTI.TypeQuals & Qualifiers::Volatile)
2858      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2859        << "volatile" << SourceRange(D.getIdentifierLoc());
2860    if (FTI.TypeQuals & Qualifiers::Restrict)
2861      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2862        << "restrict" << SourceRange(D.getIdentifierLoc());
2863  }
2864
2865  // Rebuild the function type "R" without any type qualifiers (in
2866  // case any of the errors above fired) and with "void" as the
2867  // return type, since constructors don't have return types.
2868  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2869  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2870                                 Proto->getNumArgs(),
2871                                 Proto->isVariadic(), 0,
2872                                 Proto->hasExceptionSpec(),
2873                                 Proto->hasAnyExceptionSpec(),
2874                                 Proto->getNumExceptions(),
2875                                 Proto->exception_begin(),
2876                                 Proto->getExtInfo());
2877}
2878
2879/// CheckConstructor - Checks a fully-formed constructor for
2880/// well-formedness, issuing any diagnostics required. Returns true if
2881/// the constructor declarator is invalid.
2882void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2883  CXXRecordDecl *ClassDecl
2884    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2885  if (!ClassDecl)
2886    return Constructor->setInvalidDecl();
2887
2888  // C++ [class.copy]p3:
2889  //   A declaration of a constructor for a class X is ill-formed if
2890  //   its first parameter is of type (optionally cv-qualified) X and
2891  //   either there are no other parameters or else all other
2892  //   parameters have default arguments.
2893  if (!Constructor->isInvalidDecl() &&
2894      ((Constructor->getNumParams() == 1) ||
2895       (Constructor->getNumParams() > 1 &&
2896        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2897      Constructor->getTemplateSpecializationKind()
2898                                              != TSK_ImplicitInstantiation) {
2899    QualType ParamType = Constructor->getParamDecl(0)->getType();
2900    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2901    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2902      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2903      const char *ConstRef
2904        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2905                                                        : " const &";
2906      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2907        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2908
2909      // FIXME: Rather that making the constructor invalid, we should endeavor
2910      // to fix the type.
2911      Constructor->setInvalidDecl();
2912    }
2913  }
2914}
2915
2916/// CheckDestructor - Checks a fully-formed destructor definition for
2917/// well-formedness, issuing any diagnostics required.  Returns true
2918/// on error.
2919bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2920  CXXRecordDecl *RD = Destructor->getParent();
2921
2922  if (Destructor->isVirtual()) {
2923    SourceLocation Loc;
2924
2925    if (!Destructor->isImplicit())
2926      Loc = Destructor->getLocation();
2927    else
2928      Loc = RD->getLocation();
2929
2930    // If we have a virtual destructor, look up the deallocation function
2931    FunctionDecl *OperatorDelete = 0;
2932    DeclarationName Name =
2933    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2934    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2935      return true;
2936
2937    MarkDeclarationReferenced(Loc, OperatorDelete);
2938
2939    Destructor->setOperatorDelete(OperatorDelete);
2940  }
2941
2942  return false;
2943}
2944
2945static inline bool
2946FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2947  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2948          FTI.ArgInfo[0].Param &&
2949          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2950}
2951
2952/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2953/// the well-formednes of the destructor declarator @p D with type @p
2954/// R. If there are any errors in the declarator, this routine will
2955/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2956/// will be updated to reflect a well-formed type for the destructor and
2957/// returned.
2958QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2959                                         StorageClass& SC) {
2960  // C++ [class.dtor]p1:
2961  //   [...] A typedef-name that names a class is a class-name
2962  //   (7.1.3); however, a typedef-name that names a class shall not
2963  //   be used as the identifier in the declarator for a destructor
2964  //   declaration.
2965  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2966  if (isa<TypedefType>(DeclaratorType))
2967    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2968      << DeclaratorType;
2969
2970  // C++ [class.dtor]p2:
2971  //   A destructor is used to destroy objects of its class type. A
2972  //   destructor takes no parameters, and no return type can be
2973  //   specified for it (not even void). The address of a destructor
2974  //   shall not be taken. A destructor shall not be static. A
2975  //   destructor can be invoked for a const, volatile or const
2976  //   volatile object. A destructor shall not be declared const,
2977  //   volatile or const volatile (9.3.2).
2978  if (SC == SC_Static) {
2979    if (!D.isInvalidType())
2980      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2981        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2982        << SourceRange(D.getIdentifierLoc())
2983        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2984
2985    SC = SC_None;
2986  }
2987  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2988    // Destructors don't have return types, but the parser will
2989    // happily parse something like:
2990    //
2991    //   class X {
2992    //     float ~X();
2993    //   };
2994    //
2995    // The return type will be eliminated later.
2996    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2997      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2998      << SourceRange(D.getIdentifierLoc());
2999  }
3000
3001  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3002  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3003    if (FTI.TypeQuals & Qualifiers::Const)
3004      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3005        << "const" << SourceRange(D.getIdentifierLoc());
3006    if (FTI.TypeQuals & Qualifiers::Volatile)
3007      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3008        << "volatile" << SourceRange(D.getIdentifierLoc());
3009    if (FTI.TypeQuals & Qualifiers::Restrict)
3010      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3011        << "restrict" << SourceRange(D.getIdentifierLoc());
3012    D.setInvalidType();
3013  }
3014
3015  // Make sure we don't have any parameters.
3016  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3017    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3018
3019    // Delete the parameters.
3020    FTI.freeArgs();
3021    D.setInvalidType();
3022  }
3023
3024  // Make sure the destructor isn't variadic.
3025  if (FTI.isVariadic) {
3026    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3027    D.setInvalidType();
3028  }
3029
3030  // Rebuild the function type "R" without any type qualifiers or
3031  // parameters (in case any of the errors above fired) and with
3032  // "void" as the return type, since destructors don't have return
3033  // types.
3034  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3035  if (!Proto)
3036    return QualType();
3037
3038  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3039                                 Proto->hasExceptionSpec(),
3040                                 Proto->hasAnyExceptionSpec(),
3041                                 Proto->getNumExceptions(),
3042                                 Proto->exception_begin(),
3043                                 Proto->getExtInfo());
3044}
3045
3046/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3047/// well-formednes of the conversion function declarator @p D with
3048/// type @p R. If there are any errors in the declarator, this routine
3049/// will emit diagnostics and return true. Otherwise, it will return
3050/// false. Either way, the type @p R will be updated to reflect a
3051/// well-formed type for the conversion operator.
3052void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3053                                     StorageClass& SC) {
3054  // C++ [class.conv.fct]p1:
3055  //   Neither parameter types nor return type can be specified. The
3056  //   type of a conversion function (8.3.5) is "function taking no
3057  //   parameter returning conversion-type-id."
3058  if (SC == SC_Static) {
3059    if (!D.isInvalidType())
3060      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3061        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3062        << SourceRange(D.getIdentifierLoc());
3063    D.setInvalidType();
3064    SC = SC_None;
3065  }
3066
3067  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3068
3069  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3070    // Conversion functions don't have return types, but the parser will
3071    // happily parse something like:
3072    //
3073    //   class X {
3074    //     float operator bool();
3075    //   };
3076    //
3077    // The return type will be changed later anyway.
3078    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3079      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3080      << SourceRange(D.getIdentifierLoc());
3081    D.setInvalidType();
3082  }
3083
3084  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3085
3086  // Make sure we don't have any parameters.
3087  if (Proto->getNumArgs() > 0) {
3088    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3089
3090    // Delete the parameters.
3091    D.getTypeObject(0).Fun.freeArgs();
3092    D.setInvalidType();
3093  } else if (Proto->isVariadic()) {
3094    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3095    D.setInvalidType();
3096  }
3097
3098  // Diagnose "&operator bool()" and other such nonsense.  This
3099  // is actually a gcc extension which we don't support.
3100  if (Proto->getResultType() != ConvType) {
3101    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3102      << Proto->getResultType();
3103    D.setInvalidType();
3104    ConvType = Proto->getResultType();
3105  }
3106
3107  // C++ [class.conv.fct]p4:
3108  //   The conversion-type-id shall not represent a function type nor
3109  //   an array type.
3110  if (ConvType->isArrayType()) {
3111    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3112    ConvType = Context.getPointerType(ConvType);
3113    D.setInvalidType();
3114  } else if (ConvType->isFunctionType()) {
3115    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3116    ConvType = Context.getPointerType(ConvType);
3117    D.setInvalidType();
3118  }
3119
3120  // Rebuild the function type "R" without any parameters (in case any
3121  // of the errors above fired) and with the conversion type as the
3122  // return type.
3123  if (D.isInvalidType()) {
3124    R = Context.getFunctionType(ConvType, 0, 0, false,
3125                                Proto->getTypeQuals(),
3126                                Proto->hasExceptionSpec(),
3127                                Proto->hasAnyExceptionSpec(),
3128                                Proto->getNumExceptions(),
3129                                Proto->exception_begin(),
3130                                Proto->getExtInfo());
3131  }
3132
3133  // C++0x explicit conversion operators.
3134  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3135    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3136         diag::warn_explicit_conversion_functions)
3137      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3138}
3139
3140/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3141/// the declaration of the given C++ conversion function. This routine
3142/// is responsible for recording the conversion function in the C++
3143/// class, if possible.
3144Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3145  assert(Conversion && "Expected to receive a conversion function declaration");
3146
3147  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3148
3149  // Make sure we aren't redeclaring the conversion function.
3150  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3151
3152  // C++ [class.conv.fct]p1:
3153  //   [...] A conversion function is never used to convert a
3154  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3155  //   same object type (or a reference to it), to a (possibly
3156  //   cv-qualified) base class of that type (or a reference to it),
3157  //   or to (possibly cv-qualified) void.
3158  // FIXME: Suppress this warning if the conversion function ends up being a
3159  // virtual function that overrides a virtual function in a base class.
3160  QualType ClassType
3161    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3162  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3163    ConvType = ConvTypeRef->getPointeeType();
3164  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3165      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3166    /* Suppress diagnostics for instantiations. */;
3167  else if (ConvType->isRecordType()) {
3168    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3169    if (ConvType == ClassType)
3170      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3171        << ClassType;
3172    else if (IsDerivedFrom(ClassType, ConvType))
3173      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3174        <<  ClassType << ConvType;
3175  } else if (ConvType->isVoidType()) {
3176    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3177      << ClassType << ConvType;
3178  }
3179
3180  if (FunctionTemplateDecl *ConversionTemplate
3181                                = Conversion->getDescribedFunctionTemplate())
3182    return ConversionTemplate;
3183
3184  return Conversion;
3185}
3186
3187//===----------------------------------------------------------------------===//
3188// Namespace Handling
3189//===----------------------------------------------------------------------===//
3190
3191
3192
3193/// ActOnStartNamespaceDef - This is called at the start of a namespace
3194/// definition.
3195Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3196                                   SourceLocation InlineLoc,
3197                                   SourceLocation IdentLoc,
3198                                   IdentifierInfo *II,
3199                                   SourceLocation LBrace,
3200                                   AttributeList *AttrList) {
3201  // anonymous namespace starts at its left brace
3202  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3203    (II ? IdentLoc : LBrace) , II);
3204  Namespc->setLBracLoc(LBrace);
3205  Namespc->setInline(InlineLoc.isValid());
3206
3207  Scope *DeclRegionScope = NamespcScope->getParent();
3208
3209  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3210
3211  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3212    PushVisibilityAttr(attr);
3213
3214  if (II) {
3215    // C++ [namespace.def]p2:
3216    //   The identifier in an original-namespace-definition shall not
3217    //   have been previously defined in the declarative region in
3218    //   which the original-namespace-definition appears. The
3219    //   identifier in an original-namespace-definition is the name of
3220    //   the namespace. Subsequently in that declarative region, it is
3221    //   treated as an original-namespace-name.
3222    //
3223    // Since namespace names are unique in their scope, and we don't
3224    // look through using directives, just
3225    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3226    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3227
3228    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3229      // This is an extended namespace definition.
3230      if (Namespc->isInline() != OrigNS->isInline()) {
3231        // inline-ness must match
3232        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3233          << Namespc->isInline();
3234        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3235        Namespc->setInvalidDecl();
3236        // Recover by ignoring the new namespace's inline status.
3237        Namespc->setInline(OrigNS->isInline());
3238      }
3239
3240      // Attach this namespace decl to the chain of extended namespace
3241      // definitions.
3242      OrigNS->setNextNamespace(Namespc);
3243      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3244
3245      // Remove the previous declaration from the scope.
3246      if (DeclRegionScope->isDeclScope(OrigNS)) {
3247        IdResolver.RemoveDecl(OrigNS);
3248        DeclRegionScope->RemoveDecl(OrigNS);
3249      }
3250    } else if (PrevDecl) {
3251      // This is an invalid name redefinition.
3252      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3253       << Namespc->getDeclName();
3254      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3255      Namespc->setInvalidDecl();
3256      // Continue on to push Namespc as current DeclContext and return it.
3257    } else if (II->isStr("std") &&
3258               CurContext->getRedeclContext()->isTranslationUnit()) {
3259      // This is the first "real" definition of the namespace "std", so update
3260      // our cache of the "std" namespace to point at this definition.
3261      if (NamespaceDecl *StdNS = getStdNamespace()) {
3262        // We had already defined a dummy namespace "std". Link this new
3263        // namespace definition to the dummy namespace "std".
3264        StdNS->setNextNamespace(Namespc);
3265        StdNS->setLocation(IdentLoc);
3266        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3267      }
3268
3269      // Make our StdNamespace cache point at the first real definition of the
3270      // "std" namespace.
3271      StdNamespace = Namespc;
3272    }
3273
3274    PushOnScopeChains(Namespc, DeclRegionScope);
3275  } else {
3276    // Anonymous namespaces.
3277    assert(Namespc->isAnonymousNamespace());
3278
3279    // Link the anonymous namespace into its parent.
3280    NamespaceDecl *PrevDecl;
3281    DeclContext *Parent = CurContext->getRedeclContext();
3282    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3283      PrevDecl = TU->getAnonymousNamespace();
3284      TU->setAnonymousNamespace(Namespc);
3285    } else {
3286      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3287      PrevDecl = ND->getAnonymousNamespace();
3288      ND->setAnonymousNamespace(Namespc);
3289    }
3290
3291    // Link the anonymous namespace with its previous declaration.
3292    if (PrevDecl) {
3293      assert(PrevDecl->isAnonymousNamespace());
3294      assert(!PrevDecl->getNextNamespace());
3295      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3296      PrevDecl->setNextNamespace(Namespc);
3297
3298      if (Namespc->isInline() != PrevDecl->isInline()) {
3299        // inline-ness must match
3300        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3301          << Namespc->isInline();
3302        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3303        Namespc->setInvalidDecl();
3304        // Recover by ignoring the new namespace's inline status.
3305        Namespc->setInline(PrevDecl->isInline());
3306      }
3307    }
3308
3309    CurContext->addDecl(Namespc);
3310
3311    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3312    //   behaves as if it were replaced by
3313    //     namespace unique { /* empty body */ }
3314    //     using namespace unique;
3315    //     namespace unique { namespace-body }
3316    //   where all occurrences of 'unique' in a translation unit are
3317    //   replaced by the same identifier and this identifier differs
3318    //   from all other identifiers in the entire program.
3319
3320    // We just create the namespace with an empty name and then add an
3321    // implicit using declaration, just like the standard suggests.
3322    //
3323    // CodeGen enforces the "universally unique" aspect by giving all
3324    // declarations semantically contained within an anonymous
3325    // namespace internal linkage.
3326
3327    if (!PrevDecl) {
3328      UsingDirectiveDecl* UD
3329        = UsingDirectiveDecl::Create(Context, CurContext,
3330                                     /* 'using' */ LBrace,
3331                                     /* 'namespace' */ SourceLocation(),
3332                                     /* qualifier */ SourceRange(),
3333                                     /* NNS */ NULL,
3334                                     /* identifier */ SourceLocation(),
3335                                     Namespc,
3336                                     /* Ancestor */ CurContext);
3337      UD->setImplicit();
3338      CurContext->addDecl(UD);
3339    }
3340  }
3341
3342  // Although we could have an invalid decl (i.e. the namespace name is a
3343  // redefinition), push it as current DeclContext and try to continue parsing.
3344  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3345  // for the namespace has the declarations that showed up in that particular
3346  // namespace definition.
3347  PushDeclContext(NamespcScope, Namespc);
3348  return Namespc;
3349}
3350
3351/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3352/// is a namespace alias, returns the namespace it points to.
3353static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3354  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3355    return AD->getNamespace();
3356  return dyn_cast_or_null<NamespaceDecl>(D);
3357}
3358
3359/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3360/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3361void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3362  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3363  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3364  Namespc->setRBracLoc(RBrace);
3365  PopDeclContext();
3366  if (Namespc->hasAttr<VisibilityAttr>())
3367    PopPragmaVisibility();
3368}
3369
3370CXXRecordDecl *Sema::getStdBadAlloc() const {
3371  return cast_or_null<CXXRecordDecl>(
3372                                  StdBadAlloc.get(Context.getExternalSource()));
3373}
3374
3375NamespaceDecl *Sema::getStdNamespace() const {
3376  return cast_or_null<NamespaceDecl>(
3377                                 StdNamespace.get(Context.getExternalSource()));
3378}
3379
3380/// \brief Retrieve the special "std" namespace, which may require us to
3381/// implicitly define the namespace.
3382NamespaceDecl *Sema::getOrCreateStdNamespace() {
3383  if (!StdNamespace) {
3384    // The "std" namespace has not yet been defined, so build one implicitly.
3385    StdNamespace = NamespaceDecl::Create(Context,
3386                                         Context.getTranslationUnitDecl(),
3387                                         SourceLocation(),
3388                                         &PP.getIdentifierTable().get("std"));
3389    getStdNamespace()->setImplicit(true);
3390  }
3391
3392  return getStdNamespace();
3393}
3394
3395Decl *Sema::ActOnUsingDirective(Scope *S,
3396                                          SourceLocation UsingLoc,
3397                                          SourceLocation NamespcLoc,
3398                                          CXXScopeSpec &SS,
3399                                          SourceLocation IdentLoc,
3400                                          IdentifierInfo *NamespcName,
3401                                          AttributeList *AttrList) {
3402  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3403  assert(NamespcName && "Invalid NamespcName.");
3404  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3405
3406  // This can only happen along a recovery path.
3407  while (S->getFlags() & Scope::TemplateParamScope)
3408    S = S->getParent();
3409  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3410
3411  UsingDirectiveDecl *UDir = 0;
3412  NestedNameSpecifier *Qualifier = 0;
3413  if (SS.isSet())
3414    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3415
3416  // Lookup namespace name.
3417  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3418  LookupParsedName(R, S, &SS);
3419  if (R.isAmbiguous())
3420    return 0;
3421
3422  if (R.empty()) {
3423    // Allow "using namespace std;" or "using namespace ::std;" even if
3424    // "std" hasn't been defined yet, for GCC compatibility.
3425    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3426        NamespcName->isStr("std")) {
3427      Diag(IdentLoc, diag::ext_using_undefined_std);
3428      R.addDecl(getOrCreateStdNamespace());
3429      R.resolveKind();
3430    }
3431    // Otherwise, attempt typo correction.
3432    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3433                                                       CTC_NoKeywords, 0)) {
3434      if (R.getAsSingle<NamespaceDecl>() ||
3435          R.getAsSingle<NamespaceAliasDecl>()) {
3436        if (DeclContext *DC = computeDeclContext(SS, false))
3437          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3438            << NamespcName << DC << Corrected << SS.getRange()
3439            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3440        else
3441          Diag(IdentLoc, diag::err_using_directive_suggest)
3442            << NamespcName << Corrected
3443            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3444        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3445          << Corrected;
3446
3447        NamespcName = Corrected.getAsIdentifierInfo();
3448      } else {
3449        R.clear();
3450        R.setLookupName(NamespcName);
3451      }
3452    }
3453  }
3454
3455  if (!R.empty()) {
3456    NamedDecl *Named = R.getFoundDecl();
3457    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3458        && "expected namespace decl");
3459    // C++ [namespace.udir]p1:
3460    //   A using-directive specifies that the names in the nominated
3461    //   namespace can be used in the scope in which the
3462    //   using-directive appears after the using-directive. During
3463    //   unqualified name lookup (3.4.1), the names appear as if they
3464    //   were declared in the nearest enclosing namespace which
3465    //   contains both the using-directive and the nominated
3466    //   namespace. [Note: in this context, "contains" means "contains
3467    //   directly or indirectly". ]
3468
3469    // Find enclosing context containing both using-directive and
3470    // nominated namespace.
3471    NamespaceDecl *NS = getNamespaceDecl(Named);
3472    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3473    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3474      CommonAncestor = CommonAncestor->getParent();
3475
3476    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3477                                      SS.getRange(),
3478                                      (NestedNameSpecifier *)SS.getScopeRep(),
3479                                      IdentLoc, Named, CommonAncestor);
3480    PushUsingDirective(S, UDir);
3481  } else {
3482    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3483  }
3484
3485  // FIXME: We ignore attributes for now.
3486  delete AttrList;
3487  return UDir;
3488}
3489
3490void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3491  // If scope has associated entity, then using directive is at namespace
3492  // or translation unit scope. We add UsingDirectiveDecls, into
3493  // it's lookup structure.
3494  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3495    Ctx->addDecl(UDir);
3496  else
3497    // Otherwise it is block-sope. using-directives will affect lookup
3498    // only to the end of scope.
3499    S->PushUsingDirective(UDir);
3500}
3501
3502
3503Decl *Sema::ActOnUsingDeclaration(Scope *S,
3504                                  AccessSpecifier AS,
3505                                  bool HasUsingKeyword,
3506                                  SourceLocation UsingLoc,
3507                                  CXXScopeSpec &SS,
3508                                  UnqualifiedId &Name,
3509                                  AttributeList *AttrList,
3510                                  bool IsTypeName,
3511                                  SourceLocation TypenameLoc) {
3512  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3513
3514  switch (Name.getKind()) {
3515  case UnqualifiedId::IK_Identifier:
3516  case UnqualifiedId::IK_OperatorFunctionId:
3517  case UnqualifiedId::IK_LiteralOperatorId:
3518  case UnqualifiedId::IK_ConversionFunctionId:
3519    break;
3520
3521  case UnqualifiedId::IK_ConstructorName:
3522  case UnqualifiedId::IK_ConstructorTemplateId:
3523    // C++0x inherited constructors.
3524    if (getLangOptions().CPlusPlus0x) break;
3525
3526    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3527      << SS.getRange();
3528    return 0;
3529
3530  case UnqualifiedId::IK_DestructorName:
3531    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3532      << SS.getRange();
3533    return 0;
3534
3535  case UnqualifiedId::IK_TemplateId:
3536    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3537      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3538    return 0;
3539  }
3540
3541  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3542  DeclarationName TargetName = TargetNameInfo.getName();
3543  if (!TargetName)
3544    return 0;
3545
3546  // Warn about using declarations.
3547  // TODO: store that the declaration was written without 'using' and
3548  // talk about access decls instead of using decls in the
3549  // diagnostics.
3550  if (!HasUsingKeyword) {
3551    UsingLoc = Name.getSourceRange().getBegin();
3552
3553    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3554      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3555  }
3556
3557  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3558                                        TargetNameInfo, AttrList,
3559                                        /* IsInstantiation */ false,
3560                                        IsTypeName, TypenameLoc);
3561  if (UD)
3562    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3563
3564  return UD;
3565}
3566
3567/// \brief Determine whether a using declaration considers the given
3568/// declarations as "equivalent", e.g., if they are redeclarations of
3569/// the same entity or are both typedefs of the same type.
3570static bool
3571IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3572                         bool &SuppressRedeclaration) {
3573  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3574    SuppressRedeclaration = false;
3575    return true;
3576  }
3577
3578  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3579    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3580      SuppressRedeclaration = true;
3581      return Context.hasSameType(TD1->getUnderlyingType(),
3582                                 TD2->getUnderlyingType());
3583    }
3584
3585  return false;
3586}
3587
3588
3589/// Determines whether to create a using shadow decl for a particular
3590/// decl, given the set of decls existing prior to this using lookup.
3591bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3592                                const LookupResult &Previous) {
3593  // Diagnose finding a decl which is not from a base class of the
3594  // current class.  We do this now because there are cases where this
3595  // function will silently decide not to build a shadow decl, which
3596  // will pre-empt further diagnostics.
3597  //
3598  // We don't need to do this in C++0x because we do the check once on
3599  // the qualifier.
3600  //
3601  // FIXME: diagnose the following if we care enough:
3602  //   struct A { int foo; };
3603  //   struct B : A { using A::foo; };
3604  //   template <class T> struct C : A {};
3605  //   template <class T> struct D : C<T> { using B::foo; } // <---
3606  // This is invalid (during instantiation) in C++03 because B::foo
3607  // resolves to the using decl in B, which is not a base class of D<T>.
3608  // We can't diagnose it immediately because C<T> is an unknown
3609  // specialization.  The UsingShadowDecl in D<T> then points directly
3610  // to A::foo, which will look well-formed when we instantiate.
3611  // The right solution is to not collapse the shadow-decl chain.
3612  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3613    DeclContext *OrigDC = Orig->getDeclContext();
3614
3615    // Handle enums and anonymous structs.
3616    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3617    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3618    while (OrigRec->isAnonymousStructOrUnion())
3619      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3620
3621    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3622      if (OrigDC == CurContext) {
3623        Diag(Using->getLocation(),
3624             diag::err_using_decl_nested_name_specifier_is_current_class)
3625          << Using->getNestedNameRange();
3626        Diag(Orig->getLocation(), diag::note_using_decl_target);
3627        return true;
3628      }
3629
3630      Diag(Using->getNestedNameRange().getBegin(),
3631           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3632        << Using->getTargetNestedNameDecl()
3633        << cast<CXXRecordDecl>(CurContext)
3634        << Using->getNestedNameRange();
3635      Diag(Orig->getLocation(), diag::note_using_decl_target);
3636      return true;
3637    }
3638  }
3639
3640  if (Previous.empty()) return false;
3641
3642  NamedDecl *Target = Orig;
3643  if (isa<UsingShadowDecl>(Target))
3644    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3645
3646  // If the target happens to be one of the previous declarations, we
3647  // don't have a conflict.
3648  //
3649  // FIXME: but we might be increasing its access, in which case we
3650  // should redeclare it.
3651  NamedDecl *NonTag = 0, *Tag = 0;
3652  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3653         I != E; ++I) {
3654    NamedDecl *D = (*I)->getUnderlyingDecl();
3655    bool Result;
3656    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3657      return Result;
3658
3659    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3660  }
3661
3662  if (Target->isFunctionOrFunctionTemplate()) {
3663    FunctionDecl *FD;
3664    if (isa<FunctionTemplateDecl>(Target))
3665      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3666    else
3667      FD = cast<FunctionDecl>(Target);
3668
3669    NamedDecl *OldDecl = 0;
3670    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3671    case Ovl_Overload:
3672      return false;
3673
3674    case Ovl_NonFunction:
3675      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3676      break;
3677
3678    // We found a decl with the exact signature.
3679    case Ovl_Match:
3680      // If we're in a record, we want to hide the target, so we
3681      // return true (without a diagnostic) to tell the caller not to
3682      // build a shadow decl.
3683      if (CurContext->isRecord())
3684        return true;
3685
3686      // If we're not in a record, this is an error.
3687      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3688      break;
3689    }
3690
3691    Diag(Target->getLocation(), diag::note_using_decl_target);
3692    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3693    return true;
3694  }
3695
3696  // Target is not a function.
3697
3698  if (isa<TagDecl>(Target)) {
3699    // No conflict between a tag and a non-tag.
3700    if (!Tag) return false;
3701
3702    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3703    Diag(Target->getLocation(), diag::note_using_decl_target);
3704    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3705    return true;
3706  }
3707
3708  // No conflict between a tag and a non-tag.
3709  if (!NonTag) return false;
3710
3711  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3712  Diag(Target->getLocation(), diag::note_using_decl_target);
3713  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3714  return true;
3715}
3716
3717/// Builds a shadow declaration corresponding to a 'using' declaration.
3718UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3719                                            UsingDecl *UD,
3720                                            NamedDecl *Orig) {
3721
3722  // If we resolved to another shadow declaration, just coalesce them.
3723  NamedDecl *Target = Orig;
3724  if (isa<UsingShadowDecl>(Target)) {
3725    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3726    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3727  }
3728
3729  UsingShadowDecl *Shadow
3730    = UsingShadowDecl::Create(Context, CurContext,
3731                              UD->getLocation(), UD, Target);
3732  UD->addShadowDecl(Shadow);
3733
3734  Shadow->setAccess(UD->getAccess());
3735  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3736    Shadow->setInvalidDecl();
3737
3738  if (S)
3739    PushOnScopeChains(Shadow, S);
3740  else
3741    CurContext->addDecl(Shadow);
3742
3743
3744  return Shadow;
3745}
3746
3747/// Hides a using shadow declaration.  This is required by the current
3748/// using-decl implementation when a resolvable using declaration in a
3749/// class is followed by a declaration which would hide or override
3750/// one or more of the using decl's targets; for example:
3751///
3752///   struct Base { void foo(int); };
3753///   struct Derived : Base {
3754///     using Base::foo;
3755///     void foo(int);
3756///   };
3757///
3758/// The governing language is C++03 [namespace.udecl]p12:
3759///
3760///   When a using-declaration brings names from a base class into a
3761///   derived class scope, member functions in the derived class
3762///   override and/or hide member functions with the same name and
3763///   parameter types in a base class (rather than conflicting).
3764///
3765/// There are two ways to implement this:
3766///   (1) optimistically create shadow decls when they're not hidden
3767///       by existing declarations, or
3768///   (2) don't create any shadow decls (or at least don't make them
3769///       visible) until we've fully parsed/instantiated the class.
3770/// The problem with (1) is that we might have to retroactively remove
3771/// a shadow decl, which requires several O(n) operations because the
3772/// decl structures are (very reasonably) not designed for removal.
3773/// (2) avoids this but is very fiddly and phase-dependent.
3774void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3775  if (Shadow->getDeclName().getNameKind() ==
3776        DeclarationName::CXXConversionFunctionName)
3777    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3778
3779  // Remove it from the DeclContext...
3780  Shadow->getDeclContext()->removeDecl(Shadow);
3781
3782  // ...and the scope, if applicable...
3783  if (S) {
3784    S->RemoveDecl(Shadow);
3785    IdResolver.RemoveDecl(Shadow);
3786  }
3787
3788  // ...and the using decl.
3789  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3790
3791  // TODO: complain somehow if Shadow was used.  It shouldn't
3792  // be possible for this to happen, because...?
3793}
3794
3795/// Builds a using declaration.
3796///
3797/// \param IsInstantiation - Whether this call arises from an
3798///   instantiation of an unresolved using declaration.  We treat
3799///   the lookup differently for these declarations.
3800NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3801                                       SourceLocation UsingLoc,
3802                                       CXXScopeSpec &SS,
3803                                       const DeclarationNameInfo &NameInfo,
3804                                       AttributeList *AttrList,
3805                                       bool IsInstantiation,
3806                                       bool IsTypeName,
3807                                       SourceLocation TypenameLoc) {
3808  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3809  SourceLocation IdentLoc = NameInfo.getLoc();
3810  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3811
3812  // FIXME: We ignore attributes for now.
3813  delete AttrList;
3814
3815  if (SS.isEmpty()) {
3816    Diag(IdentLoc, diag::err_using_requires_qualname);
3817    return 0;
3818  }
3819
3820  // Do the redeclaration lookup in the current scope.
3821  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3822                        ForRedeclaration);
3823  Previous.setHideTags(false);
3824  if (S) {
3825    LookupName(Previous, S);
3826
3827    // It is really dumb that we have to do this.
3828    LookupResult::Filter F = Previous.makeFilter();
3829    while (F.hasNext()) {
3830      NamedDecl *D = F.next();
3831      if (!isDeclInScope(D, CurContext, S))
3832        F.erase();
3833    }
3834    F.done();
3835  } else {
3836    assert(IsInstantiation && "no scope in non-instantiation");
3837    assert(CurContext->isRecord() && "scope not record in instantiation");
3838    LookupQualifiedName(Previous, CurContext);
3839  }
3840
3841  NestedNameSpecifier *NNS =
3842    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3843
3844  // Check for invalid redeclarations.
3845  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3846    return 0;
3847
3848  // Check for bad qualifiers.
3849  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3850    return 0;
3851
3852  DeclContext *LookupContext = computeDeclContext(SS);
3853  NamedDecl *D;
3854  if (!LookupContext) {
3855    if (IsTypeName) {
3856      // FIXME: not all declaration name kinds are legal here
3857      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3858                                              UsingLoc, TypenameLoc,
3859                                              SS.getRange(), NNS,
3860                                              IdentLoc, NameInfo.getName());
3861    } else {
3862      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3863                                           UsingLoc, SS.getRange(),
3864                                           NNS, NameInfo);
3865    }
3866  } else {
3867    D = UsingDecl::Create(Context, CurContext,
3868                          SS.getRange(), UsingLoc, NNS, NameInfo,
3869                          IsTypeName);
3870  }
3871  D->setAccess(AS);
3872  CurContext->addDecl(D);
3873
3874  if (!LookupContext) return D;
3875  UsingDecl *UD = cast<UsingDecl>(D);
3876
3877  if (RequireCompleteDeclContext(SS, LookupContext)) {
3878    UD->setInvalidDecl();
3879    return UD;
3880  }
3881
3882  // Look up the target name.
3883
3884  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3885
3886  // Unlike most lookups, we don't always want to hide tag
3887  // declarations: tag names are visible through the using declaration
3888  // even if hidden by ordinary names, *except* in a dependent context
3889  // where it's important for the sanity of two-phase lookup.
3890  if (!IsInstantiation)
3891    R.setHideTags(false);
3892
3893  LookupQualifiedName(R, LookupContext);
3894
3895  if (R.empty()) {
3896    Diag(IdentLoc, diag::err_no_member)
3897      << NameInfo.getName() << LookupContext << SS.getRange();
3898    UD->setInvalidDecl();
3899    return UD;
3900  }
3901
3902  if (R.isAmbiguous()) {
3903    UD->setInvalidDecl();
3904    return UD;
3905  }
3906
3907  if (IsTypeName) {
3908    // If we asked for a typename and got a non-type decl, error out.
3909    if (!R.getAsSingle<TypeDecl>()) {
3910      Diag(IdentLoc, diag::err_using_typename_non_type);
3911      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3912        Diag((*I)->getUnderlyingDecl()->getLocation(),
3913             diag::note_using_decl_target);
3914      UD->setInvalidDecl();
3915      return UD;
3916    }
3917  } else {
3918    // If we asked for a non-typename and we got a type, error out,
3919    // but only if this is an instantiation of an unresolved using
3920    // decl.  Otherwise just silently find the type name.
3921    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3922      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3923      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3924      UD->setInvalidDecl();
3925      return UD;
3926    }
3927  }
3928
3929  // C++0x N2914 [namespace.udecl]p6:
3930  // A using-declaration shall not name a namespace.
3931  if (R.getAsSingle<NamespaceDecl>()) {
3932    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3933      << SS.getRange();
3934    UD->setInvalidDecl();
3935    return UD;
3936  }
3937
3938  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3939    if (!CheckUsingShadowDecl(UD, *I, Previous))
3940      BuildUsingShadowDecl(S, UD, *I);
3941  }
3942
3943  return UD;
3944}
3945
3946/// Checks that the given using declaration is not an invalid
3947/// redeclaration.  Note that this is checking only for the using decl
3948/// itself, not for any ill-formedness among the UsingShadowDecls.
3949bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3950                                       bool isTypeName,
3951                                       const CXXScopeSpec &SS,
3952                                       SourceLocation NameLoc,
3953                                       const LookupResult &Prev) {
3954  // C++03 [namespace.udecl]p8:
3955  // C++0x [namespace.udecl]p10:
3956  //   A using-declaration is a declaration and can therefore be used
3957  //   repeatedly where (and only where) multiple declarations are
3958  //   allowed.
3959  //
3960  // That's in non-member contexts.
3961  if (!CurContext->getRedeclContext()->isRecord())
3962    return false;
3963
3964  NestedNameSpecifier *Qual
3965    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3966
3967  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3968    NamedDecl *D = *I;
3969
3970    bool DTypename;
3971    NestedNameSpecifier *DQual;
3972    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3973      DTypename = UD->isTypeName();
3974      DQual = UD->getTargetNestedNameDecl();
3975    } else if (UnresolvedUsingValueDecl *UD
3976                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3977      DTypename = false;
3978      DQual = UD->getTargetNestedNameSpecifier();
3979    } else if (UnresolvedUsingTypenameDecl *UD
3980                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3981      DTypename = true;
3982      DQual = UD->getTargetNestedNameSpecifier();
3983    } else continue;
3984
3985    // using decls differ if one says 'typename' and the other doesn't.
3986    // FIXME: non-dependent using decls?
3987    if (isTypeName != DTypename) continue;
3988
3989    // using decls differ if they name different scopes (but note that
3990    // template instantiation can cause this check to trigger when it
3991    // didn't before instantiation).
3992    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3993        Context.getCanonicalNestedNameSpecifier(DQual))
3994      continue;
3995
3996    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3997    Diag(D->getLocation(), diag::note_using_decl) << 1;
3998    return true;
3999  }
4000
4001  return false;
4002}
4003
4004
4005/// Checks that the given nested-name qualifier used in a using decl
4006/// in the current context is appropriately related to the current
4007/// scope.  If an error is found, diagnoses it and returns true.
4008bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4009                                   const CXXScopeSpec &SS,
4010                                   SourceLocation NameLoc) {
4011  DeclContext *NamedContext = computeDeclContext(SS);
4012
4013  if (!CurContext->isRecord()) {
4014    // C++03 [namespace.udecl]p3:
4015    // C++0x [namespace.udecl]p8:
4016    //   A using-declaration for a class member shall be a member-declaration.
4017
4018    // If we weren't able to compute a valid scope, it must be a
4019    // dependent class scope.
4020    if (!NamedContext || NamedContext->isRecord()) {
4021      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4022        << SS.getRange();
4023      return true;
4024    }
4025
4026    // Otherwise, everything is known to be fine.
4027    return false;
4028  }
4029
4030  // The current scope is a record.
4031
4032  // If the named context is dependent, we can't decide much.
4033  if (!NamedContext) {
4034    // FIXME: in C++0x, we can diagnose if we can prove that the
4035    // nested-name-specifier does not refer to a base class, which is
4036    // still possible in some cases.
4037
4038    // Otherwise we have to conservatively report that things might be
4039    // okay.
4040    return false;
4041  }
4042
4043  if (!NamedContext->isRecord()) {
4044    // Ideally this would point at the last name in the specifier,
4045    // but we don't have that level of source info.
4046    Diag(SS.getRange().getBegin(),
4047         diag::err_using_decl_nested_name_specifier_is_not_class)
4048      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4049    return true;
4050  }
4051
4052  if (getLangOptions().CPlusPlus0x) {
4053    // C++0x [namespace.udecl]p3:
4054    //   In a using-declaration used as a member-declaration, the
4055    //   nested-name-specifier shall name a base class of the class
4056    //   being defined.
4057
4058    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4059                                 cast<CXXRecordDecl>(NamedContext))) {
4060      if (CurContext == NamedContext) {
4061        Diag(NameLoc,
4062             diag::err_using_decl_nested_name_specifier_is_current_class)
4063          << SS.getRange();
4064        return true;
4065      }
4066
4067      Diag(SS.getRange().getBegin(),
4068           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4069        << (NestedNameSpecifier*) SS.getScopeRep()
4070        << cast<CXXRecordDecl>(CurContext)
4071        << SS.getRange();
4072      return true;
4073    }
4074
4075    return false;
4076  }
4077
4078  // C++03 [namespace.udecl]p4:
4079  //   A using-declaration used as a member-declaration shall refer
4080  //   to a member of a base class of the class being defined [etc.].
4081
4082  // Salient point: SS doesn't have to name a base class as long as
4083  // lookup only finds members from base classes.  Therefore we can
4084  // diagnose here only if we can prove that that can't happen,
4085  // i.e. if the class hierarchies provably don't intersect.
4086
4087  // TODO: it would be nice if "definitely valid" results were cached
4088  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4089  // need to be repeated.
4090
4091  struct UserData {
4092    llvm::DenseSet<const CXXRecordDecl*> Bases;
4093
4094    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4095      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4096      Data->Bases.insert(Base);
4097      return true;
4098    }
4099
4100    bool hasDependentBases(const CXXRecordDecl *Class) {
4101      return !Class->forallBases(collect, this);
4102    }
4103
4104    /// Returns true if the base is dependent or is one of the
4105    /// accumulated base classes.
4106    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4107      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4108      return !Data->Bases.count(Base);
4109    }
4110
4111    bool mightShareBases(const CXXRecordDecl *Class) {
4112      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4113    }
4114  };
4115
4116  UserData Data;
4117
4118  // Returns false if we find a dependent base.
4119  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4120    return false;
4121
4122  // Returns false if the class has a dependent base or if it or one
4123  // of its bases is present in the base set of the current context.
4124  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4125    return false;
4126
4127  Diag(SS.getRange().getBegin(),
4128       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4129    << (NestedNameSpecifier*) SS.getScopeRep()
4130    << cast<CXXRecordDecl>(CurContext)
4131    << SS.getRange();
4132
4133  return true;
4134}
4135
4136Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4137                                             SourceLocation NamespaceLoc,
4138                                             SourceLocation AliasLoc,
4139                                             IdentifierInfo *Alias,
4140                                             CXXScopeSpec &SS,
4141                                             SourceLocation IdentLoc,
4142                                             IdentifierInfo *Ident) {
4143
4144  // Lookup the namespace name.
4145  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4146  LookupParsedName(R, S, &SS);
4147
4148  // Check if we have a previous declaration with the same name.
4149  NamedDecl *PrevDecl
4150    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4151                       ForRedeclaration);
4152  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4153    PrevDecl = 0;
4154
4155  if (PrevDecl) {
4156    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4157      // We already have an alias with the same name that points to the same
4158      // namespace, so don't create a new one.
4159      // FIXME: At some point, we'll want to create the (redundant)
4160      // declaration to maintain better source information.
4161      if (!R.isAmbiguous() && !R.empty() &&
4162          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4163        return 0;
4164    }
4165
4166    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4167      diag::err_redefinition_different_kind;
4168    Diag(AliasLoc, DiagID) << Alias;
4169    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4170    return 0;
4171  }
4172
4173  if (R.isAmbiguous())
4174    return 0;
4175
4176  if (R.empty()) {
4177    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4178                                                CTC_NoKeywords, 0)) {
4179      if (R.getAsSingle<NamespaceDecl>() ||
4180          R.getAsSingle<NamespaceAliasDecl>()) {
4181        if (DeclContext *DC = computeDeclContext(SS, false))
4182          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4183            << Ident << DC << Corrected << SS.getRange()
4184            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4185        else
4186          Diag(IdentLoc, diag::err_using_directive_suggest)
4187            << Ident << Corrected
4188            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4189
4190        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4191          << Corrected;
4192
4193        Ident = Corrected.getAsIdentifierInfo();
4194      } else {
4195        R.clear();
4196        R.setLookupName(Ident);
4197      }
4198    }
4199
4200    if (R.empty()) {
4201      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4202      return 0;
4203    }
4204  }
4205
4206  NamespaceAliasDecl *AliasDecl =
4207    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4208                               Alias, SS.getRange(),
4209                               (NestedNameSpecifier *)SS.getScopeRep(),
4210                               IdentLoc, R.getFoundDecl());
4211
4212  PushOnScopeChains(AliasDecl, S);
4213  return AliasDecl;
4214}
4215
4216namespace {
4217  /// \brief Scoped object used to handle the state changes required in Sema
4218  /// to implicitly define the body of a C++ member function;
4219  class ImplicitlyDefinedFunctionScope {
4220    Sema &S;
4221    DeclContext *PreviousContext;
4222
4223  public:
4224    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4225      : S(S), PreviousContext(S.CurContext)
4226    {
4227      S.CurContext = Method;
4228      S.PushFunctionScope();
4229      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4230    }
4231
4232    ~ImplicitlyDefinedFunctionScope() {
4233      S.PopExpressionEvaluationContext();
4234      S.PopFunctionOrBlockScope();
4235      S.CurContext = PreviousContext;
4236    }
4237  };
4238}
4239
4240static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4241                                                       CXXRecordDecl *D) {
4242  ASTContext &Context = Self.Context;
4243  QualType ClassType = Context.getTypeDeclType(D);
4244  DeclarationName ConstructorName
4245    = Context.DeclarationNames.getCXXConstructorName(
4246                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4247
4248  DeclContext::lookup_const_iterator Con, ConEnd;
4249  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4250       Con != ConEnd; ++Con) {
4251    // FIXME: In C++0x, a constructor template can be a default constructor.
4252    if (isa<FunctionTemplateDecl>(*Con))
4253      continue;
4254
4255    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4256    if (Constructor->isDefaultConstructor())
4257      return Constructor;
4258  }
4259  return 0;
4260}
4261
4262CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4263                                                     CXXRecordDecl *ClassDecl) {
4264  // C++ [class.ctor]p5:
4265  //   A default constructor for a class X is a constructor of class X
4266  //   that can be called without an argument. If there is no
4267  //   user-declared constructor for class X, a default constructor is
4268  //   implicitly declared. An implicitly-declared default constructor
4269  //   is an inline public member of its class.
4270  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4271         "Should not build implicit default constructor!");
4272
4273  // C++ [except.spec]p14:
4274  //   An implicitly declared special member function (Clause 12) shall have an
4275  //   exception-specification. [...]
4276  ImplicitExceptionSpecification ExceptSpec(Context);
4277
4278  // Direct base-class destructors.
4279  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4280                                       BEnd = ClassDecl->bases_end();
4281       B != BEnd; ++B) {
4282    if (B->isVirtual()) // Handled below.
4283      continue;
4284
4285    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4286      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4287      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4288        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4289      else if (CXXConstructorDecl *Constructor
4290                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4291        ExceptSpec.CalledDecl(Constructor);
4292    }
4293  }
4294
4295  // Virtual base-class destructors.
4296  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4297                                       BEnd = ClassDecl->vbases_end();
4298       B != BEnd; ++B) {
4299    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4300      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4301      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4302        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4303      else if (CXXConstructorDecl *Constructor
4304                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4305        ExceptSpec.CalledDecl(Constructor);
4306    }
4307  }
4308
4309  // Field destructors.
4310  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4311                               FEnd = ClassDecl->field_end();
4312       F != FEnd; ++F) {
4313    if (const RecordType *RecordTy
4314              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4315      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4316      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4317        ExceptSpec.CalledDecl(
4318                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4319      else if (CXXConstructorDecl *Constructor
4320                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4321        ExceptSpec.CalledDecl(Constructor);
4322    }
4323  }
4324
4325
4326  // Create the actual constructor declaration.
4327  CanQualType ClassType
4328    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4329  DeclarationName Name
4330    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4331  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4332  CXXConstructorDecl *DefaultCon
4333    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4334                                 Context.getFunctionType(Context.VoidTy,
4335                                                         0, 0, false, 0,
4336                                       ExceptSpec.hasExceptionSpecification(),
4337                                     ExceptSpec.hasAnyExceptionSpecification(),
4338                                                         ExceptSpec.size(),
4339                                                         ExceptSpec.data(),
4340                                                       FunctionType::ExtInfo()),
4341                                 /*TInfo=*/0,
4342                                 /*isExplicit=*/false,
4343                                 /*isInline=*/true,
4344                                 /*isImplicitlyDeclared=*/true);
4345  DefaultCon->setAccess(AS_public);
4346  DefaultCon->setImplicit();
4347  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4348
4349  // Note that we have declared this constructor.
4350  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4351
4352  if (Scope *S = getScopeForContext(ClassDecl))
4353    PushOnScopeChains(DefaultCon, S, false);
4354  ClassDecl->addDecl(DefaultCon);
4355
4356  return DefaultCon;
4357}
4358
4359void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4360                                            CXXConstructorDecl *Constructor) {
4361  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4362          !Constructor->isUsed(false)) &&
4363    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4364
4365  CXXRecordDecl *ClassDecl = Constructor->getParent();
4366  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4367
4368  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4369  ErrorTrap Trap(*this);
4370  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4371      Trap.hasErrorOccurred()) {
4372    Diag(CurrentLocation, diag::note_member_synthesized_at)
4373      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4374    Constructor->setInvalidDecl();
4375    return;
4376  }
4377
4378  SourceLocation Loc = Constructor->getLocation();
4379  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4380
4381  Constructor->setUsed();
4382  MarkVTableUsed(CurrentLocation, ClassDecl);
4383}
4384
4385CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4386  // C++ [class.dtor]p2:
4387  //   If a class has no user-declared destructor, a destructor is
4388  //   declared implicitly. An implicitly-declared destructor is an
4389  //   inline public member of its class.
4390
4391  // C++ [except.spec]p14:
4392  //   An implicitly declared special member function (Clause 12) shall have
4393  //   an exception-specification.
4394  ImplicitExceptionSpecification ExceptSpec(Context);
4395
4396  // Direct base-class destructors.
4397  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4398                                       BEnd = ClassDecl->bases_end();
4399       B != BEnd; ++B) {
4400    if (B->isVirtual()) // Handled below.
4401      continue;
4402
4403    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4404      ExceptSpec.CalledDecl(
4405                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4406  }
4407
4408  // Virtual base-class destructors.
4409  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4410                                       BEnd = ClassDecl->vbases_end();
4411       B != BEnd; ++B) {
4412    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4413      ExceptSpec.CalledDecl(
4414                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4415  }
4416
4417  // Field destructors.
4418  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4419                               FEnd = ClassDecl->field_end();
4420       F != FEnd; ++F) {
4421    if (const RecordType *RecordTy
4422        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4423      ExceptSpec.CalledDecl(
4424                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4425  }
4426
4427  // Create the actual destructor declaration.
4428  QualType Ty = Context.getFunctionType(Context.VoidTy,
4429                                        0, 0, false, 0,
4430                                        ExceptSpec.hasExceptionSpecification(),
4431                                    ExceptSpec.hasAnyExceptionSpecification(),
4432                                        ExceptSpec.size(),
4433                                        ExceptSpec.data(),
4434                                        FunctionType::ExtInfo());
4435
4436  CanQualType ClassType
4437    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4438  DeclarationName Name
4439    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4440  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4441  CXXDestructorDecl *Destructor
4442      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4443                                /*isInline=*/true,
4444                                /*isImplicitlyDeclared=*/true);
4445  Destructor->setAccess(AS_public);
4446  Destructor->setImplicit();
4447  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4448
4449  // Note that we have declared this destructor.
4450  ++ASTContext::NumImplicitDestructorsDeclared;
4451
4452  // Introduce this destructor into its scope.
4453  if (Scope *S = getScopeForContext(ClassDecl))
4454    PushOnScopeChains(Destructor, S, false);
4455  ClassDecl->addDecl(Destructor);
4456
4457  // This could be uniqued if it ever proves significant.
4458  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4459
4460  AddOverriddenMethods(ClassDecl, Destructor);
4461
4462  return Destructor;
4463}
4464
4465void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4466                                    CXXDestructorDecl *Destructor) {
4467  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4468         "DefineImplicitDestructor - call it for implicit default dtor");
4469  CXXRecordDecl *ClassDecl = Destructor->getParent();
4470  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4471
4472  if (Destructor->isInvalidDecl())
4473    return;
4474
4475  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4476
4477  ErrorTrap Trap(*this);
4478  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4479                                         Destructor->getParent());
4480
4481  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4482    Diag(CurrentLocation, diag::note_member_synthesized_at)
4483      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4484
4485    Destructor->setInvalidDecl();
4486    return;
4487  }
4488
4489  SourceLocation Loc = Destructor->getLocation();
4490  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4491
4492  Destructor->setUsed();
4493  MarkVTableUsed(CurrentLocation, ClassDecl);
4494}
4495
4496/// \brief Builds a statement that copies the given entity from \p From to
4497/// \c To.
4498///
4499/// This routine is used to copy the members of a class with an
4500/// implicitly-declared copy assignment operator. When the entities being
4501/// copied are arrays, this routine builds for loops to copy them.
4502///
4503/// \param S The Sema object used for type-checking.
4504///
4505/// \param Loc The location where the implicit copy is being generated.
4506///
4507/// \param T The type of the expressions being copied. Both expressions must
4508/// have this type.
4509///
4510/// \param To The expression we are copying to.
4511///
4512/// \param From The expression we are copying from.
4513///
4514/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4515/// Otherwise, it's a non-static member subobject.
4516///
4517/// \param Depth Internal parameter recording the depth of the recursion.
4518///
4519/// \returns A statement or a loop that copies the expressions.
4520static StmtResult
4521BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4522                      Expr *To, Expr *From,
4523                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4524  // C++0x [class.copy]p30:
4525  //   Each subobject is assigned in the manner appropriate to its type:
4526  //
4527  //     - if the subobject is of class type, the copy assignment operator
4528  //       for the class is used (as if by explicit qualification; that is,
4529  //       ignoring any possible virtual overriding functions in more derived
4530  //       classes);
4531  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4532    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4533
4534    // Look for operator=.
4535    DeclarationName Name
4536      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4537    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4538    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4539
4540    // Filter out any result that isn't a copy-assignment operator.
4541    LookupResult::Filter F = OpLookup.makeFilter();
4542    while (F.hasNext()) {
4543      NamedDecl *D = F.next();
4544      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4545        if (Method->isCopyAssignmentOperator())
4546          continue;
4547
4548      F.erase();
4549    }
4550    F.done();
4551
4552    // Suppress the protected check (C++ [class.protected]) for each of the
4553    // assignment operators we found. This strange dance is required when
4554    // we're assigning via a base classes's copy-assignment operator. To
4555    // ensure that we're getting the right base class subobject (without
4556    // ambiguities), we need to cast "this" to that subobject type; to
4557    // ensure that we don't go through the virtual call mechanism, we need
4558    // to qualify the operator= name with the base class (see below). However,
4559    // this means that if the base class has a protected copy assignment
4560    // operator, the protected member access check will fail. So, we
4561    // rewrite "protected" access to "public" access in this case, since we
4562    // know by construction that we're calling from a derived class.
4563    if (CopyingBaseSubobject) {
4564      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4565           L != LEnd; ++L) {
4566        if (L.getAccess() == AS_protected)
4567          L.setAccess(AS_public);
4568      }
4569    }
4570
4571    // Create the nested-name-specifier that will be used to qualify the
4572    // reference to operator=; this is required to suppress the virtual
4573    // call mechanism.
4574    CXXScopeSpec SS;
4575    SS.setRange(Loc);
4576    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4577                                               T.getTypePtr()));
4578
4579    // Create the reference to operator=.
4580    ExprResult OpEqualRef
4581      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4582                                   /*FirstQualifierInScope=*/0, OpLookup,
4583                                   /*TemplateArgs=*/0,
4584                                   /*SuppressQualifierCheck=*/true);
4585    if (OpEqualRef.isInvalid())
4586      return StmtError();
4587
4588    // Build the call to the assignment operator.
4589
4590    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4591                                                  OpEqualRef.takeAs<Expr>(),
4592                                                  Loc, &From, 1, Loc);
4593    if (Call.isInvalid())
4594      return StmtError();
4595
4596    return S.Owned(Call.takeAs<Stmt>());
4597  }
4598
4599  //     - if the subobject is of scalar type, the built-in assignment
4600  //       operator is used.
4601  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4602  if (!ArrayTy) {
4603    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4604    if (Assignment.isInvalid())
4605      return StmtError();
4606
4607    return S.Owned(Assignment.takeAs<Stmt>());
4608  }
4609
4610  //     - if the subobject is an array, each element is assigned, in the
4611  //       manner appropriate to the element type;
4612
4613  // Construct a loop over the array bounds, e.g.,
4614  //
4615  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4616  //
4617  // that will copy each of the array elements.
4618  QualType SizeType = S.Context.getSizeType();
4619
4620  // Create the iteration variable.
4621  IdentifierInfo *IterationVarName = 0;
4622  {
4623    llvm::SmallString<8> Str;
4624    llvm::raw_svector_ostream OS(Str);
4625    OS << "__i" << Depth;
4626    IterationVarName = &S.Context.Idents.get(OS.str());
4627  }
4628  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4629                                          IterationVarName, SizeType,
4630                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4631                                          SC_None, SC_None);
4632
4633  // Initialize the iteration variable to zero.
4634  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4635  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4636
4637  // Create a reference to the iteration variable; we'll use this several
4638  // times throughout.
4639  Expr *IterationVarRef
4640    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4641  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4642
4643  // Create the DeclStmt that holds the iteration variable.
4644  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4645
4646  // Create the comparison against the array bound.
4647  llvm::APInt Upper = ArrayTy->getSize();
4648  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4649  Expr *Comparison
4650    = new (S.Context) BinaryOperator(IterationVarRef,
4651                           IntegerLiteral::Create(S.Context,
4652                                                  Upper, SizeType, Loc),
4653                                                  BO_NE, S.Context.BoolTy, Loc);
4654
4655  // Create the pre-increment of the iteration variable.
4656  Expr *Increment
4657    = new (S.Context) UnaryOperator(IterationVarRef,
4658                                    UO_PreInc,
4659                                    SizeType, Loc);
4660
4661  // Subscript the "from" and "to" expressions with the iteration variable.
4662  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4663                                                         IterationVarRef, Loc));
4664  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4665                                                       IterationVarRef, Loc));
4666
4667  // Build the copy for an individual element of the array.
4668  StmtResult Copy = BuildSingleCopyAssign(S, Loc,
4669                                                ArrayTy->getElementType(),
4670                                                To, From,
4671                                                CopyingBaseSubobject, Depth+1);
4672  if (Copy.isInvalid())
4673    return StmtError();
4674
4675  // Construct the loop that copies all elements of this array.
4676  return S.ActOnForStmt(Loc, Loc, InitStmt,
4677                        S.MakeFullExpr(Comparison),
4678                        0, S.MakeFullExpr(Increment),
4679                        Loc, Copy.take());
4680}
4681
4682/// \brief Determine whether the given class has a copy assignment operator
4683/// that accepts a const-qualified argument.
4684static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4685  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4686
4687  if (!Class->hasDeclaredCopyAssignment())
4688    S.DeclareImplicitCopyAssignment(Class);
4689
4690  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4691  DeclarationName OpName
4692    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4693
4694  DeclContext::lookup_const_iterator Op, OpEnd;
4695  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4696    // C++ [class.copy]p9:
4697    //   A user-declared copy assignment operator is a non-static non-template
4698    //   member function of class X with exactly one parameter of type X, X&,
4699    //   const X&, volatile X& or const volatile X&.
4700    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4701    if (!Method)
4702      continue;
4703
4704    if (Method->isStatic())
4705      continue;
4706    if (Method->getPrimaryTemplate())
4707      continue;
4708    const FunctionProtoType *FnType =
4709    Method->getType()->getAs<FunctionProtoType>();
4710    assert(FnType && "Overloaded operator has no prototype.");
4711    // Don't assert on this; an invalid decl might have been left in the AST.
4712    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4713      continue;
4714    bool AcceptsConst = true;
4715    QualType ArgType = FnType->getArgType(0);
4716    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4717      ArgType = Ref->getPointeeType();
4718      // Is it a non-const lvalue reference?
4719      if (!ArgType.isConstQualified())
4720        AcceptsConst = false;
4721    }
4722    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4723      continue;
4724
4725    // We have a single argument of type cv X or cv X&, i.e. we've found the
4726    // copy assignment operator. Return whether it accepts const arguments.
4727    return AcceptsConst;
4728  }
4729  assert(Class->isInvalidDecl() &&
4730         "No copy assignment operator declared in valid code.");
4731  return false;
4732}
4733
4734CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4735  // Note: The following rules are largely analoguous to the copy
4736  // constructor rules. Note that virtual bases are not taken into account
4737  // for determining the argument type of the operator. Note also that
4738  // operators taking an object instead of a reference are allowed.
4739
4740
4741  // C++ [class.copy]p10:
4742  //   If the class definition does not explicitly declare a copy
4743  //   assignment operator, one is declared implicitly.
4744  //   The implicitly-defined copy assignment operator for a class X
4745  //   will have the form
4746  //
4747  //       X& X::operator=(const X&)
4748  //
4749  //   if
4750  bool HasConstCopyAssignment = true;
4751
4752  //       -- each direct base class B of X has a copy assignment operator
4753  //          whose parameter is of type const B&, const volatile B& or B,
4754  //          and
4755  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4756                                       BaseEnd = ClassDecl->bases_end();
4757       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4758    assert(!Base->getType()->isDependentType() &&
4759           "Cannot generate implicit members for class with dependent bases.");
4760    const CXXRecordDecl *BaseClassDecl
4761      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4762    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4763  }
4764
4765  //       -- for all the nonstatic data members of X that are of a class
4766  //          type M (or array thereof), each such class type has a copy
4767  //          assignment operator whose parameter is of type const M&,
4768  //          const volatile M& or M.
4769  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4770                                  FieldEnd = ClassDecl->field_end();
4771       HasConstCopyAssignment && Field != FieldEnd;
4772       ++Field) {
4773    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4774    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4775      const CXXRecordDecl *FieldClassDecl
4776        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4777      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4778    }
4779  }
4780
4781  //   Otherwise, the implicitly declared copy assignment operator will
4782  //   have the form
4783  //
4784  //       X& X::operator=(X&)
4785  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4786  QualType RetType = Context.getLValueReferenceType(ArgType);
4787  if (HasConstCopyAssignment)
4788    ArgType = ArgType.withConst();
4789  ArgType = Context.getLValueReferenceType(ArgType);
4790
4791  // C++ [except.spec]p14:
4792  //   An implicitly declared special member function (Clause 12) shall have an
4793  //   exception-specification. [...]
4794  ImplicitExceptionSpecification ExceptSpec(Context);
4795  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4796                                       BaseEnd = ClassDecl->bases_end();
4797       Base != BaseEnd; ++Base) {
4798    CXXRecordDecl *BaseClassDecl
4799      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4800
4801    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4802      DeclareImplicitCopyAssignment(BaseClassDecl);
4803
4804    if (CXXMethodDecl *CopyAssign
4805           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4806      ExceptSpec.CalledDecl(CopyAssign);
4807  }
4808  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4809                                  FieldEnd = ClassDecl->field_end();
4810       Field != FieldEnd;
4811       ++Field) {
4812    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4813    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4814      CXXRecordDecl *FieldClassDecl
4815        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4816
4817      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4818        DeclareImplicitCopyAssignment(FieldClassDecl);
4819
4820      if (CXXMethodDecl *CopyAssign
4821            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4822        ExceptSpec.CalledDecl(CopyAssign);
4823    }
4824  }
4825
4826  //   An implicitly-declared copy assignment operator is an inline public
4827  //   member of its class.
4828  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4829  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4830  CXXMethodDecl *CopyAssignment
4831    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4832                            Context.getFunctionType(RetType, &ArgType, 1,
4833                                                    false, 0,
4834                                         ExceptSpec.hasExceptionSpecification(),
4835                                      ExceptSpec.hasAnyExceptionSpecification(),
4836                                                    ExceptSpec.size(),
4837                                                    ExceptSpec.data(),
4838                                                    FunctionType::ExtInfo()),
4839                            /*TInfo=*/0, /*isStatic=*/false,
4840                            /*StorageClassAsWritten=*/SC_None,
4841                            /*isInline=*/true);
4842  CopyAssignment->setAccess(AS_public);
4843  CopyAssignment->setImplicit();
4844  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4845
4846  // Add the parameter to the operator.
4847  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4848                                               ClassDecl->getLocation(),
4849                                               /*Id=*/0,
4850                                               ArgType, /*TInfo=*/0,
4851                                               SC_None,
4852                                               SC_None, 0);
4853  CopyAssignment->setParams(&FromParam, 1);
4854
4855  // Note that we have added this copy-assignment operator.
4856  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4857
4858  if (Scope *S = getScopeForContext(ClassDecl))
4859    PushOnScopeChains(CopyAssignment, S, false);
4860  ClassDecl->addDecl(CopyAssignment);
4861
4862  AddOverriddenMethods(ClassDecl, CopyAssignment);
4863  return CopyAssignment;
4864}
4865
4866void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4867                                        CXXMethodDecl *CopyAssignOperator) {
4868  assert((CopyAssignOperator->isImplicit() &&
4869          CopyAssignOperator->isOverloadedOperator() &&
4870          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4871          !CopyAssignOperator->isUsed(false)) &&
4872         "DefineImplicitCopyAssignment called for wrong function");
4873
4874  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4875
4876  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4877    CopyAssignOperator->setInvalidDecl();
4878    return;
4879  }
4880
4881  CopyAssignOperator->setUsed();
4882
4883  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4884  ErrorTrap Trap(*this);
4885
4886  // C++0x [class.copy]p30:
4887  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4888  //   for a non-union class X performs memberwise copy assignment of its
4889  //   subobjects. The direct base classes of X are assigned first, in the
4890  //   order of their declaration in the base-specifier-list, and then the
4891  //   immediate non-static data members of X are assigned, in the order in
4892  //   which they were declared in the class definition.
4893
4894  // The statements that form the synthesized function body.
4895  ASTOwningVector<Stmt*> Statements(*this);
4896
4897  // The parameter for the "other" object, which we are copying from.
4898  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4899  Qualifiers OtherQuals = Other->getType().getQualifiers();
4900  QualType OtherRefType = Other->getType();
4901  if (const LValueReferenceType *OtherRef
4902                                = OtherRefType->getAs<LValueReferenceType>()) {
4903    OtherRefType = OtherRef->getPointeeType();
4904    OtherQuals = OtherRefType.getQualifiers();
4905  }
4906
4907  // Our location for everything implicitly-generated.
4908  SourceLocation Loc = CopyAssignOperator->getLocation();
4909
4910  // Construct a reference to the "other" object. We'll be using this
4911  // throughout the generated ASTs.
4912  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4913  assert(OtherRef && "Reference to parameter cannot fail!");
4914
4915  // Construct the "this" pointer. We'll be using this throughout the generated
4916  // ASTs.
4917  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4918  assert(This && "Reference to this cannot fail!");
4919
4920  // Assign base classes.
4921  bool Invalid = false;
4922  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4923       E = ClassDecl->bases_end(); Base != E; ++Base) {
4924    // Form the assignment:
4925    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4926    QualType BaseType = Base->getType().getUnqualifiedType();
4927    CXXRecordDecl *BaseClassDecl = 0;
4928    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4929      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4930    else {
4931      Invalid = true;
4932      continue;
4933    }
4934
4935    CXXCastPath BasePath;
4936    BasePath.push_back(Base);
4937
4938    // Construct the "from" expression, which is an implicit cast to the
4939    // appropriately-qualified base type.
4940    Expr *From = OtherRef;
4941    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4942                      CK_UncheckedDerivedToBase,
4943                      VK_LValue, &BasePath);
4944
4945    // Dereference "this".
4946    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4947
4948    // Implicitly cast "this" to the appropriately-qualified base type.
4949    Expr *ToE = To.takeAs<Expr>();
4950    ImpCastExprToType(ToE,
4951                      Context.getCVRQualifiedType(BaseType,
4952                                      CopyAssignOperator->getTypeQualifiers()),
4953                      CK_UncheckedDerivedToBase,
4954                      VK_LValue, &BasePath);
4955    To = Owned(ToE);
4956
4957    // Build the copy.
4958    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4959                                            To.get(), From,
4960                                            /*CopyingBaseSubobject=*/true);
4961    if (Copy.isInvalid()) {
4962      Diag(CurrentLocation, diag::note_member_synthesized_at)
4963        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4964      CopyAssignOperator->setInvalidDecl();
4965      return;
4966    }
4967
4968    // Success! Record the copy.
4969    Statements.push_back(Copy.takeAs<Expr>());
4970  }
4971
4972  // \brief Reference to the __builtin_memcpy function.
4973  Expr *BuiltinMemCpyRef = 0;
4974  // \brief Reference to the __builtin_objc_memmove_collectable function.
4975  Expr *CollectableMemCpyRef = 0;
4976
4977  // Assign non-static members.
4978  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4979                                  FieldEnd = ClassDecl->field_end();
4980       Field != FieldEnd; ++Field) {
4981    // Check for members of reference type; we can't copy those.
4982    if (Field->getType()->isReferenceType()) {
4983      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4984        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4985      Diag(Field->getLocation(), diag::note_declared_at);
4986      Diag(CurrentLocation, diag::note_member_synthesized_at)
4987        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4988      Invalid = true;
4989      continue;
4990    }
4991
4992    // Check for members of const-qualified, non-class type.
4993    QualType BaseType = Context.getBaseElementType(Field->getType());
4994    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4995      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4996        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4997      Diag(Field->getLocation(), diag::note_declared_at);
4998      Diag(CurrentLocation, diag::note_member_synthesized_at)
4999        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5000      Invalid = true;
5001      continue;
5002    }
5003
5004    QualType FieldType = Field->getType().getNonReferenceType();
5005    if (FieldType->isIncompleteArrayType()) {
5006      assert(ClassDecl->hasFlexibleArrayMember() &&
5007             "Incomplete array type is not valid");
5008      continue;
5009    }
5010
5011    // Build references to the field in the object we're copying from and to.
5012    CXXScopeSpec SS; // Intentionally empty
5013    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5014                              LookupMemberName);
5015    MemberLookup.addDecl(*Field);
5016    MemberLookup.resolveKind();
5017    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5018                                                     Loc, /*IsArrow=*/false,
5019                                                     SS, 0, MemberLookup, 0);
5020    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5021                                                   Loc, /*IsArrow=*/true,
5022                                                   SS, 0, MemberLookup, 0);
5023    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5024    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5025
5026    // If the field should be copied with __builtin_memcpy rather than via
5027    // explicit assignments, do so. This optimization only applies for arrays
5028    // of scalars and arrays of class type with trivial copy-assignment
5029    // operators.
5030    if (FieldType->isArrayType() &&
5031        (!BaseType->isRecordType() ||
5032         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5033           ->hasTrivialCopyAssignment())) {
5034      // Compute the size of the memory buffer to be copied.
5035      QualType SizeType = Context.getSizeType();
5036      llvm::APInt Size(Context.getTypeSize(SizeType),
5037                       Context.getTypeSizeInChars(BaseType).getQuantity());
5038      for (const ConstantArrayType *Array
5039              = Context.getAsConstantArrayType(FieldType);
5040           Array;
5041           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5042        llvm::APInt ArraySize = Array->getSize();
5043        ArraySize.zextOrTrunc(Size.getBitWidth());
5044        Size *= ArraySize;
5045      }
5046
5047      // Take the address of the field references for "from" and "to".
5048      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5049      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5050
5051      bool NeedsCollectableMemCpy =
5052          (BaseType->isRecordType() &&
5053           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5054
5055      if (NeedsCollectableMemCpy) {
5056        if (!CollectableMemCpyRef) {
5057          // Create a reference to the __builtin_objc_memmove_collectable function.
5058          LookupResult R(*this,
5059                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5060                         Loc, LookupOrdinaryName);
5061          LookupName(R, TUScope, true);
5062
5063          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5064          if (!CollectableMemCpy) {
5065            // Something went horribly wrong earlier, and we will have
5066            // complained about it.
5067            Invalid = true;
5068            continue;
5069          }
5070
5071          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5072                                                  CollectableMemCpy->getType(),
5073                                                  Loc, 0).takeAs<Expr>();
5074          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5075        }
5076      }
5077      // Create a reference to the __builtin_memcpy builtin function.
5078      else if (!BuiltinMemCpyRef) {
5079        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5080                       LookupOrdinaryName);
5081        LookupName(R, TUScope, true);
5082
5083        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5084        if (!BuiltinMemCpy) {
5085          // Something went horribly wrong earlier, and we will have complained
5086          // about it.
5087          Invalid = true;
5088          continue;
5089        }
5090
5091        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5092                                            BuiltinMemCpy->getType(),
5093                                            Loc, 0).takeAs<Expr>();
5094        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5095      }
5096
5097      ASTOwningVector<Expr*> CallArgs(*this);
5098      CallArgs.push_back(To.takeAs<Expr>());
5099      CallArgs.push_back(From.takeAs<Expr>());
5100      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5101      ExprResult Call = ExprError();
5102      if (NeedsCollectableMemCpy)
5103        Call = ActOnCallExpr(/*Scope=*/0,
5104                             CollectableMemCpyRef,
5105                             Loc, move_arg(CallArgs),
5106                             Loc);
5107      else
5108        Call = ActOnCallExpr(/*Scope=*/0,
5109                             BuiltinMemCpyRef,
5110                             Loc, move_arg(CallArgs),
5111                             Loc);
5112
5113      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5114      Statements.push_back(Call.takeAs<Expr>());
5115      continue;
5116    }
5117
5118    // Build the copy of this field.
5119    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5120                                                  To.get(), From.get(),
5121                                              /*CopyingBaseSubobject=*/false);
5122    if (Copy.isInvalid()) {
5123      Diag(CurrentLocation, diag::note_member_synthesized_at)
5124        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5125      CopyAssignOperator->setInvalidDecl();
5126      return;
5127    }
5128
5129    // Success! Record the copy.
5130    Statements.push_back(Copy.takeAs<Stmt>());
5131  }
5132
5133  if (!Invalid) {
5134    // Add a "return *this;"
5135    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5136
5137    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5138    if (Return.isInvalid())
5139      Invalid = true;
5140    else {
5141      Statements.push_back(Return.takeAs<Stmt>());
5142
5143      if (Trap.hasErrorOccurred()) {
5144        Diag(CurrentLocation, diag::note_member_synthesized_at)
5145          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5146        Invalid = true;
5147      }
5148    }
5149  }
5150
5151  if (Invalid) {
5152    CopyAssignOperator->setInvalidDecl();
5153    return;
5154  }
5155
5156  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5157                                            /*isStmtExpr=*/false);
5158  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5159  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5160}
5161
5162CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5163                                                    CXXRecordDecl *ClassDecl) {
5164  // C++ [class.copy]p4:
5165  //   If the class definition does not explicitly declare a copy
5166  //   constructor, one is declared implicitly.
5167
5168  // C++ [class.copy]p5:
5169  //   The implicitly-declared copy constructor for a class X will
5170  //   have the form
5171  //
5172  //       X::X(const X&)
5173  //
5174  //   if
5175  bool HasConstCopyConstructor = true;
5176
5177  //     -- each direct or virtual base class B of X has a copy
5178  //        constructor whose first parameter is of type const B& or
5179  //        const volatile B&, and
5180  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5181                                       BaseEnd = ClassDecl->bases_end();
5182       HasConstCopyConstructor && Base != BaseEnd;
5183       ++Base) {
5184    // Virtual bases are handled below.
5185    if (Base->isVirtual())
5186      continue;
5187
5188    CXXRecordDecl *BaseClassDecl
5189      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5190    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5191      DeclareImplicitCopyConstructor(BaseClassDecl);
5192
5193    HasConstCopyConstructor
5194      = BaseClassDecl->hasConstCopyConstructor(Context);
5195  }
5196
5197  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5198                                       BaseEnd = ClassDecl->vbases_end();
5199       HasConstCopyConstructor && Base != BaseEnd;
5200       ++Base) {
5201    CXXRecordDecl *BaseClassDecl
5202      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5203    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5204      DeclareImplicitCopyConstructor(BaseClassDecl);
5205
5206    HasConstCopyConstructor
5207      = BaseClassDecl->hasConstCopyConstructor(Context);
5208  }
5209
5210  //     -- for all the nonstatic data members of X that are of a
5211  //        class type M (or array thereof), each such class type
5212  //        has a copy constructor whose first parameter is of type
5213  //        const M& or const volatile M&.
5214  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5215                                  FieldEnd = ClassDecl->field_end();
5216       HasConstCopyConstructor && Field != FieldEnd;
5217       ++Field) {
5218    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5219    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5220      CXXRecordDecl *FieldClassDecl
5221        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5222      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5223        DeclareImplicitCopyConstructor(FieldClassDecl);
5224
5225      HasConstCopyConstructor
5226        = FieldClassDecl->hasConstCopyConstructor(Context);
5227    }
5228  }
5229
5230  //   Otherwise, the implicitly declared copy constructor will have
5231  //   the form
5232  //
5233  //       X::X(X&)
5234  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5235  QualType ArgType = ClassType;
5236  if (HasConstCopyConstructor)
5237    ArgType = ArgType.withConst();
5238  ArgType = Context.getLValueReferenceType(ArgType);
5239
5240  // C++ [except.spec]p14:
5241  //   An implicitly declared special member function (Clause 12) shall have an
5242  //   exception-specification. [...]
5243  ImplicitExceptionSpecification ExceptSpec(Context);
5244  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5245  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5246                                       BaseEnd = ClassDecl->bases_end();
5247       Base != BaseEnd;
5248       ++Base) {
5249    // Virtual bases are handled below.
5250    if (Base->isVirtual())
5251      continue;
5252
5253    CXXRecordDecl *BaseClassDecl
5254      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5255    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5256      DeclareImplicitCopyConstructor(BaseClassDecl);
5257
5258    if (CXXConstructorDecl *CopyConstructor
5259                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5260      ExceptSpec.CalledDecl(CopyConstructor);
5261  }
5262  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5263                                       BaseEnd = ClassDecl->vbases_end();
5264       Base != BaseEnd;
5265       ++Base) {
5266    CXXRecordDecl *BaseClassDecl
5267      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5268    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5269      DeclareImplicitCopyConstructor(BaseClassDecl);
5270
5271    if (CXXConstructorDecl *CopyConstructor
5272                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5273      ExceptSpec.CalledDecl(CopyConstructor);
5274  }
5275  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5276                                  FieldEnd = ClassDecl->field_end();
5277       Field != FieldEnd;
5278       ++Field) {
5279    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5280    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5281      CXXRecordDecl *FieldClassDecl
5282        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5283      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5284        DeclareImplicitCopyConstructor(FieldClassDecl);
5285
5286      if (CXXConstructorDecl *CopyConstructor
5287                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5288        ExceptSpec.CalledDecl(CopyConstructor);
5289    }
5290  }
5291
5292  //   An implicitly-declared copy constructor is an inline public
5293  //   member of its class.
5294  DeclarationName Name
5295    = Context.DeclarationNames.getCXXConstructorName(
5296                                           Context.getCanonicalType(ClassType));
5297  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5298  CXXConstructorDecl *CopyConstructor
5299    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5300                                 Context.getFunctionType(Context.VoidTy,
5301                                                         &ArgType, 1,
5302                                                         false, 0,
5303                                         ExceptSpec.hasExceptionSpecification(),
5304                                      ExceptSpec.hasAnyExceptionSpecification(),
5305                                                         ExceptSpec.size(),
5306                                                         ExceptSpec.data(),
5307                                                       FunctionType::ExtInfo()),
5308                                 /*TInfo=*/0,
5309                                 /*isExplicit=*/false,
5310                                 /*isInline=*/true,
5311                                 /*isImplicitlyDeclared=*/true);
5312  CopyConstructor->setAccess(AS_public);
5313  CopyConstructor->setImplicit();
5314  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5315
5316  // Note that we have declared this constructor.
5317  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5318
5319  // Add the parameter to the constructor.
5320  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5321                                               ClassDecl->getLocation(),
5322                                               /*IdentifierInfo=*/0,
5323                                               ArgType, /*TInfo=*/0,
5324                                               SC_None,
5325                                               SC_None, 0);
5326  CopyConstructor->setParams(&FromParam, 1);
5327  if (Scope *S = getScopeForContext(ClassDecl))
5328    PushOnScopeChains(CopyConstructor, S, false);
5329  ClassDecl->addDecl(CopyConstructor);
5330
5331  return CopyConstructor;
5332}
5333
5334void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5335                                   CXXConstructorDecl *CopyConstructor,
5336                                   unsigned TypeQuals) {
5337  assert((CopyConstructor->isImplicit() &&
5338          CopyConstructor->isCopyConstructor(TypeQuals) &&
5339          !CopyConstructor->isUsed(false)) &&
5340         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5341
5342  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5343  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5344
5345  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5346  ErrorTrap Trap(*this);
5347
5348  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5349      Trap.hasErrorOccurred()) {
5350    Diag(CurrentLocation, diag::note_member_synthesized_at)
5351      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5352    CopyConstructor->setInvalidDecl();
5353  }  else {
5354    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5355                                               CopyConstructor->getLocation(),
5356                                               MultiStmtArg(*this, 0, 0),
5357                                               /*isStmtExpr=*/false)
5358                                                              .takeAs<Stmt>());
5359  }
5360
5361  CopyConstructor->setUsed();
5362}
5363
5364ExprResult
5365Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5366                            CXXConstructorDecl *Constructor,
5367                            MultiExprArg ExprArgs,
5368                            bool RequiresZeroInit,
5369                            unsigned ConstructKind,
5370                            SourceRange ParenRange) {
5371  bool Elidable = false;
5372
5373  // C++0x [class.copy]p34:
5374  //   When certain criteria are met, an implementation is allowed to
5375  //   omit the copy/move construction of a class object, even if the
5376  //   copy/move constructor and/or destructor for the object have
5377  //   side effects. [...]
5378  //     - when a temporary class object that has not been bound to a
5379  //       reference (12.2) would be copied/moved to a class object
5380  //       with the same cv-unqualified type, the copy/move operation
5381  //       can be omitted by constructing the temporary object
5382  //       directly into the target of the omitted copy/move
5383  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5384      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5385    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5386    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5387  }
5388
5389  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5390                               Elidable, move(ExprArgs), RequiresZeroInit,
5391                               ConstructKind, ParenRange);
5392}
5393
5394/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5395/// including handling of its default argument expressions.
5396ExprResult
5397Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5398                            CXXConstructorDecl *Constructor, bool Elidable,
5399                            MultiExprArg ExprArgs,
5400                            bool RequiresZeroInit,
5401                            unsigned ConstructKind,
5402                            SourceRange ParenRange) {
5403  unsigned NumExprs = ExprArgs.size();
5404  Expr **Exprs = (Expr **)ExprArgs.release();
5405
5406  MarkDeclarationReferenced(ConstructLoc, Constructor);
5407  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5408                                        Constructor, Elidable, Exprs, NumExprs,
5409                                        RequiresZeroInit,
5410              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5411                                        ParenRange));
5412}
5413
5414bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5415                                        CXXConstructorDecl *Constructor,
5416                                        MultiExprArg Exprs) {
5417  // FIXME: Provide the correct paren SourceRange when available.
5418  ExprResult TempResult =
5419    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5420                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5421                          SourceRange());
5422  if (TempResult.isInvalid())
5423    return true;
5424
5425  Expr *Temp = TempResult.takeAs<Expr>();
5426  CheckImplicitConversions(Temp, VD->getLocation());
5427  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5428  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5429  VD->setInit(Temp);
5430
5431  return false;
5432}
5433
5434void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5435  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5436  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5437      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5438    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5439    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5440    CheckDestructorAccess(VD->getLocation(), Destructor,
5441                          PDiag(diag::err_access_dtor_var)
5442                            << VD->getDeclName()
5443                            << VD->getType());
5444
5445    // TODO: this should be re-enabled for static locals by !CXAAtExit
5446    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5447      Diag(VD->getLocation(), diag::warn_global_destructor);
5448  }
5449}
5450
5451/// AddCXXDirectInitializerToDecl - This action is called immediately after
5452/// ActOnDeclarator, when a C++ direct initializer is present.
5453/// e.g: "int x(1);"
5454void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5455                                         SourceLocation LParenLoc,
5456                                         MultiExprArg Exprs,
5457                                         SourceLocation RParenLoc) {
5458  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5459
5460  // If there is no declaration, there was an error parsing it.  Just ignore
5461  // the initializer.
5462  if (RealDecl == 0)
5463    return;
5464
5465  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5466  if (!VDecl) {
5467    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5468    RealDecl->setInvalidDecl();
5469    return;
5470  }
5471
5472  // We will represent direct-initialization similarly to copy-initialization:
5473  //    int x(1);  -as-> int x = 1;
5474  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5475  //
5476  // Clients that want to distinguish between the two forms, can check for
5477  // direct initializer using VarDecl::hasCXXDirectInitializer().
5478  // A major benefit is that clients that don't particularly care about which
5479  // exactly form was it (like the CodeGen) can handle both cases without
5480  // special case code.
5481
5482  // C++ 8.5p11:
5483  // The form of initialization (using parentheses or '=') is generally
5484  // insignificant, but does matter when the entity being initialized has a
5485  // class type.
5486
5487  if (!VDecl->getType()->isDependentType() &&
5488      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5489                          diag::err_typecheck_decl_incomplete_type)) {
5490    VDecl->setInvalidDecl();
5491    return;
5492  }
5493
5494  // The variable can not have an abstract class type.
5495  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5496                             diag::err_abstract_type_in_decl,
5497                             AbstractVariableType))
5498    VDecl->setInvalidDecl();
5499
5500  const VarDecl *Def;
5501  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5502    Diag(VDecl->getLocation(), diag::err_redefinition)
5503    << VDecl->getDeclName();
5504    Diag(Def->getLocation(), diag::note_previous_definition);
5505    VDecl->setInvalidDecl();
5506    return;
5507  }
5508
5509  // C++ [class.static.data]p4
5510  //   If a static data member is of const integral or const
5511  //   enumeration type, its declaration in the class definition can
5512  //   specify a constant-initializer which shall be an integral
5513  //   constant expression (5.19). In that case, the member can appear
5514  //   in integral constant expressions. The member shall still be
5515  //   defined in a namespace scope if it is used in the program and the
5516  //   namespace scope definition shall not contain an initializer.
5517  //
5518  // We already performed a redefinition check above, but for static
5519  // data members we also need to check whether there was an in-class
5520  // declaration with an initializer.
5521  const VarDecl* PrevInit = 0;
5522  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5523    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5524    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5525    return;
5526  }
5527
5528  // If either the declaration has a dependent type or if any of the
5529  // expressions is type-dependent, we represent the initialization
5530  // via a ParenListExpr for later use during template instantiation.
5531  if (VDecl->getType()->isDependentType() ||
5532      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5533    // Let clients know that initialization was done with a direct initializer.
5534    VDecl->setCXXDirectInitializer(true);
5535
5536    // Store the initialization expressions as a ParenListExpr.
5537    unsigned NumExprs = Exprs.size();
5538    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5539                                               (Expr **)Exprs.release(),
5540                                               NumExprs, RParenLoc));
5541    return;
5542  }
5543
5544  // Capture the variable that is being initialized and the style of
5545  // initialization.
5546  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5547
5548  // FIXME: Poor source location information.
5549  InitializationKind Kind
5550    = InitializationKind::CreateDirect(VDecl->getLocation(),
5551                                       LParenLoc, RParenLoc);
5552
5553  InitializationSequence InitSeq(*this, Entity, Kind,
5554                                 Exprs.get(), Exprs.size());
5555  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5556  if (Result.isInvalid()) {
5557    VDecl->setInvalidDecl();
5558    return;
5559  }
5560
5561  CheckImplicitConversions(Result.get(), LParenLoc);
5562
5563  Result = MaybeCreateCXXExprWithTemporaries(Result.get());
5564  VDecl->setInit(Result.takeAs<Expr>());
5565  VDecl->setCXXDirectInitializer(true);
5566
5567    if (!VDecl->isInvalidDecl() &&
5568        !VDecl->getDeclContext()->isDependentContext() &&
5569        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5570        !VDecl->getInit()->isConstantInitializer(Context,
5571                                        VDecl->getType()->isReferenceType()))
5572      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5573        << VDecl->getInit()->getSourceRange();
5574
5575  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5576    FinalizeVarWithDestructor(VDecl, Record);
5577}
5578
5579/// \brief Given a constructor and the set of arguments provided for the
5580/// constructor, convert the arguments and add any required default arguments
5581/// to form a proper call to this constructor.
5582///
5583/// \returns true if an error occurred, false otherwise.
5584bool
5585Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5586                              MultiExprArg ArgsPtr,
5587                              SourceLocation Loc,
5588                              ASTOwningVector<Expr*> &ConvertedArgs) {
5589  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5590  unsigned NumArgs = ArgsPtr.size();
5591  Expr **Args = (Expr **)ArgsPtr.get();
5592
5593  const FunctionProtoType *Proto
5594    = Constructor->getType()->getAs<FunctionProtoType>();
5595  assert(Proto && "Constructor without a prototype?");
5596  unsigned NumArgsInProto = Proto->getNumArgs();
5597
5598  // If too few arguments are available, we'll fill in the rest with defaults.
5599  if (NumArgs < NumArgsInProto)
5600    ConvertedArgs.reserve(NumArgsInProto);
5601  else
5602    ConvertedArgs.reserve(NumArgs);
5603
5604  VariadicCallType CallType =
5605    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5606  llvm::SmallVector<Expr *, 8> AllArgs;
5607  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5608                                        Proto, 0, Args, NumArgs, AllArgs,
5609                                        CallType);
5610  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5611    ConvertedArgs.push_back(AllArgs[i]);
5612  return Invalid;
5613}
5614
5615static inline bool
5616CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5617                                       const FunctionDecl *FnDecl) {
5618  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5619  if (isa<NamespaceDecl>(DC)) {
5620    return SemaRef.Diag(FnDecl->getLocation(),
5621                        diag::err_operator_new_delete_declared_in_namespace)
5622      << FnDecl->getDeclName();
5623  }
5624
5625  if (isa<TranslationUnitDecl>(DC) &&
5626      FnDecl->getStorageClass() == SC_Static) {
5627    return SemaRef.Diag(FnDecl->getLocation(),
5628                        diag::err_operator_new_delete_declared_static)
5629      << FnDecl->getDeclName();
5630  }
5631
5632  return false;
5633}
5634
5635static inline bool
5636CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5637                            CanQualType ExpectedResultType,
5638                            CanQualType ExpectedFirstParamType,
5639                            unsigned DependentParamTypeDiag,
5640                            unsigned InvalidParamTypeDiag) {
5641  QualType ResultType =
5642    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5643
5644  // Check that the result type is not dependent.
5645  if (ResultType->isDependentType())
5646    return SemaRef.Diag(FnDecl->getLocation(),
5647                        diag::err_operator_new_delete_dependent_result_type)
5648    << FnDecl->getDeclName() << ExpectedResultType;
5649
5650  // Check that the result type is what we expect.
5651  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5652    return SemaRef.Diag(FnDecl->getLocation(),
5653                        diag::err_operator_new_delete_invalid_result_type)
5654    << FnDecl->getDeclName() << ExpectedResultType;
5655
5656  // A function template must have at least 2 parameters.
5657  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5658    return SemaRef.Diag(FnDecl->getLocation(),
5659                      diag::err_operator_new_delete_template_too_few_parameters)
5660        << FnDecl->getDeclName();
5661
5662  // The function decl must have at least 1 parameter.
5663  if (FnDecl->getNumParams() == 0)
5664    return SemaRef.Diag(FnDecl->getLocation(),
5665                        diag::err_operator_new_delete_too_few_parameters)
5666      << FnDecl->getDeclName();
5667
5668  // Check the the first parameter type is not dependent.
5669  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5670  if (FirstParamType->isDependentType())
5671    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5672      << FnDecl->getDeclName() << ExpectedFirstParamType;
5673
5674  // Check that the first parameter type is what we expect.
5675  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5676      ExpectedFirstParamType)
5677    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5678    << FnDecl->getDeclName() << ExpectedFirstParamType;
5679
5680  return false;
5681}
5682
5683static bool
5684CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5685  // C++ [basic.stc.dynamic.allocation]p1:
5686  //   A program is ill-formed if an allocation function is declared in a
5687  //   namespace scope other than global scope or declared static in global
5688  //   scope.
5689  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5690    return true;
5691
5692  CanQualType SizeTy =
5693    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5694
5695  // C++ [basic.stc.dynamic.allocation]p1:
5696  //  The return type shall be void*. The first parameter shall have type
5697  //  std::size_t.
5698  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5699                                  SizeTy,
5700                                  diag::err_operator_new_dependent_param_type,
5701                                  diag::err_operator_new_param_type))
5702    return true;
5703
5704  // C++ [basic.stc.dynamic.allocation]p1:
5705  //  The first parameter shall not have an associated default argument.
5706  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5707    return SemaRef.Diag(FnDecl->getLocation(),
5708                        diag::err_operator_new_default_arg)
5709      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5710
5711  return false;
5712}
5713
5714static bool
5715CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5716  // C++ [basic.stc.dynamic.deallocation]p1:
5717  //   A program is ill-formed if deallocation functions are declared in a
5718  //   namespace scope other than global scope or declared static in global
5719  //   scope.
5720  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5721    return true;
5722
5723  // C++ [basic.stc.dynamic.deallocation]p2:
5724  //   Each deallocation function shall return void and its first parameter
5725  //   shall be void*.
5726  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5727                                  SemaRef.Context.VoidPtrTy,
5728                                 diag::err_operator_delete_dependent_param_type,
5729                                 diag::err_operator_delete_param_type))
5730    return true;
5731
5732  return false;
5733}
5734
5735/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5736/// of this overloaded operator is well-formed. If so, returns false;
5737/// otherwise, emits appropriate diagnostics and returns true.
5738bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5739  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5740         "Expected an overloaded operator declaration");
5741
5742  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5743
5744  // C++ [over.oper]p5:
5745  //   The allocation and deallocation functions, operator new,
5746  //   operator new[], operator delete and operator delete[], are
5747  //   described completely in 3.7.3. The attributes and restrictions
5748  //   found in the rest of this subclause do not apply to them unless
5749  //   explicitly stated in 3.7.3.
5750  if (Op == OO_Delete || Op == OO_Array_Delete)
5751    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5752
5753  if (Op == OO_New || Op == OO_Array_New)
5754    return CheckOperatorNewDeclaration(*this, FnDecl);
5755
5756  // C++ [over.oper]p6:
5757  //   An operator function shall either be a non-static member
5758  //   function or be a non-member function and have at least one
5759  //   parameter whose type is a class, a reference to a class, an
5760  //   enumeration, or a reference to an enumeration.
5761  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5762    if (MethodDecl->isStatic())
5763      return Diag(FnDecl->getLocation(),
5764                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5765  } else {
5766    bool ClassOrEnumParam = false;
5767    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5768                                   ParamEnd = FnDecl->param_end();
5769         Param != ParamEnd; ++Param) {
5770      QualType ParamType = (*Param)->getType().getNonReferenceType();
5771      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5772          ParamType->isEnumeralType()) {
5773        ClassOrEnumParam = true;
5774        break;
5775      }
5776    }
5777
5778    if (!ClassOrEnumParam)
5779      return Diag(FnDecl->getLocation(),
5780                  diag::err_operator_overload_needs_class_or_enum)
5781        << FnDecl->getDeclName();
5782  }
5783
5784  // C++ [over.oper]p8:
5785  //   An operator function cannot have default arguments (8.3.6),
5786  //   except where explicitly stated below.
5787  //
5788  // Only the function-call operator allows default arguments
5789  // (C++ [over.call]p1).
5790  if (Op != OO_Call) {
5791    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5792         Param != FnDecl->param_end(); ++Param) {
5793      if ((*Param)->hasDefaultArg())
5794        return Diag((*Param)->getLocation(),
5795                    diag::err_operator_overload_default_arg)
5796          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5797    }
5798  }
5799
5800  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5801    { false, false, false }
5802#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5803    , { Unary, Binary, MemberOnly }
5804#include "clang/Basic/OperatorKinds.def"
5805  };
5806
5807  bool CanBeUnaryOperator = OperatorUses[Op][0];
5808  bool CanBeBinaryOperator = OperatorUses[Op][1];
5809  bool MustBeMemberOperator = OperatorUses[Op][2];
5810
5811  // C++ [over.oper]p8:
5812  //   [...] Operator functions cannot have more or fewer parameters
5813  //   than the number required for the corresponding operator, as
5814  //   described in the rest of this subclause.
5815  unsigned NumParams = FnDecl->getNumParams()
5816                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5817  if (Op != OO_Call &&
5818      ((NumParams == 1 && !CanBeUnaryOperator) ||
5819       (NumParams == 2 && !CanBeBinaryOperator) ||
5820       (NumParams < 1) || (NumParams > 2))) {
5821    // We have the wrong number of parameters.
5822    unsigned ErrorKind;
5823    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5824      ErrorKind = 2;  // 2 -> unary or binary.
5825    } else if (CanBeUnaryOperator) {
5826      ErrorKind = 0;  // 0 -> unary
5827    } else {
5828      assert(CanBeBinaryOperator &&
5829             "All non-call overloaded operators are unary or binary!");
5830      ErrorKind = 1;  // 1 -> binary
5831    }
5832
5833    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5834      << FnDecl->getDeclName() << NumParams << ErrorKind;
5835  }
5836
5837  // Overloaded operators other than operator() cannot be variadic.
5838  if (Op != OO_Call &&
5839      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5840    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5841      << FnDecl->getDeclName();
5842  }
5843
5844  // Some operators must be non-static member functions.
5845  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5846    return Diag(FnDecl->getLocation(),
5847                diag::err_operator_overload_must_be_member)
5848      << FnDecl->getDeclName();
5849  }
5850
5851  // C++ [over.inc]p1:
5852  //   The user-defined function called operator++ implements the
5853  //   prefix and postfix ++ operator. If this function is a member
5854  //   function with no parameters, or a non-member function with one
5855  //   parameter of class or enumeration type, it defines the prefix
5856  //   increment operator ++ for objects of that type. If the function
5857  //   is a member function with one parameter (which shall be of type
5858  //   int) or a non-member function with two parameters (the second
5859  //   of which shall be of type int), it defines the postfix
5860  //   increment operator ++ for objects of that type.
5861  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5862    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5863    bool ParamIsInt = false;
5864    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5865      ParamIsInt = BT->getKind() == BuiltinType::Int;
5866
5867    if (!ParamIsInt)
5868      return Diag(LastParam->getLocation(),
5869                  diag::err_operator_overload_post_incdec_must_be_int)
5870        << LastParam->getType() << (Op == OO_MinusMinus);
5871  }
5872
5873  return false;
5874}
5875
5876/// CheckLiteralOperatorDeclaration - Check whether the declaration
5877/// of this literal operator function is well-formed. If so, returns
5878/// false; otherwise, emits appropriate diagnostics and returns true.
5879bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5880  DeclContext *DC = FnDecl->getDeclContext();
5881  Decl::Kind Kind = DC->getDeclKind();
5882  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5883      Kind != Decl::LinkageSpec) {
5884    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5885      << FnDecl->getDeclName();
5886    return true;
5887  }
5888
5889  bool Valid = false;
5890
5891  // template <char...> type operator "" name() is the only valid template
5892  // signature, and the only valid signature with no parameters.
5893  if (FnDecl->param_size() == 0) {
5894    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5895      // Must have only one template parameter
5896      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5897      if (Params->size() == 1) {
5898        NonTypeTemplateParmDecl *PmDecl =
5899          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5900
5901        // The template parameter must be a char parameter pack.
5902        // FIXME: This test will always fail because non-type parameter packs
5903        //   have not been implemented.
5904        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5905            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5906          Valid = true;
5907      }
5908    }
5909  } else {
5910    // Check the first parameter
5911    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5912
5913    QualType T = (*Param)->getType();
5914
5915    // unsigned long long int, long double, and any character type are allowed
5916    // as the only parameters.
5917    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5918        Context.hasSameType(T, Context.LongDoubleTy) ||
5919        Context.hasSameType(T, Context.CharTy) ||
5920        Context.hasSameType(T, Context.WCharTy) ||
5921        Context.hasSameType(T, Context.Char16Ty) ||
5922        Context.hasSameType(T, Context.Char32Ty)) {
5923      if (++Param == FnDecl->param_end())
5924        Valid = true;
5925      goto FinishedParams;
5926    }
5927
5928    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5929    const PointerType *PT = T->getAs<PointerType>();
5930    if (!PT)
5931      goto FinishedParams;
5932    T = PT->getPointeeType();
5933    if (!T.isConstQualified())
5934      goto FinishedParams;
5935    T = T.getUnqualifiedType();
5936
5937    // Move on to the second parameter;
5938    ++Param;
5939
5940    // If there is no second parameter, the first must be a const char *
5941    if (Param == FnDecl->param_end()) {
5942      if (Context.hasSameType(T, Context.CharTy))
5943        Valid = true;
5944      goto FinishedParams;
5945    }
5946
5947    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5948    // are allowed as the first parameter to a two-parameter function
5949    if (!(Context.hasSameType(T, Context.CharTy) ||
5950          Context.hasSameType(T, Context.WCharTy) ||
5951          Context.hasSameType(T, Context.Char16Ty) ||
5952          Context.hasSameType(T, Context.Char32Ty)))
5953      goto FinishedParams;
5954
5955    // The second and final parameter must be an std::size_t
5956    T = (*Param)->getType().getUnqualifiedType();
5957    if (Context.hasSameType(T, Context.getSizeType()) &&
5958        ++Param == FnDecl->param_end())
5959      Valid = true;
5960  }
5961
5962  // FIXME: This diagnostic is absolutely terrible.
5963FinishedParams:
5964  if (!Valid) {
5965    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5966      << FnDecl->getDeclName();
5967    return true;
5968  }
5969
5970  return false;
5971}
5972
5973/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5974/// linkage specification, including the language and (if present)
5975/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5976/// the location of the language string literal, which is provided
5977/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5978/// the '{' brace. Otherwise, this linkage specification does not
5979/// have any braces.
5980Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
5981                                           SourceLocation LangLoc,
5982                                           llvm::StringRef Lang,
5983                                           SourceLocation LBraceLoc) {
5984  LinkageSpecDecl::LanguageIDs Language;
5985  if (Lang == "\"C\"")
5986    Language = LinkageSpecDecl::lang_c;
5987  else if (Lang == "\"C++\"")
5988    Language = LinkageSpecDecl::lang_cxx;
5989  else {
5990    Diag(LangLoc, diag::err_bad_language);
5991    return 0;
5992  }
5993
5994  // FIXME: Add all the various semantics of linkage specifications
5995
5996  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5997                                               LangLoc, Language,
5998                                               LBraceLoc.isValid());
5999  CurContext->addDecl(D);
6000  PushDeclContext(S, D);
6001  return D;
6002}
6003
6004/// ActOnFinishLinkageSpecification - Complete the definition of
6005/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6006/// valid, it's the position of the closing '}' brace in a linkage
6007/// specification that uses braces.
6008Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6009                                                      Decl *LinkageSpec,
6010                                                      SourceLocation RBraceLoc) {
6011  if (LinkageSpec)
6012    PopDeclContext();
6013  return LinkageSpec;
6014}
6015
6016/// \brief Perform semantic analysis for the variable declaration that
6017/// occurs within a C++ catch clause, returning the newly-created
6018/// variable.
6019VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6020                                         TypeSourceInfo *TInfo,
6021                                         IdentifierInfo *Name,
6022                                         SourceLocation Loc) {
6023  bool Invalid = false;
6024  QualType ExDeclType = TInfo->getType();
6025
6026  // Arrays and functions decay.
6027  if (ExDeclType->isArrayType())
6028    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6029  else if (ExDeclType->isFunctionType())
6030    ExDeclType = Context.getPointerType(ExDeclType);
6031
6032  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6033  // The exception-declaration shall not denote a pointer or reference to an
6034  // incomplete type, other than [cv] void*.
6035  // N2844 forbids rvalue references.
6036  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6037    Diag(Loc, diag::err_catch_rvalue_ref);
6038    Invalid = true;
6039  }
6040
6041  // GCC allows catching pointers and references to incomplete types
6042  // as an extension; so do we, but we warn by default.
6043
6044  QualType BaseType = ExDeclType;
6045  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6046  unsigned DK = diag::err_catch_incomplete;
6047  bool IncompleteCatchIsInvalid = true;
6048  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6049    BaseType = Ptr->getPointeeType();
6050    Mode = 1;
6051    DK = diag::ext_catch_incomplete_ptr;
6052    IncompleteCatchIsInvalid = false;
6053  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6054    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6055    BaseType = Ref->getPointeeType();
6056    Mode = 2;
6057    DK = diag::ext_catch_incomplete_ref;
6058    IncompleteCatchIsInvalid = false;
6059  }
6060  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6061      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6062      IncompleteCatchIsInvalid)
6063    Invalid = true;
6064
6065  if (!Invalid && !ExDeclType->isDependentType() &&
6066      RequireNonAbstractType(Loc, ExDeclType,
6067                             diag::err_abstract_type_in_decl,
6068                             AbstractVariableType))
6069    Invalid = true;
6070
6071  // Only the non-fragile NeXT runtime currently supports C++ catches
6072  // of ObjC types, and no runtime supports catching ObjC types by value.
6073  if (!Invalid && getLangOptions().ObjC1) {
6074    QualType T = ExDeclType;
6075    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6076      T = RT->getPointeeType();
6077
6078    if (T->isObjCObjectType()) {
6079      Diag(Loc, diag::err_objc_object_catch);
6080      Invalid = true;
6081    } else if (T->isObjCObjectPointerType()) {
6082      if (!getLangOptions().NeXTRuntime) {
6083        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6084        Invalid = true;
6085      } else if (!getLangOptions().ObjCNonFragileABI) {
6086        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6087        Invalid = true;
6088      }
6089    }
6090  }
6091
6092  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6093                                    Name, ExDeclType, TInfo, SC_None,
6094                                    SC_None);
6095  ExDecl->setExceptionVariable(true);
6096
6097  if (!Invalid) {
6098    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6099      // C++ [except.handle]p16:
6100      //   The object declared in an exception-declaration or, if the
6101      //   exception-declaration does not specify a name, a temporary (12.2) is
6102      //   copy-initialized (8.5) from the exception object. [...]
6103      //   The object is destroyed when the handler exits, after the destruction
6104      //   of any automatic objects initialized within the handler.
6105      //
6106      // We just pretend to initialize the object with itself, then make sure
6107      // it can be destroyed later.
6108      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6109      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6110                                            Loc, ExDeclType, 0);
6111      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6112                                                               SourceLocation());
6113      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6114      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6115                                         MultiExprArg(*this, &ExDeclRef, 1));
6116      if (Result.isInvalid())
6117        Invalid = true;
6118      else
6119        FinalizeVarWithDestructor(ExDecl, RecordTy);
6120    }
6121  }
6122
6123  if (Invalid)
6124    ExDecl->setInvalidDecl();
6125
6126  return ExDecl;
6127}
6128
6129/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6130/// handler.
6131Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6132  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6133  QualType ExDeclType = TInfo->getType();
6134
6135  bool Invalid = D.isInvalidType();
6136  IdentifierInfo *II = D.getIdentifier();
6137  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6138                                             LookupOrdinaryName,
6139                                             ForRedeclaration)) {
6140    // The scope should be freshly made just for us. There is just no way
6141    // it contains any previous declaration.
6142    assert(!S->isDeclScope(PrevDecl));
6143    if (PrevDecl->isTemplateParameter()) {
6144      // Maybe we will complain about the shadowed template parameter.
6145      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6146    }
6147  }
6148
6149  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6150    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6151      << D.getCXXScopeSpec().getRange();
6152    Invalid = true;
6153  }
6154
6155  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6156                                              D.getIdentifier(),
6157                                              D.getIdentifierLoc());
6158
6159  if (Invalid)
6160    ExDecl->setInvalidDecl();
6161
6162  // Add the exception declaration into this scope.
6163  if (II)
6164    PushOnScopeChains(ExDecl, S);
6165  else
6166    CurContext->addDecl(ExDecl);
6167
6168  ProcessDeclAttributes(S, ExDecl, D);
6169  return ExDecl;
6170}
6171
6172Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6173                                         Expr *AssertExpr,
6174                                         Expr *AssertMessageExpr_) {
6175  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6176
6177  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6178    llvm::APSInt Value(32);
6179    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6180      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6181        AssertExpr->getSourceRange();
6182      return 0;
6183    }
6184
6185    if (Value == 0) {
6186      Diag(AssertLoc, diag::err_static_assert_failed)
6187        << AssertMessage->getString() << AssertExpr->getSourceRange();
6188    }
6189  }
6190
6191  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6192                                        AssertExpr, AssertMessage);
6193
6194  CurContext->addDecl(Decl);
6195  return Decl;
6196}
6197
6198/// \brief Perform semantic analysis of the given friend type declaration.
6199///
6200/// \returns A friend declaration that.
6201FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6202                                      TypeSourceInfo *TSInfo) {
6203  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6204
6205  QualType T = TSInfo->getType();
6206  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6207
6208  if (!getLangOptions().CPlusPlus0x) {
6209    // C++03 [class.friend]p2:
6210    //   An elaborated-type-specifier shall be used in a friend declaration
6211    //   for a class.*
6212    //
6213    //   * The class-key of the elaborated-type-specifier is required.
6214    if (!ActiveTemplateInstantiations.empty()) {
6215      // Do not complain about the form of friend template types during
6216      // template instantiation; we will already have complained when the
6217      // template was declared.
6218    } else if (!T->isElaboratedTypeSpecifier()) {
6219      // If we evaluated the type to a record type, suggest putting
6220      // a tag in front.
6221      if (const RecordType *RT = T->getAs<RecordType>()) {
6222        RecordDecl *RD = RT->getDecl();
6223
6224        std::string InsertionText = std::string(" ") + RD->getKindName();
6225
6226        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6227          << (unsigned) RD->getTagKind()
6228          << T
6229          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6230                                        InsertionText);
6231      } else {
6232        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6233          << T
6234          << SourceRange(FriendLoc, TypeRange.getEnd());
6235      }
6236    } else if (T->getAs<EnumType>()) {
6237      Diag(FriendLoc, diag::ext_enum_friend)
6238        << T
6239        << SourceRange(FriendLoc, TypeRange.getEnd());
6240    }
6241  }
6242
6243  // C++0x [class.friend]p3:
6244  //   If the type specifier in a friend declaration designates a (possibly
6245  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6246  //   the friend declaration is ignored.
6247
6248  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6249  // in [class.friend]p3 that we do not implement.
6250
6251  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6252}
6253
6254/// Handle a friend tag declaration where the scope specifier was
6255/// templated.
6256Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6257                                    unsigned TagSpec, SourceLocation TagLoc,
6258                                    CXXScopeSpec &SS,
6259                                    IdentifierInfo *Name, SourceLocation NameLoc,
6260                                    AttributeList *Attr,
6261                                    MultiTemplateParamsArg TempParamLists) {
6262  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6263
6264  bool isExplicitSpecialization = false;
6265  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6266  bool Invalid = false;
6267
6268  if (TemplateParameterList *TemplateParams
6269        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6270                                                  TempParamLists.get(),
6271                                                  TempParamLists.size(),
6272                                                  /*friend*/ true,
6273                                                  isExplicitSpecialization,
6274                                                  Invalid)) {
6275    --NumMatchedTemplateParamLists;
6276
6277    if (TemplateParams->size() > 0) {
6278      // This is a declaration of a class template.
6279      if (Invalid)
6280        return 0;
6281
6282      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6283                                SS, Name, NameLoc, Attr,
6284                                TemplateParams, AS_public).take();
6285    } else {
6286      // The "template<>" header is extraneous.
6287      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6288        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6289      isExplicitSpecialization = true;
6290    }
6291  }
6292
6293  if (Invalid) return 0;
6294
6295  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6296
6297  bool isAllExplicitSpecializations = true;
6298  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6299    if (TempParamLists.get()[I]->size()) {
6300      isAllExplicitSpecializations = false;
6301      break;
6302    }
6303  }
6304
6305  // FIXME: don't ignore attributes.
6306
6307  // If it's explicit specializations all the way down, just forget
6308  // about the template header and build an appropriate non-templated
6309  // friend.  TODO: for source fidelity, remember the headers.
6310  if (isAllExplicitSpecializations) {
6311    ElaboratedTypeKeyword Keyword
6312      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6313    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6314                                   TagLoc, SS.getRange(), NameLoc);
6315    if (T.isNull())
6316      return 0;
6317
6318    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6319    if (isa<DependentNameType>(T)) {
6320      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6321      TL.setKeywordLoc(TagLoc);
6322      TL.setQualifierRange(SS.getRange());
6323      TL.setNameLoc(NameLoc);
6324    } else {
6325      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6326      TL.setKeywordLoc(TagLoc);
6327      TL.setQualifierRange(SS.getRange());
6328      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6329    }
6330
6331    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6332                                            TSI, FriendLoc);
6333    Friend->setAccess(AS_public);
6334    CurContext->addDecl(Friend);
6335    return Friend;
6336  }
6337
6338  // Handle the case of a templated-scope friend class.  e.g.
6339  //   template <class T> class A<T>::B;
6340  // FIXME: we don't support these right now.
6341  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6342  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6343  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6344  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6345  TL.setKeywordLoc(TagLoc);
6346  TL.setQualifierRange(SS.getRange());
6347  TL.setNameLoc(NameLoc);
6348
6349  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6350                                          TSI, FriendLoc);
6351  Friend->setAccess(AS_public);
6352  Friend->setUnsupportedFriend(true);
6353  CurContext->addDecl(Friend);
6354  return Friend;
6355}
6356
6357
6358/// Handle a friend type declaration.  This works in tandem with
6359/// ActOnTag.
6360///
6361/// Notes on friend class templates:
6362///
6363/// We generally treat friend class declarations as if they were
6364/// declaring a class.  So, for example, the elaborated type specifier
6365/// in a friend declaration is required to obey the restrictions of a
6366/// class-head (i.e. no typedefs in the scope chain), template
6367/// parameters are required to match up with simple template-ids, &c.
6368/// However, unlike when declaring a template specialization, it's
6369/// okay to refer to a template specialization without an empty
6370/// template parameter declaration, e.g.
6371///   friend class A<T>::B<unsigned>;
6372/// We permit this as a special case; if there are any template
6373/// parameters present at all, require proper matching, i.e.
6374///   template <> template <class T> friend class A<int>::B;
6375Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6376                                MultiTemplateParamsArg TempParams) {
6377  SourceLocation Loc = DS.getSourceRange().getBegin();
6378
6379  assert(DS.isFriendSpecified());
6380  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6381
6382  // Try to convert the decl specifier to a type.  This works for
6383  // friend templates because ActOnTag never produces a ClassTemplateDecl
6384  // for a TUK_Friend.
6385  Declarator TheDeclarator(DS, Declarator::MemberContext);
6386  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6387  QualType T = TSI->getType();
6388  if (TheDeclarator.isInvalidType())
6389    return 0;
6390
6391  // This is definitely an error in C++98.  It's probably meant to
6392  // be forbidden in C++0x, too, but the specification is just
6393  // poorly written.
6394  //
6395  // The problem is with declarations like the following:
6396  //   template <T> friend A<T>::foo;
6397  // where deciding whether a class C is a friend or not now hinges
6398  // on whether there exists an instantiation of A that causes
6399  // 'foo' to equal C.  There are restrictions on class-heads
6400  // (which we declare (by fiat) elaborated friend declarations to
6401  // be) that makes this tractable.
6402  //
6403  // FIXME: handle "template <> friend class A<T>;", which
6404  // is possibly well-formed?  Who even knows?
6405  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6406    Diag(Loc, diag::err_tagless_friend_type_template)
6407      << DS.getSourceRange();
6408    return 0;
6409  }
6410
6411  // C++98 [class.friend]p1: A friend of a class is a function
6412  //   or class that is not a member of the class . . .
6413  // This is fixed in DR77, which just barely didn't make the C++03
6414  // deadline.  It's also a very silly restriction that seriously
6415  // affects inner classes and which nobody else seems to implement;
6416  // thus we never diagnose it, not even in -pedantic.
6417  //
6418  // But note that we could warn about it: it's always useless to
6419  // friend one of your own members (it's not, however, worthless to
6420  // friend a member of an arbitrary specialization of your template).
6421
6422  Decl *D;
6423  if (unsigned NumTempParamLists = TempParams.size())
6424    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6425                                   NumTempParamLists,
6426                                   TempParams.release(),
6427                                   TSI,
6428                                   DS.getFriendSpecLoc());
6429  else
6430    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6431
6432  if (!D)
6433    return 0;
6434
6435  D->setAccess(AS_public);
6436  CurContext->addDecl(D);
6437
6438  return D;
6439}
6440
6441Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6442                                    MultiTemplateParamsArg TemplateParams) {
6443  const DeclSpec &DS = D.getDeclSpec();
6444
6445  assert(DS.isFriendSpecified());
6446  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6447
6448  SourceLocation Loc = D.getIdentifierLoc();
6449  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6450  QualType T = TInfo->getType();
6451
6452  // C++ [class.friend]p1
6453  //   A friend of a class is a function or class....
6454  // Note that this sees through typedefs, which is intended.
6455  // It *doesn't* see through dependent types, which is correct
6456  // according to [temp.arg.type]p3:
6457  //   If a declaration acquires a function type through a
6458  //   type dependent on a template-parameter and this causes
6459  //   a declaration that does not use the syntactic form of a
6460  //   function declarator to have a function type, the program
6461  //   is ill-formed.
6462  if (!T->isFunctionType()) {
6463    Diag(Loc, diag::err_unexpected_friend);
6464
6465    // It might be worthwhile to try to recover by creating an
6466    // appropriate declaration.
6467    return 0;
6468  }
6469
6470  // C++ [namespace.memdef]p3
6471  //  - If a friend declaration in a non-local class first declares a
6472  //    class or function, the friend class or function is a member
6473  //    of the innermost enclosing namespace.
6474  //  - The name of the friend is not found by simple name lookup
6475  //    until a matching declaration is provided in that namespace
6476  //    scope (either before or after the class declaration granting
6477  //    friendship).
6478  //  - If a friend function is called, its name may be found by the
6479  //    name lookup that considers functions from namespaces and
6480  //    classes associated with the types of the function arguments.
6481  //  - When looking for a prior declaration of a class or a function
6482  //    declared as a friend, scopes outside the innermost enclosing
6483  //    namespace scope are not considered.
6484
6485  CXXScopeSpec &SS = D.getCXXScopeSpec();
6486  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6487  DeclarationName Name = NameInfo.getName();
6488  assert(Name);
6489
6490  // The context we found the declaration in, or in which we should
6491  // create the declaration.
6492  DeclContext *DC;
6493  Scope *DCScope = S;
6494  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6495                        ForRedeclaration);
6496
6497  // FIXME: there are different rules in local classes
6498
6499  // There are four cases here.
6500  //   - There's no scope specifier, in which case we just go to the
6501  //     appropriate scope and look for a function or function template
6502  //     there as appropriate.
6503  // Recover from invalid scope qualifiers as if they just weren't there.
6504  if (SS.isInvalid() || !SS.isSet()) {
6505    // C++0x [namespace.memdef]p3:
6506    //   If the name in a friend declaration is neither qualified nor
6507    //   a template-id and the declaration is a function or an
6508    //   elaborated-type-specifier, the lookup to determine whether
6509    //   the entity has been previously declared shall not consider
6510    //   any scopes outside the innermost enclosing namespace.
6511    // C++0x [class.friend]p11:
6512    //   If a friend declaration appears in a local class and the name
6513    //   specified is an unqualified name, a prior declaration is
6514    //   looked up without considering scopes that are outside the
6515    //   innermost enclosing non-class scope. For a friend function
6516    //   declaration, if there is no prior declaration, the program is
6517    //   ill-formed.
6518    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6519    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6520
6521    // Find the appropriate context according to the above.
6522    DC = CurContext;
6523    while (true) {
6524      // Skip class contexts.  If someone can cite chapter and verse
6525      // for this behavior, that would be nice --- it's what GCC and
6526      // EDG do, and it seems like a reasonable intent, but the spec
6527      // really only says that checks for unqualified existing
6528      // declarations should stop at the nearest enclosing namespace,
6529      // not that they should only consider the nearest enclosing
6530      // namespace.
6531      while (DC->isRecord())
6532        DC = DC->getParent();
6533
6534      LookupQualifiedName(Previous, DC);
6535
6536      // TODO: decide what we think about using declarations.
6537      if (isLocal || !Previous.empty())
6538        break;
6539
6540      if (isTemplateId) {
6541        if (isa<TranslationUnitDecl>(DC)) break;
6542      } else {
6543        if (DC->isFileContext()) break;
6544      }
6545      DC = DC->getParent();
6546    }
6547
6548    // C++ [class.friend]p1: A friend of a class is a function or
6549    //   class that is not a member of the class . . .
6550    // C++0x changes this for both friend types and functions.
6551    // Most C++ 98 compilers do seem to give an error here, so
6552    // we do, too.
6553    if (!Previous.empty() && DC->Equals(CurContext)
6554        && !getLangOptions().CPlusPlus0x)
6555      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6556
6557    DCScope = getScopeForDeclContext(S, DC);
6558
6559  //   - There's a non-dependent scope specifier, in which case we
6560  //     compute it and do a previous lookup there for a function
6561  //     or function template.
6562  } else if (!SS.getScopeRep()->isDependent()) {
6563    DC = computeDeclContext(SS);
6564    if (!DC) return 0;
6565
6566    if (RequireCompleteDeclContext(SS, DC)) return 0;
6567
6568    LookupQualifiedName(Previous, DC);
6569
6570    // Ignore things found implicitly in the wrong scope.
6571    // TODO: better diagnostics for this case.  Suggesting the right
6572    // qualified scope would be nice...
6573    LookupResult::Filter F = Previous.makeFilter();
6574    while (F.hasNext()) {
6575      NamedDecl *D = F.next();
6576      if (!DC->InEnclosingNamespaceSetOf(
6577              D->getDeclContext()->getRedeclContext()))
6578        F.erase();
6579    }
6580    F.done();
6581
6582    if (Previous.empty()) {
6583      D.setInvalidType();
6584      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6585      return 0;
6586    }
6587
6588    // C++ [class.friend]p1: A friend of a class is a function or
6589    //   class that is not a member of the class . . .
6590    if (DC->Equals(CurContext))
6591      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6592
6593  //   - There's a scope specifier that does not match any template
6594  //     parameter lists, in which case we use some arbitrary context,
6595  //     create a method or method template, and wait for instantiation.
6596  //   - There's a scope specifier that does match some template
6597  //     parameter lists, which we don't handle right now.
6598  } else {
6599    DC = CurContext;
6600    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6601  }
6602
6603  if (!DC->isRecord()) {
6604    // This implies that it has to be an operator or function.
6605    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6606        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6607        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6608      Diag(Loc, diag::err_introducing_special_friend) <<
6609        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6610         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6611      return 0;
6612    }
6613  }
6614
6615  bool Redeclaration = false;
6616  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6617                                          move(TemplateParams),
6618                                          IsDefinition,
6619                                          Redeclaration);
6620  if (!ND) return 0;
6621
6622  assert(ND->getDeclContext() == DC);
6623  assert(ND->getLexicalDeclContext() == CurContext);
6624
6625  // Add the function declaration to the appropriate lookup tables,
6626  // adjusting the redeclarations list as necessary.  We don't
6627  // want to do this yet if the friending class is dependent.
6628  //
6629  // Also update the scope-based lookup if the target context's
6630  // lookup context is in lexical scope.
6631  if (!CurContext->isDependentContext()) {
6632    DC = DC->getRedeclContext();
6633    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6634    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6635      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6636  }
6637
6638  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6639                                       D.getIdentifierLoc(), ND,
6640                                       DS.getFriendSpecLoc());
6641  FrD->setAccess(AS_public);
6642  CurContext->addDecl(FrD);
6643
6644  if (ND->isInvalidDecl())
6645    FrD->setInvalidDecl();
6646  else {
6647    FunctionDecl *FD;
6648    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6649      FD = FTD->getTemplatedDecl();
6650    else
6651      FD = cast<FunctionDecl>(ND);
6652
6653    // Mark templated-scope function declarations as unsupported.
6654    if (FD->getNumTemplateParameterLists())
6655      FrD->setUnsupportedFriend(true);
6656  }
6657
6658  return ND;
6659}
6660
6661void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6662  AdjustDeclIfTemplate(Dcl);
6663
6664  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6665  if (!Fn) {
6666    Diag(DelLoc, diag::err_deleted_non_function);
6667    return;
6668  }
6669  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6670    Diag(DelLoc, diag::err_deleted_decl_not_first);
6671    Diag(Prev->getLocation(), diag::note_previous_declaration);
6672    // If the declaration wasn't the first, we delete the function anyway for
6673    // recovery.
6674  }
6675  Fn->setDeleted();
6676}
6677
6678static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6679  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6680       ++CI) {
6681    Stmt *SubStmt = *CI;
6682    if (!SubStmt)
6683      continue;
6684    if (isa<ReturnStmt>(SubStmt))
6685      Self.Diag(SubStmt->getSourceRange().getBegin(),
6686           diag::err_return_in_constructor_handler);
6687    if (!isa<Expr>(SubStmt))
6688      SearchForReturnInStmt(Self, SubStmt);
6689  }
6690}
6691
6692void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6693  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6694    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6695    SearchForReturnInStmt(*this, Handler);
6696  }
6697}
6698
6699bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6700                                             const CXXMethodDecl *Old) {
6701  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6702  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6703
6704  if (Context.hasSameType(NewTy, OldTy) ||
6705      NewTy->isDependentType() || OldTy->isDependentType())
6706    return false;
6707
6708  // Check if the return types are covariant
6709  QualType NewClassTy, OldClassTy;
6710
6711  /// Both types must be pointers or references to classes.
6712  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6713    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6714      NewClassTy = NewPT->getPointeeType();
6715      OldClassTy = OldPT->getPointeeType();
6716    }
6717  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6718    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6719      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6720        NewClassTy = NewRT->getPointeeType();
6721        OldClassTy = OldRT->getPointeeType();
6722      }
6723    }
6724  }
6725
6726  // The return types aren't either both pointers or references to a class type.
6727  if (NewClassTy.isNull()) {
6728    Diag(New->getLocation(),
6729         diag::err_different_return_type_for_overriding_virtual_function)
6730      << New->getDeclName() << NewTy << OldTy;
6731    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6732
6733    return true;
6734  }
6735
6736  // C++ [class.virtual]p6:
6737  //   If the return type of D::f differs from the return type of B::f, the
6738  //   class type in the return type of D::f shall be complete at the point of
6739  //   declaration of D::f or shall be the class type D.
6740  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6741    if (!RT->isBeingDefined() &&
6742        RequireCompleteType(New->getLocation(), NewClassTy,
6743                            PDiag(diag::err_covariant_return_incomplete)
6744                              << New->getDeclName()))
6745    return true;
6746  }
6747
6748  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6749    // Check if the new class derives from the old class.
6750    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6751      Diag(New->getLocation(),
6752           diag::err_covariant_return_not_derived)
6753      << New->getDeclName() << NewTy << OldTy;
6754      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6755      return true;
6756    }
6757
6758    // Check if we the conversion from derived to base is valid.
6759    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6760                    diag::err_covariant_return_inaccessible_base,
6761                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6762                    // FIXME: Should this point to the return type?
6763                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6764      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6765      return true;
6766    }
6767  }
6768
6769  // The qualifiers of the return types must be the same.
6770  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6771    Diag(New->getLocation(),
6772         diag::err_covariant_return_type_different_qualifications)
6773    << New->getDeclName() << NewTy << OldTy;
6774    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6775    return true;
6776  };
6777
6778
6779  // The new class type must have the same or less qualifiers as the old type.
6780  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6781    Diag(New->getLocation(),
6782         diag::err_covariant_return_type_class_type_more_qualified)
6783    << New->getDeclName() << NewTy << OldTy;
6784    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6785    return true;
6786  };
6787
6788  return false;
6789}
6790
6791bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6792                                             const CXXMethodDecl *Old)
6793{
6794  if (Old->hasAttr<FinalAttr>()) {
6795    Diag(New->getLocation(), diag::err_final_function_overridden)
6796      << New->getDeclName();
6797    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6798    return true;
6799  }
6800
6801  return false;
6802}
6803
6804/// \brief Mark the given method pure.
6805///
6806/// \param Method the method to be marked pure.
6807///
6808/// \param InitRange the source range that covers the "0" initializer.
6809bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6810  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6811    Method->setPure();
6812    return false;
6813  }
6814
6815  if (!Method->isInvalidDecl())
6816    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6817      << Method->getDeclName() << InitRange;
6818  return true;
6819}
6820
6821/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6822/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6823/// is a fresh scope pushed for just this purpose.
6824///
6825/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6826/// static data member of class X, names should be looked up in the scope of
6827/// class X.
6828void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6829  // If there is no declaration, there was an error parsing it.
6830  if (D == 0) return;
6831
6832  // We should only get called for declarations with scope specifiers, like:
6833  //   int foo::bar;
6834  assert(D->isOutOfLine());
6835  EnterDeclaratorContext(S, D->getDeclContext());
6836}
6837
6838/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6839/// initializer for the out-of-line declaration 'D'.
6840void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6841  // If there is no declaration, there was an error parsing it.
6842  if (D == 0) return;
6843
6844  assert(D->isOutOfLine());
6845  ExitDeclaratorContext(S);
6846}
6847
6848/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6849/// C++ if/switch/while/for statement.
6850/// e.g: "if (int x = f()) {...}"
6851DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6852  // C++ 6.4p2:
6853  // The declarator shall not specify a function or an array.
6854  // The type-specifier-seq shall not contain typedef and shall not declare a
6855  // new class or enumeration.
6856  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6857         "Parser allowed 'typedef' as storage class of condition decl.");
6858
6859  TagDecl *OwnedTag = 0;
6860  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6861  QualType Ty = TInfo->getType();
6862
6863  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6864                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6865                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6866    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6867      << D.getSourceRange();
6868    return DeclResult();
6869  } else if (OwnedTag && OwnedTag->isDefinition()) {
6870    // The type-specifier-seq shall not declare a new class or enumeration.
6871    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6872  }
6873
6874  Decl *Dcl = ActOnDeclarator(S, D);
6875  if (!Dcl)
6876    return DeclResult();
6877
6878  return Dcl;
6879}
6880
6881void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6882                          bool DefinitionRequired) {
6883  // Ignore any vtable uses in unevaluated operands or for classes that do
6884  // not have a vtable.
6885  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6886      CurContext->isDependentContext() ||
6887      ExprEvalContexts.back().Context == Unevaluated)
6888    return;
6889
6890  // Try to insert this class into the map.
6891  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6892  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6893    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6894  if (!Pos.second) {
6895    // If we already had an entry, check to see if we are promoting this vtable
6896    // to required a definition. If so, we need to reappend to the VTableUses
6897    // list, since we may have already processed the first entry.
6898    if (DefinitionRequired && !Pos.first->second) {
6899      Pos.first->second = true;
6900    } else {
6901      // Otherwise, we can early exit.
6902      return;
6903    }
6904  }
6905
6906  // Local classes need to have their virtual members marked
6907  // immediately. For all other classes, we mark their virtual members
6908  // at the end of the translation unit.
6909  if (Class->isLocalClass())
6910    MarkVirtualMembersReferenced(Loc, Class);
6911  else
6912    VTableUses.push_back(std::make_pair(Class, Loc));
6913}
6914
6915bool Sema::DefineUsedVTables() {
6916  // If any dynamic classes have their key function defined within
6917  // this translation unit, then those vtables are considered "used" and must
6918  // be emitted.
6919  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6920    if (const CXXMethodDecl *KeyFunction
6921                             = Context.getKeyFunction(DynamicClasses[I])) {
6922      const FunctionDecl *Definition = 0;
6923      if (KeyFunction->hasBody(Definition))
6924        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6925    }
6926  }
6927
6928  if (VTableUses.empty())
6929    return false;
6930
6931  // Note: The VTableUses vector could grow as a result of marking
6932  // the members of a class as "used", so we check the size each
6933  // time through the loop and prefer indices (with are stable) to
6934  // iterators (which are not).
6935  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6936    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6937    if (!Class)
6938      continue;
6939
6940    SourceLocation Loc = VTableUses[I].second;
6941
6942    // If this class has a key function, but that key function is
6943    // defined in another translation unit, we don't need to emit the
6944    // vtable even though we're using it.
6945    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6946    if (KeyFunction && !KeyFunction->hasBody()) {
6947      switch (KeyFunction->getTemplateSpecializationKind()) {
6948      case TSK_Undeclared:
6949      case TSK_ExplicitSpecialization:
6950      case TSK_ExplicitInstantiationDeclaration:
6951        // The key function is in another translation unit.
6952        continue;
6953
6954      case TSK_ExplicitInstantiationDefinition:
6955      case TSK_ImplicitInstantiation:
6956        // We will be instantiating the key function.
6957        break;
6958      }
6959    } else if (!KeyFunction) {
6960      // If we have a class with no key function that is the subject
6961      // of an explicit instantiation declaration, suppress the
6962      // vtable; it will live with the explicit instantiation
6963      // definition.
6964      bool IsExplicitInstantiationDeclaration
6965        = Class->getTemplateSpecializationKind()
6966                                      == TSK_ExplicitInstantiationDeclaration;
6967      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6968                                 REnd = Class->redecls_end();
6969           R != REnd; ++R) {
6970        TemplateSpecializationKind TSK
6971          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6972        if (TSK == TSK_ExplicitInstantiationDeclaration)
6973          IsExplicitInstantiationDeclaration = true;
6974        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6975          IsExplicitInstantiationDeclaration = false;
6976          break;
6977        }
6978      }
6979
6980      if (IsExplicitInstantiationDeclaration)
6981        continue;
6982    }
6983
6984    // Mark all of the virtual members of this class as referenced, so
6985    // that we can build a vtable. Then, tell the AST consumer that a
6986    // vtable for this class is required.
6987    MarkVirtualMembersReferenced(Loc, Class);
6988    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6989    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6990
6991    // Optionally warn if we're emitting a weak vtable.
6992    if (Class->getLinkage() == ExternalLinkage &&
6993        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6994      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6995        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6996    }
6997  }
6998  VTableUses.clear();
6999
7000  return true;
7001}
7002
7003void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7004                                        const CXXRecordDecl *RD) {
7005  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7006       e = RD->method_end(); i != e; ++i) {
7007    CXXMethodDecl *MD = *i;
7008
7009    // C++ [basic.def.odr]p2:
7010    //   [...] A virtual member function is used if it is not pure. [...]
7011    if (MD->isVirtual() && !MD->isPure())
7012      MarkDeclarationReferenced(Loc, MD);
7013  }
7014
7015  // Only classes that have virtual bases need a VTT.
7016  if (RD->getNumVBases() == 0)
7017    return;
7018
7019  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7020           e = RD->bases_end(); i != e; ++i) {
7021    const CXXRecordDecl *Base =
7022        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7023    if (Base->getNumVBases() == 0)
7024      continue;
7025    MarkVirtualMembersReferenced(Loc, Base);
7026  }
7027}
7028
7029/// SetIvarInitializers - This routine builds initialization ASTs for the
7030/// Objective-C implementation whose ivars need be initialized.
7031void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7032  if (!getLangOptions().CPlusPlus)
7033    return;
7034  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7035    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7036    CollectIvarsToConstructOrDestruct(OID, ivars);
7037    if (ivars.empty())
7038      return;
7039    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
7040    for (unsigned i = 0; i < ivars.size(); i++) {
7041      FieldDecl *Field = ivars[i];
7042      if (Field->isInvalidDecl())
7043        continue;
7044
7045      CXXBaseOrMemberInitializer *Member;
7046      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7047      InitializationKind InitKind =
7048        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7049
7050      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7051      ExprResult MemberInit =
7052        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7053      MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
7054      // Note, MemberInit could actually come back empty if no initialization
7055      // is required (e.g., because it would call a trivial default constructor)
7056      if (!MemberInit.get() || MemberInit.isInvalid())
7057        continue;
7058
7059      Member =
7060        new (Context) CXXBaseOrMemberInitializer(Context,
7061                                                 Field, SourceLocation(),
7062                                                 SourceLocation(),
7063                                                 MemberInit.takeAs<Expr>(),
7064                                                 SourceLocation());
7065      AllToInit.push_back(Member);
7066
7067      // Be sure that the destructor is accessible and is marked as referenced.
7068      if (const RecordType *RecordTy
7069                  = Context.getBaseElementType(Field->getType())
7070                                                        ->getAs<RecordType>()) {
7071                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7072        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7073          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7074          CheckDestructorAccess(Field->getLocation(), Destructor,
7075                            PDiag(diag::err_access_dtor_ivar)
7076                              << Context.getBaseElementType(Field->getType()));
7077        }
7078      }
7079    }
7080    ObjCImplementation->setIvarInitializers(Context,
7081                                            AllToInit.data(), AllToInit.size());
7082  }
7083}
7084