SemaDeclCXX.cpp revision 79363f5e612c17cd05e1fa888632ee7860ced1ab
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include <map>
38#include <set>
39
40using namespace clang;
41
42//===----------------------------------------------------------------------===//
43// CheckDefaultArgumentVisitor
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
48  /// the default argument of a parameter to determine whether it
49  /// contains any ill-formed subexpressions. For example, this will
50  /// diagnose the use of local variables or parameters within the
51  /// default argument expression.
52  class CheckDefaultArgumentVisitor
53    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
54    Expr *DefaultArg;
55    Sema *S;
56
57  public:
58    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
59      : DefaultArg(defarg), S(s) {}
60
61    bool VisitExpr(Expr *Node);
62    bool VisitDeclRefExpr(DeclRefExpr *DRE);
63    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
64    bool VisitLambdaExpr(LambdaExpr *Lambda);
65  };
66
67  /// VisitExpr - Visit all of the children of this expression.
68  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
69    bool IsInvalid = false;
70    for (Stmt::child_range I = Node->children(); I; ++I)
71      IsInvalid |= Visit(*I);
72    return IsInvalid;
73  }
74
75  /// VisitDeclRefExpr - Visit a reference to a declaration, to
76  /// determine whether this declaration can be used in the default
77  /// argument expression.
78  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
79    NamedDecl *Decl = DRE->getDecl();
80    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p9
82      //   Default arguments are evaluated each time the function is
83      //   called. The order of evaluation of function arguments is
84      //   unspecified. Consequently, parameters of a function shall not
85      //   be used in default argument expressions, even if they are not
86      //   evaluated. Parameters of a function declared before a default
87      //   argument expression are in scope and can hide namespace and
88      //   class member names.
89      return S->Diag(DRE->getSourceRange().getBegin(),
90                     diag::err_param_default_argument_references_param)
91         << Param->getDeclName() << DefaultArg->getSourceRange();
92    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
93      // C++ [dcl.fct.default]p7
94      //   Local variables shall not be used in default argument
95      //   expressions.
96      if (VDecl->isLocalVarDecl())
97        return S->Diag(DRE->getSourceRange().getBegin(),
98                       diag::err_param_default_argument_references_local)
99          << VDecl->getDeclName() << DefaultArg->getSourceRange();
100    }
101
102    return false;
103  }
104
105  /// VisitCXXThisExpr - Visit a C++ "this" expression.
106  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
107    // C++ [dcl.fct.default]p8:
108    //   The keyword this shall not be used in a default argument of a
109    //   member function.
110    return S->Diag(ThisE->getSourceRange().getBegin(),
111                   diag::err_param_default_argument_references_this)
112               << ThisE->getSourceRange();
113  }
114
115  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
116    // C++11 [expr.lambda.prim]p13:
117    //   A lambda-expression appearing in a default argument shall not
118    //   implicitly or explicitly capture any entity.
119    if (Lambda->capture_begin() == Lambda->capture_end())
120      return false;
121
122    return S->Diag(Lambda->getLocStart(),
123                   diag::err_lambda_capture_default_arg);
124  }
125}
126
127void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
128  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
129  // If we have an MSAny or unknown spec already, don't bother.
130  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
131    return;
132
133  const FunctionProtoType *Proto
134    = Method->getType()->getAs<FunctionProtoType>();
135
136  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
137
138  // If this function can throw any exceptions, make a note of that.
139  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
140    ClearExceptions();
141    ComputedEST = EST;
142    return;
143  }
144
145  // FIXME: If the call to this decl is using any of its default arguments, we
146  // need to search them for potentially-throwing calls.
147
148  // If this function has a basic noexcept, it doesn't affect the outcome.
149  if (EST == EST_BasicNoexcept)
150    return;
151
152  // If we have a throw-all spec at this point, ignore the function.
153  if (ComputedEST == EST_None)
154    return;
155
156  // If we're still at noexcept(true) and there's a nothrow() callee,
157  // change to that specification.
158  if (EST == EST_DynamicNone) {
159    if (ComputedEST == EST_BasicNoexcept)
160      ComputedEST = EST_DynamicNone;
161    return;
162  }
163
164  // Check out noexcept specs.
165  if (EST == EST_ComputedNoexcept) {
166    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
167    assert(NR != FunctionProtoType::NR_NoNoexcept &&
168           "Must have noexcept result for EST_ComputedNoexcept.");
169    assert(NR != FunctionProtoType::NR_Dependent &&
170           "Should not generate implicit declarations for dependent cases, "
171           "and don't know how to handle them anyway.");
172
173    // noexcept(false) -> no spec on the new function
174    if (NR == FunctionProtoType::NR_Throw) {
175      ClearExceptions();
176      ComputedEST = EST_None;
177    }
178    // noexcept(true) won't change anything either.
179    return;
180  }
181
182  assert(EST == EST_Dynamic && "EST case not considered earlier.");
183  assert(ComputedEST != EST_None &&
184         "Shouldn't collect exceptions when throw-all is guaranteed.");
185  ComputedEST = EST_Dynamic;
186  // Record the exceptions in this function's exception specification.
187  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
188                                          EEnd = Proto->exception_end();
189       E != EEnd; ++E)
190    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
191      Exceptions.push_back(*E);
192}
193
194void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
195  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
196    return;
197
198  // FIXME:
199  //
200  // C++0x [except.spec]p14:
201  //   [An] implicit exception-specification specifies the type-id T if and
202  // only if T is allowed by the exception-specification of a function directly
203  // invoked by f's implicit definition; f shall allow all exceptions if any
204  // function it directly invokes allows all exceptions, and f shall allow no
205  // exceptions if every function it directly invokes allows no exceptions.
206  //
207  // Note in particular that if an implicit exception-specification is generated
208  // for a function containing a throw-expression, that specification can still
209  // be noexcept(true).
210  //
211  // Note also that 'directly invoked' is not defined in the standard, and there
212  // is no indication that we should only consider potentially-evaluated calls.
213  //
214  // Ultimately we should implement the intent of the standard: the exception
215  // specification should be the set of exceptions which can be thrown by the
216  // implicit definition. For now, we assume that any non-nothrow expression can
217  // throw any exception.
218
219  if (E->CanThrow(*Context))
220    ComputedEST = EST_None;
221}
222
223bool
224Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
225                              SourceLocation EqualLoc) {
226  if (RequireCompleteType(Param->getLocation(), Param->getType(),
227                          diag::err_typecheck_decl_incomplete_type)) {
228    Param->setInvalidDecl();
229    return true;
230  }
231
232  // C++ [dcl.fct.default]p5
233  //   A default argument expression is implicitly converted (clause
234  //   4) to the parameter type. The default argument expression has
235  //   the same semantic constraints as the initializer expression in
236  //   a declaration of a variable of the parameter type, using the
237  //   copy-initialization semantics (8.5).
238  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
239                                                                    Param);
240  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
241                                                           EqualLoc);
242  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
243  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
244                                      MultiExprArg(*this, &Arg, 1));
245  if (Result.isInvalid())
246    return true;
247  Arg = Result.takeAs<Expr>();
248
249  CheckImplicitConversions(Arg, EqualLoc);
250  Arg = MaybeCreateExprWithCleanups(Arg);
251
252  // Okay: add the default argument to the parameter
253  Param->setDefaultArg(Arg);
254
255  // We have already instantiated this parameter; provide each of the
256  // instantiations with the uninstantiated default argument.
257  UnparsedDefaultArgInstantiationsMap::iterator InstPos
258    = UnparsedDefaultArgInstantiations.find(Param);
259  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
260    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
261      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
262
263    // We're done tracking this parameter's instantiations.
264    UnparsedDefaultArgInstantiations.erase(InstPos);
265  }
266
267  return false;
268}
269
270/// ActOnParamDefaultArgument - Check whether the default argument
271/// provided for a function parameter is well-formed. If so, attach it
272/// to the parameter declaration.
273void
274Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
275                                Expr *DefaultArg) {
276  if (!param || !DefaultArg)
277    return;
278
279  ParmVarDecl *Param = cast<ParmVarDecl>(param);
280  UnparsedDefaultArgLocs.erase(Param);
281
282  // Default arguments are only permitted in C++
283  if (!getLangOptions().CPlusPlus) {
284    Diag(EqualLoc, diag::err_param_default_argument)
285      << DefaultArg->getSourceRange();
286    Param->setInvalidDecl();
287    return;
288  }
289
290  // Check for unexpanded parameter packs.
291  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check that the default argument is well-formed
297  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
298  if (DefaultArgChecker.Visit(DefaultArg)) {
299    Param->setInvalidDecl();
300    return;
301  }
302
303  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
304}
305
306/// ActOnParamUnparsedDefaultArgument - We've seen a default
307/// argument for a function parameter, but we can't parse it yet
308/// because we're inside a class definition. Note that this default
309/// argument will be parsed later.
310void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
311                                             SourceLocation EqualLoc,
312                                             SourceLocation ArgLoc) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317  if (Param)
318    Param->setUnparsedDefaultArg();
319
320  UnparsedDefaultArgLocs[Param] = ArgLoc;
321}
322
323/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
324/// the default argument for the parameter param failed.
325void Sema::ActOnParamDefaultArgumentError(Decl *param) {
326  if (!param)
327    return;
328
329  ParmVarDecl *Param = cast<ParmVarDecl>(param);
330
331  Param->setInvalidDecl();
332
333  UnparsedDefaultArgLocs.erase(Param);
334}
335
336/// CheckExtraCXXDefaultArguments - Check for any extra default
337/// arguments in the declarator, which is not a function declaration
338/// or definition and therefore is not permitted to have default
339/// arguments. This routine should be invoked for every declarator
340/// that is not a function declaration or definition.
341void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
342  // C++ [dcl.fct.default]p3
343  //   A default argument expression shall be specified only in the
344  //   parameter-declaration-clause of a function declaration or in a
345  //   template-parameter (14.1). It shall not be specified for a
346  //   parameter pack. If it is specified in a
347  //   parameter-declaration-clause, it shall not occur within a
348  //   declarator or abstract-declarator of a parameter-declaration.
349  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
350    DeclaratorChunk &chunk = D.getTypeObject(i);
351    if (chunk.Kind == DeclaratorChunk::Function) {
352      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
353        ParmVarDecl *Param =
354          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
355        if (Param->hasUnparsedDefaultArg()) {
356          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
357          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
358            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
359          delete Toks;
360          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
361        } else if (Param->getDefaultArg()) {
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << Param->getDefaultArg()->getSourceRange();
364          Param->setDefaultArg(0);
365        }
366      }
367    }
368  }
369}
370
371// MergeCXXFunctionDecl - Merge two declarations of the same C++
372// function, once we already know that they have the same
373// type. Subroutine of MergeFunctionDecl. Returns true if there was an
374// error, false otherwise.
375bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
376  bool Invalid = false;
377
378  // C++ [dcl.fct.default]p4:
379  //   For non-template functions, default arguments can be added in
380  //   later declarations of a function in the same
381  //   scope. Declarations in different scopes have completely
382  //   distinct sets of default arguments. That is, declarations in
383  //   inner scopes do not acquire default arguments from
384  //   declarations in outer scopes, and vice versa. In a given
385  //   function declaration, all parameters subsequent to a
386  //   parameter with a default argument shall have default
387  //   arguments supplied in this or previous declarations. A
388  //   default argument shall not be redefined by a later
389  //   declaration (not even to the same value).
390  //
391  // C++ [dcl.fct.default]p6:
392  //   Except for member functions of class templates, the default arguments
393  //   in a member function definition that appears outside of the class
394  //   definition are added to the set of default arguments provided by the
395  //   member function declaration in the class definition.
396  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
397    ParmVarDecl *OldParam = Old->getParamDecl(p);
398    ParmVarDecl *NewParam = New->getParamDecl(p);
399
400    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
401
402      unsigned DiagDefaultParamID =
403        diag::err_param_default_argument_redefinition;
404
405      // MSVC accepts that default parameters be redefined for member functions
406      // of template class. The new default parameter's value is ignored.
407      Invalid = true;
408      if (getLangOptions().MicrosoftExt) {
409        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
410        if (MD && MD->getParent()->getDescribedClassTemplate()) {
411          // Merge the old default argument into the new parameter.
412          NewParam->setHasInheritedDefaultArg();
413          if (OldParam->hasUninstantiatedDefaultArg())
414            NewParam->setUninstantiatedDefaultArg(
415                                      OldParam->getUninstantiatedDefaultArg());
416          else
417            NewParam->setDefaultArg(OldParam->getInit());
418          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
419          Invalid = false;
420        }
421      }
422
423      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
424      // hint here. Alternatively, we could walk the type-source information
425      // for NewParam to find the last source location in the type... but it
426      // isn't worth the effort right now. This is the kind of test case that
427      // is hard to get right:
428      //   int f(int);
429      //   void g(int (*fp)(int) = f);
430      //   void g(int (*fp)(int) = &f);
431      Diag(NewParam->getLocation(), DiagDefaultParamID)
432        << NewParam->getDefaultArgRange();
433
434      // Look for the function declaration where the default argument was
435      // actually written, which may be a declaration prior to Old.
436      for (FunctionDecl *Older = Old->getPreviousDecl();
437           Older; Older = Older->getPreviousDecl()) {
438        if (!Older->getParamDecl(p)->hasDefaultArg())
439          break;
440
441        OldParam = Older->getParamDecl(p);
442      }
443
444      Diag(OldParam->getLocation(), diag::note_previous_definition)
445        << OldParam->getDefaultArgRange();
446    } else if (OldParam->hasDefaultArg()) {
447      // Merge the old default argument into the new parameter.
448      // It's important to use getInit() here;  getDefaultArg()
449      // strips off any top-level ExprWithCleanups.
450      NewParam->setHasInheritedDefaultArg();
451      if (OldParam->hasUninstantiatedDefaultArg())
452        NewParam->setUninstantiatedDefaultArg(
453                                      OldParam->getUninstantiatedDefaultArg());
454      else
455        NewParam->setDefaultArg(OldParam->getInit());
456    } else if (NewParam->hasDefaultArg()) {
457      if (New->getDescribedFunctionTemplate()) {
458        // Paragraph 4, quoted above, only applies to non-template functions.
459        Diag(NewParam->getLocation(),
460             diag::err_param_default_argument_template_redecl)
461          << NewParam->getDefaultArgRange();
462        Diag(Old->getLocation(), diag::note_template_prev_declaration)
463          << false;
464      } else if (New->getTemplateSpecializationKind()
465                   != TSK_ImplicitInstantiation &&
466                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
467        // C++ [temp.expr.spec]p21:
468        //   Default function arguments shall not be specified in a declaration
469        //   or a definition for one of the following explicit specializations:
470        //     - the explicit specialization of a function template;
471        //     - the explicit specialization of a member function template;
472        //     - the explicit specialization of a member function of a class
473        //       template where the class template specialization to which the
474        //       member function specialization belongs is implicitly
475        //       instantiated.
476        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
477          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
478          << New->getDeclName()
479          << NewParam->getDefaultArgRange();
480      } else if (New->getDeclContext()->isDependentContext()) {
481        // C++ [dcl.fct.default]p6 (DR217):
482        //   Default arguments for a member function of a class template shall
483        //   be specified on the initial declaration of the member function
484        //   within the class template.
485        //
486        // Reading the tea leaves a bit in DR217 and its reference to DR205
487        // leads me to the conclusion that one cannot add default function
488        // arguments for an out-of-line definition of a member function of a
489        // dependent type.
490        int WhichKind = 2;
491        if (CXXRecordDecl *Record
492              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
493          if (Record->getDescribedClassTemplate())
494            WhichKind = 0;
495          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
496            WhichKind = 1;
497          else
498            WhichKind = 2;
499        }
500
501        Diag(NewParam->getLocation(),
502             diag::err_param_default_argument_member_template_redecl)
503          << WhichKind
504          << NewParam->getDefaultArgRange();
505      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
506        CXXSpecialMember NewSM = getSpecialMember(Ctor),
507                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
508        if (NewSM != OldSM) {
509          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
510            << NewParam->getDefaultArgRange() << NewSM;
511          Diag(Old->getLocation(), diag::note_previous_declaration_special)
512            << OldSM;
513        }
514      }
515    }
516  }
517
518  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
519  // template has a constexpr specifier then all its declarations shall
520  // contain the constexpr specifier.
521  if (New->isConstexpr() != Old->isConstexpr()) {
522    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
523      << New << New->isConstexpr();
524    Diag(Old->getLocation(), diag::note_previous_declaration);
525    Invalid = true;
526  }
527
528  if (CheckEquivalentExceptionSpec(Old, New))
529    Invalid = true;
530
531  return Invalid;
532}
533
534/// \brief Merge the exception specifications of two variable declarations.
535///
536/// This is called when there's a redeclaration of a VarDecl. The function
537/// checks if the redeclaration might have an exception specification and
538/// validates compatibility and merges the specs if necessary.
539void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
540  // Shortcut if exceptions are disabled.
541  if (!getLangOptions().CXXExceptions)
542    return;
543
544  assert(Context.hasSameType(New->getType(), Old->getType()) &&
545         "Should only be called if types are otherwise the same.");
546
547  QualType NewType = New->getType();
548  QualType OldType = Old->getType();
549
550  // We're only interested in pointers and references to functions, as well
551  // as pointers to member functions.
552  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
553    NewType = R->getPointeeType();
554    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
555  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
556    NewType = P->getPointeeType();
557    OldType = OldType->getAs<PointerType>()->getPointeeType();
558  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
559    NewType = M->getPointeeType();
560    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
561  }
562
563  if (!NewType->isFunctionProtoType())
564    return;
565
566  // There's lots of special cases for functions. For function pointers, system
567  // libraries are hopefully not as broken so that we don't need these
568  // workarounds.
569  if (CheckEquivalentExceptionSpec(
570        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
571        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
572    New->setInvalidDecl();
573  }
574}
575
576/// CheckCXXDefaultArguments - Verify that the default arguments for a
577/// function declaration are well-formed according to C++
578/// [dcl.fct.default].
579void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
580  unsigned NumParams = FD->getNumParams();
581  unsigned p;
582
583  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
584                  isa<CXXMethodDecl>(FD) &&
585                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
586
587  // Find first parameter with a default argument
588  for (p = 0; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (Param->hasDefaultArg()) {
591      // C++11 [expr.prim.lambda]p5:
592      //   [...] Default arguments (8.3.6) shall not be specified in the
593      //   parameter-declaration-clause of a lambda-declarator.
594      //
595      // FIXME: Core issue 974 strikes this sentence, we only provide an
596      // extension warning.
597      if (IsLambda)
598        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
599          << Param->getDefaultArgRange();
600      break;
601    }
602  }
603
604  // C++ [dcl.fct.default]p4:
605  //   In a given function declaration, all parameters
606  //   subsequent to a parameter with a default argument shall
607  //   have default arguments supplied in this or previous
608  //   declarations. A default argument shall not be redefined
609  //   by a later declaration (not even to the same value).
610  unsigned LastMissingDefaultArg = 0;
611  for (; p < NumParams; ++p) {
612    ParmVarDecl *Param = FD->getParamDecl(p);
613    if (!Param->hasDefaultArg()) {
614      if (Param->isInvalidDecl())
615        /* We already complained about this parameter. */;
616      else if (Param->getIdentifier())
617        Diag(Param->getLocation(),
618             diag::err_param_default_argument_missing_name)
619          << Param->getIdentifier();
620      else
621        Diag(Param->getLocation(),
622             diag::err_param_default_argument_missing);
623
624      LastMissingDefaultArg = p;
625    }
626  }
627
628  if (LastMissingDefaultArg > 0) {
629    // Some default arguments were missing. Clear out all of the
630    // default arguments up to (and including) the last missing
631    // default argument, so that we leave the function parameters
632    // in a semantically valid state.
633    for (p = 0; p <= LastMissingDefaultArg; ++p) {
634      ParmVarDecl *Param = FD->getParamDecl(p);
635      if (Param->hasDefaultArg()) {
636        Param->setDefaultArg(0);
637      }
638    }
639  }
640}
641
642// CheckConstexprParameterTypes - Check whether a function's parameter types
643// are all literal types. If so, return true. If not, produce a suitable
644// diagnostic and return false.
645static bool CheckConstexprParameterTypes(Sema &SemaRef,
646                                         const FunctionDecl *FD) {
647  unsigned ArgIndex = 0;
648  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
649  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
650       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
651    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
652    SourceLocation ParamLoc = PD->getLocation();
653    if (!(*i)->isDependentType() &&
654        SemaRef.RequireLiteralType(ParamLoc, *i,
655                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
656                                     << ArgIndex+1 << PD->getSourceRange()
657                                     << isa<CXXConstructorDecl>(FD)))
658      return false;
659  }
660  return true;
661}
662
663// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
664// the requirements of a constexpr function definition or a constexpr
665// constructor definition. If so, return true. If not, produce appropriate
666// diagnostics and return false.
667//
668// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
669bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
670  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
671  if (MD && MD->isInstance()) {
672    // C++11 [dcl.constexpr]p4:
673    //  The definition of a constexpr constructor shall satisfy the following
674    //  constraints:
675    //  - the class shall not have any virtual base classes;
676    const CXXRecordDecl *RD = MD->getParent();
677    if (RD->getNumVBases()) {
678      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
679        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
680        << RD->getNumVBases();
681      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
682             E = RD->vbases_end(); I != E; ++I)
683        Diag(I->getSourceRange().getBegin(),
684             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
685      return false;
686    }
687  }
688
689  if (!isa<CXXConstructorDecl>(NewFD)) {
690    // C++11 [dcl.constexpr]p3:
691    //  The definition of a constexpr function shall satisfy the following
692    //  constraints:
693    // - it shall not be virtual;
694    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
695    if (Method && Method->isVirtual()) {
696      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
697
698      // If it's not obvious why this function is virtual, find an overridden
699      // function which uses the 'virtual' keyword.
700      const CXXMethodDecl *WrittenVirtual = Method;
701      while (!WrittenVirtual->isVirtualAsWritten())
702        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
703      if (WrittenVirtual != Method)
704        Diag(WrittenVirtual->getLocation(),
705             diag::note_overridden_virtual_function);
706      return false;
707    }
708
709    // - its return type shall be a literal type;
710    QualType RT = NewFD->getResultType();
711    if (!RT->isDependentType() &&
712        RequireLiteralType(NewFD->getLocation(), RT,
713                           PDiag(diag::err_constexpr_non_literal_return)))
714      return false;
715  }
716
717  // - each of its parameter types shall be a literal type;
718  if (!CheckConstexprParameterTypes(*this, NewFD))
719    return false;
720
721  return true;
722}
723
724/// Check the given declaration statement is legal within a constexpr function
725/// body. C++0x [dcl.constexpr]p3,p4.
726///
727/// \return true if the body is OK, false if we have diagnosed a problem.
728static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
729                                   DeclStmt *DS) {
730  // C++0x [dcl.constexpr]p3 and p4:
731  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
732  //  contain only
733  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
734         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
735    switch ((*DclIt)->getKind()) {
736    case Decl::StaticAssert:
737    case Decl::Using:
738    case Decl::UsingShadow:
739    case Decl::UsingDirective:
740    case Decl::UnresolvedUsingTypename:
741      //   - static_assert-declarations
742      //   - using-declarations,
743      //   - using-directives,
744      continue;
745
746    case Decl::Typedef:
747    case Decl::TypeAlias: {
748      //   - typedef declarations and alias-declarations that do not define
749      //     classes or enumerations,
750      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
751      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
752        // Don't allow variably-modified types in constexpr functions.
753        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
754        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
755          << TL.getSourceRange() << TL.getType()
756          << isa<CXXConstructorDecl>(Dcl);
757        return false;
758      }
759      continue;
760    }
761
762    case Decl::Enum:
763    case Decl::CXXRecord:
764      // As an extension, we allow the declaration (but not the definition) of
765      // classes and enumerations in all declarations, not just in typedef and
766      // alias declarations.
767      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
768        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773
774    case Decl::Var:
775      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
776        << isa<CXXConstructorDecl>(Dcl);
777      return false;
778
779    default:
780      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
781        << isa<CXXConstructorDecl>(Dcl);
782      return false;
783    }
784  }
785
786  return true;
787}
788
789/// Check that the given field is initialized within a constexpr constructor.
790///
791/// \param Dcl The constexpr constructor being checked.
792/// \param Field The field being checked. This may be a member of an anonymous
793///        struct or union nested within the class being checked.
794/// \param Inits All declarations, including anonymous struct/union members and
795///        indirect members, for which any initialization was provided.
796/// \param Diagnosed Set to true if an error is produced.
797static void CheckConstexprCtorInitializer(Sema &SemaRef,
798                                          const FunctionDecl *Dcl,
799                                          FieldDecl *Field,
800                                          llvm::SmallSet<Decl*, 16> &Inits,
801                                          bool &Diagnosed) {
802  if (Field->isUnnamedBitfield())
803    return;
804
805  if (Field->isAnonymousStructOrUnion() &&
806      Field->getType()->getAsCXXRecordDecl()->isEmpty())
807    return;
808
809  if (!Inits.count(Field)) {
810    if (!Diagnosed) {
811      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
812      Diagnosed = true;
813    }
814    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
815  } else if (Field->isAnonymousStructOrUnion()) {
816    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
817    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
818         I != E; ++I)
819      // If an anonymous union contains an anonymous struct of which any member
820      // is initialized, all members must be initialized.
821      if (!RD->isUnion() || Inits.count(*I))
822        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
823  }
824}
825
826/// Check the body for the given constexpr function declaration only contains
827/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
828///
829/// \return true if the body is OK, false if we have diagnosed a problem.
830bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
831  if (isa<CXXTryStmt>(Body)) {
832    // C++11 [dcl.constexpr]p3:
833    //  The definition of a constexpr function shall satisfy the following
834    //  constraints: [...]
835    // - its function-body shall be = delete, = default, or a
836    //   compound-statement
837    //
838    // C++11 [dcl.constexpr]p4:
839    //  In the definition of a constexpr constructor, [...]
840    // - its function-body shall not be a function-try-block;
841    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
842      << isa<CXXConstructorDecl>(Dcl);
843    return false;
844  }
845
846  // - its function-body shall be [...] a compound-statement that contains only
847  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
848
849  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
850  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
851         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
852    switch ((*BodyIt)->getStmtClass()) {
853    case Stmt::NullStmtClass:
854      //   - null statements,
855      continue;
856
857    case Stmt::DeclStmtClass:
858      //   - static_assert-declarations
859      //   - using-declarations,
860      //   - using-directives,
861      //   - typedef declarations and alias-declarations that do not define
862      //     classes or enumerations,
863      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
864        return false;
865      continue;
866
867    case Stmt::ReturnStmtClass:
868      //   - and exactly one return statement;
869      if (isa<CXXConstructorDecl>(Dcl))
870        break;
871
872      ReturnStmts.push_back((*BodyIt)->getLocStart());
873      continue;
874
875    default:
876      break;
877    }
878
879    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
880      << isa<CXXConstructorDecl>(Dcl);
881    return false;
882  }
883
884  if (const CXXConstructorDecl *Constructor
885        = dyn_cast<CXXConstructorDecl>(Dcl)) {
886    const CXXRecordDecl *RD = Constructor->getParent();
887    // DR1359:
888    // - every non-variant non-static data member and base class sub-object
889    //   shall be initialized;
890    // - if the class is a non-empty union, or for each non-empty anonymous
891    //   union member of a non-union class, exactly one non-static data member
892    //   shall be initialized;
893    if (RD->isUnion()) {
894      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
895        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
896        return false;
897      }
898    } else if (!Constructor->isDependentContext() &&
899               !Constructor->isDelegatingConstructor()) {
900      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
901
902      // Skip detailed checking if we have enough initializers, and we would
903      // allow at most one initializer per member.
904      bool AnyAnonStructUnionMembers = false;
905      unsigned Fields = 0;
906      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
907           E = RD->field_end(); I != E; ++I, ++Fields) {
908        if ((*I)->isAnonymousStructOrUnion()) {
909          AnyAnonStructUnionMembers = true;
910          break;
911        }
912      }
913      if (AnyAnonStructUnionMembers ||
914          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
915        // Check initialization of non-static data members. Base classes are
916        // always initialized so do not need to be checked. Dependent bases
917        // might not have initializers in the member initializer list.
918        llvm::SmallSet<Decl*, 16> Inits;
919        for (CXXConstructorDecl::init_const_iterator
920               I = Constructor->init_begin(), E = Constructor->init_end();
921             I != E; ++I) {
922          if (FieldDecl *FD = (*I)->getMember())
923            Inits.insert(FD);
924          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
925            Inits.insert(ID->chain_begin(), ID->chain_end());
926        }
927
928        bool Diagnosed = false;
929        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
930             E = RD->field_end(); I != E; ++I)
931          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
932        if (Diagnosed)
933          return false;
934      }
935    }
936  } else {
937    if (ReturnStmts.empty()) {
938      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
939      return false;
940    }
941    if (ReturnStmts.size() > 1) {
942      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
943      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
944        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
945      return false;
946    }
947  }
948
949  // C++11 [dcl.constexpr]p5:
950  //   if no function argument values exist such that the function invocation
951  //   substitution would produce a constant expression, the program is
952  //   ill-formed; no diagnostic required.
953  // C++11 [dcl.constexpr]p3:
954  //   - every constructor call and implicit conversion used in initializing the
955  //     return value shall be one of those allowed in a constant expression.
956  // C++11 [dcl.constexpr]p4:
957  //   - every constructor involved in initializing non-static data members and
958  //     base class sub-objects shall be a constexpr constructor.
959  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
960  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
961    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
962      << isa<CXXConstructorDecl>(Dcl);
963    for (size_t I = 0, N = Diags.size(); I != N; ++I)
964      Diag(Diags[I].first, Diags[I].second);
965    return false;
966  }
967
968  return true;
969}
970
971/// isCurrentClassName - Determine whether the identifier II is the
972/// name of the class type currently being defined. In the case of
973/// nested classes, this will only return true if II is the name of
974/// the innermost class.
975bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
976                              const CXXScopeSpec *SS) {
977  assert(getLangOptions().CPlusPlus && "No class names in C!");
978
979  CXXRecordDecl *CurDecl;
980  if (SS && SS->isSet() && !SS->isInvalid()) {
981    DeclContext *DC = computeDeclContext(*SS, true);
982    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
983  } else
984    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
985
986  if (CurDecl && CurDecl->getIdentifier())
987    return &II == CurDecl->getIdentifier();
988  else
989    return false;
990}
991
992/// \brief Check the validity of a C++ base class specifier.
993///
994/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
995/// and returns NULL otherwise.
996CXXBaseSpecifier *
997Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
998                         SourceRange SpecifierRange,
999                         bool Virtual, AccessSpecifier Access,
1000                         TypeSourceInfo *TInfo,
1001                         SourceLocation EllipsisLoc) {
1002  QualType BaseType = TInfo->getType();
1003
1004  // C++ [class.union]p1:
1005  //   A union shall not have base classes.
1006  if (Class->isUnion()) {
1007    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1008      << SpecifierRange;
1009    return 0;
1010  }
1011
1012  if (EllipsisLoc.isValid() &&
1013      !TInfo->getType()->containsUnexpandedParameterPack()) {
1014    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1015      << TInfo->getTypeLoc().getSourceRange();
1016    EllipsisLoc = SourceLocation();
1017  }
1018
1019  if (BaseType->isDependentType())
1020    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1021                                          Class->getTagKind() == TTK_Class,
1022                                          Access, TInfo, EllipsisLoc);
1023
1024  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1025
1026  // Base specifiers must be record types.
1027  if (!BaseType->isRecordType()) {
1028    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1029    return 0;
1030  }
1031
1032  // C++ [class.union]p1:
1033  //   A union shall not be used as a base class.
1034  if (BaseType->isUnionType()) {
1035    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1036    return 0;
1037  }
1038
1039  // C++ [class.derived]p2:
1040  //   The class-name in a base-specifier shall not be an incompletely
1041  //   defined class.
1042  if (RequireCompleteType(BaseLoc, BaseType,
1043                          PDiag(diag::err_incomplete_base_class)
1044                            << SpecifierRange)) {
1045    Class->setInvalidDecl();
1046    return 0;
1047  }
1048
1049  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1050  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1051  assert(BaseDecl && "Record type has no declaration");
1052  BaseDecl = BaseDecl->getDefinition();
1053  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1054  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1055  assert(CXXBaseDecl && "Base type is not a C++ type");
1056
1057  // C++ [class]p3:
1058  //   If a class is marked final and it appears as a base-type-specifier in
1059  //   base-clause, the program is ill-formed.
1060  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1061    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1062      << CXXBaseDecl->getDeclName();
1063    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1064      << CXXBaseDecl->getDeclName();
1065    return 0;
1066  }
1067
1068  if (BaseDecl->isInvalidDecl())
1069    Class->setInvalidDecl();
1070
1071  // Create the base specifier.
1072  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1073                                        Class->getTagKind() == TTK_Class,
1074                                        Access, TInfo, EllipsisLoc);
1075}
1076
1077/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1078/// one entry in the base class list of a class specifier, for
1079/// example:
1080///    class foo : public bar, virtual private baz {
1081/// 'public bar' and 'virtual private baz' are each base-specifiers.
1082BaseResult
1083Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1084                         bool Virtual, AccessSpecifier Access,
1085                         ParsedType basetype, SourceLocation BaseLoc,
1086                         SourceLocation EllipsisLoc) {
1087  if (!classdecl)
1088    return true;
1089
1090  AdjustDeclIfTemplate(classdecl);
1091  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1092  if (!Class)
1093    return true;
1094
1095  TypeSourceInfo *TInfo = 0;
1096  GetTypeFromParser(basetype, &TInfo);
1097
1098  if (EllipsisLoc.isInvalid() &&
1099      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1100                                      UPPC_BaseType))
1101    return true;
1102
1103  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1104                                                      Virtual, Access, TInfo,
1105                                                      EllipsisLoc))
1106    return BaseSpec;
1107
1108  return true;
1109}
1110
1111/// \brief Performs the actual work of attaching the given base class
1112/// specifiers to a C++ class.
1113bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1114                                unsigned NumBases) {
1115 if (NumBases == 0)
1116    return false;
1117
1118  // Used to keep track of which base types we have already seen, so
1119  // that we can properly diagnose redundant direct base types. Note
1120  // that the key is always the unqualified canonical type of the base
1121  // class.
1122  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1123
1124  // Copy non-redundant base specifiers into permanent storage.
1125  unsigned NumGoodBases = 0;
1126  bool Invalid = false;
1127  for (unsigned idx = 0; idx < NumBases; ++idx) {
1128    QualType NewBaseType
1129      = Context.getCanonicalType(Bases[idx]->getType());
1130    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1131    if (KnownBaseTypes[NewBaseType]) {
1132      // C++ [class.mi]p3:
1133      //   A class shall not be specified as a direct base class of a
1134      //   derived class more than once.
1135      Diag(Bases[idx]->getSourceRange().getBegin(),
1136           diag::err_duplicate_base_class)
1137        << KnownBaseTypes[NewBaseType]->getType()
1138        << Bases[idx]->getSourceRange();
1139
1140      // Delete the duplicate base class specifier; we're going to
1141      // overwrite its pointer later.
1142      Context.Deallocate(Bases[idx]);
1143
1144      Invalid = true;
1145    } else {
1146      // Okay, add this new base class.
1147      KnownBaseTypes[NewBaseType] = Bases[idx];
1148      Bases[NumGoodBases++] = Bases[idx];
1149      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1150        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1151          if (RD->hasAttr<WeakAttr>())
1152            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1153    }
1154  }
1155
1156  // Attach the remaining base class specifiers to the derived class.
1157  Class->setBases(Bases, NumGoodBases);
1158
1159  // Delete the remaining (good) base class specifiers, since their
1160  // data has been copied into the CXXRecordDecl.
1161  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1162    Context.Deallocate(Bases[idx]);
1163
1164  return Invalid;
1165}
1166
1167/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1168/// class, after checking whether there are any duplicate base
1169/// classes.
1170void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1171                               unsigned NumBases) {
1172  if (!ClassDecl || !Bases || !NumBases)
1173    return;
1174
1175  AdjustDeclIfTemplate(ClassDecl);
1176  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1177                       (CXXBaseSpecifier**)(Bases), NumBases);
1178}
1179
1180static CXXRecordDecl *GetClassForType(QualType T) {
1181  if (const RecordType *RT = T->getAs<RecordType>())
1182    return cast<CXXRecordDecl>(RT->getDecl());
1183  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1184    return ICT->getDecl();
1185  else
1186    return 0;
1187}
1188
1189/// \brief Determine whether the type \p Derived is a C++ class that is
1190/// derived from the type \p Base.
1191bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1192  if (!getLangOptions().CPlusPlus)
1193    return false;
1194
1195  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1196  if (!DerivedRD)
1197    return false;
1198
1199  CXXRecordDecl *BaseRD = GetClassForType(Base);
1200  if (!BaseRD)
1201    return false;
1202
1203  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1204  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1205}
1206
1207/// \brief Determine whether the type \p Derived is a C++ class that is
1208/// derived from the type \p Base.
1209bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1210  if (!getLangOptions().CPlusPlus)
1211    return false;
1212
1213  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1214  if (!DerivedRD)
1215    return false;
1216
1217  CXXRecordDecl *BaseRD = GetClassForType(Base);
1218  if (!BaseRD)
1219    return false;
1220
1221  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1222}
1223
1224void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1225                              CXXCastPath &BasePathArray) {
1226  assert(BasePathArray.empty() && "Base path array must be empty!");
1227  assert(Paths.isRecordingPaths() && "Must record paths!");
1228
1229  const CXXBasePath &Path = Paths.front();
1230
1231  // We first go backward and check if we have a virtual base.
1232  // FIXME: It would be better if CXXBasePath had the base specifier for
1233  // the nearest virtual base.
1234  unsigned Start = 0;
1235  for (unsigned I = Path.size(); I != 0; --I) {
1236    if (Path[I - 1].Base->isVirtual()) {
1237      Start = I - 1;
1238      break;
1239    }
1240  }
1241
1242  // Now add all bases.
1243  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1244    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1245}
1246
1247/// \brief Determine whether the given base path includes a virtual
1248/// base class.
1249bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1250  for (CXXCastPath::const_iterator B = BasePath.begin(),
1251                                BEnd = BasePath.end();
1252       B != BEnd; ++B)
1253    if ((*B)->isVirtual())
1254      return true;
1255
1256  return false;
1257}
1258
1259/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1260/// conversion (where Derived and Base are class types) is
1261/// well-formed, meaning that the conversion is unambiguous (and
1262/// that all of the base classes are accessible). Returns true
1263/// and emits a diagnostic if the code is ill-formed, returns false
1264/// otherwise. Loc is the location where this routine should point to
1265/// if there is an error, and Range is the source range to highlight
1266/// if there is an error.
1267bool
1268Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1269                                   unsigned InaccessibleBaseID,
1270                                   unsigned AmbigiousBaseConvID,
1271                                   SourceLocation Loc, SourceRange Range,
1272                                   DeclarationName Name,
1273                                   CXXCastPath *BasePath) {
1274  // First, determine whether the path from Derived to Base is
1275  // ambiguous. This is slightly more expensive than checking whether
1276  // the Derived to Base conversion exists, because here we need to
1277  // explore multiple paths to determine if there is an ambiguity.
1278  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1279                     /*DetectVirtual=*/false);
1280  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1281  assert(DerivationOkay &&
1282         "Can only be used with a derived-to-base conversion");
1283  (void)DerivationOkay;
1284
1285  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1286    if (InaccessibleBaseID) {
1287      // Check that the base class can be accessed.
1288      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1289                                   InaccessibleBaseID)) {
1290        case AR_inaccessible:
1291          return true;
1292        case AR_accessible:
1293        case AR_dependent:
1294        case AR_delayed:
1295          break;
1296      }
1297    }
1298
1299    // Build a base path if necessary.
1300    if (BasePath)
1301      BuildBasePathArray(Paths, *BasePath);
1302    return false;
1303  }
1304
1305  // We know that the derived-to-base conversion is ambiguous, and
1306  // we're going to produce a diagnostic. Perform the derived-to-base
1307  // search just one more time to compute all of the possible paths so
1308  // that we can print them out. This is more expensive than any of
1309  // the previous derived-to-base checks we've done, but at this point
1310  // performance isn't as much of an issue.
1311  Paths.clear();
1312  Paths.setRecordingPaths(true);
1313  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1314  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1315  (void)StillOkay;
1316
1317  // Build up a textual representation of the ambiguous paths, e.g.,
1318  // D -> B -> A, that will be used to illustrate the ambiguous
1319  // conversions in the diagnostic. We only print one of the paths
1320  // to each base class subobject.
1321  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1322
1323  Diag(Loc, AmbigiousBaseConvID)
1324  << Derived << Base << PathDisplayStr << Range << Name;
1325  return true;
1326}
1327
1328bool
1329Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1330                                   SourceLocation Loc, SourceRange Range,
1331                                   CXXCastPath *BasePath,
1332                                   bool IgnoreAccess) {
1333  return CheckDerivedToBaseConversion(Derived, Base,
1334                                      IgnoreAccess ? 0
1335                                       : diag::err_upcast_to_inaccessible_base,
1336                                      diag::err_ambiguous_derived_to_base_conv,
1337                                      Loc, Range, DeclarationName(),
1338                                      BasePath);
1339}
1340
1341
1342/// @brief Builds a string representing ambiguous paths from a
1343/// specific derived class to different subobjects of the same base
1344/// class.
1345///
1346/// This function builds a string that can be used in error messages
1347/// to show the different paths that one can take through the
1348/// inheritance hierarchy to go from the derived class to different
1349/// subobjects of a base class. The result looks something like this:
1350/// @code
1351/// struct D -> struct B -> struct A
1352/// struct D -> struct C -> struct A
1353/// @endcode
1354std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1355  std::string PathDisplayStr;
1356  std::set<unsigned> DisplayedPaths;
1357  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1358       Path != Paths.end(); ++Path) {
1359    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1360      // We haven't displayed a path to this particular base
1361      // class subobject yet.
1362      PathDisplayStr += "\n    ";
1363      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1364      for (CXXBasePath::const_iterator Element = Path->begin();
1365           Element != Path->end(); ++Element)
1366        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1367    }
1368  }
1369
1370  return PathDisplayStr;
1371}
1372
1373//===----------------------------------------------------------------------===//
1374// C++ class member Handling
1375//===----------------------------------------------------------------------===//
1376
1377/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1378bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1379                                SourceLocation ASLoc,
1380                                SourceLocation ColonLoc,
1381                                AttributeList *Attrs) {
1382  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1383  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1384                                                  ASLoc, ColonLoc);
1385  CurContext->addHiddenDecl(ASDecl);
1386  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1387}
1388
1389/// CheckOverrideControl - Check C++0x override control semantics.
1390void Sema::CheckOverrideControl(const Decl *D) {
1391  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1392  if (!MD || !MD->isVirtual())
1393    return;
1394
1395  if (MD->isDependentContext())
1396    return;
1397
1398  // C++0x [class.virtual]p3:
1399  //   If a virtual function is marked with the virt-specifier override and does
1400  //   not override a member function of a base class,
1401  //   the program is ill-formed.
1402  bool HasOverriddenMethods =
1403    MD->begin_overridden_methods() != MD->end_overridden_methods();
1404  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1405    Diag(MD->getLocation(),
1406                 diag::err_function_marked_override_not_overriding)
1407      << MD->getDeclName();
1408    return;
1409  }
1410}
1411
1412/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1413/// function overrides a virtual member function marked 'final', according to
1414/// C++0x [class.virtual]p3.
1415bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1416                                                  const CXXMethodDecl *Old) {
1417  if (!Old->hasAttr<FinalAttr>())
1418    return false;
1419
1420  Diag(New->getLocation(), diag::err_final_function_overridden)
1421    << New->getDeclName();
1422  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1423  return true;
1424}
1425
1426/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1427/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1428/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1429/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1430/// present but parsing it has been deferred.
1431Decl *
1432Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1433                               MultiTemplateParamsArg TemplateParameterLists,
1434                               Expr *BW, const VirtSpecifiers &VS,
1435                               bool HasDeferredInit) {
1436  const DeclSpec &DS = D.getDeclSpec();
1437  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1438  DeclarationName Name = NameInfo.getName();
1439  SourceLocation Loc = NameInfo.getLoc();
1440
1441  // For anonymous bitfields, the location should point to the type.
1442  if (Loc.isInvalid())
1443    Loc = D.getSourceRange().getBegin();
1444
1445  Expr *BitWidth = static_cast<Expr*>(BW);
1446
1447  assert(isa<CXXRecordDecl>(CurContext));
1448  assert(!DS.isFriendSpecified());
1449
1450  bool isFunc = D.isDeclarationOfFunction();
1451
1452  // C++ 9.2p6: A member shall not be declared to have automatic storage
1453  // duration (auto, register) or with the extern storage-class-specifier.
1454  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1455  // data members and cannot be applied to names declared const or static,
1456  // and cannot be applied to reference members.
1457  switch (DS.getStorageClassSpec()) {
1458    case DeclSpec::SCS_unspecified:
1459    case DeclSpec::SCS_typedef:
1460    case DeclSpec::SCS_static:
1461      // FALL THROUGH.
1462      break;
1463    case DeclSpec::SCS_mutable:
1464      if (isFunc) {
1465        if (DS.getStorageClassSpecLoc().isValid())
1466          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1467        else
1468          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1469
1470        // FIXME: It would be nicer if the keyword was ignored only for this
1471        // declarator. Otherwise we could get follow-up errors.
1472        D.getMutableDeclSpec().ClearStorageClassSpecs();
1473      }
1474      break;
1475    default:
1476      if (DS.getStorageClassSpecLoc().isValid())
1477        Diag(DS.getStorageClassSpecLoc(),
1478             diag::err_storageclass_invalid_for_member);
1479      else
1480        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1481      D.getMutableDeclSpec().ClearStorageClassSpecs();
1482  }
1483
1484  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1485                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1486                      !isFunc);
1487
1488  Decl *Member;
1489  if (isInstField) {
1490    CXXScopeSpec &SS = D.getCXXScopeSpec();
1491
1492    // Data members must have identifiers for names.
1493    if (Name.getNameKind() != DeclarationName::Identifier) {
1494      Diag(Loc, diag::err_bad_variable_name)
1495        << Name;
1496      return 0;
1497    }
1498
1499    IdentifierInfo *II = Name.getAsIdentifierInfo();
1500
1501    // Member field could not be with "template" keyword.
1502    // So TemplateParameterLists should be empty in this case.
1503    if (TemplateParameterLists.size()) {
1504      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1505      if (TemplateParams->size()) {
1506        // There is no such thing as a member field template.
1507        Diag(D.getIdentifierLoc(), diag::err_template_member)
1508            << II
1509            << SourceRange(TemplateParams->getTemplateLoc(),
1510                TemplateParams->getRAngleLoc());
1511      } else {
1512        // There is an extraneous 'template<>' for this member.
1513        Diag(TemplateParams->getTemplateLoc(),
1514            diag::err_template_member_noparams)
1515            << II
1516            << SourceRange(TemplateParams->getTemplateLoc(),
1517                TemplateParams->getRAngleLoc());
1518      }
1519      return 0;
1520    }
1521
1522    if (SS.isSet() && !SS.isInvalid()) {
1523      // The user provided a superfluous scope specifier inside a class
1524      // definition:
1525      //
1526      // class X {
1527      //   int X::member;
1528      // };
1529      DeclContext *DC = 0;
1530      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1531        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1532          << Name << FixItHint::CreateRemoval(SS.getRange());
1533      else
1534        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1535          << Name << SS.getRange();
1536
1537      SS.clear();
1538    }
1539
1540    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1541                         HasDeferredInit, AS);
1542    assert(Member && "HandleField never returns null");
1543  } else {
1544    assert(!HasDeferredInit);
1545
1546    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1547    if (!Member) {
1548      return 0;
1549    }
1550
1551    // Non-instance-fields can't have a bitfield.
1552    if (BitWidth) {
1553      if (Member->isInvalidDecl()) {
1554        // don't emit another diagnostic.
1555      } else if (isa<VarDecl>(Member)) {
1556        // C++ 9.6p3: A bit-field shall not be a static member.
1557        // "static member 'A' cannot be a bit-field"
1558        Diag(Loc, diag::err_static_not_bitfield)
1559          << Name << BitWidth->getSourceRange();
1560      } else if (isa<TypedefDecl>(Member)) {
1561        // "typedef member 'x' cannot be a bit-field"
1562        Diag(Loc, diag::err_typedef_not_bitfield)
1563          << Name << BitWidth->getSourceRange();
1564      } else {
1565        // A function typedef ("typedef int f(); f a;").
1566        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1567        Diag(Loc, diag::err_not_integral_type_bitfield)
1568          << Name << cast<ValueDecl>(Member)->getType()
1569          << BitWidth->getSourceRange();
1570      }
1571
1572      BitWidth = 0;
1573      Member->setInvalidDecl();
1574    }
1575
1576    Member->setAccess(AS);
1577
1578    // If we have declared a member function template, set the access of the
1579    // templated declaration as well.
1580    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1581      FunTmpl->getTemplatedDecl()->setAccess(AS);
1582  }
1583
1584  if (VS.isOverrideSpecified()) {
1585    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1586    if (!MD || !MD->isVirtual()) {
1587      Diag(Member->getLocStart(),
1588           diag::override_keyword_only_allowed_on_virtual_member_functions)
1589        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1590    } else
1591      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1592  }
1593  if (VS.isFinalSpecified()) {
1594    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1595    if (!MD || !MD->isVirtual()) {
1596      Diag(Member->getLocStart(),
1597           diag::override_keyword_only_allowed_on_virtual_member_functions)
1598      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1599    } else
1600      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1601  }
1602
1603  if (VS.getLastLocation().isValid()) {
1604    // Update the end location of a method that has a virt-specifiers.
1605    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1606      MD->setRangeEnd(VS.getLastLocation());
1607  }
1608
1609  CheckOverrideControl(Member);
1610
1611  assert((Name || isInstField) && "No identifier for non-field ?");
1612
1613  if (isInstField)
1614    FieldCollector->Add(cast<FieldDecl>(Member));
1615  return Member;
1616}
1617
1618/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1619/// in-class initializer for a non-static C++ class member, and after
1620/// instantiating an in-class initializer in a class template. Such actions
1621/// are deferred until the class is complete.
1622void
1623Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1624                                       Expr *InitExpr) {
1625  FieldDecl *FD = cast<FieldDecl>(D);
1626
1627  if (!InitExpr) {
1628    FD->setInvalidDecl();
1629    FD->removeInClassInitializer();
1630    return;
1631  }
1632
1633  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1634    FD->setInvalidDecl();
1635    FD->removeInClassInitializer();
1636    return;
1637  }
1638
1639  ExprResult Init = InitExpr;
1640  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1641    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1642      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1643        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1644    }
1645    Expr **Inits = &InitExpr;
1646    unsigned NumInits = 1;
1647    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1648    InitializationKind Kind = EqualLoc.isInvalid()
1649        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1650        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1651    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1652    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1653    if (Init.isInvalid()) {
1654      FD->setInvalidDecl();
1655      return;
1656    }
1657
1658    CheckImplicitConversions(Init.get(), EqualLoc);
1659  }
1660
1661  // C++0x [class.base.init]p7:
1662  //   The initialization of each base and member constitutes a
1663  //   full-expression.
1664  Init = MaybeCreateExprWithCleanups(Init);
1665  if (Init.isInvalid()) {
1666    FD->setInvalidDecl();
1667    return;
1668  }
1669
1670  InitExpr = Init.release();
1671
1672  FD->setInClassInitializer(InitExpr);
1673}
1674
1675/// \brief Find the direct and/or virtual base specifiers that
1676/// correspond to the given base type, for use in base initialization
1677/// within a constructor.
1678static bool FindBaseInitializer(Sema &SemaRef,
1679                                CXXRecordDecl *ClassDecl,
1680                                QualType BaseType,
1681                                const CXXBaseSpecifier *&DirectBaseSpec,
1682                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1683  // First, check for a direct base class.
1684  DirectBaseSpec = 0;
1685  for (CXXRecordDecl::base_class_const_iterator Base
1686         = ClassDecl->bases_begin();
1687       Base != ClassDecl->bases_end(); ++Base) {
1688    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1689      // We found a direct base of this type. That's what we're
1690      // initializing.
1691      DirectBaseSpec = &*Base;
1692      break;
1693    }
1694  }
1695
1696  // Check for a virtual base class.
1697  // FIXME: We might be able to short-circuit this if we know in advance that
1698  // there are no virtual bases.
1699  VirtualBaseSpec = 0;
1700  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1701    // We haven't found a base yet; search the class hierarchy for a
1702    // virtual base class.
1703    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1704                       /*DetectVirtual=*/false);
1705    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1706                              BaseType, Paths)) {
1707      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1708           Path != Paths.end(); ++Path) {
1709        if (Path->back().Base->isVirtual()) {
1710          VirtualBaseSpec = Path->back().Base;
1711          break;
1712        }
1713      }
1714    }
1715  }
1716
1717  return DirectBaseSpec || VirtualBaseSpec;
1718}
1719
1720/// \brief Handle a C++ member initializer using braced-init-list syntax.
1721MemInitResult
1722Sema::ActOnMemInitializer(Decl *ConstructorD,
1723                          Scope *S,
1724                          CXXScopeSpec &SS,
1725                          IdentifierInfo *MemberOrBase,
1726                          ParsedType TemplateTypeTy,
1727                          const DeclSpec &DS,
1728                          SourceLocation IdLoc,
1729                          Expr *InitList,
1730                          SourceLocation EllipsisLoc) {
1731  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1732                             DS, IdLoc, InitList,
1733                             EllipsisLoc);
1734}
1735
1736/// \brief Handle a C++ member initializer using parentheses syntax.
1737MemInitResult
1738Sema::ActOnMemInitializer(Decl *ConstructorD,
1739                          Scope *S,
1740                          CXXScopeSpec &SS,
1741                          IdentifierInfo *MemberOrBase,
1742                          ParsedType TemplateTypeTy,
1743                          const DeclSpec &DS,
1744                          SourceLocation IdLoc,
1745                          SourceLocation LParenLoc,
1746                          Expr **Args, unsigned NumArgs,
1747                          SourceLocation RParenLoc,
1748                          SourceLocation EllipsisLoc) {
1749  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1750                                           RParenLoc);
1751  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1752                             DS, IdLoc, List, EllipsisLoc);
1753}
1754
1755namespace {
1756
1757// Callback to only accept typo corrections that can be a valid C++ member
1758// intializer: either a non-static field member or a base class.
1759class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1760 public:
1761  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1762      : ClassDecl(ClassDecl) {}
1763
1764  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1765    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1766      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1767        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1768      else
1769        return isa<TypeDecl>(ND);
1770    }
1771    return false;
1772  }
1773
1774 private:
1775  CXXRecordDecl *ClassDecl;
1776};
1777
1778}
1779
1780/// \brief Handle a C++ member initializer.
1781MemInitResult
1782Sema::BuildMemInitializer(Decl *ConstructorD,
1783                          Scope *S,
1784                          CXXScopeSpec &SS,
1785                          IdentifierInfo *MemberOrBase,
1786                          ParsedType TemplateTypeTy,
1787                          const DeclSpec &DS,
1788                          SourceLocation IdLoc,
1789                          Expr *Init,
1790                          SourceLocation EllipsisLoc) {
1791  if (!ConstructorD)
1792    return true;
1793
1794  AdjustDeclIfTemplate(ConstructorD);
1795
1796  CXXConstructorDecl *Constructor
1797    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1798  if (!Constructor) {
1799    // The user wrote a constructor initializer on a function that is
1800    // not a C++ constructor. Ignore the error for now, because we may
1801    // have more member initializers coming; we'll diagnose it just
1802    // once in ActOnMemInitializers.
1803    return true;
1804  }
1805
1806  CXXRecordDecl *ClassDecl = Constructor->getParent();
1807
1808  // C++ [class.base.init]p2:
1809  //   Names in a mem-initializer-id are looked up in the scope of the
1810  //   constructor's class and, if not found in that scope, are looked
1811  //   up in the scope containing the constructor's definition.
1812  //   [Note: if the constructor's class contains a member with the
1813  //   same name as a direct or virtual base class of the class, a
1814  //   mem-initializer-id naming the member or base class and composed
1815  //   of a single identifier refers to the class member. A
1816  //   mem-initializer-id for the hidden base class may be specified
1817  //   using a qualified name. ]
1818  if (!SS.getScopeRep() && !TemplateTypeTy) {
1819    // Look for a member, first.
1820    DeclContext::lookup_result Result
1821      = ClassDecl->lookup(MemberOrBase);
1822    if (Result.first != Result.second) {
1823      ValueDecl *Member;
1824      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1825          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1826        if (EllipsisLoc.isValid())
1827          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1828            << MemberOrBase
1829            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1830
1831        return BuildMemberInitializer(Member, Init, IdLoc);
1832      }
1833    }
1834  }
1835  // It didn't name a member, so see if it names a class.
1836  QualType BaseType;
1837  TypeSourceInfo *TInfo = 0;
1838
1839  if (TemplateTypeTy) {
1840    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1841  } else if (DS.getTypeSpecType() == TST_decltype) {
1842    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1843  } else {
1844    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1845    LookupParsedName(R, S, &SS);
1846
1847    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1848    if (!TyD) {
1849      if (R.isAmbiguous()) return true;
1850
1851      // We don't want access-control diagnostics here.
1852      R.suppressDiagnostics();
1853
1854      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1855        bool NotUnknownSpecialization = false;
1856        DeclContext *DC = computeDeclContext(SS, false);
1857        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1858          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1859
1860        if (!NotUnknownSpecialization) {
1861          // When the scope specifier can refer to a member of an unknown
1862          // specialization, we take it as a type name.
1863          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1864                                       SS.getWithLocInContext(Context),
1865                                       *MemberOrBase, IdLoc);
1866          if (BaseType.isNull())
1867            return true;
1868
1869          R.clear();
1870          R.setLookupName(MemberOrBase);
1871        }
1872      }
1873
1874      // If no results were found, try to correct typos.
1875      TypoCorrection Corr;
1876      MemInitializerValidatorCCC Validator(ClassDecl);
1877      if (R.empty() && BaseType.isNull() &&
1878          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1879                              Validator, ClassDecl))) {
1880        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1881        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1882        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1883          // We have found a non-static data member with a similar
1884          // name to what was typed; complain and initialize that
1885          // member.
1886          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1887            << MemberOrBase << true << CorrectedQuotedStr
1888            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1889          Diag(Member->getLocation(), diag::note_previous_decl)
1890            << CorrectedQuotedStr;
1891
1892          return BuildMemberInitializer(Member, Init, IdLoc);
1893        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1894          const CXXBaseSpecifier *DirectBaseSpec;
1895          const CXXBaseSpecifier *VirtualBaseSpec;
1896          if (FindBaseInitializer(*this, ClassDecl,
1897                                  Context.getTypeDeclType(Type),
1898                                  DirectBaseSpec, VirtualBaseSpec)) {
1899            // We have found a direct or virtual base class with a
1900            // similar name to what was typed; complain and initialize
1901            // that base class.
1902            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1903              << MemberOrBase << false << CorrectedQuotedStr
1904              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1905
1906            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1907                                                             : VirtualBaseSpec;
1908            Diag(BaseSpec->getSourceRange().getBegin(),
1909                 diag::note_base_class_specified_here)
1910              << BaseSpec->getType()
1911              << BaseSpec->getSourceRange();
1912
1913            TyD = Type;
1914          }
1915        }
1916      }
1917
1918      if (!TyD && BaseType.isNull()) {
1919        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1920          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1921        return true;
1922      }
1923    }
1924
1925    if (BaseType.isNull()) {
1926      BaseType = Context.getTypeDeclType(TyD);
1927      if (SS.isSet()) {
1928        NestedNameSpecifier *Qualifier =
1929          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1930
1931        // FIXME: preserve source range information
1932        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1933      }
1934    }
1935  }
1936
1937  if (!TInfo)
1938    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1939
1940  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1941}
1942
1943/// Checks a member initializer expression for cases where reference (or
1944/// pointer) members are bound to by-value parameters (or their addresses).
1945static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1946                                               Expr *Init,
1947                                               SourceLocation IdLoc) {
1948  QualType MemberTy = Member->getType();
1949
1950  // We only handle pointers and references currently.
1951  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1952  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1953    return;
1954
1955  const bool IsPointer = MemberTy->isPointerType();
1956  if (IsPointer) {
1957    if (const UnaryOperator *Op
1958          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1959      // The only case we're worried about with pointers requires taking the
1960      // address.
1961      if (Op->getOpcode() != UO_AddrOf)
1962        return;
1963
1964      Init = Op->getSubExpr();
1965    } else {
1966      // We only handle address-of expression initializers for pointers.
1967      return;
1968    }
1969  }
1970
1971  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1972    // Taking the address of a temporary will be diagnosed as a hard error.
1973    if (IsPointer)
1974      return;
1975
1976    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1977      << Member << Init->getSourceRange();
1978  } else if (const DeclRefExpr *DRE
1979               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1980    // We only warn when referring to a non-reference parameter declaration.
1981    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1982    if (!Parameter || Parameter->getType()->isReferenceType())
1983      return;
1984
1985    S.Diag(Init->getExprLoc(),
1986           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1987                     : diag::warn_bind_ref_member_to_parameter)
1988      << Member << Parameter << Init->getSourceRange();
1989  } else {
1990    // Other initializers are fine.
1991    return;
1992  }
1993
1994  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1995    << (unsigned)IsPointer;
1996}
1997
1998/// Checks an initializer expression for use of uninitialized fields, such as
1999/// containing the field that is being initialized. Returns true if there is an
2000/// uninitialized field was used an updates the SourceLocation parameter; false
2001/// otherwise.
2002static bool InitExprContainsUninitializedFields(const Stmt *S,
2003                                                const ValueDecl *LhsField,
2004                                                SourceLocation *L) {
2005  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2006
2007  if (isa<CallExpr>(S)) {
2008    // Do not descend into function calls or constructors, as the use
2009    // of an uninitialized field may be valid. One would have to inspect
2010    // the contents of the function/ctor to determine if it is safe or not.
2011    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2012    // may be safe, depending on what the function/ctor does.
2013    return false;
2014  }
2015  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2016    const NamedDecl *RhsField = ME->getMemberDecl();
2017
2018    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2019      // The member expression points to a static data member.
2020      assert(VD->isStaticDataMember() &&
2021             "Member points to non-static data member!");
2022      (void)VD;
2023      return false;
2024    }
2025
2026    if (isa<EnumConstantDecl>(RhsField)) {
2027      // The member expression points to an enum.
2028      return false;
2029    }
2030
2031    if (RhsField == LhsField) {
2032      // Initializing a field with itself. Throw a warning.
2033      // But wait; there are exceptions!
2034      // Exception #1:  The field may not belong to this record.
2035      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2036      const Expr *base = ME->getBase();
2037      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2038        // Even though the field matches, it does not belong to this record.
2039        return false;
2040      }
2041      // None of the exceptions triggered; return true to indicate an
2042      // uninitialized field was used.
2043      *L = ME->getMemberLoc();
2044      return true;
2045    }
2046  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2047    // sizeof/alignof doesn't reference contents, do not warn.
2048    return false;
2049  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2050    // address-of doesn't reference contents (the pointer may be dereferenced
2051    // in the same expression but it would be rare; and weird).
2052    if (UOE->getOpcode() == UO_AddrOf)
2053      return false;
2054  }
2055  for (Stmt::const_child_range it = S->children(); it; ++it) {
2056    if (!*it) {
2057      // An expression such as 'member(arg ?: "")' may trigger this.
2058      continue;
2059    }
2060    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2061      return true;
2062  }
2063  return false;
2064}
2065
2066MemInitResult
2067Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2068                             SourceLocation IdLoc) {
2069  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2070  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2071  assert((DirectMember || IndirectMember) &&
2072         "Member must be a FieldDecl or IndirectFieldDecl");
2073
2074  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2075    return true;
2076
2077  if (Member->isInvalidDecl())
2078    return true;
2079
2080  // Diagnose value-uses of fields to initialize themselves, e.g.
2081  //   foo(foo)
2082  // where foo is not also a parameter to the constructor.
2083  // TODO: implement -Wuninitialized and fold this into that framework.
2084  Expr **Args;
2085  unsigned NumArgs;
2086  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2087    Args = ParenList->getExprs();
2088    NumArgs = ParenList->getNumExprs();
2089  } else {
2090    InitListExpr *InitList = cast<InitListExpr>(Init);
2091    Args = InitList->getInits();
2092    NumArgs = InitList->getNumInits();
2093  }
2094  for (unsigned i = 0; i < NumArgs; ++i) {
2095    SourceLocation L;
2096    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2097      // FIXME: Return true in the case when other fields are used before being
2098      // uninitialized. For example, let this field be the i'th field. When
2099      // initializing the i'th field, throw a warning if any of the >= i'th
2100      // fields are used, as they are not yet initialized.
2101      // Right now we are only handling the case where the i'th field uses
2102      // itself in its initializer.
2103      Diag(L, diag::warn_field_is_uninit);
2104    }
2105  }
2106
2107  SourceRange InitRange = Init->getSourceRange();
2108
2109  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2110    // Can't check initialization for a member of dependent type or when
2111    // any of the arguments are type-dependent expressions.
2112    DiscardCleanupsInEvaluationContext();
2113  } else {
2114    bool InitList = false;
2115    if (isa<InitListExpr>(Init)) {
2116      InitList = true;
2117      Args = &Init;
2118      NumArgs = 1;
2119
2120      if (isStdInitializerList(Member->getType(), 0)) {
2121        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2122            << /*at end of ctor*/1 << InitRange;
2123      }
2124    }
2125
2126    // Initialize the member.
2127    InitializedEntity MemberEntity =
2128      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2129                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2130    InitializationKind Kind =
2131      InitList ? InitializationKind::CreateDirectList(IdLoc)
2132               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2133                                                  InitRange.getEnd());
2134
2135    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2136    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2137                                            MultiExprArg(*this, Args, NumArgs),
2138                                            0);
2139    if (MemberInit.isInvalid())
2140      return true;
2141
2142    CheckImplicitConversions(MemberInit.get(),
2143                             InitRange.getBegin());
2144
2145    // C++0x [class.base.init]p7:
2146    //   The initialization of each base and member constitutes a
2147    //   full-expression.
2148    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2149    if (MemberInit.isInvalid())
2150      return true;
2151
2152    // If we are in a dependent context, template instantiation will
2153    // perform this type-checking again. Just save the arguments that we
2154    // received.
2155    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2156    // of the information that we have about the member
2157    // initializer. However, deconstructing the ASTs is a dicey process,
2158    // and this approach is far more likely to get the corner cases right.
2159    if (CurContext->isDependentContext()) {
2160      // The existing Init will do fine.
2161    } else {
2162      Init = MemberInit.get();
2163      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2164    }
2165  }
2166
2167  if (DirectMember) {
2168    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2169                                            InitRange.getBegin(), Init,
2170                                            InitRange.getEnd());
2171  } else {
2172    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2173                                            InitRange.getBegin(), Init,
2174                                            InitRange.getEnd());
2175  }
2176}
2177
2178MemInitResult
2179Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2180                                 CXXRecordDecl *ClassDecl) {
2181  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2182  if (!LangOpts.CPlusPlus0x)
2183    return Diag(NameLoc, diag::err_delegating_ctor)
2184      << TInfo->getTypeLoc().getLocalSourceRange();
2185  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2186
2187  bool InitList = true;
2188  Expr **Args = &Init;
2189  unsigned NumArgs = 1;
2190  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2191    InitList = false;
2192    Args = ParenList->getExprs();
2193    NumArgs = ParenList->getNumExprs();
2194  }
2195
2196  SourceRange InitRange = Init->getSourceRange();
2197  // Initialize the object.
2198  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2199                                     QualType(ClassDecl->getTypeForDecl(), 0));
2200  InitializationKind Kind =
2201    InitList ? InitializationKind::CreateDirectList(NameLoc)
2202             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2203                                                InitRange.getEnd());
2204  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2205  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2206                                              MultiExprArg(*this, Args,NumArgs),
2207                                              0);
2208  if (DelegationInit.isInvalid())
2209    return true;
2210
2211  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2212         "Delegating constructor with no target?");
2213
2214  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2215
2216  // C++0x [class.base.init]p7:
2217  //   The initialization of each base and member constitutes a
2218  //   full-expression.
2219  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2220  if (DelegationInit.isInvalid())
2221    return true;
2222
2223  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2224                                          DelegationInit.takeAs<Expr>(),
2225                                          InitRange.getEnd());
2226}
2227
2228MemInitResult
2229Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2230                           Expr *Init, CXXRecordDecl *ClassDecl,
2231                           SourceLocation EllipsisLoc) {
2232  SourceLocation BaseLoc
2233    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2234
2235  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2236    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2237             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2238
2239  // C++ [class.base.init]p2:
2240  //   [...] Unless the mem-initializer-id names a nonstatic data
2241  //   member of the constructor's class or a direct or virtual base
2242  //   of that class, the mem-initializer is ill-formed. A
2243  //   mem-initializer-list can initialize a base class using any
2244  //   name that denotes that base class type.
2245  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2246
2247  SourceRange InitRange = Init->getSourceRange();
2248  if (EllipsisLoc.isValid()) {
2249    // This is a pack expansion.
2250    if (!BaseType->containsUnexpandedParameterPack())  {
2251      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2252        << SourceRange(BaseLoc, InitRange.getEnd());
2253
2254      EllipsisLoc = SourceLocation();
2255    }
2256  } else {
2257    // Check for any unexpanded parameter packs.
2258    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2259      return true;
2260
2261    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2262      return true;
2263  }
2264
2265  // Check for direct and virtual base classes.
2266  const CXXBaseSpecifier *DirectBaseSpec = 0;
2267  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2268  if (!Dependent) {
2269    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2270                                       BaseType))
2271      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2272
2273    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2274                        VirtualBaseSpec);
2275
2276    // C++ [base.class.init]p2:
2277    // Unless the mem-initializer-id names a nonstatic data member of the
2278    // constructor's class or a direct or virtual base of that class, the
2279    // mem-initializer is ill-formed.
2280    if (!DirectBaseSpec && !VirtualBaseSpec) {
2281      // If the class has any dependent bases, then it's possible that
2282      // one of those types will resolve to the same type as
2283      // BaseType. Therefore, just treat this as a dependent base
2284      // class initialization.  FIXME: Should we try to check the
2285      // initialization anyway? It seems odd.
2286      if (ClassDecl->hasAnyDependentBases())
2287        Dependent = true;
2288      else
2289        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2290          << BaseType << Context.getTypeDeclType(ClassDecl)
2291          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2292    }
2293  }
2294
2295  if (Dependent) {
2296    DiscardCleanupsInEvaluationContext();
2297
2298    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2299                                            /*IsVirtual=*/false,
2300                                            InitRange.getBegin(), Init,
2301                                            InitRange.getEnd(), EllipsisLoc);
2302  }
2303
2304  // C++ [base.class.init]p2:
2305  //   If a mem-initializer-id is ambiguous because it designates both
2306  //   a direct non-virtual base class and an inherited virtual base
2307  //   class, the mem-initializer is ill-formed.
2308  if (DirectBaseSpec && VirtualBaseSpec)
2309    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2310      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2311
2312  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2313  if (!BaseSpec)
2314    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2315
2316  // Initialize the base.
2317  bool InitList = true;
2318  Expr **Args = &Init;
2319  unsigned NumArgs = 1;
2320  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2321    InitList = false;
2322    Args = ParenList->getExprs();
2323    NumArgs = ParenList->getNumExprs();
2324  }
2325
2326  InitializedEntity BaseEntity =
2327    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2328  InitializationKind Kind =
2329    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2330             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2331                                                InitRange.getEnd());
2332  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2333  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2334                                          MultiExprArg(*this, Args, NumArgs),
2335                                          0);
2336  if (BaseInit.isInvalid())
2337    return true;
2338
2339  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2340
2341  // C++0x [class.base.init]p7:
2342  //   The initialization of each base and member constitutes a
2343  //   full-expression.
2344  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2345  if (BaseInit.isInvalid())
2346    return true;
2347
2348  // If we are in a dependent context, template instantiation will
2349  // perform this type-checking again. Just save the arguments that we
2350  // received in a ParenListExpr.
2351  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2352  // of the information that we have about the base
2353  // initializer. However, deconstructing the ASTs is a dicey process,
2354  // and this approach is far more likely to get the corner cases right.
2355  if (CurContext->isDependentContext())
2356    BaseInit = Owned(Init);
2357
2358  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2359                                          BaseSpec->isVirtual(),
2360                                          InitRange.getBegin(),
2361                                          BaseInit.takeAs<Expr>(),
2362                                          InitRange.getEnd(), EllipsisLoc);
2363}
2364
2365// Create a static_cast\<T&&>(expr).
2366static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2367  QualType ExprType = E->getType();
2368  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2369  SourceLocation ExprLoc = E->getLocStart();
2370  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2371      TargetType, ExprLoc);
2372
2373  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2374                                   SourceRange(ExprLoc, ExprLoc),
2375                                   E->getSourceRange()).take();
2376}
2377
2378/// ImplicitInitializerKind - How an implicit base or member initializer should
2379/// initialize its base or member.
2380enum ImplicitInitializerKind {
2381  IIK_Default,
2382  IIK_Copy,
2383  IIK_Move
2384};
2385
2386static bool
2387BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2388                             ImplicitInitializerKind ImplicitInitKind,
2389                             CXXBaseSpecifier *BaseSpec,
2390                             bool IsInheritedVirtualBase,
2391                             CXXCtorInitializer *&CXXBaseInit) {
2392  InitializedEntity InitEntity
2393    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2394                                        IsInheritedVirtualBase);
2395
2396  ExprResult BaseInit;
2397
2398  switch (ImplicitInitKind) {
2399  case IIK_Default: {
2400    InitializationKind InitKind
2401      = InitializationKind::CreateDefault(Constructor->getLocation());
2402    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2403    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2404                               MultiExprArg(SemaRef, 0, 0));
2405    break;
2406  }
2407
2408  case IIK_Move:
2409  case IIK_Copy: {
2410    bool Moving = ImplicitInitKind == IIK_Move;
2411    ParmVarDecl *Param = Constructor->getParamDecl(0);
2412    QualType ParamType = Param->getType().getNonReferenceType();
2413
2414    Expr *CopyCtorArg =
2415      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2416                          SourceLocation(), Param,
2417                          Constructor->getLocation(), ParamType,
2418                          VK_LValue, 0);
2419
2420    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2421
2422    // Cast to the base class to avoid ambiguities.
2423    QualType ArgTy =
2424      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2425                                       ParamType.getQualifiers());
2426
2427    if (Moving) {
2428      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2429    }
2430
2431    CXXCastPath BasePath;
2432    BasePath.push_back(BaseSpec);
2433    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2434                                            CK_UncheckedDerivedToBase,
2435                                            Moving ? VK_XValue : VK_LValue,
2436                                            &BasePath).take();
2437
2438    InitializationKind InitKind
2439      = InitializationKind::CreateDirect(Constructor->getLocation(),
2440                                         SourceLocation(), SourceLocation());
2441    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2442                                   &CopyCtorArg, 1);
2443    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2444                               MultiExprArg(&CopyCtorArg, 1));
2445    break;
2446  }
2447  }
2448
2449  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2450  if (BaseInit.isInvalid())
2451    return true;
2452
2453  CXXBaseInit =
2454    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2455               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2456                                                        SourceLocation()),
2457                                             BaseSpec->isVirtual(),
2458                                             SourceLocation(),
2459                                             BaseInit.takeAs<Expr>(),
2460                                             SourceLocation(),
2461                                             SourceLocation());
2462
2463  return false;
2464}
2465
2466static bool RefersToRValueRef(Expr *MemRef) {
2467  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2468  return Referenced->getType()->isRValueReferenceType();
2469}
2470
2471static bool
2472BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2473                               ImplicitInitializerKind ImplicitInitKind,
2474                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2475                               CXXCtorInitializer *&CXXMemberInit) {
2476  if (Field->isInvalidDecl())
2477    return true;
2478
2479  SourceLocation Loc = Constructor->getLocation();
2480
2481  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2482    bool Moving = ImplicitInitKind == IIK_Move;
2483    ParmVarDecl *Param = Constructor->getParamDecl(0);
2484    QualType ParamType = Param->getType().getNonReferenceType();
2485
2486    // Suppress copying zero-width bitfields.
2487    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2488      return false;
2489
2490    Expr *MemberExprBase =
2491      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2492                          SourceLocation(), Param,
2493                          Loc, ParamType, VK_LValue, 0);
2494
2495    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2496
2497    if (Moving) {
2498      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2499    }
2500
2501    // Build a reference to this field within the parameter.
2502    CXXScopeSpec SS;
2503    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2504                              Sema::LookupMemberName);
2505    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2506                                  : cast<ValueDecl>(Field), AS_public);
2507    MemberLookup.resolveKind();
2508    ExprResult CtorArg
2509      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2510                                         ParamType, Loc,
2511                                         /*IsArrow=*/false,
2512                                         SS,
2513                                         /*TemplateKWLoc=*/SourceLocation(),
2514                                         /*FirstQualifierInScope=*/0,
2515                                         MemberLookup,
2516                                         /*TemplateArgs=*/0);
2517    if (CtorArg.isInvalid())
2518      return true;
2519
2520    // C++11 [class.copy]p15:
2521    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2522    //     with static_cast<T&&>(x.m);
2523    if (RefersToRValueRef(CtorArg.get())) {
2524      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2525    }
2526
2527    // When the field we are copying is an array, create index variables for
2528    // each dimension of the array. We use these index variables to subscript
2529    // the source array, and other clients (e.g., CodeGen) will perform the
2530    // necessary iteration with these index variables.
2531    SmallVector<VarDecl *, 4> IndexVariables;
2532    QualType BaseType = Field->getType();
2533    QualType SizeType = SemaRef.Context.getSizeType();
2534    bool InitializingArray = false;
2535    while (const ConstantArrayType *Array
2536                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2537      InitializingArray = true;
2538      // Create the iteration variable for this array index.
2539      IdentifierInfo *IterationVarName = 0;
2540      {
2541        SmallString<8> Str;
2542        llvm::raw_svector_ostream OS(Str);
2543        OS << "__i" << IndexVariables.size();
2544        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2545      }
2546      VarDecl *IterationVar
2547        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2548                          IterationVarName, SizeType,
2549                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2550                          SC_None, SC_None);
2551      IndexVariables.push_back(IterationVar);
2552
2553      // Create a reference to the iteration variable.
2554      ExprResult IterationVarRef
2555        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2556      assert(!IterationVarRef.isInvalid() &&
2557             "Reference to invented variable cannot fail!");
2558      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2559      assert(!IterationVarRef.isInvalid() &&
2560             "Conversion of invented variable cannot fail!");
2561
2562      // Subscript the array with this iteration variable.
2563      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2564                                                        IterationVarRef.take(),
2565                                                        Loc);
2566      if (CtorArg.isInvalid())
2567        return true;
2568
2569      BaseType = Array->getElementType();
2570    }
2571
2572    // The array subscript expression is an lvalue, which is wrong for moving.
2573    if (Moving && InitializingArray)
2574      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2575
2576    // Construct the entity that we will be initializing. For an array, this
2577    // will be first element in the array, which may require several levels
2578    // of array-subscript entities.
2579    SmallVector<InitializedEntity, 4> Entities;
2580    Entities.reserve(1 + IndexVariables.size());
2581    if (Indirect)
2582      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2583    else
2584      Entities.push_back(InitializedEntity::InitializeMember(Field));
2585    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2586      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2587                                                              0,
2588                                                              Entities.back()));
2589
2590    // Direct-initialize to use the copy constructor.
2591    InitializationKind InitKind =
2592      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2593
2594    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2595    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2596                                   &CtorArgE, 1);
2597
2598    ExprResult MemberInit
2599      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2600                        MultiExprArg(&CtorArgE, 1));
2601    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2602    if (MemberInit.isInvalid())
2603      return true;
2604
2605    if (Indirect) {
2606      assert(IndexVariables.size() == 0 &&
2607             "Indirect field improperly initialized");
2608      CXXMemberInit
2609        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2610                                                   Loc, Loc,
2611                                                   MemberInit.takeAs<Expr>(),
2612                                                   Loc);
2613    } else
2614      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2615                                                 Loc, MemberInit.takeAs<Expr>(),
2616                                                 Loc,
2617                                                 IndexVariables.data(),
2618                                                 IndexVariables.size());
2619    return false;
2620  }
2621
2622  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2623
2624  QualType FieldBaseElementType =
2625    SemaRef.Context.getBaseElementType(Field->getType());
2626
2627  if (FieldBaseElementType->isRecordType()) {
2628    InitializedEntity InitEntity
2629      = Indirect? InitializedEntity::InitializeMember(Indirect)
2630                : InitializedEntity::InitializeMember(Field);
2631    InitializationKind InitKind =
2632      InitializationKind::CreateDefault(Loc);
2633
2634    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2635    ExprResult MemberInit =
2636      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2637
2638    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2639    if (MemberInit.isInvalid())
2640      return true;
2641
2642    if (Indirect)
2643      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2644                                                               Indirect, Loc,
2645                                                               Loc,
2646                                                               MemberInit.get(),
2647                                                               Loc);
2648    else
2649      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2650                                                               Field, Loc, Loc,
2651                                                               MemberInit.get(),
2652                                                               Loc);
2653    return false;
2654  }
2655
2656  if (!Field->getParent()->isUnion()) {
2657    if (FieldBaseElementType->isReferenceType()) {
2658      SemaRef.Diag(Constructor->getLocation(),
2659                   diag::err_uninitialized_member_in_ctor)
2660      << (int)Constructor->isImplicit()
2661      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2662      << 0 << Field->getDeclName();
2663      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2664      return true;
2665    }
2666
2667    if (FieldBaseElementType.isConstQualified()) {
2668      SemaRef.Diag(Constructor->getLocation(),
2669                   diag::err_uninitialized_member_in_ctor)
2670      << (int)Constructor->isImplicit()
2671      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2672      << 1 << Field->getDeclName();
2673      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2674      return true;
2675    }
2676  }
2677
2678  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2679      FieldBaseElementType->isObjCRetainableType() &&
2680      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2681      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2682    // Instant objects:
2683    //   Default-initialize Objective-C pointers to NULL.
2684    CXXMemberInit
2685      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2686                                                 Loc, Loc,
2687                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2688                                                 Loc);
2689    return false;
2690  }
2691
2692  // Nothing to initialize.
2693  CXXMemberInit = 0;
2694  return false;
2695}
2696
2697namespace {
2698struct BaseAndFieldInfo {
2699  Sema &S;
2700  CXXConstructorDecl *Ctor;
2701  bool AnyErrorsInInits;
2702  ImplicitInitializerKind IIK;
2703  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2704  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2705
2706  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2707    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2708    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2709    if (Generated && Ctor->isCopyConstructor())
2710      IIK = IIK_Copy;
2711    else if (Generated && Ctor->isMoveConstructor())
2712      IIK = IIK_Move;
2713    else
2714      IIK = IIK_Default;
2715  }
2716
2717  bool isImplicitCopyOrMove() const {
2718    switch (IIK) {
2719    case IIK_Copy:
2720    case IIK_Move:
2721      return true;
2722
2723    case IIK_Default:
2724      return false;
2725    }
2726
2727    llvm_unreachable("Invalid ImplicitInitializerKind!");
2728  }
2729};
2730}
2731
2732/// \brief Determine whether the given indirect field declaration is somewhere
2733/// within an anonymous union.
2734static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2735  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2736                                      CEnd = F->chain_end();
2737       C != CEnd; ++C)
2738    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2739      if (Record->isUnion())
2740        return true;
2741
2742  return false;
2743}
2744
2745/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2746/// array type.
2747static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2748  if (T->isIncompleteArrayType())
2749    return true;
2750
2751  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2752    if (!ArrayT->getSize())
2753      return true;
2754
2755    T = ArrayT->getElementType();
2756  }
2757
2758  return false;
2759}
2760
2761static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2762                                    FieldDecl *Field,
2763                                    IndirectFieldDecl *Indirect = 0) {
2764
2765  // Overwhelmingly common case: we have a direct initializer for this field.
2766  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2767    Info.AllToInit.push_back(Init);
2768    return false;
2769  }
2770
2771  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2772  // has a brace-or-equal-initializer, the entity is initialized as specified
2773  // in [dcl.init].
2774  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2775    CXXCtorInitializer *Init;
2776    if (Indirect)
2777      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2778                                                      SourceLocation(),
2779                                                      SourceLocation(), 0,
2780                                                      SourceLocation());
2781    else
2782      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2783                                                      SourceLocation(),
2784                                                      SourceLocation(), 0,
2785                                                      SourceLocation());
2786    Info.AllToInit.push_back(Init);
2787    return false;
2788  }
2789
2790  // Don't build an implicit initializer for union members if none was
2791  // explicitly specified.
2792  if (Field->getParent()->isUnion() ||
2793      (Indirect && isWithinAnonymousUnion(Indirect)))
2794    return false;
2795
2796  // Don't initialize incomplete or zero-length arrays.
2797  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2798    return false;
2799
2800  // Don't try to build an implicit initializer if there were semantic
2801  // errors in any of the initializers (and therefore we might be
2802  // missing some that the user actually wrote).
2803  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2804    return false;
2805
2806  CXXCtorInitializer *Init = 0;
2807  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2808                                     Indirect, Init))
2809    return true;
2810
2811  if (Init)
2812    Info.AllToInit.push_back(Init);
2813
2814  return false;
2815}
2816
2817bool
2818Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2819                               CXXCtorInitializer *Initializer) {
2820  assert(Initializer->isDelegatingInitializer());
2821  Constructor->setNumCtorInitializers(1);
2822  CXXCtorInitializer **initializer =
2823    new (Context) CXXCtorInitializer*[1];
2824  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2825  Constructor->setCtorInitializers(initializer);
2826
2827  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2828    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2829    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2830  }
2831
2832  DelegatingCtorDecls.push_back(Constructor);
2833
2834  return false;
2835}
2836
2837bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2838                               CXXCtorInitializer **Initializers,
2839                               unsigned NumInitializers,
2840                               bool AnyErrors) {
2841  if (Constructor->isDependentContext()) {
2842    // Just store the initializers as written, they will be checked during
2843    // instantiation.
2844    if (NumInitializers > 0) {
2845      Constructor->setNumCtorInitializers(NumInitializers);
2846      CXXCtorInitializer **baseOrMemberInitializers =
2847        new (Context) CXXCtorInitializer*[NumInitializers];
2848      memcpy(baseOrMemberInitializers, Initializers,
2849             NumInitializers * sizeof(CXXCtorInitializer*));
2850      Constructor->setCtorInitializers(baseOrMemberInitializers);
2851    }
2852
2853    return false;
2854  }
2855
2856  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2857
2858  // We need to build the initializer AST according to order of construction
2859  // and not what user specified in the Initializers list.
2860  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2861  if (!ClassDecl)
2862    return true;
2863
2864  bool HadError = false;
2865
2866  for (unsigned i = 0; i < NumInitializers; i++) {
2867    CXXCtorInitializer *Member = Initializers[i];
2868
2869    if (Member->isBaseInitializer())
2870      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2871    else
2872      Info.AllBaseFields[Member->getAnyMember()] = Member;
2873  }
2874
2875  // Keep track of the direct virtual bases.
2876  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2877  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2878       E = ClassDecl->bases_end(); I != E; ++I) {
2879    if (I->isVirtual())
2880      DirectVBases.insert(I);
2881  }
2882
2883  // Push virtual bases before others.
2884  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2885       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2886
2887    if (CXXCtorInitializer *Value
2888        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2889      Info.AllToInit.push_back(Value);
2890    } else if (!AnyErrors) {
2891      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2892      CXXCtorInitializer *CXXBaseInit;
2893      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2894                                       VBase, IsInheritedVirtualBase,
2895                                       CXXBaseInit)) {
2896        HadError = true;
2897        continue;
2898      }
2899
2900      Info.AllToInit.push_back(CXXBaseInit);
2901    }
2902  }
2903
2904  // Non-virtual bases.
2905  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2906       E = ClassDecl->bases_end(); Base != E; ++Base) {
2907    // Virtuals are in the virtual base list and already constructed.
2908    if (Base->isVirtual())
2909      continue;
2910
2911    if (CXXCtorInitializer *Value
2912          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2913      Info.AllToInit.push_back(Value);
2914    } else if (!AnyErrors) {
2915      CXXCtorInitializer *CXXBaseInit;
2916      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2917                                       Base, /*IsInheritedVirtualBase=*/false,
2918                                       CXXBaseInit)) {
2919        HadError = true;
2920        continue;
2921      }
2922
2923      Info.AllToInit.push_back(CXXBaseInit);
2924    }
2925  }
2926
2927  // Fields.
2928  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2929                               MemEnd = ClassDecl->decls_end();
2930       Mem != MemEnd; ++Mem) {
2931    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2932      // C++ [class.bit]p2:
2933      //   A declaration for a bit-field that omits the identifier declares an
2934      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2935      //   initialized.
2936      if (F->isUnnamedBitfield())
2937        continue;
2938
2939      // If we're not generating the implicit copy/move constructor, then we'll
2940      // handle anonymous struct/union fields based on their individual
2941      // indirect fields.
2942      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2943        continue;
2944
2945      if (CollectFieldInitializer(*this, Info, F))
2946        HadError = true;
2947      continue;
2948    }
2949
2950    // Beyond this point, we only consider default initialization.
2951    if (Info.IIK != IIK_Default)
2952      continue;
2953
2954    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2955      if (F->getType()->isIncompleteArrayType()) {
2956        assert(ClassDecl->hasFlexibleArrayMember() &&
2957               "Incomplete array type is not valid");
2958        continue;
2959      }
2960
2961      // Initialize each field of an anonymous struct individually.
2962      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2963        HadError = true;
2964
2965      continue;
2966    }
2967  }
2968
2969  NumInitializers = Info.AllToInit.size();
2970  if (NumInitializers > 0) {
2971    Constructor->setNumCtorInitializers(NumInitializers);
2972    CXXCtorInitializer **baseOrMemberInitializers =
2973      new (Context) CXXCtorInitializer*[NumInitializers];
2974    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2975           NumInitializers * sizeof(CXXCtorInitializer*));
2976    Constructor->setCtorInitializers(baseOrMemberInitializers);
2977
2978    // Constructors implicitly reference the base and member
2979    // destructors.
2980    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2981                                           Constructor->getParent());
2982  }
2983
2984  return HadError;
2985}
2986
2987static void *GetKeyForTopLevelField(FieldDecl *Field) {
2988  // For anonymous unions, use the class declaration as the key.
2989  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2990    if (RT->getDecl()->isAnonymousStructOrUnion())
2991      return static_cast<void *>(RT->getDecl());
2992  }
2993  return static_cast<void *>(Field);
2994}
2995
2996static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2997  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2998}
2999
3000static void *GetKeyForMember(ASTContext &Context,
3001                             CXXCtorInitializer *Member) {
3002  if (!Member->isAnyMemberInitializer())
3003    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3004
3005  // For fields injected into the class via declaration of an anonymous union,
3006  // use its anonymous union class declaration as the unique key.
3007  FieldDecl *Field = Member->getAnyMember();
3008
3009  // If the field is a member of an anonymous struct or union, our key
3010  // is the anonymous record decl that's a direct child of the class.
3011  RecordDecl *RD = Field->getParent();
3012  if (RD->isAnonymousStructOrUnion()) {
3013    while (true) {
3014      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3015      if (Parent->isAnonymousStructOrUnion())
3016        RD = Parent;
3017      else
3018        break;
3019    }
3020
3021    return static_cast<void *>(RD);
3022  }
3023
3024  return static_cast<void *>(Field);
3025}
3026
3027static void
3028DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3029                                  const CXXConstructorDecl *Constructor,
3030                                  CXXCtorInitializer **Inits,
3031                                  unsigned NumInits) {
3032  if (Constructor->getDeclContext()->isDependentContext())
3033    return;
3034
3035  // Don't check initializers order unless the warning is enabled at the
3036  // location of at least one initializer.
3037  bool ShouldCheckOrder = false;
3038  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3039    CXXCtorInitializer *Init = Inits[InitIndex];
3040    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3041                                         Init->getSourceLocation())
3042          != DiagnosticsEngine::Ignored) {
3043      ShouldCheckOrder = true;
3044      break;
3045    }
3046  }
3047  if (!ShouldCheckOrder)
3048    return;
3049
3050  // Build the list of bases and members in the order that they'll
3051  // actually be initialized.  The explicit initializers should be in
3052  // this same order but may be missing things.
3053  SmallVector<const void*, 32> IdealInitKeys;
3054
3055  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3056
3057  // 1. Virtual bases.
3058  for (CXXRecordDecl::base_class_const_iterator VBase =
3059       ClassDecl->vbases_begin(),
3060       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3061    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3062
3063  // 2. Non-virtual bases.
3064  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3065       E = ClassDecl->bases_end(); Base != E; ++Base) {
3066    if (Base->isVirtual())
3067      continue;
3068    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3069  }
3070
3071  // 3. Direct fields.
3072  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3073       E = ClassDecl->field_end(); Field != E; ++Field) {
3074    if (Field->isUnnamedBitfield())
3075      continue;
3076
3077    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3078  }
3079
3080  unsigned NumIdealInits = IdealInitKeys.size();
3081  unsigned IdealIndex = 0;
3082
3083  CXXCtorInitializer *PrevInit = 0;
3084  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3085    CXXCtorInitializer *Init = Inits[InitIndex];
3086    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3087
3088    // Scan forward to try to find this initializer in the idealized
3089    // initializers list.
3090    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3091      if (InitKey == IdealInitKeys[IdealIndex])
3092        break;
3093
3094    // If we didn't find this initializer, it must be because we
3095    // scanned past it on a previous iteration.  That can only
3096    // happen if we're out of order;  emit a warning.
3097    if (IdealIndex == NumIdealInits && PrevInit) {
3098      Sema::SemaDiagnosticBuilder D =
3099        SemaRef.Diag(PrevInit->getSourceLocation(),
3100                     diag::warn_initializer_out_of_order);
3101
3102      if (PrevInit->isAnyMemberInitializer())
3103        D << 0 << PrevInit->getAnyMember()->getDeclName();
3104      else
3105        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3106
3107      if (Init->isAnyMemberInitializer())
3108        D << 0 << Init->getAnyMember()->getDeclName();
3109      else
3110        D << 1 << Init->getTypeSourceInfo()->getType();
3111
3112      // Move back to the initializer's location in the ideal list.
3113      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3114        if (InitKey == IdealInitKeys[IdealIndex])
3115          break;
3116
3117      assert(IdealIndex != NumIdealInits &&
3118             "initializer not found in initializer list");
3119    }
3120
3121    PrevInit = Init;
3122  }
3123}
3124
3125namespace {
3126bool CheckRedundantInit(Sema &S,
3127                        CXXCtorInitializer *Init,
3128                        CXXCtorInitializer *&PrevInit) {
3129  if (!PrevInit) {
3130    PrevInit = Init;
3131    return false;
3132  }
3133
3134  if (FieldDecl *Field = Init->getMember())
3135    S.Diag(Init->getSourceLocation(),
3136           diag::err_multiple_mem_initialization)
3137      << Field->getDeclName()
3138      << Init->getSourceRange();
3139  else {
3140    const Type *BaseClass = Init->getBaseClass();
3141    assert(BaseClass && "neither field nor base");
3142    S.Diag(Init->getSourceLocation(),
3143           diag::err_multiple_base_initialization)
3144      << QualType(BaseClass, 0)
3145      << Init->getSourceRange();
3146  }
3147  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3148    << 0 << PrevInit->getSourceRange();
3149
3150  return true;
3151}
3152
3153typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3154typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3155
3156bool CheckRedundantUnionInit(Sema &S,
3157                             CXXCtorInitializer *Init,
3158                             RedundantUnionMap &Unions) {
3159  FieldDecl *Field = Init->getAnyMember();
3160  RecordDecl *Parent = Field->getParent();
3161  NamedDecl *Child = Field;
3162
3163  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3164    if (Parent->isUnion()) {
3165      UnionEntry &En = Unions[Parent];
3166      if (En.first && En.first != Child) {
3167        S.Diag(Init->getSourceLocation(),
3168               diag::err_multiple_mem_union_initialization)
3169          << Field->getDeclName()
3170          << Init->getSourceRange();
3171        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3172          << 0 << En.second->getSourceRange();
3173        return true;
3174      }
3175      if (!En.first) {
3176        En.first = Child;
3177        En.second = Init;
3178      }
3179      if (!Parent->isAnonymousStructOrUnion())
3180        return false;
3181    }
3182
3183    Child = Parent;
3184    Parent = cast<RecordDecl>(Parent->getDeclContext());
3185  }
3186
3187  return false;
3188}
3189}
3190
3191/// ActOnMemInitializers - Handle the member initializers for a constructor.
3192void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3193                                SourceLocation ColonLoc,
3194                                CXXCtorInitializer **meminits,
3195                                unsigned NumMemInits,
3196                                bool AnyErrors) {
3197  if (!ConstructorDecl)
3198    return;
3199
3200  AdjustDeclIfTemplate(ConstructorDecl);
3201
3202  CXXConstructorDecl *Constructor
3203    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3204
3205  if (!Constructor) {
3206    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3207    return;
3208  }
3209
3210  CXXCtorInitializer **MemInits =
3211    reinterpret_cast<CXXCtorInitializer **>(meminits);
3212
3213  // Mapping for the duplicate initializers check.
3214  // For member initializers, this is keyed with a FieldDecl*.
3215  // For base initializers, this is keyed with a Type*.
3216  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3217
3218  // Mapping for the inconsistent anonymous-union initializers check.
3219  RedundantUnionMap MemberUnions;
3220
3221  bool HadError = false;
3222  for (unsigned i = 0; i < NumMemInits; i++) {
3223    CXXCtorInitializer *Init = MemInits[i];
3224
3225    // Set the source order index.
3226    Init->setSourceOrder(i);
3227
3228    if (Init->isAnyMemberInitializer()) {
3229      FieldDecl *Field = Init->getAnyMember();
3230      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3231          CheckRedundantUnionInit(*this, Init, MemberUnions))
3232        HadError = true;
3233    } else if (Init->isBaseInitializer()) {
3234      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3235      if (CheckRedundantInit(*this, Init, Members[Key]))
3236        HadError = true;
3237    } else {
3238      assert(Init->isDelegatingInitializer());
3239      // This must be the only initializer
3240      if (i != 0 || NumMemInits > 1) {
3241        Diag(MemInits[0]->getSourceLocation(),
3242             diag::err_delegating_initializer_alone)
3243          << MemInits[0]->getSourceRange();
3244        HadError = true;
3245        // We will treat this as being the only initializer.
3246      }
3247      SetDelegatingInitializer(Constructor, MemInits[i]);
3248      // Return immediately as the initializer is set.
3249      return;
3250    }
3251  }
3252
3253  if (HadError)
3254    return;
3255
3256  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3257
3258  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3259}
3260
3261void
3262Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3263                                             CXXRecordDecl *ClassDecl) {
3264  // Ignore dependent contexts. Also ignore unions, since their members never
3265  // have destructors implicitly called.
3266  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3267    return;
3268
3269  // FIXME: all the access-control diagnostics are positioned on the
3270  // field/base declaration.  That's probably good; that said, the
3271  // user might reasonably want to know why the destructor is being
3272  // emitted, and we currently don't say.
3273
3274  // Non-static data members.
3275  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3276       E = ClassDecl->field_end(); I != E; ++I) {
3277    FieldDecl *Field = *I;
3278    if (Field->isInvalidDecl())
3279      continue;
3280
3281    // Don't destroy incomplete or zero-length arrays.
3282    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3283      continue;
3284
3285    QualType FieldType = Context.getBaseElementType(Field->getType());
3286
3287    const RecordType* RT = FieldType->getAs<RecordType>();
3288    if (!RT)
3289      continue;
3290
3291    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3292    if (FieldClassDecl->isInvalidDecl())
3293      continue;
3294    if (FieldClassDecl->hasIrrelevantDestructor())
3295      continue;
3296    // The destructor for an implicit anonymous union member is never invoked.
3297    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3298      continue;
3299
3300    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3301    assert(Dtor && "No dtor found for FieldClassDecl!");
3302    CheckDestructorAccess(Field->getLocation(), Dtor,
3303                          PDiag(diag::err_access_dtor_field)
3304                            << Field->getDeclName()
3305                            << FieldType);
3306
3307    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3308    DiagnoseUseOfDecl(Dtor, Location);
3309  }
3310
3311  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3312
3313  // Bases.
3314  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3315       E = ClassDecl->bases_end(); Base != E; ++Base) {
3316    // Bases are always records in a well-formed non-dependent class.
3317    const RecordType *RT = Base->getType()->getAs<RecordType>();
3318
3319    // Remember direct virtual bases.
3320    if (Base->isVirtual())
3321      DirectVirtualBases.insert(RT);
3322
3323    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3324    // If our base class is invalid, we probably can't get its dtor anyway.
3325    if (BaseClassDecl->isInvalidDecl())
3326      continue;
3327    if (BaseClassDecl->hasIrrelevantDestructor())
3328      continue;
3329
3330    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3331    assert(Dtor && "No dtor found for BaseClassDecl!");
3332
3333    // FIXME: caret should be on the start of the class name
3334    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3335                          PDiag(diag::err_access_dtor_base)
3336                            << Base->getType()
3337                            << Base->getSourceRange());
3338
3339    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3340    DiagnoseUseOfDecl(Dtor, Location);
3341  }
3342
3343  // Virtual bases.
3344  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3345       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3346
3347    // Bases are always records in a well-formed non-dependent class.
3348    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3349
3350    // Ignore direct virtual bases.
3351    if (DirectVirtualBases.count(RT))
3352      continue;
3353
3354    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3355    // If our base class is invalid, we probably can't get its dtor anyway.
3356    if (BaseClassDecl->isInvalidDecl())
3357      continue;
3358    if (BaseClassDecl->hasIrrelevantDestructor())
3359      continue;
3360
3361    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3362    assert(Dtor && "No dtor found for BaseClassDecl!");
3363    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3364                          PDiag(diag::err_access_dtor_vbase)
3365                            << VBase->getType());
3366
3367    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3368    DiagnoseUseOfDecl(Dtor, Location);
3369  }
3370}
3371
3372void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3373  if (!CDtorDecl)
3374    return;
3375
3376  if (CXXConstructorDecl *Constructor
3377      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3378    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3379}
3380
3381bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3382                                  unsigned DiagID, AbstractDiagSelID SelID) {
3383  if (SelID == -1)
3384    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3385  else
3386    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3387}
3388
3389bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3390                                  const PartialDiagnostic &PD) {
3391  if (!getLangOptions().CPlusPlus)
3392    return false;
3393
3394  if (const ArrayType *AT = Context.getAsArrayType(T))
3395    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3396
3397  if (const PointerType *PT = T->getAs<PointerType>()) {
3398    // Find the innermost pointer type.
3399    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3400      PT = T;
3401
3402    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3403      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3404  }
3405
3406  const RecordType *RT = T->getAs<RecordType>();
3407  if (!RT)
3408    return false;
3409
3410  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3411
3412  // We can't answer whether something is abstract until it has a
3413  // definition.  If it's currently being defined, we'll walk back
3414  // over all the declarations when we have a full definition.
3415  const CXXRecordDecl *Def = RD->getDefinition();
3416  if (!Def || Def->isBeingDefined())
3417    return false;
3418
3419  if (!RD->isAbstract())
3420    return false;
3421
3422  Diag(Loc, PD) << RD->getDeclName();
3423  DiagnoseAbstractType(RD);
3424
3425  return true;
3426}
3427
3428void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3429  // Check if we've already emitted the list of pure virtual functions
3430  // for this class.
3431  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3432    return;
3433
3434  CXXFinalOverriderMap FinalOverriders;
3435  RD->getFinalOverriders(FinalOverriders);
3436
3437  // Keep a set of seen pure methods so we won't diagnose the same method
3438  // more than once.
3439  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3440
3441  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3442                                   MEnd = FinalOverriders.end();
3443       M != MEnd;
3444       ++M) {
3445    for (OverridingMethods::iterator SO = M->second.begin(),
3446                                  SOEnd = M->second.end();
3447         SO != SOEnd; ++SO) {
3448      // C++ [class.abstract]p4:
3449      //   A class is abstract if it contains or inherits at least one
3450      //   pure virtual function for which the final overrider is pure
3451      //   virtual.
3452
3453      //
3454      if (SO->second.size() != 1)
3455        continue;
3456
3457      if (!SO->second.front().Method->isPure())
3458        continue;
3459
3460      if (!SeenPureMethods.insert(SO->second.front().Method))
3461        continue;
3462
3463      Diag(SO->second.front().Method->getLocation(),
3464           diag::note_pure_virtual_function)
3465        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3466    }
3467  }
3468
3469  if (!PureVirtualClassDiagSet)
3470    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3471  PureVirtualClassDiagSet->insert(RD);
3472}
3473
3474namespace {
3475struct AbstractUsageInfo {
3476  Sema &S;
3477  CXXRecordDecl *Record;
3478  CanQualType AbstractType;
3479  bool Invalid;
3480
3481  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3482    : S(S), Record(Record),
3483      AbstractType(S.Context.getCanonicalType(
3484                   S.Context.getTypeDeclType(Record))),
3485      Invalid(false) {}
3486
3487  void DiagnoseAbstractType() {
3488    if (Invalid) return;
3489    S.DiagnoseAbstractType(Record);
3490    Invalid = true;
3491  }
3492
3493  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3494};
3495
3496struct CheckAbstractUsage {
3497  AbstractUsageInfo &Info;
3498  const NamedDecl *Ctx;
3499
3500  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3501    : Info(Info), Ctx(Ctx) {}
3502
3503  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3504    switch (TL.getTypeLocClass()) {
3505#define ABSTRACT_TYPELOC(CLASS, PARENT)
3506#define TYPELOC(CLASS, PARENT) \
3507    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3508#include "clang/AST/TypeLocNodes.def"
3509    }
3510  }
3511
3512  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3513    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3514    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3515      if (!TL.getArg(I))
3516        continue;
3517
3518      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3519      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3520    }
3521  }
3522
3523  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3524    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3525  }
3526
3527  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3528    // Visit the type parameters from a permissive context.
3529    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3530      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3531      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3532        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3533          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3534      // TODO: other template argument types?
3535    }
3536  }
3537
3538  // Visit pointee types from a permissive context.
3539#define CheckPolymorphic(Type) \
3540  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3541    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3542  }
3543  CheckPolymorphic(PointerTypeLoc)
3544  CheckPolymorphic(ReferenceTypeLoc)
3545  CheckPolymorphic(MemberPointerTypeLoc)
3546  CheckPolymorphic(BlockPointerTypeLoc)
3547  CheckPolymorphic(AtomicTypeLoc)
3548
3549  /// Handle all the types we haven't given a more specific
3550  /// implementation for above.
3551  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3552    // Every other kind of type that we haven't called out already
3553    // that has an inner type is either (1) sugar or (2) contains that
3554    // inner type in some way as a subobject.
3555    if (TypeLoc Next = TL.getNextTypeLoc())
3556      return Visit(Next, Sel);
3557
3558    // If there's no inner type and we're in a permissive context,
3559    // don't diagnose.
3560    if (Sel == Sema::AbstractNone) return;
3561
3562    // Check whether the type matches the abstract type.
3563    QualType T = TL.getType();
3564    if (T->isArrayType()) {
3565      Sel = Sema::AbstractArrayType;
3566      T = Info.S.Context.getBaseElementType(T);
3567    }
3568    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3569    if (CT != Info.AbstractType) return;
3570
3571    // It matched; do some magic.
3572    if (Sel == Sema::AbstractArrayType) {
3573      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3574        << T << TL.getSourceRange();
3575    } else {
3576      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3577        << Sel << T << TL.getSourceRange();
3578    }
3579    Info.DiagnoseAbstractType();
3580  }
3581};
3582
3583void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3584                                  Sema::AbstractDiagSelID Sel) {
3585  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3586}
3587
3588}
3589
3590/// Check for invalid uses of an abstract type in a method declaration.
3591static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3592                                    CXXMethodDecl *MD) {
3593  // No need to do the check on definitions, which require that
3594  // the return/param types be complete.
3595  if (MD->doesThisDeclarationHaveABody())
3596    return;
3597
3598  // For safety's sake, just ignore it if we don't have type source
3599  // information.  This should never happen for non-implicit methods,
3600  // but...
3601  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3602    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3603}
3604
3605/// Check for invalid uses of an abstract type within a class definition.
3606static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3607                                    CXXRecordDecl *RD) {
3608  for (CXXRecordDecl::decl_iterator
3609         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3610    Decl *D = *I;
3611    if (D->isImplicit()) continue;
3612
3613    // Methods and method templates.
3614    if (isa<CXXMethodDecl>(D)) {
3615      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3616    } else if (isa<FunctionTemplateDecl>(D)) {
3617      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3618      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3619
3620    // Fields and static variables.
3621    } else if (isa<FieldDecl>(D)) {
3622      FieldDecl *FD = cast<FieldDecl>(D);
3623      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3624        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3625    } else if (isa<VarDecl>(D)) {
3626      VarDecl *VD = cast<VarDecl>(D);
3627      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3628        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3629
3630    // Nested classes and class templates.
3631    } else if (isa<CXXRecordDecl>(D)) {
3632      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3633    } else if (isa<ClassTemplateDecl>(D)) {
3634      CheckAbstractClassUsage(Info,
3635                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3636    }
3637  }
3638}
3639
3640/// \brief Perform semantic checks on a class definition that has been
3641/// completing, introducing implicitly-declared members, checking for
3642/// abstract types, etc.
3643void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3644  if (!Record)
3645    return;
3646
3647  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3648    AbstractUsageInfo Info(*this, Record);
3649    CheckAbstractClassUsage(Info, Record);
3650  }
3651
3652  // If this is not an aggregate type and has no user-declared constructor,
3653  // complain about any non-static data members of reference or const scalar
3654  // type, since they will never get initializers.
3655  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3656      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3657      !Record->isLambda()) {
3658    bool Complained = false;
3659    for (RecordDecl::field_iterator F = Record->field_begin(),
3660                                 FEnd = Record->field_end();
3661         F != FEnd; ++F) {
3662      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3663        continue;
3664
3665      if (F->getType()->isReferenceType() ||
3666          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3667        if (!Complained) {
3668          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3669            << Record->getTagKind() << Record;
3670          Complained = true;
3671        }
3672
3673        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3674          << F->getType()->isReferenceType()
3675          << F->getDeclName();
3676      }
3677    }
3678  }
3679
3680  if (Record->isDynamicClass() && !Record->isDependentType())
3681    DynamicClasses.push_back(Record);
3682
3683  if (Record->getIdentifier()) {
3684    // C++ [class.mem]p13:
3685    //   If T is the name of a class, then each of the following shall have a
3686    //   name different from T:
3687    //     - every member of every anonymous union that is a member of class T.
3688    //
3689    // C++ [class.mem]p14:
3690    //   In addition, if class T has a user-declared constructor (12.1), every
3691    //   non-static data member of class T shall have a name different from T.
3692    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3693         R.first != R.second; ++R.first) {
3694      NamedDecl *D = *R.first;
3695      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3696          isa<IndirectFieldDecl>(D)) {
3697        Diag(D->getLocation(), diag::err_member_name_of_class)
3698          << D->getDeclName();
3699        break;
3700      }
3701    }
3702  }
3703
3704  // Warn if the class has virtual methods but non-virtual public destructor.
3705  if (Record->isPolymorphic() && !Record->isDependentType()) {
3706    CXXDestructorDecl *dtor = Record->getDestructor();
3707    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3708      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3709           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3710  }
3711
3712  // See if a method overloads virtual methods in a base
3713  /// class without overriding any.
3714  if (!Record->isDependentType()) {
3715    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3716                                     MEnd = Record->method_end();
3717         M != MEnd; ++M) {
3718      if (!(*M)->isStatic())
3719        DiagnoseHiddenVirtualMethods(Record, *M);
3720    }
3721  }
3722
3723  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3724  // function that is not a constructor declares that member function to be
3725  // const. [...] The class of which that function is a member shall be
3726  // a literal type.
3727  //
3728  // If the class has virtual bases, any constexpr members will already have
3729  // been diagnosed by the checks performed on the member declaration, so
3730  // suppress this (less useful) diagnostic.
3731  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3732      !Record->isLiteral() && !Record->getNumVBases()) {
3733    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3734                                     MEnd = Record->method_end();
3735         M != MEnd; ++M) {
3736      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3737        switch (Record->getTemplateSpecializationKind()) {
3738        case TSK_ImplicitInstantiation:
3739        case TSK_ExplicitInstantiationDeclaration:
3740        case TSK_ExplicitInstantiationDefinition:
3741          // If a template instantiates to a non-literal type, but its members
3742          // instantiate to constexpr functions, the template is technically
3743          // ill-formed, but we allow it for sanity.
3744          continue;
3745
3746        case TSK_Undeclared:
3747        case TSK_ExplicitSpecialization:
3748          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3749                             PDiag(diag::err_constexpr_method_non_literal));
3750          break;
3751        }
3752
3753        // Only produce one error per class.
3754        break;
3755      }
3756    }
3757  }
3758
3759  // Declare inherited constructors. We do this eagerly here because:
3760  // - The standard requires an eager diagnostic for conflicting inherited
3761  //   constructors from different classes.
3762  // - The lazy declaration of the other implicit constructors is so as to not
3763  //   waste space and performance on classes that are not meant to be
3764  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3765  //   have inherited constructors.
3766  DeclareInheritedConstructors(Record);
3767
3768  if (!Record->isDependentType())
3769    CheckExplicitlyDefaultedMethods(Record);
3770}
3771
3772void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3773  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3774                                      ME = Record->method_end();
3775       MI != ME; ++MI) {
3776    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3777      switch (getSpecialMember(*MI)) {
3778      case CXXDefaultConstructor:
3779        CheckExplicitlyDefaultedDefaultConstructor(
3780                                                  cast<CXXConstructorDecl>(*MI));
3781        break;
3782
3783      case CXXDestructor:
3784        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3785        break;
3786
3787      case CXXCopyConstructor:
3788        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3789        break;
3790
3791      case CXXCopyAssignment:
3792        CheckExplicitlyDefaultedCopyAssignment(*MI);
3793        break;
3794
3795      case CXXMoveConstructor:
3796        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3797        break;
3798
3799      case CXXMoveAssignment:
3800        CheckExplicitlyDefaultedMoveAssignment(*MI);
3801        break;
3802
3803      case CXXInvalid:
3804        llvm_unreachable("non-special member explicitly defaulted!");
3805      }
3806    }
3807  }
3808
3809}
3810
3811void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3812  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3813
3814  // Whether this was the first-declared instance of the constructor.
3815  // This affects whether we implicitly add an exception spec (and, eventually,
3816  // constexpr). It is also ill-formed to explicitly default a constructor such
3817  // that it would be deleted. (C++0x [decl.fct.def.default])
3818  bool First = CD == CD->getCanonicalDecl();
3819
3820  bool HadError = false;
3821  if (CD->getNumParams() != 0) {
3822    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3823      << CD->getSourceRange();
3824    HadError = true;
3825  }
3826
3827  ImplicitExceptionSpecification Spec
3828    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3829  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3830  if (EPI.ExceptionSpecType == EST_Delayed) {
3831    // Exception specification depends on some deferred part of the class. We'll
3832    // try again when the class's definition has been fully processed.
3833    return;
3834  }
3835  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3836                          *ExceptionType = Context.getFunctionType(
3837                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3838
3839  // C++11 [dcl.fct.def.default]p2:
3840  //   An explicitly-defaulted function may be declared constexpr only if it
3841  //   would have been implicitly declared as constexpr,
3842  // Do not apply this rule to templates, since core issue 1358 makes such
3843  // functions always instantiate to constexpr functions.
3844  if (CD->isConstexpr() &&
3845      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3846    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3847      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3848        << CXXDefaultConstructor;
3849      HadError = true;
3850    }
3851  }
3852  //   and may have an explicit exception-specification only if it is compatible
3853  //   with the exception-specification on the implicit declaration.
3854  if (CtorType->hasExceptionSpec()) {
3855    if (CheckEquivalentExceptionSpec(
3856          PDiag(diag::err_incorrect_defaulted_exception_spec)
3857            << CXXDefaultConstructor,
3858          PDiag(),
3859          ExceptionType, SourceLocation(),
3860          CtorType, CD->getLocation())) {
3861      HadError = true;
3862    }
3863  }
3864
3865  //   If a function is explicitly defaulted on its first declaration,
3866  if (First) {
3867    //  -- it is implicitly considered to be constexpr if the implicit
3868    //     definition would be,
3869    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3870
3871    //  -- it is implicitly considered to have the same
3872    //     exception-specification as if it had been implicitly declared
3873    //
3874    // FIXME: a compatible, but different, explicit exception specification
3875    // will be silently overridden. We should issue a warning if this happens.
3876    EPI.ExtInfo = CtorType->getExtInfo();
3877
3878    // Such a function is also trivial if the implicitly-declared function
3879    // would have been.
3880    CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3881  }
3882
3883  if (HadError) {
3884    CD->setInvalidDecl();
3885    return;
3886  }
3887
3888  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3889    if (First) {
3890      CD->setDeletedAsWritten();
3891    } else {
3892      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3893        << CXXDefaultConstructor;
3894      CD->setInvalidDecl();
3895    }
3896  }
3897}
3898
3899void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3900  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3901
3902  // Whether this was the first-declared instance of the constructor.
3903  bool First = CD == CD->getCanonicalDecl();
3904
3905  bool HadError = false;
3906  if (CD->getNumParams() != 1) {
3907    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3908      << CD->getSourceRange();
3909    HadError = true;
3910  }
3911
3912  ImplicitExceptionSpecification Spec(Context);
3913  bool Const;
3914  llvm::tie(Spec, Const) =
3915    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3916
3917  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3918  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3919                          *ExceptionType = Context.getFunctionType(
3920                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3921
3922  // Check for parameter type matching.
3923  // This is a copy ctor so we know it's a cv-qualified reference to T.
3924  QualType ArgType = CtorType->getArgType(0);
3925  if (ArgType->getPointeeType().isVolatileQualified()) {
3926    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3927    HadError = true;
3928  }
3929  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3930    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3931    HadError = true;
3932  }
3933
3934  // C++11 [dcl.fct.def.default]p2:
3935  //   An explicitly-defaulted function may be declared constexpr only if it
3936  //   would have been implicitly declared as constexpr,
3937  // Do not apply this rule to templates, since core issue 1358 makes such
3938  // functions always instantiate to constexpr functions.
3939  if (CD->isConstexpr() &&
3940      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3941    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3942      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3943        << CXXCopyConstructor;
3944      HadError = true;
3945    }
3946  }
3947  //   and may have an explicit exception-specification only if it is compatible
3948  //   with the exception-specification on the implicit declaration.
3949  if (CtorType->hasExceptionSpec()) {
3950    if (CheckEquivalentExceptionSpec(
3951          PDiag(diag::err_incorrect_defaulted_exception_spec)
3952            << CXXCopyConstructor,
3953          PDiag(),
3954          ExceptionType, SourceLocation(),
3955          CtorType, CD->getLocation())) {
3956      HadError = true;
3957    }
3958  }
3959
3960  //   If a function is explicitly defaulted on its first declaration,
3961  if (First) {
3962    //  -- it is implicitly considered to be constexpr if the implicit
3963    //     definition would be,
3964    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3965
3966    //  -- it is implicitly considered to have the same
3967    //     exception-specification as if it had been implicitly declared, and
3968    //
3969    // FIXME: a compatible, but different, explicit exception specification
3970    // will be silently overridden. We should issue a warning if this happens.
3971    EPI.ExtInfo = CtorType->getExtInfo();
3972
3973    //  -- [...] it shall have the same parameter type as if it had been
3974    //     implicitly declared.
3975    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3976
3977    // Such a function is also trivial if the implicitly-declared function
3978    // would have been.
3979    CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
3980  }
3981
3982  if (HadError) {
3983    CD->setInvalidDecl();
3984    return;
3985  }
3986
3987  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3988    if (First) {
3989      CD->setDeletedAsWritten();
3990    } else {
3991      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3992        << CXXCopyConstructor;
3993      CD->setInvalidDecl();
3994    }
3995  }
3996}
3997
3998void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3999  assert(MD->isExplicitlyDefaulted());
4000
4001  // Whether this was the first-declared instance of the operator
4002  bool First = MD == MD->getCanonicalDecl();
4003
4004  bool HadError = false;
4005  if (MD->getNumParams() != 1) {
4006    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4007      << MD->getSourceRange();
4008    HadError = true;
4009  }
4010
4011  QualType ReturnType =
4012    MD->getType()->getAs<FunctionType>()->getResultType();
4013  if (!ReturnType->isLValueReferenceType() ||
4014      !Context.hasSameType(
4015        Context.getCanonicalType(ReturnType->getPointeeType()),
4016        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4017    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4018    HadError = true;
4019  }
4020
4021  ImplicitExceptionSpecification Spec(Context);
4022  bool Const;
4023  llvm::tie(Spec, Const) =
4024    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4025
4026  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4027  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4028                          *ExceptionType = Context.getFunctionType(
4029                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4030
4031  QualType ArgType = OperType->getArgType(0);
4032  if (!ArgType->isLValueReferenceType()) {
4033    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4034    HadError = true;
4035  } else {
4036    if (ArgType->getPointeeType().isVolatileQualified()) {
4037      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4038      HadError = true;
4039    }
4040    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4041      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4042      HadError = true;
4043    }
4044  }
4045
4046  if (OperType->getTypeQuals()) {
4047    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4048    HadError = true;
4049  }
4050
4051  if (OperType->hasExceptionSpec()) {
4052    if (CheckEquivalentExceptionSpec(
4053          PDiag(diag::err_incorrect_defaulted_exception_spec)
4054            << CXXCopyAssignment,
4055          PDiag(),
4056          ExceptionType, SourceLocation(),
4057          OperType, MD->getLocation())) {
4058      HadError = true;
4059    }
4060  }
4061  if (First) {
4062    // We set the declaration to have the computed exception spec here.
4063    // We duplicate the one parameter type.
4064    EPI.RefQualifier = OperType->getRefQualifier();
4065    EPI.ExtInfo = OperType->getExtInfo();
4066    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4067
4068    // Such a function is also trivial if the implicitly-declared function
4069    // would have been.
4070    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4071  }
4072
4073  if (HadError) {
4074    MD->setInvalidDecl();
4075    return;
4076  }
4077
4078  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4079    if (First) {
4080      MD->setDeletedAsWritten();
4081    } else {
4082      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4083        << CXXCopyAssignment;
4084      MD->setInvalidDecl();
4085    }
4086  }
4087}
4088
4089void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4090  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4091
4092  // Whether this was the first-declared instance of the constructor.
4093  bool First = CD == CD->getCanonicalDecl();
4094
4095  bool HadError = false;
4096  if (CD->getNumParams() != 1) {
4097    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4098      << CD->getSourceRange();
4099    HadError = true;
4100  }
4101
4102  ImplicitExceptionSpecification Spec(
4103      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4104
4105  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4106  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4107                          *ExceptionType = Context.getFunctionType(
4108                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4109
4110  // Check for parameter type matching.
4111  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4112  QualType ArgType = CtorType->getArgType(0);
4113  if (ArgType->getPointeeType().isVolatileQualified()) {
4114    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4115    HadError = true;
4116  }
4117  if (ArgType->getPointeeType().isConstQualified()) {
4118    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4119    HadError = true;
4120  }
4121
4122  // C++11 [dcl.fct.def.default]p2:
4123  //   An explicitly-defaulted function may be declared constexpr only if it
4124  //   would have been implicitly declared as constexpr,
4125  // Do not apply this rule to templates, since core issue 1358 makes such
4126  // functions always instantiate to constexpr functions.
4127  if (CD->isConstexpr() &&
4128      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4129    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4130      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4131        << CXXMoveConstructor;
4132      HadError = true;
4133    }
4134  }
4135  //   and may have an explicit exception-specification only if it is compatible
4136  //   with the exception-specification on the implicit declaration.
4137  if (CtorType->hasExceptionSpec()) {
4138    if (CheckEquivalentExceptionSpec(
4139          PDiag(diag::err_incorrect_defaulted_exception_spec)
4140            << CXXMoveConstructor,
4141          PDiag(),
4142          ExceptionType, SourceLocation(),
4143          CtorType, CD->getLocation())) {
4144      HadError = true;
4145    }
4146  }
4147
4148  //   If a function is explicitly defaulted on its first declaration,
4149  if (First) {
4150    //  -- it is implicitly considered to be constexpr if the implicit
4151    //     definition would be,
4152    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4153
4154    //  -- it is implicitly considered to have the same
4155    //     exception-specification as if it had been implicitly declared, and
4156    //
4157    // FIXME: a compatible, but different, explicit exception specification
4158    // will be silently overridden. We should issue a warning if this happens.
4159    EPI.ExtInfo = CtorType->getExtInfo();
4160
4161    //  -- [...] it shall have the same parameter type as if it had been
4162    //     implicitly declared.
4163    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4164
4165    // Such a function is also trivial if the implicitly-declared function
4166    // would have been.
4167    CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4168  }
4169
4170  if (HadError) {
4171    CD->setInvalidDecl();
4172    return;
4173  }
4174
4175  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4176    if (First) {
4177      CD->setDeletedAsWritten();
4178    } else {
4179      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4180        << CXXMoveConstructor;
4181      CD->setInvalidDecl();
4182    }
4183  }
4184}
4185
4186void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4187  assert(MD->isExplicitlyDefaulted());
4188
4189  // Whether this was the first-declared instance of the operator
4190  bool First = MD == MD->getCanonicalDecl();
4191
4192  bool HadError = false;
4193  if (MD->getNumParams() != 1) {
4194    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4195      << MD->getSourceRange();
4196    HadError = true;
4197  }
4198
4199  QualType ReturnType =
4200    MD->getType()->getAs<FunctionType>()->getResultType();
4201  if (!ReturnType->isLValueReferenceType() ||
4202      !Context.hasSameType(
4203        Context.getCanonicalType(ReturnType->getPointeeType()),
4204        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4205    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4206    HadError = true;
4207  }
4208
4209  ImplicitExceptionSpecification Spec(
4210      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4211
4212  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4213  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4214                          *ExceptionType = Context.getFunctionType(
4215                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4216
4217  QualType ArgType = OperType->getArgType(0);
4218  if (!ArgType->isRValueReferenceType()) {
4219    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4220    HadError = true;
4221  } else {
4222    if (ArgType->getPointeeType().isVolatileQualified()) {
4223      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4224      HadError = true;
4225    }
4226    if (ArgType->getPointeeType().isConstQualified()) {
4227      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4228      HadError = true;
4229    }
4230  }
4231
4232  if (OperType->getTypeQuals()) {
4233    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4234    HadError = true;
4235  }
4236
4237  if (OperType->hasExceptionSpec()) {
4238    if (CheckEquivalentExceptionSpec(
4239          PDiag(diag::err_incorrect_defaulted_exception_spec)
4240            << CXXMoveAssignment,
4241          PDiag(),
4242          ExceptionType, SourceLocation(),
4243          OperType, MD->getLocation())) {
4244      HadError = true;
4245    }
4246  }
4247  if (First) {
4248    // We set the declaration to have the computed exception spec here.
4249    // We duplicate the one parameter type.
4250    EPI.RefQualifier = OperType->getRefQualifier();
4251    EPI.ExtInfo = OperType->getExtInfo();
4252    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4253
4254    // Such a function is also trivial if the implicitly-declared function
4255    // would have been.
4256    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4257  }
4258
4259  if (HadError) {
4260    MD->setInvalidDecl();
4261    return;
4262  }
4263
4264  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4265    if (First) {
4266      MD->setDeletedAsWritten();
4267    } else {
4268      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4269        << CXXMoveAssignment;
4270      MD->setInvalidDecl();
4271    }
4272  }
4273}
4274
4275void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4276  assert(DD->isExplicitlyDefaulted());
4277
4278  // Whether this was the first-declared instance of the destructor.
4279  bool First = DD == DD->getCanonicalDecl();
4280
4281  ImplicitExceptionSpecification Spec
4282    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4283  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4284  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4285                          *ExceptionType = Context.getFunctionType(
4286                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4287
4288  if (DtorType->hasExceptionSpec()) {
4289    if (CheckEquivalentExceptionSpec(
4290          PDiag(diag::err_incorrect_defaulted_exception_spec)
4291            << CXXDestructor,
4292          PDiag(),
4293          ExceptionType, SourceLocation(),
4294          DtorType, DD->getLocation())) {
4295      DD->setInvalidDecl();
4296      return;
4297    }
4298  }
4299  if (First) {
4300    // We set the declaration to have the computed exception spec here.
4301    // There are no parameters.
4302    EPI.ExtInfo = DtorType->getExtInfo();
4303    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4304
4305    // Such a function is also trivial if the implicitly-declared function
4306    // would have been.
4307    DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4308  }
4309
4310  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4311    if (First) {
4312      DD->setDeletedAsWritten();
4313    } else {
4314      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4315        << CXXDestructor;
4316      DD->setInvalidDecl();
4317    }
4318  }
4319}
4320
4321namespace {
4322struct SpecialMemberDeletionInfo {
4323  Sema &S;
4324  CXXMethodDecl *MD;
4325  Sema::CXXSpecialMember CSM;
4326
4327  // Properties of the special member, computed for convenience.
4328  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4329  SourceLocation Loc;
4330
4331  bool AllFieldsAreConst;
4332
4333  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4334                            Sema::CXXSpecialMember CSM)
4335    : S(S), MD(MD), CSM(CSM),
4336      IsConstructor(false), IsAssignment(false), IsMove(false),
4337      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4338      AllFieldsAreConst(true) {
4339    switch (CSM) {
4340      case Sema::CXXDefaultConstructor:
4341      case Sema::CXXCopyConstructor:
4342        IsConstructor = true;
4343        break;
4344      case Sema::CXXMoveConstructor:
4345        IsConstructor = true;
4346        IsMove = true;
4347        break;
4348      case Sema::CXXCopyAssignment:
4349        IsAssignment = true;
4350        break;
4351      case Sema::CXXMoveAssignment:
4352        IsAssignment = true;
4353        IsMove = true;
4354        break;
4355      case Sema::CXXDestructor:
4356        break;
4357      case Sema::CXXInvalid:
4358        llvm_unreachable("invalid special member kind");
4359    }
4360
4361    if (MD->getNumParams()) {
4362      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4363      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4364    }
4365  }
4366
4367  bool inUnion() const { return MD->getParent()->isUnion(); }
4368
4369  /// Look up the corresponding special member in the given class.
4370  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4371    unsigned TQ = MD->getTypeQualifiers();
4372    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4373                                 MD->getRefQualifier() == RQ_RValue,
4374                                 TQ & Qualifiers::Const,
4375                                 TQ & Qualifiers::Volatile);
4376  }
4377
4378  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, FieldDecl *Field);
4379
4380  bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase);
4381  bool shouldDeleteForField(FieldDecl *FD);
4382  bool shouldDeleteForAllConstMembers();
4383};
4384}
4385
4386/// Check whether we should delete a special member function due to having a
4387/// direct or virtual base class or static data member of class type M.
4388bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4389    CXXRecordDecl *Class, FieldDecl *Field) {
4390  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
4391  // -- any direct or virtual base class [...] has a type with a destructor
4392  //    that is deleted or inaccessible
4393  if (!IsAssignment) {
4394    CXXDestructorDecl *Dtor = S.LookupDestructor(Class);
4395    if (Dtor->isDeleted())
4396      return true;
4397    if (S.CheckDestructorAccess(Loc, Dtor, S.PDiag()) != Sema::AR_accessible)
4398      return true;
4399
4400    // C++11 [class.dtor]p5:
4401    // -- X is a union-like class that has a variant member with a non-trivial
4402    //    destructor
4403    if (CSM == Sema::CXXDestructor && Field && Field->getParent()->isUnion() &&
4404        !Dtor->isTrivial())
4405      return true;
4406  }
4407
4408  // C++11 [class.ctor]p5:
4409  // -- any direct or virtual base class [...] has class type M [...] and
4410  //    either M has no default constructor or overload resolution as applied
4411  //    to M's default constructor results in an ambiguity or in a function
4412  //    that is deleted or inaccessible
4413  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4414  // -- a direct or virtual base class B that cannot be copied/moved because
4415  //    overload resolution, as applied to B's corresponding special member,
4416  //    results in an ambiguity or a function that is deleted or inaccessible
4417  //    from the defaulted special member
4418  // FIXME: in-class initializers should be handled here
4419  if (CSM != Sema::CXXDestructor) {
4420    Sema::SpecialMemberOverloadResult *SMOR = lookupIn(Class);
4421    if (!SMOR->hasSuccess())
4422      return true;
4423
4424    CXXMethodDecl *Member = SMOR->getMethod();
4425    // A member of a union must have a trivial corresponding special member.
4426    if (Field && Field->getParent()->isUnion() && !Member->isTrivial())
4427      return true;
4428
4429    if (IsConstructor) {
4430      CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(Member);
4431      if (S.CheckConstructorAccess(Loc, Ctor, Ctor->getAccess(), S.PDiag())
4432            != Sema::AR_accessible)
4433        return true;
4434
4435      // -- for the move constructor, a [...] direct or virtual base class with
4436      //    a type that does not have a move constructor and is not trivially
4437      //    copyable.
4438      if (IsMove && !Ctor->isMoveConstructor() && !Class->isTriviallyCopyable())
4439        return true;
4440    } else {
4441      assert(IsAssignment && "unexpected kind of special member");
4442      if (S.CheckDirectMemberAccess(Loc, Member, S.PDiag())
4443            != Sema::AR_accessible)
4444        return true;
4445
4446      // -- for the move assignment operator, a direct base class with a type
4447      //    that does not have a move assignment operator and is not trivially
4448      //    copyable.
4449      if (IsMove && !Member->isMoveAssignmentOperator() &&
4450          !Class->isTriviallyCopyable())
4451        return true;
4452    }
4453  }
4454
4455  return false;
4456}
4457
4458/// Check whether we should delete a special member function due to the class
4459/// having a particular direct or virtual base class.
4460bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl,
4461                                                    bool IsVirtualBase) {
4462  // C++11 [class.copy]p23:
4463  // -- for the move assignment operator, any direct or indirect virtual
4464  //    base class.
4465  if (CSM == Sema::CXXMoveAssignment && IsVirtualBase)
4466    return true;
4467
4468  if (shouldDeleteForClassSubobject(BaseDecl, 0))
4469    return true;
4470
4471  return false;
4472}
4473
4474/// Check whether we should delete a special member function due to the class
4475/// having a particular non-static data member.
4476bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4477  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4478  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4479
4480  if (CSM == Sema::CXXDefaultConstructor) {
4481    // For a default constructor, all references must be initialized in-class
4482    // and, if a union, it must have a non-const member.
4483    if (FieldType->isReferenceType() && !FD->hasInClassInitializer())
4484      return true;
4485
4486    if (inUnion() && !FieldType.isConstQualified())
4487      AllFieldsAreConst = false;
4488
4489    // C++11 [class.ctor]p5: any non-variant non-static data member of
4490    // const-qualified type (or array thereof) with no
4491    // brace-or-equal-initializer does not have a user-provided default
4492    // constructor.
4493    if (!inUnion() && FieldType.isConstQualified() &&
4494        !FD->hasInClassInitializer() &&
4495        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor()))
4496      return true;
4497  } else if (CSM == Sema::CXXCopyConstructor) {
4498    // For a copy constructor, data members must not be of rvalue reference
4499    // type.
4500    if (FieldType->isRValueReferenceType())
4501      return true;
4502  } else if (IsAssignment) {
4503    // For an assignment operator, data members must not be of reference type.
4504    if (FieldType->isReferenceType())
4505      return true;
4506  }
4507
4508  if (FieldRecord) {
4509    // Some additional restrictions exist on the variant members.
4510    if (!inUnion() && FieldRecord->isUnion() &&
4511        FieldRecord->isAnonymousStructOrUnion()) {
4512      bool AllVariantFieldsAreConst = true;
4513
4514      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4515                                         UE = FieldRecord->field_end();
4516           UI != UE; ++UI) {
4517        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4518
4519        if (!UnionFieldType.isConstQualified())
4520          AllVariantFieldsAreConst = false;
4521
4522        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4523        if (UnionFieldRecord &&
4524            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4525          return true;
4526      }
4527
4528      // At least one member in each anonymous union must be non-const
4529      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4530          FieldRecord->field_begin() != FieldRecord->field_end())
4531        return true;
4532
4533      // Don't try to initialize the anonymous union
4534      // This is technically non-conformant, but sanity demands it.
4535      return false;
4536    }
4537
4538    // When checking a constructor, the field's destructor must be accessible
4539    // and not deleted.
4540    if (IsConstructor) {
4541      CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4542      if (FieldDtor->isDeleted())
4543        return true;
4544      if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4545          Sema::AR_accessible)
4546        return true;
4547    }
4548
4549    // Check that the corresponding member of the field is accessible,
4550    // unique, and non-deleted. We don't do this if it has an explicit
4551    // initialization when default-constructing.
4552    if (!(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) {
4553      Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord);
4554      if (!SMOR->hasSuccess())
4555        return true;
4556
4557      CXXMethodDecl *FieldMember = SMOR->getMethod();
4558
4559      // We need the corresponding member of a union to be trivial so that
4560      // we can safely process all members simultaneously.
4561      if (inUnion() && !FieldMember->isTrivial())
4562        return true;
4563
4564      if (IsConstructor) {
4565        CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4566        if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4567                                     S.PDiag()) != Sema::AR_accessible)
4568        return true;
4569
4570        // For a move operation, the corresponding operation must actually
4571        // be a move operation (and not a copy selected by overload
4572        // resolution) unless we are working on a trivially copyable class.
4573        if (IsMove && !FieldCtor->isMoveConstructor() &&
4574            !FieldRecord->isTriviallyCopyable())
4575          return true;
4576      } else if (CSM == Sema::CXXDestructor) {
4577        CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4578        if (FieldDtor->isDeleted())
4579          return true;
4580        if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4581            Sema::AR_accessible)
4582          return true;
4583      } else {
4584        assert(IsAssignment && "unexpected kind of special member");
4585        if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4586              != Sema::AR_accessible)
4587          return true;
4588
4589        // -- for the move assignment operator, a non-static data member with a
4590        //    type that does not have a move assignment operator and is not
4591        //    trivially copyable.
4592        if (IsMove && !FieldMember->isMoveAssignmentOperator() &&
4593            !FieldRecord->isTriviallyCopyable())
4594          return true;
4595      }
4596    }
4597  } else if (IsAssignment && FieldType.isConstQualified()) {
4598    // C++11 [class.copy]p23:
4599    // -- a non-static data member of const non-class type (or array thereof)
4600    return true;
4601  }
4602
4603  return false;
4604}
4605
4606/// C++11 [class.ctor] p5:
4607///   A defaulted default constructor for a class X is defined as deleted if
4608/// X is a union and all of its variant members are of const-qualified type.
4609bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4610  // This is a silly definition, because it gives an empty union a deleted
4611  // default constructor. Don't do that.
4612  return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4613    (MD->getParent()->field_begin() != MD->getParent()->field_end());
4614}
4615
4616/// Determine whether a defaulted special member function should be defined as
4617/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4618/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4619bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4620  assert(!MD->isInvalidDecl());
4621  CXXRecordDecl *RD = MD->getParent();
4622  assert(!RD->isDependentType() && "do deletion after instantiation");
4623  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4624    return false;
4625
4626  // FIXME: Provide the ability to diagnose why a special member was deleted.
4627
4628  // C++11 [expr.lambda.prim]p19:
4629  //   The closure type associated with a lambda-expression has a
4630  //   deleted (8.4.3) default constructor and a deleted copy
4631  //   assignment operator.
4632  if (RD->isLambda() &&
4633      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment))
4634    return true;
4635
4636  // C++11 [class.dtor]p5:
4637  // -- for a virtual destructor, lookup of the non-array deallocation function
4638  //    results in an ambiguity or in a function that is deleted or inaccessible
4639  if (CSM == Sema::CXXDestructor && MD->isVirtual()) {
4640    FunctionDecl *OperatorDelete = 0;
4641    DeclarationName Name =
4642      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4643    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4644                                 OperatorDelete, false))
4645      return true;
4646  }
4647
4648  // For an anonymous struct or union, the copy and assignment special members
4649  // will never be used, so skip the check. For an anonymous union declared at
4650  // namespace scope, the constructor and destructor are used.
4651  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4652      RD->isAnonymousStructOrUnion())
4653    return false;
4654
4655  // Do access control from the special member function
4656  ContextRAII MethodContext(*this, MD);
4657
4658  SpecialMemberDeletionInfo SMI(*this, MD, CSM);
4659
4660  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4661                                          BE = RD->bases_end(); BI != BE; ++BI)
4662    if (!BI->isVirtual() &&
4663        SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false))
4664      return true;
4665
4666  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4667                                          BE = RD->vbases_end(); BI != BE; ++BI)
4668    if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true))
4669      return true;
4670
4671  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4672                                     FE = RD->field_end(); FI != FE; ++FI)
4673    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4674        SMI.shouldDeleteForField(*FI))
4675      return true;
4676
4677  if (SMI.shouldDeleteForAllConstMembers())
4678    return true;
4679
4680  return false;
4681}
4682
4683/// \brief Data used with FindHiddenVirtualMethod
4684namespace {
4685  struct FindHiddenVirtualMethodData {
4686    Sema *S;
4687    CXXMethodDecl *Method;
4688    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4689    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4690  };
4691}
4692
4693/// \brief Member lookup function that determines whether a given C++
4694/// method overloads virtual methods in a base class without overriding any,
4695/// to be used with CXXRecordDecl::lookupInBases().
4696static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4697                                    CXXBasePath &Path,
4698                                    void *UserData) {
4699  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4700
4701  FindHiddenVirtualMethodData &Data
4702    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4703
4704  DeclarationName Name = Data.Method->getDeclName();
4705  assert(Name.getNameKind() == DeclarationName::Identifier);
4706
4707  bool foundSameNameMethod = false;
4708  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4709  for (Path.Decls = BaseRecord->lookup(Name);
4710       Path.Decls.first != Path.Decls.second;
4711       ++Path.Decls.first) {
4712    NamedDecl *D = *Path.Decls.first;
4713    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4714      MD = MD->getCanonicalDecl();
4715      foundSameNameMethod = true;
4716      // Interested only in hidden virtual methods.
4717      if (!MD->isVirtual())
4718        continue;
4719      // If the method we are checking overrides a method from its base
4720      // don't warn about the other overloaded methods.
4721      if (!Data.S->IsOverload(Data.Method, MD, false))
4722        return true;
4723      // Collect the overload only if its hidden.
4724      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4725        overloadedMethods.push_back(MD);
4726    }
4727  }
4728
4729  if (foundSameNameMethod)
4730    Data.OverloadedMethods.append(overloadedMethods.begin(),
4731                                   overloadedMethods.end());
4732  return foundSameNameMethod;
4733}
4734
4735/// \brief See if a method overloads virtual methods in a base class without
4736/// overriding any.
4737void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4738  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4739                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4740    return;
4741  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4742    return;
4743
4744  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4745                     /*bool RecordPaths=*/false,
4746                     /*bool DetectVirtual=*/false);
4747  FindHiddenVirtualMethodData Data;
4748  Data.Method = MD;
4749  Data.S = this;
4750
4751  // Keep the base methods that were overriden or introduced in the subclass
4752  // by 'using' in a set. A base method not in this set is hidden.
4753  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4754       res.first != res.second; ++res.first) {
4755    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4756      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4757                                          E = MD->end_overridden_methods();
4758           I != E; ++I)
4759        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4760    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4761      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4762        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4763  }
4764
4765  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4766      !Data.OverloadedMethods.empty()) {
4767    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4768      << MD << (Data.OverloadedMethods.size() > 1);
4769
4770    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4771      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4772      Diag(overloadedMD->getLocation(),
4773           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4774    }
4775  }
4776}
4777
4778void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4779                                             Decl *TagDecl,
4780                                             SourceLocation LBrac,
4781                                             SourceLocation RBrac,
4782                                             AttributeList *AttrList) {
4783  if (!TagDecl)
4784    return;
4785
4786  AdjustDeclIfTemplate(TagDecl);
4787
4788  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4789              // strict aliasing violation!
4790              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4791              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4792
4793  CheckCompletedCXXClass(
4794                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4795}
4796
4797/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4798/// special functions, such as the default constructor, copy
4799/// constructor, or destructor, to the given C++ class (C++
4800/// [special]p1).  This routine can only be executed just before the
4801/// definition of the class is complete.
4802void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4803  if (!ClassDecl->hasUserDeclaredConstructor())
4804    ++ASTContext::NumImplicitDefaultConstructors;
4805
4806  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4807    ++ASTContext::NumImplicitCopyConstructors;
4808
4809  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4810    ++ASTContext::NumImplicitMoveConstructors;
4811
4812  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4813    ++ASTContext::NumImplicitCopyAssignmentOperators;
4814
4815    // If we have a dynamic class, then the copy assignment operator may be
4816    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4817    // it shows up in the right place in the vtable and that we diagnose
4818    // problems with the implicit exception specification.
4819    if (ClassDecl->isDynamicClass())
4820      DeclareImplicitCopyAssignment(ClassDecl);
4821  }
4822
4823  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4824    ++ASTContext::NumImplicitMoveAssignmentOperators;
4825
4826    // Likewise for the move assignment operator.
4827    if (ClassDecl->isDynamicClass())
4828      DeclareImplicitMoveAssignment(ClassDecl);
4829  }
4830
4831  if (!ClassDecl->hasUserDeclaredDestructor()) {
4832    ++ASTContext::NumImplicitDestructors;
4833
4834    // If we have a dynamic class, then the destructor may be virtual, so we
4835    // have to declare the destructor immediately. This ensures that, e.g., it
4836    // shows up in the right place in the vtable and that we diagnose problems
4837    // with the implicit exception specification.
4838    if (ClassDecl->isDynamicClass())
4839      DeclareImplicitDestructor(ClassDecl);
4840  }
4841}
4842
4843void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4844  if (!D)
4845    return;
4846
4847  int NumParamList = D->getNumTemplateParameterLists();
4848  for (int i = 0; i < NumParamList; i++) {
4849    TemplateParameterList* Params = D->getTemplateParameterList(i);
4850    for (TemplateParameterList::iterator Param = Params->begin(),
4851                                      ParamEnd = Params->end();
4852          Param != ParamEnd; ++Param) {
4853      NamedDecl *Named = cast<NamedDecl>(*Param);
4854      if (Named->getDeclName()) {
4855        S->AddDecl(Named);
4856        IdResolver.AddDecl(Named);
4857      }
4858    }
4859  }
4860}
4861
4862void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4863  if (!D)
4864    return;
4865
4866  TemplateParameterList *Params = 0;
4867  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4868    Params = Template->getTemplateParameters();
4869  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4870           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4871    Params = PartialSpec->getTemplateParameters();
4872  else
4873    return;
4874
4875  for (TemplateParameterList::iterator Param = Params->begin(),
4876                                    ParamEnd = Params->end();
4877       Param != ParamEnd; ++Param) {
4878    NamedDecl *Named = cast<NamedDecl>(*Param);
4879    if (Named->getDeclName()) {
4880      S->AddDecl(Named);
4881      IdResolver.AddDecl(Named);
4882    }
4883  }
4884}
4885
4886void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4887  if (!RecordD) return;
4888  AdjustDeclIfTemplate(RecordD);
4889  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4890  PushDeclContext(S, Record);
4891}
4892
4893void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4894  if (!RecordD) return;
4895  PopDeclContext();
4896}
4897
4898/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4899/// parsing a top-level (non-nested) C++ class, and we are now
4900/// parsing those parts of the given Method declaration that could
4901/// not be parsed earlier (C++ [class.mem]p2), such as default
4902/// arguments. This action should enter the scope of the given
4903/// Method declaration as if we had just parsed the qualified method
4904/// name. However, it should not bring the parameters into scope;
4905/// that will be performed by ActOnDelayedCXXMethodParameter.
4906void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4907}
4908
4909/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4910/// C++ method declaration. We're (re-)introducing the given
4911/// function parameter into scope for use in parsing later parts of
4912/// the method declaration. For example, we could see an
4913/// ActOnParamDefaultArgument event for this parameter.
4914void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4915  if (!ParamD)
4916    return;
4917
4918  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4919
4920  // If this parameter has an unparsed default argument, clear it out
4921  // to make way for the parsed default argument.
4922  if (Param->hasUnparsedDefaultArg())
4923    Param->setDefaultArg(0);
4924
4925  S->AddDecl(Param);
4926  if (Param->getDeclName())
4927    IdResolver.AddDecl(Param);
4928}
4929
4930/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4931/// processing the delayed method declaration for Method. The method
4932/// declaration is now considered finished. There may be a separate
4933/// ActOnStartOfFunctionDef action later (not necessarily
4934/// immediately!) for this method, if it was also defined inside the
4935/// class body.
4936void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4937  if (!MethodD)
4938    return;
4939
4940  AdjustDeclIfTemplate(MethodD);
4941
4942  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4943
4944  // Now that we have our default arguments, check the constructor
4945  // again. It could produce additional diagnostics or affect whether
4946  // the class has implicitly-declared destructors, among other
4947  // things.
4948  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4949    CheckConstructor(Constructor);
4950
4951  // Check the default arguments, which we may have added.
4952  if (!Method->isInvalidDecl())
4953    CheckCXXDefaultArguments(Method);
4954}
4955
4956/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4957/// the well-formedness of the constructor declarator @p D with type @p
4958/// R. If there are any errors in the declarator, this routine will
4959/// emit diagnostics and set the invalid bit to true.  In any case, the type
4960/// will be updated to reflect a well-formed type for the constructor and
4961/// returned.
4962QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4963                                          StorageClass &SC) {
4964  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4965
4966  // C++ [class.ctor]p3:
4967  //   A constructor shall not be virtual (10.3) or static (9.4). A
4968  //   constructor can be invoked for a const, volatile or const
4969  //   volatile object. A constructor shall not be declared const,
4970  //   volatile, or const volatile (9.3.2).
4971  if (isVirtual) {
4972    if (!D.isInvalidType())
4973      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4974        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4975        << SourceRange(D.getIdentifierLoc());
4976    D.setInvalidType();
4977  }
4978  if (SC == SC_Static) {
4979    if (!D.isInvalidType())
4980      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4981        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4982        << SourceRange(D.getIdentifierLoc());
4983    D.setInvalidType();
4984    SC = SC_None;
4985  }
4986
4987  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4988  if (FTI.TypeQuals != 0) {
4989    if (FTI.TypeQuals & Qualifiers::Const)
4990      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4991        << "const" << SourceRange(D.getIdentifierLoc());
4992    if (FTI.TypeQuals & Qualifiers::Volatile)
4993      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4994        << "volatile" << SourceRange(D.getIdentifierLoc());
4995    if (FTI.TypeQuals & Qualifiers::Restrict)
4996      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4997        << "restrict" << SourceRange(D.getIdentifierLoc());
4998    D.setInvalidType();
4999  }
5000
5001  // C++0x [class.ctor]p4:
5002  //   A constructor shall not be declared with a ref-qualifier.
5003  if (FTI.hasRefQualifier()) {
5004    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5005      << FTI.RefQualifierIsLValueRef
5006      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5007    D.setInvalidType();
5008  }
5009
5010  // Rebuild the function type "R" without any type qualifiers (in
5011  // case any of the errors above fired) and with "void" as the
5012  // return type, since constructors don't have return types.
5013  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5014  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5015    return R;
5016
5017  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5018  EPI.TypeQuals = 0;
5019  EPI.RefQualifier = RQ_None;
5020
5021  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5022                                 Proto->getNumArgs(), EPI);
5023}
5024
5025/// CheckConstructor - Checks a fully-formed constructor for
5026/// well-formedness, issuing any diagnostics required. Returns true if
5027/// the constructor declarator is invalid.
5028void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5029  CXXRecordDecl *ClassDecl
5030    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5031  if (!ClassDecl)
5032    return Constructor->setInvalidDecl();
5033
5034  // C++ [class.copy]p3:
5035  //   A declaration of a constructor for a class X is ill-formed if
5036  //   its first parameter is of type (optionally cv-qualified) X and
5037  //   either there are no other parameters or else all other
5038  //   parameters have default arguments.
5039  if (!Constructor->isInvalidDecl() &&
5040      ((Constructor->getNumParams() == 1) ||
5041       (Constructor->getNumParams() > 1 &&
5042        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5043      Constructor->getTemplateSpecializationKind()
5044                                              != TSK_ImplicitInstantiation) {
5045    QualType ParamType = Constructor->getParamDecl(0)->getType();
5046    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5047    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5048      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5049      const char *ConstRef
5050        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5051                                                        : " const &";
5052      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5053        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5054
5055      // FIXME: Rather that making the constructor invalid, we should endeavor
5056      // to fix the type.
5057      Constructor->setInvalidDecl();
5058    }
5059  }
5060}
5061
5062/// CheckDestructor - Checks a fully-formed destructor definition for
5063/// well-formedness, issuing any diagnostics required.  Returns true
5064/// on error.
5065bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5066  CXXRecordDecl *RD = Destructor->getParent();
5067
5068  if (Destructor->isVirtual()) {
5069    SourceLocation Loc;
5070
5071    if (!Destructor->isImplicit())
5072      Loc = Destructor->getLocation();
5073    else
5074      Loc = RD->getLocation();
5075
5076    // If we have a virtual destructor, look up the deallocation function
5077    FunctionDecl *OperatorDelete = 0;
5078    DeclarationName Name =
5079    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5080    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5081      return true;
5082
5083    MarkFunctionReferenced(Loc, OperatorDelete);
5084
5085    Destructor->setOperatorDelete(OperatorDelete);
5086  }
5087
5088  return false;
5089}
5090
5091static inline bool
5092FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5093  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5094          FTI.ArgInfo[0].Param &&
5095          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5096}
5097
5098/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5099/// the well-formednes of the destructor declarator @p D with type @p
5100/// R. If there are any errors in the declarator, this routine will
5101/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5102/// will be updated to reflect a well-formed type for the destructor and
5103/// returned.
5104QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5105                                         StorageClass& SC) {
5106  // C++ [class.dtor]p1:
5107  //   [...] A typedef-name that names a class is a class-name
5108  //   (7.1.3); however, a typedef-name that names a class shall not
5109  //   be used as the identifier in the declarator for a destructor
5110  //   declaration.
5111  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5112  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5113    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5114      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5115  else if (const TemplateSpecializationType *TST =
5116             DeclaratorType->getAs<TemplateSpecializationType>())
5117    if (TST->isTypeAlias())
5118      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5119        << DeclaratorType << 1;
5120
5121  // C++ [class.dtor]p2:
5122  //   A destructor is used to destroy objects of its class type. A
5123  //   destructor takes no parameters, and no return type can be
5124  //   specified for it (not even void). The address of a destructor
5125  //   shall not be taken. A destructor shall not be static. A
5126  //   destructor can be invoked for a const, volatile or const
5127  //   volatile object. A destructor shall not be declared const,
5128  //   volatile or const volatile (9.3.2).
5129  if (SC == SC_Static) {
5130    if (!D.isInvalidType())
5131      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5132        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5133        << SourceRange(D.getIdentifierLoc())
5134        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5135
5136    SC = SC_None;
5137  }
5138  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5139    // Destructors don't have return types, but the parser will
5140    // happily parse something like:
5141    //
5142    //   class X {
5143    //     float ~X();
5144    //   };
5145    //
5146    // The return type will be eliminated later.
5147    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5148      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5149      << SourceRange(D.getIdentifierLoc());
5150  }
5151
5152  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5153  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5154    if (FTI.TypeQuals & Qualifiers::Const)
5155      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5156        << "const" << SourceRange(D.getIdentifierLoc());
5157    if (FTI.TypeQuals & Qualifiers::Volatile)
5158      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5159        << "volatile" << SourceRange(D.getIdentifierLoc());
5160    if (FTI.TypeQuals & Qualifiers::Restrict)
5161      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5162        << "restrict" << SourceRange(D.getIdentifierLoc());
5163    D.setInvalidType();
5164  }
5165
5166  // C++0x [class.dtor]p2:
5167  //   A destructor shall not be declared with a ref-qualifier.
5168  if (FTI.hasRefQualifier()) {
5169    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5170      << FTI.RefQualifierIsLValueRef
5171      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5172    D.setInvalidType();
5173  }
5174
5175  // Make sure we don't have any parameters.
5176  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5177    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5178
5179    // Delete the parameters.
5180    FTI.freeArgs();
5181    D.setInvalidType();
5182  }
5183
5184  // Make sure the destructor isn't variadic.
5185  if (FTI.isVariadic) {
5186    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5187    D.setInvalidType();
5188  }
5189
5190  // Rebuild the function type "R" without any type qualifiers or
5191  // parameters (in case any of the errors above fired) and with
5192  // "void" as the return type, since destructors don't have return
5193  // types.
5194  if (!D.isInvalidType())
5195    return R;
5196
5197  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5198  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5199  EPI.Variadic = false;
5200  EPI.TypeQuals = 0;
5201  EPI.RefQualifier = RQ_None;
5202  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5203}
5204
5205/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5206/// well-formednes of the conversion function declarator @p D with
5207/// type @p R. If there are any errors in the declarator, this routine
5208/// will emit diagnostics and return true. Otherwise, it will return
5209/// false. Either way, the type @p R will be updated to reflect a
5210/// well-formed type for the conversion operator.
5211void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5212                                     StorageClass& SC) {
5213  // C++ [class.conv.fct]p1:
5214  //   Neither parameter types nor return type can be specified. The
5215  //   type of a conversion function (8.3.5) is "function taking no
5216  //   parameter returning conversion-type-id."
5217  if (SC == SC_Static) {
5218    if (!D.isInvalidType())
5219      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5220        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5221        << SourceRange(D.getIdentifierLoc());
5222    D.setInvalidType();
5223    SC = SC_None;
5224  }
5225
5226  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5227
5228  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5229    // Conversion functions don't have return types, but the parser will
5230    // happily parse something like:
5231    //
5232    //   class X {
5233    //     float operator bool();
5234    //   };
5235    //
5236    // The return type will be changed later anyway.
5237    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5238      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5239      << SourceRange(D.getIdentifierLoc());
5240    D.setInvalidType();
5241  }
5242
5243  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5244
5245  // Make sure we don't have any parameters.
5246  if (Proto->getNumArgs() > 0) {
5247    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5248
5249    // Delete the parameters.
5250    D.getFunctionTypeInfo().freeArgs();
5251    D.setInvalidType();
5252  } else if (Proto->isVariadic()) {
5253    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5254    D.setInvalidType();
5255  }
5256
5257  // Diagnose "&operator bool()" and other such nonsense.  This
5258  // is actually a gcc extension which we don't support.
5259  if (Proto->getResultType() != ConvType) {
5260    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5261      << Proto->getResultType();
5262    D.setInvalidType();
5263    ConvType = Proto->getResultType();
5264  }
5265
5266  // C++ [class.conv.fct]p4:
5267  //   The conversion-type-id shall not represent a function type nor
5268  //   an array type.
5269  if (ConvType->isArrayType()) {
5270    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5271    ConvType = Context.getPointerType(ConvType);
5272    D.setInvalidType();
5273  } else if (ConvType->isFunctionType()) {
5274    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5275    ConvType = Context.getPointerType(ConvType);
5276    D.setInvalidType();
5277  }
5278
5279  // Rebuild the function type "R" without any parameters (in case any
5280  // of the errors above fired) and with the conversion type as the
5281  // return type.
5282  if (D.isInvalidType())
5283    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5284
5285  // C++0x explicit conversion operators.
5286  if (D.getDeclSpec().isExplicitSpecified())
5287    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5288         getLangOptions().CPlusPlus0x ?
5289           diag::warn_cxx98_compat_explicit_conversion_functions :
5290           diag::ext_explicit_conversion_functions)
5291      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5292}
5293
5294/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5295/// the declaration of the given C++ conversion function. This routine
5296/// is responsible for recording the conversion function in the C++
5297/// class, if possible.
5298Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5299  assert(Conversion && "Expected to receive a conversion function declaration");
5300
5301  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5302
5303  // Make sure we aren't redeclaring the conversion function.
5304  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5305
5306  // C++ [class.conv.fct]p1:
5307  //   [...] A conversion function is never used to convert a
5308  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5309  //   same object type (or a reference to it), to a (possibly
5310  //   cv-qualified) base class of that type (or a reference to it),
5311  //   or to (possibly cv-qualified) void.
5312  // FIXME: Suppress this warning if the conversion function ends up being a
5313  // virtual function that overrides a virtual function in a base class.
5314  QualType ClassType
5315    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5316  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5317    ConvType = ConvTypeRef->getPointeeType();
5318  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5319      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5320    /* Suppress diagnostics for instantiations. */;
5321  else if (ConvType->isRecordType()) {
5322    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5323    if (ConvType == ClassType)
5324      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5325        << ClassType;
5326    else if (IsDerivedFrom(ClassType, ConvType))
5327      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5328        <<  ClassType << ConvType;
5329  } else if (ConvType->isVoidType()) {
5330    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5331      << ClassType << ConvType;
5332  }
5333
5334  if (FunctionTemplateDecl *ConversionTemplate
5335                                = Conversion->getDescribedFunctionTemplate())
5336    return ConversionTemplate;
5337
5338  return Conversion;
5339}
5340
5341//===----------------------------------------------------------------------===//
5342// Namespace Handling
5343//===----------------------------------------------------------------------===//
5344
5345
5346
5347/// ActOnStartNamespaceDef - This is called at the start of a namespace
5348/// definition.
5349Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5350                                   SourceLocation InlineLoc,
5351                                   SourceLocation NamespaceLoc,
5352                                   SourceLocation IdentLoc,
5353                                   IdentifierInfo *II,
5354                                   SourceLocation LBrace,
5355                                   AttributeList *AttrList) {
5356  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5357  // For anonymous namespace, take the location of the left brace.
5358  SourceLocation Loc = II ? IdentLoc : LBrace;
5359  bool IsInline = InlineLoc.isValid();
5360  bool IsInvalid = false;
5361  bool IsStd = false;
5362  bool AddToKnown = false;
5363  Scope *DeclRegionScope = NamespcScope->getParent();
5364
5365  NamespaceDecl *PrevNS = 0;
5366  if (II) {
5367    // C++ [namespace.def]p2:
5368    //   The identifier in an original-namespace-definition shall not
5369    //   have been previously defined in the declarative region in
5370    //   which the original-namespace-definition appears. The
5371    //   identifier in an original-namespace-definition is the name of
5372    //   the namespace. Subsequently in that declarative region, it is
5373    //   treated as an original-namespace-name.
5374    //
5375    // Since namespace names are unique in their scope, and we don't
5376    // look through using directives, just look for any ordinary names.
5377
5378    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5379    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5380    Decl::IDNS_Namespace;
5381    NamedDecl *PrevDecl = 0;
5382    for (DeclContext::lookup_result R
5383         = CurContext->getRedeclContext()->lookup(II);
5384         R.first != R.second; ++R.first) {
5385      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5386        PrevDecl = *R.first;
5387        break;
5388      }
5389    }
5390
5391    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5392
5393    if (PrevNS) {
5394      // This is an extended namespace definition.
5395      if (IsInline != PrevNS->isInline()) {
5396        // inline-ness must match
5397        if (PrevNS->isInline()) {
5398          // The user probably just forgot the 'inline', so suggest that it
5399          // be added back.
5400          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5401            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5402        } else {
5403          Diag(Loc, diag::err_inline_namespace_mismatch)
5404            << IsInline;
5405        }
5406        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5407
5408        IsInline = PrevNS->isInline();
5409      }
5410    } else if (PrevDecl) {
5411      // This is an invalid name redefinition.
5412      Diag(Loc, diag::err_redefinition_different_kind)
5413        << II;
5414      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5415      IsInvalid = true;
5416      // Continue on to push Namespc as current DeclContext and return it.
5417    } else if (II->isStr("std") &&
5418               CurContext->getRedeclContext()->isTranslationUnit()) {
5419      // This is the first "real" definition of the namespace "std", so update
5420      // our cache of the "std" namespace to point at this definition.
5421      PrevNS = getStdNamespace();
5422      IsStd = true;
5423      AddToKnown = !IsInline;
5424    } else {
5425      // We've seen this namespace for the first time.
5426      AddToKnown = !IsInline;
5427    }
5428  } else {
5429    // Anonymous namespaces.
5430
5431    // Determine whether the parent already has an anonymous namespace.
5432    DeclContext *Parent = CurContext->getRedeclContext();
5433    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5434      PrevNS = TU->getAnonymousNamespace();
5435    } else {
5436      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5437      PrevNS = ND->getAnonymousNamespace();
5438    }
5439
5440    if (PrevNS && IsInline != PrevNS->isInline()) {
5441      // inline-ness must match
5442      Diag(Loc, diag::err_inline_namespace_mismatch)
5443        << IsInline;
5444      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5445
5446      // Recover by ignoring the new namespace's inline status.
5447      IsInline = PrevNS->isInline();
5448    }
5449  }
5450
5451  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5452                                                 StartLoc, Loc, II, PrevNS);
5453  if (IsInvalid)
5454    Namespc->setInvalidDecl();
5455
5456  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5457
5458  // FIXME: Should we be merging attributes?
5459  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5460    PushNamespaceVisibilityAttr(Attr, Loc);
5461
5462  if (IsStd)
5463    StdNamespace = Namespc;
5464  if (AddToKnown)
5465    KnownNamespaces[Namespc] = false;
5466
5467  if (II) {
5468    PushOnScopeChains(Namespc, DeclRegionScope);
5469  } else {
5470    // Link the anonymous namespace into its parent.
5471    DeclContext *Parent = CurContext->getRedeclContext();
5472    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5473      TU->setAnonymousNamespace(Namespc);
5474    } else {
5475      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5476    }
5477
5478    CurContext->addDecl(Namespc);
5479
5480    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5481    //   behaves as if it were replaced by
5482    //     namespace unique { /* empty body */ }
5483    //     using namespace unique;
5484    //     namespace unique { namespace-body }
5485    //   where all occurrences of 'unique' in a translation unit are
5486    //   replaced by the same identifier and this identifier differs
5487    //   from all other identifiers in the entire program.
5488
5489    // We just create the namespace with an empty name and then add an
5490    // implicit using declaration, just like the standard suggests.
5491    //
5492    // CodeGen enforces the "universally unique" aspect by giving all
5493    // declarations semantically contained within an anonymous
5494    // namespace internal linkage.
5495
5496    if (!PrevNS) {
5497      UsingDirectiveDecl* UD
5498        = UsingDirectiveDecl::Create(Context, CurContext,
5499                                     /* 'using' */ LBrace,
5500                                     /* 'namespace' */ SourceLocation(),
5501                                     /* qualifier */ NestedNameSpecifierLoc(),
5502                                     /* identifier */ SourceLocation(),
5503                                     Namespc,
5504                                     /* Ancestor */ CurContext);
5505      UD->setImplicit();
5506      CurContext->addDecl(UD);
5507    }
5508  }
5509
5510  // Although we could have an invalid decl (i.e. the namespace name is a
5511  // redefinition), push it as current DeclContext and try to continue parsing.
5512  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5513  // for the namespace has the declarations that showed up in that particular
5514  // namespace definition.
5515  PushDeclContext(NamespcScope, Namespc);
5516  return Namespc;
5517}
5518
5519/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5520/// is a namespace alias, returns the namespace it points to.
5521static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5522  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5523    return AD->getNamespace();
5524  return dyn_cast_or_null<NamespaceDecl>(D);
5525}
5526
5527/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5528/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5529void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5530  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5531  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5532  Namespc->setRBraceLoc(RBrace);
5533  PopDeclContext();
5534  if (Namespc->hasAttr<VisibilityAttr>())
5535    PopPragmaVisibility(true, RBrace);
5536}
5537
5538CXXRecordDecl *Sema::getStdBadAlloc() const {
5539  return cast_or_null<CXXRecordDecl>(
5540                                  StdBadAlloc.get(Context.getExternalSource()));
5541}
5542
5543NamespaceDecl *Sema::getStdNamespace() const {
5544  return cast_or_null<NamespaceDecl>(
5545                                 StdNamespace.get(Context.getExternalSource()));
5546}
5547
5548/// \brief Retrieve the special "std" namespace, which may require us to
5549/// implicitly define the namespace.
5550NamespaceDecl *Sema::getOrCreateStdNamespace() {
5551  if (!StdNamespace) {
5552    // The "std" namespace has not yet been defined, so build one implicitly.
5553    StdNamespace = NamespaceDecl::Create(Context,
5554                                         Context.getTranslationUnitDecl(),
5555                                         /*Inline=*/false,
5556                                         SourceLocation(), SourceLocation(),
5557                                         &PP.getIdentifierTable().get("std"),
5558                                         /*PrevDecl=*/0);
5559    getStdNamespace()->setImplicit(true);
5560  }
5561
5562  return getStdNamespace();
5563}
5564
5565bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5566  assert(getLangOptions().CPlusPlus &&
5567         "Looking for std::initializer_list outside of C++.");
5568
5569  // We're looking for implicit instantiations of
5570  // template <typename E> class std::initializer_list.
5571
5572  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5573    return false;
5574
5575  ClassTemplateDecl *Template = 0;
5576  const TemplateArgument *Arguments = 0;
5577
5578  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5579
5580    ClassTemplateSpecializationDecl *Specialization =
5581        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5582    if (!Specialization)
5583      return false;
5584
5585    Template = Specialization->getSpecializedTemplate();
5586    Arguments = Specialization->getTemplateArgs().data();
5587  } else if (const TemplateSpecializationType *TST =
5588                 Ty->getAs<TemplateSpecializationType>()) {
5589    Template = dyn_cast_or_null<ClassTemplateDecl>(
5590        TST->getTemplateName().getAsTemplateDecl());
5591    Arguments = TST->getArgs();
5592  }
5593  if (!Template)
5594    return false;
5595
5596  if (!StdInitializerList) {
5597    // Haven't recognized std::initializer_list yet, maybe this is it.
5598    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5599    if (TemplateClass->getIdentifier() !=
5600            &PP.getIdentifierTable().get("initializer_list") ||
5601        !getStdNamespace()->InEnclosingNamespaceSetOf(
5602            TemplateClass->getDeclContext()))
5603      return false;
5604    // This is a template called std::initializer_list, but is it the right
5605    // template?
5606    TemplateParameterList *Params = Template->getTemplateParameters();
5607    if (Params->getMinRequiredArguments() != 1)
5608      return false;
5609    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5610      return false;
5611
5612    // It's the right template.
5613    StdInitializerList = Template;
5614  }
5615
5616  if (Template != StdInitializerList)
5617    return false;
5618
5619  // This is an instance of std::initializer_list. Find the argument type.
5620  if (Element)
5621    *Element = Arguments[0].getAsType();
5622  return true;
5623}
5624
5625static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5626  NamespaceDecl *Std = S.getStdNamespace();
5627  if (!Std) {
5628    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5629    return 0;
5630  }
5631
5632  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5633                      Loc, Sema::LookupOrdinaryName);
5634  if (!S.LookupQualifiedName(Result, Std)) {
5635    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5636    return 0;
5637  }
5638  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5639  if (!Template) {
5640    Result.suppressDiagnostics();
5641    // We found something weird. Complain about the first thing we found.
5642    NamedDecl *Found = *Result.begin();
5643    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5644    return 0;
5645  }
5646
5647  // We found some template called std::initializer_list. Now verify that it's
5648  // correct.
5649  TemplateParameterList *Params = Template->getTemplateParameters();
5650  if (Params->getMinRequiredArguments() != 1 ||
5651      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5652    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5653    return 0;
5654  }
5655
5656  return Template;
5657}
5658
5659QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5660  if (!StdInitializerList) {
5661    StdInitializerList = LookupStdInitializerList(*this, Loc);
5662    if (!StdInitializerList)
5663      return QualType();
5664  }
5665
5666  TemplateArgumentListInfo Args(Loc, Loc);
5667  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5668                                       Context.getTrivialTypeSourceInfo(Element,
5669                                                                        Loc)));
5670  return Context.getCanonicalType(
5671      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5672}
5673
5674bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5675  // C++ [dcl.init.list]p2:
5676  //   A constructor is an initializer-list constructor if its first parameter
5677  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5678  //   std::initializer_list<E> for some type E, and either there are no other
5679  //   parameters or else all other parameters have default arguments.
5680  if (Ctor->getNumParams() < 1 ||
5681      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5682    return false;
5683
5684  QualType ArgType = Ctor->getParamDecl(0)->getType();
5685  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5686    ArgType = RT->getPointeeType().getUnqualifiedType();
5687
5688  return isStdInitializerList(ArgType, 0);
5689}
5690
5691/// \brief Determine whether a using statement is in a context where it will be
5692/// apply in all contexts.
5693static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5694  switch (CurContext->getDeclKind()) {
5695    case Decl::TranslationUnit:
5696      return true;
5697    case Decl::LinkageSpec:
5698      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5699    default:
5700      return false;
5701  }
5702}
5703
5704namespace {
5705
5706// Callback to only accept typo corrections that are namespaces.
5707class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5708 public:
5709  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5710    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5711      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5712    }
5713    return false;
5714  }
5715};
5716
5717}
5718
5719static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5720                                       CXXScopeSpec &SS,
5721                                       SourceLocation IdentLoc,
5722                                       IdentifierInfo *Ident) {
5723  NamespaceValidatorCCC Validator;
5724  R.clear();
5725  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5726                                               R.getLookupKind(), Sc, &SS,
5727                                               Validator)) {
5728    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5729    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5730    if (DeclContext *DC = S.computeDeclContext(SS, false))
5731      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5732        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5733        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5734    else
5735      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5736        << Ident << CorrectedQuotedStr
5737        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5738
5739    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5740         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5741
5742    Ident = Corrected.getCorrectionAsIdentifierInfo();
5743    R.addDecl(Corrected.getCorrectionDecl());
5744    return true;
5745  }
5746  return false;
5747}
5748
5749Decl *Sema::ActOnUsingDirective(Scope *S,
5750                                          SourceLocation UsingLoc,
5751                                          SourceLocation NamespcLoc,
5752                                          CXXScopeSpec &SS,
5753                                          SourceLocation IdentLoc,
5754                                          IdentifierInfo *NamespcName,
5755                                          AttributeList *AttrList) {
5756  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5757  assert(NamespcName && "Invalid NamespcName.");
5758  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5759
5760  // This can only happen along a recovery path.
5761  while (S->getFlags() & Scope::TemplateParamScope)
5762    S = S->getParent();
5763  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5764
5765  UsingDirectiveDecl *UDir = 0;
5766  NestedNameSpecifier *Qualifier = 0;
5767  if (SS.isSet())
5768    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5769
5770  // Lookup namespace name.
5771  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5772  LookupParsedName(R, S, &SS);
5773  if (R.isAmbiguous())
5774    return 0;
5775
5776  if (R.empty()) {
5777    R.clear();
5778    // Allow "using namespace std;" or "using namespace ::std;" even if
5779    // "std" hasn't been defined yet, for GCC compatibility.
5780    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5781        NamespcName->isStr("std")) {
5782      Diag(IdentLoc, diag::ext_using_undefined_std);
5783      R.addDecl(getOrCreateStdNamespace());
5784      R.resolveKind();
5785    }
5786    // Otherwise, attempt typo correction.
5787    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5788  }
5789
5790  if (!R.empty()) {
5791    NamedDecl *Named = R.getFoundDecl();
5792    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5793        && "expected namespace decl");
5794    // C++ [namespace.udir]p1:
5795    //   A using-directive specifies that the names in the nominated
5796    //   namespace can be used in the scope in which the
5797    //   using-directive appears after the using-directive. During
5798    //   unqualified name lookup (3.4.1), the names appear as if they
5799    //   were declared in the nearest enclosing namespace which
5800    //   contains both the using-directive and the nominated
5801    //   namespace. [Note: in this context, "contains" means "contains
5802    //   directly or indirectly". ]
5803
5804    // Find enclosing context containing both using-directive and
5805    // nominated namespace.
5806    NamespaceDecl *NS = getNamespaceDecl(Named);
5807    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5808    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5809      CommonAncestor = CommonAncestor->getParent();
5810
5811    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5812                                      SS.getWithLocInContext(Context),
5813                                      IdentLoc, Named, CommonAncestor);
5814
5815    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5816        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5817      Diag(IdentLoc, diag::warn_using_directive_in_header);
5818    }
5819
5820    PushUsingDirective(S, UDir);
5821  } else {
5822    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5823  }
5824
5825  // FIXME: We ignore attributes for now.
5826  return UDir;
5827}
5828
5829void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5830  // If scope has associated entity, then using directive is at namespace
5831  // or translation unit scope. We add UsingDirectiveDecls, into
5832  // it's lookup structure.
5833  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5834    Ctx->addDecl(UDir);
5835  else
5836    // Otherwise it is block-sope. using-directives will affect lookup
5837    // only to the end of scope.
5838    S->PushUsingDirective(UDir);
5839}
5840
5841
5842Decl *Sema::ActOnUsingDeclaration(Scope *S,
5843                                  AccessSpecifier AS,
5844                                  bool HasUsingKeyword,
5845                                  SourceLocation UsingLoc,
5846                                  CXXScopeSpec &SS,
5847                                  UnqualifiedId &Name,
5848                                  AttributeList *AttrList,
5849                                  bool IsTypeName,
5850                                  SourceLocation TypenameLoc) {
5851  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5852
5853  switch (Name.getKind()) {
5854  case UnqualifiedId::IK_ImplicitSelfParam:
5855  case UnqualifiedId::IK_Identifier:
5856  case UnqualifiedId::IK_OperatorFunctionId:
5857  case UnqualifiedId::IK_LiteralOperatorId:
5858  case UnqualifiedId::IK_ConversionFunctionId:
5859    break;
5860
5861  case UnqualifiedId::IK_ConstructorName:
5862  case UnqualifiedId::IK_ConstructorTemplateId:
5863    // C++0x inherited constructors.
5864    Diag(Name.getSourceRange().getBegin(),
5865         getLangOptions().CPlusPlus0x ?
5866           diag::warn_cxx98_compat_using_decl_constructor :
5867           diag::err_using_decl_constructor)
5868      << SS.getRange();
5869
5870    if (getLangOptions().CPlusPlus0x) break;
5871
5872    return 0;
5873
5874  case UnqualifiedId::IK_DestructorName:
5875    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5876      << SS.getRange();
5877    return 0;
5878
5879  case UnqualifiedId::IK_TemplateId:
5880    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5881      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5882    return 0;
5883  }
5884
5885  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5886  DeclarationName TargetName = TargetNameInfo.getName();
5887  if (!TargetName)
5888    return 0;
5889
5890  // Warn about using declarations.
5891  // TODO: store that the declaration was written without 'using' and
5892  // talk about access decls instead of using decls in the
5893  // diagnostics.
5894  if (!HasUsingKeyword) {
5895    UsingLoc = Name.getSourceRange().getBegin();
5896
5897    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5898      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5899  }
5900
5901  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5902      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5903    return 0;
5904
5905  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5906                                        TargetNameInfo, AttrList,
5907                                        /* IsInstantiation */ false,
5908                                        IsTypeName, TypenameLoc);
5909  if (UD)
5910    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5911
5912  return UD;
5913}
5914
5915/// \brief Determine whether a using declaration considers the given
5916/// declarations as "equivalent", e.g., if they are redeclarations of
5917/// the same entity or are both typedefs of the same type.
5918static bool
5919IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5920                         bool &SuppressRedeclaration) {
5921  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5922    SuppressRedeclaration = false;
5923    return true;
5924  }
5925
5926  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5927    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5928      SuppressRedeclaration = true;
5929      return Context.hasSameType(TD1->getUnderlyingType(),
5930                                 TD2->getUnderlyingType());
5931    }
5932
5933  return false;
5934}
5935
5936
5937/// Determines whether to create a using shadow decl for a particular
5938/// decl, given the set of decls existing prior to this using lookup.
5939bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5940                                const LookupResult &Previous) {
5941  // Diagnose finding a decl which is not from a base class of the
5942  // current class.  We do this now because there are cases where this
5943  // function will silently decide not to build a shadow decl, which
5944  // will pre-empt further diagnostics.
5945  //
5946  // We don't need to do this in C++0x because we do the check once on
5947  // the qualifier.
5948  //
5949  // FIXME: diagnose the following if we care enough:
5950  //   struct A { int foo; };
5951  //   struct B : A { using A::foo; };
5952  //   template <class T> struct C : A {};
5953  //   template <class T> struct D : C<T> { using B::foo; } // <---
5954  // This is invalid (during instantiation) in C++03 because B::foo
5955  // resolves to the using decl in B, which is not a base class of D<T>.
5956  // We can't diagnose it immediately because C<T> is an unknown
5957  // specialization.  The UsingShadowDecl in D<T> then points directly
5958  // to A::foo, which will look well-formed when we instantiate.
5959  // The right solution is to not collapse the shadow-decl chain.
5960  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5961    DeclContext *OrigDC = Orig->getDeclContext();
5962
5963    // Handle enums and anonymous structs.
5964    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5965    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5966    while (OrigRec->isAnonymousStructOrUnion())
5967      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5968
5969    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5970      if (OrigDC == CurContext) {
5971        Diag(Using->getLocation(),
5972             diag::err_using_decl_nested_name_specifier_is_current_class)
5973          << Using->getQualifierLoc().getSourceRange();
5974        Diag(Orig->getLocation(), diag::note_using_decl_target);
5975        return true;
5976      }
5977
5978      Diag(Using->getQualifierLoc().getBeginLoc(),
5979           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5980        << Using->getQualifier()
5981        << cast<CXXRecordDecl>(CurContext)
5982        << Using->getQualifierLoc().getSourceRange();
5983      Diag(Orig->getLocation(), diag::note_using_decl_target);
5984      return true;
5985    }
5986  }
5987
5988  if (Previous.empty()) return false;
5989
5990  NamedDecl *Target = Orig;
5991  if (isa<UsingShadowDecl>(Target))
5992    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5993
5994  // If the target happens to be one of the previous declarations, we
5995  // don't have a conflict.
5996  //
5997  // FIXME: but we might be increasing its access, in which case we
5998  // should redeclare it.
5999  NamedDecl *NonTag = 0, *Tag = 0;
6000  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6001         I != E; ++I) {
6002    NamedDecl *D = (*I)->getUnderlyingDecl();
6003    bool Result;
6004    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6005      return Result;
6006
6007    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6008  }
6009
6010  if (Target->isFunctionOrFunctionTemplate()) {
6011    FunctionDecl *FD;
6012    if (isa<FunctionTemplateDecl>(Target))
6013      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6014    else
6015      FD = cast<FunctionDecl>(Target);
6016
6017    NamedDecl *OldDecl = 0;
6018    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6019    case Ovl_Overload:
6020      return false;
6021
6022    case Ovl_NonFunction:
6023      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6024      break;
6025
6026    // We found a decl with the exact signature.
6027    case Ovl_Match:
6028      // If we're in a record, we want to hide the target, so we
6029      // return true (without a diagnostic) to tell the caller not to
6030      // build a shadow decl.
6031      if (CurContext->isRecord())
6032        return true;
6033
6034      // If we're not in a record, this is an error.
6035      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6036      break;
6037    }
6038
6039    Diag(Target->getLocation(), diag::note_using_decl_target);
6040    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6041    return true;
6042  }
6043
6044  // Target is not a function.
6045
6046  if (isa<TagDecl>(Target)) {
6047    // No conflict between a tag and a non-tag.
6048    if (!Tag) return false;
6049
6050    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6051    Diag(Target->getLocation(), diag::note_using_decl_target);
6052    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6053    return true;
6054  }
6055
6056  // No conflict between a tag and a non-tag.
6057  if (!NonTag) return false;
6058
6059  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6060  Diag(Target->getLocation(), diag::note_using_decl_target);
6061  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6062  return true;
6063}
6064
6065/// Builds a shadow declaration corresponding to a 'using' declaration.
6066UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6067                                            UsingDecl *UD,
6068                                            NamedDecl *Orig) {
6069
6070  // If we resolved to another shadow declaration, just coalesce them.
6071  NamedDecl *Target = Orig;
6072  if (isa<UsingShadowDecl>(Target)) {
6073    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6074    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6075  }
6076
6077  UsingShadowDecl *Shadow
6078    = UsingShadowDecl::Create(Context, CurContext,
6079                              UD->getLocation(), UD, Target);
6080  UD->addShadowDecl(Shadow);
6081
6082  Shadow->setAccess(UD->getAccess());
6083  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6084    Shadow->setInvalidDecl();
6085
6086  if (S)
6087    PushOnScopeChains(Shadow, S);
6088  else
6089    CurContext->addDecl(Shadow);
6090
6091
6092  return Shadow;
6093}
6094
6095/// Hides a using shadow declaration.  This is required by the current
6096/// using-decl implementation when a resolvable using declaration in a
6097/// class is followed by a declaration which would hide or override
6098/// one or more of the using decl's targets; for example:
6099///
6100///   struct Base { void foo(int); };
6101///   struct Derived : Base {
6102///     using Base::foo;
6103///     void foo(int);
6104///   };
6105///
6106/// The governing language is C++03 [namespace.udecl]p12:
6107///
6108///   When a using-declaration brings names from a base class into a
6109///   derived class scope, member functions in the derived class
6110///   override and/or hide member functions with the same name and
6111///   parameter types in a base class (rather than conflicting).
6112///
6113/// There are two ways to implement this:
6114///   (1) optimistically create shadow decls when they're not hidden
6115///       by existing declarations, or
6116///   (2) don't create any shadow decls (or at least don't make them
6117///       visible) until we've fully parsed/instantiated the class.
6118/// The problem with (1) is that we might have to retroactively remove
6119/// a shadow decl, which requires several O(n) operations because the
6120/// decl structures are (very reasonably) not designed for removal.
6121/// (2) avoids this but is very fiddly and phase-dependent.
6122void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6123  if (Shadow->getDeclName().getNameKind() ==
6124        DeclarationName::CXXConversionFunctionName)
6125    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6126
6127  // Remove it from the DeclContext...
6128  Shadow->getDeclContext()->removeDecl(Shadow);
6129
6130  // ...and the scope, if applicable...
6131  if (S) {
6132    S->RemoveDecl(Shadow);
6133    IdResolver.RemoveDecl(Shadow);
6134  }
6135
6136  // ...and the using decl.
6137  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6138
6139  // TODO: complain somehow if Shadow was used.  It shouldn't
6140  // be possible for this to happen, because...?
6141}
6142
6143/// Builds a using declaration.
6144///
6145/// \param IsInstantiation - Whether this call arises from an
6146///   instantiation of an unresolved using declaration.  We treat
6147///   the lookup differently for these declarations.
6148NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6149                                       SourceLocation UsingLoc,
6150                                       CXXScopeSpec &SS,
6151                                       const DeclarationNameInfo &NameInfo,
6152                                       AttributeList *AttrList,
6153                                       bool IsInstantiation,
6154                                       bool IsTypeName,
6155                                       SourceLocation TypenameLoc) {
6156  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6157  SourceLocation IdentLoc = NameInfo.getLoc();
6158  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6159
6160  // FIXME: We ignore attributes for now.
6161
6162  if (SS.isEmpty()) {
6163    Diag(IdentLoc, diag::err_using_requires_qualname);
6164    return 0;
6165  }
6166
6167  // Do the redeclaration lookup in the current scope.
6168  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6169                        ForRedeclaration);
6170  Previous.setHideTags(false);
6171  if (S) {
6172    LookupName(Previous, S);
6173
6174    // It is really dumb that we have to do this.
6175    LookupResult::Filter F = Previous.makeFilter();
6176    while (F.hasNext()) {
6177      NamedDecl *D = F.next();
6178      if (!isDeclInScope(D, CurContext, S))
6179        F.erase();
6180    }
6181    F.done();
6182  } else {
6183    assert(IsInstantiation && "no scope in non-instantiation");
6184    assert(CurContext->isRecord() && "scope not record in instantiation");
6185    LookupQualifiedName(Previous, CurContext);
6186  }
6187
6188  // Check for invalid redeclarations.
6189  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6190    return 0;
6191
6192  // Check for bad qualifiers.
6193  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6194    return 0;
6195
6196  DeclContext *LookupContext = computeDeclContext(SS);
6197  NamedDecl *D;
6198  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6199  if (!LookupContext) {
6200    if (IsTypeName) {
6201      // FIXME: not all declaration name kinds are legal here
6202      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6203                                              UsingLoc, TypenameLoc,
6204                                              QualifierLoc,
6205                                              IdentLoc, NameInfo.getName());
6206    } else {
6207      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6208                                           QualifierLoc, NameInfo);
6209    }
6210  } else {
6211    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6212                          NameInfo, IsTypeName);
6213  }
6214  D->setAccess(AS);
6215  CurContext->addDecl(D);
6216
6217  if (!LookupContext) return D;
6218  UsingDecl *UD = cast<UsingDecl>(D);
6219
6220  if (RequireCompleteDeclContext(SS, LookupContext)) {
6221    UD->setInvalidDecl();
6222    return UD;
6223  }
6224
6225  // Constructor inheriting using decls get special treatment.
6226  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6227    if (CheckInheritedConstructorUsingDecl(UD))
6228      UD->setInvalidDecl();
6229    return UD;
6230  }
6231
6232  // Otherwise, look up the target name.
6233
6234  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6235
6236  // Unlike most lookups, we don't always want to hide tag
6237  // declarations: tag names are visible through the using declaration
6238  // even if hidden by ordinary names, *except* in a dependent context
6239  // where it's important for the sanity of two-phase lookup.
6240  if (!IsInstantiation)
6241    R.setHideTags(false);
6242
6243  LookupQualifiedName(R, LookupContext);
6244
6245  if (R.empty()) {
6246    Diag(IdentLoc, diag::err_no_member)
6247      << NameInfo.getName() << LookupContext << SS.getRange();
6248    UD->setInvalidDecl();
6249    return UD;
6250  }
6251
6252  if (R.isAmbiguous()) {
6253    UD->setInvalidDecl();
6254    return UD;
6255  }
6256
6257  if (IsTypeName) {
6258    // If we asked for a typename and got a non-type decl, error out.
6259    if (!R.getAsSingle<TypeDecl>()) {
6260      Diag(IdentLoc, diag::err_using_typename_non_type);
6261      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6262        Diag((*I)->getUnderlyingDecl()->getLocation(),
6263             diag::note_using_decl_target);
6264      UD->setInvalidDecl();
6265      return UD;
6266    }
6267  } else {
6268    // If we asked for a non-typename and we got a type, error out,
6269    // but only if this is an instantiation of an unresolved using
6270    // decl.  Otherwise just silently find the type name.
6271    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6272      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6273      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6274      UD->setInvalidDecl();
6275      return UD;
6276    }
6277  }
6278
6279  // C++0x N2914 [namespace.udecl]p6:
6280  // A using-declaration shall not name a namespace.
6281  if (R.getAsSingle<NamespaceDecl>()) {
6282    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6283      << SS.getRange();
6284    UD->setInvalidDecl();
6285    return UD;
6286  }
6287
6288  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6289    if (!CheckUsingShadowDecl(UD, *I, Previous))
6290      BuildUsingShadowDecl(S, UD, *I);
6291  }
6292
6293  return UD;
6294}
6295
6296/// Additional checks for a using declaration referring to a constructor name.
6297bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6298  if (UD->isTypeName()) {
6299    // FIXME: Cannot specify typename when specifying constructor
6300    return true;
6301  }
6302
6303  const Type *SourceType = UD->getQualifier()->getAsType();
6304  assert(SourceType &&
6305         "Using decl naming constructor doesn't have type in scope spec.");
6306  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6307
6308  // Check whether the named type is a direct base class.
6309  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6310  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6311  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6312       BaseIt != BaseE; ++BaseIt) {
6313    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6314    if (CanonicalSourceType == BaseType)
6315      break;
6316  }
6317
6318  if (BaseIt == BaseE) {
6319    // Did not find SourceType in the bases.
6320    Diag(UD->getUsingLocation(),
6321         diag::err_using_decl_constructor_not_in_direct_base)
6322      << UD->getNameInfo().getSourceRange()
6323      << QualType(SourceType, 0) << TargetClass;
6324    return true;
6325  }
6326
6327  BaseIt->setInheritConstructors();
6328
6329  return false;
6330}
6331
6332/// Checks that the given using declaration is not an invalid
6333/// redeclaration.  Note that this is checking only for the using decl
6334/// itself, not for any ill-formedness among the UsingShadowDecls.
6335bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6336                                       bool isTypeName,
6337                                       const CXXScopeSpec &SS,
6338                                       SourceLocation NameLoc,
6339                                       const LookupResult &Prev) {
6340  // C++03 [namespace.udecl]p8:
6341  // C++0x [namespace.udecl]p10:
6342  //   A using-declaration is a declaration and can therefore be used
6343  //   repeatedly where (and only where) multiple declarations are
6344  //   allowed.
6345  //
6346  // That's in non-member contexts.
6347  if (!CurContext->getRedeclContext()->isRecord())
6348    return false;
6349
6350  NestedNameSpecifier *Qual
6351    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6352
6353  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6354    NamedDecl *D = *I;
6355
6356    bool DTypename;
6357    NestedNameSpecifier *DQual;
6358    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6359      DTypename = UD->isTypeName();
6360      DQual = UD->getQualifier();
6361    } else if (UnresolvedUsingValueDecl *UD
6362                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6363      DTypename = false;
6364      DQual = UD->getQualifier();
6365    } else if (UnresolvedUsingTypenameDecl *UD
6366                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6367      DTypename = true;
6368      DQual = UD->getQualifier();
6369    } else continue;
6370
6371    // using decls differ if one says 'typename' and the other doesn't.
6372    // FIXME: non-dependent using decls?
6373    if (isTypeName != DTypename) continue;
6374
6375    // using decls differ if they name different scopes (but note that
6376    // template instantiation can cause this check to trigger when it
6377    // didn't before instantiation).
6378    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6379        Context.getCanonicalNestedNameSpecifier(DQual))
6380      continue;
6381
6382    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6383    Diag(D->getLocation(), diag::note_using_decl) << 1;
6384    return true;
6385  }
6386
6387  return false;
6388}
6389
6390
6391/// Checks that the given nested-name qualifier used in a using decl
6392/// in the current context is appropriately related to the current
6393/// scope.  If an error is found, diagnoses it and returns true.
6394bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6395                                   const CXXScopeSpec &SS,
6396                                   SourceLocation NameLoc) {
6397  DeclContext *NamedContext = computeDeclContext(SS);
6398
6399  if (!CurContext->isRecord()) {
6400    // C++03 [namespace.udecl]p3:
6401    // C++0x [namespace.udecl]p8:
6402    //   A using-declaration for a class member shall be a member-declaration.
6403
6404    // If we weren't able to compute a valid scope, it must be a
6405    // dependent class scope.
6406    if (!NamedContext || NamedContext->isRecord()) {
6407      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6408        << SS.getRange();
6409      return true;
6410    }
6411
6412    // Otherwise, everything is known to be fine.
6413    return false;
6414  }
6415
6416  // The current scope is a record.
6417
6418  // If the named context is dependent, we can't decide much.
6419  if (!NamedContext) {
6420    // FIXME: in C++0x, we can diagnose if we can prove that the
6421    // nested-name-specifier does not refer to a base class, which is
6422    // still possible in some cases.
6423
6424    // Otherwise we have to conservatively report that things might be
6425    // okay.
6426    return false;
6427  }
6428
6429  if (!NamedContext->isRecord()) {
6430    // Ideally this would point at the last name in the specifier,
6431    // but we don't have that level of source info.
6432    Diag(SS.getRange().getBegin(),
6433         diag::err_using_decl_nested_name_specifier_is_not_class)
6434      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6435    return true;
6436  }
6437
6438  if (!NamedContext->isDependentContext() &&
6439      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6440    return true;
6441
6442  if (getLangOptions().CPlusPlus0x) {
6443    // C++0x [namespace.udecl]p3:
6444    //   In a using-declaration used as a member-declaration, the
6445    //   nested-name-specifier shall name a base class of the class
6446    //   being defined.
6447
6448    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6449                                 cast<CXXRecordDecl>(NamedContext))) {
6450      if (CurContext == NamedContext) {
6451        Diag(NameLoc,
6452             diag::err_using_decl_nested_name_specifier_is_current_class)
6453          << SS.getRange();
6454        return true;
6455      }
6456
6457      Diag(SS.getRange().getBegin(),
6458           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6459        << (NestedNameSpecifier*) SS.getScopeRep()
6460        << cast<CXXRecordDecl>(CurContext)
6461        << SS.getRange();
6462      return true;
6463    }
6464
6465    return false;
6466  }
6467
6468  // C++03 [namespace.udecl]p4:
6469  //   A using-declaration used as a member-declaration shall refer
6470  //   to a member of a base class of the class being defined [etc.].
6471
6472  // Salient point: SS doesn't have to name a base class as long as
6473  // lookup only finds members from base classes.  Therefore we can
6474  // diagnose here only if we can prove that that can't happen,
6475  // i.e. if the class hierarchies provably don't intersect.
6476
6477  // TODO: it would be nice if "definitely valid" results were cached
6478  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6479  // need to be repeated.
6480
6481  struct UserData {
6482    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6483
6484    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6485      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6486      Data->Bases.insert(Base);
6487      return true;
6488    }
6489
6490    bool hasDependentBases(const CXXRecordDecl *Class) {
6491      return !Class->forallBases(collect, this);
6492    }
6493
6494    /// Returns true if the base is dependent or is one of the
6495    /// accumulated base classes.
6496    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6497      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6498      return !Data->Bases.count(Base);
6499    }
6500
6501    bool mightShareBases(const CXXRecordDecl *Class) {
6502      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6503    }
6504  };
6505
6506  UserData Data;
6507
6508  // Returns false if we find a dependent base.
6509  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6510    return false;
6511
6512  // Returns false if the class has a dependent base or if it or one
6513  // of its bases is present in the base set of the current context.
6514  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6515    return false;
6516
6517  Diag(SS.getRange().getBegin(),
6518       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6519    << (NestedNameSpecifier*) SS.getScopeRep()
6520    << cast<CXXRecordDecl>(CurContext)
6521    << SS.getRange();
6522
6523  return true;
6524}
6525
6526Decl *Sema::ActOnAliasDeclaration(Scope *S,
6527                                  AccessSpecifier AS,
6528                                  MultiTemplateParamsArg TemplateParamLists,
6529                                  SourceLocation UsingLoc,
6530                                  UnqualifiedId &Name,
6531                                  TypeResult Type) {
6532  // Skip up to the relevant declaration scope.
6533  while (S->getFlags() & Scope::TemplateParamScope)
6534    S = S->getParent();
6535  assert((S->getFlags() & Scope::DeclScope) &&
6536         "got alias-declaration outside of declaration scope");
6537
6538  if (Type.isInvalid())
6539    return 0;
6540
6541  bool Invalid = false;
6542  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6543  TypeSourceInfo *TInfo = 0;
6544  GetTypeFromParser(Type.get(), &TInfo);
6545
6546  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6547    return 0;
6548
6549  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6550                                      UPPC_DeclarationType)) {
6551    Invalid = true;
6552    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6553                                             TInfo->getTypeLoc().getBeginLoc());
6554  }
6555
6556  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6557  LookupName(Previous, S);
6558
6559  // Warn about shadowing the name of a template parameter.
6560  if (Previous.isSingleResult() &&
6561      Previous.getFoundDecl()->isTemplateParameter()) {
6562    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6563    Previous.clear();
6564  }
6565
6566  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6567         "name in alias declaration must be an identifier");
6568  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6569                                               Name.StartLocation,
6570                                               Name.Identifier, TInfo);
6571
6572  NewTD->setAccess(AS);
6573
6574  if (Invalid)
6575    NewTD->setInvalidDecl();
6576
6577  CheckTypedefForVariablyModifiedType(S, NewTD);
6578  Invalid |= NewTD->isInvalidDecl();
6579
6580  bool Redeclaration = false;
6581
6582  NamedDecl *NewND;
6583  if (TemplateParamLists.size()) {
6584    TypeAliasTemplateDecl *OldDecl = 0;
6585    TemplateParameterList *OldTemplateParams = 0;
6586
6587    if (TemplateParamLists.size() != 1) {
6588      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6589        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6590         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6591    }
6592    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6593
6594    // Only consider previous declarations in the same scope.
6595    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6596                         /*ExplicitInstantiationOrSpecialization*/false);
6597    if (!Previous.empty()) {
6598      Redeclaration = true;
6599
6600      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6601      if (!OldDecl && !Invalid) {
6602        Diag(UsingLoc, diag::err_redefinition_different_kind)
6603          << Name.Identifier;
6604
6605        NamedDecl *OldD = Previous.getRepresentativeDecl();
6606        if (OldD->getLocation().isValid())
6607          Diag(OldD->getLocation(), diag::note_previous_definition);
6608
6609        Invalid = true;
6610      }
6611
6612      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6613        if (TemplateParameterListsAreEqual(TemplateParams,
6614                                           OldDecl->getTemplateParameters(),
6615                                           /*Complain=*/true,
6616                                           TPL_TemplateMatch))
6617          OldTemplateParams = OldDecl->getTemplateParameters();
6618        else
6619          Invalid = true;
6620
6621        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6622        if (!Invalid &&
6623            !Context.hasSameType(OldTD->getUnderlyingType(),
6624                                 NewTD->getUnderlyingType())) {
6625          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6626          // but we can't reasonably accept it.
6627          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6628            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6629          if (OldTD->getLocation().isValid())
6630            Diag(OldTD->getLocation(), diag::note_previous_definition);
6631          Invalid = true;
6632        }
6633      }
6634    }
6635
6636    // Merge any previous default template arguments into our parameters,
6637    // and check the parameter list.
6638    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6639                                   TPC_TypeAliasTemplate))
6640      return 0;
6641
6642    TypeAliasTemplateDecl *NewDecl =
6643      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6644                                    Name.Identifier, TemplateParams,
6645                                    NewTD);
6646
6647    NewDecl->setAccess(AS);
6648
6649    if (Invalid)
6650      NewDecl->setInvalidDecl();
6651    else if (OldDecl)
6652      NewDecl->setPreviousDeclaration(OldDecl);
6653
6654    NewND = NewDecl;
6655  } else {
6656    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6657    NewND = NewTD;
6658  }
6659
6660  if (!Redeclaration)
6661    PushOnScopeChains(NewND, S);
6662
6663  return NewND;
6664}
6665
6666Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6667                                             SourceLocation NamespaceLoc,
6668                                             SourceLocation AliasLoc,
6669                                             IdentifierInfo *Alias,
6670                                             CXXScopeSpec &SS,
6671                                             SourceLocation IdentLoc,
6672                                             IdentifierInfo *Ident) {
6673
6674  // Lookup the namespace name.
6675  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6676  LookupParsedName(R, S, &SS);
6677
6678  // Check if we have a previous declaration with the same name.
6679  NamedDecl *PrevDecl
6680    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6681                       ForRedeclaration);
6682  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6683    PrevDecl = 0;
6684
6685  if (PrevDecl) {
6686    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6687      // We already have an alias with the same name that points to the same
6688      // namespace, so don't create a new one.
6689      // FIXME: At some point, we'll want to create the (redundant)
6690      // declaration to maintain better source information.
6691      if (!R.isAmbiguous() && !R.empty() &&
6692          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6693        return 0;
6694    }
6695
6696    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6697      diag::err_redefinition_different_kind;
6698    Diag(AliasLoc, DiagID) << Alias;
6699    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6700    return 0;
6701  }
6702
6703  if (R.isAmbiguous())
6704    return 0;
6705
6706  if (R.empty()) {
6707    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6708      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6709      return 0;
6710    }
6711  }
6712
6713  NamespaceAliasDecl *AliasDecl =
6714    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6715                               Alias, SS.getWithLocInContext(Context),
6716                               IdentLoc, R.getFoundDecl());
6717
6718  PushOnScopeChains(AliasDecl, S);
6719  return AliasDecl;
6720}
6721
6722namespace {
6723  /// \brief Scoped object used to handle the state changes required in Sema
6724  /// to implicitly define the body of a C++ member function;
6725  class ImplicitlyDefinedFunctionScope {
6726    Sema &S;
6727    Sema::ContextRAII SavedContext;
6728
6729  public:
6730    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6731      : S(S), SavedContext(S, Method)
6732    {
6733      S.PushFunctionScope();
6734      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6735    }
6736
6737    ~ImplicitlyDefinedFunctionScope() {
6738      S.PopExpressionEvaluationContext();
6739      S.PopFunctionScopeInfo();
6740    }
6741  };
6742}
6743
6744Sema::ImplicitExceptionSpecification
6745Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6746  // C++ [except.spec]p14:
6747  //   An implicitly declared special member function (Clause 12) shall have an
6748  //   exception-specification. [...]
6749  ImplicitExceptionSpecification ExceptSpec(Context);
6750  if (ClassDecl->isInvalidDecl())
6751    return ExceptSpec;
6752
6753  // Direct base-class constructors.
6754  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6755                                       BEnd = ClassDecl->bases_end();
6756       B != BEnd; ++B) {
6757    if (B->isVirtual()) // Handled below.
6758      continue;
6759
6760    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6761      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6762      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6763      // If this is a deleted function, add it anyway. This might be conformant
6764      // with the standard. This might not. I'm not sure. It might not matter.
6765      if (Constructor)
6766        ExceptSpec.CalledDecl(Constructor);
6767    }
6768  }
6769
6770  // Virtual base-class constructors.
6771  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6772                                       BEnd = ClassDecl->vbases_end();
6773       B != BEnd; ++B) {
6774    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6775      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6776      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6777      // If this is a deleted function, add it anyway. This might be conformant
6778      // with the standard. This might not. I'm not sure. It might not matter.
6779      if (Constructor)
6780        ExceptSpec.CalledDecl(Constructor);
6781    }
6782  }
6783
6784  // Field constructors.
6785  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6786                               FEnd = ClassDecl->field_end();
6787       F != FEnd; ++F) {
6788    if (F->hasInClassInitializer()) {
6789      if (Expr *E = F->getInClassInitializer())
6790        ExceptSpec.CalledExpr(E);
6791      else if (!F->isInvalidDecl())
6792        ExceptSpec.SetDelayed();
6793    } else if (const RecordType *RecordTy
6794              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6795      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6796      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6797      // If this is a deleted function, add it anyway. This might be conformant
6798      // with the standard. This might not. I'm not sure. It might not matter.
6799      // In particular, the problem is that this function never gets called. It
6800      // might just be ill-formed because this function attempts to refer to
6801      // a deleted function here.
6802      if (Constructor)
6803        ExceptSpec.CalledDecl(Constructor);
6804    }
6805  }
6806
6807  return ExceptSpec;
6808}
6809
6810CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6811                                                     CXXRecordDecl *ClassDecl) {
6812  // C++ [class.ctor]p5:
6813  //   A default constructor for a class X is a constructor of class X
6814  //   that can be called without an argument. If there is no
6815  //   user-declared constructor for class X, a default constructor is
6816  //   implicitly declared. An implicitly-declared default constructor
6817  //   is an inline public member of its class.
6818  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6819         "Should not build implicit default constructor!");
6820
6821  ImplicitExceptionSpecification Spec =
6822    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6823  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6824
6825  // Create the actual constructor declaration.
6826  CanQualType ClassType
6827    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6828  SourceLocation ClassLoc = ClassDecl->getLocation();
6829  DeclarationName Name
6830    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6831  DeclarationNameInfo NameInfo(Name, ClassLoc);
6832  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6833      Context, ClassDecl, ClassLoc, NameInfo,
6834      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6835      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6836      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6837        getLangOptions().CPlusPlus0x);
6838  DefaultCon->setAccess(AS_public);
6839  DefaultCon->setDefaulted();
6840  DefaultCon->setImplicit();
6841  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6842
6843  // Note that we have declared this constructor.
6844  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6845
6846  if (Scope *S = getScopeForContext(ClassDecl))
6847    PushOnScopeChains(DefaultCon, S, false);
6848  ClassDecl->addDecl(DefaultCon);
6849
6850  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6851    DefaultCon->setDeletedAsWritten();
6852
6853  return DefaultCon;
6854}
6855
6856void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6857                                            CXXConstructorDecl *Constructor) {
6858  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6859          !Constructor->doesThisDeclarationHaveABody() &&
6860          !Constructor->isDeleted()) &&
6861    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6862
6863  CXXRecordDecl *ClassDecl = Constructor->getParent();
6864  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6865
6866  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6867  DiagnosticErrorTrap Trap(Diags);
6868  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6869      Trap.hasErrorOccurred()) {
6870    Diag(CurrentLocation, diag::note_member_synthesized_at)
6871      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6872    Constructor->setInvalidDecl();
6873    return;
6874  }
6875
6876  SourceLocation Loc = Constructor->getLocation();
6877  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6878
6879  Constructor->setUsed();
6880  MarkVTableUsed(CurrentLocation, ClassDecl);
6881
6882  if (ASTMutationListener *L = getASTMutationListener()) {
6883    L->CompletedImplicitDefinition(Constructor);
6884  }
6885}
6886
6887/// Get any existing defaulted default constructor for the given class. Do not
6888/// implicitly define one if it does not exist.
6889static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6890                                                             CXXRecordDecl *D) {
6891  ASTContext &Context = Self.Context;
6892  QualType ClassType = Context.getTypeDeclType(D);
6893  DeclarationName ConstructorName
6894    = Context.DeclarationNames.getCXXConstructorName(
6895                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6896
6897  DeclContext::lookup_const_iterator Con, ConEnd;
6898  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6899       Con != ConEnd; ++Con) {
6900    // A function template cannot be defaulted.
6901    if (isa<FunctionTemplateDecl>(*Con))
6902      continue;
6903
6904    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6905    if (Constructor->isDefaultConstructor())
6906      return Constructor->isDefaulted() ? Constructor : 0;
6907  }
6908  return 0;
6909}
6910
6911void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6912  if (!D) return;
6913  AdjustDeclIfTemplate(D);
6914
6915  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6916  CXXConstructorDecl *CtorDecl
6917    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6918
6919  if (!CtorDecl) return;
6920
6921  // Compute the exception specification for the default constructor.
6922  const FunctionProtoType *CtorTy =
6923    CtorDecl->getType()->castAs<FunctionProtoType>();
6924  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6925    ImplicitExceptionSpecification Spec =
6926      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6927    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6928    assert(EPI.ExceptionSpecType != EST_Delayed);
6929
6930    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6931  }
6932
6933  // If the default constructor is explicitly defaulted, checking the exception
6934  // specification is deferred until now.
6935  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6936      !ClassDecl->isDependentType())
6937    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6938}
6939
6940void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6941  // We start with an initial pass over the base classes to collect those that
6942  // inherit constructors from. If there are none, we can forgo all further
6943  // processing.
6944  typedef SmallVector<const RecordType *, 4> BasesVector;
6945  BasesVector BasesToInheritFrom;
6946  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6947                                          BaseE = ClassDecl->bases_end();
6948         BaseIt != BaseE; ++BaseIt) {
6949    if (BaseIt->getInheritConstructors()) {
6950      QualType Base = BaseIt->getType();
6951      if (Base->isDependentType()) {
6952        // If we inherit constructors from anything that is dependent, just
6953        // abort processing altogether. We'll get another chance for the
6954        // instantiations.
6955        return;
6956      }
6957      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6958    }
6959  }
6960  if (BasesToInheritFrom.empty())
6961    return;
6962
6963  // Now collect the constructors that we already have in the current class.
6964  // Those take precedence over inherited constructors.
6965  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6966  //   unless there is a user-declared constructor with the same signature in
6967  //   the class where the using-declaration appears.
6968  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6969  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6970                                    CtorE = ClassDecl->ctor_end();
6971       CtorIt != CtorE; ++CtorIt) {
6972    ExistingConstructors.insert(
6973        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6974  }
6975
6976  Scope *S = getScopeForContext(ClassDecl);
6977  DeclarationName CreatedCtorName =
6978      Context.DeclarationNames.getCXXConstructorName(
6979          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6980
6981  // Now comes the true work.
6982  // First, we keep a map from constructor types to the base that introduced
6983  // them. Needed for finding conflicting constructors. We also keep the
6984  // actually inserted declarations in there, for pretty diagnostics.
6985  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6986  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6987  ConstructorToSourceMap InheritedConstructors;
6988  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6989                             BaseE = BasesToInheritFrom.end();
6990       BaseIt != BaseE; ++BaseIt) {
6991    const RecordType *Base = *BaseIt;
6992    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6993    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6994    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6995                                      CtorE = BaseDecl->ctor_end();
6996         CtorIt != CtorE; ++CtorIt) {
6997      // Find the using declaration for inheriting this base's constructors.
6998      DeclarationName Name =
6999          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7000      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7001          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7002      SourceLocation UsingLoc = UD ? UD->getLocation() :
7003                                     ClassDecl->getLocation();
7004
7005      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7006      //   from the class X named in the using-declaration consists of actual
7007      //   constructors and notional constructors that result from the
7008      //   transformation of defaulted parameters as follows:
7009      //   - all non-template default constructors of X, and
7010      //   - for each non-template constructor of X that has at least one
7011      //     parameter with a default argument, the set of constructors that
7012      //     results from omitting any ellipsis parameter specification and
7013      //     successively omitting parameters with a default argument from the
7014      //     end of the parameter-type-list.
7015      CXXConstructorDecl *BaseCtor = *CtorIt;
7016      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7017      const FunctionProtoType *BaseCtorType =
7018          BaseCtor->getType()->getAs<FunctionProtoType>();
7019
7020      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7021                    maxParams = BaseCtor->getNumParams();
7022           params <= maxParams; ++params) {
7023        // Skip default constructors. They're never inherited.
7024        if (params == 0)
7025          continue;
7026        // Skip copy and move constructors for the same reason.
7027        if (CanBeCopyOrMove && params == 1)
7028          continue;
7029
7030        // Build up a function type for this particular constructor.
7031        // FIXME: The working paper does not consider that the exception spec
7032        // for the inheriting constructor might be larger than that of the
7033        // source. This code doesn't yet, either. When it does, this code will
7034        // need to be delayed until after exception specifications and in-class
7035        // member initializers are attached.
7036        const Type *NewCtorType;
7037        if (params == maxParams)
7038          NewCtorType = BaseCtorType;
7039        else {
7040          SmallVector<QualType, 16> Args;
7041          for (unsigned i = 0; i < params; ++i) {
7042            Args.push_back(BaseCtorType->getArgType(i));
7043          }
7044          FunctionProtoType::ExtProtoInfo ExtInfo =
7045              BaseCtorType->getExtProtoInfo();
7046          ExtInfo.Variadic = false;
7047          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7048                                                Args.data(), params, ExtInfo)
7049                       .getTypePtr();
7050        }
7051        const Type *CanonicalNewCtorType =
7052            Context.getCanonicalType(NewCtorType);
7053
7054        // Now that we have the type, first check if the class already has a
7055        // constructor with this signature.
7056        if (ExistingConstructors.count(CanonicalNewCtorType))
7057          continue;
7058
7059        // Then we check if we have already declared an inherited constructor
7060        // with this signature.
7061        std::pair<ConstructorToSourceMap::iterator, bool> result =
7062            InheritedConstructors.insert(std::make_pair(
7063                CanonicalNewCtorType,
7064                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7065        if (!result.second) {
7066          // Already in the map. If it came from a different class, that's an
7067          // error. Not if it's from the same.
7068          CanQualType PreviousBase = result.first->second.first;
7069          if (CanonicalBase != PreviousBase) {
7070            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7071            const CXXConstructorDecl *PrevBaseCtor =
7072                PrevCtor->getInheritedConstructor();
7073            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7074
7075            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7076            Diag(BaseCtor->getLocation(),
7077                 diag::note_using_decl_constructor_conflict_current_ctor);
7078            Diag(PrevBaseCtor->getLocation(),
7079                 diag::note_using_decl_constructor_conflict_previous_ctor);
7080            Diag(PrevCtor->getLocation(),
7081                 diag::note_using_decl_constructor_conflict_previous_using);
7082          }
7083          continue;
7084        }
7085
7086        // OK, we're there, now add the constructor.
7087        // C++0x [class.inhctor]p8: [...] that would be performed by a
7088        //   user-written inline constructor [...]
7089        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7090        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7091            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7092            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7093            /*ImplicitlyDeclared=*/true,
7094            // FIXME: Due to a defect in the standard, we treat inherited
7095            // constructors as constexpr even if that makes them ill-formed.
7096            /*Constexpr=*/BaseCtor->isConstexpr());
7097        NewCtor->setAccess(BaseCtor->getAccess());
7098
7099        // Build up the parameter decls and add them.
7100        SmallVector<ParmVarDecl *, 16> ParamDecls;
7101        for (unsigned i = 0; i < params; ++i) {
7102          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7103                                                   UsingLoc, UsingLoc,
7104                                                   /*IdentifierInfo=*/0,
7105                                                   BaseCtorType->getArgType(i),
7106                                                   /*TInfo=*/0, SC_None,
7107                                                   SC_None, /*DefaultArg=*/0));
7108        }
7109        NewCtor->setParams(ParamDecls);
7110        NewCtor->setInheritedConstructor(BaseCtor);
7111
7112        PushOnScopeChains(NewCtor, S, false);
7113        ClassDecl->addDecl(NewCtor);
7114        result.first->second.second = NewCtor;
7115      }
7116    }
7117  }
7118}
7119
7120Sema::ImplicitExceptionSpecification
7121Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7122  // C++ [except.spec]p14:
7123  //   An implicitly declared special member function (Clause 12) shall have
7124  //   an exception-specification.
7125  ImplicitExceptionSpecification ExceptSpec(Context);
7126  if (ClassDecl->isInvalidDecl())
7127    return ExceptSpec;
7128
7129  // Direct base-class destructors.
7130  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7131                                       BEnd = ClassDecl->bases_end();
7132       B != BEnd; ++B) {
7133    if (B->isVirtual()) // Handled below.
7134      continue;
7135
7136    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7137      ExceptSpec.CalledDecl(
7138                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7139  }
7140
7141  // Virtual base-class destructors.
7142  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7143                                       BEnd = ClassDecl->vbases_end();
7144       B != BEnd; ++B) {
7145    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7146      ExceptSpec.CalledDecl(
7147                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7148  }
7149
7150  // Field destructors.
7151  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7152                               FEnd = ClassDecl->field_end();
7153       F != FEnd; ++F) {
7154    if (const RecordType *RecordTy
7155        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7156      ExceptSpec.CalledDecl(
7157                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7158  }
7159
7160  return ExceptSpec;
7161}
7162
7163CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7164  // C++ [class.dtor]p2:
7165  //   If a class has no user-declared destructor, a destructor is
7166  //   declared implicitly. An implicitly-declared destructor is an
7167  //   inline public member of its class.
7168
7169  ImplicitExceptionSpecification Spec =
7170      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7171  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7172
7173  // Create the actual destructor declaration.
7174  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7175
7176  CanQualType ClassType
7177    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7178  SourceLocation ClassLoc = ClassDecl->getLocation();
7179  DeclarationName Name
7180    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7181  DeclarationNameInfo NameInfo(Name, ClassLoc);
7182  CXXDestructorDecl *Destructor
7183      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7184                                  /*isInline=*/true,
7185                                  /*isImplicitlyDeclared=*/true);
7186  Destructor->setAccess(AS_public);
7187  Destructor->setDefaulted();
7188  Destructor->setImplicit();
7189  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7190
7191  // Note that we have declared this destructor.
7192  ++ASTContext::NumImplicitDestructorsDeclared;
7193
7194  // Introduce this destructor into its scope.
7195  if (Scope *S = getScopeForContext(ClassDecl))
7196    PushOnScopeChains(Destructor, S, false);
7197  ClassDecl->addDecl(Destructor);
7198
7199  // This could be uniqued if it ever proves significant.
7200  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7201
7202  AddOverriddenMethods(ClassDecl, Destructor);
7203
7204  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7205    Destructor->setDeletedAsWritten();
7206
7207  return Destructor;
7208}
7209
7210void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7211                                    CXXDestructorDecl *Destructor) {
7212  assert((Destructor->isDefaulted() &&
7213          !Destructor->doesThisDeclarationHaveABody() &&
7214          !Destructor->isDeleted()) &&
7215         "DefineImplicitDestructor - call it for implicit default dtor");
7216  CXXRecordDecl *ClassDecl = Destructor->getParent();
7217  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7218
7219  if (Destructor->isInvalidDecl())
7220    return;
7221
7222  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7223
7224  DiagnosticErrorTrap Trap(Diags);
7225  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7226                                         Destructor->getParent());
7227
7228  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7229    Diag(CurrentLocation, diag::note_member_synthesized_at)
7230      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7231
7232    Destructor->setInvalidDecl();
7233    return;
7234  }
7235
7236  SourceLocation Loc = Destructor->getLocation();
7237  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7238  Destructor->setImplicitlyDefined(true);
7239  Destructor->setUsed();
7240  MarkVTableUsed(CurrentLocation, ClassDecl);
7241
7242  if (ASTMutationListener *L = getASTMutationListener()) {
7243    L->CompletedImplicitDefinition(Destructor);
7244  }
7245}
7246
7247void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7248                                         CXXDestructorDecl *destructor) {
7249  // C++11 [class.dtor]p3:
7250  //   A declaration of a destructor that does not have an exception-
7251  //   specification is implicitly considered to have the same exception-
7252  //   specification as an implicit declaration.
7253  const FunctionProtoType *dtorType = destructor->getType()->
7254                                        getAs<FunctionProtoType>();
7255  if (dtorType->hasExceptionSpec())
7256    return;
7257
7258  ImplicitExceptionSpecification exceptSpec =
7259      ComputeDefaultedDtorExceptionSpec(classDecl);
7260
7261  // Replace the destructor's type, building off the existing one. Fortunately,
7262  // the only thing of interest in the destructor type is its extended info.
7263  // The return and arguments are fixed.
7264  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7265  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7266  epi.NumExceptions = exceptSpec.size();
7267  epi.Exceptions = exceptSpec.data();
7268  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7269
7270  destructor->setType(ty);
7271
7272  // FIXME: If the destructor has a body that could throw, and the newly created
7273  // spec doesn't allow exceptions, we should emit a warning, because this
7274  // change in behavior can break conforming C++03 programs at runtime.
7275  // However, we don't have a body yet, so it needs to be done somewhere else.
7276}
7277
7278/// \brief Builds a statement that copies/moves the given entity from \p From to
7279/// \c To.
7280///
7281/// This routine is used to copy/move the members of a class with an
7282/// implicitly-declared copy/move assignment operator. When the entities being
7283/// copied are arrays, this routine builds for loops to copy them.
7284///
7285/// \param S The Sema object used for type-checking.
7286///
7287/// \param Loc The location where the implicit copy/move is being generated.
7288///
7289/// \param T The type of the expressions being copied/moved. Both expressions
7290/// must have this type.
7291///
7292/// \param To The expression we are copying/moving to.
7293///
7294/// \param From The expression we are copying/moving from.
7295///
7296/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7297/// Otherwise, it's a non-static member subobject.
7298///
7299/// \param Copying Whether we're copying or moving.
7300///
7301/// \param Depth Internal parameter recording the depth of the recursion.
7302///
7303/// \returns A statement or a loop that copies the expressions.
7304static StmtResult
7305BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7306                      Expr *To, Expr *From,
7307                      bool CopyingBaseSubobject, bool Copying,
7308                      unsigned Depth = 0) {
7309  // C++0x [class.copy]p28:
7310  //   Each subobject is assigned in the manner appropriate to its type:
7311  //
7312  //     - if the subobject is of class type, as if by a call to operator= with
7313  //       the subobject as the object expression and the corresponding
7314  //       subobject of x as a single function argument (as if by explicit
7315  //       qualification; that is, ignoring any possible virtual overriding
7316  //       functions in more derived classes);
7317  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7318    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7319
7320    // Look for operator=.
7321    DeclarationName Name
7322      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7323    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7324    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7325
7326    // Filter out any result that isn't a copy/move-assignment operator.
7327    LookupResult::Filter F = OpLookup.makeFilter();
7328    while (F.hasNext()) {
7329      NamedDecl *D = F.next();
7330      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7331        if (Copying ? Method->isCopyAssignmentOperator() :
7332                      Method->isMoveAssignmentOperator())
7333          continue;
7334
7335      F.erase();
7336    }
7337    F.done();
7338
7339    // Suppress the protected check (C++ [class.protected]) for each of the
7340    // assignment operators we found. This strange dance is required when
7341    // we're assigning via a base classes's copy-assignment operator. To
7342    // ensure that we're getting the right base class subobject (without
7343    // ambiguities), we need to cast "this" to that subobject type; to
7344    // ensure that we don't go through the virtual call mechanism, we need
7345    // to qualify the operator= name with the base class (see below). However,
7346    // this means that if the base class has a protected copy assignment
7347    // operator, the protected member access check will fail. So, we
7348    // rewrite "protected" access to "public" access in this case, since we
7349    // know by construction that we're calling from a derived class.
7350    if (CopyingBaseSubobject) {
7351      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7352           L != LEnd; ++L) {
7353        if (L.getAccess() == AS_protected)
7354          L.setAccess(AS_public);
7355      }
7356    }
7357
7358    // Create the nested-name-specifier that will be used to qualify the
7359    // reference to operator=; this is required to suppress the virtual
7360    // call mechanism.
7361    CXXScopeSpec SS;
7362    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7363    SS.MakeTrivial(S.Context,
7364                   NestedNameSpecifier::Create(S.Context, 0, false,
7365                                               CanonicalT),
7366                   Loc);
7367
7368    // Create the reference to operator=.
7369    ExprResult OpEqualRef
7370      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7371                                   /*TemplateKWLoc=*/SourceLocation(),
7372                                   /*FirstQualifierInScope=*/0,
7373                                   OpLookup,
7374                                   /*TemplateArgs=*/0,
7375                                   /*SuppressQualifierCheck=*/true);
7376    if (OpEqualRef.isInvalid())
7377      return StmtError();
7378
7379    // Build the call to the assignment operator.
7380
7381    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7382                                                  OpEqualRef.takeAs<Expr>(),
7383                                                  Loc, &From, 1, Loc);
7384    if (Call.isInvalid())
7385      return StmtError();
7386
7387    return S.Owned(Call.takeAs<Stmt>());
7388  }
7389
7390  //     - if the subobject is of scalar type, the built-in assignment
7391  //       operator is used.
7392  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7393  if (!ArrayTy) {
7394    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7395    if (Assignment.isInvalid())
7396      return StmtError();
7397
7398    return S.Owned(Assignment.takeAs<Stmt>());
7399  }
7400
7401  //     - if the subobject is an array, each element is assigned, in the
7402  //       manner appropriate to the element type;
7403
7404  // Construct a loop over the array bounds, e.g.,
7405  //
7406  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7407  //
7408  // that will copy each of the array elements.
7409  QualType SizeType = S.Context.getSizeType();
7410
7411  // Create the iteration variable.
7412  IdentifierInfo *IterationVarName = 0;
7413  {
7414    SmallString<8> Str;
7415    llvm::raw_svector_ostream OS(Str);
7416    OS << "__i" << Depth;
7417    IterationVarName = &S.Context.Idents.get(OS.str());
7418  }
7419  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7420                                          IterationVarName, SizeType,
7421                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7422                                          SC_None, SC_None);
7423
7424  // Initialize the iteration variable to zero.
7425  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7426  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7427
7428  // Create a reference to the iteration variable; we'll use this several
7429  // times throughout.
7430  Expr *IterationVarRef
7431    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7432  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7433  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7434  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7435
7436  // Create the DeclStmt that holds the iteration variable.
7437  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7438
7439  // Create the comparison against the array bound.
7440  llvm::APInt Upper
7441    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7442  Expr *Comparison
7443    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7444                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7445                                     BO_NE, S.Context.BoolTy,
7446                                     VK_RValue, OK_Ordinary, Loc);
7447
7448  // Create the pre-increment of the iteration variable.
7449  Expr *Increment
7450    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7451                                    VK_LValue, OK_Ordinary, Loc);
7452
7453  // Subscript the "from" and "to" expressions with the iteration variable.
7454  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7455                                                         IterationVarRefRVal,
7456                                                         Loc));
7457  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7458                                                       IterationVarRefRVal,
7459                                                       Loc));
7460  if (!Copying) // Cast to rvalue
7461    From = CastForMoving(S, From);
7462
7463  // Build the copy/move for an individual element of the array.
7464  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7465                                          To, From, CopyingBaseSubobject,
7466                                          Copying, Depth + 1);
7467  if (Copy.isInvalid())
7468    return StmtError();
7469
7470  // Construct the loop that copies all elements of this array.
7471  return S.ActOnForStmt(Loc, Loc, InitStmt,
7472                        S.MakeFullExpr(Comparison),
7473                        0, S.MakeFullExpr(Increment),
7474                        Loc, Copy.take());
7475}
7476
7477std::pair<Sema::ImplicitExceptionSpecification, bool>
7478Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7479                                                   CXXRecordDecl *ClassDecl) {
7480  if (ClassDecl->isInvalidDecl())
7481    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7482
7483  // C++ [class.copy]p10:
7484  //   If the class definition does not explicitly declare a copy
7485  //   assignment operator, one is declared implicitly.
7486  //   The implicitly-defined copy assignment operator for a class X
7487  //   will have the form
7488  //
7489  //       X& X::operator=(const X&)
7490  //
7491  //   if
7492  bool HasConstCopyAssignment = true;
7493
7494  //       -- each direct base class B of X has a copy assignment operator
7495  //          whose parameter is of type const B&, const volatile B& or B,
7496  //          and
7497  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7498                                       BaseEnd = ClassDecl->bases_end();
7499       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7500    // We'll handle this below
7501    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7502      continue;
7503
7504    assert(!Base->getType()->isDependentType() &&
7505           "Cannot generate implicit members for class with dependent bases.");
7506    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7507    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7508                            &HasConstCopyAssignment);
7509  }
7510
7511  // In C++11, the above citation has "or virtual" added
7512  if (LangOpts.CPlusPlus0x) {
7513    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7514                                         BaseEnd = ClassDecl->vbases_end();
7515         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7516      assert(!Base->getType()->isDependentType() &&
7517             "Cannot generate implicit members for class with dependent bases.");
7518      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7519      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7520                              &HasConstCopyAssignment);
7521    }
7522  }
7523
7524  //       -- for all the nonstatic data members of X that are of a class
7525  //          type M (or array thereof), each such class type has a copy
7526  //          assignment operator whose parameter is of type const M&,
7527  //          const volatile M& or M.
7528  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7529                                  FieldEnd = ClassDecl->field_end();
7530       HasConstCopyAssignment && Field != FieldEnd;
7531       ++Field) {
7532    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7533    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7534      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7535                              &HasConstCopyAssignment);
7536    }
7537  }
7538
7539  //   Otherwise, the implicitly declared copy assignment operator will
7540  //   have the form
7541  //
7542  //       X& X::operator=(X&)
7543
7544  // C++ [except.spec]p14:
7545  //   An implicitly declared special member function (Clause 12) shall have an
7546  //   exception-specification. [...]
7547
7548  // It is unspecified whether or not an implicit copy assignment operator
7549  // attempts to deduplicate calls to assignment operators of virtual bases are
7550  // made. As such, this exception specification is effectively unspecified.
7551  // Based on a similar decision made for constness in C++0x, we're erring on
7552  // the side of assuming such calls to be made regardless of whether they
7553  // actually happen.
7554  ImplicitExceptionSpecification ExceptSpec(Context);
7555  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7556  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7557                                       BaseEnd = ClassDecl->bases_end();
7558       Base != BaseEnd; ++Base) {
7559    if (Base->isVirtual())
7560      continue;
7561
7562    CXXRecordDecl *BaseClassDecl
7563      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7564    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7565                                                            ArgQuals, false, 0))
7566      ExceptSpec.CalledDecl(CopyAssign);
7567  }
7568
7569  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7570                                       BaseEnd = ClassDecl->vbases_end();
7571       Base != BaseEnd; ++Base) {
7572    CXXRecordDecl *BaseClassDecl
7573      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7574    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7575                                                            ArgQuals, false, 0))
7576      ExceptSpec.CalledDecl(CopyAssign);
7577  }
7578
7579  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7580                                  FieldEnd = ClassDecl->field_end();
7581       Field != FieldEnd;
7582       ++Field) {
7583    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7584    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7585      if (CXXMethodDecl *CopyAssign =
7586          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7587        ExceptSpec.CalledDecl(CopyAssign);
7588    }
7589  }
7590
7591  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7592}
7593
7594CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7595  // Note: The following rules are largely analoguous to the copy
7596  // constructor rules. Note that virtual bases are not taken into account
7597  // for determining the argument type of the operator. Note also that
7598  // operators taking an object instead of a reference are allowed.
7599
7600  ImplicitExceptionSpecification Spec(Context);
7601  bool Const;
7602  llvm::tie(Spec, Const) =
7603    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7604
7605  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7606  QualType RetType = Context.getLValueReferenceType(ArgType);
7607  if (Const)
7608    ArgType = ArgType.withConst();
7609  ArgType = Context.getLValueReferenceType(ArgType);
7610
7611  //   An implicitly-declared copy assignment operator is an inline public
7612  //   member of its class.
7613  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7614  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7615  SourceLocation ClassLoc = ClassDecl->getLocation();
7616  DeclarationNameInfo NameInfo(Name, ClassLoc);
7617  CXXMethodDecl *CopyAssignment
7618    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7619                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7620                            /*TInfo=*/0, /*isStatic=*/false,
7621                            /*StorageClassAsWritten=*/SC_None,
7622                            /*isInline=*/true, /*isConstexpr=*/false,
7623                            SourceLocation());
7624  CopyAssignment->setAccess(AS_public);
7625  CopyAssignment->setDefaulted();
7626  CopyAssignment->setImplicit();
7627  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7628
7629  // Add the parameter to the operator.
7630  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7631                                               ClassLoc, ClassLoc, /*Id=*/0,
7632                                               ArgType, /*TInfo=*/0,
7633                                               SC_None,
7634                                               SC_None, 0);
7635  CopyAssignment->setParams(FromParam);
7636
7637  // Note that we have added this copy-assignment operator.
7638  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7639
7640  if (Scope *S = getScopeForContext(ClassDecl))
7641    PushOnScopeChains(CopyAssignment, S, false);
7642  ClassDecl->addDecl(CopyAssignment);
7643
7644  // C++0x [class.copy]p19:
7645  //   ....  If the class definition does not explicitly declare a copy
7646  //   assignment operator, there is no user-declared move constructor, and
7647  //   there is no user-declared move assignment operator, a copy assignment
7648  //   operator is implicitly declared as defaulted.
7649  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7650          !getLangOptions().MicrosoftMode) ||
7651      ClassDecl->hasUserDeclaredMoveAssignment() ||
7652      ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7653    CopyAssignment->setDeletedAsWritten();
7654
7655  AddOverriddenMethods(ClassDecl, CopyAssignment);
7656  return CopyAssignment;
7657}
7658
7659void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7660                                        CXXMethodDecl *CopyAssignOperator) {
7661  assert((CopyAssignOperator->isDefaulted() &&
7662          CopyAssignOperator->isOverloadedOperator() &&
7663          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7664          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7665          !CopyAssignOperator->isDeleted()) &&
7666         "DefineImplicitCopyAssignment called for wrong function");
7667
7668  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7669
7670  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7671    CopyAssignOperator->setInvalidDecl();
7672    return;
7673  }
7674
7675  CopyAssignOperator->setUsed();
7676
7677  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7678  DiagnosticErrorTrap Trap(Diags);
7679
7680  // C++0x [class.copy]p30:
7681  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7682  //   for a non-union class X performs memberwise copy assignment of its
7683  //   subobjects. The direct base classes of X are assigned first, in the
7684  //   order of their declaration in the base-specifier-list, and then the
7685  //   immediate non-static data members of X are assigned, in the order in
7686  //   which they were declared in the class definition.
7687
7688  // The statements that form the synthesized function body.
7689  ASTOwningVector<Stmt*> Statements(*this);
7690
7691  // The parameter for the "other" object, which we are copying from.
7692  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7693  Qualifiers OtherQuals = Other->getType().getQualifiers();
7694  QualType OtherRefType = Other->getType();
7695  if (const LValueReferenceType *OtherRef
7696                                = OtherRefType->getAs<LValueReferenceType>()) {
7697    OtherRefType = OtherRef->getPointeeType();
7698    OtherQuals = OtherRefType.getQualifiers();
7699  }
7700
7701  // Our location for everything implicitly-generated.
7702  SourceLocation Loc = CopyAssignOperator->getLocation();
7703
7704  // Construct a reference to the "other" object. We'll be using this
7705  // throughout the generated ASTs.
7706  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7707  assert(OtherRef && "Reference to parameter cannot fail!");
7708
7709  // Construct the "this" pointer. We'll be using this throughout the generated
7710  // ASTs.
7711  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7712  assert(This && "Reference to this cannot fail!");
7713
7714  // Assign base classes.
7715  bool Invalid = false;
7716  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7717       E = ClassDecl->bases_end(); Base != E; ++Base) {
7718    // Form the assignment:
7719    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7720    QualType BaseType = Base->getType().getUnqualifiedType();
7721    if (!BaseType->isRecordType()) {
7722      Invalid = true;
7723      continue;
7724    }
7725
7726    CXXCastPath BasePath;
7727    BasePath.push_back(Base);
7728
7729    // Construct the "from" expression, which is an implicit cast to the
7730    // appropriately-qualified base type.
7731    Expr *From = OtherRef;
7732    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7733                             CK_UncheckedDerivedToBase,
7734                             VK_LValue, &BasePath).take();
7735
7736    // Dereference "this".
7737    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7738
7739    // Implicitly cast "this" to the appropriately-qualified base type.
7740    To = ImpCastExprToType(To.take(),
7741                           Context.getCVRQualifiedType(BaseType,
7742                                     CopyAssignOperator->getTypeQualifiers()),
7743                           CK_UncheckedDerivedToBase,
7744                           VK_LValue, &BasePath);
7745
7746    // Build the copy.
7747    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7748                                            To.get(), From,
7749                                            /*CopyingBaseSubobject=*/true,
7750                                            /*Copying=*/true);
7751    if (Copy.isInvalid()) {
7752      Diag(CurrentLocation, diag::note_member_synthesized_at)
7753        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7754      CopyAssignOperator->setInvalidDecl();
7755      return;
7756    }
7757
7758    // Success! Record the copy.
7759    Statements.push_back(Copy.takeAs<Expr>());
7760  }
7761
7762  // \brief Reference to the __builtin_memcpy function.
7763  Expr *BuiltinMemCpyRef = 0;
7764  // \brief Reference to the __builtin_objc_memmove_collectable function.
7765  Expr *CollectableMemCpyRef = 0;
7766
7767  // Assign non-static members.
7768  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7769                                  FieldEnd = ClassDecl->field_end();
7770       Field != FieldEnd; ++Field) {
7771    if (Field->isUnnamedBitfield())
7772      continue;
7773
7774    // Check for members of reference type; we can't copy those.
7775    if (Field->getType()->isReferenceType()) {
7776      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7777        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7778      Diag(Field->getLocation(), diag::note_declared_at);
7779      Diag(CurrentLocation, diag::note_member_synthesized_at)
7780        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7781      Invalid = true;
7782      continue;
7783    }
7784
7785    // Check for members of const-qualified, non-class type.
7786    QualType BaseType = Context.getBaseElementType(Field->getType());
7787    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7788      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7789        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7790      Diag(Field->getLocation(), diag::note_declared_at);
7791      Diag(CurrentLocation, diag::note_member_synthesized_at)
7792        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7793      Invalid = true;
7794      continue;
7795    }
7796
7797    // Suppress assigning zero-width bitfields.
7798    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7799      continue;
7800
7801    QualType FieldType = Field->getType().getNonReferenceType();
7802    if (FieldType->isIncompleteArrayType()) {
7803      assert(ClassDecl->hasFlexibleArrayMember() &&
7804             "Incomplete array type is not valid");
7805      continue;
7806    }
7807
7808    // Build references to the field in the object we're copying from and to.
7809    CXXScopeSpec SS; // Intentionally empty
7810    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7811                              LookupMemberName);
7812    MemberLookup.addDecl(*Field);
7813    MemberLookup.resolveKind();
7814    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7815                                               Loc, /*IsArrow=*/false,
7816                                               SS, SourceLocation(), 0,
7817                                               MemberLookup, 0);
7818    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7819                                             Loc, /*IsArrow=*/true,
7820                                             SS, SourceLocation(), 0,
7821                                             MemberLookup, 0);
7822    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7823    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7824
7825    // If the field should be copied with __builtin_memcpy rather than via
7826    // explicit assignments, do so. This optimization only applies for arrays
7827    // of scalars and arrays of class type with trivial copy-assignment
7828    // operators.
7829    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7830        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7831      // Compute the size of the memory buffer to be copied.
7832      QualType SizeType = Context.getSizeType();
7833      llvm::APInt Size(Context.getTypeSize(SizeType),
7834                       Context.getTypeSizeInChars(BaseType).getQuantity());
7835      for (const ConstantArrayType *Array
7836              = Context.getAsConstantArrayType(FieldType);
7837           Array;
7838           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7839        llvm::APInt ArraySize
7840          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7841        Size *= ArraySize;
7842      }
7843
7844      // Take the address of the field references for "from" and "to".
7845      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7846      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7847
7848      bool NeedsCollectableMemCpy =
7849          (BaseType->isRecordType() &&
7850           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7851
7852      if (NeedsCollectableMemCpy) {
7853        if (!CollectableMemCpyRef) {
7854          // Create a reference to the __builtin_objc_memmove_collectable function.
7855          LookupResult R(*this,
7856                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7857                         Loc, LookupOrdinaryName);
7858          LookupName(R, TUScope, true);
7859
7860          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7861          if (!CollectableMemCpy) {
7862            // Something went horribly wrong earlier, and we will have
7863            // complained about it.
7864            Invalid = true;
7865            continue;
7866          }
7867
7868          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7869                                                  CollectableMemCpy->getType(),
7870                                                  VK_LValue, Loc, 0).take();
7871          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7872        }
7873      }
7874      // Create a reference to the __builtin_memcpy builtin function.
7875      else if (!BuiltinMemCpyRef) {
7876        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7877                       LookupOrdinaryName);
7878        LookupName(R, TUScope, true);
7879
7880        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7881        if (!BuiltinMemCpy) {
7882          // Something went horribly wrong earlier, and we will have complained
7883          // about it.
7884          Invalid = true;
7885          continue;
7886        }
7887
7888        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7889                                            BuiltinMemCpy->getType(),
7890                                            VK_LValue, Loc, 0).take();
7891        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7892      }
7893
7894      ASTOwningVector<Expr*> CallArgs(*this);
7895      CallArgs.push_back(To.takeAs<Expr>());
7896      CallArgs.push_back(From.takeAs<Expr>());
7897      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7898      ExprResult Call = ExprError();
7899      if (NeedsCollectableMemCpy)
7900        Call = ActOnCallExpr(/*Scope=*/0,
7901                             CollectableMemCpyRef,
7902                             Loc, move_arg(CallArgs),
7903                             Loc);
7904      else
7905        Call = ActOnCallExpr(/*Scope=*/0,
7906                             BuiltinMemCpyRef,
7907                             Loc, move_arg(CallArgs),
7908                             Loc);
7909
7910      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7911      Statements.push_back(Call.takeAs<Expr>());
7912      continue;
7913    }
7914
7915    // Build the copy of this field.
7916    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7917                                            To.get(), From.get(),
7918                                            /*CopyingBaseSubobject=*/false,
7919                                            /*Copying=*/true);
7920    if (Copy.isInvalid()) {
7921      Diag(CurrentLocation, diag::note_member_synthesized_at)
7922        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7923      CopyAssignOperator->setInvalidDecl();
7924      return;
7925    }
7926
7927    // Success! Record the copy.
7928    Statements.push_back(Copy.takeAs<Stmt>());
7929  }
7930
7931  if (!Invalid) {
7932    // Add a "return *this;"
7933    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7934
7935    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7936    if (Return.isInvalid())
7937      Invalid = true;
7938    else {
7939      Statements.push_back(Return.takeAs<Stmt>());
7940
7941      if (Trap.hasErrorOccurred()) {
7942        Diag(CurrentLocation, diag::note_member_synthesized_at)
7943          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7944        Invalid = true;
7945      }
7946    }
7947  }
7948
7949  if (Invalid) {
7950    CopyAssignOperator->setInvalidDecl();
7951    return;
7952  }
7953
7954  StmtResult Body;
7955  {
7956    CompoundScopeRAII CompoundScope(*this);
7957    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7958                             /*isStmtExpr=*/false);
7959    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7960  }
7961  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7962
7963  if (ASTMutationListener *L = getASTMutationListener()) {
7964    L->CompletedImplicitDefinition(CopyAssignOperator);
7965  }
7966}
7967
7968Sema::ImplicitExceptionSpecification
7969Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7970  ImplicitExceptionSpecification ExceptSpec(Context);
7971
7972  if (ClassDecl->isInvalidDecl())
7973    return ExceptSpec;
7974
7975  // C++0x [except.spec]p14:
7976  //   An implicitly declared special member function (Clause 12) shall have an
7977  //   exception-specification. [...]
7978
7979  // It is unspecified whether or not an implicit move assignment operator
7980  // attempts to deduplicate calls to assignment operators of virtual bases are
7981  // made. As such, this exception specification is effectively unspecified.
7982  // Based on a similar decision made for constness in C++0x, we're erring on
7983  // the side of assuming such calls to be made regardless of whether they
7984  // actually happen.
7985  // Note that a move constructor is not implicitly declared when there are
7986  // virtual bases, but it can still be user-declared and explicitly defaulted.
7987  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7988                                       BaseEnd = ClassDecl->bases_end();
7989       Base != BaseEnd; ++Base) {
7990    if (Base->isVirtual())
7991      continue;
7992
7993    CXXRecordDecl *BaseClassDecl
7994      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7995    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7996                                                           false, 0))
7997      ExceptSpec.CalledDecl(MoveAssign);
7998  }
7999
8000  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8001                                       BaseEnd = ClassDecl->vbases_end();
8002       Base != BaseEnd; ++Base) {
8003    CXXRecordDecl *BaseClassDecl
8004      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8005    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8006                                                           false, 0))
8007      ExceptSpec.CalledDecl(MoveAssign);
8008  }
8009
8010  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8011                                  FieldEnd = ClassDecl->field_end();
8012       Field != FieldEnd;
8013       ++Field) {
8014    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8015    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8016      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8017                                                             false, 0))
8018        ExceptSpec.CalledDecl(MoveAssign);
8019    }
8020  }
8021
8022  return ExceptSpec;
8023}
8024
8025CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8026  // Note: The following rules are largely analoguous to the move
8027  // constructor rules.
8028
8029  ImplicitExceptionSpecification Spec(
8030      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8031
8032  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8033  QualType RetType = Context.getLValueReferenceType(ArgType);
8034  ArgType = Context.getRValueReferenceType(ArgType);
8035
8036  //   An implicitly-declared move assignment operator is an inline public
8037  //   member of its class.
8038  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8039  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8040  SourceLocation ClassLoc = ClassDecl->getLocation();
8041  DeclarationNameInfo NameInfo(Name, ClassLoc);
8042  CXXMethodDecl *MoveAssignment
8043    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8044                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8045                            /*TInfo=*/0, /*isStatic=*/false,
8046                            /*StorageClassAsWritten=*/SC_None,
8047                            /*isInline=*/true,
8048                            /*isConstexpr=*/false,
8049                            SourceLocation());
8050  MoveAssignment->setAccess(AS_public);
8051  MoveAssignment->setDefaulted();
8052  MoveAssignment->setImplicit();
8053  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8054
8055  // Add the parameter to the operator.
8056  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8057                                               ClassLoc, ClassLoc, /*Id=*/0,
8058                                               ArgType, /*TInfo=*/0,
8059                                               SC_None,
8060                                               SC_None, 0);
8061  MoveAssignment->setParams(FromParam);
8062
8063  // Note that we have added this copy-assignment operator.
8064  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8065
8066  // C++0x [class.copy]p9:
8067  //   If the definition of a class X does not explicitly declare a move
8068  //   assignment operator, one will be implicitly declared as defaulted if and
8069  //   only if:
8070  //   [...]
8071  //   - the move assignment operator would not be implicitly defined as
8072  //     deleted.
8073  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8074    // Cache this result so that we don't try to generate this over and over
8075    // on every lookup, leaking memory and wasting time.
8076    ClassDecl->setFailedImplicitMoveAssignment();
8077    return 0;
8078  }
8079
8080  if (Scope *S = getScopeForContext(ClassDecl))
8081    PushOnScopeChains(MoveAssignment, S, false);
8082  ClassDecl->addDecl(MoveAssignment);
8083
8084  AddOverriddenMethods(ClassDecl, MoveAssignment);
8085  return MoveAssignment;
8086}
8087
8088void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8089                                        CXXMethodDecl *MoveAssignOperator) {
8090  assert((MoveAssignOperator->isDefaulted() &&
8091          MoveAssignOperator->isOverloadedOperator() &&
8092          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8093          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8094          !MoveAssignOperator->isDeleted()) &&
8095         "DefineImplicitMoveAssignment called for wrong function");
8096
8097  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8098
8099  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8100    MoveAssignOperator->setInvalidDecl();
8101    return;
8102  }
8103
8104  MoveAssignOperator->setUsed();
8105
8106  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8107  DiagnosticErrorTrap Trap(Diags);
8108
8109  // C++0x [class.copy]p28:
8110  //   The implicitly-defined or move assignment operator for a non-union class
8111  //   X performs memberwise move assignment of its subobjects. The direct base
8112  //   classes of X are assigned first, in the order of their declaration in the
8113  //   base-specifier-list, and then the immediate non-static data members of X
8114  //   are assigned, in the order in which they were declared in the class
8115  //   definition.
8116
8117  // The statements that form the synthesized function body.
8118  ASTOwningVector<Stmt*> Statements(*this);
8119
8120  // The parameter for the "other" object, which we are move from.
8121  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8122  QualType OtherRefType = Other->getType()->
8123      getAs<RValueReferenceType>()->getPointeeType();
8124  assert(OtherRefType.getQualifiers() == 0 &&
8125         "Bad argument type of defaulted move assignment");
8126
8127  // Our location for everything implicitly-generated.
8128  SourceLocation Loc = MoveAssignOperator->getLocation();
8129
8130  // Construct a reference to the "other" object. We'll be using this
8131  // throughout the generated ASTs.
8132  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8133  assert(OtherRef && "Reference to parameter cannot fail!");
8134  // Cast to rvalue.
8135  OtherRef = CastForMoving(*this, OtherRef);
8136
8137  // Construct the "this" pointer. We'll be using this throughout the generated
8138  // ASTs.
8139  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8140  assert(This && "Reference to this cannot fail!");
8141
8142  // Assign base classes.
8143  bool Invalid = false;
8144  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8145       E = ClassDecl->bases_end(); Base != E; ++Base) {
8146    // Form the assignment:
8147    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8148    QualType BaseType = Base->getType().getUnqualifiedType();
8149    if (!BaseType->isRecordType()) {
8150      Invalid = true;
8151      continue;
8152    }
8153
8154    CXXCastPath BasePath;
8155    BasePath.push_back(Base);
8156
8157    // Construct the "from" expression, which is an implicit cast to the
8158    // appropriately-qualified base type.
8159    Expr *From = OtherRef;
8160    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8161                             VK_XValue, &BasePath).take();
8162
8163    // Dereference "this".
8164    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8165
8166    // Implicitly cast "this" to the appropriately-qualified base type.
8167    To = ImpCastExprToType(To.take(),
8168                           Context.getCVRQualifiedType(BaseType,
8169                                     MoveAssignOperator->getTypeQualifiers()),
8170                           CK_UncheckedDerivedToBase,
8171                           VK_LValue, &BasePath);
8172
8173    // Build the move.
8174    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8175                                            To.get(), From,
8176                                            /*CopyingBaseSubobject=*/true,
8177                                            /*Copying=*/false);
8178    if (Move.isInvalid()) {
8179      Diag(CurrentLocation, diag::note_member_synthesized_at)
8180        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8181      MoveAssignOperator->setInvalidDecl();
8182      return;
8183    }
8184
8185    // Success! Record the move.
8186    Statements.push_back(Move.takeAs<Expr>());
8187  }
8188
8189  // \brief Reference to the __builtin_memcpy function.
8190  Expr *BuiltinMemCpyRef = 0;
8191  // \brief Reference to the __builtin_objc_memmove_collectable function.
8192  Expr *CollectableMemCpyRef = 0;
8193
8194  // Assign non-static members.
8195  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8196                                  FieldEnd = ClassDecl->field_end();
8197       Field != FieldEnd; ++Field) {
8198    if (Field->isUnnamedBitfield())
8199      continue;
8200
8201    // Check for members of reference type; we can't move those.
8202    if (Field->getType()->isReferenceType()) {
8203      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8204        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8205      Diag(Field->getLocation(), diag::note_declared_at);
8206      Diag(CurrentLocation, diag::note_member_synthesized_at)
8207        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8208      Invalid = true;
8209      continue;
8210    }
8211
8212    // Check for members of const-qualified, non-class type.
8213    QualType BaseType = Context.getBaseElementType(Field->getType());
8214    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8215      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8216        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8217      Diag(Field->getLocation(), diag::note_declared_at);
8218      Diag(CurrentLocation, diag::note_member_synthesized_at)
8219        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8220      Invalid = true;
8221      continue;
8222    }
8223
8224    // Suppress assigning zero-width bitfields.
8225    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8226      continue;
8227
8228    QualType FieldType = Field->getType().getNonReferenceType();
8229    if (FieldType->isIncompleteArrayType()) {
8230      assert(ClassDecl->hasFlexibleArrayMember() &&
8231             "Incomplete array type is not valid");
8232      continue;
8233    }
8234
8235    // Build references to the field in the object we're copying from and to.
8236    CXXScopeSpec SS; // Intentionally empty
8237    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8238                              LookupMemberName);
8239    MemberLookup.addDecl(*Field);
8240    MemberLookup.resolveKind();
8241    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8242                                               Loc, /*IsArrow=*/false,
8243                                               SS, SourceLocation(), 0,
8244                                               MemberLookup, 0);
8245    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8246                                             Loc, /*IsArrow=*/true,
8247                                             SS, SourceLocation(), 0,
8248                                             MemberLookup, 0);
8249    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8250    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8251
8252    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8253        "Member reference with rvalue base must be rvalue except for reference "
8254        "members, which aren't allowed for move assignment.");
8255
8256    // If the field should be copied with __builtin_memcpy rather than via
8257    // explicit assignments, do so. This optimization only applies for arrays
8258    // of scalars and arrays of class type with trivial move-assignment
8259    // operators.
8260    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8261        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8262      // Compute the size of the memory buffer to be copied.
8263      QualType SizeType = Context.getSizeType();
8264      llvm::APInt Size(Context.getTypeSize(SizeType),
8265                       Context.getTypeSizeInChars(BaseType).getQuantity());
8266      for (const ConstantArrayType *Array
8267              = Context.getAsConstantArrayType(FieldType);
8268           Array;
8269           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8270        llvm::APInt ArraySize
8271          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8272        Size *= ArraySize;
8273      }
8274
8275      // Take the address of the field references for "from" and "to". We
8276      // directly construct UnaryOperators here because semantic analysis
8277      // does not permit us to take the address of an xvalue.
8278      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8279                             Context.getPointerType(From.get()->getType()),
8280                             VK_RValue, OK_Ordinary, Loc);
8281      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8282                           Context.getPointerType(To.get()->getType()),
8283                           VK_RValue, OK_Ordinary, Loc);
8284
8285      bool NeedsCollectableMemCpy =
8286          (BaseType->isRecordType() &&
8287           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8288
8289      if (NeedsCollectableMemCpy) {
8290        if (!CollectableMemCpyRef) {
8291          // Create a reference to the __builtin_objc_memmove_collectable function.
8292          LookupResult R(*this,
8293                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8294                         Loc, LookupOrdinaryName);
8295          LookupName(R, TUScope, true);
8296
8297          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8298          if (!CollectableMemCpy) {
8299            // Something went horribly wrong earlier, and we will have
8300            // complained about it.
8301            Invalid = true;
8302            continue;
8303          }
8304
8305          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8306                                                  CollectableMemCpy->getType(),
8307                                                  VK_LValue, Loc, 0).take();
8308          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8309        }
8310      }
8311      // Create a reference to the __builtin_memcpy builtin function.
8312      else if (!BuiltinMemCpyRef) {
8313        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8314                       LookupOrdinaryName);
8315        LookupName(R, TUScope, true);
8316
8317        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8318        if (!BuiltinMemCpy) {
8319          // Something went horribly wrong earlier, and we will have complained
8320          // about it.
8321          Invalid = true;
8322          continue;
8323        }
8324
8325        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8326                                            BuiltinMemCpy->getType(),
8327                                            VK_LValue, Loc, 0).take();
8328        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8329      }
8330
8331      ASTOwningVector<Expr*> CallArgs(*this);
8332      CallArgs.push_back(To.takeAs<Expr>());
8333      CallArgs.push_back(From.takeAs<Expr>());
8334      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8335      ExprResult Call = ExprError();
8336      if (NeedsCollectableMemCpy)
8337        Call = ActOnCallExpr(/*Scope=*/0,
8338                             CollectableMemCpyRef,
8339                             Loc, move_arg(CallArgs),
8340                             Loc);
8341      else
8342        Call = ActOnCallExpr(/*Scope=*/0,
8343                             BuiltinMemCpyRef,
8344                             Loc, move_arg(CallArgs),
8345                             Loc);
8346
8347      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8348      Statements.push_back(Call.takeAs<Expr>());
8349      continue;
8350    }
8351
8352    // Build the move of this field.
8353    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8354                                            To.get(), From.get(),
8355                                            /*CopyingBaseSubobject=*/false,
8356                                            /*Copying=*/false);
8357    if (Move.isInvalid()) {
8358      Diag(CurrentLocation, diag::note_member_synthesized_at)
8359        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8360      MoveAssignOperator->setInvalidDecl();
8361      return;
8362    }
8363
8364    // Success! Record the copy.
8365    Statements.push_back(Move.takeAs<Stmt>());
8366  }
8367
8368  if (!Invalid) {
8369    // Add a "return *this;"
8370    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8371
8372    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8373    if (Return.isInvalid())
8374      Invalid = true;
8375    else {
8376      Statements.push_back(Return.takeAs<Stmt>());
8377
8378      if (Trap.hasErrorOccurred()) {
8379        Diag(CurrentLocation, diag::note_member_synthesized_at)
8380          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8381        Invalid = true;
8382      }
8383    }
8384  }
8385
8386  if (Invalid) {
8387    MoveAssignOperator->setInvalidDecl();
8388    return;
8389  }
8390
8391  StmtResult Body;
8392  {
8393    CompoundScopeRAII CompoundScope(*this);
8394    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8395                             /*isStmtExpr=*/false);
8396    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8397  }
8398  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8399
8400  if (ASTMutationListener *L = getASTMutationListener()) {
8401    L->CompletedImplicitDefinition(MoveAssignOperator);
8402  }
8403}
8404
8405std::pair<Sema::ImplicitExceptionSpecification, bool>
8406Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8407  if (ClassDecl->isInvalidDecl())
8408    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8409
8410  // C++ [class.copy]p5:
8411  //   The implicitly-declared copy constructor for a class X will
8412  //   have the form
8413  //
8414  //       X::X(const X&)
8415  //
8416  //   if
8417  // FIXME: It ought to be possible to store this on the record.
8418  bool HasConstCopyConstructor = true;
8419
8420  //     -- each direct or virtual base class B of X has a copy
8421  //        constructor whose first parameter is of type const B& or
8422  //        const volatile B&, and
8423  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8424                                       BaseEnd = ClassDecl->bases_end();
8425       HasConstCopyConstructor && Base != BaseEnd;
8426       ++Base) {
8427    // Virtual bases are handled below.
8428    if (Base->isVirtual())
8429      continue;
8430
8431    CXXRecordDecl *BaseClassDecl
8432      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8433    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8434                             &HasConstCopyConstructor);
8435  }
8436
8437  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8438                                       BaseEnd = ClassDecl->vbases_end();
8439       HasConstCopyConstructor && Base != BaseEnd;
8440       ++Base) {
8441    CXXRecordDecl *BaseClassDecl
8442      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8443    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8444                             &HasConstCopyConstructor);
8445  }
8446
8447  //     -- for all the nonstatic data members of X that are of a
8448  //        class type M (or array thereof), each such class type
8449  //        has a copy constructor whose first parameter is of type
8450  //        const M& or const volatile M&.
8451  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8452                                  FieldEnd = ClassDecl->field_end();
8453       HasConstCopyConstructor && Field != FieldEnd;
8454       ++Field) {
8455    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8456    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8457      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8458                               &HasConstCopyConstructor);
8459    }
8460  }
8461  //   Otherwise, the implicitly declared copy constructor will have
8462  //   the form
8463  //
8464  //       X::X(X&)
8465
8466  // C++ [except.spec]p14:
8467  //   An implicitly declared special member function (Clause 12) shall have an
8468  //   exception-specification. [...]
8469  ImplicitExceptionSpecification ExceptSpec(Context);
8470  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8471  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8472                                       BaseEnd = ClassDecl->bases_end();
8473       Base != BaseEnd;
8474       ++Base) {
8475    // Virtual bases are handled below.
8476    if (Base->isVirtual())
8477      continue;
8478
8479    CXXRecordDecl *BaseClassDecl
8480      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8481    if (CXXConstructorDecl *CopyConstructor =
8482          LookupCopyingConstructor(BaseClassDecl, Quals))
8483      ExceptSpec.CalledDecl(CopyConstructor);
8484  }
8485  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8486                                       BaseEnd = ClassDecl->vbases_end();
8487       Base != BaseEnd;
8488       ++Base) {
8489    CXXRecordDecl *BaseClassDecl
8490      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8491    if (CXXConstructorDecl *CopyConstructor =
8492          LookupCopyingConstructor(BaseClassDecl, Quals))
8493      ExceptSpec.CalledDecl(CopyConstructor);
8494  }
8495  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8496                                  FieldEnd = ClassDecl->field_end();
8497       Field != FieldEnd;
8498       ++Field) {
8499    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8500    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8501      if (CXXConstructorDecl *CopyConstructor =
8502        LookupCopyingConstructor(FieldClassDecl, Quals))
8503      ExceptSpec.CalledDecl(CopyConstructor);
8504    }
8505  }
8506
8507  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8508}
8509
8510CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8511                                                    CXXRecordDecl *ClassDecl) {
8512  // C++ [class.copy]p4:
8513  //   If the class definition does not explicitly declare a copy
8514  //   constructor, one is declared implicitly.
8515
8516  ImplicitExceptionSpecification Spec(Context);
8517  bool Const;
8518  llvm::tie(Spec, Const) =
8519    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8520
8521  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8522  QualType ArgType = ClassType;
8523  if (Const)
8524    ArgType = ArgType.withConst();
8525  ArgType = Context.getLValueReferenceType(ArgType);
8526
8527  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8528
8529  DeclarationName Name
8530    = Context.DeclarationNames.getCXXConstructorName(
8531                                           Context.getCanonicalType(ClassType));
8532  SourceLocation ClassLoc = ClassDecl->getLocation();
8533  DeclarationNameInfo NameInfo(Name, ClassLoc);
8534
8535  //   An implicitly-declared copy constructor is an inline public
8536  //   member of its class.
8537  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8538      Context, ClassDecl, ClassLoc, NameInfo,
8539      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8540      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8541      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8542        getLangOptions().CPlusPlus0x);
8543  CopyConstructor->setAccess(AS_public);
8544  CopyConstructor->setDefaulted();
8545  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8546
8547  // Note that we have declared this constructor.
8548  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8549
8550  // Add the parameter to the constructor.
8551  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8552                                               ClassLoc, ClassLoc,
8553                                               /*IdentifierInfo=*/0,
8554                                               ArgType, /*TInfo=*/0,
8555                                               SC_None,
8556                                               SC_None, 0);
8557  CopyConstructor->setParams(FromParam);
8558
8559  if (Scope *S = getScopeForContext(ClassDecl))
8560    PushOnScopeChains(CopyConstructor, S, false);
8561  ClassDecl->addDecl(CopyConstructor);
8562
8563  // C++11 [class.copy]p8:
8564  //   ... If the class definition does not explicitly declare a copy
8565  //   constructor, there is no user-declared move constructor, and there is no
8566  //   user-declared move assignment operator, a copy constructor is implicitly
8567  //   declared as defaulted.
8568  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8569      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8570          !getLangOptions().MicrosoftMode) ||
8571      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8572    CopyConstructor->setDeletedAsWritten();
8573
8574  return CopyConstructor;
8575}
8576
8577void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8578                                   CXXConstructorDecl *CopyConstructor) {
8579  assert((CopyConstructor->isDefaulted() &&
8580          CopyConstructor->isCopyConstructor() &&
8581          !CopyConstructor->doesThisDeclarationHaveABody() &&
8582          !CopyConstructor->isDeleted()) &&
8583         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8584
8585  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8586  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8587
8588  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8589  DiagnosticErrorTrap Trap(Diags);
8590
8591  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8592      Trap.hasErrorOccurred()) {
8593    Diag(CurrentLocation, diag::note_member_synthesized_at)
8594      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8595    CopyConstructor->setInvalidDecl();
8596  }  else {
8597    Sema::CompoundScopeRAII CompoundScope(*this);
8598    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8599                                               CopyConstructor->getLocation(),
8600                                               MultiStmtArg(*this, 0, 0),
8601                                               /*isStmtExpr=*/false)
8602                                                              .takeAs<Stmt>());
8603    CopyConstructor->setImplicitlyDefined(true);
8604  }
8605
8606  CopyConstructor->setUsed();
8607  if (ASTMutationListener *L = getASTMutationListener()) {
8608    L->CompletedImplicitDefinition(CopyConstructor);
8609  }
8610}
8611
8612Sema::ImplicitExceptionSpecification
8613Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8614  // C++ [except.spec]p14:
8615  //   An implicitly declared special member function (Clause 12) shall have an
8616  //   exception-specification. [...]
8617  ImplicitExceptionSpecification ExceptSpec(Context);
8618  if (ClassDecl->isInvalidDecl())
8619    return ExceptSpec;
8620
8621  // Direct base-class constructors.
8622  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8623                                       BEnd = ClassDecl->bases_end();
8624       B != BEnd; ++B) {
8625    if (B->isVirtual()) // Handled below.
8626      continue;
8627
8628    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8629      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8630      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8631      // If this is a deleted function, add it anyway. This might be conformant
8632      // with the standard. This might not. I'm not sure. It might not matter.
8633      if (Constructor)
8634        ExceptSpec.CalledDecl(Constructor);
8635    }
8636  }
8637
8638  // Virtual base-class constructors.
8639  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8640                                       BEnd = ClassDecl->vbases_end();
8641       B != BEnd; ++B) {
8642    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8643      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8644      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8645      // If this is a deleted function, add it anyway. This might be conformant
8646      // with the standard. This might not. I'm not sure. It might not matter.
8647      if (Constructor)
8648        ExceptSpec.CalledDecl(Constructor);
8649    }
8650  }
8651
8652  // Field constructors.
8653  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8654                               FEnd = ClassDecl->field_end();
8655       F != FEnd; ++F) {
8656    if (const RecordType *RecordTy
8657              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8658      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8659      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8660      // If this is a deleted function, add it anyway. This might be conformant
8661      // with the standard. This might not. I'm not sure. It might not matter.
8662      // In particular, the problem is that this function never gets called. It
8663      // might just be ill-formed because this function attempts to refer to
8664      // a deleted function here.
8665      if (Constructor)
8666        ExceptSpec.CalledDecl(Constructor);
8667    }
8668  }
8669
8670  return ExceptSpec;
8671}
8672
8673CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8674                                                    CXXRecordDecl *ClassDecl) {
8675  ImplicitExceptionSpecification Spec(
8676      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8677
8678  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8679  QualType ArgType = Context.getRValueReferenceType(ClassType);
8680
8681  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8682
8683  DeclarationName Name
8684    = Context.DeclarationNames.getCXXConstructorName(
8685                                           Context.getCanonicalType(ClassType));
8686  SourceLocation ClassLoc = ClassDecl->getLocation();
8687  DeclarationNameInfo NameInfo(Name, ClassLoc);
8688
8689  // C++0x [class.copy]p11:
8690  //   An implicitly-declared copy/move constructor is an inline public
8691  //   member of its class.
8692  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8693      Context, ClassDecl, ClassLoc, NameInfo,
8694      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8695      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8696      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8697        getLangOptions().CPlusPlus0x);
8698  MoveConstructor->setAccess(AS_public);
8699  MoveConstructor->setDefaulted();
8700  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8701
8702  // Add the parameter to the constructor.
8703  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8704                                               ClassLoc, ClassLoc,
8705                                               /*IdentifierInfo=*/0,
8706                                               ArgType, /*TInfo=*/0,
8707                                               SC_None,
8708                                               SC_None, 0);
8709  MoveConstructor->setParams(FromParam);
8710
8711  // C++0x [class.copy]p9:
8712  //   If the definition of a class X does not explicitly declare a move
8713  //   constructor, one will be implicitly declared as defaulted if and only if:
8714  //   [...]
8715  //   - the move constructor would not be implicitly defined as deleted.
8716  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8717    // Cache this result so that we don't try to generate this over and over
8718    // on every lookup, leaking memory and wasting time.
8719    ClassDecl->setFailedImplicitMoveConstructor();
8720    return 0;
8721  }
8722
8723  // Note that we have declared this constructor.
8724  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8725
8726  if (Scope *S = getScopeForContext(ClassDecl))
8727    PushOnScopeChains(MoveConstructor, S, false);
8728  ClassDecl->addDecl(MoveConstructor);
8729
8730  return MoveConstructor;
8731}
8732
8733void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8734                                   CXXConstructorDecl *MoveConstructor) {
8735  assert((MoveConstructor->isDefaulted() &&
8736          MoveConstructor->isMoveConstructor() &&
8737          !MoveConstructor->doesThisDeclarationHaveABody() &&
8738          !MoveConstructor->isDeleted()) &&
8739         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8740
8741  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8742  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8743
8744  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8745  DiagnosticErrorTrap Trap(Diags);
8746
8747  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8748      Trap.hasErrorOccurred()) {
8749    Diag(CurrentLocation, diag::note_member_synthesized_at)
8750      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8751    MoveConstructor->setInvalidDecl();
8752  }  else {
8753    Sema::CompoundScopeRAII CompoundScope(*this);
8754    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8755                                               MoveConstructor->getLocation(),
8756                                               MultiStmtArg(*this, 0, 0),
8757                                               /*isStmtExpr=*/false)
8758                                                              .takeAs<Stmt>());
8759    MoveConstructor->setImplicitlyDefined(true);
8760  }
8761
8762  MoveConstructor->setUsed();
8763
8764  if (ASTMutationListener *L = getASTMutationListener()) {
8765    L->CompletedImplicitDefinition(MoveConstructor);
8766  }
8767}
8768
8769bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8770  return FD->isDeleted() &&
8771         (FD->isDefaulted() || FD->isImplicit()) &&
8772         isa<CXXMethodDecl>(FD);
8773}
8774
8775/// \brief Mark the call operator of the given lambda closure type as "used".
8776static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8777  CXXMethodDecl *CallOperator
8778    = cast<CXXMethodDecl>(
8779        *Lambda->lookup(
8780          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8781  CallOperator->setReferenced();
8782  CallOperator->setUsed();
8783}
8784
8785void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8786       SourceLocation CurrentLocation,
8787       CXXConversionDecl *Conv)
8788{
8789  CXXRecordDecl *Lambda = Conv->getParent();
8790
8791  // Make sure that the lambda call operator is marked used.
8792  markLambdaCallOperatorUsed(*this, Lambda);
8793
8794  Conv->setUsed();
8795
8796  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8797  DiagnosticErrorTrap Trap(Diags);
8798
8799  // Return the address of the __invoke function.
8800  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8801  CXXMethodDecl *Invoke
8802    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8803  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8804                                       VK_LValue, Conv->getLocation()).take();
8805  assert(FunctionRef && "Can't refer to __invoke function?");
8806  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8807  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8808                                           Conv->getLocation(),
8809                                           Conv->getLocation()));
8810
8811  // Fill in the __invoke function with a dummy implementation. IR generation
8812  // will fill in the actual details.
8813  Invoke->setUsed();
8814  Invoke->setReferenced();
8815  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8816                                             Conv->getLocation()));
8817
8818  if (ASTMutationListener *L = getASTMutationListener()) {
8819    L->CompletedImplicitDefinition(Conv);
8820    L->CompletedImplicitDefinition(Invoke);
8821  }
8822}
8823
8824void Sema::DefineImplicitLambdaToBlockPointerConversion(
8825       SourceLocation CurrentLocation,
8826       CXXConversionDecl *Conv)
8827{
8828  CXXRecordDecl *Lambda = Conv->getParent();
8829
8830  // Make sure that the lambda call operator is marked used.
8831  CXXMethodDecl *CallOperator
8832    = cast<CXXMethodDecl>(
8833        *Lambda->lookup(
8834          Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8835  CallOperator->setReferenced();
8836  CallOperator->setUsed();
8837  Conv->setUsed();
8838
8839  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8840  DiagnosticErrorTrap Trap(Diags);
8841
8842  // Copy-initialize the lambda object as needed to capture it.
8843  Expr *This = ActOnCXXThis(CurrentLocation).take();
8844  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8845  ExprResult Init = PerformCopyInitialization(
8846                      InitializedEntity::InitializeBlock(CurrentLocation,
8847                                                         DerefThis->getType(),
8848                                                         /*NRVO=*/false),
8849                      CurrentLocation, DerefThis);
8850  if (!Init.isInvalid())
8851    Init = ActOnFinishFullExpr(Init.take());
8852
8853  if (Init.isInvalid()) {
8854    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8855    Conv->setInvalidDecl();
8856    return;
8857  }
8858
8859  // Create the new block to be returned.
8860  BlockDecl *Block = BlockDecl::Create(Context, Conv, Conv->getLocation());
8861
8862  // Set the type information.
8863  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
8864  Block->setIsVariadic(CallOperator->isVariadic());
8865  Block->setBlockMissingReturnType(false);
8866
8867  // Add parameters.
8868  SmallVector<ParmVarDecl *, 4> BlockParams;
8869  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
8870    ParmVarDecl *From = CallOperator->getParamDecl(I);
8871    BlockParams.push_back(ParmVarDecl::Create(Context, Block,
8872                                              From->getLocStart(),
8873                                              From->getLocation(),
8874                                              From->getIdentifier(),
8875                                              From->getType(),
8876                                              From->getTypeSourceInfo(),
8877                                              From->getStorageClass(),
8878                                            From->getStorageClassAsWritten(),
8879                                              /*DefaultArg=*/0));
8880  }
8881  Block->setParams(BlockParams);
8882
8883  // Add capture. The capture uses a fake variable, which doesn't correspond
8884  // to any actual memory location. However, the initializer copy-initializes
8885  // the lambda object.
8886  TypeSourceInfo *CapVarTSI =
8887      Context.getTrivialTypeSourceInfo(DerefThis->getType());
8888  VarDecl *CapVar = VarDecl::Create(Context, Block, Conv->getLocation(),
8889                                    Conv->getLocation(), 0,
8890                                    DerefThis->getType(), CapVarTSI,
8891                                    SC_None, SC_None);
8892  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
8893                             /*Nested=*/false, /*Copy=*/Init.take());
8894  Block->setCaptures(Context, &Capture, &Capture + 1,
8895                     /*CapturesCXXThis=*/false);
8896
8897  // Add a fake function body to the block. IR generation is responsible
8898  // for filling in the actual body, which cannot be expressed as an AST.
8899  Block->setBody(new (Context) CompoundStmt(Context, 0, 0,
8900                                            Conv->getLocation(),
8901                                            Conv->getLocation()));
8902
8903  // Create the block literal expression.
8904  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
8905  ExprCleanupObjects.push_back(Block);
8906  ExprNeedsCleanups = true;
8907
8908  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8909  // behavior.
8910  if (!getLangOptions().ObjCAutoRefCount)
8911    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock->getType(),
8912                                          CK_CopyAndAutoreleaseBlockObject,
8913                                          BuildBlock, 0, VK_RValue);
8914
8915  // Create the return statement that returns the block from the conversion
8916  // function.
8917  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock);
8918  if (Return.isInvalid()) {
8919    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8920    Conv->setInvalidDecl();
8921    return;
8922  }
8923
8924  // Set the body of the conversion function.
8925  Stmt *ReturnS = Return.take();
8926  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8927                                           Conv->getLocation(),
8928                                           Conv->getLocation()));
8929
8930  // We're done; notify the mutation listener, if any.
8931  if (ASTMutationListener *L = getASTMutationListener()) {
8932    L->CompletedImplicitDefinition(Conv);
8933  }
8934}
8935
8936ExprResult
8937Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8938                            CXXConstructorDecl *Constructor,
8939                            MultiExprArg ExprArgs,
8940                            bool HadMultipleCandidates,
8941                            bool RequiresZeroInit,
8942                            unsigned ConstructKind,
8943                            SourceRange ParenRange) {
8944  bool Elidable = false;
8945
8946  // C++0x [class.copy]p34:
8947  //   When certain criteria are met, an implementation is allowed to
8948  //   omit the copy/move construction of a class object, even if the
8949  //   copy/move constructor and/or destructor for the object have
8950  //   side effects. [...]
8951  //     - when a temporary class object that has not been bound to a
8952  //       reference (12.2) would be copied/moved to a class object
8953  //       with the same cv-unqualified type, the copy/move operation
8954  //       can be omitted by constructing the temporary object
8955  //       directly into the target of the omitted copy/move
8956  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8957      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8958    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8959    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8960  }
8961
8962  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8963                               Elidable, move(ExprArgs), HadMultipleCandidates,
8964                               RequiresZeroInit, ConstructKind, ParenRange);
8965}
8966
8967/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8968/// including handling of its default argument expressions.
8969ExprResult
8970Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8971                            CXXConstructorDecl *Constructor, bool Elidable,
8972                            MultiExprArg ExprArgs,
8973                            bool HadMultipleCandidates,
8974                            bool RequiresZeroInit,
8975                            unsigned ConstructKind,
8976                            SourceRange ParenRange) {
8977  unsigned NumExprs = ExprArgs.size();
8978  Expr **Exprs = (Expr **)ExprArgs.release();
8979
8980  for (specific_attr_iterator<NonNullAttr>
8981           i = Constructor->specific_attr_begin<NonNullAttr>(),
8982           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8983    const NonNullAttr *NonNull = *i;
8984    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8985  }
8986
8987  MarkFunctionReferenced(ConstructLoc, Constructor);
8988  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8989                                        Constructor, Elidable, Exprs, NumExprs,
8990                                        HadMultipleCandidates, /*FIXME*/false,
8991                                        RequiresZeroInit,
8992              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8993                                        ParenRange));
8994}
8995
8996bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8997                                        CXXConstructorDecl *Constructor,
8998                                        MultiExprArg Exprs,
8999                                        bool HadMultipleCandidates) {
9000  // FIXME: Provide the correct paren SourceRange when available.
9001  ExprResult TempResult =
9002    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9003                          move(Exprs), HadMultipleCandidates, false,
9004                          CXXConstructExpr::CK_Complete, SourceRange());
9005  if (TempResult.isInvalid())
9006    return true;
9007
9008  Expr *Temp = TempResult.takeAs<Expr>();
9009  CheckImplicitConversions(Temp, VD->getLocation());
9010  MarkFunctionReferenced(VD->getLocation(), Constructor);
9011  Temp = MaybeCreateExprWithCleanups(Temp);
9012  VD->setInit(Temp);
9013
9014  return false;
9015}
9016
9017void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9018  if (VD->isInvalidDecl()) return;
9019
9020  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9021  if (ClassDecl->isInvalidDecl()) return;
9022  if (ClassDecl->hasIrrelevantDestructor()) return;
9023  if (ClassDecl->isDependentContext()) return;
9024
9025  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9026  MarkFunctionReferenced(VD->getLocation(), Destructor);
9027  CheckDestructorAccess(VD->getLocation(), Destructor,
9028                        PDiag(diag::err_access_dtor_var)
9029                        << VD->getDeclName()
9030                        << VD->getType());
9031  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9032
9033  if (!VD->hasGlobalStorage()) return;
9034
9035  // Emit warning for non-trivial dtor in global scope (a real global,
9036  // class-static, function-static).
9037  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9038
9039  // TODO: this should be re-enabled for static locals by !CXAAtExit
9040  if (!VD->isStaticLocal())
9041    Diag(VD->getLocation(), diag::warn_global_destructor);
9042}
9043
9044/// \brief Given a constructor and the set of arguments provided for the
9045/// constructor, convert the arguments and add any required default arguments
9046/// to form a proper call to this constructor.
9047///
9048/// \returns true if an error occurred, false otherwise.
9049bool
9050Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9051                              MultiExprArg ArgsPtr,
9052                              SourceLocation Loc,
9053                              ASTOwningVector<Expr*> &ConvertedArgs,
9054                              bool AllowExplicit) {
9055  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9056  unsigned NumArgs = ArgsPtr.size();
9057  Expr **Args = (Expr **)ArgsPtr.get();
9058
9059  const FunctionProtoType *Proto
9060    = Constructor->getType()->getAs<FunctionProtoType>();
9061  assert(Proto && "Constructor without a prototype?");
9062  unsigned NumArgsInProto = Proto->getNumArgs();
9063
9064  // If too few arguments are available, we'll fill in the rest with defaults.
9065  if (NumArgs < NumArgsInProto)
9066    ConvertedArgs.reserve(NumArgsInProto);
9067  else
9068    ConvertedArgs.reserve(NumArgs);
9069
9070  VariadicCallType CallType =
9071    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9072  SmallVector<Expr *, 8> AllArgs;
9073  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9074                                        Proto, 0, Args, NumArgs, AllArgs,
9075                                        CallType, AllowExplicit);
9076  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9077
9078  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9079
9080  // FIXME: Missing call to CheckFunctionCall or equivalent
9081
9082  return Invalid;
9083}
9084
9085static inline bool
9086CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9087                                       const FunctionDecl *FnDecl) {
9088  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9089  if (isa<NamespaceDecl>(DC)) {
9090    return SemaRef.Diag(FnDecl->getLocation(),
9091                        diag::err_operator_new_delete_declared_in_namespace)
9092      << FnDecl->getDeclName();
9093  }
9094
9095  if (isa<TranslationUnitDecl>(DC) &&
9096      FnDecl->getStorageClass() == SC_Static) {
9097    return SemaRef.Diag(FnDecl->getLocation(),
9098                        diag::err_operator_new_delete_declared_static)
9099      << FnDecl->getDeclName();
9100  }
9101
9102  return false;
9103}
9104
9105static inline bool
9106CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9107                            CanQualType ExpectedResultType,
9108                            CanQualType ExpectedFirstParamType,
9109                            unsigned DependentParamTypeDiag,
9110                            unsigned InvalidParamTypeDiag) {
9111  QualType ResultType =
9112    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9113
9114  // Check that the result type is not dependent.
9115  if (ResultType->isDependentType())
9116    return SemaRef.Diag(FnDecl->getLocation(),
9117                        diag::err_operator_new_delete_dependent_result_type)
9118    << FnDecl->getDeclName() << ExpectedResultType;
9119
9120  // Check that the result type is what we expect.
9121  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9122    return SemaRef.Diag(FnDecl->getLocation(),
9123                        diag::err_operator_new_delete_invalid_result_type)
9124    << FnDecl->getDeclName() << ExpectedResultType;
9125
9126  // A function template must have at least 2 parameters.
9127  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9128    return SemaRef.Diag(FnDecl->getLocation(),
9129                      diag::err_operator_new_delete_template_too_few_parameters)
9130        << FnDecl->getDeclName();
9131
9132  // The function decl must have at least 1 parameter.
9133  if (FnDecl->getNumParams() == 0)
9134    return SemaRef.Diag(FnDecl->getLocation(),
9135                        diag::err_operator_new_delete_too_few_parameters)
9136      << FnDecl->getDeclName();
9137
9138  // Check the the first parameter type is not dependent.
9139  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9140  if (FirstParamType->isDependentType())
9141    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9142      << FnDecl->getDeclName() << ExpectedFirstParamType;
9143
9144  // Check that the first parameter type is what we expect.
9145  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9146      ExpectedFirstParamType)
9147    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9148    << FnDecl->getDeclName() << ExpectedFirstParamType;
9149
9150  return false;
9151}
9152
9153static bool
9154CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9155  // C++ [basic.stc.dynamic.allocation]p1:
9156  //   A program is ill-formed if an allocation function is declared in a
9157  //   namespace scope other than global scope or declared static in global
9158  //   scope.
9159  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9160    return true;
9161
9162  CanQualType SizeTy =
9163    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9164
9165  // C++ [basic.stc.dynamic.allocation]p1:
9166  //  The return type shall be void*. The first parameter shall have type
9167  //  std::size_t.
9168  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9169                                  SizeTy,
9170                                  diag::err_operator_new_dependent_param_type,
9171                                  diag::err_operator_new_param_type))
9172    return true;
9173
9174  // C++ [basic.stc.dynamic.allocation]p1:
9175  //  The first parameter shall not have an associated default argument.
9176  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9177    return SemaRef.Diag(FnDecl->getLocation(),
9178                        diag::err_operator_new_default_arg)
9179      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9180
9181  return false;
9182}
9183
9184static bool
9185CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9186  // C++ [basic.stc.dynamic.deallocation]p1:
9187  //   A program is ill-formed if deallocation functions are declared in a
9188  //   namespace scope other than global scope or declared static in global
9189  //   scope.
9190  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9191    return true;
9192
9193  // C++ [basic.stc.dynamic.deallocation]p2:
9194  //   Each deallocation function shall return void and its first parameter
9195  //   shall be void*.
9196  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9197                                  SemaRef.Context.VoidPtrTy,
9198                                 diag::err_operator_delete_dependent_param_type,
9199                                 diag::err_operator_delete_param_type))
9200    return true;
9201
9202  return false;
9203}
9204
9205/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9206/// of this overloaded operator is well-formed. If so, returns false;
9207/// otherwise, emits appropriate diagnostics and returns true.
9208bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9209  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9210         "Expected an overloaded operator declaration");
9211
9212  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9213
9214  // C++ [over.oper]p5:
9215  //   The allocation and deallocation functions, operator new,
9216  //   operator new[], operator delete and operator delete[], are
9217  //   described completely in 3.7.3. The attributes and restrictions
9218  //   found in the rest of this subclause do not apply to them unless
9219  //   explicitly stated in 3.7.3.
9220  if (Op == OO_Delete || Op == OO_Array_Delete)
9221    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9222
9223  if (Op == OO_New || Op == OO_Array_New)
9224    return CheckOperatorNewDeclaration(*this, FnDecl);
9225
9226  // C++ [over.oper]p6:
9227  //   An operator function shall either be a non-static member
9228  //   function or be a non-member function and have at least one
9229  //   parameter whose type is a class, a reference to a class, an
9230  //   enumeration, or a reference to an enumeration.
9231  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9232    if (MethodDecl->isStatic())
9233      return Diag(FnDecl->getLocation(),
9234                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9235  } else {
9236    bool ClassOrEnumParam = false;
9237    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9238                                   ParamEnd = FnDecl->param_end();
9239         Param != ParamEnd; ++Param) {
9240      QualType ParamType = (*Param)->getType().getNonReferenceType();
9241      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9242          ParamType->isEnumeralType()) {
9243        ClassOrEnumParam = true;
9244        break;
9245      }
9246    }
9247
9248    if (!ClassOrEnumParam)
9249      return Diag(FnDecl->getLocation(),
9250                  diag::err_operator_overload_needs_class_or_enum)
9251        << FnDecl->getDeclName();
9252  }
9253
9254  // C++ [over.oper]p8:
9255  //   An operator function cannot have default arguments (8.3.6),
9256  //   except where explicitly stated below.
9257  //
9258  // Only the function-call operator allows default arguments
9259  // (C++ [over.call]p1).
9260  if (Op != OO_Call) {
9261    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9262         Param != FnDecl->param_end(); ++Param) {
9263      if ((*Param)->hasDefaultArg())
9264        return Diag((*Param)->getLocation(),
9265                    diag::err_operator_overload_default_arg)
9266          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9267    }
9268  }
9269
9270  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9271    { false, false, false }
9272#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9273    , { Unary, Binary, MemberOnly }
9274#include "clang/Basic/OperatorKinds.def"
9275  };
9276
9277  bool CanBeUnaryOperator = OperatorUses[Op][0];
9278  bool CanBeBinaryOperator = OperatorUses[Op][1];
9279  bool MustBeMemberOperator = OperatorUses[Op][2];
9280
9281  // C++ [over.oper]p8:
9282  //   [...] Operator functions cannot have more or fewer parameters
9283  //   than the number required for the corresponding operator, as
9284  //   described in the rest of this subclause.
9285  unsigned NumParams = FnDecl->getNumParams()
9286                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9287  if (Op != OO_Call &&
9288      ((NumParams == 1 && !CanBeUnaryOperator) ||
9289       (NumParams == 2 && !CanBeBinaryOperator) ||
9290       (NumParams < 1) || (NumParams > 2))) {
9291    // We have the wrong number of parameters.
9292    unsigned ErrorKind;
9293    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9294      ErrorKind = 2;  // 2 -> unary or binary.
9295    } else if (CanBeUnaryOperator) {
9296      ErrorKind = 0;  // 0 -> unary
9297    } else {
9298      assert(CanBeBinaryOperator &&
9299             "All non-call overloaded operators are unary or binary!");
9300      ErrorKind = 1;  // 1 -> binary
9301    }
9302
9303    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9304      << FnDecl->getDeclName() << NumParams << ErrorKind;
9305  }
9306
9307  // Overloaded operators other than operator() cannot be variadic.
9308  if (Op != OO_Call &&
9309      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9310    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9311      << FnDecl->getDeclName();
9312  }
9313
9314  // Some operators must be non-static member functions.
9315  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9316    return Diag(FnDecl->getLocation(),
9317                diag::err_operator_overload_must_be_member)
9318      << FnDecl->getDeclName();
9319  }
9320
9321  // C++ [over.inc]p1:
9322  //   The user-defined function called operator++ implements the
9323  //   prefix and postfix ++ operator. If this function is a member
9324  //   function with no parameters, or a non-member function with one
9325  //   parameter of class or enumeration type, it defines the prefix
9326  //   increment operator ++ for objects of that type. If the function
9327  //   is a member function with one parameter (which shall be of type
9328  //   int) or a non-member function with two parameters (the second
9329  //   of which shall be of type int), it defines the postfix
9330  //   increment operator ++ for objects of that type.
9331  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9332    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9333    bool ParamIsInt = false;
9334    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9335      ParamIsInt = BT->getKind() == BuiltinType::Int;
9336
9337    if (!ParamIsInt)
9338      return Diag(LastParam->getLocation(),
9339                  diag::err_operator_overload_post_incdec_must_be_int)
9340        << LastParam->getType() << (Op == OO_MinusMinus);
9341  }
9342
9343  return false;
9344}
9345
9346/// CheckLiteralOperatorDeclaration - Check whether the declaration
9347/// of this literal operator function is well-formed. If so, returns
9348/// false; otherwise, emits appropriate diagnostics and returns true.
9349bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9350  DeclContext *DC = FnDecl->getDeclContext();
9351  Decl::Kind Kind = DC->getDeclKind();
9352  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9353      Kind != Decl::LinkageSpec) {
9354    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9355      << FnDecl->getDeclName();
9356    return true;
9357  }
9358
9359  bool Valid = false;
9360
9361  // template <char...> type operator "" name() is the only valid template
9362  // signature, and the only valid signature with no parameters.
9363  if (FnDecl->param_size() == 0) {
9364    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9365      // Must have only one template parameter
9366      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9367      if (Params->size() == 1) {
9368        NonTypeTemplateParmDecl *PmDecl =
9369          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9370
9371        // The template parameter must be a char parameter pack.
9372        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9373            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9374          Valid = true;
9375      }
9376    }
9377  } else {
9378    // Check the first parameter
9379    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9380
9381    QualType T = (*Param)->getType();
9382
9383    // unsigned long long int, long double, and any character type are allowed
9384    // as the only parameters.
9385    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9386        Context.hasSameType(T, Context.LongDoubleTy) ||
9387        Context.hasSameType(T, Context.CharTy) ||
9388        Context.hasSameType(T, Context.WCharTy) ||
9389        Context.hasSameType(T, Context.Char16Ty) ||
9390        Context.hasSameType(T, Context.Char32Ty)) {
9391      if (++Param == FnDecl->param_end())
9392        Valid = true;
9393      goto FinishedParams;
9394    }
9395
9396    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9397    const PointerType *PT = T->getAs<PointerType>();
9398    if (!PT)
9399      goto FinishedParams;
9400    T = PT->getPointeeType();
9401    if (!T.isConstQualified())
9402      goto FinishedParams;
9403    T = T.getUnqualifiedType();
9404
9405    // Move on to the second parameter;
9406    ++Param;
9407
9408    // If there is no second parameter, the first must be a const char *
9409    if (Param == FnDecl->param_end()) {
9410      if (Context.hasSameType(T, Context.CharTy))
9411        Valid = true;
9412      goto FinishedParams;
9413    }
9414
9415    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9416    // are allowed as the first parameter to a two-parameter function
9417    if (!(Context.hasSameType(T, Context.CharTy) ||
9418          Context.hasSameType(T, Context.WCharTy) ||
9419          Context.hasSameType(T, Context.Char16Ty) ||
9420          Context.hasSameType(T, Context.Char32Ty)))
9421      goto FinishedParams;
9422
9423    // The second and final parameter must be an std::size_t
9424    T = (*Param)->getType().getUnqualifiedType();
9425    if (Context.hasSameType(T, Context.getSizeType()) &&
9426        ++Param == FnDecl->param_end())
9427      Valid = true;
9428  }
9429
9430  // FIXME: This diagnostic is absolutely terrible.
9431FinishedParams:
9432  if (!Valid) {
9433    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9434      << FnDecl->getDeclName();
9435    return true;
9436  }
9437
9438  StringRef LiteralName
9439    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9440  if (LiteralName[0] != '_') {
9441    // C++0x [usrlit.suffix]p1:
9442    //   Literal suffix identifiers that do not start with an underscore are
9443    //   reserved for future standardization.
9444    bool IsHexFloat = true;
9445    if (LiteralName.size() > 1 &&
9446        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9447      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9448        if (!isdigit(LiteralName[I])) {
9449          IsHexFloat = false;
9450          break;
9451        }
9452      }
9453    }
9454
9455    if (IsHexFloat)
9456      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9457        << LiteralName;
9458    else
9459      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9460  }
9461
9462  return false;
9463}
9464
9465/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9466/// linkage specification, including the language and (if present)
9467/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9468/// the location of the language string literal, which is provided
9469/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9470/// the '{' brace. Otherwise, this linkage specification does not
9471/// have any braces.
9472Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9473                                           SourceLocation LangLoc,
9474                                           StringRef Lang,
9475                                           SourceLocation LBraceLoc) {
9476  LinkageSpecDecl::LanguageIDs Language;
9477  if (Lang == "\"C\"")
9478    Language = LinkageSpecDecl::lang_c;
9479  else if (Lang == "\"C++\"")
9480    Language = LinkageSpecDecl::lang_cxx;
9481  else {
9482    Diag(LangLoc, diag::err_bad_language);
9483    return 0;
9484  }
9485
9486  // FIXME: Add all the various semantics of linkage specifications
9487
9488  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9489                                               ExternLoc, LangLoc, Language);
9490  CurContext->addDecl(D);
9491  PushDeclContext(S, D);
9492  return D;
9493}
9494
9495/// ActOnFinishLinkageSpecification - Complete the definition of
9496/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9497/// valid, it's the position of the closing '}' brace in a linkage
9498/// specification that uses braces.
9499Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9500                                            Decl *LinkageSpec,
9501                                            SourceLocation RBraceLoc) {
9502  if (LinkageSpec) {
9503    if (RBraceLoc.isValid()) {
9504      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9505      LSDecl->setRBraceLoc(RBraceLoc);
9506    }
9507    PopDeclContext();
9508  }
9509  return LinkageSpec;
9510}
9511
9512/// \brief Perform semantic analysis for the variable declaration that
9513/// occurs within a C++ catch clause, returning the newly-created
9514/// variable.
9515VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9516                                         TypeSourceInfo *TInfo,
9517                                         SourceLocation StartLoc,
9518                                         SourceLocation Loc,
9519                                         IdentifierInfo *Name) {
9520  bool Invalid = false;
9521  QualType ExDeclType = TInfo->getType();
9522
9523  // Arrays and functions decay.
9524  if (ExDeclType->isArrayType())
9525    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9526  else if (ExDeclType->isFunctionType())
9527    ExDeclType = Context.getPointerType(ExDeclType);
9528
9529  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9530  // The exception-declaration shall not denote a pointer or reference to an
9531  // incomplete type, other than [cv] void*.
9532  // N2844 forbids rvalue references.
9533  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9534    Diag(Loc, diag::err_catch_rvalue_ref);
9535    Invalid = true;
9536  }
9537
9538  QualType BaseType = ExDeclType;
9539  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9540  unsigned DK = diag::err_catch_incomplete;
9541  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9542    BaseType = Ptr->getPointeeType();
9543    Mode = 1;
9544    DK = diag::err_catch_incomplete_ptr;
9545  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9546    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9547    BaseType = Ref->getPointeeType();
9548    Mode = 2;
9549    DK = diag::err_catch_incomplete_ref;
9550  }
9551  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9552      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9553    Invalid = true;
9554
9555  if (!Invalid && !ExDeclType->isDependentType() &&
9556      RequireNonAbstractType(Loc, ExDeclType,
9557                             diag::err_abstract_type_in_decl,
9558                             AbstractVariableType))
9559    Invalid = true;
9560
9561  // Only the non-fragile NeXT runtime currently supports C++ catches
9562  // of ObjC types, and no runtime supports catching ObjC types by value.
9563  if (!Invalid && getLangOptions().ObjC1) {
9564    QualType T = ExDeclType;
9565    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9566      T = RT->getPointeeType();
9567
9568    if (T->isObjCObjectType()) {
9569      Diag(Loc, diag::err_objc_object_catch);
9570      Invalid = true;
9571    } else if (T->isObjCObjectPointerType()) {
9572      if (!getLangOptions().ObjCNonFragileABI)
9573        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9574    }
9575  }
9576
9577  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9578                                    ExDeclType, TInfo, SC_None, SC_None);
9579  ExDecl->setExceptionVariable(true);
9580
9581  // In ARC, infer 'retaining' for variables of retainable type.
9582  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9583    Invalid = true;
9584
9585  if (!Invalid && !ExDeclType->isDependentType()) {
9586    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9587      // C++ [except.handle]p16:
9588      //   The object declared in an exception-declaration or, if the
9589      //   exception-declaration does not specify a name, a temporary (12.2) is
9590      //   copy-initialized (8.5) from the exception object. [...]
9591      //   The object is destroyed when the handler exits, after the destruction
9592      //   of any automatic objects initialized within the handler.
9593      //
9594      // We just pretend to initialize the object with itself, then make sure
9595      // it can be destroyed later.
9596      QualType initType = ExDeclType;
9597
9598      InitializedEntity entity =
9599        InitializedEntity::InitializeVariable(ExDecl);
9600      InitializationKind initKind =
9601        InitializationKind::CreateCopy(Loc, SourceLocation());
9602
9603      Expr *opaqueValue =
9604        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9605      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9606      ExprResult result = sequence.Perform(*this, entity, initKind,
9607                                           MultiExprArg(&opaqueValue, 1));
9608      if (result.isInvalid())
9609        Invalid = true;
9610      else {
9611        // If the constructor used was non-trivial, set this as the
9612        // "initializer".
9613        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9614        if (!construct->getConstructor()->isTrivial()) {
9615          Expr *init = MaybeCreateExprWithCleanups(construct);
9616          ExDecl->setInit(init);
9617        }
9618
9619        // And make sure it's destructable.
9620        FinalizeVarWithDestructor(ExDecl, recordType);
9621      }
9622    }
9623  }
9624
9625  if (Invalid)
9626    ExDecl->setInvalidDecl();
9627
9628  return ExDecl;
9629}
9630
9631/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9632/// handler.
9633Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9634  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9635  bool Invalid = D.isInvalidType();
9636
9637  // Check for unexpanded parameter packs.
9638  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9639                                               UPPC_ExceptionType)) {
9640    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9641                                             D.getIdentifierLoc());
9642    Invalid = true;
9643  }
9644
9645  IdentifierInfo *II = D.getIdentifier();
9646  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9647                                             LookupOrdinaryName,
9648                                             ForRedeclaration)) {
9649    // The scope should be freshly made just for us. There is just no way
9650    // it contains any previous declaration.
9651    assert(!S->isDeclScope(PrevDecl));
9652    if (PrevDecl->isTemplateParameter()) {
9653      // Maybe we will complain about the shadowed template parameter.
9654      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9655      PrevDecl = 0;
9656    }
9657  }
9658
9659  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9660    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9661      << D.getCXXScopeSpec().getRange();
9662    Invalid = true;
9663  }
9664
9665  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9666                                              D.getSourceRange().getBegin(),
9667                                              D.getIdentifierLoc(),
9668                                              D.getIdentifier());
9669  if (Invalid)
9670    ExDecl->setInvalidDecl();
9671
9672  // Add the exception declaration into this scope.
9673  if (II)
9674    PushOnScopeChains(ExDecl, S);
9675  else
9676    CurContext->addDecl(ExDecl);
9677
9678  ProcessDeclAttributes(S, ExDecl, D);
9679  return ExDecl;
9680}
9681
9682Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9683                                         Expr *AssertExpr,
9684                                         Expr *AssertMessageExpr_,
9685                                         SourceLocation RParenLoc) {
9686  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9687
9688  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9689    // In a static_assert-declaration, the constant-expression shall be a
9690    // constant expression that can be contextually converted to bool.
9691    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9692    if (Converted.isInvalid())
9693      return 0;
9694
9695    llvm::APSInt Cond;
9696    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9697          PDiag(diag::err_static_assert_expression_is_not_constant),
9698          /*AllowFold=*/false).isInvalid())
9699      return 0;
9700
9701    if (!Cond)
9702      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9703        << AssertMessage->getString() << AssertExpr->getSourceRange();
9704  }
9705
9706  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9707    return 0;
9708
9709  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9710                                        AssertExpr, AssertMessage, RParenLoc);
9711
9712  CurContext->addDecl(Decl);
9713  return Decl;
9714}
9715
9716/// \brief Perform semantic analysis of the given friend type declaration.
9717///
9718/// \returns A friend declaration that.
9719FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9720                                      SourceLocation FriendLoc,
9721                                      TypeSourceInfo *TSInfo) {
9722  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9723
9724  QualType T = TSInfo->getType();
9725  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9726
9727  // C++03 [class.friend]p2:
9728  //   An elaborated-type-specifier shall be used in a friend declaration
9729  //   for a class.*
9730  //
9731  //   * The class-key of the elaborated-type-specifier is required.
9732  if (!ActiveTemplateInstantiations.empty()) {
9733    // Do not complain about the form of friend template types during
9734    // template instantiation; we will already have complained when the
9735    // template was declared.
9736  } else if (!T->isElaboratedTypeSpecifier()) {
9737    // If we evaluated the type to a record type, suggest putting
9738    // a tag in front.
9739    if (const RecordType *RT = T->getAs<RecordType>()) {
9740      RecordDecl *RD = RT->getDecl();
9741
9742      std::string InsertionText = std::string(" ") + RD->getKindName();
9743
9744      Diag(TypeRange.getBegin(),
9745           getLangOptions().CPlusPlus0x ?
9746             diag::warn_cxx98_compat_unelaborated_friend_type :
9747             diag::ext_unelaborated_friend_type)
9748        << (unsigned) RD->getTagKind()
9749        << T
9750        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9751                                      InsertionText);
9752    } else {
9753      Diag(FriendLoc,
9754           getLangOptions().CPlusPlus0x ?
9755             diag::warn_cxx98_compat_nonclass_type_friend :
9756             diag::ext_nonclass_type_friend)
9757        << T
9758        << SourceRange(FriendLoc, TypeRange.getEnd());
9759    }
9760  } else if (T->getAs<EnumType>()) {
9761    Diag(FriendLoc,
9762         getLangOptions().CPlusPlus0x ?
9763           diag::warn_cxx98_compat_enum_friend :
9764           diag::ext_enum_friend)
9765      << T
9766      << SourceRange(FriendLoc, TypeRange.getEnd());
9767  }
9768
9769  // C++0x [class.friend]p3:
9770  //   If the type specifier in a friend declaration designates a (possibly
9771  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9772  //   the friend declaration is ignored.
9773
9774  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9775  // in [class.friend]p3 that we do not implement.
9776
9777  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9778}
9779
9780/// Handle a friend tag declaration where the scope specifier was
9781/// templated.
9782Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9783                                    unsigned TagSpec, SourceLocation TagLoc,
9784                                    CXXScopeSpec &SS,
9785                                    IdentifierInfo *Name, SourceLocation NameLoc,
9786                                    AttributeList *Attr,
9787                                    MultiTemplateParamsArg TempParamLists) {
9788  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9789
9790  bool isExplicitSpecialization = false;
9791  bool Invalid = false;
9792
9793  if (TemplateParameterList *TemplateParams
9794        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9795                                                  TempParamLists.get(),
9796                                                  TempParamLists.size(),
9797                                                  /*friend*/ true,
9798                                                  isExplicitSpecialization,
9799                                                  Invalid)) {
9800    if (TemplateParams->size() > 0) {
9801      // This is a declaration of a class template.
9802      if (Invalid)
9803        return 0;
9804
9805      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9806                                SS, Name, NameLoc, Attr,
9807                                TemplateParams, AS_public,
9808                                /*ModulePrivateLoc=*/SourceLocation(),
9809                                TempParamLists.size() - 1,
9810                   (TemplateParameterList**) TempParamLists.release()).take();
9811    } else {
9812      // The "template<>" header is extraneous.
9813      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9814        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9815      isExplicitSpecialization = true;
9816    }
9817  }
9818
9819  if (Invalid) return 0;
9820
9821  bool isAllExplicitSpecializations = true;
9822  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9823    if (TempParamLists.get()[I]->size()) {
9824      isAllExplicitSpecializations = false;
9825      break;
9826    }
9827  }
9828
9829  // FIXME: don't ignore attributes.
9830
9831  // If it's explicit specializations all the way down, just forget
9832  // about the template header and build an appropriate non-templated
9833  // friend.  TODO: for source fidelity, remember the headers.
9834  if (isAllExplicitSpecializations) {
9835    if (SS.isEmpty()) {
9836      bool Owned = false;
9837      bool IsDependent = false;
9838      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9839                      Attr, AS_public,
9840                      /*ModulePrivateLoc=*/SourceLocation(),
9841                      MultiTemplateParamsArg(), Owned, IsDependent,
9842                      /*ScopedEnumKWLoc=*/SourceLocation(),
9843                      /*ScopedEnumUsesClassTag=*/false,
9844                      /*UnderlyingType=*/TypeResult());
9845    }
9846
9847    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9848    ElaboratedTypeKeyword Keyword
9849      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9850    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9851                                   *Name, NameLoc);
9852    if (T.isNull())
9853      return 0;
9854
9855    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9856    if (isa<DependentNameType>(T)) {
9857      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9858      TL.setElaboratedKeywordLoc(TagLoc);
9859      TL.setQualifierLoc(QualifierLoc);
9860      TL.setNameLoc(NameLoc);
9861    } else {
9862      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9863      TL.setElaboratedKeywordLoc(TagLoc);
9864      TL.setQualifierLoc(QualifierLoc);
9865      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9866    }
9867
9868    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9869                                            TSI, FriendLoc);
9870    Friend->setAccess(AS_public);
9871    CurContext->addDecl(Friend);
9872    return Friend;
9873  }
9874
9875  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9876
9877
9878
9879  // Handle the case of a templated-scope friend class.  e.g.
9880  //   template <class T> class A<T>::B;
9881  // FIXME: we don't support these right now.
9882  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9883  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9884  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9885  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9886  TL.setElaboratedKeywordLoc(TagLoc);
9887  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9888  TL.setNameLoc(NameLoc);
9889
9890  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9891                                          TSI, FriendLoc);
9892  Friend->setAccess(AS_public);
9893  Friend->setUnsupportedFriend(true);
9894  CurContext->addDecl(Friend);
9895  return Friend;
9896}
9897
9898
9899/// Handle a friend type declaration.  This works in tandem with
9900/// ActOnTag.
9901///
9902/// Notes on friend class templates:
9903///
9904/// We generally treat friend class declarations as if they were
9905/// declaring a class.  So, for example, the elaborated type specifier
9906/// in a friend declaration is required to obey the restrictions of a
9907/// class-head (i.e. no typedefs in the scope chain), template
9908/// parameters are required to match up with simple template-ids, &c.
9909/// However, unlike when declaring a template specialization, it's
9910/// okay to refer to a template specialization without an empty
9911/// template parameter declaration, e.g.
9912///   friend class A<T>::B<unsigned>;
9913/// We permit this as a special case; if there are any template
9914/// parameters present at all, require proper matching, i.e.
9915///   template <> template <class T> friend class A<int>::B;
9916Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9917                                MultiTemplateParamsArg TempParams) {
9918  SourceLocation Loc = DS.getSourceRange().getBegin();
9919
9920  assert(DS.isFriendSpecified());
9921  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9922
9923  // Try to convert the decl specifier to a type.  This works for
9924  // friend templates because ActOnTag never produces a ClassTemplateDecl
9925  // for a TUK_Friend.
9926  Declarator TheDeclarator(DS, Declarator::MemberContext);
9927  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9928  QualType T = TSI->getType();
9929  if (TheDeclarator.isInvalidType())
9930    return 0;
9931
9932  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9933    return 0;
9934
9935  // This is definitely an error in C++98.  It's probably meant to
9936  // be forbidden in C++0x, too, but the specification is just
9937  // poorly written.
9938  //
9939  // The problem is with declarations like the following:
9940  //   template <T> friend A<T>::foo;
9941  // where deciding whether a class C is a friend or not now hinges
9942  // on whether there exists an instantiation of A that causes
9943  // 'foo' to equal C.  There are restrictions on class-heads
9944  // (which we declare (by fiat) elaborated friend declarations to
9945  // be) that makes this tractable.
9946  //
9947  // FIXME: handle "template <> friend class A<T>;", which
9948  // is possibly well-formed?  Who even knows?
9949  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9950    Diag(Loc, diag::err_tagless_friend_type_template)
9951      << DS.getSourceRange();
9952    return 0;
9953  }
9954
9955  // C++98 [class.friend]p1: A friend of a class is a function
9956  //   or class that is not a member of the class . . .
9957  // This is fixed in DR77, which just barely didn't make the C++03
9958  // deadline.  It's also a very silly restriction that seriously
9959  // affects inner classes and which nobody else seems to implement;
9960  // thus we never diagnose it, not even in -pedantic.
9961  //
9962  // But note that we could warn about it: it's always useless to
9963  // friend one of your own members (it's not, however, worthless to
9964  // friend a member of an arbitrary specialization of your template).
9965
9966  Decl *D;
9967  if (unsigned NumTempParamLists = TempParams.size())
9968    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9969                                   NumTempParamLists,
9970                                   TempParams.release(),
9971                                   TSI,
9972                                   DS.getFriendSpecLoc());
9973  else
9974    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9975
9976  if (!D)
9977    return 0;
9978
9979  D->setAccess(AS_public);
9980  CurContext->addDecl(D);
9981
9982  return D;
9983}
9984
9985Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9986                                    MultiTemplateParamsArg TemplateParams) {
9987  const DeclSpec &DS = D.getDeclSpec();
9988
9989  assert(DS.isFriendSpecified());
9990  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9991
9992  SourceLocation Loc = D.getIdentifierLoc();
9993  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9994
9995  // C++ [class.friend]p1
9996  //   A friend of a class is a function or class....
9997  // Note that this sees through typedefs, which is intended.
9998  // It *doesn't* see through dependent types, which is correct
9999  // according to [temp.arg.type]p3:
10000  //   If a declaration acquires a function type through a
10001  //   type dependent on a template-parameter and this causes
10002  //   a declaration that does not use the syntactic form of a
10003  //   function declarator to have a function type, the program
10004  //   is ill-formed.
10005  if (!TInfo->getType()->isFunctionType()) {
10006    Diag(Loc, diag::err_unexpected_friend);
10007
10008    // It might be worthwhile to try to recover by creating an
10009    // appropriate declaration.
10010    return 0;
10011  }
10012
10013  // C++ [namespace.memdef]p3
10014  //  - If a friend declaration in a non-local class first declares a
10015  //    class or function, the friend class or function is a member
10016  //    of the innermost enclosing namespace.
10017  //  - The name of the friend is not found by simple name lookup
10018  //    until a matching declaration is provided in that namespace
10019  //    scope (either before or after the class declaration granting
10020  //    friendship).
10021  //  - If a friend function is called, its name may be found by the
10022  //    name lookup that considers functions from namespaces and
10023  //    classes associated with the types of the function arguments.
10024  //  - When looking for a prior declaration of a class or a function
10025  //    declared as a friend, scopes outside the innermost enclosing
10026  //    namespace scope are not considered.
10027
10028  CXXScopeSpec &SS = D.getCXXScopeSpec();
10029  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10030  DeclarationName Name = NameInfo.getName();
10031  assert(Name);
10032
10033  // Check for unexpanded parameter packs.
10034  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10035      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10036      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10037    return 0;
10038
10039  // The context we found the declaration in, or in which we should
10040  // create the declaration.
10041  DeclContext *DC;
10042  Scope *DCScope = S;
10043  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10044                        ForRedeclaration);
10045
10046  // FIXME: there are different rules in local classes
10047
10048  // There are four cases here.
10049  //   - There's no scope specifier, in which case we just go to the
10050  //     appropriate scope and look for a function or function template
10051  //     there as appropriate.
10052  // Recover from invalid scope qualifiers as if they just weren't there.
10053  if (SS.isInvalid() || !SS.isSet()) {
10054    // C++0x [namespace.memdef]p3:
10055    //   If the name in a friend declaration is neither qualified nor
10056    //   a template-id and the declaration is a function or an
10057    //   elaborated-type-specifier, the lookup to determine whether
10058    //   the entity has been previously declared shall not consider
10059    //   any scopes outside the innermost enclosing namespace.
10060    // C++0x [class.friend]p11:
10061    //   If a friend declaration appears in a local class and the name
10062    //   specified is an unqualified name, a prior declaration is
10063    //   looked up without considering scopes that are outside the
10064    //   innermost enclosing non-class scope. For a friend function
10065    //   declaration, if there is no prior declaration, the program is
10066    //   ill-formed.
10067    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10068    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10069
10070    // Find the appropriate context according to the above.
10071    DC = CurContext;
10072    while (true) {
10073      // Skip class contexts.  If someone can cite chapter and verse
10074      // for this behavior, that would be nice --- it's what GCC and
10075      // EDG do, and it seems like a reasonable intent, but the spec
10076      // really only says that checks for unqualified existing
10077      // declarations should stop at the nearest enclosing namespace,
10078      // not that they should only consider the nearest enclosing
10079      // namespace.
10080      while (DC->isRecord())
10081        DC = DC->getParent();
10082
10083      LookupQualifiedName(Previous, DC);
10084
10085      // TODO: decide what we think about using declarations.
10086      if (isLocal || !Previous.empty())
10087        break;
10088
10089      if (isTemplateId) {
10090        if (isa<TranslationUnitDecl>(DC)) break;
10091      } else {
10092        if (DC->isFileContext()) break;
10093      }
10094      DC = DC->getParent();
10095    }
10096
10097    // C++ [class.friend]p1: A friend of a class is a function or
10098    //   class that is not a member of the class . . .
10099    // C++11 changes this for both friend types and functions.
10100    // Most C++ 98 compilers do seem to give an error here, so
10101    // we do, too.
10102    if (!Previous.empty() && DC->Equals(CurContext))
10103      Diag(DS.getFriendSpecLoc(),
10104           getLangOptions().CPlusPlus0x ?
10105             diag::warn_cxx98_compat_friend_is_member :
10106             diag::err_friend_is_member);
10107
10108    DCScope = getScopeForDeclContext(S, DC);
10109
10110    // C++ [class.friend]p6:
10111    //   A function can be defined in a friend declaration of a class if and
10112    //   only if the class is a non-local class (9.8), the function name is
10113    //   unqualified, and the function has namespace scope.
10114    if (isLocal && D.isFunctionDefinition()) {
10115      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10116    }
10117
10118  //   - There's a non-dependent scope specifier, in which case we
10119  //     compute it and do a previous lookup there for a function
10120  //     or function template.
10121  } else if (!SS.getScopeRep()->isDependent()) {
10122    DC = computeDeclContext(SS);
10123    if (!DC) return 0;
10124
10125    if (RequireCompleteDeclContext(SS, DC)) return 0;
10126
10127    LookupQualifiedName(Previous, DC);
10128
10129    // Ignore things found implicitly in the wrong scope.
10130    // TODO: better diagnostics for this case.  Suggesting the right
10131    // qualified scope would be nice...
10132    LookupResult::Filter F = Previous.makeFilter();
10133    while (F.hasNext()) {
10134      NamedDecl *D = F.next();
10135      if (!DC->InEnclosingNamespaceSetOf(
10136              D->getDeclContext()->getRedeclContext()))
10137        F.erase();
10138    }
10139    F.done();
10140
10141    if (Previous.empty()) {
10142      D.setInvalidType();
10143      Diag(Loc, diag::err_qualified_friend_not_found)
10144          << Name << TInfo->getType();
10145      return 0;
10146    }
10147
10148    // C++ [class.friend]p1: A friend of a class is a function or
10149    //   class that is not a member of the class . . .
10150    if (DC->Equals(CurContext))
10151      Diag(DS.getFriendSpecLoc(),
10152           getLangOptions().CPlusPlus0x ?
10153             diag::warn_cxx98_compat_friend_is_member :
10154             diag::err_friend_is_member);
10155
10156    if (D.isFunctionDefinition()) {
10157      // C++ [class.friend]p6:
10158      //   A function can be defined in a friend declaration of a class if and
10159      //   only if the class is a non-local class (9.8), the function name is
10160      //   unqualified, and the function has namespace scope.
10161      SemaDiagnosticBuilder DB
10162        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10163
10164      DB << SS.getScopeRep();
10165      if (DC->isFileContext())
10166        DB << FixItHint::CreateRemoval(SS.getRange());
10167      SS.clear();
10168    }
10169
10170  //   - There's a scope specifier that does not match any template
10171  //     parameter lists, in which case we use some arbitrary context,
10172  //     create a method or method template, and wait for instantiation.
10173  //   - There's a scope specifier that does match some template
10174  //     parameter lists, which we don't handle right now.
10175  } else {
10176    if (D.isFunctionDefinition()) {
10177      // C++ [class.friend]p6:
10178      //   A function can be defined in a friend declaration of a class if and
10179      //   only if the class is a non-local class (9.8), the function name is
10180      //   unqualified, and the function has namespace scope.
10181      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10182        << SS.getScopeRep();
10183    }
10184
10185    DC = CurContext;
10186    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10187  }
10188
10189  if (!DC->isRecord()) {
10190    // This implies that it has to be an operator or function.
10191    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10192        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10193        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10194      Diag(Loc, diag::err_introducing_special_friend) <<
10195        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10196         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10197      return 0;
10198    }
10199  }
10200
10201  // FIXME: This is an egregious hack to cope with cases where the scope stack
10202  // does not contain the declaration context, i.e., in an out-of-line
10203  // definition of a class.
10204  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10205  if (!DCScope) {
10206    FakeDCScope.setEntity(DC);
10207    DCScope = &FakeDCScope;
10208  }
10209
10210  bool AddToScope = true;
10211  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10212                                          move(TemplateParams), AddToScope);
10213  if (!ND) return 0;
10214
10215  assert(ND->getDeclContext() == DC);
10216  assert(ND->getLexicalDeclContext() == CurContext);
10217
10218  // Add the function declaration to the appropriate lookup tables,
10219  // adjusting the redeclarations list as necessary.  We don't
10220  // want to do this yet if the friending class is dependent.
10221  //
10222  // Also update the scope-based lookup if the target context's
10223  // lookup context is in lexical scope.
10224  if (!CurContext->isDependentContext()) {
10225    DC = DC->getRedeclContext();
10226    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10227    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10228      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10229  }
10230
10231  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10232                                       D.getIdentifierLoc(), ND,
10233                                       DS.getFriendSpecLoc());
10234  FrD->setAccess(AS_public);
10235  CurContext->addDecl(FrD);
10236
10237  if (ND->isInvalidDecl())
10238    FrD->setInvalidDecl();
10239  else {
10240    FunctionDecl *FD;
10241    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10242      FD = FTD->getTemplatedDecl();
10243    else
10244      FD = cast<FunctionDecl>(ND);
10245
10246    // Mark templated-scope function declarations as unsupported.
10247    if (FD->getNumTemplateParameterLists())
10248      FrD->setUnsupportedFriend(true);
10249  }
10250
10251  return ND;
10252}
10253
10254void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10255  AdjustDeclIfTemplate(Dcl);
10256
10257  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10258  if (!Fn) {
10259    Diag(DelLoc, diag::err_deleted_non_function);
10260    return;
10261  }
10262  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10263    Diag(DelLoc, diag::err_deleted_decl_not_first);
10264    Diag(Prev->getLocation(), diag::note_previous_declaration);
10265    // If the declaration wasn't the first, we delete the function anyway for
10266    // recovery.
10267  }
10268  Fn->setDeletedAsWritten();
10269
10270  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10271  if (!MD)
10272    return;
10273
10274  // A deleted special member function is trivial if the corresponding
10275  // implicitly-declared function would have been.
10276  switch (getSpecialMember(MD)) {
10277  case CXXInvalid:
10278    break;
10279  case CXXDefaultConstructor:
10280    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10281    break;
10282  case CXXCopyConstructor:
10283    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10284    break;
10285  case CXXMoveConstructor:
10286    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10287    break;
10288  case CXXCopyAssignment:
10289    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10290    break;
10291  case CXXMoveAssignment:
10292    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10293    break;
10294  case CXXDestructor:
10295    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10296    break;
10297  }
10298}
10299
10300void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10301  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10302
10303  if (MD) {
10304    if (MD->getParent()->isDependentType()) {
10305      MD->setDefaulted();
10306      MD->setExplicitlyDefaulted();
10307      return;
10308    }
10309
10310    CXXSpecialMember Member = getSpecialMember(MD);
10311    if (Member == CXXInvalid) {
10312      Diag(DefaultLoc, diag::err_default_special_members);
10313      return;
10314    }
10315
10316    MD->setDefaulted();
10317    MD->setExplicitlyDefaulted();
10318
10319    // If this definition appears within the record, do the checking when
10320    // the record is complete.
10321    const FunctionDecl *Primary = MD;
10322    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10323      // Find the uninstantiated declaration that actually had the '= default'
10324      // on it.
10325      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10326
10327    if (Primary == Primary->getCanonicalDecl())
10328      return;
10329
10330    switch (Member) {
10331    case CXXDefaultConstructor: {
10332      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10333      CheckExplicitlyDefaultedDefaultConstructor(CD);
10334      if (!CD->isInvalidDecl())
10335        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10336      break;
10337    }
10338
10339    case CXXCopyConstructor: {
10340      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10341      CheckExplicitlyDefaultedCopyConstructor(CD);
10342      if (!CD->isInvalidDecl())
10343        DefineImplicitCopyConstructor(DefaultLoc, CD);
10344      break;
10345    }
10346
10347    case CXXCopyAssignment: {
10348      CheckExplicitlyDefaultedCopyAssignment(MD);
10349      if (!MD->isInvalidDecl())
10350        DefineImplicitCopyAssignment(DefaultLoc, MD);
10351      break;
10352    }
10353
10354    case CXXDestructor: {
10355      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10356      CheckExplicitlyDefaultedDestructor(DD);
10357      if (!DD->isInvalidDecl())
10358        DefineImplicitDestructor(DefaultLoc, DD);
10359      break;
10360    }
10361
10362    case CXXMoveConstructor: {
10363      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10364      CheckExplicitlyDefaultedMoveConstructor(CD);
10365      if (!CD->isInvalidDecl())
10366        DefineImplicitMoveConstructor(DefaultLoc, CD);
10367      break;
10368    }
10369
10370    case CXXMoveAssignment: {
10371      CheckExplicitlyDefaultedMoveAssignment(MD);
10372      if (!MD->isInvalidDecl())
10373        DefineImplicitMoveAssignment(DefaultLoc, MD);
10374      break;
10375    }
10376
10377    case CXXInvalid:
10378      llvm_unreachable("Invalid special member.");
10379    }
10380  } else {
10381    Diag(DefaultLoc, diag::err_default_special_members);
10382  }
10383}
10384
10385static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10386  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10387    Stmt *SubStmt = *CI;
10388    if (!SubStmt)
10389      continue;
10390    if (isa<ReturnStmt>(SubStmt))
10391      Self.Diag(SubStmt->getSourceRange().getBegin(),
10392           diag::err_return_in_constructor_handler);
10393    if (!isa<Expr>(SubStmt))
10394      SearchForReturnInStmt(Self, SubStmt);
10395  }
10396}
10397
10398void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10399  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10400    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10401    SearchForReturnInStmt(*this, Handler);
10402  }
10403}
10404
10405bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10406                                             const CXXMethodDecl *Old) {
10407  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10408  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10409
10410  if (Context.hasSameType(NewTy, OldTy) ||
10411      NewTy->isDependentType() || OldTy->isDependentType())
10412    return false;
10413
10414  // Check if the return types are covariant
10415  QualType NewClassTy, OldClassTy;
10416
10417  /// Both types must be pointers or references to classes.
10418  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10419    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10420      NewClassTy = NewPT->getPointeeType();
10421      OldClassTy = OldPT->getPointeeType();
10422    }
10423  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10424    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10425      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10426        NewClassTy = NewRT->getPointeeType();
10427        OldClassTy = OldRT->getPointeeType();
10428      }
10429    }
10430  }
10431
10432  // The return types aren't either both pointers or references to a class type.
10433  if (NewClassTy.isNull()) {
10434    Diag(New->getLocation(),
10435         diag::err_different_return_type_for_overriding_virtual_function)
10436      << New->getDeclName() << NewTy << OldTy;
10437    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10438
10439    return true;
10440  }
10441
10442  // C++ [class.virtual]p6:
10443  //   If the return type of D::f differs from the return type of B::f, the
10444  //   class type in the return type of D::f shall be complete at the point of
10445  //   declaration of D::f or shall be the class type D.
10446  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10447    if (!RT->isBeingDefined() &&
10448        RequireCompleteType(New->getLocation(), NewClassTy,
10449                            PDiag(diag::err_covariant_return_incomplete)
10450                              << New->getDeclName()))
10451    return true;
10452  }
10453
10454  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10455    // Check if the new class derives from the old class.
10456    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10457      Diag(New->getLocation(),
10458           diag::err_covariant_return_not_derived)
10459      << New->getDeclName() << NewTy << OldTy;
10460      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10461      return true;
10462    }
10463
10464    // Check if we the conversion from derived to base is valid.
10465    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10466                    diag::err_covariant_return_inaccessible_base,
10467                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10468                    // FIXME: Should this point to the return type?
10469                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10470      // FIXME: this note won't trigger for delayed access control
10471      // diagnostics, and it's impossible to get an undelayed error
10472      // here from access control during the original parse because
10473      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10474      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10475      return true;
10476    }
10477  }
10478
10479  // The qualifiers of the return types must be the same.
10480  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10481    Diag(New->getLocation(),
10482         diag::err_covariant_return_type_different_qualifications)
10483    << New->getDeclName() << NewTy << OldTy;
10484    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10485    return true;
10486  };
10487
10488
10489  // The new class type must have the same or less qualifiers as the old type.
10490  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10491    Diag(New->getLocation(),
10492         diag::err_covariant_return_type_class_type_more_qualified)
10493    << New->getDeclName() << NewTy << OldTy;
10494    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10495    return true;
10496  };
10497
10498  return false;
10499}
10500
10501/// \brief Mark the given method pure.
10502///
10503/// \param Method the method to be marked pure.
10504///
10505/// \param InitRange the source range that covers the "0" initializer.
10506bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10507  SourceLocation EndLoc = InitRange.getEnd();
10508  if (EndLoc.isValid())
10509    Method->setRangeEnd(EndLoc);
10510
10511  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10512    Method->setPure();
10513    return false;
10514  }
10515
10516  if (!Method->isInvalidDecl())
10517    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10518      << Method->getDeclName() << InitRange;
10519  return true;
10520}
10521
10522/// \brief Determine whether the given declaration is a static data member.
10523static bool isStaticDataMember(Decl *D) {
10524  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10525  if (!Var)
10526    return false;
10527
10528  return Var->isStaticDataMember();
10529}
10530/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10531/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10532/// is a fresh scope pushed for just this purpose.
10533///
10534/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10535/// static data member of class X, names should be looked up in the scope of
10536/// class X.
10537void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10538  // If there is no declaration, there was an error parsing it.
10539  if (D == 0 || D->isInvalidDecl()) return;
10540
10541  // We should only get called for declarations with scope specifiers, like:
10542  //   int foo::bar;
10543  assert(D->isOutOfLine());
10544  EnterDeclaratorContext(S, D->getDeclContext());
10545
10546  // If we are parsing the initializer for a static data member, push a
10547  // new expression evaluation context that is associated with this static
10548  // data member.
10549  if (isStaticDataMember(D))
10550    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10551}
10552
10553/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10554/// initializer for the out-of-line declaration 'D'.
10555void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10556  // If there is no declaration, there was an error parsing it.
10557  if (D == 0 || D->isInvalidDecl()) return;
10558
10559  if (isStaticDataMember(D))
10560    PopExpressionEvaluationContext();
10561
10562  assert(D->isOutOfLine());
10563  ExitDeclaratorContext(S);
10564}
10565
10566/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10567/// C++ if/switch/while/for statement.
10568/// e.g: "if (int x = f()) {...}"
10569DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10570  // C++ 6.4p2:
10571  // The declarator shall not specify a function or an array.
10572  // The type-specifier-seq shall not contain typedef and shall not declare a
10573  // new class or enumeration.
10574  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10575         "Parser allowed 'typedef' as storage class of condition decl.");
10576
10577  Decl *Dcl = ActOnDeclarator(S, D);
10578  if (!Dcl)
10579    return true;
10580
10581  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10582    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10583      << D.getSourceRange();
10584    return true;
10585  }
10586
10587  return Dcl;
10588}
10589
10590void Sema::LoadExternalVTableUses() {
10591  if (!ExternalSource)
10592    return;
10593
10594  SmallVector<ExternalVTableUse, 4> VTables;
10595  ExternalSource->ReadUsedVTables(VTables);
10596  SmallVector<VTableUse, 4> NewUses;
10597  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10598    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10599      = VTablesUsed.find(VTables[I].Record);
10600    // Even if a definition wasn't required before, it may be required now.
10601    if (Pos != VTablesUsed.end()) {
10602      if (!Pos->second && VTables[I].DefinitionRequired)
10603        Pos->second = true;
10604      continue;
10605    }
10606
10607    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10608    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10609  }
10610
10611  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10612}
10613
10614void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10615                          bool DefinitionRequired) {
10616  // Ignore any vtable uses in unevaluated operands or for classes that do
10617  // not have a vtable.
10618  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10619      CurContext->isDependentContext() ||
10620      ExprEvalContexts.back().Context == Unevaluated)
10621    return;
10622
10623  // Try to insert this class into the map.
10624  LoadExternalVTableUses();
10625  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10626  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10627    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10628  if (!Pos.second) {
10629    // If we already had an entry, check to see if we are promoting this vtable
10630    // to required a definition. If so, we need to reappend to the VTableUses
10631    // list, since we may have already processed the first entry.
10632    if (DefinitionRequired && !Pos.first->second) {
10633      Pos.first->second = true;
10634    } else {
10635      // Otherwise, we can early exit.
10636      return;
10637    }
10638  }
10639
10640  // Local classes need to have their virtual members marked
10641  // immediately. For all other classes, we mark their virtual members
10642  // at the end of the translation unit.
10643  if (Class->isLocalClass())
10644    MarkVirtualMembersReferenced(Loc, Class);
10645  else
10646    VTableUses.push_back(std::make_pair(Class, Loc));
10647}
10648
10649bool Sema::DefineUsedVTables() {
10650  LoadExternalVTableUses();
10651  if (VTableUses.empty())
10652    return false;
10653
10654  // Note: The VTableUses vector could grow as a result of marking
10655  // the members of a class as "used", so we check the size each
10656  // time through the loop and prefer indices (with are stable) to
10657  // iterators (which are not).
10658  bool DefinedAnything = false;
10659  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10660    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10661    if (!Class)
10662      continue;
10663
10664    SourceLocation Loc = VTableUses[I].second;
10665
10666    // If this class has a key function, but that key function is
10667    // defined in another translation unit, we don't need to emit the
10668    // vtable even though we're using it.
10669    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10670    if (KeyFunction && !KeyFunction->hasBody()) {
10671      switch (KeyFunction->getTemplateSpecializationKind()) {
10672      case TSK_Undeclared:
10673      case TSK_ExplicitSpecialization:
10674      case TSK_ExplicitInstantiationDeclaration:
10675        // The key function is in another translation unit.
10676        continue;
10677
10678      case TSK_ExplicitInstantiationDefinition:
10679      case TSK_ImplicitInstantiation:
10680        // We will be instantiating the key function.
10681        break;
10682      }
10683    } else if (!KeyFunction) {
10684      // If we have a class with no key function that is the subject
10685      // of an explicit instantiation declaration, suppress the
10686      // vtable; it will live with the explicit instantiation
10687      // definition.
10688      bool IsExplicitInstantiationDeclaration
10689        = Class->getTemplateSpecializationKind()
10690                                      == TSK_ExplicitInstantiationDeclaration;
10691      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10692                                 REnd = Class->redecls_end();
10693           R != REnd; ++R) {
10694        TemplateSpecializationKind TSK
10695          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10696        if (TSK == TSK_ExplicitInstantiationDeclaration)
10697          IsExplicitInstantiationDeclaration = true;
10698        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10699          IsExplicitInstantiationDeclaration = false;
10700          break;
10701        }
10702      }
10703
10704      if (IsExplicitInstantiationDeclaration)
10705        continue;
10706    }
10707
10708    // Mark all of the virtual members of this class as referenced, so
10709    // that we can build a vtable. Then, tell the AST consumer that a
10710    // vtable for this class is required.
10711    DefinedAnything = true;
10712    MarkVirtualMembersReferenced(Loc, Class);
10713    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10714    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10715
10716    // Optionally warn if we're emitting a weak vtable.
10717    if (Class->getLinkage() == ExternalLinkage &&
10718        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10719      const FunctionDecl *KeyFunctionDef = 0;
10720      if (!KeyFunction ||
10721          (KeyFunction->hasBody(KeyFunctionDef) &&
10722           KeyFunctionDef->isInlined()))
10723        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10724             TSK_ExplicitInstantiationDefinition
10725             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10726          << Class;
10727    }
10728  }
10729  VTableUses.clear();
10730
10731  return DefinedAnything;
10732}
10733
10734void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10735                                        const CXXRecordDecl *RD) {
10736  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10737       e = RD->method_end(); i != e; ++i) {
10738    CXXMethodDecl *MD = *i;
10739
10740    // C++ [basic.def.odr]p2:
10741    //   [...] A virtual member function is used if it is not pure. [...]
10742    if (MD->isVirtual() && !MD->isPure())
10743      MarkFunctionReferenced(Loc, MD);
10744  }
10745
10746  // Only classes that have virtual bases need a VTT.
10747  if (RD->getNumVBases() == 0)
10748    return;
10749
10750  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10751           e = RD->bases_end(); i != e; ++i) {
10752    const CXXRecordDecl *Base =
10753        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10754    if (Base->getNumVBases() == 0)
10755      continue;
10756    MarkVirtualMembersReferenced(Loc, Base);
10757  }
10758}
10759
10760/// SetIvarInitializers - This routine builds initialization ASTs for the
10761/// Objective-C implementation whose ivars need be initialized.
10762void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10763  if (!getLangOptions().CPlusPlus)
10764    return;
10765  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10766    SmallVector<ObjCIvarDecl*, 8> ivars;
10767    CollectIvarsToConstructOrDestruct(OID, ivars);
10768    if (ivars.empty())
10769      return;
10770    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10771    for (unsigned i = 0; i < ivars.size(); i++) {
10772      FieldDecl *Field = ivars[i];
10773      if (Field->isInvalidDecl())
10774        continue;
10775
10776      CXXCtorInitializer *Member;
10777      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10778      InitializationKind InitKind =
10779        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10780
10781      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10782      ExprResult MemberInit =
10783        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10784      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10785      // Note, MemberInit could actually come back empty if no initialization
10786      // is required (e.g., because it would call a trivial default constructor)
10787      if (!MemberInit.get() || MemberInit.isInvalid())
10788        continue;
10789
10790      Member =
10791        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10792                                         SourceLocation(),
10793                                         MemberInit.takeAs<Expr>(),
10794                                         SourceLocation());
10795      AllToInit.push_back(Member);
10796
10797      // Be sure that the destructor is accessible and is marked as referenced.
10798      if (const RecordType *RecordTy
10799                  = Context.getBaseElementType(Field->getType())
10800                                                        ->getAs<RecordType>()) {
10801                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10802        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10803          MarkFunctionReferenced(Field->getLocation(), Destructor);
10804          CheckDestructorAccess(Field->getLocation(), Destructor,
10805                            PDiag(diag::err_access_dtor_ivar)
10806                              << Context.getBaseElementType(Field->getType()));
10807        }
10808      }
10809    }
10810    ObjCImplementation->setIvarInitializers(Context,
10811                                            AllToInit.data(), AllToInit.size());
10812  }
10813}
10814
10815static
10816void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10817                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10818                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10819                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10820                           Sema &S) {
10821  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10822                                                   CE = Current.end();
10823  if (Ctor->isInvalidDecl())
10824    return;
10825
10826  const FunctionDecl *FNTarget = 0;
10827  CXXConstructorDecl *Target;
10828
10829  // We ignore the result here since if we don't have a body, Target will be
10830  // null below.
10831  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10832  Target
10833= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10834
10835  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10836                     // Avoid dereferencing a null pointer here.
10837                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10838
10839  if (!Current.insert(Canonical))
10840    return;
10841
10842  // We know that beyond here, we aren't chaining into a cycle.
10843  if (!Target || !Target->isDelegatingConstructor() ||
10844      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10845    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10846      Valid.insert(*CI);
10847    Current.clear();
10848  // We've hit a cycle.
10849  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10850             Current.count(TCanonical)) {
10851    // If we haven't diagnosed this cycle yet, do so now.
10852    if (!Invalid.count(TCanonical)) {
10853      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10854             diag::warn_delegating_ctor_cycle)
10855        << Ctor;
10856
10857      // Don't add a note for a function delegating directo to itself.
10858      if (TCanonical != Canonical)
10859        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10860
10861      CXXConstructorDecl *C = Target;
10862      while (C->getCanonicalDecl() != Canonical) {
10863        (void)C->getTargetConstructor()->hasBody(FNTarget);
10864        assert(FNTarget && "Ctor cycle through bodiless function");
10865
10866        C
10867       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10868        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10869      }
10870    }
10871
10872    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10873      Invalid.insert(*CI);
10874    Current.clear();
10875  } else {
10876    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10877  }
10878}
10879
10880
10881void Sema::CheckDelegatingCtorCycles() {
10882  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10883
10884  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10885                                                   CE = Current.end();
10886
10887  for (DelegatingCtorDeclsType::iterator
10888         I = DelegatingCtorDecls.begin(ExternalSource),
10889         E = DelegatingCtorDecls.end();
10890       I != E; ++I) {
10891   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10892  }
10893
10894  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10895    (*CI)->setInvalidDecl();
10896}
10897
10898/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10899Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10900  // Implicitly declared functions (e.g. copy constructors) are
10901  // __host__ __device__
10902  if (D->isImplicit())
10903    return CFT_HostDevice;
10904
10905  if (D->hasAttr<CUDAGlobalAttr>())
10906    return CFT_Global;
10907
10908  if (D->hasAttr<CUDADeviceAttr>()) {
10909    if (D->hasAttr<CUDAHostAttr>())
10910      return CFT_HostDevice;
10911    else
10912      return CFT_Device;
10913  }
10914
10915  return CFT_Host;
10916}
10917
10918bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10919                           CUDAFunctionTarget CalleeTarget) {
10920  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10921  // Callable from the device only."
10922  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10923    return true;
10924
10925  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10926  // Callable from the host only."
10927  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10928  // Callable from the host only."
10929  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10930      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10931    return true;
10932
10933  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10934    return true;
10935
10936  return false;
10937}
10938