SemaDeclCXX.cpp revision 799ef666685d6c97d64d1970a6f68bf7923360c2
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++ [class.derived]p2:
525  //   If a class is marked with the class-virt-specifier final and it appears
526  //   as a base-type-specifier in a base-clause (10 class.derived), the program
527  //   is ill-formed.
528  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
529    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
530      << CXXBaseDecl->getDeclName();
531    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
532      << CXXBaseDecl->getDeclName();
533    return 0;
534  }
535
536  if (BaseDecl->isInvalidDecl())
537    Class->setInvalidDecl();
538
539  // Create the base specifier.
540  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
541                                        Class->getTagKind() == TTK_Class,
542                                        Access, TInfo, EllipsisLoc);
543}
544
545/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
546/// one entry in the base class list of a class specifier, for
547/// example:
548///    class foo : public bar, virtual private baz {
549/// 'public bar' and 'virtual private baz' are each base-specifiers.
550BaseResult
551Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
552                         bool Virtual, AccessSpecifier Access,
553                         ParsedType basetype, SourceLocation BaseLoc,
554                         SourceLocation EllipsisLoc) {
555  if (!classdecl)
556    return true;
557
558  AdjustDeclIfTemplate(classdecl);
559  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
560  if (!Class)
561    return true;
562
563  TypeSourceInfo *TInfo = 0;
564  GetTypeFromParser(basetype, &TInfo);
565
566  if (EllipsisLoc.isInvalid() &&
567      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
568                                      UPPC_BaseType))
569    return true;
570
571  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
572                                                      Virtual, Access, TInfo,
573                                                      EllipsisLoc))
574    return BaseSpec;
575
576  return true;
577}
578
579/// \brief Performs the actual work of attaching the given base class
580/// specifiers to a C++ class.
581bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
582                                unsigned NumBases) {
583 if (NumBases == 0)
584    return false;
585
586  // Used to keep track of which base types we have already seen, so
587  // that we can properly diagnose redundant direct base types. Note
588  // that the key is always the unqualified canonical type of the base
589  // class.
590  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
591
592  // Copy non-redundant base specifiers into permanent storage.
593  unsigned NumGoodBases = 0;
594  bool Invalid = false;
595  for (unsigned idx = 0; idx < NumBases; ++idx) {
596    QualType NewBaseType
597      = Context.getCanonicalType(Bases[idx]->getType());
598    NewBaseType = NewBaseType.getLocalUnqualifiedType();
599    if (!Class->hasObjectMember()) {
600      if (const RecordType *FDTTy =
601            NewBaseType.getTypePtr()->getAs<RecordType>())
602        if (FDTTy->getDecl()->hasObjectMember())
603          Class->setHasObjectMember(true);
604    }
605
606    if (KnownBaseTypes[NewBaseType]) {
607      // C++ [class.mi]p3:
608      //   A class shall not be specified as a direct base class of a
609      //   derived class more than once.
610      Diag(Bases[idx]->getSourceRange().getBegin(),
611           diag::err_duplicate_base_class)
612        << KnownBaseTypes[NewBaseType]->getType()
613        << Bases[idx]->getSourceRange();
614
615      // Delete the duplicate base class specifier; we're going to
616      // overwrite its pointer later.
617      Context.Deallocate(Bases[idx]);
618
619      Invalid = true;
620    } else {
621      // Okay, add this new base class.
622      KnownBaseTypes[NewBaseType] = Bases[idx];
623      Bases[NumGoodBases++] = Bases[idx];
624    }
625  }
626
627  // Attach the remaining base class specifiers to the derived class.
628  Class->setBases(Bases, NumGoodBases);
629
630  // Delete the remaining (good) base class specifiers, since their
631  // data has been copied into the CXXRecordDecl.
632  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
633    Context.Deallocate(Bases[idx]);
634
635  return Invalid;
636}
637
638/// ActOnBaseSpecifiers - Attach the given base specifiers to the
639/// class, after checking whether there are any duplicate base
640/// classes.
641void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
642                               unsigned NumBases) {
643  if (!ClassDecl || !Bases || !NumBases)
644    return;
645
646  AdjustDeclIfTemplate(ClassDecl);
647  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
648                       (CXXBaseSpecifier**)(Bases), NumBases);
649}
650
651static CXXRecordDecl *GetClassForType(QualType T) {
652  if (const RecordType *RT = T->getAs<RecordType>())
653    return cast<CXXRecordDecl>(RT->getDecl());
654  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
655    return ICT->getDecl();
656  else
657    return 0;
658}
659
660/// \brief Determine whether the type \p Derived is a C++ class that is
661/// derived from the type \p Base.
662bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
663  if (!getLangOptions().CPlusPlus)
664    return false;
665
666  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
667  if (!DerivedRD)
668    return false;
669
670  CXXRecordDecl *BaseRD = GetClassForType(Base);
671  if (!BaseRD)
672    return false;
673
674  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
675  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  return DerivedRD->isDerivedFrom(BaseRD, Paths);
693}
694
695void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
696                              CXXCastPath &BasePathArray) {
697  assert(BasePathArray.empty() && "Base path array must be empty!");
698  assert(Paths.isRecordingPaths() && "Must record paths!");
699
700  const CXXBasePath &Path = Paths.front();
701
702  // We first go backward and check if we have a virtual base.
703  // FIXME: It would be better if CXXBasePath had the base specifier for
704  // the nearest virtual base.
705  unsigned Start = 0;
706  for (unsigned I = Path.size(); I != 0; --I) {
707    if (Path[I - 1].Base->isVirtual()) {
708      Start = I - 1;
709      break;
710    }
711  }
712
713  // Now add all bases.
714  for (unsigned I = Start, E = Path.size(); I != E; ++I)
715    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
716}
717
718/// \brief Determine whether the given base path includes a virtual
719/// base class.
720bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
721  for (CXXCastPath::const_iterator B = BasePath.begin(),
722                                BEnd = BasePath.end();
723       B != BEnd; ++B)
724    if ((*B)->isVirtual())
725      return true;
726
727  return false;
728}
729
730/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
731/// conversion (where Derived and Base are class types) is
732/// well-formed, meaning that the conversion is unambiguous (and
733/// that all of the base classes are accessible). Returns true
734/// and emits a diagnostic if the code is ill-formed, returns false
735/// otherwise. Loc is the location where this routine should point to
736/// if there is an error, and Range is the source range to highlight
737/// if there is an error.
738bool
739Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
740                                   unsigned InaccessibleBaseID,
741                                   unsigned AmbigiousBaseConvID,
742                                   SourceLocation Loc, SourceRange Range,
743                                   DeclarationName Name,
744                                   CXXCastPath *BasePath) {
745  // First, determine whether the path from Derived to Base is
746  // ambiguous. This is slightly more expensive than checking whether
747  // the Derived to Base conversion exists, because here we need to
748  // explore multiple paths to determine if there is an ambiguity.
749  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
750                     /*DetectVirtual=*/false);
751  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
752  assert(DerivationOkay &&
753         "Can only be used with a derived-to-base conversion");
754  (void)DerivationOkay;
755
756  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
757    if (InaccessibleBaseID) {
758      // Check that the base class can be accessed.
759      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
760                                   InaccessibleBaseID)) {
761        case AR_inaccessible:
762          return true;
763        case AR_accessible:
764        case AR_dependent:
765        case AR_delayed:
766          break;
767      }
768    }
769
770    // Build a base path if necessary.
771    if (BasePath)
772      BuildBasePathArray(Paths, *BasePath);
773    return false;
774  }
775
776  // We know that the derived-to-base conversion is ambiguous, and
777  // we're going to produce a diagnostic. Perform the derived-to-base
778  // search just one more time to compute all of the possible paths so
779  // that we can print them out. This is more expensive than any of
780  // the previous derived-to-base checks we've done, but at this point
781  // performance isn't as much of an issue.
782  Paths.clear();
783  Paths.setRecordingPaths(true);
784  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
785  assert(StillOkay && "Can only be used with a derived-to-base conversion");
786  (void)StillOkay;
787
788  // Build up a textual representation of the ambiguous paths, e.g.,
789  // D -> B -> A, that will be used to illustrate the ambiguous
790  // conversions in the diagnostic. We only print one of the paths
791  // to each base class subobject.
792  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
793
794  Diag(Loc, AmbigiousBaseConvID)
795  << Derived << Base << PathDisplayStr << Range << Name;
796  return true;
797}
798
799bool
800Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
801                                   SourceLocation Loc, SourceRange Range,
802                                   CXXCastPath *BasePath,
803                                   bool IgnoreAccess) {
804  return CheckDerivedToBaseConversion(Derived, Base,
805                                      IgnoreAccess ? 0
806                                       : diag::err_upcast_to_inaccessible_base,
807                                      diag::err_ambiguous_derived_to_base_conv,
808                                      Loc, Range, DeclarationName(),
809                                      BasePath);
810}
811
812
813/// @brief Builds a string representing ambiguous paths from a
814/// specific derived class to different subobjects of the same base
815/// class.
816///
817/// This function builds a string that can be used in error messages
818/// to show the different paths that one can take through the
819/// inheritance hierarchy to go from the derived class to different
820/// subobjects of a base class. The result looks something like this:
821/// @code
822/// struct D -> struct B -> struct A
823/// struct D -> struct C -> struct A
824/// @endcode
825std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
826  std::string PathDisplayStr;
827  std::set<unsigned> DisplayedPaths;
828  for (CXXBasePaths::paths_iterator Path = Paths.begin();
829       Path != Paths.end(); ++Path) {
830    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
831      // We haven't displayed a path to this particular base
832      // class subobject yet.
833      PathDisplayStr += "\n    ";
834      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
835      for (CXXBasePath::const_iterator Element = Path->begin();
836           Element != Path->end(); ++Element)
837        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
838    }
839  }
840
841  return PathDisplayStr;
842}
843
844//===----------------------------------------------------------------------===//
845// C++ class member Handling
846//===----------------------------------------------------------------------===//
847
848/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
849Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
850                                 SourceLocation ASLoc,
851                                 SourceLocation ColonLoc) {
852  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
853  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
854                                                  ASLoc, ColonLoc);
855  CurContext->addHiddenDecl(ASDecl);
856  return ASDecl;
857}
858
859/// CheckOverrideControl - Check C++0x override control semantics.
860void Sema::CheckOverrideControl(const Decl *D) {
861  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
862  if (!MD || !MD->isVirtual())
863    return;
864
865  if (MD->isDependentContext())
866    return;
867
868  // C++0x [class.virtual]p3:
869  //   If a virtual function is marked with the virt-specifier override and does
870  //   not override a member function of a base class,
871  //   the program is ill-formed.
872  bool HasOverriddenMethods =
873    MD->begin_overridden_methods() != MD->end_overridden_methods();
874  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
875    Diag(MD->getLocation(),
876                 diag::err_function_marked_override_not_overriding)
877      << MD->getDeclName();
878    return;
879  }
880
881  // C++0x [class.derived]p8:
882  //   In a class definition marked with the class-virt-specifier explicit,
883  //   if a virtual member function that is neither implicitly-declared nor a
884  //   destructor overrides a member function of a base class and it is not
885  //   marked with the virt-specifier override, the program is ill-formed.
886  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
887      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
888    llvm::SmallVector<const CXXMethodDecl*, 4>
889      OverriddenMethods(MD->begin_overridden_methods(),
890                        MD->end_overridden_methods());
891
892    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
893      << MD->getDeclName()
894      << (unsigned)OverriddenMethods.size();
895
896    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
897      Diag(OverriddenMethods[I]->getLocation(),
898           diag::note_overridden_virtual_function);
899  }
900}
901
902/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
903/// function overrides a virtual member function marked 'final', according to
904/// C++0x [class.virtual]p3.
905bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
906                                                  const CXXMethodDecl *Old) {
907  if (!Old->hasAttr<FinalAttr>())
908    return false;
909
910  Diag(New->getLocation(), diag::err_final_function_overridden)
911    << New->getDeclName();
912  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
913  return true;
914}
915
916/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
917/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
918/// bitfield width if there is one and 'InitExpr' specifies the initializer if
919/// any.
920Decl *
921Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
922                               MultiTemplateParamsArg TemplateParameterLists,
923                               ExprTy *BW, const VirtSpecifiers &VS,
924                               ExprTy *InitExpr, bool IsDefinition,
925                               bool Deleted) {
926  const DeclSpec &DS = D.getDeclSpec();
927  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
928  DeclarationName Name = NameInfo.getName();
929  SourceLocation Loc = NameInfo.getLoc();
930
931  // For anonymous bitfields, the location should point to the type.
932  if (Loc.isInvalid())
933    Loc = D.getSourceRange().getBegin();
934
935  Expr *BitWidth = static_cast<Expr*>(BW);
936  Expr *Init = static_cast<Expr*>(InitExpr);
937
938  assert(isa<CXXRecordDecl>(CurContext));
939  assert(!DS.isFriendSpecified());
940
941  bool isFunc = false;
942  if (D.isFunctionDeclarator())
943    isFunc = true;
944  else if (D.getNumTypeObjects() == 0 &&
945           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
946    QualType TDType = GetTypeFromParser(DS.getRepAsType());
947    isFunc = TDType->isFunctionType();
948  }
949
950  // C++ 9.2p6: A member shall not be declared to have automatic storage
951  // duration (auto, register) or with the extern storage-class-specifier.
952  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
953  // data members and cannot be applied to names declared const or static,
954  // and cannot be applied to reference members.
955  switch (DS.getStorageClassSpec()) {
956    case DeclSpec::SCS_unspecified:
957    case DeclSpec::SCS_typedef:
958    case DeclSpec::SCS_static:
959      // FALL THROUGH.
960      break;
961    case DeclSpec::SCS_mutable:
962      if (isFunc) {
963        if (DS.getStorageClassSpecLoc().isValid())
964          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
965        else
966          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
967
968        // FIXME: It would be nicer if the keyword was ignored only for this
969        // declarator. Otherwise we could get follow-up errors.
970        D.getMutableDeclSpec().ClearStorageClassSpecs();
971      }
972      break;
973    default:
974      if (DS.getStorageClassSpecLoc().isValid())
975        Diag(DS.getStorageClassSpecLoc(),
976             diag::err_storageclass_invalid_for_member);
977      else
978        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
979      D.getMutableDeclSpec().ClearStorageClassSpecs();
980  }
981
982  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
983                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
984                      !isFunc);
985
986  Decl *Member;
987  if (isInstField) {
988    CXXScopeSpec &SS = D.getCXXScopeSpec();
989
990
991    if (SS.isSet() && !SS.isInvalid()) {
992      // The user provided a superfluous scope specifier inside a class
993      // definition:
994      //
995      // class X {
996      //   int X::member;
997      // };
998      DeclContext *DC = 0;
999      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1000        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1001        << Name << FixItHint::CreateRemoval(SS.getRange());
1002      else
1003        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1004          << Name << SS.getRange();
1005
1006      SS.clear();
1007    }
1008
1009    // FIXME: Check for template parameters!
1010    // FIXME: Check that the name is an identifier!
1011    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1012                         AS);
1013    assert(Member && "HandleField never returns null");
1014  } else {
1015    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1016    if (!Member) {
1017      return 0;
1018    }
1019
1020    // Non-instance-fields can't have a bitfield.
1021    if (BitWidth) {
1022      if (Member->isInvalidDecl()) {
1023        // don't emit another diagnostic.
1024      } else if (isa<VarDecl>(Member)) {
1025        // C++ 9.6p3: A bit-field shall not be a static member.
1026        // "static member 'A' cannot be a bit-field"
1027        Diag(Loc, diag::err_static_not_bitfield)
1028          << Name << BitWidth->getSourceRange();
1029      } else if (isa<TypedefDecl>(Member)) {
1030        // "typedef member 'x' cannot be a bit-field"
1031        Diag(Loc, diag::err_typedef_not_bitfield)
1032          << Name << BitWidth->getSourceRange();
1033      } else {
1034        // A function typedef ("typedef int f(); f a;").
1035        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1036        Diag(Loc, diag::err_not_integral_type_bitfield)
1037          << Name << cast<ValueDecl>(Member)->getType()
1038          << BitWidth->getSourceRange();
1039      }
1040
1041      BitWidth = 0;
1042      Member->setInvalidDecl();
1043    }
1044
1045    Member->setAccess(AS);
1046
1047    // If we have declared a member function template, set the access of the
1048    // templated declaration as well.
1049    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1050      FunTmpl->getTemplatedDecl()->setAccess(AS);
1051  }
1052
1053  if (VS.isOverrideSpecified()) {
1054    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1055    if (!MD || !MD->isVirtual()) {
1056      Diag(Member->getLocStart(),
1057           diag::override_keyword_only_allowed_on_virtual_member_functions)
1058        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1059    } else
1060      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1061  }
1062  if (VS.isFinalSpecified()) {
1063    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1064    if (!MD || !MD->isVirtual()) {
1065      Diag(Member->getLocStart(),
1066           diag::override_keyword_only_allowed_on_virtual_member_functions)
1067      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1068    } else
1069      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1070  }
1071
1072  CheckOverrideControl(Member);
1073
1074  assert((Name || isInstField) && "No identifier for non-field ?");
1075
1076  if (Init)
1077    AddInitializerToDecl(Member, Init, false);
1078  if (Deleted) // FIXME: Source location is not very good.
1079    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1080
1081  if (isInstField) {
1082    FieldCollector->Add(cast<FieldDecl>(Member));
1083    return 0;
1084  }
1085  return Member;
1086}
1087
1088/// \brief Find the direct and/or virtual base specifiers that
1089/// correspond to the given base type, for use in base initialization
1090/// within a constructor.
1091static bool FindBaseInitializer(Sema &SemaRef,
1092                                CXXRecordDecl *ClassDecl,
1093                                QualType BaseType,
1094                                const CXXBaseSpecifier *&DirectBaseSpec,
1095                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1096  // First, check for a direct base class.
1097  DirectBaseSpec = 0;
1098  for (CXXRecordDecl::base_class_const_iterator Base
1099         = ClassDecl->bases_begin();
1100       Base != ClassDecl->bases_end(); ++Base) {
1101    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1102      // We found a direct base of this type. That's what we're
1103      // initializing.
1104      DirectBaseSpec = &*Base;
1105      break;
1106    }
1107  }
1108
1109  // Check for a virtual base class.
1110  // FIXME: We might be able to short-circuit this if we know in advance that
1111  // there are no virtual bases.
1112  VirtualBaseSpec = 0;
1113  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1114    // We haven't found a base yet; search the class hierarchy for a
1115    // virtual base class.
1116    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1117                       /*DetectVirtual=*/false);
1118    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1119                              BaseType, Paths)) {
1120      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1121           Path != Paths.end(); ++Path) {
1122        if (Path->back().Base->isVirtual()) {
1123          VirtualBaseSpec = Path->back().Base;
1124          break;
1125        }
1126      }
1127    }
1128  }
1129
1130  return DirectBaseSpec || VirtualBaseSpec;
1131}
1132
1133/// ActOnMemInitializer - Handle a C++ member initializer.
1134MemInitResult
1135Sema::ActOnMemInitializer(Decl *ConstructorD,
1136                          Scope *S,
1137                          CXXScopeSpec &SS,
1138                          IdentifierInfo *MemberOrBase,
1139                          ParsedType TemplateTypeTy,
1140                          SourceLocation IdLoc,
1141                          SourceLocation LParenLoc,
1142                          ExprTy **Args, unsigned NumArgs,
1143                          SourceLocation RParenLoc,
1144                          SourceLocation EllipsisLoc) {
1145  if (!ConstructorD)
1146    return true;
1147
1148  AdjustDeclIfTemplate(ConstructorD);
1149
1150  CXXConstructorDecl *Constructor
1151    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1152  if (!Constructor) {
1153    // The user wrote a constructor initializer on a function that is
1154    // not a C++ constructor. Ignore the error for now, because we may
1155    // have more member initializers coming; we'll diagnose it just
1156    // once in ActOnMemInitializers.
1157    return true;
1158  }
1159
1160  CXXRecordDecl *ClassDecl = Constructor->getParent();
1161
1162  // C++ [class.base.init]p2:
1163  //   Names in a mem-initializer-id are looked up in the scope of the
1164  //   constructor's class and, if not found in that scope, are looked
1165  //   up in the scope containing the constructor's definition.
1166  //   [Note: if the constructor's class contains a member with the
1167  //   same name as a direct or virtual base class of the class, a
1168  //   mem-initializer-id naming the member or base class and composed
1169  //   of a single identifier refers to the class member. A
1170  //   mem-initializer-id for the hidden base class may be specified
1171  //   using a qualified name. ]
1172  if (!SS.getScopeRep() && !TemplateTypeTy) {
1173    // Look for a member, first.
1174    FieldDecl *Member = 0;
1175    DeclContext::lookup_result Result
1176      = ClassDecl->lookup(MemberOrBase);
1177    if (Result.first != Result.second) {
1178      Member = dyn_cast<FieldDecl>(*Result.first);
1179
1180      if (Member) {
1181        if (EllipsisLoc.isValid())
1182          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1183            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1184
1185        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1186                                    LParenLoc, RParenLoc);
1187      }
1188
1189      // Handle anonymous union case.
1190      if (IndirectFieldDecl* IndirectField
1191            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1192        if (EllipsisLoc.isValid())
1193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1194            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195
1196         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1197                                       NumArgs, IdLoc,
1198                                       LParenLoc, RParenLoc);
1199      }
1200    }
1201  }
1202  // It didn't name a member, so see if it names a class.
1203  QualType BaseType;
1204  TypeSourceInfo *TInfo = 0;
1205
1206  if (TemplateTypeTy) {
1207    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1208  } else {
1209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1210    LookupParsedName(R, S, &SS);
1211
1212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1213    if (!TyD) {
1214      if (R.isAmbiguous()) return true;
1215
1216      // We don't want access-control diagnostics here.
1217      R.suppressDiagnostics();
1218
1219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1220        bool NotUnknownSpecialization = false;
1221        DeclContext *DC = computeDeclContext(SS, false);
1222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1224
1225        if (!NotUnknownSpecialization) {
1226          // When the scope specifier can refer to a member of an unknown
1227          // specialization, we take it as a type name.
1228          BaseType = CheckTypenameType(ETK_None,
1229                                       (NestedNameSpecifier *)SS.getScopeRep(),
1230                                       *MemberOrBase, SourceLocation(),
1231                                       SS.getRange(), IdLoc);
1232          if (BaseType.isNull())
1233            return true;
1234
1235          R.clear();
1236          R.setLookupName(MemberOrBase);
1237        }
1238      }
1239
1240      // If no results were found, try to correct typos.
1241      if (R.empty() && BaseType.isNull() &&
1242          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1243          R.isSingleResult()) {
1244        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1245          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1246            // We have found a non-static data member with a similar
1247            // name to what was typed; complain and initialize that
1248            // member.
1249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1250              << MemberOrBase << true << R.getLookupName()
1251              << FixItHint::CreateReplacement(R.getNameLoc(),
1252                                              R.getLookupName().getAsString());
1253            Diag(Member->getLocation(), diag::note_previous_decl)
1254              << Member->getDeclName();
1255
1256            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1257                                          LParenLoc, RParenLoc);
1258          }
1259        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1260          const CXXBaseSpecifier *DirectBaseSpec;
1261          const CXXBaseSpecifier *VirtualBaseSpec;
1262          if (FindBaseInitializer(*this, ClassDecl,
1263                                  Context.getTypeDeclType(Type),
1264                                  DirectBaseSpec, VirtualBaseSpec)) {
1265            // We have found a direct or virtual base class with a
1266            // similar name to what was typed; complain and initialize
1267            // that base class.
1268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1269              << MemberOrBase << false << R.getLookupName()
1270              << FixItHint::CreateReplacement(R.getNameLoc(),
1271                                              R.getLookupName().getAsString());
1272
1273            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1274                                                             : VirtualBaseSpec;
1275            Diag(BaseSpec->getSourceRange().getBegin(),
1276                 diag::note_base_class_specified_here)
1277              << BaseSpec->getType()
1278              << BaseSpec->getSourceRange();
1279
1280            TyD = Type;
1281          }
1282        }
1283      }
1284
1285      if (!TyD && BaseType.isNull()) {
1286        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1287          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1288        return true;
1289      }
1290    }
1291
1292    if (BaseType.isNull()) {
1293      BaseType = Context.getTypeDeclType(TyD);
1294      if (SS.isSet()) {
1295        NestedNameSpecifier *Qualifier =
1296          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1297
1298        // FIXME: preserve source range information
1299        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1300      }
1301    }
1302  }
1303
1304  if (!TInfo)
1305    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1306
1307  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1308                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1309}
1310
1311/// Checks an initializer expression for use of uninitialized fields, such as
1312/// containing the field that is being initialized. Returns true if there is an
1313/// uninitialized field was used an updates the SourceLocation parameter; false
1314/// otherwise.
1315static bool InitExprContainsUninitializedFields(const Stmt *S,
1316                                                const ValueDecl *LhsField,
1317                                                SourceLocation *L) {
1318  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1319
1320  if (isa<CallExpr>(S)) {
1321    // Do not descend into function calls or constructors, as the use
1322    // of an uninitialized field may be valid. One would have to inspect
1323    // the contents of the function/ctor to determine if it is safe or not.
1324    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1325    // may be safe, depending on what the function/ctor does.
1326    return false;
1327  }
1328  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1329    const NamedDecl *RhsField = ME->getMemberDecl();
1330
1331    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1332      // The member expression points to a static data member.
1333      assert(VD->isStaticDataMember() &&
1334             "Member points to non-static data member!");
1335      (void)VD;
1336      return false;
1337    }
1338
1339    if (isa<EnumConstantDecl>(RhsField)) {
1340      // The member expression points to an enum.
1341      return false;
1342    }
1343
1344    if (RhsField == LhsField) {
1345      // Initializing a field with itself. Throw a warning.
1346      // But wait; there are exceptions!
1347      // Exception #1:  The field may not belong to this record.
1348      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1349      const Expr *base = ME->getBase();
1350      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1351        // Even though the field matches, it does not belong to this record.
1352        return false;
1353      }
1354      // None of the exceptions triggered; return true to indicate an
1355      // uninitialized field was used.
1356      *L = ME->getMemberLoc();
1357      return true;
1358    }
1359  } else if (isa<SizeOfAlignOfExpr>(S)) {
1360    // sizeof/alignof doesn't reference contents, do not warn.
1361    return false;
1362  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1363    // address-of doesn't reference contents (the pointer may be dereferenced
1364    // in the same expression but it would be rare; and weird).
1365    if (UOE->getOpcode() == UO_AddrOf)
1366      return false;
1367  }
1368  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1369       it != e; ++it) {
1370    if (!*it) {
1371      // An expression such as 'member(arg ?: "")' may trigger this.
1372      continue;
1373    }
1374    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1375      return true;
1376  }
1377  return false;
1378}
1379
1380MemInitResult
1381Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1382                             unsigned NumArgs, SourceLocation IdLoc,
1383                             SourceLocation LParenLoc,
1384                             SourceLocation RParenLoc) {
1385  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1386  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1387  assert((DirectMember || IndirectMember) &&
1388         "Member must be a FieldDecl or IndirectFieldDecl");
1389
1390  if (Member->isInvalidDecl())
1391    return true;
1392
1393  // Diagnose value-uses of fields to initialize themselves, e.g.
1394  //   foo(foo)
1395  // where foo is not also a parameter to the constructor.
1396  // TODO: implement -Wuninitialized and fold this into that framework.
1397  for (unsigned i = 0; i < NumArgs; ++i) {
1398    SourceLocation L;
1399    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1400      // FIXME: Return true in the case when other fields are used before being
1401      // uninitialized. For example, let this field be the i'th field. When
1402      // initializing the i'th field, throw a warning if any of the >= i'th
1403      // fields are used, as they are not yet initialized.
1404      // Right now we are only handling the case where the i'th field uses
1405      // itself in its initializer.
1406      Diag(L, diag::warn_field_is_uninit);
1407    }
1408  }
1409
1410  bool HasDependentArg = false;
1411  for (unsigned i = 0; i < NumArgs; i++)
1412    HasDependentArg |= Args[i]->isTypeDependent();
1413
1414  Expr *Init;
1415  if (Member->getType()->isDependentType() || HasDependentArg) {
1416    // Can't check initialization for a member of dependent type or when
1417    // any of the arguments are type-dependent expressions.
1418    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                       RParenLoc);
1420
1421    // Erase any temporaries within this evaluation context; we're not
1422    // going to track them in the AST, since we'll be rebuilding the
1423    // ASTs during template instantiation.
1424    ExprTemporaries.erase(
1425              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1426                          ExprTemporaries.end());
1427  } else {
1428    // Initialize the member.
1429    InitializedEntity MemberEntity =
1430      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1431                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1432    InitializationKind Kind =
1433      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1434
1435    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1436
1437    ExprResult MemberInit =
1438      InitSeq.Perform(*this, MemberEntity, Kind,
1439                      MultiExprArg(*this, Args, NumArgs), 0);
1440    if (MemberInit.isInvalid())
1441      return true;
1442
1443    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1444
1445    // C++0x [class.base.init]p7:
1446    //   The initialization of each base and member constitutes a
1447    //   full-expression.
1448    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1449    if (MemberInit.isInvalid())
1450      return true;
1451
1452    // If we are in a dependent context, template instantiation will
1453    // perform this type-checking again. Just save the arguments that we
1454    // received in a ParenListExpr.
1455    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1456    // of the information that we have about the member
1457    // initializer. However, deconstructing the ASTs is a dicey process,
1458    // and this approach is far more likely to get the corner cases right.
1459    if (CurContext->isDependentContext())
1460      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1461                                               RParenLoc);
1462    else
1463      Init = MemberInit.get();
1464  }
1465
1466  if (DirectMember) {
1467    return new (Context) CXXCtorInitializer(Context, DirectMember,
1468                                                    IdLoc, LParenLoc, Init,
1469                                                    RParenLoc);
1470  } else {
1471    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1472                                                    IdLoc, LParenLoc, Init,
1473                                                    RParenLoc);
1474  }
1475}
1476
1477MemInitResult
1478Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1479                                 Expr **Args, unsigned NumArgs,
1480                                 SourceLocation LParenLoc,
1481                                 SourceLocation RParenLoc,
1482                                 CXXRecordDecl *ClassDecl,
1483                                 SourceLocation EllipsisLoc) {
1484  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1485  if (!LangOpts.CPlusPlus0x)
1486    return Diag(Loc, diag::err_delegation_0x_only)
1487      << TInfo->getTypeLoc().getLocalSourceRange();
1488
1489  return Diag(Loc, diag::err_delegation_unimplemented)
1490    << TInfo->getTypeLoc().getLocalSourceRange();
1491}
1492
1493MemInitResult
1494Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1495                           Expr **Args, unsigned NumArgs,
1496                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1497                           CXXRecordDecl *ClassDecl,
1498                           SourceLocation EllipsisLoc) {
1499  bool HasDependentArg = false;
1500  for (unsigned i = 0; i < NumArgs; i++)
1501    HasDependentArg |= Args[i]->isTypeDependent();
1502
1503  SourceLocation BaseLoc
1504    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1505
1506  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1507    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1508             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1509
1510  // C++ [class.base.init]p2:
1511  //   [...] Unless the mem-initializer-id names a nonstatic data
1512  //   member of the constructor's class or a direct or virtual base
1513  //   of that class, the mem-initializer is ill-formed. A
1514  //   mem-initializer-list can initialize a base class using any
1515  //   name that denotes that base class type.
1516  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1517
1518  if (EllipsisLoc.isValid()) {
1519    // This is a pack expansion.
1520    if (!BaseType->containsUnexpandedParameterPack())  {
1521      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1522        << SourceRange(BaseLoc, RParenLoc);
1523
1524      EllipsisLoc = SourceLocation();
1525    }
1526  } else {
1527    // Check for any unexpanded parameter packs.
1528    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1529      return true;
1530
1531    for (unsigned I = 0; I != NumArgs; ++I)
1532      if (DiagnoseUnexpandedParameterPack(Args[I]))
1533        return true;
1534  }
1535
1536  // Check for direct and virtual base classes.
1537  const CXXBaseSpecifier *DirectBaseSpec = 0;
1538  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1539  if (!Dependent) {
1540    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1541                                       BaseType))
1542      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1543                                        LParenLoc, RParenLoc, ClassDecl,
1544                                        EllipsisLoc);
1545
1546    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1547                        VirtualBaseSpec);
1548
1549    // C++ [base.class.init]p2:
1550    // Unless the mem-initializer-id names a nonstatic data member of the
1551    // constructor's class or a direct or virtual base of that class, the
1552    // mem-initializer is ill-formed.
1553    if (!DirectBaseSpec && !VirtualBaseSpec) {
1554      // If the class has any dependent bases, then it's possible that
1555      // one of those types will resolve to the same type as
1556      // BaseType. Therefore, just treat this as a dependent base
1557      // class initialization.  FIXME: Should we try to check the
1558      // initialization anyway? It seems odd.
1559      if (ClassDecl->hasAnyDependentBases())
1560        Dependent = true;
1561      else
1562        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1563          << BaseType << Context.getTypeDeclType(ClassDecl)
1564          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1565    }
1566  }
1567
1568  if (Dependent) {
1569    // Can't check initialization for a base of dependent type or when
1570    // any of the arguments are type-dependent expressions.
1571    ExprResult BaseInit
1572      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1573                                          RParenLoc));
1574
1575    // Erase any temporaries within this evaluation context; we're not
1576    // going to track them in the AST, since we'll be rebuilding the
1577    // ASTs during template instantiation.
1578    ExprTemporaries.erase(
1579              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1580                          ExprTemporaries.end());
1581
1582    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1583                                                    /*IsVirtual=*/false,
1584                                                    LParenLoc,
1585                                                    BaseInit.takeAs<Expr>(),
1586                                                    RParenLoc,
1587                                                    EllipsisLoc);
1588  }
1589
1590  // C++ [base.class.init]p2:
1591  //   If a mem-initializer-id is ambiguous because it designates both
1592  //   a direct non-virtual base class and an inherited virtual base
1593  //   class, the mem-initializer is ill-formed.
1594  if (DirectBaseSpec && VirtualBaseSpec)
1595    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1596      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1597
1598  CXXBaseSpecifier *BaseSpec
1599    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1600  if (!BaseSpec)
1601    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1602
1603  // Initialize the base.
1604  InitializedEntity BaseEntity =
1605    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1606  InitializationKind Kind =
1607    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1608
1609  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1610
1611  ExprResult BaseInit =
1612    InitSeq.Perform(*this, BaseEntity, Kind,
1613                    MultiExprArg(*this, Args, NumArgs), 0);
1614  if (BaseInit.isInvalid())
1615    return true;
1616
1617  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1618
1619  // C++0x [class.base.init]p7:
1620  //   The initialization of each base and member constitutes a
1621  //   full-expression.
1622  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1623  if (BaseInit.isInvalid())
1624    return true;
1625
1626  // If we are in a dependent context, template instantiation will
1627  // perform this type-checking again. Just save the arguments that we
1628  // received in a ParenListExpr.
1629  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1630  // of the information that we have about the base
1631  // initializer. However, deconstructing the ASTs is a dicey process,
1632  // and this approach is far more likely to get the corner cases right.
1633  if (CurContext->isDependentContext()) {
1634    ExprResult Init
1635      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1636                                          RParenLoc));
1637    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1638                                                    BaseSpec->isVirtual(),
1639                                                    LParenLoc,
1640                                                    Init.takeAs<Expr>(),
1641                                                    RParenLoc,
1642                                                    EllipsisLoc);
1643  }
1644
1645  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1646                                                  BaseSpec->isVirtual(),
1647                                                  LParenLoc,
1648                                                  BaseInit.takeAs<Expr>(),
1649                                                  RParenLoc,
1650                                                  EllipsisLoc);
1651}
1652
1653/// ImplicitInitializerKind - How an implicit base or member initializer should
1654/// initialize its base or member.
1655enum ImplicitInitializerKind {
1656  IIK_Default,
1657  IIK_Copy,
1658  IIK_Move
1659};
1660
1661static bool
1662BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1663                             ImplicitInitializerKind ImplicitInitKind,
1664                             CXXBaseSpecifier *BaseSpec,
1665                             bool IsInheritedVirtualBase,
1666                             CXXCtorInitializer *&CXXBaseInit) {
1667  InitializedEntity InitEntity
1668    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1669                                        IsInheritedVirtualBase);
1670
1671  ExprResult BaseInit;
1672
1673  switch (ImplicitInitKind) {
1674  case IIK_Default: {
1675    InitializationKind InitKind
1676      = InitializationKind::CreateDefault(Constructor->getLocation());
1677    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1678    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1679                               MultiExprArg(SemaRef, 0, 0));
1680    break;
1681  }
1682
1683  case IIK_Copy: {
1684    ParmVarDecl *Param = Constructor->getParamDecl(0);
1685    QualType ParamType = Param->getType().getNonReferenceType();
1686
1687    Expr *CopyCtorArg =
1688      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1689                          Constructor->getLocation(), ParamType,
1690                          VK_LValue, 0);
1691
1692    // Cast to the base class to avoid ambiguities.
1693    QualType ArgTy =
1694      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1695                                       ParamType.getQualifiers());
1696
1697    CXXCastPath BasePath;
1698    BasePath.push_back(BaseSpec);
1699    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1700                              CK_UncheckedDerivedToBase,
1701                              VK_LValue, &BasePath);
1702
1703    InitializationKind InitKind
1704      = InitializationKind::CreateDirect(Constructor->getLocation(),
1705                                         SourceLocation(), SourceLocation());
1706    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1707                                   &CopyCtorArg, 1);
1708    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1709                               MultiExprArg(&CopyCtorArg, 1));
1710    break;
1711  }
1712
1713  case IIK_Move:
1714    assert(false && "Unhandled initializer kind!");
1715  }
1716
1717  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1718  if (BaseInit.isInvalid())
1719    return true;
1720
1721  CXXBaseInit =
1722    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1723               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1724                                                        SourceLocation()),
1725                                             BaseSpec->isVirtual(),
1726                                             SourceLocation(),
1727                                             BaseInit.takeAs<Expr>(),
1728                                             SourceLocation(),
1729                                             SourceLocation());
1730
1731  return false;
1732}
1733
1734static bool
1735BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1736                               ImplicitInitializerKind ImplicitInitKind,
1737                               FieldDecl *Field,
1738                               CXXCtorInitializer *&CXXMemberInit) {
1739  if (Field->isInvalidDecl())
1740    return true;
1741
1742  SourceLocation Loc = Constructor->getLocation();
1743
1744  if (ImplicitInitKind == IIK_Copy) {
1745    ParmVarDecl *Param = Constructor->getParamDecl(0);
1746    QualType ParamType = Param->getType().getNonReferenceType();
1747
1748    Expr *MemberExprBase =
1749      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1750                          Loc, ParamType, VK_LValue, 0);
1751
1752    // Build a reference to this field within the parameter.
1753    CXXScopeSpec SS;
1754    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1755                              Sema::LookupMemberName);
1756    MemberLookup.addDecl(Field, AS_public);
1757    MemberLookup.resolveKind();
1758    ExprResult CopyCtorArg
1759      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1760                                         ParamType, Loc,
1761                                         /*IsArrow=*/false,
1762                                         SS,
1763                                         /*FirstQualifierInScope=*/0,
1764                                         MemberLookup,
1765                                         /*TemplateArgs=*/0);
1766    if (CopyCtorArg.isInvalid())
1767      return true;
1768
1769    // When the field we are copying is an array, create index variables for
1770    // each dimension of the array. We use these index variables to subscript
1771    // the source array, and other clients (e.g., CodeGen) will perform the
1772    // necessary iteration with these index variables.
1773    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1774    QualType BaseType = Field->getType();
1775    QualType SizeType = SemaRef.Context.getSizeType();
1776    while (const ConstantArrayType *Array
1777                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1778      // Create the iteration variable for this array index.
1779      IdentifierInfo *IterationVarName = 0;
1780      {
1781        llvm::SmallString<8> Str;
1782        llvm::raw_svector_ostream OS(Str);
1783        OS << "__i" << IndexVariables.size();
1784        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1785      }
1786      VarDecl *IterationVar
1787        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1788                          IterationVarName, SizeType,
1789                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1790                          SC_None, SC_None);
1791      IndexVariables.push_back(IterationVar);
1792
1793      // Create a reference to the iteration variable.
1794      ExprResult IterationVarRef
1795        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1796      assert(!IterationVarRef.isInvalid() &&
1797             "Reference to invented variable cannot fail!");
1798
1799      // Subscript the array with this iteration variable.
1800      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1801                                                            Loc,
1802                                                        IterationVarRef.take(),
1803                                                            Loc);
1804      if (CopyCtorArg.isInvalid())
1805        return true;
1806
1807      BaseType = Array->getElementType();
1808    }
1809
1810    // Construct the entity that we will be initializing. For an array, this
1811    // will be first element in the array, which may require several levels
1812    // of array-subscript entities.
1813    llvm::SmallVector<InitializedEntity, 4> Entities;
1814    Entities.reserve(1 + IndexVariables.size());
1815    Entities.push_back(InitializedEntity::InitializeMember(Field));
1816    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1817      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1818                                                              0,
1819                                                              Entities.back()));
1820
1821    // Direct-initialize to use the copy constructor.
1822    InitializationKind InitKind =
1823      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1824
1825    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1826    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1827                                   &CopyCtorArgE, 1);
1828
1829    ExprResult MemberInit
1830      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1831                        MultiExprArg(&CopyCtorArgE, 1));
1832    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1833    if (MemberInit.isInvalid())
1834      return true;
1835
1836    CXXMemberInit
1837      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1838                                           MemberInit.takeAs<Expr>(), Loc,
1839                                           IndexVariables.data(),
1840                                           IndexVariables.size());
1841    return false;
1842  }
1843
1844  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1845
1846  QualType FieldBaseElementType =
1847    SemaRef.Context.getBaseElementType(Field->getType());
1848
1849  if (FieldBaseElementType->isRecordType()) {
1850    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1851    InitializationKind InitKind =
1852      InitializationKind::CreateDefault(Loc);
1853
1854    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1855    ExprResult MemberInit =
1856      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1857
1858    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1859    if (MemberInit.isInvalid())
1860      return true;
1861
1862    CXXMemberInit =
1863      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1864                                                       Field, Loc, Loc,
1865                                                       MemberInit.get(),
1866                                                       Loc);
1867    return false;
1868  }
1869
1870  if (FieldBaseElementType->isReferenceType()) {
1871    SemaRef.Diag(Constructor->getLocation(),
1872                 diag::err_uninitialized_member_in_ctor)
1873    << (int)Constructor->isImplicit()
1874    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1875    << 0 << Field->getDeclName();
1876    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1877    return true;
1878  }
1879
1880  if (FieldBaseElementType.isConstQualified()) {
1881    SemaRef.Diag(Constructor->getLocation(),
1882                 diag::err_uninitialized_member_in_ctor)
1883    << (int)Constructor->isImplicit()
1884    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1885    << 1 << Field->getDeclName();
1886    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1887    return true;
1888  }
1889
1890  // Nothing to initialize.
1891  CXXMemberInit = 0;
1892  return false;
1893}
1894
1895namespace {
1896struct BaseAndFieldInfo {
1897  Sema &S;
1898  CXXConstructorDecl *Ctor;
1899  bool AnyErrorsInInits;
1900  ImplicitInitializerKind IIK;
1901  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1902  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1903
1904  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1905    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1906    // FIXME: Handle implicit move constructors.
1907    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1908      IIK = IIK_Copy;
1909    else
1910      IIK = IIK_Default;
1911  }
1912};
1913}
1914
1915static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1916                                    FieldDecl *Top, FieldDecl *Field) {
1917
1918  // Overwhelmingly common case: we have a direct initializer for this field.
1919  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1920    Info.AllToInit.push_back(Init);
1921    return false;
1922  }
1923
1924  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1925    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1926    assert(FieldClassType && "anonymous struct/union without record type");
1927    CXXRecordDecl *FieldClassDecl
1928      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1929
1930    // Even though union members never have non-trivial default
1931    // constructions in C++03, we still build member initializers for aggregate
1932    // record types which can be union members, and C++0x allows non-trivial
1933    // default constructors for union members, so we ensure that only one
1934    // member is initialized for these.
1935    if (FieldClassDecl->isUnion()) {
1936      // First check for an explicit initializer for one field.
1937      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1938           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1939        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1940          Info.AllToInit.push_back(Init);
1941
1942          // Once we've initialized a field of an anonymous union, the union
1943          // field in the class is also initialized, so exit immediately.
1944          return false;
1945        } else if ((*FA)->isAnonymousStructOrUnion()) {
1946          if (CollectFieldInitializer(Info, Top, *FA))
1947            return true;
1948        }
1949      }
1950
1951      // Fallthrough and construct a default initializer for the union as
1952      // a whole, which can call its default constructor if such a thing exists
1953      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1954      // behavior going forward with C++0x, when anonymous unions there are
1955      // finalized, we should revisit this.
1956    } else {
1957      // For structs, we simply descend through to initialize all members where
1958      // necessary.
1959      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1960           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1961        if (CollectFieldInitializer(Info, Top, *FA))
1962          return true;
1963      }
1964    }
1965  }
1966
1967  // Don't try to build an implicit initializer if there were semantic
1968  // errors in any of the initializers (and therefore we might be
1969  // missing some that the user actually wrote).
1970  if (Info.AnyErrorsInInits)
1971    return false;
1972
1973  CXXCtorInitializer *Init = 0;
1974  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1975    return true;
1976
1977  if (Init)
1978    Info.AllToInit.push_back(Init);
1979
1980  return false;
1981}
1982
1983bool
1984Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1985                                  CXXCtorInitializer **Initializers,
1986                                  unsigned NumInitializers,
1987                                  bool AnyErrors) {
1988  if (Constructor->getDeclContext()->isDependentContext()) {
1989    // Just store the initializers as written, they will be checked during
1990    // instantiation.
1991    if (NumInitializers > 0) {
1992      Constructor->setNumCtorInitializers(NumInitializers);
1993      CXXCtorInitializer **baseOrMemberInitializers =
1994        new (Context) CXXCtorInitializer*[NumInitializers];
1995      memcpy(baseOrMemberInitializers, Initializers,
1996             NumInitializers * sizeof(CXXCtorInitializer*));
1997      Constructor->setCtorInitializers(baseOrMemberInitializers);
1998    }
1999
2000    return false;
2001  }
2002
2003  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2004
2005  // We need to build the initializer AST according to order of construction
2006  // and not what user specified in the Initializers list.
2007  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2008  if (!ClassDecl)
2009    return true;
2010
2011  bool HadError = false;
2012
2013  for (unsigned i = 0; i < NumInitializers; i++) {
2014    CXXCtorInitializer *Member = Initializers[i];
2015
2016    if (Member->isBaseInitializer())
2017      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2018    else
2019      Info.AllBaseFields[Member->getAnyMember()] = Member;
2020  }
2021
2022  // Keep track of the direct virtual bases.
2023  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2024  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2025       E = ClassDecl->bases_end(); I != E; ++I) {
2026    if (I->isVirtual())
2027      DirectVBases.insert(I);
2028  }
2029
2030  // Push virtual bases before others.
2031  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2032       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2033
2034    if (CXXCtorInitializer *Value
2035        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2036      Info.AllToInit.push_back(Value);
2037    } else if (!AnyErrors) {
2038      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2039      CXXCtorInitializer *CXXBaseInit;
2040      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2041                                       VBase, IsInheritedVirtualBase,
2042                                       CXXBaseInit)) {
2043        HadError = true;
2044        continue;
2045      }
2046
2047      Info.AllToInit.push_back(CXXBaseInit);
2048    }
2049  }
2050
2051  // Non-virtual bases.
2052  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2053       E = ClassDecl->bases_end(); Base != E; ++Base) {
2054    // Virtuals are in the virtual base list and already constructed.
2055    if (Base->isVirtual())
2056      continue;
2057
2058    if (CXXCtorInitializer *Value
2059          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2060      Info.AllToInit.push_back(Value);
2061    } else if (!AnyErrors) {
2062      CXXCtorInitializer *CXXBaseInit;
2063      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2064                                       Base, /*IsInheritedVirtualBase=*/false,
2065                                       CXXBaseInit)) {
2066        HadError = true;
2067        continue;
2068      }
2069
2070      Info.AllToInit.push_back(CXXBaseInit);
2071    }
2072  }
2073
2074  // Fields.
2075  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2076       E = ClassDecl->field_end(); Field != E; ++Field) {
2077    if ((*Field)->getType()->isIncompleteArrayType()) {
2078      assert(ClassDecl->hasFlexibleArrayMember() &&
2079             "Incomplete array type is not valid");
2080      continue;
2081    }
2082    if (CollectFieldInitializer(Info, *Field, *Field))
2083      HadError = true;
2084  }
2085
2086  NumInitializers = Info.AllToInit.size();
2087  if (NumInitializers > 0) {
2088    Constructor->setNumCtorInitializers(NumInitializers);
2089    CXXCtorInitializer **baseOrMemberInitializers =
2090      new (Context) CXXCtorInitializer*[NumInitializers];
2091    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2092           NumInitializers * sizeof(CXXCtorInitializer*));
2093    Constructor->setCtorInitializers(baseOrMemberInitializers);
2094
2095    // Constructors implicitly reference the base and member
2096    // destructors.
2097    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2098                                           Constructor->getParent());
2099  }
2100
2101  return HadError;
2102}
2103
2104static void *GetKeyForTopLevelField(FieldDecl *Field) {
2105  // For anonymous unions, use the class declaration as the key.
2106  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2107    if (RT->getDecl()->isAnonymousStructOrUnion())
2108      return static_cast<void *>(RT->getDecl());
2109  }
2110  return static_cast<void *>(Field);
2111}
2112
2113static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2114  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2115}
2116
2117static void *GetKeyForMember(ASTContext &Context,
2118                             CXXCtorInitializer *Member) {
2119  if (!Member->isAnyMemberInitializer())
2120    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2121
2122  // For fields injected into the class via declaration of an anonymous union,
2123  // use its anonymous union class declaration as the unique key.
2124  FieldDecl *Field = Member->getAnyMember();
2125
2126  // If the field is a member of an anonymous struct or union, our key
2127  // is the anonymous record decl that's a direct child of the class.
2128  RecordDecl *RD = Field->getParent();
2129  if (RD->isAnonymousStructOrUnion()) {
2130    while (true) {
2131      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2132      if (Parent->isAnonymousStructOrUnion())
2133        RD = Parent;
2134      else
2135        break;
2136    }
2137
2138    return static_cast<void *>(RD);
2139  }
2140
2141  return static_cast<void *>(Field);
2142}
2143
2144static void
2145DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2146                                  const CXXConstructorDecl *Constructor,
2147                                  CXXCtorInitializer **Inits,
2148                                  unsigned NumInits) {
2149  if (Constructor->getDeclContext()->isDependentContext())
2150    return;
2151
2152  // Don't check initializers order unless the warning is enabled at the
2153  // location of at least one initializer.
2154  bool ShouldCheckOrder = false;
2155  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2156    CXXCtorInitializer *Init = Inits[InitIndex];
2157    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2158                                         Init->getSourceLocation())
2159          != Diagnostic::Ignored) {
2160      ShouldCheckOrder = true;
2161      break;
2162    }
2163  }
2164  if (!ShouldCheckOrder)
2165    return;
2166
2167  // Build the list of bases and members in the order that they'll
2168  // actually be initialized.  The explicit initializers should be in
2169  // this same order but may be missing things.
2170  llvm::SmallVector<const void*, 32> IdealInitKeys;
2171
2172  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2173
2174  // 1. Virtual bases.
2175  for (CXXRecordDecl::base_class_const_iterator VBase =
2176       ClassDecl->vbases_begin(),
2177       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2178    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2179
2180  // 2. Non-virtual bases.
2181  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2182       E = ClassDecl->bases_end(); Base != E; ++Base) {
2183    if (Base->isVirtual())
2184      continue;
2185    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2186  }
2187
2188  // 3. Direct fields.
2189  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2190       E = ClassDecl->field_end(); Field != E; ++Field)
2191    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2192
2193  unsigned NumIdealInits = IdealInitKeys.size();
2194  unsigned IdealIndex = 0;
2195
2196  CXXCtorInitializer *PrevInit = 0;
2197  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2198    CXXCtorInitializer *Init = Inits[InitIndex];
2199    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2200
2201    // Scan forward to try to find this initializer in the idealized
2202    // initializers list.
2203    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2204      if (InitKey == IdealInitKeys[IdealIndex])
2205        break;
2206
2207    // If we didn't find this initializer, it must be because we
2208    // scanned past it on a previous iteration.  That can only
2209    // happen if we're out of order;  emit a warning.
2210    if (IdealIndex == NumIdealInits && PrevInit) {
2211      Sema::SemaDiagnosticBuilder D =
2212        SemaRef.Diag(PrevInit->getSourceLocation(),
2213                     diag::warn_initializer_out_of_order);
2214
2215      if (PrevInit->isAnyMemberInitializer())
2216        D << 0 << PrevInit->getAnyMember()->getDeclName();
2217      else
2218        D << 1 << PrevInit->getBaseClassInfo()->getType();
2219
2220      if (Init->isAnyMemberInitializer())
2221        D << 0 << Init->getAnyMember()->getDeclName();
2222      else
2223        D << 1 << Init->getBaseClassInfo()->getType();
2224
2225      // Move back to the initializer's location in the ideal list.
2226      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2227        if (InitKey == IdealInitKeys[IdealIndex])
2228          break;
2229
2230      assert(IdealIndex != NumIdealInits &&
2231             "initializer not found in initializer list");
2232    }
2233
2234    PrevInit = Init;
2235  }
2236}
2237
2238namespace {
2239bool CheckRedundantInit(Sema &S,
2240                        CXXCtorInitializer *Init,
2241                        CXXCtorInitializer *&PrevInit) {
2242  if (!PrevInit) {
2243    PrevInit = Init;
2244    return false;
2245  }
2246
2247  if (FieldDecl *Field = Init->getMember())
2248    S.Diag(Init->getSourceLocation(),
2249           diag::err_multiple_mem_initialization)
2250      << Field->getDeclName()
2251      << Init->getSourceRange();
2252  else {
2253    const Type *BaseClass = Init->getBaseClass();
2254    assert(BaseClass && "neither field nor base");
2255    S.Diag(Init->getSourceLocation(),
2256           diag::err_multiple_base_initialization)
2257      << QualType(BaseClass, 0)
2258      << Init->getSourceRange();
2259  }
2260  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2261    << 0 << PrevInit->getSourceRange();
2262
2263  return true;
2264}
2265
2266typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2267typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2268
2269bool CheckRedundantUnionInit(Sema &S,
2270                             CXXCtorInitializer *Init,
2271                             RedundantUnionMap &Unions) {
2272  FieldDecl *Field = Init->getAnyMember();
2273  RecordDecl *Parent = Field->getParent();
2274  if (!Parent->isAnonymousStructOrUnion())
2275    return false;
2276
2277  NamedDecl *Child = Field;
2278  do {
2279    if (Parent->isUnion()) {
2280      UnionEntry &En = Unions[Parent];
2281      if (En.first && En.first != Child) {
2282        S.Diag(Init->getSourceLocation(),
2283               diag::err_multiple_mem_union_initialization)
2284          << Field->getDeclName()
2285          << Init->getSourceRange();
2286        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2287          << 0 << En.second->getSourceRange();
2288        return true;
2289      } else if (!En.first) {
2290        En.first = Child;
2291        En.second = Init;
2292      }
2293    }
2294
2295    Child = Parent;
2296    Parent = cast<RecordDecl>(Parent->getDeclContext());
2297  } while (Parent->isAnonymousStructOrUnion());
2298
2299  return false;
2300}
2301}
2302
2303/// ActOnMemInitializers - Handle the member initializers for a constructor.
2304void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2305                                SourceLocation ColonLoc,
2306                                MemInitTy **meminits, unsigned NumMemInits,
2307                                bool AnyErrors) {
2308  if (!ConstructorDecl)
2309    return;
2310
2311  AdjustDeclIfTemplate(ConstructorDecl);
2312
2313  CXXConstructorDecl *Constructor
2314    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2315
2316  if (!Constructor) {
2317    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2318    return;
2319  }
2320
2321  CXXCtorInitializer **MemInits =
2322    reinterpret_cast<CXXCtorInitializer **>(meminits);
2323
2324  // Mapping for the duplicate initializers check.
2325  // For member initializers, this is keyed with a FieldDecl*.
2326  // For base initializers, this is keyed with a Type*.
2327  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2328
2329  // Mapping for the inconsistent anonymous-union initializers check.
2330  RedundantUnionMap MemberUnions;
2331
2332  bool HadError = false;
2333  for (unsigned i = 0; i < NumMemInits; i++) {
2334    CXXCtorInitializer *Init = MemInits[i];
2335
2336    // Set the source order index.
2337    Init->setSourceOrder(i);
2338
2339    if (Init->isAnyMemberInitializer()) {
2340      FieldDecl *Field = Init->getAnyMember();
2341      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2342          CheckRedundantUnionInit(*this, Init, MemberUnions))
2343        HadError = true;
2344    } else {
2345      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2346      if (CheckRedundantInit(*this, Init, Members[Key]))
2347        HadError = true;
2348    }
2349  }
2350
2351  if (HadError)
2352    return;
2353
2354  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2355
2356  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2357}
2358
2359void
2360Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2361                                             CXXRecordDecl *ClassDecl) {
2362  // Ignore dependent contexts.
2363  if (ClassDecl->isDependentContext())
2364    return;
2365
2366  // FIXME: all the access-control diagnostics are positioned on the
2367  // field/base declaration.  That's probably good; that said, the
2368  // user might reasonably want to know why the destructor is being
2369  // emitted, and we currently don't say.
2370
2371  // Non-static data members.
2372  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2373       E = ClassDecl->field_end(); I != E; ++I) {
2374    FieldDecl *Field = *I;
2375    if (Field->isInvalidDecl())
2376      continue;
2377    QualType FieldType = Context.getBaseElementType(Field->getType());
2378
2379    const RecordType* RT = FieldType->getAs<RecordType>();
2380    if (!RT)
2381      continue;
2382
2383    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2384    if (FieldClassDecl->hasTrivialDestructor())
2385      continue;
2386
2387    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2388    CheckDestructorAccess(Field->getLocation(), Dtor,
2389                          PDiag(diag::err_access_dtor_field)
2390                            << Field->getDeclName()
2391                            << FieldType);
2392
2393    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2394  }
2395
2396  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2397
2398  // Bases.
2399  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2400       E = ClassDecl->bases_end(); Base != E; ++Base) {
2401    // Bases are always records in a well-formed non-dependent class.
2402    const RecordType *RT = Base->getType()->getAs<RecordType>();
2403
2404    // Remember direct virtual bases.
2405    if (Base->isVirtual())
2406      DirectVirtualBases.insert(RT);
2407
2408    // Ignore trivial destructors.
2409    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2410    if (BaseClassDecl->hasTrivialDestructor())
2411      continue;
2412
2413    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2414
2415    // FIXME: caret should be on the start of the class name
2416    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2417                          PDiag(diag::err_access_dtor_base)
2418                            << Base->getType()
2419                            << Base->getSourceRange());
2420
2421    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2422  }
2423
2424  // Virtual bases.
2425  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2426       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2427
2428    // Bases are always records in a well-formed non-dependent class.
2429    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2430
2431    // Ignore direct virtual bases.
2432    if (DirectVirtualBases.count(RT))
2433      continue;
2434
2435    // Ignore trivial destructors.
2436    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2437    if (BaseClassDecl->hasTrivialDestructor())
2438      continue;
2439
2440    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2441    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2442                          PDiag(diag::err_access_dtor_vbase)
2443                            << VBase->getType());
2444
2445    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2446  }
2447}
2448
2449void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2450  if (!CDtorDecl)
2451    return;
2452
2453  if (CXXConstructorDecl *Constructor
2454      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2455    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2456}
2457
2458bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2459                                  unsigned DiagID, AbstractDiagSelID SelID) {
2460  if (SelID == -1)
2461    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2462  else
2463    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2464}
2465
2466bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2467                                  const PartialDiagnostic &PD) {
2468  if (!getLangOptions().CPlusPlus)
2469    return false;
2470
2471  if (const ArrayType *AT = Context.getAsArrayType(T))
2472    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2473
2474  if (const PointerType *PT = T->getAs<PointerType>()) {
2475    // Find the innermost pointer type.
2476    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2477      PT = T;
2478
2479    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2480      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2481  }
2482
2483  const RecordType *RT = T->getAs<RecordType>();
2484  if (!RT)
2485    return false;
2486
2487  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2488
2489  // We can't answer whether something is abstract until it has a
2490  // definition.  If it's currently being defined, we'll walk back
2491  // over all the declarations when we have a full definition.
2492  const CXXRecordDecl *Def = RD->getDefinition();
2493  if (!Def || Def->isBeingDefined())
2494    return false;
2495
2496  if (!RD->isAbstract())
2497    return false;
2498
2499  Diag(Loc, PD) << RD->getDeclName();
2500  DiagnoseAbstractType(RD);
2501
2502  return true;
2503}
2504
2505void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2506  // Check if we've already emitted the list of pure virtual functions
2507  // for this class.
2508  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2509    return;
2510
2511  CXXFinalOverriderMap FinalOverriders;
2512  RD->getFinalOverriders(FinalOverriders);
2513
2514  // Keep a set of seen pure methods so we won't diagnose the same method
2515  // more than once.
2516  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2517
2518  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2519                                   MEnd = FinalOverriders.end();
2520       M != MEnd;
2521       ++M) {
2522    for (OverridingMethods::iterator SO = M->second.begin(),
2523                                  SOEnd = M->second.end();
2524         SO != SOEnd; ++SO) {
2525      // C++ [class.abstract]p4:
2526      //   A class is abstract if it contains or inherits at least one
2527      //   pure virtual function for which the final overrider is pure
2528      //   virtual.
2529
2530      //
2531      if (SO->second.size() != 1)
2532        continue;
2533
2534      if (!SO->second.front().Method->isPure())
2535        continue;
2536
2537      if (!SeenPureMethods.insert(SO->second.front().Method))
2538        continue;
2539
2540      Diag(SO->second.front().Method->getLocation(),
2541           diag::note_pure_virtual_function)
2542        << SO->second.front().Method->getDeclName();
2543    }
2544  }
2545
2546  if (!PureVirtualClassDiagSet)
2547    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2548  PureVirtualClassDiagSet->insert(RD);
2549}
2550
2551namespace {
2552struct AbstractUsageInfo {
2553  Sema &S;
2554  CXXRecordDecl *Record;
2555  CanQualType AbstractType;
2556  bool Invalid;
2557
2558  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2559    : S(S), Record(Record),
2560      AbstractType(S.Context.getCanonicalType(
2561                   S.Context.getTypeDeclType(Record))),
2562      Invalid(false) {}
2563
2564  void DiagnoseAbstractType() {
2565    if (Invalid) return;
2566    S.DiagnoseAbstractType(Record);
2567    Invalid = true;
2568  }
2569
2570  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2571};
2572
2573struct CheckAbstractUsage {
2574  AbstractUsageInfo &Info;
2575  const NamedDecl *Ctx;
2576
2577  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2578    : Info(Info), Ctx(Ctx) {}
2579
2580  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2581    switch (TL.getTypeLocClass()) {
2582#define ABSTRACT_TYPELOC(CLASS, PARENT)
2583#define TYPELOC(CLASS, PARENT) \
2584    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2585#include "clang/AST/TypeLocNodes.def"
2586    }
2587  }
2588
2589  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2590    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2591    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2592      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2593      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2594    }
2595  }
2596
2597  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2598    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2599  }
2600
2601  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2602    // Visit the type parameters from a permissive context.
2603    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2604      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2605      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2606        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2607          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2608      // TODO: other template argument types?
2609    }
2610  }
2611
2612  // Visit pointee types from a permissive context.
2613#define CheckPolymorphic(Type) \
2614  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2615    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2616  }
2617  CheckPolymorphic(PointerTypeLoc)
2618  CheckPolymorphic(ReferenceTypeLoc)
2619  CheckPolymorphic(MemberPointerTypeLoc)
2620  CheckPolymorphic(BlockPointerTypeLoc)
2621
2622  /// Handle all the types we haven't given a more specific
2623  /// implementation for above.
2624  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2625    // Every other kind of type that we haven't called out already
2626    // that has an inner type is either (1) sugar or (2) contains that
2627    // inner type in some way as a subobject.
2628    if (TypeLoc Next = TL.getNextTypeLoc())
2629      return Visit(Next, Sel);
2630
2631    // If there's no inner type and we're in a permissive context,
2632    // don't diagnose.
2633    if (Sel == Sema::AbstractNone) return;
2634
2635    // Check whether the type matches the abstract type.
2636    QualType T = TL.getType();
2637    if (T->isArrayType()) {
2638      Sel = Sema::AbstractArrayType;
2639      T = Info.S.Context.getBaseElementType(T);
2640    }
2641    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2642    if (CT != Info.AbstractType) return;
2643
2644    // It matched; do some magic.
2645    if (Sel == Sema::AbstractArrayType) {
2646      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2647        << T << TL.getSourceRange();
2648    } else {
2649      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2650        << Sel << T << TL.getSourceRange();
2651    }
2652    Info.DiagnoseAbstractType();
2653  }
2654};
2655
2656void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2657                                  Sema::AbstractDiagSelID Sel) {
2658  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2659}
2660
2661}
2662
2663/// Check for invalid uses of an abstract type in a method declaration.
2664static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2665                                    CXXMethodDecl *MD) {
2666  // No need to do the check on definitions, which require that
2667  // the return/param types be complete.
2668  if (MD->isThisDeclarationADefinition())
2669    return;
2670
2671  // For safety's sake, just ignore it if we don't have type source
2672  // information.  This should never happen for non-implicit methods,
2673  // but...
2674  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2675    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2676}
2677
2678/// Check for invalid uses of an abstract type within a class definition.
2679static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2680                                    CXXRecordDecl *RD) {
2681  for (CXXRecordDecl::decl_iterator
2682         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2683    Decl *D = *I;
2684    if (D->isImplicit()) continue;
2685
2686    // Methods and method templates.
2687    if (isa<CXXMethodDecl>(D)) {
2688      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2689    } else if (isa<FunctionTemplateDecl>(D)) {
2690      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2691      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2692
2693    // Fields and static variables.
2694    } else if (isa<FieldDecl>(D)) {
2695      FieldDecl *FD = cast<FieldDecl>(D);
2696      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2697        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2698    } else if (isa<VarDecl>(D)) {
2699      VarDecl *VD = cast<VarDecl>(D);
2700      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2701        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2702
2703    // Nested classes and class templates.
2704    } else if (isa<CXXRecordDecl>(D)) {
2705      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2706    } else if (isa<ClassTemplateDecl>(D)) {
2707      CheckAbstractClassUsage(Info,
2708                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2709    }
2710  }
2711}
2712
2713/// \brief Perform semantic checks on a class definition that has been
2714/// completing, introducing implicitly-declared members, checking for
2715/// abstract types, etc.
2716void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2717  if (!Record)
2718    return;
2719
2720  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2721    AbstractUsageInfo Info(*this, Record);
2722    CheckAbstractClassUsage(Info, Record);
2723  }
2724
2725  // If this is not an aggregate type and has no user-declared constructor,
2726  // complain about any non-static data members of reference or const scalar
2727  // type, since they will never get initializers.
2728  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2729      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2730    bool Complained = false;
2731    for (RecordDecl::field_iterator F = Record->field_begin(),
2732                                 FEnd = Record->field_end();
2733         F != FEnd; ++F) {
2734      if (F->getType()->isReferenceType() ||
2735          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2736        if (!Complained) {
2737          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2738            << Record->getTagKind() << Record;
2739          Complained = true;
2740        }
2741
2742        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2743          << F->getType()->isReferenceType()
2744          << F->getDeclName();
2745      }
2746    }
2747  }
2748
2749  if (Record->isDynamicClass() && !Record->isDependentType())
2750    DynamicClasses.push_back(Record);
2751
2752  if (Record->getIdentifier()) {
2753    // C++ [class.mem]p13:
2754    //   If T is the name of a class, then each of the following shall have a
2755    //   name different from T:
2756    //     - every member of every anonymous union that is a member of class T.
2757    //
2758    // C++ [class.mem]p14:
2759    //   In addition, if class T has a user-declared constructor (12.1), every
2760    //   non-static data member of class T shall have a name different from T.
2761    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2762         R.first != R.second; ++R.first) {
2763      NamedDecl *D = *R.first;
2764      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2765          isa<IndirectFieldDecl>(D)) {
2766        Diag(D->getLocation(), diag::err_member_name_of_class)
2767          << D->getDeclName();
2768        break;
2769      }
2770    }
2771  }
2772
2773  // Warn if the class has virtual methods but non-virtual public destructor.
2774  if (Record->isDynamicClass() && !Record->isDependentType()) {
2775    CXXDestructorDecl *dtor = Record->getDestructor();
2776    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2777      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2778           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2779  }
2780
2781  // See if a method overloads virtual methods in a base
2782  /// class without overriding any.
2783  if (!Record->isDependentType()) {
2784    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2785                                     MEnd = Record->method_end();
2786         M != MEnd; ++M) {
2787      DiagnoseHiddenVirtualMethods(Record, *M);
2788    }
2789  }
2790}
2791
2792/// \brief Data used with FindHiddenVirtualMethod
2793struct FindHiddenVirtualMethodData {
2794  Sema *S;
2795  CXXMethodDecl *Method;
2796  llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2797  llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2798};
2799
2800/// \brief Member lookup function that determines whether a given C++
2801/// method overloads virtual methods in a base class without overriding any,
2802/// to be used with CXXRecordDecl::lookupInBases().
2803static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2804                                    CXXBasePath &Path,
2805                                    void *UserData) {
2806  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2807
2808  FindHiddenVirtualMethodData &Data
2809    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2810
2811  DeclarationName Name = Data.Method->getDeclName();
2812  assert(Name.getNameKind() == DeclarationName::Identifier);
2813
2814  bool foundSameNameMethod = false;
2815  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2816  for (Path.Decls = BaseRecord->lookup(Name);
2817       Path.Decls.first != Path.Decls.second;
2818       ++Path.Decls.first) {
2819    NamedDecl *D = *Path.Decls.first;
2820    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2821      foundSameNameMethod = true;
2822      // Interested only in hidden virtual methods.
2823      if (!MD->isVirtual())
2824        continue;
2825      // If the method we are checking overrides a method from its base
2826      // don't warn about the other overloaded methods.
2827      if (!Data.S->IsOverload(Data.Method, MD, false))
2828        return true;
2829      // Collect the overload only if its hidden.
2830      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2831        overloadedMethods.push_back(MD);
2832    }
2833  }
2834
2835  if (foundSameNameMethod)
2836    Data.OverloadedMethods.append(overloadedMethods.begin(),
2837                                   overloadedMethods.end());
2838  return foundSameNameMethod;
2839}
2840
2841/// \brief See if a method overloads virtual methods in a base class without
2842/// overriding any.
2843void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2844  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2845                               MD->getLocation()) == Diagnostic::Ignored)
2846    return;
2847  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2848    return;
2849
2850  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2851                     /*bool RecordPaths=*/false,
2852                     /*bool DetectVirtual=*/false);
2853  FindHiddenVirtualMethodData Data;
2854  Data.Method = MD;
2855  Data.S = this;
2856
2857  // Keep the base methods that were overriden or introduced in the subclass
2858  // by 'using' in a set. A base method not in this set is hidden.
2859  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2860       res.first != res.second; ++res.first) {
2861    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2862      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2863                                          E = MD->end_overridden_methods();
2864           I != E; ++I)
2865        Data.OverridenAndUsingBaseMethods.insert(*I);
2866    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2867      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2868        Data.OverridenAndUsingBaseMethods.insert(MD);
2869  }
2870
2871  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2872      !Data.OverloadedMethods.empty()) {
2873    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2874      << MD << (Data.OverloadedMethods.size() > 1);
2875
2876    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2877      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2878      Diag(overloadedMD->getLocation(),
2879           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2880    }
2881  }
2882}
2883
2884void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2885                                             Decl *TagDecl,
2886                                             SourceLocation LBrac,
2887                                             SourceLocation RBrac,
2888                                             AttributeList *AttrList) {
2889  if (!TagDecl)
2890    return;
2891
2892  AdjustDeclIfTemplate(TagDecl);
2893
2894  ActOnFields(S, RLoc, TagDecl,
2895              // strict aliasing violation!
2896              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2897              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2898
2899  CheckCompletedCXXClass(
2900                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2901}
2902
2903namespace {
2904  /// \brief Helper class that collects exception specifications for
2905  /// implicitly-declared special member functions.
2906  class ImplicitExceptionSpecification {
2907    ASTContext &Context;
2908    bool AllowsAllExceptions;
2909    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2910    llvm::SmallVector<QualType, 4> Exceptions;
2911
2912  public:
2913    explicit ImplicitExceptionSpecification(ASTContext &Context)
2914      : Context(Context), AllowsAllExceptions(false) { }
2915
2916    /// \brief Whether the special member function should have any
2917    /// exception specification at all.
2918    bool hasExceptionSpecification() const {
2919      return !AllowsAllExceptions;
2920    }
2921
2922    /// \brief Whether the special member function should have a
2923    /// throw(...) exception specification (a Microsoft extension).
2924    bool hasAnyExceptionSpecification() const {
2925      return false;
2926    }
2927
2928    /// \brief The number of exceptions in the exception specification.
2929    unsigned size() const { return Exceptions.size(); }
2930
2931    /// \brief The set of exceptions in the exception specification.
2932    const QualType *data() const { return Exceptions.data(); }
2933
2934    /// \brief Note that
2935    void CalledDecl(CXXMethodDecl *Method) {
2936      // If we already know that we allow all exceptions, do nothing.
2937      if (AllowsAllExceptions || !Method)
2938        return;
2939
2940      const FunctionProtoType *Proto
2941        = Method->getType()->getAs<FunctionProtoType>();
2942
2943      // If this function can throw any exceptions, make a note of that.
2944      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2945        AllowsAllExceptions = true;
2946        ExceptionsSeen.clear();
2947        Exceptions.clear();
2948        return;
2949      }
2950
2951      // Record the exceptions in this function's exception specification.
2952      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2953                                              EEnd = Proto->exception_end();
2954           E != EEnd; ++E)
2955        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2956          Exceptions.push_back(*E);
2957    }
2958  };
2959}
2960
2961
2962/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2963/// special functions, such as the default constructor, copy
2964/// constructor, or destructor, to the given C++ class (C++
2965/// [special]p1).  This routine can only be executed just before the
2966/// definition of the class is complete.
2967void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2968  if (!ClassDecl->hasUserDeclaredConstructor())
2969    ++ASTContext::NumImplicitDefaultConstructors;
2970
2971  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2972    ++ASTContext::NumImplicitCopyConstructors;
2973
2974  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2975    ++ASTContext::NumImplicitCopyAssignmentOperators;
2976
2977    // If we have a dynamic class, then the copy assignment operator may be
2978    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2979    // it shows up in the right place in the vtable and that we diagnose
2980    // problems with the implicit exception specification.
2981    if (ClassDecl->isDynamicClass())
2982      DeclareImplicitCopyAssignment(ClassDecl);
2983  }
2984
2985  if (!ClassDecl->hasUserDeclaredDestructor()) {
2986    ++ASTContext::NumImplicitDestructors;
2987
2988    // If we have a dynamic class, then the destructor may be virtual, so we
2989    // have to declare the destructor immediately. This ensures that, e.g., it
2990    // shows up in the right place in the vtable and that we diagnose problems
2991    // with the implicit exception specification.
2992    if (ClassDecl->isDynamicClass())
2993      DeclareImplicitDestructor(ClassDecl);
2994  }
2995}
2996
2997void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2998  if (!D)
2999    return;
3000
3001  TemplateParameterList *Params = 0;
3002  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3003    Params = Template->getTemplateParameters();
3004  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3005           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3006    Params = PartialSpec->getTemplateParameters();
3007  else
3008    return;
3009
3010  for (TemplateParameterList::iterator Param = Params->begin(),
3011                                    ParamEnd = Params->end();
3012       Param != ParamEnd; ++Param) {
3013    NamedDecl *Named = cast<NamedDecl>(*Param);
3014    if (Named->getDeclName()) {
3015      S->AddDecl(Named);
3016      IdResolver.AddDecl(Named);
3017    }
3018  }
3019}
3020
3021void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3022  if (!RecordD) return;
3023  AdjustDeclIfTemplate(RecordD);
3024  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3025  PushDeclContext(S, Record);
3026}
3027
3028void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3029  if (!RecordD) return;
3030  PopDeclContext();
3031}
3032
3033/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3034/// parsing a top-level (non-nested) C++ class, and we are now
3035/// parsing those parts of the given Method declaration that could
3036/// not be parsed earlier (C++ [class.mem]p2), such as default
3037/// arguments. This action should enter the scope of the given
3038/// Method declaration as if we had just parsed the qualified method
3039/// name. However, it should not bring the parameters into scope;
3040/// that will be performed by ActOnDelayedCXXMethodParameter.
3041void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3042}
3043
3044/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3045/// C++ method declaration. We're (re-)introducing the given
3046/// function parameter into scope for use in parsing later parts of
3047/// the method declaration. For example, we could see an
3048/// ActOnParamDefaultArgument event for this parameter.
3049void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3050  if (!ParamD)
3051    return;
3052
3053  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3054
3055  // If this parameter has an unparsed default argument, clear it out
3056  // to make way for the parsed default argument.
3057  if (Param->hasUnparsedDefaultArg())
3058    Param->setDefaultArg(0);
3059
3060  S->AddDecl(Param);
3061  if (Param->getDeclName())
3062    IdResolver.AddDecl(Param);
3063}
3064
3065/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3066/// processing the delayed method declaration for Method. The method
3067/// declaration is now considered finished. There may be a separate
3068/// ActOnStartOfFunctionDef action later (not necessarily
3069/// immediately!) for this method, if it was also defined inside the
3070/// class body.
3071void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3072  if (!MethodD)
3073    return;
3074
3075  AdjustDeclIfTemplate(MethodD);
3076
3077  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3078
3079  // Now that we have our default arguments, check the constructor
3080  // again. It could produce additional diagnostics or affect whether
3081  // the class has implicitly-declared destructors, among other
3082  // things.
3083  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3084    CheckConstructor(Constructor);
3085
3086  // Check the default arguments, which we may have added.
3087  if (!Method->isInvalidDecl())
3088    CheckCXXDefaultArguments(Method);
3089}
3090
3091/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3092/// the well-formedness of the constructor declarator @p D with type @p
3093/// R. If there are any errors in the declarator, this routine will
3094/// emit diagnostics and set the invalid bit to true.  In any case, the type
3095/// will be updated to reflect a well-formed type for the constructor and
3096/// returned.
3097QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3098                                          StorageClass &SC) {
3099  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3100
3101  // C++ [class.ctor]p3:
3102  //   A constructor shall not be virtual (10.3) or static (9.4). A
3103  //   constructor can be invoked for a const, volatile or const
3104  //   volatile object. A constructor shall not be declared const,
3105  //   volatile, or const volatile (9.3.2).
3106  if (isVirtual) {
3107    if (!D.isInvalidType())
3108      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3109        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3110        << SourceRange(D.getIdentifierLoc());
3111    D.setInvalidType();
3112  }
3113  if (SC == SC_Static) {
3114    if (!D.isInvalidType())
3115      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3116        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3117        << SourceRange(D.getIdentifierLoc());
3118    D.setInvalidType();
3119    SC = SC_None;
3120  }
3121
3122  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3123  if (FTI.TypeQuals != 0) {
3124    if (FTI.TypeQuals & Qualifiers::Const)
3125      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3126        << "const" << SourceRange(D.getIdentifierLoc());
3127    if (FTI.TypeQuals & Qualifiers::Volatile)
3128      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3129        << "volatile" << SourceRange(D.getIdentifierLoc());
3130    if (FTI.TypeQuals & Qualifiers::Restrict)
3131      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3132        << "restrict" << SourceRange(D.getIdentifierLoc());
3133    D.setInvalidType();
3134  }
3135
3136  // C++0x [class.ctor]p4:
3137  //   A constructor shall not be declared with a ref-qualifier.
3138  if (FTI.hasRefQualifier()) {
3139    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3140      << FTI.RefQualifierIsLValueRef
3141      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3142    D.setInvalidType();
3143  }
3144
3145  // Rebuild the function type "R" without any type qualifiers (in
3146  // case any of the errors above fired) and with "void" as the
3147  // return type, since constructors don't have return types.
3148  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3149  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3150    return R;
3151
3152  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3153  EPI.TypeQuals = 0;
3154  EPI.RefQualifier = RQ_None;
3155
3156  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3157                                 Proto->getNumArgs(), EPI);
3158}
3159
3160/// CheckConstructor - Checks a fully-formed constructor for
3161/// well-formedness, issuing any diagnostics required. Returns true if
3162/// the constructor declarator is invalid.
3163void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3164  CXXRecordDecl *ClassDecl
3165    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3166  if (!ClassDecl)
3167    return Constructor->setInvalidDecl();
3168
3169  // C++ [class.copy]p3:
3170  //   A declaration of a constructor for a class X is ill-formed if
3171  //   its first parameter is of type (optionally cv-qualified) X and
3172  //   either there are no other parameters or else all other
3173  //   parameters have default arguments.
3174  if (!Constructor->isInvalidDecl() &&
3175      ((Constructor->getNumParams() == 1) ||
3176       (Constructor->getNumParams() > 1 &&
3177        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3178      Constructor->getTemplateSpecializationKind()
3179                                              != TSK_ImplicitInstantiation) {
3180    QualType ParamType = Constructor->getParamDecl(0)->getType();
3181    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3182    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3183      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3184      const char *ConstRef
3185        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3186                                                        : " const &";
3187      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3188        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3189
3190      // FIXME: Rather that making the constructor invalid, we should endeavor
3191      // to fix the type.
3192      Constructor->setInvalidDecl();
3193    }
3194  }
3195}
3196
3197/// CheckDestructor - Checks a fully-formed destructor definition for
3198/// well-formedness, issuing any diagnostics required.  Returns true
3199/// on error.
3200bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3201  CXXRecordDecl *RD = Destructor->getParent();
3202
3203  if (Destructor->isVirtual()) {
3204    SourceLocation Loc;
3205
3206    if (!Destructor->isImplicit())
3207      Loc = Destructor->getLocation();
3208    else
3209      Loc = RD->getLocation();
3210
3211    // If we have a virtual destructor, look up the deallocation function
3212    FunctionDecl *OperatorDelete = 0;
3213    DeclarationName Name =
3214    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3215    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3216      return true;
3217
3218    MarkDeclarationReferenced(Loc, OperatorDelete);
3219
3220    Destructor->setOperatorDelete(OperatorDelete);
3221  }
3222
3223  return false;
3224}
3225
3226static inline bool
3227FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3228  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3229          FTI.ArgInfo[0].Param &&
3230          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3231}
3232
3233/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3234/// the well-formednes of the destructor declarator @p D with type @p
3235/// R. If there are any errors in the declarator, this routine will
3236/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3237/// will be updated to reflect a well-formed type for the destructor and
3238/// returned.
3239QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3240                                         StorageClass& SC) {
3241  // C++ [class.dtor]p1:
3242  //   [...] A typedef-name that names a class is a class-name
3243  //   (7.1.3); however, a typedef-name that names a class shall not
3244  //   be used as the identifier in the declarator for a destructor
3245  //   declaration.
3246  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3247  if (isa<TypedefType>(DeclaratorType))
3248    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3249      << DeclaratorType;
3250
3251  // C++ [class.dtor]p2:
3252  //   A destructor is used to destroy objects of its class type. A
3253  //   destructor takes no parameters, and no return type can be
3254  //   specified for it (not even void). The address of a destructor
3255  //   shall not be taken. A destructor shall not be static. A
3256  //   destructor can be invoked for a const, volatile or const
3257  //   volatile object. A destructor shall not be declared const,
3258  //   volatile or const volatile (9.3.2).
3259  if (SC == SC_Static) {
3260    if (!D.isInvalidType())
3261      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3262        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3263        << SourceRange(D.getIdentifierLoc())
3264        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3265
3266    SC = SC_None;
3267  }
3268  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3269    // Destructors don't have return types, but the parser will
3270    // happily parse something like:
3271    //
3272    //   class X {
3273    //     float ~X();
3274    //   };
3275    //
3276    // The return type will be eliminated later.
3277    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3278      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3279      << SourceRange(D.getIdentifierLoc());
3280  }
3281
3282  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3283  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3284    if (FTI.TypeQuals & Qualifiers::Const)
3285      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3286        << "const" << SourceRange(D.getIdentifierLoc());
3287    if (FTI.TypeQuals & Qualifiers::Volatile)
3288      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3289        << "volatile" << SourceRange(D.getIdentifierLoc());
3290    if (FTI.TypeQuals & Qualifiers::Restrict)
3291      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3292        << "restrict" << SourceRange(D.getIdentifierLoc());
3293    D.setInvalidType();
3294  }
3295
3296  // C++0x [class.dtor]p2:
3297  //   A destructor shall not be declared with a ref-qualifier.
3298  if (FTI.hasRefQualifier()) {
3299    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3300      << FTI.RefQualifierIsLValueRef
3301      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3302    D.setInvalidType();
3303  }
3304
3305  // Make sure we don't have any parameters.
3306  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3307    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3308
3309    // Delete the parameters.
3310    FTI.freeArgs();
3311    D.setInvalidType();
3312  }
3313
3314  // Make sure the destructor isn't variadic.
3315  if (FTI.isVariadic) {
3316    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3317    D.setInvalidType();
3318  }
3319
3320  // Rebuild the function type "R" without any type qualifiers or
3321  // parameters (in case any of the errors above fired) and with
3322  // "void" as the return type, since destructors don't have return
3323  // types.
3324  if (!D.isInvalidType())
3325    return R;
3326
3327  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3328  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3329  EPI.Variadic = false;
3330  EPI.TypeQuals = 0;
3331  EPI.RefQualifier = RQ_None;
3332  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3333}
3334
3335/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3336/// well-formednes of the conversion function declarator @p D with
3337/// type @p R. If there are any errors in the declarator, this routine
3338/// will emit diagnostics and return true. Otherwise, it will return
3339/// false. Either way, the type @p R will be updated to reflect a
3340/// well-formed type for the conversion operator.
3341void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3342                                     StorageClass& SC) {
3343  // C++ [class.conv.fct]p1:
3344  //   Neither parameter types nor return type can be specified. The
3345  //   type of a conversion function (8.3.5) is "function taking no
3346  //   parameter returning conversion-type-id."
3347  if (SC == SC_Static) {
3348    if (!D.isInvalidType())
3349      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3350        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3351        << SourceRange(D.getIdentifierLoc());
3352    D.setInvalidType();
3353    SC = SC_None;
3354  }
3355
3356  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3357
3358  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3359    // Conversion functions don't have return types, but the parser will
3360    // happily parse something like:
3361    //
3362    //   class X {
3363    //     float operator bool();
3364    //   };
3365    //
3366    // The return type will be changed later anyway.
3367    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3368      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3369      << SourceRange(D.getIdentifierLoc());
3370    D.setInvalidType();
3371  }
3372
3373  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3374
3375  // Make sure we don't have any parameters.
3376  if (Proto->getNumArgs() > 0) {
3377    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3378
3379    // Delete the parameters.
3380    D.getFunctionTypeInfo().freeArgs();
3381    D.setInvalidType();
3382  } else if (Proto->isVariadic()) {
3383    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3384    D.setInvalidType();
3385  }
3386
3387  // Diagnose "&operator bool()" and other such nonsense.  This
3388  // is actually a gcc extension which we don't support.
3389  if (Proto->getResultType() != ConvType) {
3390    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3391      << Proto->getResultType();
3392    D.setInvalidType();
3393    ConvType = Proto->getResultType();
3394  }
3395
3396  // C++ [class.conv.fct]p4:
3397  //   The conversion-type-id shall not represent a function type nor
3398  //   an array type.
3399  if (ConvType->isArrayType()) {
3400    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3401    ConvType = Context.getPointerType(ConvType);
3402    D.setInvalidType();
3403  } else if (ConvType->isFunctionType()) {
3404    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3405    ConvType = Context.getPointerType(ConvType);
3406    D.setInvalidType();
3407  }
3408
3409  // Rebuild the function type "R" without any parameters (in case any
3410  // of the errors above fired) and with the conversion type as the
3411  // return type.
3412  if (D.isInvalidType())
3413    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3414
3415  // C++0x explicit conversion operators.
3416  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3417    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3418         diag::warn_explicit_conversion_functions)
3419      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3420}
3421
3422/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3423/// the declaration of the given C++ conversion function. This routine
3424/// is responsible for recording the conversion function in the C++
3425/// class, if possible.
3426Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3427  assert(Conversion && "Expected to receive a conversion function declaration");
3428
3429  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3430
3431  // Make sure we aren't redeclaring the conversion function.
3432  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3433
3434  // C++ [class.conv.fct]p1:
3435  //   [...] A conversion function is never used to convert a
3436  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3437  //   same object type (or a reference to it), to a (possibly
3438  //   cv-qualified) base class of that type (or a reference to it),
3439  //   or to (possibly cv-qualified) void.
3440  // FIXME: Suppress this warning if the conversion function ends up being a
3441  // virtual function that overrides a virtual function in a base class.
3442  QualType ClassType
3443    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3444  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3445    ConvType = ConvTypeRef->getPointeeType();
3446  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3447      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3448    /* Suppress diagnostics for instantiations. */;
3449  else if (ConvType->isRecordType()) {
3450    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3451    if (ConvType == ClassType)
3452      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3453        << ClassType;
3454    else if (IsDerivedFrom(ClassType, ConvType))
3455      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3456        <<  ClassType << ConvType;
3457  } else if (ConvType->isVoidType()) {
3458    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3459      << ClassType << ConvType;
3460  }
3461
3462  if (FunctionTemplateDecl *ConversionTemplate
3463                                = Conversion->getDescribedFunctionTemplate())
3464    return ConversionTemplate;
3465
3466  return Conversion;
3467}
3468
3469//===----------------------------------------------------------------------===//
3470// Namespace Handling
3471//===----------------------------------------------------------------------===//
3472
3473
3474
3475/// ActOnStartNamespaceDef - This is called at the start of a namespace
3476/// definition.
3477Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3478                                   SourceLocation InlineLoc,
3479                                   SourceLocation IdentLoc,
3480                                   IdentifierInfo *II,
3481                                   SourceLocation LBrace,
3482                                   AttributeList *AttrList) {
3483  // anonymous namespace starts at its left brace
3484  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3485    (II ? IdentLoc : LBrace) , II);
3486  Namespc->setLBracLoc(LBrace);
3487  Namespc->setInline(InlineLoc.isValid());
3488
3489  Scope *DeclRegionScope = NamespcScope->getParent();
3490
3491  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3492
3493  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3494    PushNamespaceVisibilityAttr(Attr);
3495
3496  if (II) {
3497    // C++ [namespace.def]p2:
3498    //   The identifier in an original-namespace-definition shall not
3499    //   have been previously defined in the declarative region in
3500    //   which the original-namespace-definition appears. The
3501    //   identifier in an original-namespace-definition is the name of
3502    //   the namespace. Subsequently in that declarative region, it is
3503    //   treated as an original-namespace-name.
3504    //
3505    // Since namespace names are unique in their scope, and we don't
3506    // look through using directives, just
3507    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3508    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3509
3510    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3511      // This is an extended namespace definition.
3512      if (Namespc->isInline() != OrigNS->isInline()) {
3513        // inline-ness must match
3514        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3515          << Namespc->isInline();
3516        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3517        Namespc->setInvalidDecl();
3518        // Recover by ignoring the new namespace's inline status.
3519        Namespc->setInline(OrigNS->isInline());
3520      }
3521
3522      // Attach this namespace decl to the chain of extended namespace
3523      // definitions.
3524      OrigNS->setNextNamespace(Namespc);
3525      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3526
3527      // Remove the previous declaration from the scope.
3528      if (DeclRegionScope->isDeclScope(OrigNS)) {
3529        IdResolver.RemoveDecl(OrigNS);
3530        DeclRegionScope->RemoveDecl(OrigNS);
3531      }
3532    } else if (PrevDecl) {
3533      // This is an invalid name redefinition.
3534      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3535       << Namespc->getDeclName();
3536      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3537      Namespc->setInvalidDecl();
3538      // Continue on to push Namespc as current DeclContext and return it.
3539    } else if (II->isStr("std") &&
3540               CurContext->getRedeclContext()->isTranslationUnit()) {
3541      // This is the first "real" definition of the namespace "std", so update
3542      // our cache of the "std" namespace to point at this definition.
3543      if (NamespaceDecl *StdNS = getStdNamespace()) {
3544        // We had already defined a dummy namespace "std". Link this new
3545        // namespace definition to the dummy namespace "std".
3546        StdNS->setNextNamespace(Namespc);
3547        StdNS->setLocation(IdentLoc);
3548        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3549      }
3550
3551      // Make our StdNamespace cache point at the first real definition of the
3552      // "std" namespace.
3553      StdNamespace = Namespc;
3554    }
3555
3556    PushOnScopeChains(Namespc, DeclRegionScope);
3557  } else {
3558    // Anonymous namespaces.
3559    assert(Namespc->isAnonymousNamespace());
3560
3561    // Link the anonymous namespace into its parent.
3562    NamespaceDecl *PrevDecl;
3563    DeclContext *Parent = CurContext->getRedeclContext();
3564    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3565      PrevDecl = TU->getAnonymousNamespace();
3566      TU->setAnonymousNamespace(Namespc);
3567    } else {
3568      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3569      PrevDecl = ND->getAnonymousNamespace();
3570      ND->setAnonymousNamespace(Namespc);
3571    }
3572
3573    // Link the anonymous namespace with its previous declaration.
3574    if (PrevDecl) {
3575      assert(PrevDecl->isAnonymousNamespace());
3576      assert(!PrevDecl->getNextNamespace());
3577      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3578      PrevDecl->setNextNamespace(Namespc);
3579
3580      if (Namespc->isInline() != PrevDecl->isInline()) {
3581        // inline-ness must match
3582        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3583          << Namespc->isInline();
3584        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3585        Namespc->setInvalidDecl();
3586        // Recover by ignoring the new namespace's inline status.
3587        Namespc->setInline(PrevDecl->isInline());
3588      }
3589    }
3590
3591    CurContext->addDecl(Namespc);
3592
3593    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3594    //   behaves as if it were replaced by
3595    //     namespace unique { /* empty body */ }
3596    //     using namespace unique;
3597    //     namespace unique { namespace-body }
3598    //   where all occurrences of 'unique' in a translation unit are
3599    //   replaced by the same identifier and this identifier differs
3600    //   from all other identifiers in the entire program.
3601
3602    // We just create the namespace with an empty name and then add an
3603    // implicit using declaration, just like the standard suggests.
3604    //
3605    // CodeGen enforces the "universally unique" aspect by giving all
3606    // declarations semantically contained within an anonymous
3607    // namespace internal linkage.
3608
3609    if (!PrevDecl) {
3610      UsingDirectiveDecl* UD
3611        = UsingDirectiveDecl::Create(Context, CurContext,
3612                                     /* 'using' */ LBrace,
3613                                     /* 'namespace' */ SourceLocation(),
3614                                     /* qualifier */ SourceRange(),
3615                                     /* NNS */ NULL,
3616                                     /* identifier */ SourceLocation(),
3617                                     Namespc,
3618                                     /* Ancestor */ CurContext);
3619      UD->setImplicit();
3620      CurContext->addDecl(UD);
3621    }
3622  }
3623
3624  // Although we could have an invalid decl (i.e. the namespace name is a
3625  // redefinition), push it as current DeclContext and try to continue parsing.
3626  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3627  // for the namespace has the declarations that showed up in that particular
3628  // namespace definition.
3629  PushDeclContext(NamespcScope, Namespc);
3630  return Namespc;
3631}
3632
3633/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3634/// is a namespace alias, returns the namespace it points to.
3635static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3636  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3637    return AD->getNamespace();
3638  return dyn_cast_or_null<NamespaceDecl>(D);
3639}
3640
3641/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3642/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3643void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3644  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3645  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3646  Namespc->setRBracLoc(RBrace);
3647  PopDeclContext();
3648  if (Namespc->hasAttr<VisibilityAttr>())
3649    PopPragmaVisibility();
3650}
3651
3652CXXRecordDecl *Sema::getStdBadAlloc() const {
3653  return cast_or_null<CXXRecordDecl>(
3654                                  StdBadAlloc.get(Context.getExternalSource()));
3655}
3656
3657NamespaceDecl *Sema::getStdNamespace() const {
3658  return cast_or_null<NamespaceDecl>(
3659                                 StdNamespace.get(Context.getExternalSource()));
3660}
3661
3662/// \brief Retrieve the special "std" namespace, which may require us to
3663/// implicitly define the namespace.
3664NamespaceDecl *Sema::getOrCreateStdNamespace() {
3665  if (!StdNamespace) {
3666    // The "std" namespace has not yet been defined, so build one implicitly.
3667    StdNamespace = NamespaceDecl::Create(Context,
3668                                         Context.getTranslationUnitDecl(),
3669                                         SourceLocation(),
3670                                         &PP.getIdentifierTable().get("std"));
3671    getStdNamespace()->setImplicit(true);
3672  }
3673
3674  return getStdNamespace();
3675}
3676
3677Decl *Sema::ActOnUsingDirective(Scope *S,
3678                                          SourceLocation UsingLoc,
3679                                          SourceLocation NamespcLoc,
3680                                          CXXScopeSpec &SS,
3681                                          SourceLocation IdentLoc,
3682                                          IdentifierInfo *NamespcName,
3683                                          AttributeList *AttrList) {
3684  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3685  assert(NamespcName && "Invalid NamespcName.");
3686  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3687
3688  // This can only happen along a recovery path.
3689  while (S->getFlags() & Scope::TemplateParamScope)
3690    S = S->getParent();
3691  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3692
3693  UsingDirectiveDecl *UDir = 0;
3694  NestedNameSpecifier *Qualifier = 0;
3695  if (SS.isSet())
3696    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3697
3698  // Lookup namespace name.
3699  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3700  LookupParsedName(R, S, &SS);
3701  if (R.isAmbiguous())
3702    return 0;
3703
3704  if (R.empty()) {
3705    // Allow "using namespace std;" or "using namespace ::std;" even if
3706    // "std" hasn't been defined yet, for GCC compatibility.
3707    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3708        NamespcName->isStr("std")) {
3709      Diag(IdentLoc, diag::ext_using_undefined_std);
3710      R.addDecl(getOrCreateStdNamespace());
3711      R.resolveKind();
3712    }
3713    // Otherwise, attempt typo correction.
3714    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3715                                                       CTC_NoKeywords, 0)) {
3716      if (R.getAsSingle<NamespaceDecl>() ||
3717          R.getAsSingle<NamespaceAliasDecl>()) {
3718        if (DeclContext *DC = computeDeclContext(SS, false))
3719          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3720            << NamespcName << DC << Corrected << SS.getRange()
3721            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3722        else
3723          Diag(IdentLoc, diag::err_using_directive_suggest)
3724            << NamespcName << Corrected
3725            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3726        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3727          << Corrected;
3728
3729        NamespcName = Corrected.getAsIdentifierInfo();
3730      } else {
3731        R.clear();
3732        R.setLookupName(NamespcName);
3733      }
3734    }
3735  }
3736
3737  if (!R.empty()) {
3738    NamedDecl *Named = R.getFoundDecl();
3739    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3740        && "expected namespace decl");
3741    // C++ [namespace.udir]p1:
3742    //   A using-directive specifies that the names in the nominated
3743    //   namespace can be used in the scope in which the
3744    //   using-directive appears after the using-directive. During
3745    //   unqualified name lookup (3.4.1), the names appear as if they
3746    //   were declared in the nearest enclosing namespace which
3747    //   contains both the using-directive and the nominated
3748    //   namespace. [Note: in this context, "contains" means "contains
3749    //   directly or indirectly". ]
3750
3751    // Find enclosing context containing both using-directive and
3752    // nominated namespace.
3753    NamespaceDecl *NS = getNamespaceDecl(Named);
3754    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3755    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3756      CommonAncestor = CommonAncestor->getParent();
3757
3758    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3759                                      SS.getRange(),
3760                                      (NestedNameSpecifier *)SS.getScopeRep(),
3761                                      IdentLoc, Named, CommonAncestor);
3762    PushUsingDirective(S, UDir);
3763  } else {
3764    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3765  }
3766
3767  // FIXME: We ignore attributes for now.
3768  return UDir;
3769}
3770
3771void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3772  // If scope has associated entity, then using directive is at namespace
3773  // or translation unit scope. We add UsingDirectiveDecls, into
3774  // it's lookup structure.
3775  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3776    Ctx->addDecl(UDir);
3777  else
3778    // Otherwise it is block-sope. using-directives will affect lookup
3779    // only to the end of scope.
3780    S->PushUsingDirective(UDir);
3781}
3782
3783
3784Decl *Sema::ActOnUsingDeclaration(Scope *S,
3785                                  AccessSpecifier AS,
3786                                  bool HasUsingKeyword,
3787                                  SourceLocation UsingLoc,
3788                                  CXXScopeSpec &SS,
3789                                  UnqualifiedId &Name,
3790                                  AttributeList *AttrList,
3791                                  bool IsTypeName,
3792                                  SourceLocation TypenameLoc) {
3793  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3794
3795  switch (Name.getKind()) {
3796  case UnqualifiedId::IK_Identifier:
3797  case UnqualifiedId::IK_OperatorFunctionId:
3798  case UnqualifiedId::IK_LiteralOperatorId:
3799  case UnqualifiedId::IK_ConversionFunctionId:
3800    break;
3801
3802  case UnqualifiedId::IK_ConstructorName:
3803  case UnqualifiedId::IK_ConstructorTemplateId:
3804    // C++0x inherited constructors.
3805    if (getLangOptions().CPlusPlus0x) break;
3806
3807    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3808      << SS.getRange();
3809    return 0;
3810
3811  case UnqualifiedId::IK_DestructorName:
3812    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3813      << SS.getRange();
3814    return 0;
3815
3816  case UnqualifiedId::IK_TemplateId:
3817    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3818      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3819    return 0;
3820  }
3821
3822  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3823  DeclarationName TargetName = TargetNameInfo.getName();
3824  if (!TargetName)
3825    return 0;
3826
3827  // Warn about using declarations.
3828  // TODO: store that the declaration was written without 'using' and
3829  // talk about access decls instead of using decls in the
3830  // diagnostics.
3831  if (!HasUsingKeyword) {
3832    UsingLoc = Name.getSourceRange().getBegin();
3833
3834    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3835      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3836  }
3837
3838  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3839      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3840    return 0;
3841
3842  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3843                                        TargetNameInfo, AttrList,
3844                                        /* IsInstantiation */ false,
3845                                        IsTypeName, TypenameLoc);
3846  if (UD)
3847    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3848
3849  return UD;
3850}
3851
3852/// \brief Determine whether a using declaration considers the given
3853/// declarations as "equivalent", e.g., if they are redeclarations of
3854/// the same entity or are both typedefs of the same type.
3855static bool
3856IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3857                         bool &SuppressRedeclaration) {
3858  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3859    SuppressRedeclaration = false;
3860    return true;
3861  }
3862
3863  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3864    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3865      SuppressRedeclaration = true;
3866      return Context.hasSameType(TD1->getUnderlyingType(),
3867                                 TD2->getUnderlyingType());
3868    }
3869
3870  return false;
3871}
3872
3873
3874/// Determines whether to create a using shadow decl for a particular
3875/// decl, given the set of decls existing prior to this using lookup.
3876bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3877                                const LookupResult &Previous) {
3878  // Diagnose finding a decl which is not from a base class of the
3879  // current class.  We do this now because there are cases where this
3880  // function will silently decide not to build a shadow decl, which
3881  // will pre-empt further diagnostics.
3882  //
3883  // We don't need to do this in C++0x because we do the check once on
3884  // the qualifier.
3885  //
3886  // FIXME: diagnose the following if we care enough:
3887  //   struct A { int foo; };
3888  //   struct B : A { using A::foo; };
3889  //   template <class T> struct C : A {};
3890  //   template <class T> struct D : C<T> { using B::foo; } // <---
3891  // This is invalid (during instantiation) in C++03 because B::foo
3892  // resolves to the using decl in B, which is not a base class of D<T>.
3893  // We can't diagnose it immediately because C<T> is an unknown
3894  // specialization.  The UsingShadowDecl in D<T> then points directly
3895  // to A::foo, which will look well-formed when we instantiate.
3896  // The right solution is to not collapse the shadow-decl chain.
3897  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3898    DeclContext *OrigDC = Orig->getDeclContext();
3899
3900    // Handle enums and anonymous structs.
3901    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3902    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3903    while (OrigRec->isAnonymousStructOrUnion())
3904      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3905
3906    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3907      if (OrigDC == CurContext) {
3908        Diag(Using->getLocation(),
3909             diag::err_using_decl_nested_name_specifier_is_current_class)
3910          << Using->getNestedNameRange();
3911        Diag(Orig->getLocation(), diag::note_using_decl_target);
3912        return true;
3913      }
3914
3915      Diag(Using->getNestedNameRange().getBegin(),
3916           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3917        << Using->getTargetNestedNameDecl()
3918        << cast<CXXRecordDecl>(CurContext)
3919        << Using->getNestedNameRange();
3920      Diag(Orig->getLocation(), diag::note_using_decl_target);
3921      return true;
3922    }
3923  }
3924
3925  if (Previous.empty()) return false;
3926
3927  NamedDecl *Target = Orig;
3928  if (isa<UsingShadowDecl>(Target))
3929    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3930
3931  // If the target happens to be one of the previous declarations, we
3932  // don't have a conflict.
3933  //
3934  // FIXME: but we might be increasing its access, in which case we
3935  // should redeclare it.
3936  NamedDecl *NonTag = 0, *Tag = 0;
3937  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3938         I != E; ++I) {
3939    NamedDecl *D = (*I)->getUnderlyingDecl();
3940    bool Result;
3941    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3942      return Result;
3943
3944    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3945  }
3946
3947  if (Target->isFunctionOrFunctionTemplate()) {
3948    FunctionDecl *FD;
3949    if (isa<FunctionTemplateDecl>(Target))
3950      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3951    else
3952      FD = cast<FunctionDecl>(Target);
3953
3954    NamedDecl *OldDecl = 0;
3955    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3956    case Ovl_Overload:
3957      return false;
3958
3959    case Ovl_NonFunction:
3960      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3961      break;
3962
3963    // We found a decl with the exact signature.
3964    case Ovl_Match:
3965      // If we're in a record, we want to hide the target, so we
3966      // return true (without a diagnostic) to tell the caller not to
3967      // build a shadow decl.
3968      if (CurContext->isRecord())
3969        return true;
3970
3971      // If we're not in a record, this is an error.
3972      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3973      break;
3974    }
3975
3976    Diag(Target->getLocation(), diag::note_using_decl_target);
3977    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3978    return true;
3979  }
3980
3981  // Target is not a function.
3982
3983  if (isa<TagDecl>(Target)) {
3984    // No conflict between a tag and a non-tag.
3985    if (!Tag) return false;
3986
3987    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3988    Diag(Target->getLocation(), diag::note_using_decl_target);
3989    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3990    return true;
3991  }
3992
3993  // No conflict between a tag and a non-tag.
3994  if (!NonTag) return false;
3995
3996  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3997  Diag(Target->getLocation(), diag::note_using_decl_target);
3998  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3999  return true;
4000}
4001
4002/// Builds a shadow declaration corresponding to a 'using' declaration.
4003UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4004                                            UsingDecl *UD,
4005                                            NamedDecl *Orig) {
4006
4007  // If we resolved to another shadow declaration, just coalesce them.
4008  NamedDecl *Target = Orig;
4009  if (isa<UsingShadowDecl>(Target)) {
4010    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4011    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4012  }
4013
4014  UsingShadowDecl *Shadow
4015    = UsingShadowDecl::Create(Context, CurContext,
4016                              UD->getLocation(), UD, Target);
4017  UD->addShadowDecl(Shadow);
4018
4019  Shadow->setAccess(UD->getAccess());
4020  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4021    Shadow->setInvalidDecl();
4022
4023  if (S)
4024    PushOnScopeChains(Shadow, S);
4025  else
4026    CurContext->addDecl(Shadow);
4027
4028
4029  return Shadow;
4030}
4031
4032/// Hides a using shadow declaration.  This is required by the current
4033/// using-decl implementation when a resolvable using declaration in a
4034/// class is followed by a declaration which would hide or override
4035/// one or more of the using decl's targets; for example:
4036///
4037///   struct Base { void foo(int); };
4038///   struct Derived : Base {
4039///     using Base::foo;
4040///     void foo(int);
4041///   };
4042///
4043/// The governing language is C++03 [namespace.udecl]p12:
4044///
4045///   When a using-declaration brings names from a base class into a
4046///   derived class scope, member functions in the derived class
4047///   override and/or hide member functions with the same name and
4048///   parameter types in a base class (rather than conflicting).
4049///
4050/// There are two ways to implement this:
4051///   (1) optimistically create shadow decls when they're not hidden
4052///       by existing declarations, or
4053///   (2) don't create any shadow decls (or at least don't make them
4054///       visible) until we've fully parsed/instantiated the class.
4055/// The problem with (1) is that we might have to retroactively remove
4056/// a shadow decl, which requires several O(n) operations because the
4057/// decl structures are (very reasonably) not designed for removal.
4058/// (2) avoids this but is very fiddly and phase-dependent.
4059void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4060  if (Shadow->getDeclName().getNameKind() ==
4061        DeclarationName::CXXConversionFunctionName)
4062    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4063
4064  // Remove it from the DeclContext...
4065  Shadow->getDeclContext()->removeDecl(Shadow);
4066
4067  // ...and the scope, if applicable...
4068  if (S) {
4069    S->RemoveDecl(Shadow);
4070    IdResolver.RemoveDecl(Shadow);
4071  }
4072
4073  // ...and the using decl.
4074  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4075
4076  // TODO: complain somehow if Shadow was used.  It shouldn't
4077  // be possible for this to happen, because...?
4078}
4079
4080/// Builds a using declaration.
4081///
4082/// \param IsInstantiation - Whether this call arises from an
4083///   instantiation of an unresolved using declaration.  We treat
4084///   the lookup differently for these declarations.
4085NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4086                                       SourceLocation UsingLoc,
4087                                       CXXScopeSpec &SS,
4088                                       const DeclarationNameInfo &NameInfo,
4089                                       AttributeList *AttrList,
4090                                       bool IsInstantiation,
4091                                       bool IsTypeName,
4092                                       SourceLocation TypenameLoc) {
4093  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4094  SourceLocation IdentLoc = NameInfo.getLoc();
4095  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4096
4097  // FIXME: We ignore attributes for now.
4098
4099  if (SS.isEmpty()) {
4100    Diag(IdentLoc, diag::err_using_requires_qualname);
4101    return 0;
4102  }
4103
4104  // Do the redeclaration lookup in the current scope.
4105  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4106                        ForRedeclaration);
4107  Previous.setHideTags(false);
4108  if (S) {
4109    LookupName(Previous, S);
4110
4111    // It is really dumb that we have to do this.
4112    LookupResult::Filter F = Previous.makeFilter();
4113    while (F.hasNext()) {
4114      NamedDecl *D = F.next();
4115      if (!isDeclInScope(D, CurContext, S))
4116        F.erase();
4117    }
4118    F.done();
4119  } else {
4120    assert(IsInstantiation && "no scope in non-instantiation");
4121    assert(CurContext->isRecord() && "scope not record in instantiation");
4122    LookupQualifiedName(Previous, CurContext);
4123  }
4124
4125  NestedNameSpecifier *NNS =
4126    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4127
4128  // Check for invalid redeclarations.
4129  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4130    return 0;
4131
4132  // Check for bad qualifiers.
4133  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4134    return 0;
4135
4136  DeclContext *LookupContext = computeDeclContext(SS);
4137  NamedDecl *D;
4138  if (!LookupContext) {
4139    if (IsTypeName) {
4140      // FIXME: not all declaration name kinds are legal here
4141      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4142                                              UsingLoc, TypenameLoc,
4143                                              SS.getRange(), NNS,
4144                                              IdentLoc, NameInfo.getName());
4145    } else {
4146      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4147                                           UsingLoc, SS.getRange(),
4148                                           NNS, NameInfo);
4149    }
4150  } else {
4151    D = UsingDecl::Create(Context, CurContext,
4152                          SS.getRange(), UsingLoc, NNS, NameInfo,
4153                          IsTypeName);
4154  }
4155  D->setAccess(AS);
4156  CurContext->addDecl(D);
4157
4158  if (!LookupContext) return D;
4159  UsingDecl *UD = cast<UsingDecl>(D);
4160
4161  if (RequireCompleteDeclContext(SS, LookupContext)) {
4162    UD->setInvalidDecl();
4163    return UD;
4164  }
4165
4166  // Look up the target name.
4167
4168  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4169
4170  // Unlike most lookups, we don't always want to hide tag
4171  // declarations: tag names are visible through the using declaration
4172  // even if hidden by ordinary names, *except* in a dependent context
4173  // where it's important for the sanity of two-phase lookup.
4174  if (!IsInstantiation)
4175    R.setHideTags(false);
4176
4177  LookupQualifiedName(R, LookupContext);
4178
4179  if (R.empty()) {
4180    Diag(IdentLoc, diag::err_no_member)
4181      << NameInfo.getName() << LookupContext << SS.getRange();
4182    UD->setInvalidDecl();
4183    return UD;
4184  }
4185
4186  if (R.isAmbiguous()) {
4187    UD->setInvalidDecl();
4188    return UD;
4189  }
4190
4191  if (IsTypeName) {
4192    // If we asked for a typename and got a non-type decl, error out.
4193    if (!R.getAsSingle<TypeDecl>()) {
4194      Diag(IdentLoc, diag::err_using_typename_non_type);
4195      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4196        Diag((*I)->getUnderlyingDecl()->getLocation(),
4197             diag::note_using_decl_target);
4198      UD->setInvalidDecl();
4199      return UD;
4200    }
4201  } else {
4202    // If we asked for a non-typename and we got a type, error out,
4203    // but only if this is an instantiation of an unresolved using
4204    // decl.  Otherwise just silently find the type name.
4205    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4206      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4207      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4208      UD->setInvalidDecl();
4209      return UD;
4210    }
4211  }
4212
4213  // C++0x N2914 [namespace.udecl]p6:
4214  // A using-declaration shall not name a namespace.
4215  if (R.getAsSingle<NamespaceDecl>()) {
4216    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4217      << SS.getRange();
4218    UD->setInvalidDecl();
4219    return UD;
4220  }
4221
4222  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4223    if (!CheckUsingShadowDecl(UD, *I, Previous))
4224      BuildUsingShadowDecl(S, UD, *I);
4225  }
4226
4227  return UD;
4228}
4229
4230/// Checks that the given using declaration is not an invalid
4231/// redeclaration.  Note that this is checking only for the using decl
4232/// itself, not for any ill-formedness among the UsingShadowDecls.
4233bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4234                                       bool isTypeName,
4235                                       const CXXScopeSpec &SS,
4236                                       SourceLocation NameLoc,
4237                                       const LookupResult &Prev) {
4238  // C++03 [namespace.udecl]p8:
4239  // C++0x [namespace.udecl]p10:
4240  //   A using-declaration is a declaration and can therefore be used
4241  //   repeatedly where (and only where) multiple declarations are
4242  //   allowed.
4243  //
4244  // That's in non-member contexts.
4245  if (!CurContext->getRedeclContext()->isRecord())
4246    return false;
4247
4248  NestedNameSpecifier *Qual
4249    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4250
4251  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4252    NamedDecl *D = *I;
4253
4254    bool DTypename;
4255    NestedNameSpecifier *DQual;
4256    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4257      DTypename = UD->isTypeName();
4258      DQual = UD->getTargetNestedNameDecl();
4259    } else if (UnresolvedUsingValueDecl *UD
4260                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4261      DTypename = false;
4262      DQual = UD->getTargetNestedNameSpecifier();
4263    } else if (UnresolvedUsingTypenameDecl *UD
4264                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4265      DTypename = true;
4266      DQual = UD->getTargetNestedNameSpecifier();
4267    } else continue;
4268
4269    // using decls differ if one says 'typename' and the other doesn't.
4270    // FIXME: non-dependent using decls?
4271    if (isTypeName != DTypename) continue;
4272
4273    // using decls differ if they name different scopes (but note that
4274    // template instantiation can cause this check to trigger when it
4275    // didn't before instantiation).
4276    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4277        Context.getCanonicalNestedNameSpecifier(DQual))
4278      continue;
4279
4280    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4281    Diag(D->getLocation(), diag::note_using_decl) << 1;
4282    return true;
4283  }
4284
4285  return false;
4286}
4287
4288
4289/// Checks that the given nested-name qualifier used in a using decl
4290/// in the current context is appropriately related to the current
4291/// scope.  If an error is found, diagnoses it and returns true.
4292bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4293                                   const CXXScopeSpec &SS,
4294                                   SourceLocation NameLoc) {
4295  DeclContext *NamedContext = computeDeclContext(SS);
4296
4297  if (!CurContext->isRecord()) {
4298    // C++03 [namespace.udecl]p3:
4299    // C++0x [namespace.udecl]p8:
4300    //   A using-declaration for a class member shall be a member-declaration.
4301
4302    // If we weren't able to compute a valid scope, it must be a
4303    // dependent class scope.
4304    if (!NamedContext || NamedContext->isRecord()) {
4305      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4306        << SS.getRange();
4307      return true;
4308    }
4309
4310    // Otherwise, everything is known to be fine.
4311    return false;
4312  }
4313
4314  // The current scope is a record.
4315
4316  // If the named context is dependent, we can't decide much.
4317  if (!NamedContext) {
4318    // FIXME: in C++0x, we can diagnose if we can prove that the
4319    // nested-name-specifier does not refer to a base class, which is
4320    // still possible in some cases.
4321
4322    // Otherwise we have to conservatively report that things might be
4323    // okay.
4324    return false;
4325  }
4326
4327  if (!NamedContext->isRecord()) {
4328    // Ideally this would point at the last name in the specifier,
4329    // but we don't have that level of source info.
4330    Diag(SS.getRange().getBegin(),
4331         diag::err_using_decl_nested_name_specifier_is_not_class)
4332      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4333    return true;
4334  }
4335
4336  if (!NamedContext->isDependentContext() &&
4337      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4338    return true;
4339
4340  if (getLangOptions().CPlusPlus0x) {
4341    // C++0x [namespace.udecl]p3:
4342    //   In a using-declaration used as a member-declaration, the
4343    //   nested-name-specifier shall name a base class of the class
4344    //   being defined.
4345
4346    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4347                                 cast<CXXRecordDecl>(NamedContext))) {
4348      if (CurContext == NamedContext) {
4349        Diag(NameLoc,
4350             diag::err_using_decl_nested_name_specifier_is_current_class)
4351          << SS.getRange();
4352        return true;
4353      }
4354
4355      Diag(SS.getRange().getBegin(),
4356           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4357        << (NestedNameSpecifier*) SS.getScopeRep()
4358        << cast<CXXRecordDecl>(CurContext)
4359        << SS.getRange();
4360      return true;
4361    }
4362
4363    return false;
4364  }
4365
4366  // C++03 [namespace.udecl]p4:
4367  //   A using-declaration used as a member-declaration shall refer
4368  //   to a member of a base class of the class being defined [etc.].
4369
4370  // Salient point: SS doesn't have to name a base class as long as
4371  // lookup only finds members from base classes.  Therefore we can
4372  // diagnose here only if we can prove that that can't happen,
4373  // i.e. if the class hierarchies provably don't intersect.
4374
4375  // TODO: it would be nice if "definitely valid" results were cached
4376  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4377  // need to be repeated.
4378
4379  struct UserData {
4380    llvm::DenseSet<const CXXRecordDecl*> Bases;
4381
4382    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4383      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4384      Data->Bases.insert(Base);
4385      return true;
4386    }
4387
4388    bool hasDependentBases(const CXXRecordDecl *Class) {
4389      return !Class->forallBases(collect, this);
4390    }
4391
4392    /// Returns true if the base is dependent or is one of the
4393    /// accumulated base classes.
4394    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4395      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4396      return !Data->Bases.count(Base);
4397    }
4398
4399    bool mightShareBases(const CXXRecordDecl *Class) {
4400      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4401    }
4402  };
4403
4404  UserData Data;
4405
4406  // Returns false if we find a dependent base.
4407  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4408    return false;
4409
4410  // Returns false if the class has a dependent base or if it or one
4411  // of its bases is present in the base set of the current context.
4412  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4413    return false;
4414
4415  Diag(SS.getRange().getBegin(),
4416       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4417    << (NestedNameSpecifier*) SS.getScopeRep()
4418    << cast<CXXRecordDecl>(CurContext)
4419    << SS.getRange();
4420
4421  return true;
4422}
4423
4424Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4425                                             SourceLocation NamespaceLoc,
4426                                             SourceLocation AliasLoc,
4427                                             IdentifierInfo *Alias,
4428                                             CXXScopeSpec &SS,
4429                                             SourceLocation IdentLoc,
4430                                             IdentifierInfo *Ident) {
4431
4432  // Lookup the namespace name.
4433  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4434  LookupParsedName(R, S, &SS);
4435
4436  // Check if we have a previous declaration with the same name.
4437  NamedDecl *PrevDecl
4438    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4439                       ForRedeclaration);
4440  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4441    PrevDecl = 0;
4442
4443  if (PrevDecl) {
4444    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4445      // We already have an alias with the same name that points to the same
4446      // namespace, so don't create a new one.
4447      // FIXME: At some point, we'll want to create the (redundant)
4448      // declaration to maintain better source information.
4449      if (!R.isAmbiguous() && !R.empty() &&
4450          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4451        return 0;
4452    }
4453
4454    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4455      diag::err_redefinition_different_kind;
4456    Diag(AliasLoc, DiagID) << Alias;
4457    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4458    return 0;
4459  }
4460
4461  if (R.isAmbiguous())
4462    return 0;
4463
4464  if (R.empty()) {
4465    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4466                                                CTC_NoKeywords, 0)) {
4467      if (R.getAsSingle<NamespaceDecl>() ||
4468          R.getAsSingle<NamespaceAliasDecl>()) {
4469        if (DeclContext *DC = computeDeclContext(SS, false))
4470          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4471            << Ident << DC << Corrected << SS.getRange()
4472            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4473        else
4474          Diag(IdentLoc, diag::err_using_directive_suggest)
4475            << Ident << Corrected
4476            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4477
4478        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4479          << Corrected;
4480
4481        Ident = Corrected.getAsIdentifierInfo();
4482      } else {
4483        R.clear();
4484        R.setLookupName(Ident);
4485      }
4486    }
4487
4488    if (R.empty()) {
4489      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4490      return 0;
4491    }
4492  }
4493
4494  NamespaceAliasDecl *AliasDecl =
4495    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4496                               Alias, SS.getRange(),
4497                               (NestedNameSpecifier *)SS.getScopeRep(),
4498                               IdentLoc, R.getFoundDecl());
4499
4500  PushOnScopeChains(AliasDecl, S);
4501  return AliasDecl;
4502}
4503
4504namespace {
4505  /// \brief Scoped object used to handle the state changes required in Sema
4506  /// to implicitly define the body of a C++ member function;
4507  class ImplicitlyDefinedFunctionScope {
4508    Sema &S;
4509    DeclContext *PreviousContext;
4510
4511  public:
4512    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4513      : S(S), PreviousContext(S.CurContext)
4514    {
4515      S.CurContext = Method;
4516      S.PushFunctionScope();
4517      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4518    }
4519
4520    ~ImplicitlyDefinedFunctionScope() {
4521      S.PopExpressionEvaluationContext();
4522      S.PopFunctionOrBlockScope();
4523      S.CurContext = PreviousContext;
4524    }
4525  };
4526}
4527
4528static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4529                                                       CXXRecordDecl *D) {
4530  ASTContext &Context = Self.Context;
4531  QualType ClassType = Context.getTypeDeclType(D);
4532  DeclarationName ConstructorName
4533    = Context.DeclarationNames.getCXXConstructorName(
4534                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4535
4536  DeclContext::lookup_const_iterator Con, ConEnd;
4537  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4538       Con != ConEnd; ++Con) {
4539    // FIXME: In C++0x, a constructor template can be a default constructor.
4540    if (isa<FunctionTemplateDecl>(*Con))
4541      continue;
4542
4543    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4544    if (Constructor->isDefaultConstructor())
4545      return Constructor;
4546  }
4547  return 0;
4548}
4549
4550CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4551                                                     CXXRecordDecl *ClassDecl) {
4552  // C++ [class.ctor]p5:
4553  //   A default constructor for a class X is a constructor of class X
4554  //   that can be called without an argument. If there is no
4555  //   user-declared constructor for class X, a default constructor is
4556  //   implicitly declared. An implicitly-declared default constructor
4557  //   is an inline public member of its class.
4558  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4559         "Should not build implicit default constructor!");
4560
4561  // C++ [except.spec]p14:
4562  //   An implicitly declared special member function (Clause 12) shall have an
4563  //   exception-specification. [...]
4564  ImplicitExceptionSpecification ExceptSpec(Context);
4565
4566  // Direct base-class destructors.
4567  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4568                                       BEnd = ClassDecl->bases_end();
4569       B != BEnd; ++B) {
4570    if (B->isVirtual()) // Handled below.
4571      continue;
4572
4573    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4574      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4575      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4576        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4577      else if (CXXConstructorDecl *Constructor
4578                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4579        ExceptSpec.CalledDecl(Constructor);
4580    }
4581  }
4582
4583  // Virtual base-class destructors.
4584  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4585                                       BEnd = ClassDecl->vbases_end();
4586       B != BEnd; ++B) {
4587    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4588      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4589      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4590        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4591      else if (CXXConstructorDecl *Constructor
4592                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4593        ExceptSpec.CalledDecl(Constructor);
4594    }
4595  }
4596
4597  // Field destructors.
4598  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4599                               FEnd = ClassDecl->field_end();
4600       F != FEnd; ++F) {
4601    if (const RecordType *RecordTy
4602              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4603      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4604      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4605        ExceptSpec.CalledDecl(
4606                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4607      else if (CXXConstructorDecl *Constructor
4608                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4609        ExceptSpec.CalledDecl(Constructor);
4610    }
4611  }
4612
4613  FunctionProtoType::ExtProtoInfo EPI;
4614  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4615  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4616  EPI.NumExceptions = ExceptSpec.size();
4617  EPI.Exceptions = ExceptSpec.data();
4618
4619  // Create the actual constructor declaration.
4620  CanQualType ClassType
4621    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4622  DeclarationName Name
4623    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4624  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4625  CXXConstructorDecl *DefaultCon
4626    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4627                                 Context.getFunctionType(Context.VoidTy,
4628                                                         0, 0, EPI),
4629                                 /*TInfo=*/0,
4630                                 /*isExplicit=*/false,
4631                                 /*isInline=*/true,
4632                                 /*isImplicitlyDeclared=*/true);
4633  DefaultCon->setAccess(AS_public);
4634  DefaultCon->setImplicit();
4635  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4636
4637  // Note that we have declared this constructor.
4638  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4639
4640  if (Scope *S = getScopeForContext(ClassDecl))
4641    PushOnScopeChains(DefaultCon, S, false);
4642  ClassDecl->addDecl(DefaultCon);
4643
4644  return DefaultCon;
4645}
4646
4647void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4648                                            CXXConstructorDecl *Constructor) {
4649  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4650          !Constructor->isUsed(false)) &&
4651    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4652
4653  CXXRecordDecl *ClassDecl = Constructor->getParent();
4654  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4655
4656  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4657  DiagnosticErrorTrap Trap(Diags);
4658  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4659      Trap.hasErrorOccurred()) {
4660    Diag(CurrentLocation, diag::note_member_synthesized_at)
4661      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4662    Constructor->setInvalidDecl();
4663    return;
4664  }
4665
4666  SourceLocation Loc = Constructor->getLocation();
4667  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4668
4669  Constructor->setUsed();
4670  MarkVTableUsed(CurrentLocation, ClassDecl);
4671}
4672
4673CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4674  // C++ [class.dtor]p2:
4675  //   If a class has no user-declared destructor, a destructor is
4676  //   declared implicitly. An implicitly-declared destructor is an
4677  //   inline public member of its class.
4678
4679  // C++ [except.spec]p14:
4680  //   An implicitly declared special member function (Clause 12) shall have
4681  //   an exception-specification.
4682  ImplicitExceptionSpecification ExceptSpec(Context);
4683
4684  // Direct base-class destructors.
4685  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4686                                       BEnd = ClassDecl->bases_end();
4687       B != BEnd; ++B) {
4688    if (B->isVirtual()) // Handled below.
4689      continue;
4690
4691    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4692      ExceptSpec.CalledDecl(
4693                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4694  }
4695
4696  // Virtual base-class destructors.
4697  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4698                                       BEnd = ClassDecl->vbases_end();
4699       B != BEnd; ++B) {
4700    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4701      ExceptSpec.CalledDecl(
4702                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4703  }
4704
4705  // Field destructors.
4706  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4707                               FEnd = ClassDecl->field_end();
4708       F != FEnd; ++F) {
4709    if (const RecordType *RecordTy
4710        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4711      ExceptSpec.CalledDecl(
4712                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4713  }
4714
4715  // Create the actual destructor declaration.
4716  FunctionProtoType::ExtProtoInfo EPI;
4717  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4718  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4719  EPI.NumExceptions = ExceptSpec.size();
4720  EPI.Exceptions = ExceptSpec.data();
4721  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4722
4723  CanQualType ClassType
4724    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4725  DeclarationName Name
4726    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4727  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4728  CXXDestructorDecl *Destructor
4729      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4730                                /*isInline=*/true,
4731                                /*isImplicitlyDeclared=*/true);
4732  Destructor->setAccess(AS_public);
4733  Destructor->setImplicit();
4734  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4735
4736  // Note that we have declared this destructor.
4737  ++ASTContext::NumImplicitDestructorsDeclared;
4738
4739  // Introduce this destructor into its scope.
4740  if (Scope *S = getScopeForContext(ClassDecl))
4741    PushOnScopeChains(Destructor, S, false);
4742  ClassDecl->addDecl(Destructor);
4743
4744  // This could be uniqued if it ever proves significant.
4745  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4746
4747  AddOverriddenMethods(ClassDecl, Destructor);
4748
4749  return Destructor;
4750}
4751
4752void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4753                                    CXXDestructorDecl *Destructor) {
4754  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4755         "DefineImplicitDestructor - call it for implicit default dtor");
4756  CXXRecordDecl *ClassDecl = Destructor->getParent();
4757  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4758
4759  if (Destructor->isInvalidDecl())
4760    return;
4761
4762  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4763
4764  DiagnosticErrorTrap Trap(Diags);
4765  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4766                                         Destructor->getParent());
4767
4768  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4769    Diag(CurrentLocation, diag::note_member_synthesized_at)
4770      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4771
4772    Destructor->setInvalidDecl();
4773    return;
4774  }
4775
4776  SourceLocation Loc = Destructor->getLocation();
4777  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4778
4779  Destructor->setUsed();
4780  MarkVTableUsed(CurrentLocation, ClassDecl);
4781}
4782
4783/// \brief Builds a statement that copies the given entity from \p From to
4784/// \c To.
4785///
4786/// This routine is used to copy the members of a class with an
4787/// implicitly-declared copy assignment operator. When the entities being
4788/// copied are arrays, this routine builds for loops to copy them.
4789///
4790/// \param S The Sema object used for type-checking.
4791///
4792/// \param Loc The location where the implicit copy is being generated.
4793///
4794/// \param T The type of the expressions being copied. Both expressions must
4795/// have this type.
4796///
4797/// \param To The expression we are copying to.
4798///
4799/// \param From The expression we are copying from.
4800///
4801/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4802/// Otherwise, it's a non-static member subobject.
4803///
4804/// \param Depth Internal parameter recording the depth of the recursion.
4805///
4806/// \returns A statement or a loop that copies the expressions.
4807static StmtResult
4808BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4809                      Expr *To, Expr *From,
4810                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4811  // C++0x [class.copy]p30:
4812  //   Each subobject is assigned in the manner appropriate to its type:
4813  //
4814  //     - if the subobject is of class type, the copy assignment operator
4815  //       for the class is used (as if by explicit qualification; that is,
4816  //       ignoring any possible virtual overriding functions in more derived
4817  //       classes);
4818  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4819    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4820
4821    // Look for operator=.
4822    DeclarationName Name
4823      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4824    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4825    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4826
4827    // Filter out any result that isn't a copy-assignment operator.
4828    LookupResult::Filter F = OpLookup.makeFilter();
4829    while (F.hasNext()) {
4830      NamedDecl *D = F.next();
4831      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4832        if (Method->isCopyAssignmentOperator())
4833          continue;
4834
4835      F.erase();
4836    }
4837    F.done();
4838
4839    // Suppress the protected check (C++ [class.protected]) for each of the
4840    // assignment operators we found. This strange dance is required when
4841    // we're assigning via a base classes's copy-assignment operator. To
4842    // ensure that we're getting the right base class subobject (without
4843    // ambiguities), we need to cast "this" to that subobject type; to
4844    // ensure that we don't go through the virtual call mechanism, we need
4845    // to qualify the operator= name with the base class (see below). However,
4846    // this means that if the base class has a protected copy assignment
4847    // operator, the protected member access check will fail. So, we
4848    // rewrite "protected" access to "public" access in this case, since we
4849    // know by construction that we're calling from a derived class.
4850    if (CopyingBaseSubobject) {
4851      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4852           L != LEnd; ++L) {
4853        if (L.getAccess() == AS_protected)
4854          L.setAccess(AS_public);
4855      }
4856    }
4857
4858    // Create the nested-name-specifier that will be used to qualify the
4859    // reference to operator=; this is required to suppress the virtual
4860    // call mechanism.
4861    CXXScopeSpec SS;
4862    SS.setRange(Loc);
4863    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4864                                               T.getTypePtr()));
4865
4866    // Create the reference to operator=.
4867    ExprResult OpEqualRef
4868      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4869                                   /*FirstQualifierInScope=*/0, OpLookup,
4870                                   /*TemplateArgs=*/0,
4871                                   /*SuppressQualifierCheck=*/true);
4872    if (OpEqualRef.isInvalid())
4873      return StmtError();
4874
4875    // Build the call to the assignment operator.
4876
4877    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4878                                                  OpEqualRef.takeAs<Expr>(),
4879                                                  Loc, &From, 1, Loc);
4880    if (Call.isInvalid())
4881      return StmtError();
4882
4883    return S.Owned(Call.takeAs<Stmt>());
4884  }
4885
4886  //     - if the subobject is of scalar type, the built-in assignment
4887  //       operator is used.
4888  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4889  if (!ArrayTy) {
4890    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4891    if (Assignment.isInvalid())
4892      return StmtError();
4893
4894    return S.Owned(Assignment.takeAs<Stmt>());
4895  }
4896
4897  //     - if the subobject is an array, each element is assigned, in the
4898  //       manner appropriate to the element type;
4899
4900  // Construct a loop over the array bounds, e.g.,
4901  //
4902  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4903  //
4904  // that will copy each of the array elements.
4905  QualType SizeType = S.Context.getSizeType();
4906
4907  // Create the iteration variable.
4908  IdentifierInfo *IterationVarName = 0;
4909  {
4910    llvm::SmallString<8> Str;
4911    llvm::raw_svector_ostream OS(Str);
4912    OS << "__i" << Depth;
4913    IterationVarName = &S.Context.Idents.get(OS.str());
4914  }
4915  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4916                                          IterationVarName, SizeType,
4917                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4918                                          SC_None, SC_None);
4919
4920  // Initialize the iteration variable to zero.
4921  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4922  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4923
4924  // Create a reference to the iteration variable; we'll use this several
4925  // times throughout.
4926  Expr *IterationVarRef
4927    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4928  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4929
4930  // Create the DeclStmt that holds the iteration variable.
4931  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4932
4933  // Create the comparison against the array bound.
4934  llvm::APInt Upper
4935    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4936  Expr *Comparison
4937    = new (S.Context) BinaryOperator(IterationVarRef,
4938                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4939                                     BO_NE, S.Context.BoolTy,
4940                                     VK_RValue, OK_Ordinary, Loc);
4941
4942  // Create the pre-increment of the iteration variable.
4943  Expr *Increment
4944    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4945                                    VK_LValue, OK_Ordinary, Loc);
4946
4947  // Subscript the "from" and "to" expressions with the iteration variable.
4948  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4949                                                         IterationVarRef, Loc));
4950  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4951                                                       IterationVarRef, Loc));
4952
4953  // Build the copy for an individual element of the array.
4954  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4955                                          To, From, CopyingBaseSubobject,
4956                                          Depth + 1);
4957  if (Copy.isInvalid())
4958    return StmtError();
4959
4960  // Construct the loop that copies all elements of this array.
4961  return S.ActOnForStmt(Loc, Loc, InitStmt,
4962                        S.MakeFullExpr(Comparison),
4963                        0, S.MakeFullExpr(Increment),
4964                        Loc, Copy.take());
4965}
4966
4967/// \brief Determine whether the given class has a copy assignment operator
4968/// that accepts a const-qualified argument.
4969static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4970  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4971
4972  if (!Class->hasDeclaredCopyAssignment())
4973    S.DeclareImplicitCopyAssignment(Class);
4974
4975  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4976  DeclarationName OpName
4977    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4978
4979  DeclContext::lookup_const_iterator Op, OpEnd;
4980  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4981    // C++ [class.copy]p9:
4982    //   A user-declared copy assignment operator is a non-static non-template
4983    //   member function of class X with exactly one parameter of type X, X&,
4984    //   const X&, volatile X& or const volatile X&.
4985    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4986    if (!Method)
4987      continue;
4988
4989    if (Method->isStatic())
4990      continue;
4991    if (Method->getPrimaryTemplate())
4992      continue;
4993    const FunctionProtoType *FnType =
4994    Method->getType()->getAs<FunctionProtoType>();
4995    assert(FnType && "Overloaded operator has no prototype.");
4996    // Don't assert on this; an invalid decl might have been left in the AST.
4997    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4998      continue;
4999    bool AcceptsConst = true;
5000    QualType ArgType = FnType->getArgType(0);
5001    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5002      ArgType = Ref->getPointeeType();
5003      // Is it a non-const lvalue reference?
5004      if (!ArgType.isConstQualified())
5005        AcceptsConst = false;
5006    }
5007    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5008      continue;
5009
5010    // We have a single argument of type cv X or cv X&, i.e. we've found the
5011    // copy assignment operator. Return whether it accepts const arguments.
5012    return AcceptsConst;
5013  }
5014  assert(Class->isInvalidDecl() &&
5015         "No copy assignment operator declared in valid code.");
5016  return false;
5017}
5018
5019CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5020  // Note: The following rules are largely analoguous to the copy
5021  // constructor rules. Note that virtual bases are not taken into account
5022  // for determining the argument type of the operator. Note also that
5023  // operators taking an object instead of a reference are allowed.
5024
5025
5026  // C++ [class.copy]p10:
5027  //   If the class definition does not explicitly declare a copy
5028  //   assignment operator, one is declared implicitly.
5029  //   The implicitly-defined copy assignment operator for a class X
5030  //   will have the form
5031  //
5032  //       X& X::operator=(const X&)
5033  //
5034  //   if
5035  bool HasConstCopyAssignment = true;
5036
5037  //       -- each direct base class B of X has a copy assignment operator
5038  //          whose parameter is of type const B&, const volatile B& or B,
5039  //          and
5040  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5041                                       BaseEnd = ClassDecl->bases_end();
5042       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5043    assert(!Base->getType()->isDependentType() &&
5044           "Cannot generate implicit members for class with dependent bases.");
5045    const CXXRecordDecl *BaseClassDecl
5046      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5047    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5048  }
5049
5050  //       -- for all the nonstatic data members of X that are of a class
5051  //          type M (or array thereof), each such class type has a copy
5052  //          assignment operator whose parameter is of type const M&,
5053  //          const volatile M& or M.
5054  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5055                                  FieldEnd = ClassDecl->field_end();
5056       HasConstCopyAssignment && Field != FieldEnd;
5057       ++Field) {
5058    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5059    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5060      const CXXRecordDecl *FieldClassDecl
5061        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5062      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5063    }
5064  }
5065
5066  //   Otherwise, the implicitly declared copy assignment operator will
5067  //   have the form
5068  //
5069  //       X& X::operator=(X&)
5070  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5071  QualType RetType = Context.getLValueReferenceType(ArgType);
5072  if (HasConstCopyAssignment)
5073    ArgType = ArgType.withConst();
5074  ArgType = Context.getLValueReferenceType(ArgType);
5075
5076  // C++ [except.spec]p14:
5077  //   An implicitly declared special member function (Clause 12) shall have an
5078  //   exception-specification. [...]
5079  ImplicitExceptionSpecification ExceptSpec(Context);
5080  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5081                                       BaseEnd = ClassDecl->bases_end();
5082       Base != BaseEnd; ++Base) {
5083    CXXRecordDecl *BaseClassDecl
5084      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5085
5086    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5087      DeclareImplicitCopyAssignment(BaseClassDecl);
5088
5089    if (CXXMethodDecl *CopyAssign
5090           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5091      ExceptSpec.CalledDecl(CopyAssign);
5092  }
5093  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5094                                  FieldEnd = ClassDecl->field_end();
5095       Field != FieldEnd;
5096       ++Field) {
5097    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5098    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5099      CXXRecordDecl *FieldClassDecl
5100        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5101
5102      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5103        DeclareImplicitCopyAssignment(FieldClassDecl);
5104
5105      if (CXXMethodDecl *CopyAssign
5106            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5107        ExceptSpec.CalledDecl(CopyAssign);
5108    }
5109  }
5110
5111  //   An implicitly-declared copy assignment operator is an inline public
5112  //   member of its class.
5113  FunctionProtoType::ExtProtoInfo EPI;
5114  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5115  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5116  EPI.NumExceptions = ExceptSpec.size();
5117  EPI.Exceptions = ExceptSpec.data();
5118  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5119  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5120  CXXMethodDecl *CopyAssignment
5121    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5122                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5123                            /*TInfo=*/0, /*isStatic=*/false,
5124                            /*StorageClassAsWritten=*/SC_None,
5125                            /*isInline=*/true);
5126  CopyAssignment->setAccess(AS_public);
5127  CopyAssignment->setImplicit();
5128  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5129
5130  // Add the parameter to the operator.
5131  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5132                                               ClassDecl->getLocation(),
5133                                               /*Id=*/0,
5134                                               ArgType, /*TInfo=*/0,
5135                                               SC_None,
5136                                               SC_None, 0);
5137  CopyAssignment->setParams(&FromParam, 1);
5138
5139  // Note that we have added this copy-assignment operator.
5140  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5141
5142  if (Scope *S = getScopeForContext(ClassDecl))
5143    PushOnScopeChains(CopyAssignment, S, false);
5144  ClassDecl->addDecl(CopyAssignment);
5145
5146  AddOverriddenMethods(ClassDecl, CopyAssignment);
5147  return CopyAssignment;
5148}
5149
5150void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5151                                        CXXMethodDecl *CopyAssignOperator) {
5152  assert((CopyAssignOperator->isImplicit() &&
5153          CopyAssignOperator->isOverloadedOperator() &&
5154          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5155          !CopyAssignOperator->isUsed(false)) &&
5156         "DefineImplicitCopyAssignment called for wrong function");
5157
5158  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5159
5160  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5161    CopyAssignOperator->setInvalidDecl();
5162    return;
5163  }
5164
5165  CopyAssignOperator->setUsed();
5166
5167  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5168  DiagnosticErrorTrap Trap(Diags);
5169
5170  // C++0x [class.copy]p30:
5171  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5172  //   for a non-union class X performs memberwise copy assignment of its
5173  //   subobjects. The direct base classes of X are assigned first, in the
5174  //   order of their declaration in the base-specifier-list, and then the
5175  //   immediate non-static data members of X are assigned, in the order in
5176  //   which they were declared in the class definition.
5177
5178  // The statements that form the synthesized function body.
5179  ASTOwningVector<Stmt*> Statements(*this);
5180
5181  // The parameter for the "other" object, which we are copying from.
5182  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5183  Qualifiers OtherQuals = Other->getType().getQualifiers();
5184  QualType OtherRefType = Other->getType();
5185  if (const LValueReferenceType *OtherRef
5186                                = OtherRefType->getAs<LValueReferenceType>()) {
5187    OtherRefType = OtherRef->getPointeeType();
5188    OtherQuals = OtherRefType.getQualifiers();
5189  }
5190
5191  // Our location for everything implicitly-generated.
5192  SourceLocation Loc = CopyAssignOperator->getLocation();
5193
5194  // Construct a reference to the "other" object. We'll be using this
5195  // throughout the generated ASTs.
5196  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5197  assert(OtherRef && "Reference to parameter cannot fail!");
5198
5199  // Construct the "this" pointer. We'll be using this throughout the generated
5200  // ASTs.
5201  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5202  assert(This && "Reference to this cannot fail!");
5203
5204  // Assign base classes.
5205  bool Invalid = false;
5206  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5207       E = ClassDecl->bases_end(); Base != E; ++Base) {
5208    // Form the assignment:
5209    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5210    QualType BaseType = Base->getType().getUnqualifiedType();
5211    if (!BaseType->isRecordType()) {
5212      Invalid = true;
5213      continue;
5214    }
5215
5216    CXXCastPath BasePath;
5217    BasePath.push_back(Base);
5218
5219    // Construct the "from" expression, which is an implicit cast to the
5220    // appropriately-qualified base type.
5221    Expr *From = OtherRef;
5222    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5223                      CK_UncheckedDerivedToBase,
5224                      VK_LValue, &BasePath);
5225
5226    // Dereference "this".
5227    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5228
5229    // Implicitly cast "this" to the appropriately-qualified base type.
5230    Expr *ToE = To.takeAs<Expr>();
5231    ImpCastExprToType(ToE,
5232                      Context.getCVRQualifiedType(BaseType,
5233                                      CopyAssignOperator->getTypeQualifiers()),
5234                      CK_UncheckedDerivedToBase,
5235                      VK_LValue, &BasePath);
5236    To = Owned(ToE);
5237
5238    // Build the copy.
5239    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5240                                            To.get(), From,
5241                                            /*CopyingBaseSubobject=*/true);
5242    if (Copy.isInvalid()) {
5243      Diag(CurrentLocation, diag::note_member_synthesized_at)
5244        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5245      CopyAssignOperator->setInvalidDecl();
5246      return;
5247    }
5248
5249    // Success! Record the copy.
5250    Statements.push_back(Copy.takeAs<Expr>());
5251  }
5252
5253  // \brief Reference to the __builtin_memcpy function.
5254  Expr *BuiltinMemCpyRef = 0;
5255  // \brief Reference to the __builtin_objc_memmove_collectable function.
5256  Expr *CollectableMemCpyRef = 0;
5257
5258  // Assign non-static members.
5259  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5260                                  FieldEnd = ClassDecl->field_end();
5261       Field != FieldEnd; ++Field) {
5262    // Check for members of reference type; we can't copy those.
5263    if (Field->getType()->isReferenceType()) {
5264      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5265        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5266      Diag(Field->getLocation(), diag::note_declared_at);
5267      Diag(CurrentLocation, diag::note_member_synthesized_at)
5268        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5269      Invalid = true;
5270      continue;
5271    }
5272
5273    // Check for members of const-qualified, non-class type.
5274    QualType BaseType = Context.getBaseElementType(Field->getType());
5275    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5276      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5277        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5278      Diag(Field->getLocation(), diag::note_declared_at);
5279      Diag(CurrentLocation, diag::note_member_synthesized_at)
5280        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5281      Invalid = true;
5282      continue;
5283    }
5284
5285    QualType FieldType = Field->getType().getNonReferenceType();
5286    if (FieldType->isIncompleteArrayType()) {
5287      assert(ClassDecl->hasFlexibleArrayMember() &&
5288             "Incomplete array type is not valid");
5289      continue;
5290    }
5291
5292    // Build references to the field in the object we're copying from and to.
5293    CXXScopeSpec SS; // Intentionally empty
5294    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5295                              LookupMemberName);
5296    MemberLookup.addDecl(*Field);
5297    MemberLookup.resolveKind();
5298    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5299                                               Loc, /*IsArrow=*/false,
5300                                               SS, 0, MemberLookup, 0);
5301    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5302                                             Loc, /*IsArrow=*/true,
5303                                             SS, 0, MemberLookup, 0);
5304    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5305    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5306
5307    // If the field should be copied with __builtin_memcpy rather than via
5308    // explicit assignments, do so. This optimization only applies for arrays
5309    // of scalars and arrays of class type with trivial copy-assignment
5310    // operators.
5311    if (FieldType->isArrayType() &&
5312        (!BaseType->isRecordType() ||
5313         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5314           ->hasTrivialCopyAssignment())) {
5315      // Compute the size of the memory buffer to be copied.
5316      QualType SizeType = Context.getSizeType();
5317      llvm::APInt Size(Context.getTypeSize(SizeType),
5318                       Context.getTypeSizeInChars(BaseType).getQuantity());
5319      for (const ConstantArrayType *Array
5320              = Context.getAsConstantArrayType(FieldType);
5321           Array;
5322           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5323        llvm::APInt ArraySize
5324          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5325        Size *= ArraySize;
5326      }
5327
5328      // Take the address of the field references for "from" and "to".
5329      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5330      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5331
5332      bool NeedsCollectableMemCpy =
5333          (BaseType->isRecordType() &&
5334           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5335
5336      if (NeedsCollectableMemCpy) {
5337        if (!CollectableMemCpyRef) {
5338          // Create a reference to the __builtin_objc_memmove_collectable function.
5339          LookupResult R(*this,
5340                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5341                         Loc, LookupOrdinaryName);
5342          LookupName(R, TUScope, true);
5343
5344          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5345          if (!CollectableMemCpy) {
5346            // Something went horribly wrong earlier, and we will have
5347            // complained about it.
5348            Invalid = true;
5349            continue;
5350          }
5351
5352          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5353                                                  CollectableMemCpy->getType(),
5354                                                  VK_LValue, Loc, 0).take();
5355          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5356        }
5357      }
5358      // Create a reference to the __builtin_memcpy builtin function.
5359      else if (!BuiltinMemCpyRef) {
5360        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5361                       LookupOrdinaryName);
5362        LookupName(R, TUScope, true);
5363
5364        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5365        if (!BuiltinMemCpy) {
5366          // Something went horribly wrong earlier, and we will have complained
5367          // about it.
5368          Invalid = true;
5369          continue;
5370        }
5371
5372        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5373                                            BuiltinMemCpy->getType(),
5374                                            VK_LValue, Loc, 0).take();
5375        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5376      }
5377
5378      ASTOwningVector<Expr*> CallArgs(*this);
5379      CallArgs.push_back(To.takeAs<Expr>());
5380      CallArgs.push_back(From.takeAs<Expr>());
5381      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5382      ExprResult Call = ExprError();
5383      if (NeedsCollectableMemCpy)
5384        Call = ActOnCallExpr(/*Scope=*/0,
5385                             CollectableMemCpyRef,
5386                             Loc, move_arg(CallArgs),
5387                             Loc);
5388      else
5389        Call = ActOnCallExpr(/*Scope=*/0,
5390                             BuiltinMemCpyRef,
5391                             Loc, move_arg(CallArgs),
5392                             Loc);
5393
5394      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5395      Statements.push_back(Call.takeAs<Expr>());
5396      continue;
5397    }
5398
5399    // Build the copy of this field.
5400    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5401                                                  To.get(), From.get(),
5402                                              /*CopyingBaseSubobject=*/false);
5403    if (Copy.isInvalid()) {
5404      Diag(CurrentLocation, diag::note_member_synthesized_at)
5405        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5406      CopyAssignOperator->setInvalidDecl();
5407      return;
5408    }
5409
5410    // Success! Record the copy.
5411    Statements.push_back(Copy.takeAs<Stmt>());
5412  }
5413
5414  if (!Invalid) {
5415    // Add a "return *this;"
5416    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5417
5418    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5419    if (Return.isInvalid())
5420      Invalid = true;
5421    else {
5422      Statements.push_back(Return.takeAs<Stmt>());
5423
5424      if (Trap.hasErrorOccurred()) {
5425        Diag(CurrentLocation, diag::note_member_synthesized_at)
5426          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5427        Invalid = true;
5428      }
5429    }
5430  }
5431
5432  if (Invalid) {
5433    CopyAssignOperator->setInvalidDecl();
5434    return;
5435  }
5436
5437  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5438                                            /*isStmtExpr=*/false);
5439  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5440  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5441}
5442
5443CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5444                                                    CXXRecordDecl *ClassDecl) {
5445  // C++ [class.copy]p4:
5446  //   If the class definition does not explicitly declare a copy
5447  //   constructor, one is declared implicitly.
5448
5449  // C++ [class.copy]p5:
5450  //   The implicitly-declared copy constructor for a class X will
5451  //   have the form
5452  //
5453  //       X::X(const X&)
5454  //
5455  //   if
5456  bool HasConstCopyConstructor = true;
5457
5458  //     -- each direct or virtual base class B of X has a copy
5459  //        constructor whose first parameter is of type const B& or
5460  //        const volatile B&, and
5461  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5462                                       BaseEnd = ClassDecl->bases_end();
5463       HasConstCopyConstructor && Base != BaseEnd;
5464       ++Base) {
5465    // Virtual bases are handled below.
5466    if (Base->isVirtual())
5467      continue;
5468
5469    CXXRecordDecl *BaseClassDecl
5470      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5471    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5472      DeclareImplicitCopyConstructor(BaseClassDecl);
5473
5474    HasConstCopyConstructor
5475      = BaseClassDecl->hasConstCopyConstructor(Context);
5476  }
5477
5478  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5479                                       BaseEnd = ClassDecl->vbases_end();
5480       HasConstCopyConstructor && Base != BaseEnd;
5481       ++Base) {
5482    CXXRecordDecl *BaseClassDecl
5483      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5484    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5485      DeclareImplicitCopyConstructor(BaseClassDecl);
5486
5487    HasConstCopyConstructor
5488      = BaseClassDecl->hasConstCopyConstructor(Context);
5489  }
5490
5491  //     -- for all the nonstatic data members of X that are of a
5492  //        class type M (or array thereof), each such class type
5493  //        has a copy constructor whose first parameter is of type
5494  //        const M& or const volatile M&.
5495  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5496                                  FieldEnd = ClassDecl->field_end();
5497       HasConstCopyConstructor && Field != FieldEnd;
5498       ++Field) {
5499    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5500    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5501      CXXRecordDecl *FieldClassDecl
5502        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5503      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5504        DeclareImplicitCopyConstructor(FieldClassDecl);
5505
5506      HasConstCopyConstructor
5507        = FieldClassDecl->hasConstCopyConstructor(Context);
5508    }
5509  }
5510
5511  //   Otherwise, the implicitly declared copy constructor will have
5512  //   the form
5513  //
5514  //       X::X(X&)
5515  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5516  QualType ArgType = ClassType;
5517  if (HasConstCopyConstructor)
5518    ArgType = ArgType.withConst();
5519  ArgType = Context.getLValueReferenceType(ArgType);
5520
5521  // C++ [except.spec]p14:
5522  //   An implicitly declared special member function (Clause 12) shall have an
5523  //   exception-specification. [...]
5524  ImplicitExceptionSpecification ExceptSpec(Context);
5525  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5526  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5527                                       BaseEnd = ClassDecl->bases_end();
5528       Base != BaseEnd;
5529       ++Base) {
5530    // Virtual bases are handled below.
5531    if (Base->isVirtual())
5532      continue;
5533
5534    CXXRecordDecl *BaseClassDecl
5535      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5536    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5537      DeclareImplicitCopyConstructor(BaseClassDecl);
5538
5539    if (CXXConstructorDecl *CopyConstructor
5540                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5541      ExceptSpec.CalledDecl(CopyConstructor);
5542  }
5543  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5544                                       BaseEnd = ClassDecl->vbases_end();
5545       Base != BaseEnd;
5546       ++Base) {
5547    CXXRecordDecl *BaseClassDecl
5548      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5549    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5550      DeclareImplicitCopyConstructor(BaseClassDecl);
5551
5552    if (CXXConstructorDecl *CopyConstructor
5553                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5554      ExceptSpec.CalledDecl(CopyConstructor);
5555  }
5556  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5557                                  FieldEnd = ClassDecl->field_end();
5558       Field != FieldEnd;
5559       ++Field) {
5560    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5561    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5562      CXXRecordDecl *FieldClassDecl
5563        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5564      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5565        DeclareImplicitCopyConstructor(FieldClassDecl);
5566
5567      if (CXXConstructorDecl *CopyConstructor
5568                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5569        ExceptSpec.CalledDecl(CopyConstructor);
5570    }
5571  }
5572
5573  //   An implicitly-declared copy constructor is an inline public
5574  //   member of its class.
5575  FunctionProtoType::ExtProtoInfo EPI;
5576  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5577  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5578  EPI.NumExceptions = ExceptSpec.size();
5579  EPI.Exceptions = ExceptSpec.data();
5580  DeclarationName Name
5581    = Context.DeclarationNames.getCXXConstructorName(
5582                                           Context.getCanonicalType(ClassType));
5583  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5584  CXXConstructorDecl *CopyConstructor
5585    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5586                                 Context.getFunctionType(Context.VoidTy,
5587                                                         &ArgType, 1, EPI),
5588                                 /*TInfo=*/0,
5589                                 /*isExplicit=*/false,
5590                                 /*isInline=*/true,
5591                                 /*isImplicitlyDeclared=*/true);
5592  CopyConstructor->setAccess(AS_public);
5593  CopyConstructor->setImplicit();
5594  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5595
5596  // Note that we have declared this constructor.
5597  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5598
5599  // Add the parameter to the constructor.
5600  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5601                                               ClassDecl->getLocation(),
5602                                               /*IdentifierInfo=*/0,
5603                                               ArgType, /*TInfo=*/0,
5604                                               SC_None,
5605                                               SC_None, 0);
5606  CopyConstructor->setParams(&FromParam, 1);
5607  if (Scope *S = getScopeForContext(ClassDecl))
5608    PushOnScopeChains(CopyConstructor, S, false);
5609  ClassDecl->addDecl(CopyConstructor);
5610
5611  return CopyConstructor;
5612}
5613
5614void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5615                                   CXXConstructorDecl *CopyConstructor,
5616                                   unsigned TypeQuals) {
5617  assert((CopyConstructor->isImplicit() &&
5618          CopyConstructor->isCopyConstructor(TypeQuals) &&
5619          !CopyConstructor->isUsed(false)) &&
5620         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5621
5622  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5623  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5624
5625  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5626  DiagnosticErrorTrap Trap(Diags);
5627
5628  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5629      Trap.hasErrorOccurred()) {
5630    Diag(CurrentLocation, diag::note_member_synthesized_at)
5631      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5632    CopyConstructor->setInvalidDecl();
5633  }  else {
5634    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5635                                               CopyConstructor->getLocation(),
5636                                               MultiStmtArg(*this, 0, 0),
5637                                               /*isStmtExpr=*/false)
5638                                                              .takeAs<Stmt>());
5639  }
5640
5641  CopyConstructor->setUsed();
5642}
5643
5644ExprResult
5645Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5646                            CXXConstructorDecl *Constructor,
5647                            MultiExprArg ExprArgs,
5648                            bool RequiresZeroInit,
5649                            unsigned ConstructKind,
5650                            SourceRange ParenRange) {
5651  bool Elidable = false;
5652
5653  // C++0x [class.copy]p34:
5654  //   When certain criteria are met, an implementation is allowed to
5655  //   omit the copy/move construction of a class object, even if the
5656  //   copy/move constructor and/or destructor for the object have
5657  //   side effects. [...]
5658  //     - when a temporary class object that has not been bound to a
5659  //       reference (12.2) would be copied/moved to a class object
5660  //       with the same cv-unqualified type, the copy/move operation
5661  //       can be omitted by constructing the temporary object
5662  //       directly into the target of the omitted copy/move
5663  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5664      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5665    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5666    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5667  }
5668
5669  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5670                               Elidable, move(ExprArgs), RequiresZeroInit,
5671                               ConstructKind, ParenRange);
5672}
5673
5674/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5675/// including handling of its default argument expressions.
5676ExprResult
5677Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5678                            CXXConstructorDecl *Constructor, bool Elidable,
5679                            MultiExprArg ExprArgs,
5680                            bool RequiresZeroInit,
5681                            unsigned ConstructKind,
5682                            SourceRange ParenRange) {
5683  unsigned NumExprs = ExprArgs.size();
5684  Expr **Exprs = (Expr **)ExprArgs.release();
5685
5686  MarkDeclarationReferenced(ConstructLoc, Constructor);
5687  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5688                                        Constructor, Elidable, Exprs, NumExprs,
5689                                        RequiresZeroInit,
5690              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5691                                        ParenRange));
5692}
5693
5694bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5695                                        CXXConstructorDecl *Constructor,
5696                                        MultiExprArg Exprs) {
5697  // FIXME: Provide the correct paren SourceRange when available.
5698  ExprResult TempResult =
5699    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5700                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5701                          SourceRange());
5702  if (TempResult.isInvalid())
5703    return true;
5704
5705  Expr *Temp = TempResult.takeAs<Expr>();
5706  CheckImplicitConversions(Temp, VD->getLocation());
5707  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5708  Temp = MaybeCreateExprWithCleanups(Temp);
5709  VD->setInit(Temp);
5710
5711  return false;
5712}
5713
5714void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5715  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5716  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5717      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5718    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5719    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5720    CheckDestructorAccess(VD->getLocation(), Destructor,
5721                          PDiag(diag::err_access_dtor_var)
5722                            << VD->getDeclName()
5723                            << VD->getType());
5724
5725    // TODO: this should be re-enabled for static locals by !CXAAtExit
5726    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5727      Diag(VD->getLocation(), diag::warn_global_destructor);
5728  }
5729}
5730
5731/// AddCXXDirectInitializerToDecl - This action is called immediately after
5732/// ActOnDeclarator, when a C++ direct initializer is present.
5733/// e.g: "int x(1);"
5734void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5735                                         SourceLocation LParenLoc,
5736                                         MultiExprArg Exprs,
5737                                         SourceLocation RParenLoc) {
5738  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5739
5740  // If there is no declaration, there was an error parsing it.  Just ignore
5741  // the initializer.
5742  if (RealDecl == 0)
5743    return;
5744
5745  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5746  if (!VDecl) {
5747    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5748    RealDecl->setInvalidDecl();
5749    return;
5750  }
5751
5752  // We will represent direct-initialization similarly to copy-initialization:
5753  //    int x(1);  -as-> int x = 1;
5754  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5755  //
5756  // Clients that want to distinguish between the two forms, can check for
5757  // direct initializer using VarDecl::hasCXXDirectInitializer().
5758  // A major benefit is that clients that don't particularly care about which
5759  // exactly form was it (like the CodeGen) can handle both cases without
5760  // special case code.
5761
5762  // C++ 8.5p11:
5763  // The form of initialization (using parentheses or '=') is generally
5764  // insignificant, but does matter when the entity being initialized has a
5765  // class type.
5766
5767  if (!VDecl->getType()->isDependentType() &&
5768      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5769                          diag::err_typecheck_decl_incomplete_type)) {
5770    VDecl->setInvalidDecl();
5771    return;
5772  }
5773
5774  // The variable can not have an abstract class type.
5775  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5776                             diag::err_abstract_type_in_decl,
5777                             AbstractVariableType))
5778    VDecl->setInvalidDecl();
5779
5780  const VarDecl *Def;
5781  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5782    Diag(VDecl->getLocation(), diag::err_redefinition)
5783    << VDecl->getDeclName();
5784    Diag(Def->getLocation(), diag::note_previous_definition);
5785    VDecl->setInvalidDecl();
5786    return;
5787  }
5788
5789  // C++ [class.static.data]p4
5790  //   If a static data member is of const integral or const
5791  //   enumeration type, its declaration in the class definition can
5792  //   specify a constant-initializer which shall be an integral
5793  //   constant expression (5.19). In that case, the member can appear
5794  //   in integral constant expressions. The member shall still be
5795  //   defined in a namespace scope if it is used in the program and the
5796  //   namespace scope definition shall not contain an initializer.
5797  //
5798  // We already performed a redefinition check above, but for static
5799  // data members we also need to check whether there was an in-class
5800  // declaration with an initializer.
5801  const VarDecl* PrevInit = 0;
5802  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5803    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5804    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5805    return;
5806  }
5807
5808  bool IsDependent = false;
5809  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5810    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5811      VDecl->setInvalidDecl();
5812      return;
5813    }
5814
5815    if (Exprs.get()[I]->isTypeDependent())
5816      IsDependent = true;
5817  }
5818
5819  // If either the declaration has a dependent type or if any of the
5820  // expressions is type-dependent, we represent the initialization
5821  // via a ParenListExpr for later use during template instantiation.
5822  if (VDecl->getType()->isDependentType() || IsDependent) {
5823    // Let clients know that initialization was done with a direct initializer.
5824    VDecl->setCXXDirectInitializer(true);
5825
5826    // Store the initialization expressions as a ParenListExpr.
5827    unsigned NumExprs = Exprs.size();
5828    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5829                                               (Expr **)Exprs.release(),
5830                                               NumExprs, RParenLoc));
5831    return;
5832  }
5833
5834  // Capture the variable that is being initialized and the style of
5835  // initialization.
5836  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5837
5838  // FIXME: Poor source location information.
5839  InitializationKind Kind
5840    = InitializationKind::CreateDirect(VDecl->getLocation(),
5841                                       LParenLoc, RParenLoc);
5842
5843  InitializationSequence InitSeq(*this, Entity, Kind,
5844                                 Exprs.get(), Exprs.size());
5845  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5846  if (Result.isInvalid()) {
5847    VDecl->setInvalidDecl();
5848    return;
5849  }
5850
5851  CheckImplicitConversions(Result.get(), LParenLoc);
5852
5853  Result = MaybeCreateExprWithCleanups(Result);
5854  VDecl->setInit(Result.takeAs<Expr>());
5855  VDecl->setCXXDirectInitializer(true);
5856
5857  CheckCompleteVariableDeclaration(VDecl);
5858}
5859
5860/// \brief Given a constructor and the set of arguments provided for the
5861/// constructor, convert the arguments and add any required default arguments
5862/// to form a proper call to this constructor.
5863///
5864/// \returns true if an error occurred, false otherwise.
5865bool
5866Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5867                              MultiExprArg ArgsPtr,
5868                              SourceLocation Loc,
5869                              ASTOwningVector<Expr*> &ConvertedArgs) {
5870  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5871  unsigned NumArgs = ArgsPtr.size();
5872  Expr **Args = (Expr **)ArgsPtr.get();
5873
5874  const FunctionProtoType *Proto
5875    = Constructor->getType()->getAs<FunctionProtoType>();
5876  assert(Proto && "Constructor without a prototype?");
5877  unsigned NumArgsInProto = Proto->getNumArgs();
5878
5879  // If too few arguments are available, we'll fill in the rest with defaults.
5880  if (NumArgs < NumArgsInProto)
5881    ConvertedArgs.reserve(NumArgsInProto);
5882  else
5883    ConvertedArgs.reserve(NumArgs);
5884
5885  VariadicCallType CallType =
5886    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5887  llvm::SmallVector<Expr *, 8> AllArgs;
5888  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5889                                        Proto, 0, Args, NumArgs, AllArgs,
5890                                        CallType);
5891  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5892    ConvertedArgs.push_back(AllArgs[i]);
5893  return Invalid;
5894}
5895
5896static inline bool
5897CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5898                                       const FunctionDecl *FnDecl) {
5899  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5900  if (isa<NamespaceDecl>(DC)) {
5901    return SemaRef.Diag(FnDecl->getLocation(),
5902                        diag::err_operator_new_delete_declared_in_namespace)
5903      << FnDecl->getDeclName();
5904  }
5905
5906  if (isa<TranslationUnitDecl>(DC) &&
5907      FnDecl->getStorageClass() == SC_Static) {
5908    return SemaRef.Diag(FnDecl->getLocation(),
5909                        diag::err_operator_new_delete_declared_static)
5910      << FnDecl->getDeclName();
5911  }
5912
5913  return false;
5914}
5915
5916static inline bool
5917CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5918                            CanQualType ExpectedResultType,
5919                            CanQualType ExpectedFirstParamType,
5920                            unsigned DependentParamTypeDiag,
5921                            unsigned InvalidParamTypeDiag) {
5922  QualType ResultType =
5923    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5924
5925  // Check that the result type is not dependent.
5926  if (ResultType->isDependentType())
5927    return SemaRef.Diag(FnDecl->getLocation(),
5928                        diag::err_operator_new_delete_dependent_result_type)
5929    << FnDecl->getDeclName() << ExpectedResultType;
5930
5931  // Check that the result type is what we expect.
5932  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5933    return SemaRef.Diag(FnDecl->getLocation(),
5934                        diag::err_operator_new_delete_invalid_result_type)
5935    << FnDecl->getDeclName() << ExpectedResultType;
5936
5937  // A function template must have at least 2 parameters.
5938  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5939    return SemaRef.Diag(FnDecl->getLocation(),
5940                      diag::err_operator_new_delete_template_too_few_parameters)
5941        << FnDecl->getDeclName();
5942
5943  // The function decl must have at least 1 parameter.
5944  if (FnDecl->getNumParams() == 0)
5945    return SemaRef.Diag(FnDecl->getLocation(),
5946                        diag::err_operator_new_delete_too_few_parameters)
5947      << FnDecl->getDeclName();
5948
5949  // Check the the first parameter type is not dependent.
5950  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5951  if (FirstParamType->isDependentType())
5952    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5953      << FnDecl->getDeclName() << ExpectedFirstParamType;
5954
5955  // Check that the first parameter type is what we expect.
5956  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5957      ExpectedFirstParamType)
5958    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5959    << FnDecl->getDeclName() << ExpectedFirstParamType;
5960
5961  return false;
5962}
5963
5964static bool
5965CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5966  // C++ [basic.stc.dynamic.allocation]p1:
5967  //   A program is ill-formed if an allocation function is declared in a
5968  //   namespace scope other than global scope or declared static in global
5969  //   scope.
5970  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5971    return true;
5972
5973  CanQualType SizeTy =
5974    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5975
5976  // C++ [basic.stc.dynamic.allocation]p1:
5977  //  The return type shall be void*. The first parameter shall have type
5978  //  std::size_t.
5979  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5980                                  SizeTy,
5981                                  diag::err_operator_new_dependent_param_type,
5982                                  diag::err_operator_new_param_type))
5983    return true;
5984
5985  // C++ [basic.stc.dynamic.allocation]p1:
5986  //  The first parameter shall not have an associated default argument.
5987  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5988    return SemaRef.Diag(FnDecl->getLocation(),
5989                        diag::err_operator_new_default_arg)
5990      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5991
5992  return false;
5993}
5994
5995static bool
5996CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5997  // C++ [basic.stc.dynamic.deallocation]p1:
5998  //   A program is ill-formed if deallocation functions are declared in a
5999  //   namespace scope other than global scope or declared static in global
6000  //   scope.
6001  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6002    return true;
6003
6004  // C++ [basic.stc.dynamic.deallocation]p2:
6005  //   Each deallocation function shall return void and its first parameter
6006  //   shall be void*.
6007  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6008                                  SemaRef.Context.VoidPtrTy,
6009                                 diag::err_operator_delete_dependent_param_type,
6010                                 diag::err_operator_delete_param_type))
6011    return true;
6012
6013  return false;
6014}
6015
6016/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6017/// of this overloaded operator is well-formed. If so, returns false;
6018/// otherwise, emits appropriate diagnostics and returns true.
6019bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6020  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6021         "Expected an overloaded operator declaration");
6022
6023  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6024
6025  // C++ [over.oper]p5:
6026  //   The allocation and deallocation functions, operator new,
6027  //   operator new[], operator delete and operator delete[], are
6028  //   described completely in 3.7.3. The attributes and restrictions
6029  //   found in the rest of this subclause do not apply to them unless
6030  //   explicitly stated in 3.7.3.
6031  if (Op == OO_Delete || Op == OO_Array_Delete)
6032    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6033
6034  if (Op == OO_New || Op == OO_Array_New)
6035    return CheckOperatorNewDeclaration(*this, FnDecl);
6036
6037  // C++ [over.oper]p6:
6038  //   An operator function shall either be a non-static member
6039  //   function or be a non-member function and have at least one
6040  //   parameter whose type is a class, a reference to a class, an
6041  //   enumeration, or a reference to an enumeration.
6042  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6043    if (MethodDecl->isStatic())
6044      return Diag(FnDecl->getLocation(),
6045                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6046  } else {
6047    bool ClassOrEnumParam = false;
6048    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6049                                   ParamEnd = FnDecl->param_end();
6050         Param != ParamEnd; ++Param) {
6051      QualType ParamType = (*Param)->getType().getNonReferenceType();
6052      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6053          ParamType->isEnumeralType()) {
6054        ClassOrEnumParam = true;
6055        break;
6056      }
6057    }
6058
6059    if (!ClassOrEnumParam)
6060      return Diag(FnDecl->getLocation(),
6061                  diag::err_operator_overload_needs_class_or_enum)
6062        << FnDecl->getDeclName();
6063  }
6064
6065  // C++ [over.oper]p8:
6066  //   An operator function cannot have default arguments (8.3.6),
6067  //   except where explicitly stated below.
6068  //
6069  // Only the function-call operator allows default arguments
6070  // (C++ [over.call]p1).
6071  if (Op != OO_Call) {
6072    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6073         Param != FnDecl->param_end(); ++Param) {
6074      if ((*Param)->hasDefaultArg())
6075        return Diag((*Param)->getLocation(),
6076                    diag::err_operator_overload_default_arg)
6077          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6078    }
6079  }
6080
6081  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6082    { false, false, false }
6083#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6084    , { Unary, Binary, MemberOnly }
6085#include "clang/Basic/OperatorKinds.def"
6086  };
6087
6088  bool CanBeUnaryOperator = OperatorUses[Op][0];
6089  bool CanBeBinaryOperator = OperatorUses[Op][1];
6090  bool MustBeMemberOperator = OperatorUses[Op][2];
6091
6092  // C++ [over.oper]p8:
6093  //   [...] Operator functions cannot have more or fewer parameters
6094  //   than the number required for the corresponding operator, as
6095  //   described in the rest of this subclause.
6096  unsigned NumParams = FnDecl->getNumParams()
6097                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6098  if (Op != OO_Call &&
6099      ((NumParams == 1 && !CanBeUnaryOperator) ||
6100       (NumParams == 2 && !CanBeBinaryOperator) ||
6101       (NumParams < 1) || (NumParams > 2))) {
6102    // We have the wrong number of parameters.
6103    unsigned ErrorKind;
6104    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6105      ErrorKind = 2;  // 2 -> unary or binary.
6106    } else if (CanBeUnaryOperator) {
6107      ErrorKind = 0;  // 0 -> unary
6108    } else {
6109      assert(CanBeBinaryOperator &&
6110             "All non-call overloaded operators are unary or binary!");
6111      ErrorKind = 1;  // 1 -> binary
6112    }
6113
6114    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6115      << FnDecl->getDeclName() << NumParams << ErrorKind;
6116  }
6117
6118  // Overloaded operators other than operator() cannot be variadic.
6119  if (Op != OO_Call &&
6120      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6121    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6122      << FnDecl->getDeclName();
6123  }
6124
6125  // Some operators must be non-static member functions.
6126  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6127    return Diag(FnDecl->getLocation(),
6128                diag::err_operator_overload_must_be_member)
6129      << FnDecl->getDeclName();
6130  }
6131
6132  // C++ [over.inc]p1:
6133  //   The user-defined function called operator++ implements the
6134  //   prefix and postfix ++ operator. If this function is a member
6135  //   function with no parameters, or a non-member function with one
6136  //   parameter of class or enumeration type, it defines the prefix
6137  //   increment operator ++ for objects of that type. If the function
6138  //   is a member function with one parameter (which shall be of type
6139  //   int) or a non-member function with two parameters (the second
6140  //   of which shall be of type int), it defines the postfix
6141  //   increment operator ++ for objects of that type.
6142  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6143    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6144    bool ParamIsInt = false;
6145    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6146      ParamIsInt = BT->getKind() == BuiltinType::Int;
6147
6148    if (!ParamIsInt)
6149      return Diag(LastParam->getLocation(),
6150                  diag::err_operator_overload_post_incdec_must_be_int)
6151        << LastParam->getType() << (Op == OO_MinusMinus);
6152  }
6153
6154  return false;
6155}
6156
6157/// CheckLiteralOperatorDeclaration - Check whether the declaration
6158/// of this literal operator function is well-formed. If so, returns
6159/// false; otherwise, emits appropriate diagnostics and returns true.
6160bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6161  DeclContext *DC = FnDecl->getDeclContext();
6162  Decl::Kind Kind = DC->getDeclKind();
6163  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6164      Kind != Decl::LinkageSpec) {
6165    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6166      << FnDecl->getDeclName();
6167    return true;
6168  }
6169
6170  bool Valid = false;
6171
6172  // template <char...> type operator "" name() is the only valid template
6173  // signature, and the only valid signature with no parameters.
6174  if (FnDecl->param_size() == 0) {
6175    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6176      // Must have only one template parameter
6177      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6178      if (Params->size() == 1) {
6179        NonTypeTemplateParmDecl *PmDecl =
6180          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6181
6182        // The template parameter must be a char parameter pack.
6183        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6184            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6185          Valid = true;
6186      }
6187    }
6188  } else {
6189    // Check the first parameter
6190    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6191
6192    QualType T = (*Param)->getType();
6193
6194    // unsigned long long int, long double, and any character type are allowed
6195    // as the only parameters.
6196    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6197        Context.hasSameType(T, Context.LongDoubleTy) ||
6198        Context.hasSameType(T, Context.CharTy) ||
6199        Context.hasSameType(T, Context.WCharTy) ||
6200        Context.hasSameType(T, Context.Char16Ty) ||
6201        Context.hasSameType(T, Context.Char32Ty)) {
6202      if (++Param == FnDecl->param_end())
6203        Valid = true;
6204      goto FinishedParams;
6205    }
6206
6207    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6208    const PointerType *PT = T->getAs<PointerType>();
6209    if (!PT)
6210      goto FinishedParams;
6211    T = PT->getPointeeType();
6212    if (!T.isConstQualified())
6213      goto FinishedParams;
6214    T = T.getUnqualifiedType();
6215
6216    // Move on to the second parameter;
6217    ++Param;
6218
6219    // If there is no second parameter, the first must be a const char *
6220    if (Param == FnDecl->param_end()) {
6221      if (Context.hasSameType(T, Context.CharTy))
6222        Valid = true;
6223      goto FinishedParams;
6224    }
6225
6226    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6227    // are allowed as the first parameter to a two-parameter function
6228    if (!(Context.hasSameType(T, Context.CharTy) ||
6229          Context.hasSameType(T, Context.WCharTy) ||
6230          Context.hasSameType(T, Context.Char16Ty) ||
6231          Context.hasSameType(T, Context.Char32Ty)))
6232      goto FinishedParams;
6233
6234    // The second and final parameter must be an std::size_t
6235    T = (*Param)->getType().getUnqualifiedType();
6236    if (Context.hasSameType(T, Context.getSizeType()) &&
6237        ++Param == FnDecl->param_end())
6238      Valid = true;
6239  }
6240
6241  // FIXME: This diagnostic is absolutely terrible.
6242FinishedParams:
6243  if (!Valid) {
6244    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6245      << FnDecl->getDeclName();
6246    return true;
6247  }
6248
6249  return false;
6250}
6251
6252/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6253/// linkage specification, including the language and (if present)
6254/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6255/// the location of the language string literal, which is provided
6256/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6257/// the '{' brace. Otherwise, this linkage specification does not
6258/// have any braces.
6259Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6260                                           SourceLocation LangLoc,
6261                                           llvm::StringRef Lang,
6262                                           SourceLocation LBraceLoc) {
6263  LinkageSpecDecl::LanguageIDs Language;
6264  if (Lang == "\"C\"")
6265    Language = LinkageSpecDecl::lang_c;
6266  else if (Lang == "\"C++\"")
6267    Language = LinkageSpecDecl::lang_cxx;
6268  else {
6269    Diag(LangLoc, diag::err_bad_language);
6270    return 0;
6271  }
6272
6273  // FIXME: Add all the various semantics of linkage specifications
6274
6275  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6276                                               LangLoc, Language,
6277                                               LBraceLoc.isValid());
6278  CurContext->addDecl(D);
6279  PushDeclContext(S, D);
6280  return D;
6281}
6282
6283/// ActOnFinishLinkageSpecification - Complete the definition of
6284/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6285/// valid, it's the position of the closing '}' brace in a linkage
6286/// specification that uses braces.
6287Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6288                                                      Decl *LinkageSpec,
6289                                                      SourceLocation RBraceLoc) {
6290  if (LinkageSpec)
6291    PopDeclContext();
6292  return LinkageSpec;
6293}
6294
6295/// \brief Perform semantic analysis for the variable declaration that
6296/// occurs within a C++ catch clause, returning the newly-created
6297/// variable.
6298VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6299                                         TypeSourceInfo *TInfo,
6300                                         IdentifierInfo *Name,
6301                                         SourceLocation Loc) {
6302  bool Invalid = false;
6303  QualType ExDeclType = TInfo->getType();
6304
6305  // Arrays and functions decay.
6306  if (ExDeclType->isArrayType())
6307    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6308  else if (ExDeclType->isFunctionType())
6309    ExDeclType = Context.getPointerType(ExDeclType);
6310
6311  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6312  // The exception-declaration shall not denote a pointer or reference to an
6313  // incomplete type, other than [cv] void*.
6314  // N2844 forbids rvalue references.
6315  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6316    Diag(Loc, diag::err_catch_rvalue_ref);
6317    Invalid = true;
6318  }
6319
6320  // GCC allows catching pointers and references to incomplete types
6321  // as an extension; so do we, but we warn by default.
6322
6323  QualType BaseType = ExDeclType;
6324  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6325  unsigned DK = diag::err_catch_incomplete;
6326  bool IncompleteCatchIsInvalid = true;
6327  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6328    BaseType = Ptr->getPointeeType();
6329    Mode = 1;
6330    DK = diag::ext_catch_incomplete_ptr;
6331    IncompleteCatchIsInvalid = false;
6332  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6333    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6334    BaseType = Ref->getPointeeType();
6335    Mode = 2;
6336    DK = diag::ext_catch_incomplete_ref;
6337    IncompleteCatchIsInvalid = false;
6338  }
6339  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6340      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6341      IncompleteCatchIsInvalid)
6342    Invalid = true;
6343
6344  if (!Invalid && !ExDeclType->isDependentType() &&
6345      RequireNonAbstractType(Loc, ExDeclType,
6346                             diag::err_abstract_type_in_decl,
6347                             AbstractVariableType))
6348    Invalid = true;
6349
6350  // Only the non-fragile NeXT runtime currently supports C++ catches
6351  // of ObjC types, and no runtime supports catching ObjC types by value.
6352  if (!Invalid && getLangOptions().ObjC1) {
6353    QualType T = ExDeclType;
6354    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6355      T = RT->getPointeeType();
6356
6357    if (T->isObjCObjectType()) {
6358      Diag(Loc, diag::err_objc_object_catch);
6359      Invalid = true;
6360    } else if (T->isObjCObjectPointerType()) {
6361      if (!getLangOptions().NeXTRuntime) {
6362        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6363        Invalid = true;
6364      } else if (!getLangOptions().ObjCNonFragileABI) {
6365        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6366        Invalid = true;
6367      }
6368    }
6369  }
6370
6371  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6372                                    Name, ExDeclType, TInfo, SC_None,
6373                                    SC_None);
6374  ExDecl->setExceptionVariable(true);
6375
6376  if (!Invalid) {
6377    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6378      // C++ [except.handle]p16:
6379      //   The object declared in an exception-declaration or, if the
6380      //   exception-declaration does not specify a name, a temporary (12.2) is
6381      //   copy-initialized (8.5) from the exception object. [...]
6382      //   The object is destroyed when the handler exits, after the destruction
6383      //   of any automatic objects initialized within the handler.
6384      //
6385      // We just pretend to initialize the object with itself, then make sure
6386      // it can be destroyed later.
6387      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6388      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6389                                            Loc, ExDeclType, VK_LValue, 0);
6390      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6391                                                               SourceLocation());
6392      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6393      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6394                                         MultiExprArg(*this, &ExDeclRef, 1));
6395      if (Result.isInvalid())
6396        Invalid = true;
6397      else
6398        FinalizeVarWithDestructor(ExDecl, RecordTy);
6399    }
6400  }
6401
6402  if (Invalid)
6403    ExDecl->setInvalidDecl();
6404
6405  return ExDecl;
6406}
6407
6408/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6409/// handler.
6410Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6411  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6412  bool Invalid = D.isInvalidType();
6413
6414  // Check for unexpanded parameter packs.
6415  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6416                                               UPPC_ExceptionType)) {
6417    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6418                                             D.getIdentifierLoc());
6419    Invalid = true;
6420  }
6421
6422  IdentifierInfo *II = D.getIdentifier();
6423  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6424                                             LookupOrdinaryName,
6425                                             ForRedeclaration)) {
6426    // The scope should be freshly made just for us. There is just no way
6427    // it contains any previous declaration.
6428    assert(!S->isDeclScope(PrevDecl));
6429    if (PrevDecl->isTemplateParameter()) {
6430      // Maybe we will complain about the shadowed template parameter.
6431      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6432    }
6433  }
6434
6435  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6436    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6437      << D.getCXXScopeSpec().getRange();
6438    Invalid = true;
6439  }
6440
6441  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6442                                              D.getIdentifier(),
6443                                              D.getIdentifierLoc());
6444
6445  if (Invalid)
6446    ExDecl->setInvalidDecl();
6447
6448  // Add the exception declaration into this scope.
6449  if (II)
6450    PushOnScopeChains(ExDecl, S);
6451  else
6452    CurContext->addDecl(ExDecl);
6453
6454  ProcessDeclAttributes(S, ExDecl, D);
6455  return ExDecl;
6456}
6457
6458Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6459                                         Expr *AssertExpr,
6460                                         Expr *AssertMessageExpr_) {
6461  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6462
6463  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6464    llvm::APSInt Value(32);
6465    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6466      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6467        AssertExpr->getSourceRange();
6468      return 0;
6469    }
6470
6471    if (Value == 0) {
6472      Diag(AssertLoc, diag::err_static_assert_failed)
6473        << AssertMessage->getString() << AssertExpr->getSourceRange();
6474    }
6475  }
6476
6477  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6478    return 0;
6479
6480  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6481                                        AssertExpr, AssertMessage);
6482
6483  CurContext->addDecl(Decl);
6484  return Decl;
6485}
6486
6487/// \brief Perform semantic analysis of the given friend type declaration.
6488///
6489/// \returns A friend declaration that.
6490FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6491                                      TypeSourceInfo *TSInfo) {
6492  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6493
6494  QualType T = TSInfo->getType();
6495  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6496
6497  if (!getLangOptions().CPlusPlus0x) {
6498    // C++03 [class.friend]p2:
6499    //   An elaborated-type-specifier shall be used in a friend declaration
6500    //   for a class.*
6501    //
6502    //   * The class-key of the elaborated-type-specifier is required.
6503    if (!ActiveTemplateInstantiations.empty()) {
6504      // Do not complain about the form of friend template types during
6505      // template instantiation; we will already have complained when the
6506      // template was declared.
6507    } else if (!T->isElaboratedTypeSpecifier()) {
6508      // If we evaluated the type to a record type, suggest putting
6509      // a tag in front.
6510      if (const RecordType *RT = T->getAs<RecordType>()) {
6511        RecordDecl *RD = RT->getDecl();
6512
6513        std::string InsertionText = std::string(" ") + RD->getKindName();
6514
6515        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6516          << (unsigned) RD->getTagKind()
6517          << T
6518          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6519                                        InsertionText);
6520      } else {
6521        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6522          << T
6523          << SourceRange(FriendLoc, TypeRange.getEnd());
6524      }
6525    } else if (T->getAs<EnumType>()) {
6526      Diag(FriendLoc, diag::ext_enum_friend)
6527        << T
6528        << SourceRange(FriendLoc, TypeRange.getEnd());
6529    }
6530  }
6531
6532  // C++0x [class.friend]p3:
6533  //   If the type specifier in a friend declaration designates a (possibly
6534  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6535  //   the friend declaration is ignored.
6536
6537  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6538  // in [class.friend]p3 that we do not implement.
6539
6540  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6541}
6542
6543/// Handle a friend tag declaration where the scope specifier was
6544/// templated.
6545Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6546                                    unsigned TagSpec, SourceLocation TagLoc,
6547                                    CXXScopeSpec &SS,
6548                                    IdentifierInfo *Name, SourceLocation NameLoc,
6549                                    AttributeList *Attr,
6550                                    MultiTemplateParamsArg TempParamLists) {
6551  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6552
6553  bool isExplicitSpecialization = false;
6554  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6555  bool Invalid = false;
6556
6557  if (TemplateParameterList *TemplateParams
6558        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6559                                                  TempParamLists.get(),
6560                                                  TempParamLists.size(),
6561                                                  /*friend*/ true,
6562                                                  isExplicitSpecialization,
6563                                                  Invalid)) {
6564    --NumMatchedTemplateParamLists;
6565
6566    if (TemplateParams->size() > 0) {
6567      // This is a declaration of a class template.
6568      if (Invalid)
6569        return 0;
6570
6571      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6572                                SS, Name, NameLoc, Attr,
6573                                TemplateParams, AS_public).take();
6574    } else {
6575      // The "template<>" header is extraneous.
6576      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6577        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6578      isExplicitSpecialization = true;
6579    }
6580  }
6581
6582  if (Invalid) return 0;
6583
6584  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6585
6586  bool isAllExplicitSpecializations = true;
6587  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6588    if (TempParamLists.get()[I]->size()) {
6589      isAllExplicitSpecializations = false;
6590      break;
6591    }
6592  }
6593
6594  // FIXME: don't ignore attributes.
6595
6596  // If it's explicit specializations all the way down, just forget
6597  // about the template header and build an appropriate non-templated
6598  // friend.  TODO: for source fidelity, remember the headers.
6599  if (isAllExplicitSpecializations) {
6600    ElaboratedTypeKeyword Keyword
6601      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6602    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6603                                   TagLoc, SS.getRange(), NameLoc);
6604    if (T.isNull())
6605      return 0;
6606
6607    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6608    if (isa<DependentNameType>(T)) {
6609      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6610      TL.setKeywordLoc(TagLoc);
6611      TL.setQualifierRange(SS.getRange());
6612      TL.setNameLoc(NameLoc);
6613    } else {
6614      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6615      TL.setKeywordLoc(TagLoc);
6616      TL.setQualifierRange(SS.getRange());
6617      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6618    }
6619
6620    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6621                                            TSI, FriendLoc);
6622    Friend->setAccess(AS_public);
6623    CurContext->addDecl(Friend);
6624    return Friend;
6625  }
6626
6627  // Handle the case of a templated-scope friend class.  e.g.
6628  //   template <class T> class A<T>::B;
6629  // FIXME: we don't support these right now.
6630  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6631  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6632  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6633  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6634  TL.setKeywordLoc(TagLoc);
6635  TL.setQualifierRange(SS.getRange());
6636  TL.setNameLoc(NameLoc);
6637
6638  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6639                                          TSI, FriendLoc);
6640  Friend->setAccess(AS_public);
6641  Friend->setUnsupportedFriend(true);
6642  CurContext->addDecl(Friend);
6643  return Friend;
6644}
6645
6646
6647/// Handle a friend type declaration.  This works in tandem with
6648/// ActOnTag.
6649///
6650/// Notes on friend class templates:
6651///
6652/// We generally treat friend class declarations as if they were
6653/// declaring a class.  So, for example, the elaborated type specifier
6654/// in a friend declaration is required to obey the restrictions of a
6655/// class-head (i.e. no typedefs in the scope chain), template
6656/// parameters are required to match up with simple template-ids, &c.
6657/// However, unlike when declaring a template specialization, it's
6658/// okay to refer to a template specialization without an empty
6659/// template parameter declaration, e.g.
6660///   friend class A<T>::B<unsigned>;
6661/// We permit this as a special case; if there are any template
6662/// parameters present at all, require proper matching, i.e.
6663///   template <> template <class T> friend class A<int>::B;
6664Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6665                                MultiTemplateParamsArg TempParams) {
6666  SourceLocation Loc = DS.getSourceRange().getBegin();
6667
6668  assert(DS.isFriendSpecified());
6669  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6670
6671  // Try to convert the decl specifier to a type.  This works for
6672  // friend templates because ActOnTag never produces a ClassTemplateDecl
6673  // for a TUK_Friend.
6674  Declarator TheDeclarator(DS, Declarator::MemberContext);
6675  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6676  QualType T = TSI->getType();
6677  if (TheDeclarator.isInvalidType())
6678    return 0;
6679
6680  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6681    return 0;
6682
6683  // This is definitely an error in C++98.  It's probably meant to
6684  // be forbidden in C++0x, too, but the specification is just
6685  // poorly written.
6686  //
6687  // The problem is with declarations like the following:
6688  //   template <T> friend A<T>::foo;
6689  // where deciding whether a class C is a friend or not now hinges
6690  // on whether there exists an instantiation of A that causes
6691  // 'foo' to equal C.  There are restrictions on class-heads
6692  // (which we declare (by fiat) elaborated friend declarations to
6693  // be) that makes this tractable.
6694  //
6695  // FIXME: handle "template <> friend class A<T>;", which
6696  // is possibly well-formed?  Who even knows?
6697  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6698    Diag(Loc, diag::err_tagless_friend_type_template)
6699      << DS.getSourceRange();
6700    return 0;
6701  }
6702
6703  // C++98 [class.friend]p1: A friend of a class is a function
6704  //   or class that is not a member of the class . . .
6705  // This is fixed in DR77, which just barely didn't make the C++03
6706  // deadline.  It's also a very silly restriction that seriously
6707  // affects inner classes and which nobody else seems to implement;
6708  // thus we never diagnose it, not even in -pedantic.
6709  //
6710  // But note that we could warn about it: it's always useless to
6711  // friend one of your own members (it's not, however, worthless to
6712  // friend a member of an arbitrary specialization of your template).
6713
6714  Decl *D;
6715  if (unsigned NumTempParamLists = TempParams.size())
6716    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6717                                   NumTempParamLists,
6718                                   TempParams.release(),
6719                                   TSI,
6720                                   DS.getFriendSpecLoc());
6721  else
6722    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6723
6724  if (!D)
6725    return 0;
6726
6727  D->setAccess(AS_public);
6728  CurContext->addDecl(D);
6729
6730  return D;
6731}
6732
6733Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6734                                    MultiTemplateParamsArg TemplateParams) {
6735  const DeclSpec &DS = D.getDeclSpec();
6736
6737  assert(DS.isFriendSpecified());
6738  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6739
6740  SourceLocation Loc = D.getIdentifierLoc();
6741  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6742  QualType T = TInfo->getType();
6743
6744  // C++ [class.friend]p1
6745  //   A friend of a class is a function or class....
6746  // Note that this sees through typedefs, which is intended.
6747  // It *doesn't* see through dependent types, which is correct
6748  // according to [temp.arg.type]p3:
6749  //   If a declaration acquires a function type through a
6750  //   type dependent on a template-parameter and this causes
6751  //   a declaration that does not use the syntactic form of a
6752  //   function declarator to have a function type, the program
6753  //   is ill-formed.
6754  if (!T->isFunctionType()) {
6755    Diag(Loc, diag::err_unexpected_friend);
6756
6757    // It might be worthwhile to try to recover by creating an
6758    // appropriate declaration.
6759    return 0;
6760  }
6761
6762  // C++ [namespace.memdef]p3
6763  //  - If a friend declaration in a non-local class first declares a
6764  //    class or function, the friend class or function is a member
6765  //    of the innermost enclosing namespace.
6766  //  - The name of the friend is not found by simple name lookup
6767  //    until a matching declaration is provided in that namespace
6768  //    scope (either before or after the class declaration granting
6769  //    friendship).
6770  //  - If a friend function is called, its name may be found by the
6771  //    name lookup that considers functions from namespaces and
6772  //    classes associated with the types of the function arguments.
6773  //  - When looking for a prior declaration of a class or a function
6774  //    declared as a friend, scopes outside the innermost enclosing
6775  //    namespace scope are not considered.
6776
6777  CXXScopeSpec &SS = D.getCXXScopeSpec();
6778  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6779  DeclarationName Name = NameInfo.getName();
6780  assert(Name);
6781
6782  // Check for unexpanded parameter packs.
6783  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6784      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6785      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6786    return 0;
6787
6788  // The context we found the declaration in, or in which we should
6789  // create the declaration.
6790  DeclContext *DC;
6791  Scope *DCScope = S;
6792  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6793                        ForRedeclaration);
6794
6795  // FIXME: there are different rules in local classes
6796
6797  // There are four cases here.
6798  //   - There's no scope specifier, in which case we just go to the
6799  //     appropriate scope and look for a function or function template
6800  //     there as appropriate.
6801  // Recover from invalid scope qualifiers as if they just weren't there.
6802  if (SS.isInvalid() || !SS.isSet()) {
6803    // C++0x [namespace.memdef]p3:
6804    //   If the name in a friend declaration is neither qualified nor
6805    //   a template-id and the declaration is a function or an
6806    //   elaborated-type-specifier, the lookup to determine whether
6807    //   the entity has been previously declared shall not consider
6808    //   any scopes outside the innermost enclosing namespace.
6809    // C++0x [class.friend]p11:
6810    //   If a friend declaration appears in a local class and the name
6811    //   specified is an unqualified name, a prior declaration is
6812    //   looked up without considering scopes that are outside the
6813    //   innermost enclosing non-class scope. For a friend function
6814    //   declaration, if there is no prior declaration, the program is
6815    //   ill-formed.
6816    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6817    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6818
6819    // Find the appropriate context according to the above.
6820    DC = CurContext;
6821    while (true) {
6822      // Skip class contexts.  If someone can cite chapter and verse
6823      // for this behavior, that would be nice --- it's what GCC and
6824      // EDG do, and it seems like a reasonable intent, but the spec
6825      // really only says that checks for unqualified existing
6826      // declarations should stop at the nearest enclosing namespace,
6827      // not that they should only consider the nearest enclosing
6828      // namespace.
6829      while (DC->isRecord())
6830        DC = DC->getParent();
6831
6832      LookupQualifiedName(Previous, DC);
6833
6834      // TODO: decide what we think about using declarations.
6835      if (isLocal || !Previous.empty())
6836        break;
6837
6838      if (isTemplateId) {
6839        if (isa<TranslationUnitDecl>(DC)) break;
6840      } else {
6841        if (DC->isFileContext()) break;
6842      }
6843      DC = DC->getParent();
6844    }
6845
6846    // C++ [class.friend]p1: A friend of a class is a function or
6847    //   class that is not a member of the class . . .
6848    // C++0x changes this for both friend types and functions.
6849    // Most C++ 98 compilers do seem to give an error here, so
6850    // we do, too.
6851    if (!Previous.empty() && DC->Equals(CurContext)
6852        && !getLangOptions().CPlusPlus0x)
6853      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6854
6855    DCScope = getScopeForDeclContext(S, DC);
6856
6857  //   - There's a non-dependent scope specifier, in which case we
6858  //     compute it and do a previous lookup there for a function
6859  //     or function template.
6860  } else if (!SS.getScopeRep()->isDependent()) {
6861    DC = computeDeclContext(SS);
6862    if (!DC) return 0;
6863
6864    if (RequireCompleteDeclContext(SS, DC)) return 0;
6865
6866    LookupQualifiedName(Previous, DC);
6867
6868    // Ignore things found implicitly in the wrong scope.
6869    // TODO: better diagnostics for this case.  Suggesting the right
6870    // qualified scope would be nice...
6871    LookupResult::Filter F = Previous.makeFilter();
6872    while (F.hasNext()) {
6873      NamedDecl *D = F.next();
6874      if (!DC->InEnclosingNamespaceSetOf(
6875              D->getDeclContext()->getRedeclContext()))
6876        F.erase();
6877    }
6878    F.done();
6879
6880    if (Previous.empty()) {
6881      D.setInvalidType();
6882      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6883      return 0;
6884    }
6885
6886    // C++ [class.friend]p1: A friend of a class is a function or
6887    //   class that is not a member of the class . . .
6888    if (DC->Equals(CurContext))
6889      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6890
6891  //   - There's a scope specifier that does not match any template
6892  //     parameter lists, in which case we use some arbitrary context,
6893  //     create a method or method template, and wait for instantiation.
6894  //   - There's a scope specifier that does match some template
6895  //     parameter lists, which we don't handle right now.
6896  } else {
6897    DC = CurContext;
6898    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6899  }
6900
6901  if (!DC->isRecord()) {
6902    // This implies that it has to be an operator or function.
6903    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6904        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6905        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6906      Diag(Loc, diag::err_introducing_special_friend) <<
6907        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6908         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6909      return 0;
6910    }
6911  }
6912
6913  bool Redeclaration = false;
6914  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6915                                          move(TemplateParams),
6916                                          IsDefinition,
6917                                          Redeclaration);
6918  if (!ND) return 0;
6919
6920  assert(ND->getDeclContext() == DC);
6921  assert(ND->getLexicalDeclContext() == CurContext);
6922
6923  // Add the function declaration to the appropriate lookup tables,
6924  // adjusting the redeclarations list as necessary.  We don't
6925  // want to do this yet if the friending class is dependent.
6926  //
6927  // Also update the scope-based lookup if the target context's
6928  // lookup context is in lexical scope.
6929  if (!CurContext->isDependentContext()) {
6930    DC = DC->getRedeclContext();
6931    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6932    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6933      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6934  }
6935
6936  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6937                                       D.getIdentifierLoc(), ND,
6938                                       DS.getFriendSpecLoc());
6939  FrD->setAccess(AS_public);
6940  CurContext->addDecl(FrD);
6941
6942  if (ND->isInvalidDecl())
6943    FrD->setInvalidDecl();
6944  else {
6945    FunctionDecl *FD;
6946    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6947      FD = FTD->getTemplatedDecl();
6948    else
6949      FD = cast<FunctionDecl>(ND);
6950
6951    // Mark templated-scope function declarations as unsupported.
6952    if (FD->getNumTemplateParameterLists())
6953      FrD->setUnsupportedFriend(true);
6954  }
6955
6956  return ND;
6957}
6958
6959void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6960  AdjustDeclIfTemplate(Dcl);
6961
6962  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6963  if (!Fn) {
6964    Diag(DelLoc, diag::err_deleted_non_function);
6965    return;
6966  }
6967  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6968    Diag(DelLoc, diag::err_deleted_decl_not_first);
6969    Diag(Prev->getLocation(), diag::note_previous_declaration);
6970    // If the declaration wasn't the first, we delete the function anyway for
6971    // recovery.
6972  }
6973  Fn->setDeleted();
6974}
6975
6976static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6977  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6978       ++CI) {
6979    Stmt *SubStmt = *CI;
6980    if (!SubStmt)
6981      continue;
6982    if (isa<ReturnStmt>(SubStmt))
6983      Self.Diag(SubStmt->getSourceRange().getBegin(),
6984           diag::err_return_in_constructor_handler);
6985    if (!isa<Expr>(SubStmt))
6986      SearchForReturnInStmt(Self, SubStmt);
6987  }
6988}
6989
6990void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6991  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6992    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6993    SearchForReturnInStmt(*this, Handler);
6994  }
6995}
6996
6997bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6998                                             const CXXMethodDecl *Old) {
6999  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7000  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7001
7002  if (Context.hasSameType(NewTy, OldTy) ||
7003      NewTy->isDependentType() || OldTy->isDependentType())
7004    return false;
7005
7006  // Check if the return types are covariant
7007  QualType NewClassTy, OldClassTy;
7008
7009  /// Both types must be pointers or references to classes.
7010  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7011    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7012      NewClassTy = NewPT->getPointeeType();
7013      OldClassTy = OldPT->getPointeeType();
7014    }
7015  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7016    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7017      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7018        NewClassTy = NewRT->getPointeeType();
7019        OldClassTy = OldRT->getPointeeType();
7020      }
7021    }
7022  }
7023
7024  // The return types aren't either both pointers or references to a class type.
7025  if (NewClassTy.isNull()) {
7026    Diag(New->getLocation(),
7027         diag::err_different_return_type_for_overriding_virtual_function)
7028      << New->getDeclName() << NewTy << OldTy;
7029    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7030
7031    return true;
7032  }
7033
7034  // C++ [class.virtual]p6:
7035  //   If the return type of D::f differs from the return type of B::f, the
7036  //   class type in the return type of D::f shall be complete at the point of
7037  //   declaration of D::f or shall be the class type D.
7038  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7039    if (!RT->isBeingDefined() &&
7040        RequireCompleteType(New->getLocation(), NewClassTy,
7041                            PDiag(diag::err_covariant_return_incomplete)
7042                              << New->getDeclName()))
7043    return true;
7044  }
7045
7046  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7047    // Check if the new class derives from the old class.
7048    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7049      Diag(New->getLocation(),
7050           diag::err_covariant_return_not_derived)
7051      << New->getDeclName() << NewTy << OldTy;
7052      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7053      return true;
7054    }
7055
7056    // Check if we the conversion from derived to base is valid.
7057    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7058                    diag::err_covariant_return_inaccessible_base,
7059                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7060                    // FIXME: Should this point to the return type?
7061                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7062      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7063      return true;
7064    }
7065  }
7066
7067  // The qualifiers of the return types must be the same.
7068  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7069    Diag(New->getLocation(),
7070         diag::err_covariant_return_type_different_qualifications)
7071    << New->getDeclName() << NewTy << OldTy;
7072    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7073    return true;
7074  };
7075
7076
7077  // The new class type must have the same or less qualifiers as the old type.
7078  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7079    Diag(New->getLocation(),
7080         diag::err_covariant_return_type_class_type_more_qualified)
7081    << New->getDeclName() << NewTy << OldTy;
7082    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7083    return true;
7084  };
7085
7086  return false;
7087}
7088
7089/// \brief Mark the given method pure.
7090///
7091/// \param Method the method to be marked pure.
7092///
7093/// \param InitRange the source range that covers the "0" initializer.
7094bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7095  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7096    Method->setPure();
7097    return false;
7098  }
7099
7100  if (!Method->isInvalidDecl())
7101    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7102      << Method->getDeclName() << InitRange;
7103  return true;
7104}
7105
7106/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7107/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7108/// is a fresh scope pushed for just this purpose.
7109///
7110/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7111/// static data member of class X, names should be looked up in the scope of
7112/// class X.
7113void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7114  // If there is no declaration, there was an error parsing it.
7115  if (D == 0) return;
7116
7117  // We should only get called for declarations with scope specifiers, like:
7118  //   int foo::bar;
7119  assert(D->isOutOfLine());
7120  EnterDeclaratorContext(S, D->getDeclContext());
7121}
7122
7123/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7124/// initializer for the out-of-line declaration 'D'.
7125void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7126  // If there is no declaration, there was an error parsing it.
7127  if (D == 0) return;
7128
7129  assert(D->isOutOfLine());
7130  ExitDeclaratorContext(S);
7131}
7132
7133/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7134/// C++ if/switch/while/for statement.
7135/// e.g: "if (int x = f()) {...}"
7136DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7137  // C++ 6.4p2:
7138  // The declarator shall not specify a function or an array.
7139  // The type-specifier-seq shall not contain typedef and shall not declare a
7140  // new class or enumeration.
7141  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7142         "Parser allowed 'typedef' as storage class of condition decl.");
7143
7144  TagDecl *OwnedTag = 0;
7145  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7146  QualType Ty = TInfo->getType();
7147
7148  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7149                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7150                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7151    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7152      << D.getSourceRange();
7153    return DeclResult();
7154  } else if (OwnedTag && OwnedTag->isDefinition()) {
7155    // The type-specifier-seq shall not declare a new class or enumeration.
7156    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7157  }
7158
7159  Decl *Dcl = ActOnDeclarator(S, D);
7160  if (!Dcl)
7161    return DeclResult();
7162
7163  return Dcl;
7164}
7165
7166void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7167                          bool DefinitionRequired) {
7168  // Ignore any vtable uses in unevaluated operands or for classes that do
7169  // not have a vtable.
7170  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7171      CurContext->isDependentContext() ||
7172      ExprEvalContexts.back().Context == Unevaluated)
7173    return;
7174
7175  // Try to insert this class into the map.
7176  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7177  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7178    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7179  if (!Pos.second) {
7180    // If we already had an entry, check to see if we are promoting this vtable
7181    // to required a definition. If so, we need to reappend to the VTableUses
7182    // list, since we may have already processed the first entry.
7183    if (DefinitionRequired && !Pos.first->second) {
7184      Pos.first->second = true;
7185    } else {
7186      // Otherwise, we can early exit.
7187      return;
7188    }
7189  }
7190
7191  // Local classes need to have their virtual members marked
7192  // immediately. For all other classes, we mark their virtual members
7193  // at the end of the translation unit.
7194  if (Class->isLocalClass())
7195    MarkVirtualMembersReferenced(Loc, Class);
7196  else
7197    VTableUses.push_back(std::make_pair(Class, Loc));
7198}
7199
7200bool Sema::DefineUsedVTables() {
7201  if (VTableUses.empty())
7202    return false;
7203
7204  // Note: The VTableUses vector could grow as a result of marking
7205  // the members of a class as "used", so we check the size each
7206  // time through the loop and prefer indices (with are stable) to
7207  // iterators (which are not).
7208  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7209    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7210    if (!Class)
7211      continue;
7212
7213    SourceLocation Loc = VTableUses[I].second;
7214
7215    // If this class has a key function, but that key function is
7216    // defined in another translation unit, we don't need to emit the
7217    // vtable even though we're using it.
7218    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7219    if (KeyFunction && !KeyFunction->hasBody()) {
7220      switch (KeyFunction->getTemplateSpecializationKind()) {
7221      case TSK_Undeclared:
7222      case TSK_ExplicitSpecialization:
7223        // The key function is in another translation unit. Mark all of the
7224        // virtual members of this class as referenced so that we can build a
7225        // vtable anyway (in order to do devirtualization when optimizations
7226        // are turned on for example.
7227        MarkVirtualMembersReferenced(Loc, Class);
7228        continue;
7229
7230      case TSK_ExplicitInstantiationDeclaration:
7231        // The key function is in another translation unit.
7232        continue;
7233
7234      case TSK_ExplicitInstantiationDefinition:
7235      case TSK_ImplicitInstantiation:
7236        // We will be instantiating the key function.
7237        break;
7238      }
7239    } else if (!KeyFunction) {
7240      // If we have a class with no key function that is the subject
7241      // of an explicit instantiation declaration, suppress the
7242      // vtable; it will live with the explicit instantiation
7243      // definition.
7244      bool IsExplicitInstantiationDeclaration
7245        = Class->getTemplateSpecializationKind()
7246                                      == TSK_ExplicitInstantiationDeclaration;
7247      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7248                                 REnd = Class->redecls_end();
7249           R != REnd; ++R) {
7250        TemplateSpecializationKind TSK
7251          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7252        if (TSK == TSK_ExplicitInstantiationDeclaration)
7253          IsExplicitInstantiationDeclaration = true;
7254        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7255          IsExplicitInstantiationDeclaration = false;
7256          break;
7257        }
7258      }
7259
7260      if (IsExplicitInstantiationDeclaration)
7261        continue;
7262    }
7263
7264    // Mark all of the virtual members of this class as referenced, so
7265    // that we can build a vtable. Then, tell the AST consumer that a
7266    // vtable for this class is required.
7267    MarkVirtualMembersReferenced(Loc, Class);
7268    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7269    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7270
7271    // Optionally warn if we're emitting a weak vtable.
7272    if (Class->getLinkage() == ExternalLinkage &&
7273        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7274      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7275        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7276    }
7277  }
7278  VTableUses.clear();
7279
7280  return true;
7281}
7282
7283void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7284                                        const CXXRecordDecl *RD) {
7285  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7286       e = RD->method_end(); i != e; ++i) {
7287    CXXMethodDecl *MD = *i;
7288
7289    // C++ [basic.def.odr]p2:
7290    //   [...] A virtual member function is used if it is not pure. [...]
7291    if (MD->isVirtual() && !MD->isPure())
7292      MarkDeclarationReferenced(Loc, MD);
7293  }
7294
7295  // Only classes that have virtual bases need a VTT.
7296  if (RD->getNumVBases() == 0)
7297    return;
7298
7299  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7300           e = RD->bases_end(); i != e; ++i) {
7301    const CXXRecordDecl *Base =
7302        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7303    if (Base->getNumVBases() == 0)
7304      continue;
7305    MarkVirtualMembersReferenced(Loc, Base);
7306  }
7307}
7308
7309/// SetIvarInitializers - This routine builds initialization ASTs for the
7310/// Objective-C implementation whose ivars need be initialized.
7311void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7312  if (!getLangOptions().CPlusPlus)
7313    return;
7314  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7315    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7316    CollectIvarsToConstructOrDestruct(OID, ivars);
7317    if (ivars.empty())
7318      return;
7319    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7320    for (unsigned i = 0; i < ivars.size(); i++) {
7321      FieldDecl *Field = ivars[i];
7322      if (Field->isInvalidDecl())
7323        continue;
7324
7325      CXXCtorInitializer *Member;
7326      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7327      InitializationKind InitKind =
7328        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7329
7330      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7331      ExprResult MemberInit =
7332        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7333      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7334      // Note, MemberInit could actually come back empty if no initialization
7335      // is required (e.g., because it would call a trivial default constructor)
7336      if (!MemberInit.get() || MemberInit.isInvalid())
7337        continue;
7338
7339      Member =
7340        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7341                                         SourceLocation(),
7342                                         MemberInit.takeAs<Expr>(),
7343                                         SourceLocation());
7344      AllToInit.push_back(Member);
7345
7346      // Be sure that the destructor is accessible and is marked as referenced.
7347      if (const RecordType *RecordTy
7348                  = Context.getBaseElementType(Field->getType())
7349                                                        ->getAs<RecordType>()) {
7350                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7351        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7352          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7353          CheckDestructorAccess(Field->getLocation(), Destructor,
7354                            PDiag(diag::err_access_dtor_ivar)
7355                              << Context.getBaseElementType(Field->getType()));
7356        }
7357      }
7358    }
7359    ObjCImplementation->setIvarInitializers(Context,
7360                                            AllToInit.data(), AllToInit.size());
7361  }
7362}
7363