SemaDeclCXX.cpp revision 7a614d8380297fcd2bc23986241905d97222948c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f’s implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (!Class->hasObjectMember()) {
766      if (const RecordType *FDTTy =
767            NewBaseType.getTypePtr()->getAs<RecordType>())
768        if (FDTTy->getDecl()->hasObjectMember())
769          Class->setHasObjectMember(true);
770    }
771
772    if (KnownBaseTypes[NewBaseType]) {
773      // C++ [class.mi]p3:
774      //   A class shall not be specified as a direct base class of a
775      //   derived class more than once.
776      Diag(Bases[idx]->getSourceRange().getBegin(),
777           diag::err_duplicate_base_class)
778        << KnownBaseTypes[NewBaseType]->getType()
779        << Bases[idx]->getSourceRange();
780
781      // Delete the duplicate base class specifier; we're going to
782      // overwrite its pointer later.
783      Context.Deallocate(Bases[idx]);
784
785      Invalid = true;
786    } else {
787      // Okay, add this new base class.
788      KnownBaseTypes[NewBaseType] = Bases[idx];
789      Bases[NumGoodBases++] = Bases[idx];
790    }
791  }
792
793  // Attach the remaining base class specifiers to the derived class.
794  Class->setBases(Bases, NumGoodBases);
795
796  // Delete the remaining (good) base class specifiers, since their
797  // data has been copied into the CXXRecordDecl.
798  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
799    Context.Deallocate(Bases[idx]);
800
801  return Invalid;
802}
803
804/// ActOnBaseSpecifiers - Attach the given base specifiers to the
805/// class, after checking whether there are any duplicate base
806/// classes.
807void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
808                               unsigned NumBases) {
809  if (!ClassDecl || !Bases || !NumBases)
810    return;
811
812  AdjustDeclIfTemplate(ClassDecl);
813  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
814                       (CXXBaseSpecifier**)(Bases), NumBases);
815}
816
817static CXXRecordDecl *GetClassForType(QualType T) {
818  if (const RecordType *RT = T->getAs<RecordType>())
819    return cast<CXXRecordDecl>(RT->getDecl());
820  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
821    return ICT->getDecl();
822  else
823    return 0;
824}
825
826/// \brief Determine whether the type \p Derived is a C++ class that is
827/// derived from the type \p Base.
828bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
829  if (!getLangOptions().CPlusPlus)
830    return false;
831
832  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
833  if (!DerivedRD)
834    return false;
835
836  CXXRecordDecl *BaseRD = GetClassForType(Base);
837  if (!BaseRD)
838    return false;
839
840  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
841  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
842}
843
844/// \brief Determine whether the type \p Derived is a C++ class that is
845/// derived from the type \p Base.
846bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
847  if (!getLangOptions().CPlusPlus)
848    return false;
849
850  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
851  if (!DerivedRD)
852    return false;
853
854  CXXRecordDecl *BaseRD = GetClassForType(Base);
855  if (!BaseRD)
856    return false;
857
858  return DerivedRD->isDerivedFrom(BaseRD, Paths);
859}
860
861void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
862                              CXXCastPath &BasePathArray) {
863  assert(BasePathArray.empty() && "Base path array must be empty!");
864  assert(Paths.isRecordingPaths() && "Must record paths!");
865
866  const CXXBasePath &Path = Paths.front();
867
868  // We first go backward and check if we have a virtual base.
869  // FIXME: It would be better if CXXBasePath had the base specifier for
870  // the nearest virtual base.
871  unsigned Start = 0;
872  for (unsigned I = Path.size(); I != 0; --I) {
873    if (Path[I - 1].Base->isVirtual()) {
874      Start = I - 1;
875      break;
876    }
877  }
878
879  // Now add all bases.
880  for (unsigned I = Start, E = Path.size(); I != E; ++I)
881    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
882}
883
884/// \brief Determine whether the given base path includes a virtual
885/// base class.
886bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
887  for (CXXCastPath::const_iterator B = BasePath.begin(),
888                                BEnd = BasePath.end();
889       B != BEnd; ++B)
890    if ((*B)->isVirtual())
891      return true;
892
893  return false;
894}
895
896/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
897/// conversion (where Derived and Base are class types) is
898/// well-formed, meaning that the conversion is unambiguous (and
899/// that all of the base classes are accessible). Returns true
900/// and emits a diagnostic if the code is ill-formed, returns false
901/// otherwise. Loc is the location where this routine should point to
902/// if there is an error, and Range is the source range to highlight
903/// if there is an error.
904bool
905Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
906                                   unsigned InaccessibleBaseID,
907                                   unsigned AmbigiousBaseConvID,
908                                   SourceLocation Loc, SourceRange Range,
909                                   DeclarationName Name,
910                                   CXXCastPath *BasePath) {
911  // First, determine whether the path from Derived to Base is
912  // ambiguous. This is slightly more expensive than checking whether
913  // the Derived to Base conversion exists, because here we need to
914  // explore multiple paths to determine if there is an ambiguity.
915  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
916                     /*DetectVirtual=*/false);
917  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
918  assert(DerivationOkay &&
919         "Can only be used with a derived-to-base conversion");
920  (void)DerivationOkay;
921
922  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
923    if (InaccessibleBaseID) {
924      // Check that the base class can be accessed.
925      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
926                                   InaccessibleBaseID)) {
927        case AR_inaccessible:
928          return true;
929        case AR_accessible:
930        case AR_dependent:
931        case AR_delayed:
932          break;
933      }
934    }
935
936    // Build a base path if necessary.
937    if (BasePath)
938      BuildBasePathArray(Paths, *BasePath);
939    return false;
940  }
941
942  // We know that the derived-to-base conversion is ambiguous, and
943  // we're going to produce a diagnostic. Perform the derived-to-base
944  // search just one more time to compute all of the possible paths so
945  // that we can print them out. This is more expensive than any of
946  // the previous derived-to-base checks we've done, but at this point
947  // performance isn't as much of an issue.
948  Paths.clear();
949  Paths.setRecordingPaths(true);
950  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
951  assert(StillOkay && "Can only be used with a derived-to-base conversion");
952  (void)StillOkay;
953
954  // Build up a textual representation of the ambiguous paths, e.g.,
955  // D -> B -> A, that will be used to illustrate the ambiguous
956  // conversions in the diagnostic. We only print one of the paths
957  // to each base class subobject.
958  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
959
960  Diag(Loc, AmbigiousBaseConvID)
961  << Derived << Base << PathDisplayStr << Range << Name;
962  return true;
963}
964
965bool
966Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
967                                   SourceLocation Loc, SourceRange Range,
968                                   CXXCastPath *BasePath,
969                                   bool IgnoreAccess) {
970  return CheckDerivedToBaseConversion(Derived, Base,
971                                      IgnoreAccess ? 0
972                                       : diag::err_upcast_to_inaccessible_base,
973                                      diag::err_ambiguous_derived_to_base_conv,
974                                      Loc, Range, DeclarationName(),
975                                      BasePath);
976}
977
978
979/// @brief Builds a string representing ambiguous paths from a
980/// specific derived class to different subobjects of the same base
981/// class.
982///
983/// This function builds a string that can be used in error messages
984/// to show the different paths that one can take through the
985/// inheritance hierarchy to go from the derived class to different
986/// subobjects of a base class. The result looks something like this:
987/// @code
988/// struct D -> struct B -> struct A
989/// struct D -> struct C -> struct A
990/// @endcode
991std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
992  std::string PathDisplayStr;
993  std::set<unsigned> DisplayedPaths;
994  for (CXXBasePaths::paths_iterator Path = Paths.begin();
995       Path != Paths.end(); ++Path) {
996    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
997      // We haven't displayed a path to this particular base
998      // class subobject yet.
999      PathDisplayStr += "\n    ";
1000      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1001      for (CXXBasePath::const_iterator Element = Path->begin();
1002           Element != Path->end(); ++Element)
1003        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1004    }
1005  }
1006
1007  return PathDisplayStr;
1008}
1009
1010//===----------------------------------------------------------------------===//
1011// C++ class member Handling
1012//===----------------------------------------------------------------------===//
1013
1014/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1015Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1016                                 SourceLocation ASLoc,
1017                                 SourceLocation ColonLoc) {
1018  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1019  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1020                                                  ASLoc, ColonLoc);
1021  CurContext->addHiddenDecl(ASDecl);
1022  return ASDecl;
1023}
1024
1025/// CheckOverrideControl - Check C++0x override control semantics.
1026void Sema::CheckOverrideControl(const Decl *D) {
1027  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
1028  if (!MD || !MD->isVirtual())
1029    return;
1030
1031  if (MD->isDependentContext())
1032    return;
1033
1034  // C++0x [class.virtual]p3:
1035  //   If a virtual function is marked with the virt-specifier override and does
1036  //   not override a member function of a base class,
1037  //   the program is ill-formed.
1038  bool HasOverriddenMethods =
1039    MD->begin_overridden_methods() != MD->end_overridden_methods();
1040  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1041    Diag(MD->getLocation(),
1042                 diag::err_function_marked_override_not_overriding)
1043      << MD->getDeclName();
1044    return;
1045  }
1046}
1047
1048/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1049/// function overrides a virtual member function marked 'final', according to
1050/// C++0x [class.virtual]p3.
1051bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1052                                                  const CXXMethodDecl *Old) {
1053  if (!Old->hasAttr<FinalAttr>())
1054    return false;
1055
1056  Diag(New->getLocation(), diag::err_final_function_overridden)
1057    << New->getDeclName();
1058  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1059  return true;
1060}
1061
1062/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1063/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1064/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1065/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1066/// present but parsing it has been deferred.
1067Decl *
1068Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1069                               MultiTemplateParamsArg TemplateParameterLists,
1070                               ExprTy *BW, const VirtSpecifiers &VS,
1071                               ExprTy *InitExpr, bool HasDeferredInit,
1072                               bool IsDefinition) {
1073  const DeclSpec &DS = D.getDeclSpec();
1074  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1075  DeclarationName Name = NameInfo.getName();
1076  SourceLocation Loc = NameInfo.getLoc();
1077
1078  // For anonymous bitfields, the location should point to the type.
1079  if (Loc.isInvalid())
1080    Loc = D.getSourceRange().getBegin();
1081
1082  Expr *BitWidth = static_cast<Expr*>(BW);
1083  Expr *Init = static_cast<Expr*>(InitExpr);
1084
1085  assert(isa<CXXRecordDecl>(CurContext));
1086  assert(!DS.isFriendSpecified());
1087  assert(!Init || !HasDeferredInit);
1088
1089  bool isFunc = false;
1090  if (D.isFunctionDeclarator())
1091    isFunc = true;
1092  else if (D.getNumTypeObjects() == 0 &&
1093           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1094    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1095    isFunc = TDType->isFunctionType();
1096  }
1097
1098  // C++ 9.2p6: A member shall not be declared to have automatic storage
1099  // duration (auto, register) or with the extern storage-class-specifier.
1100  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1101  // data members and cannot be applied to names declared const or static,
1102  // and cannot be applied to reference members.
1103  switch (DS.getStorageClassSpec()) {
1104    case DeclSpec::SCS_unspecified:
1105    case DeclSpec::SCS_typedef:
1106    case DeclSpec::SCS_static:
1107      // FALL THROUGH.
1108      break;
1109    case DeclSpec::SCS_mutable:
1110      if (isFunc) {
1111        if (DS.getStorageClassSpecLoc().isValid())
1112          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1113        else
1114          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1115
1116        // FIXME: It would be nicer if the keyword was ignored only for this
1117        // declarator. Otherwise we could get follow-up errors.
1118        D.getMutableDeclSpec().ClearStorageClassSpecs();
1119      }
1120      break;
1121    default:
1122      if (DS.getStorageClassSpecLoc().isValid())
1123        Diag(DS.getStorageClassSpecLoc(),
1124             diag::err_storageclass_invalid_for_member);
1125      else
1126        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1127      D.getMutableDeclSpec().ClearStorageClassSpecs();
1128  }
1129
1130  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1131                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1132                      !isFunc);
1133
1134  Decl *Member;
1135  if (isInstField) {
1136    CXXScopeSpec &SS = D.getCXXScopeSpec();
1137
1138    if (SS.isSet() && !SS.isInvalid()) {
1139      // The user provided a superfluous scope specifier inside a class
1140      // definition:
1141      //
1142      // class X {
1143      //   int X::member;
1144      // };
1145      DeclContext *DC = 0;
1146      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1147        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1148        << Name << FixItHint::CreateRemoval(SS.getRange());
1149      else
1150        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1151          << Name << SS.getRange();
1152
1153      SS.clear();
1154    }
1155
1156    // FIXME: Check for template parameters!
1157    // FIXME: Check that the name is an identifier!
1158    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1159                         HasDeferredInit, AS);
1160    assert(Member && "HandleField never returns null");
1161  } else {
1162    assert(!HasDeferredInit);
1163
1164    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1165    if (!Member) {
1166      return 0;
1167    }
1168
1169    // Non-instance-fields can't have a bitfield.
1170    if (BitWidth) {
1171      if (Member->isInvalidDecl()) {
1172        // don't emit another diagnostic.
1173      } else if (isa<VarDecl>(Member)) {
1174        // C++ 9.6p3: A bit-field shall not be a static member.
1175        // "static member 'A' cannot be a bit-field"
1176        Diag(Loc, diag::err_static_not_bitfield)
1177          << Name << BitWidth->getSourceRange();
1178      } else if (isa<TypedefDecl>(Member)) {
1179        // "typedef member 'x' cannot be a bit-field"
1180        Diag(Loc, diag::err_typedef_not_bitfield)
1181          << Name << BitWidth->getSourceRange();
1182      } else {
1183        // A function typedef ("typedef int f(); f a;").
1184        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1185        Diag(Loc, diag::err_not_integral_type_bitfield)
1186          << Name << cast<ValueDecl>(Member)->getType()
1187          << BitWidth->getSourceRange();
1188      }
1189
1190      BitWidth = 0;
1191      Member->setInvalidDecl();
1192    }
1193
1194    Member->setAccess(AS);
1195
1196    // If we have declared a member function template, set the access of the
1197    // templated declaration as well.
1198    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1199      FunTmpl->getTemplatedDecl()->setAccess(AS);
1200  }
1201
1202  if (VS.isOverrideSpecified()) {
1203    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1204    if (!MD || !MD->isVirtual()) {
1205      Diag(Member->getLocStart(),
1206           diag::override_keyword_only_allowed_on_virtual_member_functions)
1207        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1208    } else
1209      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1210  }
1211  if (VS.isFinalSpecified()) {
1212    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1213    if (!MD || !MD->isVirtual()) {
1214      Diag(Member->getLocStart(),
1215           diag::override_keyword_only_allowed_on_virtual_member_functions)
1216      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1217    } else
1218      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1219  }
1220
1221  if (VS.getLastLocation().isValid()) {
1222    // Update the end location of a method that has a virt-specifiers.
1223    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1224      MD->setRangeEnd(VS.getLastLocation());
1225  }
1226
1227  CheckOverrideControl(Member);
1228
1229  assert((Name || isInstField) && "No identifier for non-field ?");
1230
1231  if (Init)
1232    AddInitializerToDecl(Member, Init, false,
1233                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1234  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1235           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1236    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1237    // data member if a brace-or-equal-initializer is provided.
1238    Diag(Loc, diag::err_auto_var_requires_init)
1239      << Name << cast<ValueDecl>(Member)->getType();
1240    Member->setInvalidDecl();
1241  }
1242
1243  FinalizeDeclaration(Member);
1244
1245  if (isInstField)
1246    FieldCollector->Add(cast<FieldDecl>(Member));
1247  return Member;
1248}
1249
1250/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1251/// in-class initializer for a non-static C++ class member. Such parsing
1252/// is deferred until the class is complete.
1253void
1254Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1255                                       Expr *InitExpr) {
1256  FieldDecl *FD = cast<FieldDecl>(D);
1257
1258  if (!InitExpr) {
1259    FD->setInvalidDecl();
1260    FD->removeInClassInitializer();
1261    return;
1262  }
1263
1264  ExprResult Init = InitExpr;
1265  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1266    // FIXME: if there is no EqualLoc, this is list-initialization.
1267    Init = PerformCopyInitialization(
1268      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1269    if (Init.isInvalid()) {
1270      FD->setInvalidDecl();
1271      return;
1272    }
1273
1274    CheckImplicitConversions(Init.get(), EqualLoc);
1275  }
1276
1277  // C++0x [class.base.init]p7:
1278  //   The initialization of each base and member constitutes a
1279  //   full-expression.
1280  Init = MaybeCreateExprWithCleanups(Init);
1281  if (Init.isInvalid()) {
1282    FD->setInvalidDecl();
1283    return;
1284  }
1285
1286  InitExpr = Init.release();
1287
1288  FD->setInClassInitializer(InitExpr);
1289}
1290
1291/// \brief Find the direct and/or virtual base specifiers that
1292/// correspond to the given base type, for use in base initialization
1293/// within a constructor.
1294static bool FindBaseInitializer(Sema &SemaRef,
1295                                CXXRecordDecl *ClassDecl,
1296                                QualType BaseType,
1297                                const CXXBaseSpecifier *&DirectBaseSpec,
1298                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1299  // First, check for a direct base class.
1300  DirectBaseSpec = 0;
1301  for (CXXRecordDecl::base_class_const_iterator Base
1302         = ClassDecl->bases_begin();
1303       Base != ClassDecl->bases_end(); ++Base) {
1304    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1305      // We found a direct base of this type. That's what we're
1306      // initializing.
1307      DirectBaseSpec = &*Base;
1308      break;
1309    }
1310  }
1311
1312  // Check for a virtual base class.
1313  // FIXME: We might be able to short-circuit this if we know in advance that
1314  // there are no virtual bases.
1315  VirtualBaseSpec = 0;
1316  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1317    // We haven't found a base yet; search the class hierarchy for a
1318    // virtual base class.
1319    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1320                       /*DetectVirtual=*/false);
1321    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1322                              BaseType, Paths)) {
1323      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1324           Path != Paths.end(); ++Path) {
1325        if (Path->back().Base->isVirtual()) {
1326          VirtualBaseSpec = Path->back().Base;
1327          break;
1328        }
1329      }
1330    }
1331  }
1332
1333  return DirectBaseSpec || VirtualBaseSpec;
1334}
1335
1336/// ActOnMemInitializer - Handle a C++ member initializer.
1337MemInitResult
1338Sema::ActOnMemInitializer(Decl *ConstructorD,
1339                          Scope *S,
1340                          CXXScopeSpec &SS,
1341                          IdentifierInfo *MemberOrBase,
1342                          ParsedType TemplateTypeTy,
1343                          SourceLocation IdLoc,
1344                          SourceLocation LParenLoc,
1345                          ExprTy **Args, unsigned NumArgs,
1346                          SourceLocation RParenLoc,
1347                          SourceLocation EllipsisLoc) {
1348  if (!ConstructorD)
1349    return true;
1350
1351  AdjustDeclIfTemplate(ConstructorD);
1352
1353  CXXConstructorDecl *Constructor
1354    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1355  if (!Constructor) {
1356    // The user wrote a constructor initializer on a function that is
1357    // not a C++ constructor. Ignore the error for now, because we may
1358    // have more member initializers coming; we'll diagnose it just
1359    // once in ActOnMemInitializers.
1360    return true;
1361  }
1362
1363  CXXRecordDecl *ClassDecl = Constructor->getParent();
1364
1365  // C++ [class.base.init]p2:
1366  //   Names in a mem-initializer-id are looked up in the scope of the
1367  //   constructor's class and, if not found in that scope, are looked
1368  //   up in the scope containing the constructor's definition.
1369  //   [Note: if the constructor's class contains a member with the
1370  //   same name as a direct or virtual base class of the class, a
1371  //   mem-initializer-id naming the member or base class and composed
1372  //   of a single identifier refers to the class member. A
1373  //   mem-initializer-id for the hidden base class may be specified
1374  //   using a qualified name. ]
1375  if (!SS.getScopeRep() && !TemplateTypeTy) {
1376    // Look for a member, first.
1377    FieldDecl *Member = 0;
1378    DeclContext::lookup_result Result
1379      = ClassDecl->lookup(MemberOrBase);
1380    if (Result.first != Result.second) {
1381      Member = dyn_cast<FieldDecl>(*Result.first);
1382
1383      if (Member) {
1384        if (EllipsisLoc.isValid())
1385          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1386            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1387
1388        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1389                                    LParenLoc, RParenLoc);
1390      }
1391
1392      // Handle anonymous union case.
1393      if (IndirectFieldDecl* IndirectField
1394            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1395        if (EllipsisLoc.isValid())
1396          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1397            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1398
1399         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1400                                       NumArgs, IdLoc,
1401                                       LParenLoc, RParenLoc);
1402      }
1403    }
1404  }
1405  // It didn't name a member, so see if it names a class.
1406  QualType BaseType;
1407  TypeSourceInfo *TInfo = 0;
1408
1409  if (TemplateTypeTy) {
1410    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1411  } else {
1412    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1413    LookupParsedName(R, S, &SS);
1414
1415    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1416    if (!TyD) {
1417      if (R.isAmbiguous()) return true;
1418
1419      // We don't want access-control diagnostics here.
1420      R.suppressDiagnostics();
1421
1422      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1423        bool NotUnknownSpecialization = false;
1424        DeclContext *DC = computeDeclContext(SS, false);
1425        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1426          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1427
1428        if (!NotUnknownSpecialization) {
1429          // When the scope specifier can refer to a member of an unknown
1430          // specialization, we take it as a type name.
1431          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1432                                       SS.getWithLocInContext(Context),
1433                                       *MemberOrBase, IdLoc);
1434          if (BaseType.isNull())
1435            return true;
1436
1437          R.clear();
1438          R.setLookupName(MemberOrBase);
1439        }
1440      }
1441
1442      // If no results were found, try to correct typos.
1443      if (R.empty() && BaseType.isNull() &&
1444          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1445          R.isSingleResult()) {
1446        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1447          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1448            // We have found a non-static data member with a similar
1449            // name to what was typed; complain and initialize that
1450            // member.
1451            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1452              << MemberOrBase << true << R.getLookupName()
1453              << FixItHint::CreateReplacement(R.getNameLoc(),
1454                                              R.getLookupName().getAsString());
1455            Diag(Member->getLocation(), diag::note_previous_decl)
1456              << Member->getDeclName();
1457
1458            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1459                                          LParenLoc, RParenLoc);
1460          }
1461        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1462          const CXXBaseSpecifier *DirectBaseSpec;
1463          const CXXBaseSpecifier *VirtualBaseSpec;
1464          if (FindBaseInitializer(*this, ClassDecl,
1465                                  Context.getTypeDeclType(Type),
1466                                  DirectBaseSpec, VirtualBaseSpec)) {
1467            // We have found a direct or virtual base class with a
1468            // similar name to what was typed; complain and initialize
1469            // that base class.
1470            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1471              << MemberOrBase << false << R.getLookupName()
1472              << FixItHint::CreateReplacement(R.getNameLoc(),
1473                                              R.getLookupName().getAsString());
1474
1475            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1476                                                             : VirtualBaseSpec;
1477            Diag(BaseSpec->getSourceRange().getBegin(),
1478                 diag::note_base_class_specified_here)
1479              << BaseSpec->getType()
1480              << BaseSpec->getSourceRange();
1481
1482            TyD = Type;
1483          }
1484        }
1485      }
1486
1487      if (!TyD && BaseType.isNull()) {
1488        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1489          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1490        return true;
1491      }
1492    }
1493
1494    if (BaseType.isNull()) {
1495      BaseType = Context.getTypeDeclType(TyD);
1496      if (SS.isSet()) {
1497        NestedNameSpecifier *Qualifier =
1498          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1499
1500        // FIXME: preserve source range information
1501        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1502      }
1503    }
1504  }
1505
1506  if (!TInfo)
1507    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1508
1509  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1510                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1511}
1512
1513/// Checks an initializer expression for use of uninitialized fields, such as
1514/// containing the field that is being initialized. Returns true if there is an
1515/// uninitialized field was used an updates the SourceLocation parameter; false
1516/// otherwise.
1517static bool InitExprContainsUninitializedFields(const Stmt *S,
1518                                                const ValueDecl *LhsField,
1519                                                SourceLocation *L) {
1520  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1521
1522  if (isa<CallExpr>(S)) {
1523    // Do not descend into function calls or constructors, as the use
1524    // of an uninitialized field may be valid. One would have to inspect
1525    // the contents of the function/ctor to determine if it is safe or not.
1526    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1527    // may be safe, depending on what the function/ctor does.
1528    return false;
1529  }
1530  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1531    const NamedDecl *RhsField = ME->getMemberDecl();
1532
1533    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1534      // The member expression points to a static data member.
1535      assert(VD->isStaticDataMember() &&
1536             "Member points to non-static data member!");
1537      (void)VD;
1538      return false;
1539    }
1540
1541    if (isa<EnumConstantDecl>(RhsField)) {
1542      // The member expression points to an enum.
1543      return false;
1544    }
1545
1546    if (RhsField == LhsField) {
1547      // Initializing a field with itself. Throw a warning.
1548      // But wait; there are exceptions!
1549      // Exception #1:  The field may not belong to this record.
1550      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1551      const Expr *base = ME->getBase();
1552      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1553        // Even though the field matches, it does not belong to this record.
1554        return false;
1555      }
1556      // None of the exceptions triggered; return true to indicate an
1557      // uninitialized field was used.
1558      *L = ME->getMemberLoc();
1559      return true;
1560    }
1561  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1562    // sizeof/alignof doesn't reference contents, do not warn.
1563    return false;
1564  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1565    // address-of doesn't reference contents (the pointer may be dereferenced
1566    // in the same expression but it would be rare; and weird).
1567    if (UOE->getOpcode() == UO_AddrOf)
1568      return false;
1569  }
1570  for (Stmt::const_child_range it = S->children(); it; ++it) {
1571    if (!*it) {
1572      // An expression such as 'member(arg ?: "")' may trigger this.
1573      continue;
1574    }
1575    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1576      return true;
1577  }
1578  return false;
1579}
1580
1581MemInitResult
1582Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1583                             unsigned NumArgs, SourceLocation IdLoc,
1584                             SourceLocation LParenLoc,
1585                             SourceLocation RParenLoc) {
1586  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1587  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1588  assert((DirectMember || IndirectMember) &&
1589         "Member must be a FieldDecl or IndirectFieldDecl");
1590
1591  if (Member->isInvalidDecl())
1592    return true;
1593
1594  // Diagnose value-uses of fields to initialize themselves, e.g.
1595  //   foo(foo)
1596  // where foo is not also a parameter to the constructor.
1597  // TODO: implement -Wuninitialized and fold this into that framework.
1598  for (unsigned i = 0; i < NumArgs; ++i) {
1599    SourceLocation L;
1600    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1601      // FIXME: Return true in the case when other fields are used before being
1602      // uninitialized. For example, let this field be the i'th field. When
1603      // initializing the i'th field, throw a warning if any of the >= i'th
1604      // fields are used, as they are not yet initialized.
1605      // Right now we are only handling the case where the i'th field uses
1606      // itself in its initializer.
1607      Diag(L, diag::warn_field_is_uninit);
1608    }
1609  }
1610
1611  bool HasDependentArg = false;
1612  for (unsigned i = 0; i < NumArgs; i++)
1613    HasDependentArg |= Args[i]->isTypeDependent();
1614
1615  Expr *Init;
1616  if (Member->getType()->isDependentType() || HasDependentArg) {
1617    // Can't check initialization for a member of dependent type or when
1618    // any of the arguments are type-dependent expressions.
1619    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1620                                       RParenLoc);
1621
1622    // Erase any temporaries within this evaluation context; we're not
1623    // going to track them in the AST, since we'll be rebuilding the
1624    // ASTs during template instantiation.
1625    ExprTemporaries.erase(
1626              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1627                          ExprTemporaries.end());
1628  } else {
1629    // Initialize the member.
1630    InitializedEntity MemberEntity =
1631      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1632                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1633    InitializationKind Kind =
1634      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1635
1636    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1637
1638    ExprResult MemberInit =
1639      InitSeq.Perform(*this, MemberEntity, Kind,
1640                      MultiExprArg(*this, Args, NumArgs), 0);
1641    if (MemberInit.isInvalid())
1642      return true;
1643
1644    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1645
1646    // C++0x [class.base.init]p7:
1647    //   The initialization of each base and member constitutes a
1648    //   full-expression.
1649    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1650    if (MemberInit.isInvalid())
1651      return true;
1652
1653    // If we are in a dependent context, template instantiation will
1654    // perform this type-checking again. Just save the arguments that we
1655    // received in a ParenListExpr.
1656    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1657    // of the information that we have about the member
1658    // initializer. However, deconstructing the ASTs is a dicey process,
1659    // and this approach is far more likely to get the corner cases right.
1660    if (CurContext->isDependentContext())
1661      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1662                                               RParenLoc);
1663    else
1664      Init = MemberInit.get();
1665  }
1666
1667  if (DirectMember) {
1668    return new (Context) CXXCtorInitializer(Context, DirectMember,
1669                                                    IdLoc, LParenLoc, Init,
1670                                                    RParenLoc);
1671  } else {
1672    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1673                                                    IdLoc, LParenLoc, Init,
1674                                                    RParenLoc);
1675  }
1676}
1677
1678MemInitResult
1679Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1680                                 Expr **Args, unsigned NumArgs,
1681                                 SourceLocation NameLoc,
1682                                 SourceLocation LParenLoc,
1683                                 SourceLocation RParenLoc,
1684                                 CXXRecordDecl *ClassDecl) {
1685  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1686  if (!LangOpts.CPlusPlus0x)
1687    return Diag(Loc, diag::err_delegation_0x_only)
1688      << TInfo->getTypeLoc().getLocalSourceRange();
1689
1690  // Initialize the object.
1691  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1692                                     QualType(ClassDecl->getTypeForDecl(), 0));
1693  InitializationKind Kind =
1694    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1695
1696  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1697
1698  ExprResult DelegationInit =
1699    InitSeq.Perform(*this, DelegationEntity, Kind,
1700                    MultiExprArg(*this, Args, NumArgs), 0);
1701  if (DelegationInit.isInvalid())
1702    return true;
1703
1704  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1705  CXXConstructorDecl *Constructor
1706    = ConExpr->getConstructor();
1707  assert(Constructor && "Delegating constructor with no target?");
1708
1709  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1710
1711  // C++0x [class.base.init]p7:
1712  //   The initialization of each base and member constitutes a
1713  //   full-expression.
1714  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1715  if (DelegationInit.isInvalid())
1716    return true;
1717
1718  // If we are in a dependent context, template instantiation will
1719  // perform this type-checking again. Just save the arguments that we
1720  // received in a ParenListExpr.
1721  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1722  // of the information that we have about the base
1723  // initializer. However, deconstructing the ASTs is a dicey process,
1724  // and this approach is far more likely to get the corner cases right.
1725  if (CurContext->isDependentContext()) {
1726    ExprResult Init
1727      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1728                                          NumArgs, RParenLoc));
1729    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1730                                            Constructor, Init.takeAs<Expr>(),
1731                                            RParenLoc);
1732  }
1733
1734  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1735                                          DelegationInit.takeAs<Expr>(),
1736                                          RParenLoc);
1737}
1738
1739MemInitResult
1740Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1741                           Expr **Args, unsigned NumArgs,
1742                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1743                           CXXRecordDecl *ClassDecl,
1744                           SourceLocation EllipsisLoc) {
1745  bool HasDependentArg = false;
1746  for (unsigned i = 0; i < NumArgs; i++)
1747    HasDependentArg |= Args[i]->isTypeDependent();
1748
1749  SourceLocation BaseLoc
1750    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1751
1752  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1753    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1754             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1755
1756  // C++ [class.base.init]p2:
1757  //   [...] Unless the mem-initializer-id names a nonstatic data
1758  //   member of the constructor's class or a direct or virtual base
1759  //   of that class, the mem-initializer is ill-formed. A
1760  //   mem-initializer-list can initialize a base class using any
1761  //   name that denotes that base class type.
1762  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1763
1764  if (EllipsisLoc.isValid()) {
1765    // This is a pack expansion.
1766    if (!BaseType->containsUnexpandedParameterPack())  {
1767      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1768        << SourceRange(BaseLoc, RParenLoc);
1769
1770      EllipsisLoc = SourceLocation();
1771    }
1772  } else {
1773    // Check for any unexpanded parameter packs.
1774    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1775      return true;
1776
1777    for (unsigned I = 0; I != NumArgs; ++I)
1778      if (DiagnoseUnexpandedParameterPack(Args[I]))
1779        return true;
1780  }
1781
1782  // Check for direct and virtual base classes.
1783  const CXXBaseSpecifier *DirectBaseSpec = 0;
1784  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1785  if (!Dependent) {
1786    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1787                                       BaseType))
1788      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1789                                        LParenLoc, RParenLoc, ClassDecl);
1790
1791    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1792                        VirtualBaseSpec);
1793
1794    // C++ [base.class.init]p2:
1795    // Unless the mem-initializer-id names a nonstatic data member of the
1796    // constructor's class or a direct or virtual base of that class, the
1797    // mem-initializer is ill-formed.
1798    if (!DirectBaseSpec && !VirtualBaseSpec) {
1799      // If the class has any dependent bases, then it's possible that
1800      // one of those types will resolve to the same type as
1801      // BaseType. Therefore, just treat this as a dependent base
1802      // class initialization.  FIXME: Should we try to check the
1803      // initialization anyway? It seems odd.
1804      if (ClassDecl->hasAnyDependentBases())
1805        Dependent = true;
1806      else
1807        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1808          << BaseType << Context.getTypeDeclType(ClassDecl)
1809          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1810    }
1811  }
1812
1813  if (Dependent) {
1814    // Can't check initialization for a base of dependent type or when
1815    // any of the arguments are type-dependent expressions.
1816    ExprResult BaseInit
1817      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1818                                          RParenLoc));
1819
1820    // Erase any temporaries within this evaluation context; we're not
1821    // going to track them in the AST, since we'll be rebuilding the
1822    // ASTs during template instantiation.
1823    ExprTemporaries.erase(
1824              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1825                          ExprTemporaries.end());
1826
1827    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1828                                                    /*IsVirtual=*/false,
1829                                                    LParenLoc,
1830                                                    BaseInit.takeAs<Expr>(),
1831                                                    RParenLoc,
1832                                                    EllipsisLoc);
1833  }
1834
1835  // C++ [base.class.init]p2:
1836  //   If a mem-initializer-id is ambiguous because it designates both
1837  //   a direct non-virtual base class and an inherited virtual base
1838  //   class, the mem-initializer is ill-formed.
1839  if (DirectBaseSpec && VirtualBaseSpec)
1840    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1841      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1842
1843  CXXBaseSpecifier *BaseSpec
1844    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1845  if (!BaseSpec)
1846    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1847
1848  // Initialize the base.
1849  InitializedEntity BaseEntity =
1850    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1851  InitializationKind Kind =
1852    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1853
1854  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1855
1856  ExprResult BaseInit =
1857    InitSeq.Perform(*this, BaseEntity, Kind,
1858                    MultiExprArg(*this, Args, NumArgs), 0);
1859  if (BaseInit.isInvalid())
1860    return true;
1861
1862  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1863
1864  // C++0x [class.base.init]p7:
1865  //   The initialization of each base and member constitutes a
1866  //   full-expression.
1867  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1868  if (BaseInit.isInvalid())
1869    return true;
1870
1871  // If we are in a dependent context, template instantiation will
1872  // perform this type-checking again. Just save the arguments that we
1873  // received in a ParenListExpr.
1874  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1875  // of the information that we have about the base
1876  // initializer. However, deconstructing the ASTs is a dicey process,
1877  // and this approach is far more likely to get the corner cases right.
1878  if (CurContext->isDependentContext()) {
1879    ExprResult Init
1880      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1881                                          RParenLoc));
1882    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1883                                                    BaseSpec->isVirtual(),
1884                                                    LParenLoc,
1885                                                    Init.takeAs<Expr>(),
1886                                                    RParenLoc,
1887                                                    EllipsisLoc);
1888  }
1889
1890  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1891                                                  BaseSpec->isVirtual(),
1892                                                  LParenLoc,
1893                                                  BaseInit.takeAs<Expr>(),
1894                                                  RParenLoc,
1895                                                  EllipsisLoc);
1896}
1897
1898/// ImplicitInitializerKind - How an implicit base or member initializer should
1899/// initialize its base or member.
1900enum ImplicitInitializerKind {
1901  IIK_Default,
1902  IIK_Copy,
1903  IIK_Move
1904};
1905
1906static bool
1907BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1908                             ImplicitInitializerKind ImplicitInitKind,
1909                             CXXBaseSpecifier *BaseSpec,
1910                             bool IsInheritedVirtualBase,
1911                             CXXCtorInitializer *&CXXBaseInit) {
1912  InitializedEntity InitEntity
1913    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1914                                        IsInheritedVirtualBase);
1915
1916  ExprResult BaseInit;
1917
1918  switch (ImplicitInitKind) {
1919  case IIK_Default: {
1920    InitializationKind InitKind
1921      = InitializationKind::CreateDefault(Constructor->getLocation());
1922    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1923    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1924                               MultiExprArg(SemaRef, 0, 0));
1925    break;
1926  }
1927
1928  case IIK_Copy: {
1929    ParmVarDecl *Param = Constructor->getParamDecl(0);
1930    QualType ParamType = Param->getType().getNonReferenceType();
1931
1932    Expr *CopyCtorArg =
1933      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1934                          Constructor->getLocation(), ParamType,
1935                          VK_LValue, 0);
1936
1937    // Cast to the base class to avoid ambiguities.
1938    QualType ArgTy =
1939      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1940                                       ParamType.getQualifiers());
1941
1942    CXXCastPath BasePath;
1943    BasePath.push_back(BaseSpec);
1944    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1945                                            CK_UncheckedDerivedToBase,
1946                                            VK_LValue, &BasePath).take();
1947
1948    InitializationKind InitKind
1949      = InitializationKind::CreateDirect(Constructor->getLocation(),
1950                                         SourceLocation(), SourceLocation());
1951    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1952                                   &CopyCtorArg, 1);
1953    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1954                               MultiExprArg(&CopyCtorArg, 1));
1955    break;
1956  }
1957
1958  case IIK_Move:
1959    assert(false && "Unhandled initializer kind!");
1960  }
1961
1962  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1963  if (BaseInit.isInvalid())
1964    return true;
1965
1966  CXXBaseInit =
1967    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1968               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1969                                                        SourceLocation()),
1970                                             BaseSpec->isVirtual(),
1971                                             SourceLocation(),
1972                                             BaseInit.takeAs<Expr>(),
1973                                             SourceLocation(),
1974                                             SourceLocation());
1975
1976  return false;
1977}
1978
1979static bool
1980BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1981                               ImplicitInitializerKind ImplicitInitKind,
1982                               FieldDecl *Field,
1983                               CXXCtorInitializer *&CXXMemberInit) {
1984  if (Field->isInvalidDecl())
1985    return true;
1986
1987  SourceLocation Loc = Constructor->getLocation();
1988
1989  if (ImplicitInitKind == IIK_Copy) {
1990    ParmVarDecl *Param = Constructor->getParamDecl(0);
1991    QualType ParamType = Param->getType().getNonReferenceType();
1992
1993    Expr *MemberExprBase =
1994      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1995                          Loc, ParamType, VK_LValue, 0);
1996
1997    // Build a reference to this field within the parameter.
1998    CXXScopeSpec SS;
1999    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2000                              Sema::LookupMemberName);
2001    MemberLookup.addDecl(Field, AS_public);
2002    MemberLookup.resolveKind();
2003    ExprResult CopyCtorArg
2004      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2005                                         ParamType, Loc,
2006                                         /*IsArrow=*/false,
2007                                         SS,
2008                                         /*FirstQualifierInScope=*/0,
2009                                         MemberLookup,
2010                                         /*TemplateArgs=*/0);
2011    if (CopyCtorArg.isInvalid())
2012      return true;
2013
2014    // When the field we are copying is an array, create index variables for
2015    // each dimension of the array. We use these index variables to subscript
2016    // the source array, and other clients (e.g., CodeGen) will perform the
2017    // necessary iteration with these index variables.
2018    llvm::SmallVector<VarDecl *, 4> IndexVariables;
2019    QualType BaseType = Field->getType();
2020    QualType SizeType = SemaRef.Context.getSizeType();
2021    while (const ConstantArrayType *Array
2022                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2023      // Create the iteration variable for this array index.
2024      IdentifierInfo *IterationVarName = 0;
2025      {
2026        llvm::SmallString<8> Str;
2027        llvm::raw_svector_ostream OS(Str);
2028        OS << "__i" << IndexVariables.size();
2029        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2030      }
2031      VarDecl *IterationVar
2032        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2033                          IterationVarName, SizeType,
2034                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2035                          SC_None, SC_None);
2036      IndexVariables.push_back(IterationVar);
2037
2038      // Create a reference to the iteration variable.
2039      ExprResult IterationVarRef
2040        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2041      assert(!IterationVarRef.isInvalid() &&
2042             "Reference to invented variable cannot fail!");
2043
2044      // Subscript the array with this iteration variable.
2045      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2046                                                            Loc,
2047                                                        IterationVarRef.take(),
2048                                                            Loc);
2049      if (CopyCtorArg.isInvalid())
2050        return true;
2051
2052      BaseType = Array->getElementType();
2053    }
2054
2055    // Construct the entity that we will be initializing. For an array, this
2056    // will be first element in the array, which may require several levels
2057    // of array-subscript entities.
2058    llvm::SmallVector<InitializedEntity, 4> Entities;
2059    Entities.reserve(1 + IndexVariables.size());
2060    Entities.push_back(InitializedEntity::InitializeMember(Field));
2061    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2062      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2063                                                              0,
2064                                                              Entities.back()));
2065
2066    // Direct-initialize to use the copy constructor.
2067    InitializationKind InitKind =
2068      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2069
2070    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2071    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2072                                   &CopyCtorArgE, 1);
2073
2074    ExprResult MemberInit
2075      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2076                        MultiExprArg(&CopyCtorArgE, 1));
2077    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2078    if (MemberInit.isInvalid())
2079      return true;
2080
2081    CXXMemberInit
2082      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
2083                                           MemberInit.takeAs<Expr>(), Loc,
2084                                           IndexVariables.data(),
2085                                           IndexVariables.size());
2086    return false;
2087  }
2088
2089  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2090
2091  QualType FieldBaseElementType =
2092    SemaRef.Context.getBaseElementType(Field->getType());
2093
2094  if (FieldBaseElementType->isRecordType()) {
2095    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2096    InitializationKind InitKind =
2097      InitializationKind::CreateDefault(Loc);
2098
2099    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2100    ExprResult MemberInit =
2101      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2102
2103    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2104    if (MemberInit.isInvalid())
2105      return true;
2106
2107    CXXMemberInit =
2108      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2109                                                       Field, Loc, Loc,
2110                                                       MemberInit.get(),
2111                                                       Loc);
2112    return false;
2113  }
2114
2115  if (!Field->getParent()->isUnion()) {
2116    if (FieldBaseElementType->isReferenceType()) {
2117      SemaRef.Diag(Constructor->getLocation(),
2118                   diag::err_uninitialized_member_in_ctor)
2119      << (int)Constructor->isImplicit()
2120      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2121      << 0 << Field->getDeclName();
2122      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2123      return true;
2124    }
2125
2126    if (FieldBaseElementType.isConstQualified()) {
2127      SemaRef.Diag(Constructor->getLocation(),
2128                   diag::err_uninitialized_member_in_ctor)
2129      << (int)Constructor->isImplicit()
2130      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2131      << 1 << Field->getDeclName();
2132      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2133      return true;
2134    }
2135  }
2136
2137  // Nothing to initialize.
2138  CXXMemberInit = 0;
2139  return false;
2140}
2141
2142namespace {
2143struct BaseAndFieldInfo {
2144  Sema &S;
2145  CXXConstructorDecl *Ctor;
2146  bool AnyErrorsInInits;
2147  ImplicitInitializerKind IIK;
2148  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2149  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2150
2151  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2152    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2153    // FIXME: Handle implicit move constructors.
2154    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2155      IIK = IIK_Copy;
2156    else
2157      IIK = IIK_Default;
2158  }
2159};
2160}
2161
2162static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2163                                    FieldDecl *Top, FieldDecl *Field) {
2164
2165  // Overwhelmingly common case: we have a direct initializer for this field.
2166  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2167    Info.AllToInit.push_back(Init);
2168    return false;
2169  }
2170
2171  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2172  // has a brace-or-equal-initializer, the entity is initialized as specified
2173  // in [dcl.init].
2174  if (Field->hasInClassInitializer()) {
2175    Info.AllToInit.push_back(
2176      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2177                                               SourceLocation(),
2178                                               SourceLocation(), 0,
2179                                               SourceLocation()));
2180    return false;
2181  }
2182
2183  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2184    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2185    assert(FieldClassType && "anonymous struct/union without record type");
2186    CXXRecordDecl *FieldClassDecl
2187      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2188
2189    // Even though union members never have non-trivial default
2190    // constructions in C++03, we still build member initializers for aggregate
2191    // record types which can be union members, and C++0x allows non-trivial
2192    // default constructors for union members, so we ensure that only one
2193    // member is initialized for these.
2194    if (FieldClassDecl->isUnion()) {
2195      // First check for an explicit initializer for one field.
2196      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2197           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2198        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2199          Info.AllToInit.push_back(Init);
2200
2201          // Once we've initialized a field of an anonymous union, the union
2202          // field in the class is also initialized, so exit immediately.
2203          return false;
2204        } else if ((*FA)->isAnonymousStructOrUnion()) {
2205          if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2206            return true;
2207        }
2208      }
2209
2210      // Fallthrough and construct a default initializer for the union as
2211      // a whole, which can call its default constructor if such a thing exists
2212      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2213      // behavior going forward with C++0x, when anonymous unions there are
2214      // finalized, we should revisit this.
2215    } else {
2216      // For structs, we simply descend through to initialize all members where
2217      // necessary.
2218      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2219           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2220        if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2221          return true;
2222      }
2223    }
2224  }
2225
2226  // Don't try to build an implicit initializer if there were semantic
2227  // errors in any of the initializers (and therefore we might be
2228  // missing some that the user actually wrote).
2229  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2230    return false;
2231
2232  CXXCtorInitializer *Init = 0;
2233  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2234    return true;
2235
2236  if (Init)
2237    Info.AllToInit.push_back(Init);
2238
2239  return false;
2240}
2241
2242bool
2243Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2244                               CXXCtorInitializer *Initializer) {
2245  assert(Initializer->isDelegatingInitializer());
2246  Constructor->setNumCtorInitializers(1);
2247  CXXCtorInitializer **initializer =
2248    new (Context) CXXCtorInitializer*[1];
2249  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2250  Constructor->setCtorInitializers(initializer);
2251
2252  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2253    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2254    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2255  }
2256
2257  DelegatingCtorDecls.push_back(Constructor);
2258
2259  return false;
2260}
2261
2262bool
2263Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2264                                  CXXCtorInitializer **Initializers,
2265                                  unsigned NumInitializers,
2266                                  bool AnyErrors) {
2267  if (Constructor->getDeclContext()->isDependentContext()) {
2268    // Just store the initializers as written, they will be checked during
2269    // instantiation.
2270    if (NumInitializers > 0) {
2271      Constructor->setNumCtorInitializers(NumInitializers);
2272      CXXCtorInitializer **baseOrMemberInitializers =
2273        new (Context) CXXCtorInitializer*[NumInitializers];
2274      memcpy(baseOrMemberInitializers, Initializers,
2275             NumInitializers * sizeof(CXXCtorInitializer*));
2276      Constructor->setCtorInitializers(baseOrMemberInitializers);
2277    }
2278
2279    return false;
2280  }
2281
2282  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2283
2284  // We need to build the initializer AST according to order of construction
2285  // and not what user specified in the Initializers list.
2286  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2287  if (!ClassDecl)
2288    return true;
2289
2290  bool HadError = false;
2291
2292  for (unsigned i = 0; i < NumInitializers; i++) {
2293    CXXCtorInitializer *Member = Initializers[i];
2294
2295    if (Member->isBaseInitializer())
2296      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2297    else
2298      Info.AllBaseFields[Member->getAnyMember()] = Member;
2299  }
2300
2301  // Keep track of the direct virtual bases.
2302  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2303  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2304       E = ClassDecl->bases_end(); I != E; ++I) {
2305    if (I->isVirtual())
2306      DirectVBases.insert(I);
2307  }
2308
2309  // Push virtual bases before others.
2310  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2311       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2312
2313    if (CXXCtorInitializer *Value
2314        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2315      Info.AllToInit.push_back(Value);
2316    } else if (!AnyErrors) {
2317      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2318      CXXCtorInitializer *CXXBaseInit;
2319      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2320                                       VBase, IsInheritedVirtualBase,
2321                                       CXXBaseInit)) {
2322        HadError = true;
2323        continue;
2324      }
2325
2326      Info.AllToInit.push_back(CXXBaseInit);
2327    }
2328  }
2329
2330  // Non-virtual bases.
2331  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2332       E = ClassDecl->bases_end(); Base != E; ++Base) {
2333    // Virtuals are in the virtual base list and already constructed.
2334    if (Base->isVirtual())
2335      continue;
2336
2337    if (CXXCtorInitializer *Value
2338          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2339      Info.AllToInit.push_back(Value);
2340    } else if (!AnyErrors) {
2341      CXXCtorInitializer *CXXBaseInit;
2342      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2343                                       Base, /*IsInheritedVirtualBase=*/false,
2344                                       CXXBaseInit)) {
2345        HadError = true;
2346        continue;
2347      }
2348
2349      Info.AllToInit.push_back(CXXBaseInit);
2350    }
2351  }
2352
2353  // Fields.
2354  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2355       E = ClassDecl->field_end(); Field != E; ++Field) {
2356    if ((*Field)->getType()->isIncompleteArrayType()) {
2357      assert(ClassDecl->hasFlexibleArrayMember() &&
2358             "Incomplete array type is not valid");
2359      continue;
2360    }
2361    if (CollectFieldInitializer(*this, Info, *Field, *Field))
2362      HadError = true;
2363  }
2364
2365  NumInitializers = Info.AllToInit.size();
2366  if (NumInitializers > 0) {
2367    Constructor->setNumCtorInitializers(NumInitializers);
2368    CXXCtorInitializer **baseOrMemberInitializers =
2369      new (Context) CXXCtorInitializer*[NumInitializers];
2370    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2371           NumInitializers * sizeof(CXXCtorInitializer*));
2372    Constructor->setCtorInitializers(baseOrMemberInitializers);
2373
2374    // Constructors implicitly reference the base and member
2375    // destructors.
2376    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2377                                           Constructor->getParent());
2378  }
2379
2380  return HadError;
2381}
2382
2383static void *GetKeyForTopLevelField(FieldDecl *Field) {
2384  // For anonymous unions, use the class declaration as the key.
2385  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2386    if (RT->getDecl()->isAnonymousStructOrUnion())
2387      return static_cast<void *>(RT->getDecl());
2388  }
2389  return static_cast<void *>(Field);
2390}
2391
2392static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2393  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2394}
2395
2396static void *GetKeyForMember(ASTContext &Context,
2397                             CXXCtorInitializer *Member) {
2398  if (!Member->isAnyMemberInitializer())
2399    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2400
2401  // For fields injected into the class via declaration of an anonymous union,
2402  // use its anonymous union class declaration as the unique key.
2403  FieldDecl *Field = Member->getAnyMember();
2404
2405  // If the field is a member of an anonymous struct or union, our key
2406  // is the anonymous record decl that's a direct child of the class.
2407  RecordDecl *RD = Field->getParent();
2408  if (RD->isAnonymousStructOrUnion()) {
2409    while (true) {
2410      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2411      if (Parent->isAnonymousStructOrUnion())
2412        RD = Parent;
2413      else
2414        break;
2415    }
2416
2417    return static_cast<void *>(RD);
2418  }
2419
2420  return static_cast<void *>(Field);
2421}
2422
2423static void
2424DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2425                                  const CXXConstructorDecl *Constructor,
2426                                  CXXCtorInitializer **Inits,
2427                                  unsigned NumInits) {
2428  if (Constructor->getDeclContext()->isDependentContext())
2429    return;
2430
2431  // Don't check initializers order unless the warning is enabled at the
2432  // location of at least one initializer.
2433  bool ShouldCheckOrder = false;
2434  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2435    CXXCtorInitializer *Init = Inits[InitIndex];
2436    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2437                                         Init->getSourceLocation())
2438          != Diagnostic::Ignored) {
2439      ShouldCheckOrder = true;
2440      break;
2441    }
2442  }
2443  if (!ShouldCheckOrder)
2444    return;
2445
2446  // Build the list of bases and members in the order that they'll
2447  // actually be initialized.  The explicit initializers should be in
2448  // this same order but may be missing things.
2449  llvm::SmallVector<const void*, 32> IdealInitKeys;
2450
2451  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2452
2453  // 1. Virtual bases.
2454  for (CXXRecordDecl::base_class_const_iterator VBase =
2455       ClassDecl->vbases_begin(),
2456       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2457    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2458
2459  // 2. Non-virtual bases.
2460  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2461       E = ClassDecl->bases_end(); Base != E; ++Base) {
2462    if (Base->isVirtual())
2463      continue;
2464    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2465  }
2466
2467  // 3. Direct fields.
2468  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2469       E = ClassDecl->field_end(); Field != E; ++Field)
2470    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2471
2472  unsigned NumIdealInits = IdealInitKeys.size();
2473  unsigned IdealIndex = 0;
2474
2475  CXXCtorInitializer *PrevInit = 0;
2476  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2477    CXXCtorInitializer *Init = Inits[InitIndex];
2478    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2479
2480    // Scan forward to try to find this initializer in the idealized
2481    // initializers list.
2482    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2483      if (InitKey == IdealInitKeys[IdealIndex])
2484        break;
2485
2486    // If we didn't find this initializer, it must be because we
2487    // scanned past it on a previous iteration.  That can only
2488    // happen if we're out of order;  emit a warning.
2489    if (IdealIndex == NumIdealInits && PrevInit) {
2490      Sema::SemaDiagnosticBuilder D =
2491        SemaRef.Diag(PrevInit->getSourceLocation(),
2492                     diag::warn_initializer_out_of_order);
2493
2494      if (PrevInit->isAnyMemberInitializer())
2495        D << 0 << PrevInit->getAnyMember()->getDeclName();
2496      else
2497        D << 1 << PrevInit->getBaseClassInfo()->getType();
2498
2499      if (Init->isAnyMemberInitializer())
2500        D << 0 << Init->getAnyMember()->getDeclName();
2501      else
2502        D << 1 << Init->getBaseClassInfo()->getType();
2503
2504      // Move back to the initializer's location in the ideal list.
2505      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2506        if (InitKey == IdealInitKeys[IdealIndex])
2507          break;
2508
2509      assert(IdealIndex != NumIdealInits &&
2510             "initializer not found in initializer list");
2511    }
2512
2513    PrevInit = Init;
2514  }
2515}
2516
2517namespace {
2518bool CheckRedundantInit(Sema &S,
2519                        CXXCtorInitializer *Init,
2520                        CXXCtorInitializer *&PrevInit) {
2521  if (!PrevInit) {
2522    PrevInit = Init;
2523    return false;
2524  }
2525
2526  if (FieldDecl *Field = Init->getMember())
2527    S.Diag(Init->getSourceLocation(),
2528           diag::err_multiple_mem_initialization)
2529      << Field->getDeclName()
2530      << Init->getSourceRange();
2531  else {
2532    const Type *BaseClass = Init->getBaseClass();
2533    assert(BaseClass && "neither field nor base");
2534    S.Diag(Init->getSourceLocation(),
2535           diag::err_multiple_base_initialization)
2536      << QualType(BaseClass, 0)
2537      << Init->getSourceRange();
2538  }
2539  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2540    << 0 << PrevInit->getSourceRange();
2541
2542  return true;
2543}
2544
2545typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2546typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2547
2548bool CheckRedundantUnionInit(Sema &S,
2549                             CXXCtorInitializer *Init,
2550                             RedundantUnionMap &Unions) {
2551  FieldDecl *Field = Init->getAnyMember();
2552  RecordDecl *Parent = Field->getParent();
2553  if (!Parent->isAnonymousStructOrUnion())
2554    return false;
2555
2556  NamedDecl *Child = Field;
2557  do {
2558    if (Parent->isUnion()) {
2559      UnionEntry &En = Unions[Parent];
2560      if (En.first && En.first != Child) {
2561        S.Diag(Init->getSourceLocation(),
2562               diag::err_multiple_mem_union_initialization)
2563          << Field->getDeclName()
2564          << Init->getSourceRange();
2565        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2566          << 0 << En.second->getSourceRange();
2567        return true;
2568      } else if (!En.first) {
2569        En.first = Child;
2570        En.second = Init;
2571      }
2572    }
2573
2574    Child = Parent;
2575    Parent = cast<RecordDecl>(Parent->getDeclContext());
2576  } while (Parent->isAnonymousStructOrUnion());
2577
2578  return false;
2579}
2580}
2581
2582/// ActOnMemInitializers - Handle the member initializers for a constructor.
2583void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2584                                SourceLocation ColonLoc,
2585                                MemInitTy **meminits, unsigned NumMemInits,
2586                                bool AnyErrors) {
2587  if (!ConstructorDecl)
2588    return;
2589
2590  AdjustDeclIfTemplate(ConstructorDecl);
2591
2592  CXXConstructorDecl *Constructor
2593    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2594
2595  if (!Constructor) {
2596    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2597    return;
2598  }
2599
2600  CXXCtorInitializer **MemInits =
2601    reinterpret_cast<CXXCtorInitializer **>(meminits);
2602
2603  // Mapping for the duplicate initializers check.
2604  // For member initializers, this is keyed with a FieldDecl*.
2605  // For base initializers, this is keyed with a Type*.
2606  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2607
2608  // Mapping for the inconsistent anonymous-union initializers check.
2609  RedundantUnionMap MemberUnions;
2610
2611  bool HadError = false;
2612  for (unsigned i = 0; i < NumMemInits; i++) {
2613    CXXCtorInitializer *Init = MemInits[i];
2614
2615    // Set the source order index.
2616    Init->setSourceOrder(i);
2617
2618    if (Init->isAnyMemberInitializer()) {
2619      FieldDecl *Field = Init->getAnyMember();
2620      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2621          CheckRedundantUnionInit(*this, Init, MemberUnions))
2622        HadError = true;
2623    } else if (Init->isBaseInitializer()) {
2624      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2625      if (CheckRedundantInit(*this, Init, Members[Key]))
2626        HadError = true;
2627    } else {
2628      assert(Init->isDelegatingInitializer());
2629      // This must be the only initializer
2630      if (i != 0 || NumMemInits > 1) {
2631        Diag(MemInits[0]->getSourceLocation(),
2632             diag::err_delegating_initializer_alone)
2633          << MemInits[0]->getSourceRange();
2634        HadError = true;
2635        // We will treat this as being the only initializer.
2636      }
2637      SetDelegatingInitializer(Constructor, MemInits[i]);
2638      // Return immediately as the initializer is set.
2639      return;
2640    }
2641  }
2642
2643  if (HadError)
2644    return;
2645
2646  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2647
2648  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2649}
2650
2651void
2652Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2653                                             CXXRecordDecl *ClassDecl) {
2654  // Ignore dependent contexts.
2655  if (ClassDecl->isDependentContext())
2656    return;
2657
2658  // FIXME: all the access-control diagnostics are positioned on the
2659  // field/base declaration.  That's probably good; that said, the
2660  // user might reasonably want to know why the destructor is being
2661  // emitted, and we currently don't say.
2662
2663  // Non-static data members.
2664  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2665       E = ClassDecl->field_end(); I != E; ++I) {
2666    FieldDecl *Field = *I;
2667    if (Field->isInvalidDecl())
2668      continue;
2669    QualType FieldType = Context.getBaseElementType(Field->getType());
2670
2671    const RecordType* RT = FieldType->getAs<RecordType>();
2672    if (!RT)
2673      continue;
2674
2675    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2676    if (FieldClassDecl->isInvalidDecl())
2677      continue;
2678    if (FieldClassDecl->hasTrivialDestructor())
2679      continue;
2680
2681    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2682    assert(Dtor && "No dtor found for FieldClassDecl!");
2683    CheckDestructorAccess(Field->getLocation(), Dtor,
2684                          PDiag(diag::err_access_dtor_field)
2685                            << Field->getDeclName()
2686                            << FieldType);
2687
2688    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2689  }
2690
2691  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2692
2693  // Bases.
2694  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2695       E = ClassDecl->bases_end(); Base != E; ++Base) {
2696    // Bases are always records in a well-formed non-dependent class.
2697    const RecordType *RT = Base->getType()->getAs<RecordType>();
2698
2699    // Remember direct virtual bases.
2700    if (Base->isVirtual())
2701      DirectVirtualBases.insert(RT);
2702
2703    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2704    // If our base class is invalid, we probably can't get its dtor anyway.
2705    if (BaseClassDecl->isInvalidDecl())
2706      continue;
2707    // Ignore trivial destructors.
2708    if (BaseClassDecl->hasTrivialDestructor())
2709      continue;
2710
2711    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2712    assert(Dtor && "No dtor found for BaseClassDecl!");
2713
2714    // FIXME: caret should be on the start of the class name
2715    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2716                          PDiag(diag::err_access_dtor_base)
2717                            << Base->getType()
2718                            << Base->getSourceRange());
2719
2720    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2721  }
2722
2723  // Virtual bases.
2724  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2725       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2726
2727    // Bases are always records in a well-formed non-dependent class.
2728    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2729
2730    // Ignore direct virtual bases.
2731    if (DirectVirtualBases.count(RT))
2732      continue;
2733
2734    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2735    // If our base class is invalid, we probably can't get its dtor anyway.
2736    if (BaseClassDecl->isInvalidDecl())
2737      continue;
2738    // Ignore trivial destructors.
2739    if (BaseClassDecl->hasTrivialDestructor())
2740      continue;
2741
2742    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2743    assert(Dtor && "No dtor found for BaseClassDecl!");
2744    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2745                          PDiag(diag::err_access_dtor_vbase)
2746                            << VBase->getType());
2747
2748    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2749  }
2750}
2751
2752void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2753  if (!CDtorDecl)
2754    return;
2755
2756  if (CXXConstructorDecl *Constructor
2757      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2758    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2759}
2760
2761bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2762                                  unsigned DiagID, AbstractDiagSelID SelID) {
2763  if (SelID == -1)
2764    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2765  else
2766    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2767}
2768
2769bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2770                                  const PartialDiagnostic &PD) {
2771  if (!getLangOptions().CPlusPlus)
2772    return false;
2773
2774  if (const ArrayType *AT = Context.getAsArrayType(T))
2775    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2776
2777  if (const PointerType *PT = T->getAs<PointerType>()) {
2778    // Find the innermost pointer type.
2779    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2780      PT = T;
2781
2782    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2783      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2784  }
2785
2786  const RecordType *RT = T->getAs<RecordType>();
2787  if (!RT)
2788    return false;
2789
2790  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2791
2792  // We can't answer whether something is abstract until it has a
2793  // definition.  If it's currently being defined, we'll walk back
2794  // over all the declarations when we have a full definition.
2795  const CXXRecordDecl *Def = RD->getDefinition();
2796  if (!Def || Def->isBeingDefined())
2797    return false;
2798
2799  if (!RD->isAbstract())
2800    return false;
2801
2802  Diag(Loc, PD) << RD->getDeclName();
2803  DiagnoseAbstractType(RD);
2804
2805  return true;
2806}
2807
2808void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2809  // Check if we've already emitted the list of pure virtual functions
2810  // for this class.
2811  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2812    return;
2813
2814  CXXFinalOverriderMap FinalOverriders;
2815  RD->getFinalOverriders(FinalOverriders);
2816
2817  // Keep a set of seen pure methods so we won't diagnose the same method
2818  // more than once.
2819  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2820
2821  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2822                                   MEnd = FinalOverriders.end();
2823       M != MEnd;
2824       ++M) {
2825    for (OverridingMethods::iterator SO = M->second.begin(),
2826                                  SOEnd = M->second.end();
2827         SO != SOEnd; ++SO) {
2828      // C++ [class.abstract]p4:
2829      //   A class is abstract if it contains or inherits at least one
2830      //   pure virtual function for which the final overrider is pure
2831      //   virtual.
2832
2833      //
2834      if (SO->second.size() != 1)
2835        continue;
2836
2837      if (!SO->second.front().Method->isPure())
2838        continue;
2839
2840      if (!SeenPureMethods.insert(SO->second.front().Method))
2841        continue;
2842
2843      Diag(SO->second.front().Method->getLocation(),
2844           diag::note_pure_virtual_function)
2845        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2846    }
2847  }
2848
2849  if (!PureVirtualClassDiagSet)
2850    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2851  PureVirtualClassDiagSet->insert(RD);
2852}
2853
2854namespace {
2855struct AbstractUsageInfo {
2856  Sema &S;
2857  CXXRecordDecl *Record;
2858  CanQualType AbstractType;
2859  bool Invalid;
2860
2861  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2862    : S(S), Record(Record),
2863      AbstractType(S.Context.getCanonicalType(
2864                   S.Context.getTypeDeclType(Record))),
2865      Invalid(false) {}
2866
2867  void DiagnoseAbstractType() {
2868    if (Invalid) return;
2869    S.DiagnoseAbstractType(Record);
2870    Invalid = true;
2871  }
2872
2873  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2874};
2875
2876struct CheckAbstractUsage {
2877  AbstractUsageInfo &Info;
2878  const NamedDecl *Ctx;
2879
2880  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2881    : Info(Info), Ctx(Ctx) {}
2882
2883  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2884    switch (TL.getTypeLocClass()) {
2885#define ABSTRACT_TYPELOC(CLASS, PARENT)
2886#define TYPELOC(CLASS, PARENT) \
2887    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2888#include "clang/AST/TypeLocNodes.def"
2889    }
2890  }
2891
2892  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2893    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2894    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2895      if (!TL.getArg(I))
2896        continue;
2897
2898      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2899      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2900    }
2901  }
2902
2903  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2904    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2905  }
2906
2907  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2908    // Visit the type parameters from a permissive context.
2909    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2910      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2911      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2912        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2913          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2914      // TODO: other template argument types?
2915    }
2916  }
2917
2918  // Visit pointee types from a permissive context.
2919#define CheckPolymorphic(Type) \
2920  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2921    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2922  }
2923  CheckPolymorphic(PointerTypeLoc)
2924  CheckPolymorphic(ReferenceTypeLoc)
2925  CheckPolymorphic(MemberPointerTypeLoc)
2926  CheckPolymorphic(BlockPointerTypeLoc)
2927
2928  /// Handle all the types we haven't given a more specific
2929  /// implementation for above.
2930  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2931    // Every other kind of type that we haven't called out already
2932    // that has an inner type is either (1) sugar or (2) contains that
2933    // inner type in some way as a subobject.
2934    if (TypeLoc Next = TL.getNextTypeLoc())
2935      return Visit(Next, Sel);
2936
2937    // If there's no inner type and we're in a permissive context,
2938    // don't diagnose.
2939    if (Sel == Sema::AbstractNone) return;
2940
2941    // Check whether the type matches the abstract type.
2942    QualType T = TL.getType();
2943    if (T->isArrayType()) {
2944      Sel = Sema::AbstractArrayType;
2945      T = Info.S.Context.getBaseElementType(T);
2946    }
2947    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2948    if (CT != Info.AbstractType) return;
2949
2950    // It matched; do some magic.
2951    if (Sel == Sema::AbstractArrayType) {
2952      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2953        << T << TL.getSourceRange();
2954    } else {
2955      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2956        << Sel << T << TL.getSourceRange();
2957    }
2958    Info.DiagnoseAbstractType();
2959  }
2960};
2961
2962void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2963                                  Sema::AbstractDiagSelID Sel) {
2964  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2965}
2966
2967}
2968
2969/// Check for invalid uses of an abstract type in a method declaration.
2970static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2971                                    CXXMethodDecl *MD) {
2972  // No need to do the check on definitions, which require that
2973  // the return/param types be complete.
2974  if (MD->doesThisDeclarationHaveABody())
2975    return;
2976
2977  // For safety's sake, just ignore it if we don't have type source
2978  // information.  This should never happen for non-implicit methods,
2979  // but...
2980  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2981    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2982}
2983
2984/// Check for invalid uses of an abstract type within a class definition.
2985static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2986                                    CXXRecordDecl *RD) {
2987  for (CXXRecordDecl::decl_iterator
2988         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2989    Decl *D = *I;
2990    if (D->isImplicit()) continue;
2991
2992    // Methods and method templates.
2993    if (isa<CXXMethodDecl>(D)) {
2994      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2995    } else if (isa<FunctionTemplateDecl>(D)) {
2996      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2997      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2998
2999    // Fields and static variables.
3000    } else if (isa<FieldDecl>(D)) {
3001      FieldDecl *FD = cast<FieldDecl>(D);
3002      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3003        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3004    } else if (isa<VarDecl>(D)) {
3005      VarDecl *VD = cast<VarDecl>(D);
3006      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3007        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3008
3009    // Nested classes and class templates.
3010    } else if (isa<CXXRecordDecl>(D)) {
3011      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3012    } else if (isa<ClassTemplateDecl>(D)) {
3013      CheckAbstractClassUsage(Info,
3014                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3015    }
3016  }
3017}
3018
3019/// \brief Perform semantic checks on a class definition that has been
3020/// completing, introducing implicitly-declared members, checking for
3021/// abstract types, etc.
3022void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3023  if (!Record)
3024    return;
3025
3026  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3027    AbstractUsageInfo Info(*this, Record);
3028    CheckAbstractClassUsage(Info, Record);
3029  }
3030
3031  // If this is not an aggregate type and has no user-declared constructor,
3032  // complain about any non-static data members of reference or const scalar
3033  // type, since they will never get initializers.
3034  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3035      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3036    bool Complained = false;
3037    for (RecordDecl::field_iterator F = Record->field_begin(),
3038                                 FEnd = Record->field_end();
3039         F != FEnd; ++F) {
3040      if (F->hasInClassInitializer())
3041        continue;
3042
3043      if (F->getType()->isReferenceType() ||
3044          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3045        if (!Complained) {
3046          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3047            << Record->getTagKind() << Record;
3048          Complained = true;
3049        }
3050
3051        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3052          << F->getType()->isReferenceType()
3053          << F->getDeclName();
3054      }
3055    }
3056  }
3057
3058  if (Record->isDynamicClass() && !Record->isDependentType())
3059    DynamicClasses.push_back(Record);
3060
3061  if (Record->getIdentifier()) {
3062    // C++ [class.mem]p13:
3063    //   If T is the name of a class, then each of the following shall have a
3064    //   name different from T:
3065    //     - every member of every anonymous union that is a member of class T.
3066    //
3067    // C++ [class.mem]p14:
3068    //   In addition, if class T has a user-declared constructor (12.1), every
3069    //   non-static data member of class T shall have a name different from T.
3070    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3071         R.first != R.second; ++R.first) {
3072      NamedDecl *D = *R.first;
3073      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3074          isa<IndirectFieldDecl>(D)) {
3075        Diag(D->getLocation(), diag::err_member_name_of_class)
3076          << D->getDeclName();
3077        break;
3078      }
3079    }
3080  }
3081
3082  // Warn if the class has virtual methods but non-virtual public destructor.
3083  if (Record->isPolymorphic() && !Record->isDependentType()) {
3084    CXXDestructorDecl *dtor = Record->getDestructor();
3085    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3086      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3087           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3088  }
3089
3090  // See if a method overloads virtual methods in a base
3091  /// class without overriding any.
3092  if (!Record->isDependentType()) {
3093    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3094                                     MEnd = Record->method_end();
3095         M != MEnd; ++M) {
3096      if (!(*M)->isStatic())
3097        DiagnoseHiddenVirtualMethods(Record, *M);
3098    }
3099  }
3100
3101  // Declare inherited constructors. We do this eagerly here because:
3102  // - The standard requires an eager diagnostic for conflicting inherited
3103  //   constructors from different classes.
3104  // - The lazy declaration of the other implicit constructors is so as to not
3105  //   waste space and performance on classes that are not meant to be
3106  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3107  //   have inherited constructors.
3108  DeclareInheritedConstructors(Record);
3109
3110  if (!Record->isDependentType())
3111    CheckExplicitlyDefaultedMethods(Record);
3112}
3113
3114void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3115  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3116                                      ME = Record->method_end();
3117       MI != ME; ++MI) {
3118    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3119      switch (getSpecialMember(*MI)) {
3120      case CXXDefaultConstructor:
3121        CheckExplicitlyDefaultedDefaultConstructor(
3122                                                  cast<CXXConstructorDecl>(*MI));
3123        break;
3124
3125      case CXXDestructor:
3126        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3127        break;
3128
3129      case CXXCopyConstructor:
3130        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3131        break;
3132
3133      case CXXCopyAssignment:
3134        CheckExplicitlyDefaultedCopyAssignment(*MI);
3135        break;
3136
3137      case CXXMoveConstructor:
3138      case CXXMoveAssignment:
3139        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3140        break;
3141
3142      default:
3143        // FIXME: Do moves once they exist
3144        llvm_unreachable("non-special member explicitly defaulted!");
3145      }
3146    }
3147  }
3148
3149}
3150
3151void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3152  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3153
3154  // Whether this was the first-declared instance of the constructor.
3155  // This affects whether we implicitly add an exception spec (and, eventually,
3156  // constexpr). It is also ill-formed to explicitly default a constructor such
3157  // that it would be deleted. (C++0x [decl.fct.def.default])
3158  bool First = CD == CD->getCanonicalDecl();
3159
3160  bool HadError = false;
3161  if (CD->getNumParams() != 0) {
3162    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3163      << CD->getSourceRange();
3164    HadError = true;
3165  }
3166
3167  ImplicitExceptionSpecification Spec
3168    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3169  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3170  if (EPI.ExceptionSpecType == EST_Delayed) {
3171    // Exception specification depends on some deferred part of the class. We'll
3172    // try again when the class's definition has been fully processed.
3173    return;
3174  }
3175  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3176                          *ExceptionType = Context.getFunctionType(
3177                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3178
3179  if (CtorType->hasExceptionSpec()) {
3180    if (CheckEquivalentExceptionSpec(
3181          PDiag(diag::err_incorrect_defaulted_exception_spec)
3182            << CXXDefaultConstructor,
3183          PDiag(),
3184          ExceptionType, SourceLocation(),
3185          CtorType, CD->getLocation())) {
3186      HadError = true;
3187    }
3188  } else if (First) {
3189    // We set the declaration to have the computed exception spec here.
3190    // We know there are no parameters.
3191    EPI.ExtInfo = CtorType->getExtInfo();
3192    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3193  }
3194
3195  if (HadError) {
3196    CD->setInvalidDecl();
3197    return;
3198  }
3199
3200  if (ShouldDeleteDefaultConstructor(CD)) {
3201    if (First) {
3202      CD->setDeletedAsWritten();
3203    } else {
3204      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3205        << CXXDefaultConstructor;
3206      CD->setInvalidDecl();
3207    }
3208  }
3209}
3210
3211void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3212  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3213
3214  // Whether this was the first-declared instance of the constructor.
3215  bool First = CD == CD->getCanonicalDecl();
3216
3217  bool HadError = false;
3218  if (CD->getNumParams() != 1) {
3219    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3220      << CD->getSourceRange();
3221    HadError = true;
3222  }
3223
3224  ImplicitExceptionSpecification Spec(Context);
3225  bool Const;
3226  llvm::tie(Spec, Const) =
3227    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3228
3229  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3230  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3231                          *ExceptionType = Context.getFunctionType(
3232                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3233
3234  // Check for parameter type matching.
3235  // This is a copy ctor so we know it's a cv-qualified reference to T.
3236  QualType ArgType = CtorType->getArgType(0);
3237  if (ArgType->getPointeeType().isVolatileQualified()) {
3238    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3239    HadError = true;
3240  }
3241  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3242    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3243    HadError = true;
3244  }
3245
3246  if (CtorType->hasExceptionSpec()) {
3247    if (CheckEquivalentExceptionSpec(
3248          PDiag(diag::err_incorrect_defaulted_exception_spec)
3249            << CXXCopyConstructor,
3250          PDiag(),
3251          ExceptionType, SourceLocation(),
3252          CtorType, CD->getLocation())) {
3253      HadError = true;
3254    }
3255  } else if (First) {
3256    // We set the declaration to have the computed exception spec here.
3257    // We duplicate the one parameter type.
3258    EPI.ExtInfo = CtorType->getExtInfo();
3259    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3260  }
3261
3262  if (HadError) {
3263    CD->setInvalidDecl();
3264    return;
3265  }
3266
3267  if (ShouldDeleteCopyConstructor(CD)) {
3268    if (First) {
3269      CD->setDeletedAsWritten();
3270    } else {
3271      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3272        << CXXCopyConstructor;
3273      CD->setInvalidDecl();
3274    }
3275  }
3276}
3277
3278void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3279  assert(MD->isExplicitlyDefaulted());
3280
3281  // Whether this was the first-declared instance of the operator
3282  bool First = MD == MD->getCanonicalDecl();
3283
3284  bool HadError = false;
3285  if (MD->getNumParams() != 1) {
3286    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3287      << MD->getSourceRange();
3288    HadError = true;
3289  }
3290
3291  QualType ReturnType =
3292    MD->getType()->getAs<FunctionType>()->getResultType();
3293  if (!ReturnType->isLValueReferenceType() ||
3294      !Context.hasSameType(
3295        Context.getCanonicalType(ReturnType->getPointeeType()),
3296        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3297    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3298    HadError = true;
3299  }
3300
3301  ImplicitExceptionSpecification Spec(Context);
3302  bool Const;
3303  llvm::tie(Spec, Const) =
3304    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3305
3306  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3307  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3308                          *ExceptionType = Context.getFunctionType(
3309                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3310
3311  QualType ArgType = OperType->getArgType(0);
3312  if (!ArgType->isReferenceType()) {
3313    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3314    HadError = true;
3315  } else {
3316    if (ArgType->getPointeeType().isVolatileQualified()) {
3317      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3318      HadError = true;
3319    }
3320    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3321      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3322      HadError = true;
3323    }
3324  }
3325
3326  if (OperType->getTypeQuals()) {
3327    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3328    HadError = true;
3329  }
3330
3331  if (OperType->hasExceptionSpec()) {
3332    if (CheckEquivalentExceptionSpec(
3333          PDiag(diag::err_incorrect_defaulted_exception_spec)
3334            << CXXCopyAssignment,
3335          PDiag(),
3336          ExceptionType, SourceLocation(),
3337          OperType, MD->getLocation())) {
3338      HadError = true;
3339    }
3340  } else if (First) {
3341    // We set the declaration to have the computed exception spec here.
3342    // We duplicate the one parameter type.
3343    EPI.RefQualifier = OperType->getRefQualifier();
3344    EPI.ExtInfo = OperType->getExtInfo();
3345    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3346  }
3347
3348  if (HadError) {
3349    MD->setInvalidDecl();
3350    return;
3351  }
3352
3353  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3354    if (First) {
3355      MD->setDeletedAsWritten();
3356    } else {
3357      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3358        << CXXCopyAssignment;
3359      MD->setInvalidDecl();
3360    }
3361  }
3362}
3363
3364void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3365  assert(DD->isExplicitlyDefaulted());
3366
3367  // Whether this was the first-declared instance of the destructor.
3368  bool First = DD == DD->getCanonicalDecl();
3369
3370  ImplicitExceptionSpecification Spec
3371    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3372  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3373  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3374                          *ExceptionType = Context.getFunctionType(
3375                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3376
3377  if (DtorType->hasExceptionSpec()) {
3378    if (CheckEquivalentExceptionSpec(
3379          PDiag(diag::err_incorrect_defaulted_exception_spec)
3380            << CXXDestructor,
3381          PDiag(),
3382          ExceptionType, SourceLocation(),
3383          DtorType, DD->getLocation())) {
3384      DD->setInvalidDecl();
3385      return;
3386    }
3387  } else if (First) {
3388    // We set the declaration to have the computed exception spec here.
3389    // There are no parameters.
3390    EPI.ExtInfo = DtorType->getExtInfo();
3391    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3392  }
3393
3394  if (ShouldDeleteDestructor(DD)) {
3395    if (First) {
3396      DD->setDeletedAsWritten();
3397    } else {
3398      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3399        << CXXDestructor;
3400      DD->setInvalidDecl();
3401    }
3402  }
3403}
3404
3405bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3406  CXXRecordDecl *RD = CD->getParent();
3407  assert(!RD->isDependentType() && "do deletion after instantiation");
3408  if (!LangOpts.CPlusPlus0x)
3409    return false;
3410
3411  SourceLocation Loc = CD->getLocation();
3412
3413  // Do access control from the constructor
3414  ContextRAII CtorContext(*this, CD);
3415
3416  bool Union = RD->isUnion();
3417  bool AllConst = true;
3418
3419  // We do this because we should never actually use an anonymous
3420  // union's constructor.
3421  if (Union && RD->isAnonymousStructOrUnion())
3422    return false;
3423
3424  // FIXME: We should put some diagnostic logic right into this function.
3425
3426  // C++0x [class.ctor]/5
3427  //    A defaulted default constructor for class X is defined as deleted if:
3428
3429  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3430                                          BE = RD->bases_end();
3431       BI != BE; ++BI) {
3432    // We'll handle this one later
3433    if (BI->isVirtual())
3434      continue;
3435
3436    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3437    assert(BaseDecl && "base isn't a CXXRecordDecl");
3438
3439    // -- any [direct base class] has a type with a destructor that is
3440    //    deleted or inaccessible from the defaulted default constructor
3441    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3442    if (BaseDtor->isDeleted())
3443      return true;
3444    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3445        AR_accessible)
3446      return true;
3447
3448    // -- any [direct base class either] has no default constructor or
3449    //    overload resolution as applied to [its] default constructor
3450    //    results in an ambiguity or in a function that is deleted or
3451    //    inaccessible from the defaulted default constructor
3452    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3453    if (!BaseDefault || BaseDefault->isDeleted())
3454      return true;
3455
3456    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3457                               PDiag()) != AR_accessible)
3458      return true;
3459  }
3460
3461  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3462                                          BE = RD->vbases_end();
3463       BI != BE; ++BI) {
3464    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3465    assert(BaseDecl && "base isn't a CXXRecordDecl");
3466
3467    // -- any [virtual base class] has a type with a destructor that is
3468    //    delete or inaccessible from the defaulted default constructor
3469    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3470    if (BaseDtor->isDeleted())
3471      return true;
3472    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3473        AR_accessible)
3474      return true;
3475
3476    // -- any [virtual base class either] has no default constructor or
3477    //    overload resolution as applied to [its] default constructor
3478    //    results in an ambiguity or in a function that is deleted or
3479    //    inaccessible from the defaulted default constructor
3480    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3481    if (!BaseDefault || BaseDefault->isDeleted())
3482      return true;
3483
3484    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3485                               PDiag()) != AR_accessible)
3486      return true;
3487  }
3488
3489  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3490                                     FE = RD->field_end();
3491       FI != FE; ++FI) {
3492    if (FI->isInvalidDecl())
3493      continue;
3494
3495    QualType FieldType = Context.getBaseElementType(FI->getType());
3496    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3497
3498    // -- any non-static data member with no brace-or-equal-initializer is of
3499    //    reference type
3500    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3501      return true;
3502
3503    // -- X is a union and all its variant members are of const-qualified type
3504    //    (or array thereof)
3505    if (Union && !FieldType.isConstQualified())
3506      AllConst = false;
3507
3508    if (FieldRecord) {
3509      // -- X is a union-like class that has a variant member with a non-trivial
3510      //    default constructor
3511      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3512        return true;
3513
3514      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3515      if (FieldDtor->isDeleted())
3516        return true;
3517      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3518          AR_accessible)
3519        return true;
3520
3521      // -- any non-variant non-static data member of const-qualified type (or
3522      //    array thereof) with no brace-or-equal-initializer does not have a
3523      //    user-provided default constructor
3524      if (FieldType.isConstQualified() &&
3525          !FI->hasInClassInitializer() &&
3526          !FieldRecord->hasUserProvidedDefaultConstructor())
3527        return true;
3528
3529      if (!Union && FieldRecord->isUnion() &&
3530          FieldRecord->isAnonymousStructOrUnion()) {
3531        // We're okay to reuse AllConst here since we only care about the
3532        // value otherwise if we're in a union.
3533        AllConst = true;
3534
3535        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3536                                           UE = FieldRecord->field_end();
3537             UI != UE; ++UI) {
3538          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3539          CXXRecordDecl *UnionFieldRecord =
3540            UnionFieldType->getAsCXXRecordDecl();
3541
3542          if (!UnionFieldType.isConstQualified())
3543            AllConst = false;
3544
3545          if (UnionFieldRecord &&
3546              !UnionFieldRecord->hasTrivialDefaultConstructor())
3547            return true;
3548        }
3549
3550        if (AllConst)
3551          return true;
3552
3553        // Don't try to initialize the anonymous union
3554        // This is technically non-conformant, but sanity demands it.
3555        continue;
3556      }
3557
3558      // -- any non-static data member with no brace-or-equal-initializer has
3559      //    class type M (or array thereof) and either M has no default
3560      //    constructor or overload resolution as applied to M's default
3561      //    constructor results in an ambiguity or in a function that is deleted
3562      //    or inaccessible from the defaulted default constructor.
3563      if (!FI->hasInClassInitializer()) {
3564        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3565        if (!FieldDefault || FieldDefault->isDeleted())
3566          return true;
3567        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3568                                   PDiag()) != AR_accessible)
3569          return true;
3570      }
3571    } else if (!Union && FieldType.isConstQualified() &&
3572               !FI->hasInClassInitializer()) {
3573      // -- any non-variant non-static data member of const-qualified type (or
3574      //    array thereof) with no brace-or-equal-initializer does not have a
3575      //    user-provided default constructor
3576      return true;
3577    }
3578  }
3579
3580  if (Union && AllConst)
3581    return true;
3582
3583  return false;
3584}
3585
3586bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3587  CXXRecordDecl *RD = CD->getParent();
3588  assert(!RD->isDependentType() && "do deletion after instantiation");
3589  if (!LangOpts.CPlusPlus0x)
3590    return false;
3591
3592  SourceLocation Loc = CD->getLocation();
3593
3594  // Do access control from the constructor
3595  ContextRAII CtorContext(*this, CD);
3596
3597  bool Union = RD->isUnion();
3598
3599  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3600         "copy assignment arg has no pointee type");
3601  unsigned ArgQuals =
3602    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3603      Qualifiers::Const : 0;
3604
3605  // We do this because we should never actually use an anonymous
3606  // union's constructor.
3607  if (Union && RD->isAnonymousStructOrUnion())
3608    return false;
3609
3610  // FIXME: We should put some diagnostic logic right into this function.
3611
3612  // C++0x [class.copy]/11
3613  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3614
3615  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3616                                          BE = RD->bases_end();
3617       BI != BE; ++BI) {
3618    // We'll handle this one later
3619    if (BI->isVirtual())
3620      continue;
3621
3622    QualType BaseType = BI->getType();
3623    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3624    assert(BaseDecl && "base isn't a CXXRecordDecl");
3625
3626    // -- any [direct base class] of a type with a destructor that is deleted or
3627    //    inaccessible from the defaulted constructor
3628    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3629    if (BaseDtor->isDeleted())
3630      return true;
3631    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3632        AR_accessible)
3633      return true;
3634
3635    // -- a [direct base class] B that cannot be [copied] because overload
3636    //    resolution, as applied to B's [copy] constructor, results in an
3637    //    ambiguity or a function that is deleted or inaccessible from the
3638    //    defaulted constructor
3639    CXXConstructorDecl *BaseCtor = LookupCopyConstructor(BaseDecl, ArgQuals);
3640    if (!BaseCtor || BaseCtor->isDeleted())
3641      return true;
3642    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3643        AR_accessible)
3644      return true;
3645  }
3646
3647  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3648                                          BE = RD->vbases_end();
3649       BI != BE; ++BI) {
3650    QualType BaseType = BI->getType();
3651    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3652    assert(BaseDecl && "base isn't a CXXRecordDecl");
3653
3654    // -- any [virtual base class] of a type with a destructor that is deleted or
3655    //    inaccessible from the defaulted constructor
3656    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3657    if (BaseDtor->isDeleted())
3658      return true;
3659    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3660        AR_accessible)
3661      return true;
3662
3663    // -- a [virtual base class] B that cannot be [copied] because overload
3664    //    resolution, as applied to B's [copy] constructor, results in an
3665    //    ambiguity or a function that is deleted or inaccessible from the
3666    //    defaulted constructor
3667    CXXConstructorDecl *BaseCtor = LookupCopyConstructor(BaseDecl, ArgQuals);
3668    if (!BaseCtor || BaseCtor->isDeleted())
3669      return true;
3670    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3671        AR_accessible)
3672      return true;
3673  }
3674
3675  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3676                                     FE = RD->field_end();
3677       FI != FE; ++FI) {
3678    QualType FieldType = Context.getBaseElementType(FI->getType());
3679
3680    // -- for a copy constructor, a non-static data member of rvalue reference
3681    //    type
3682    if (FieldType->isRValueReferenceType())
3683      return true;
3684
3685    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3686
3687    if (FieldRecord) {
3688      // This is an anonymous union
3689      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3690        // Anonymous unions inside unions do not variant members create
3691        if (!Union) {
3692          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3693                                             UE = FieldRecord->field_end();
3694               UI != UE; ++UI) {
3695            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3696            CXXRecordDecl *UnionFieldRecord =
3697              UnionFieldType->getAsCXXRecordDecl();
3698
3699            // -- a variant member with a non-trivial [copy] constructor and X
3700            //    is a union-like class
3701            if (UnionFieldRecord &&
3702                !UnionFieldRecord->hasTrivialCopyConstructor())
3703              return true;
3704          }
3705        }
3706
3707        // Don't try to initalize an anonymous union
3708        continue;
3709      } else {
3710         // -- a variant member with a non-trivial [copy] constructor and X is a
3711         //    union-like class
3712        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3713          return true;
3714
3715        // -- any [non-static data member] of a type with a destructor that is
3716        //    deleted or inaccessible from the defaulted constructor
3717        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3718        if (FieldDtor->isDeleted())
3719          return true;
3720        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3721            AR_accessible)
3722          return true;
3723      }
3724
3725    // -- a [non-static data member of class type (or array thereof)] B that
3726    //    cannot be [copied] because overload resolution, as applied to B's
3727    //    [copy] constructor, results in an ambiguity or a function that is
3728    //    deleted or inaccessible from the defaulted constructor
3729      CXXConstructorDecl *FieldCtor = LookupCopyConstructor(FieldRecord,
3730                                                            ArgQuals);
3731      if (!FieldCtor || FieldCtor->isDeleted())
3732        return true;
3733      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3734                                 PDiag()) != AR_accessible)
3735        return true;
3736    }
3737  }
3738
3739  return false;
3740}
3741
3742bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3743  CXXRecordDecl *RD = MD->getParent();
3744  assert(!RD->isDependentType() && "do deletion after instantiation");
3745  if (!LangOpts.CPlusPlus0x)
3746    return false;
3747
3748  SourceLocation Loc = MD->getLocation();
3749
3750  // Do access control from the constructor
3751  ContextRAII MethodContext(*this, MD);
3752
3753  bool Union = RD->isUnion();
3754
3755  bool ConstArg =
3756    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3757
3758  // We do this because we should never actually use an anonymous
3759  // union's constructor.
3760  if (Union && RD->isAnonymousStructOrUnion())
3761    return false;
3762
3763  DeclarationName OperatorName =
3764    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3765  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3766  R.suppressDiagnostics();
3767
3768  // FIXME: We should put some diagnostic logic right into this function.
3769
3770  // C++0x [class.copy]/11
3771  //    A defaulted [copy] assignment operator for class X is defined as deleted
3772  //    if X has:
3773
3774  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3775                                          BE = RD->bases_end();
3776       BI != BE; ++BI) {
3777    // We'll handle this one later
3778    if (BI->isVirtual())
3779      continue;
3780
3781    QualType BaseType = BI->getType();
3782    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3783    assert(BaseDecl && "base isn't a CXXRecordDecl");
3784
3785    // -- a [direct base class] B that cannot be [copied] because overload
3786    //    resolution, as applied to B's [copy] assignment operator, results in
3787    //    an ambiguity or a function that is deleted or inaccessible from the
3788    //    assignment operator
3789
3790    LookupQualifiedName(R, BaseDecl, false);
3791
3792    // Filter out any result that isn't a copy-assignment operator.
3793    LookupResult::Filter F = R.makeFilter();
3794    while (F.hasNext()) {
3795      NamedDecl *D = F.next();
3796      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3797        if (Method->isCopyAssignmentOperator())
3798          continue;
3799
3800      F.erase();
3801    }
3802    F.done();
3803
3804    // Build a fake argument expression
3805    QualType ArgType = BaseType;
3806    QualType ThisType = BaseType;
3807    if (ConstArg)
3808      ArgType.addConst();
3809    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3810                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3811                   };
3812
3813    OverloadCandidateSet OCS((Loc));
3814    OverloadCandidateSet::iterator Best;
3815
3816    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3817
3818    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3819        OR_Success)
3820      return true;
3821  }
3822
3823  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3824                                          BE = RD->vbases_end();
3825       BI != BE; ++BI) {
3826    QualType BaseType = BI->getType();
3827    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3828    assert(BaseDecl && "base isn't a CXXRecordDecl");
3829
3830    // -- a [virtual base class] B that cannot be [copied] because overload
3831    //    resolution, as applied to B's [copy] assignment operator, results in
3832    //    an ambiguity or a function that is deleted or inaccessible from the
3833    //    assignment operator
3834
3835    LookupQualifiedName(R, BaseDecl, false);
3836
3837    // Filter out any result that isn't a copy-assignment operator.
3838    LookupResult::Filter F = R.makeFilter();
3839    while (F.hasNext()) {
3840      NamedDecl *D = F.next();
3841      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3842        if (Method->isCopyAssignmentOperator())
3843          continue;
3844
3845      F.erase();
3846    }
3847    F.done();
3848
3849    // Build a fake argument expression
3850    QualType ArgType = BaseType;
3851    QualType ThisType = BaseType;
3852    if (ConstArg)
3853      ArgType.addConst();
3854    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3855                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3856                   };
3857
3858    OverloadCandidateSet OCS((Loc));
3859    OverloadCandidateSet::iterator Best;
3860
3861    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3862
3863    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3864        OR_Success)
3865      return true;
3866  }
3867
3868  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3869                                     FE = RD->field_end();
3870       FI != FE; ++FI) {
3871    QualType FieldType = Context.getBaseElementType(FI->getType());
3872
3873    // -- a non-static data member of reference type
3874    if (FieldType->isReferenceType())
3875      return true;
3876
3877    // -- a non-static data member of const non-class type (or array thereof)
3878    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3879      return true;
3880
3881    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3882
3883    if (FieldRecord) {
3884      // This is an anonymous union
3885      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3886        // Anonymous unions inside unions do not variant members create
3887        if (!Union) {
3888          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3889                                             UE = FieldRecord->field_end();
3890               UI != UE; ++UI) {
3891            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3892            CXXRecordDecl *UnionFieldRecord =
3893              UnionFieldType->getAsCXXRecordDecl();
3894
3895            // -- a variant member with a non-trivial [copy] assignment operator
3896            //    and X is a union-like class
3897            if (UnionFieldRecord &&
3898                !UnionFieldRecord->hasTrivialCopyAssignment())
3899              return true;
3900          }
3901        }
3902
3903        // Don't try to initalize an anonymous union
3904        continue;
3905      // -- a variant member with a non-trivial [copy] assignment operator
3906      //    and X is a union-like class
3907      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3908          return true;
3909      }
3910
3911      LookupQualifiedName(R, FieldRecord, false);
3912
3913      // Filter out any result that isn't a copy-assignment operator.
3914      LookupResult::Filter F = R.makeFilter();
3915      while (F.hasNext()) {
3916        NamedDecl *D = F.next();
3917        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3918          if (Method->isCopyAssignmentOperator())
3919            continue;
3920
3921        F.erase();
3922      }
3923      F.done();
3924
3925      // Build a fake argument expression
3926      QualType ArgType = FieldType;
3927      QualType ThisType = FieldType;
3928      if (ConstArg)
3929        ArgType.addConst();
3930      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3931                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3932                     };
3933
3934      OverloadCandidateSet OCS((Loc));
3935      OverloadCandidateSet::iterator Best;
3936
3937      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3938
3939      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3940          OR_Success)
3941        return true;
3942    }
3943  }
3944
3945  return false;
3946}
3947
3948bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3949  CXXRecordDecl *RD = DD->getParent();
3950  assert(!RD->isDependentType() && "do deletion after instantiation");
3951  if (!LangOpts.CPlusPlus0x)
3952    return false;
3953
3954  SourceLocation Loc = DD->getLocation();
3955
3956  // Do access control from the destructor
3957  ContextRAII CtorContext(*this, DD);
3958
3959  bool Union = RD->isUnion();
3960
3961  // We do this because we should never actually use an anonymous
3962  // union's destructor.
3963  if (Union && RD->isAnonymousStructOrUnion())
3964    return false;
3965
3966  // C++0x [class.dtor]p5
3967  //    A defaulted destructor for a class X is defined as deleted if:
3968  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3969                                          BE = RD->bases_end();
3970       BI != BE; ++BI) {
3971    // We'll handle this one later
3972    if (BI->isVirtual())
3973      continue;
3974
3975    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3976    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3977    assert(BaseDtor && "base has no destructor");
3978
3979    // -- any direct or virtual base class has a deleted destructor or
3980    //    a destructor that is inaccessible from the defaulted destructor
3981    if (BaseDtor->isDeleted())
3982      return true;
3983    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3984        AR_accessible)
3985      return true;
3986  }
3987
3988  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3989                                          BE = RD->vbases_end();
3990       BI != BE; ++BI) {
3991    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3992    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3993    assert(BaseDtor && "base has no destructor");
3994
3995    // -- any direct or virtual base class has a deleted destructor or
3996    //    a destructor that is inaccessible from the defaulted destructor
3997    if (BaseDtor->isDeleted())
3998      return true;
3999    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4000        AR_accessible)
4001      return true;
4002  }
4003
4004  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4005                                     FE = RD->field_end();
4006       FI != FE; ++FI) {
4007    QualType FieldType = Context.getBaseElementType(FI->getType());
4008    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4009    if (FieldRecord) {
4010      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4011         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4012                                            UE = FieldRecord->field_end();
4013              UI != UE; ++UI) {
4014           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4015           CXXRecordDecl *UnionFieldRecord =
4016             UnionFieldType->getAsCXXRecordDecl();
4017
4018           // -- X is a union-like class that has a variant member with a non-
4019           //    trivial destructor.
4020           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4021             return true;
4022         }
4023      // Technically we are supposed to do this next check unconditionally.
4024      // But that makes absolutely no sense.
4025      } else {
4026        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4027
4028        // -- any of the non-static data members has class type M (or array
4029        //    thereof) and M has a deleted destructor or a destructor that is
4030        //    inaccessible from the defaulted destructor
4031        if (FieldDtor->isDeleted())
4032          return true;
4033        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4034          AR_accessible)
4035        return true;
4036
4037        // -- X is a union-like class that has a variant member with a non-
4038        //    trivial destructor.
4039        if (Union && !FieldDtor->isTrivial())
4040          return true;
4041      }
4042    }
4043  }
4044
4045  if (DD->isVirtual()) {
4046    FunctionDecl *OperatorDelete = 0;
4047    DeclarationName Name =
4048      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4049    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4050          false))
4051      return true;
4052  }
4053
4054
4055  return false;
4056}
4057
4058/// \brief Data used with FindHiddenVirtualMethod
4059namespace {
4060  struct FindHiddenVirtualMethodData {
4061    Sema *S;
4062    CXXMethodDecl *Method;
4063    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4064    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4065  };
4066}
4067
4068/// \brief Member lookup function that determines whether a given C++
4069/// method overloads virtual methods in a base class without overriding any,
4070/// to be used with CXXRecordDecl::lookupInBases().
4071static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4072                                    CXXBasePath &Path,
4073                                    void *UserData) {
4074  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4075
4076  FindHiddenVirtualMethodData &Data
4077    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4078
4079  DeclarationName Name = Data.Method->getDeclName();
4080  assert(Name.getNameKind() == DeclarationName::Identifier);
4081
4082  bool foundSameNameMethod = false;
4083  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4084  for (Path.Decls = BaseRecord->lookup(Name);
4085       Path.Decls.first != Path.Decls.second;
4086       ++Path.Decls.first) {
4087    NamedDecl *D = *Path.Decls.first;
4088    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4089      MD = MD->getCanonicalDecl();
4090      foundSameNameMethod = true;
4091      // Interested only in hidden virtual methods.
4092      if (!MD->isVirtual())
4093        continue;
4094      // If the method we are checking overrides a method from its base
4095      // don't warn about the other overloaded methods.
4096      if (!Data.S->IsOverload(Data.Method, MD, false))
4097        return true;
4098      // Collect the overload only if its hidden.
4099      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4100        overloadedMethods.push_back(MD);
4101    }
4102  }
4103
4104  if (foundSameNameMethod)
4105    Data.OverloadedMethods.append(overloadedMethods.begin(),
4106                                   overloadedMethods.end());
4107  return foundSameNameMethod;
4108}
4109
4110/// \brief See if a method overloads virtual methods in a base class without
4111/// overriding any.
4112void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4113  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4114                               MD->getLocation()) == Diagnostic::Ignored)
4115    return;
4116  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4117    return;
4118
4119  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4120                     /*bool RecordPaths=*/false,
4121                     /*bool DetectVirtual=*/false);
4122  FindHiddenVirtualMethodData Data;
4123  Data.Method = MD;
4124  Data.S = this;
4125
4126  // Keep the base methods that were overriden or introduced in the subclass
4127  // by 'using' in a set. A base method not in this set is hidden.
4128  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4129       res.first != res.second; ++res.first) {
4130    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4131      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4132                                          E = MD->end_overridden_methods();
4133           I != E; ++I)
4134        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4135    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4136      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4137        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4138  }
4139
4140  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4141      !Data.OverloadedMethods.empty()) {
4142    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4143      << MD << (Data.OverloadedMethods.size() > 1);
4144
4145    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4146      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4147      Diag(overloadedMD->getLocation(),
4148           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4149    }
4150  }
4151}
4152
4153void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4154                                             Decl *TagDecl,
4155                                             SourceLocation LBrac,
4156                                             SourceLocation RBrac,
4157                                             AttributeList *AttrList) {
4158  if (!TagDecl)
4159    return;
4160
4161  AdjustDeclIfTemplate(TagDecl);
4162
4163  ActOnFields(S, RLoc, TagDecl,
4164              // strict aliasing violation!
4165              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4166              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4167
4168  CheckCompletedCXXClass(
4169                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4170}
4171
4172/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4173/// special functions, such as the default constructor, copy
4174/// constructor, or destructor, to the given C++ class (C++
4175/// [special]p1).  This routine can only be executed just before the
4176/// definition of the class is complete.
4177void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4178  if (!ClassDecl->hasUserDeclaredConstructor())
4179    ++ASTContext::NumImplicitDefaultConstructors;
4180
4181  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4182    ++ASTContext::NumImplicitCopyConstructors;
4183
4184  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4185    ++ASTContext::NumImplicitCopyAssignmentOperators;
4186
4187    // If we have a dynamic class, then the copy assignment operator may be
4188    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4189    // it shows up in the right place in the vtable and that we diagnose
4190    // problems with the implicit exception specification.
4191    if (ClassDecl->isDynamicClass())
4192      DeclareImplicitCopyAssignment(ClassDecl);
4193  }
4194
4195  if (!ClassDecl->hasUserDeclaredDestructor()) {
4196    ++ASTContext::NumImplicitDestructors;
4197
4198    // If we have a dynamic class, then the destructor may be virtual, so we
4199    // have to declare the destructor immediately. This ensures that, e.g., it
4200    // shows up in the right place in the vtable and that we diagnose problems
4201    // with the implicit exception specification.
4202    if (ClassDecl->isDynamicClass())
4203      DeclareImplicitDestructor(ClassDecl);
4204  }
4205}
4206
4207void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4208  if (!D)
4209    return;
4210
4211  int NumParamList = D->getNumTemplateParameterLists();
4212  for (int i = 0; i < NumParamList; i++) {
4213    TemplateParameterList* Params = D->getTemplateParameterList(i);
4214    for (TemplateParameterList::iterator Param = Params->begin(),
4215                                      ParamEnd = Params->end();
4216          Param != ParamEnd; ++Param) {
4217      NamedDecl *Named = cast<NamedDecl>(*Param);
4218      if (Named->getDeclName()) {
4219        S->AddDecl(Named);
4220        IdResolver.AddDecl(Named);
4221      }
4222    }
4223  }
4224}
4225
4226void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4227  if (!D)
4228    return;
4229
4230  TemplateParameterList *Params = 0;
4231  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4232    Params = Template->getTemplateParameters();
4233  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4234           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4235    Params = PartialSpec->getTemplateParameters();
4236  else
4237    return;
4238
4239  for (TemplateParameterList::iterator Param = Params->begin(),
4240                                    ParamEnd = Params->end();
4241       Param != ParamEnd; ++Param) {
4242    NamedDecl *Named = cast<NamedDecl>(*Param);
4243    if (Named->getDeclName()) {
4244      S->AddDecl(Named);
4245      IdResolver.AddDecl(Named);
4246    }
4247  }
4248}
4249
4250void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4251  if (!RecordD) return;
4252  AdjustDeclIfTemplate(RecordD);
4253  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4254  PushDeclContext(S, Record);
4255}
4256
4257void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4258  if (!RecordD) return;
4259  PopDeclContext();
4260}
4261
4262/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4263/// parsing a top-level (non-nested) C++ class, and we are now
4264/// parsing those parts of the given Method declaration that could
4265/// not be parsed earlier (C++ [class.mem]p2), such as default
4266/// arguments. This action should enter the scope of the given
4267/// Method declaration as if we had just parsed the qualified method
4268/// name. However, it should not bring the parameters into scope;
4269/// that will be performed by ActOnDelayedCXXMethodParameter.
4270void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4271}
4272
4273/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4274/// C++ method declaration. We're (re-)introducing the given
4275/// function parameter into scope for use in parsing later parts of
4276/// the method declaration. For example, we could see an
4277/// ActOnParamDefaultArgument event for this parameter.
4278void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4279  if (!ParamD)
4280    return;
4281
4282  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4283
4284  // If this parameter has an unparsed default argument, clear it out
4285  // to make way for the parsed default argument.
4286  if (Param->hasUnparsedDefaultArg())
4287    Param->setDefaultArg(0);
4288
4289  S->AddDecl(Param);
4290  if (Param->getDeclName())
4291    IdResolver.AddDecl(Param);
4292}
4293
4294/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4295/// processing the delayed method declaration for Method. The method
4296/// declaration is now considered finished. There may be a separate
4297/// ActOnStartOfFunctionDef action later (not necessarily
4298/// immediately!) for this method, if it was also defined inside the
4299/// class body.
4300void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4301  if (!MethodD)
4302    return;
4303
4304  AdjustDeclIfTemplate(MethodD);
4305
4306  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4307
4308  // Now that we have our default arguments, check the constructor
4309  // again. It could produce additional diagnostics or affect whether
4310  // the class has implicitly-declared destructors, among other
4311  // things.
4312  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4313    CheckConstructor(Constructor);
4314
4315  // Check the default arguments, which we may have added.
4316  if (!Method->isInvalidDecl())
4317    CheckCXXDefaultArguments(Method);
4318}
4319
4320/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4321/// the well-formedness of the constructor declarator @p D with type @p
4322/// R. If there are any errors in the declarator, this routine will
4323/// emit diagnostics and set the invalid bit to true.  In any case, the type
4324/// will be updated to reflect a well-formed type for the constructor and
4325/// returned.
4326QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4327                                          StorageClass &SC) {
4328  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4329
4330  // C++ [class.ctor]p3:
4331  //   A constructor shall not be virtual (10.3) or static (9.4). A
4332  //   constructor can be invoked for a const, volatile or const
4333  //   volatile object. A constructor shall not be declared const,
4334  //   volatile, or const volatile (9.3.2).
4335  if (isVirtual) {
4336    if (!D.isInvalidType())
4337      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4338        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4339        << SourceRange(D.getIdentifierLoc());
4340    D.setInvalidType();
4341  }
4342  if (SC == SC_Static) {
4343    if (!D.isInvalidType())
4344      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4345        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4346        << SourceRange(D.getIdentifierLoc());
4347    D.setInvalidType();
4348    SC = SC_None;
4349  }
4350
4351  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4352  if (FTI.TypeQuals != 0) {
4353    if (FTI.TypeQuals & Qualifiers::Const)
4354      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4355        << "const" << SourceRange(D.getIdentifierLoc());
4356    if (FTI.TypeQuals & Qualifiers::Volatile)
4357      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4358        << "volatile" << SourceRange(D.getIdentifierLoc());
4359    if (FTI.TypeQuals & Qualifiers::Restrict)
4360      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4361        << "restrict" << SourceRange(D.getIdentifierLoc());
4362    D.setInvalidType();
4363  }
4364
4365  // C++0x [class.ctor]p4:
4366  //   A constructor shall not be declared with a ref-qualifier.
4367  if (FTI.hasRefQualifier()) {
4368    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4369      << FTI.RefQualifierIsLValueRef
4370      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4371    D.setInvalidType();
4372  }
4373
4374  // Rebuild the function type "R" without any type qualifiers (in
4375  // case any of the errors above fired) and with "void" as the
4376  // return type, since constructors don't have return types.
4377  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4378  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4379    return R;
4380
4381  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4382  EPI.TypeQuals = 0;
4383  EPI.RefQualifier = RQ_None;
4384
4385  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4386                                 Proto->getNumArgs(), EPI);
4387}
4388
4389/// CheckConstructor - Checks a fully-formed constructor for
4390/// well-formedness, issuing any diagnostics required. Returns true if
4391/// the constructor declarator is invalid.
4392void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4393  CXXRecordDecl *ClassDecl
4394    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4395  if (!ClassDecl)
4396    return Constructor->setInvalidDecl();
4397
4398  // C++ [class.copy]p3:
4399  //   A declaration of a constructor for a class X is ill-formed if
4400  //   its first parameter is of type (optionally cv-qualified) X and
4401  //   either there are no other parameters or else all other
4402  //   parameters have default arguments.
4403  if (!Constructor->isInvalidDecl() &&
4404      ((Constructor->getNumParams() == 1) ||
4405       (Constructor->getNumParams() > 1 &&
4406        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4407      Constructor->getTemplateSpecializationKind()
4408                                              != TSK_ImplicitInstantiation) {
4409    QualType ParamType = Constructor->getParamDecl(0)->getType();
4410    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4411    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4412      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4413      const char *ConstRef
4414        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4415                                                        : " const &";
4416      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4417        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4418
4419      // FIXME: Rather that making the constructor invalid, we should endeavor
4420      // to fix the type.
4421      Constructor->setInvalidDecl();
4422    }
4423  }
4424}
4425
4426/// CheckDestructor - Checks a fully-formed destructor definition for
4427/// well-formedness, issuing any diagnostics required.  Returns true
4428/// on error.
4429bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4430  CXXRecordDecl *RD = Destructor->getParent();
4431
4432  if (Destructor->isVirtual()) {
4433    SourceLocation Loc;
4434
4435    if (!Destructor->isImplicit())
4436      Loc = Destructor->getLocation();
4437    else
4438      Loc = RD->getLocation();
4439
4440    // If we have a virtual destructor, look up the deallocation function
4441    FunctionDecl *OperatorDelete = 0;
4442    DeclarationName Name =
4443    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4444    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4445      return true;
4446
4447    MarkDeclarationReferenced(Loc, OperatorDelete);
4448
4449    Destructor->setOperatorDelete(OperatorDelete);
4450  }
4451
4452  return false;
4453}
4454
4455static inline bool
4456FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4457  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4458          FTI.ArgInfo[0].Param &&
4459          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4460}
4461
4462/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4463/// the well-formednes of the destructor declarator @p D with type @p
4464/// R. If there are any errors in the declarator, this routine will
4465/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4466/// will be updated to reflect a well-formed type for the destructor and
4467/// returned.
4468QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4469                                         StorageClass& SC) {
4470  // C++ [class.dtor]p1:
4471  //   [...] A typedef-name that names a class is a class-name
4472  //   (7.1.3); however, a typedef-name that names a class shall not
4473  //   be used as the identifier in the declarator for a destructor
4474  //   declaration.
4475  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4476  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4477    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4478      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4479  else if (const TemplateSpecializationType *TST =
4480             DeclaratorType->getAs<TemplateSpecializationType>())
4481    if (TST->isTypeAlias())
4482      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4483        << DeclaratorType << 1;
4484
4485  // C++ [class.dtor]p2:
4486  //   A destructor is used to destroy objects of its class type. A
4487  //   destructor takes no parameters, and no return type can be
4488  //   specified for it (not even void). The address of a destructor
4489  //   shall not be taken. A destructor shall not be static. A
4490  //   destructor can be invoked for a const, volatile or const
4491  //   volatile object. A destructor shall not be declared const,
4492  //   volatile or const volatile (9.3.2).
4493  if (SC == SC_Static) {
4494    if (!D.isInvalidType())
4495      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4496        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4497        << SourceRange(D.getIdentifierLoc())
4498        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4499
4500    SC = SC_None;
4501  }
4502  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4503    // Destructors don't have return types, but the parser will
4504    // happily parse something like:
4505    //
4506    //   class X {
4507    //     float ~X();
4508    //   };
4509    //
4510    // The return type will be eliminated later.
4511    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4512      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4513      << SourceRange(D.getIdentifierLoc());
4514  }
4515
4516  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4517  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4518    if (FTI.TypeQuals & Qualifiers::Const)
4519      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4520        << "const" << SourceRange(D.getIdentifierLoc());
4521    if (FTI.TypeQuals & Qualifiers::Volatile)
4522      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4523        << "volatile" << SourceRange(D.getIdentifierLoc());
4524    if (FTI.TypeQuals & Qualifiers::Restrict)
4525      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4526        << "restrict" << SourceRange(D.getIdentifierLoc());
4527    D.setInvalidType();
4528  }
4529
4530  // C++0x [class.dtor]p2:
4531  //   A destructor shall not be declared with a ref-qualifier.
4532  if (FTI.hasRefQualifier()) {
4533    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4534      << FTI.RefQualifierIsLValueRef
4535      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4536    D.setInvalidType();
4537  }
4538
4539  // Make sure we don't have any parameters.
4540  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4541    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4542
4543    // Delete the parameters.
4544    FTI.freeArgs();
4545    D.setInvalidType();
4546  }
4547
4548  // Make sure the destructor isn't variadic.
4549  if (FTI.isVariadic) {
4550    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4551    D.setInvalidType();
4552  }
4553
4554  // Rebuild the function type "R" without any type qualifiers or
4555  // parameters (in case any of the errors above fired) and with
4556  // "void" as the return type, since destructors don't have return
4557  // types.
4558  if (!D.isInvalidType())
4559    return R;
4560
4561  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4562  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4563  EPI.Variadic = false;
4564  EPI.TypeQuals = 0;
4565  EPI.RefQualifier = RQ_None;
4566  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4567}
4568
4569/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4570/// well-formednes of the conversion function declarator @p D with
4571/// type @p R. If there are any errors in the declarator, this routine
4572/// will emit diagnostics and return true. Otherwise, it will return
4573/// false. Either way, the type @p R will be updated to reflect a
4574/// well-formed type for the conversion operator.
4575void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4576                                     StorageClass& SC) {
4577  // C++ [class.conv.fct]p1:
4578  //   Neither parameter types nor return type can be specified. The
4579  //   type of a conversion function (8.3.5) is "function taking no
4580  //   parameter returning conversion-type-id."
4581  if (SC == SC_Static) {
4582    if (!D.isInvalidType())
4583      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4584        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4585        << SourceRange(D.getIdentifierLoc());
4586    D.setInvalidType();
4587    SC = SC_None;
4588  }
4589
4590  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4591
4592  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4593    // Conversion functions don't have return types, but the parser will
4594    // happily parse something like:
4595    //
4596    //   class X {
4597    //     float operator bool();
4598    //   };
4599    //
4600    // The return type will be changed later anyway.
4601    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4602      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4603      << SourceRange(D.getIdentifierLoc());
4604    D.setInvalidType();
4605  }
4606
4607  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4608
4609  // Make sure we don't have any parameters.
4610  if (Proto->getNumArgs() > 0) {
4611    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4612
4613    // Delete the parameters.
4614    D.getFunctionTypeInfo().freeArgs();
4615    D.setInvalidType();
4616  } else if (Proto->isVariadic()) {
4617    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4618    D.setInvalidType();
4619  }
4620
4621  // Diagnose "&operator bool()" and other such nonsense.  This
4622  // is actually a gcc extension which we don't support.
4623  if (Proto->getResultType() != ConvType) {
4624    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4625      << Proto->getResultType();
4626    D.setInvalidType();
4627    ConvType = Proto->getResultType();
4628  }
4629
4630  // C++ [class.conv.fct]p4:
4631  //   The conversion-type-id shall not represent a function type nor
4632  //   an array type.
4633  if (ConvType->isArrayType()) {
4634    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4635    ConvType = Context.getPointerType(ConvType);
4636    D.setInvalidType();
4637  } else if (ConvType->isFunctionType()) {
4638    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4639    ConvType = Context.getPointerType(ConvType);
4640    D.setInvalidType();
4641  }
4642
4643  // Rebuild the function type "R" without any parameters (in case any
4644  // of the errors above fired) and with the conversion type as the
4645  // return type.
4646  if (D.isInvalidType())
4647    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4648
4649  // C++0x explicit conversion operators.
4650  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4651    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4652         diag::warn_explicit_conversion_functions)
4653      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4654}
4655
4656/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4657/// the declaration of the given C++ conversion function. This routine
4658/// is responsible for recording the conversion function in the C++
4659/// class, if possible.
4660Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4661  assert(Conversion && "Expected to receive a conversion function declaration");
4662
4663  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4664
4665  // Make sure we aren't redeclaring the conversion function.
4666  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4667
4668  // C++ [class.conv.fct]p1:
4669  //   [...] A conversion function is never used to convert a
4670  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4671  //   same object type (or a reference to it), to a (possibly
4672  //   cv-qualified) base class of that type (or a reference to it),
4673  //   or to (possibly cv-qualified) void.
4674  // FIXME: Suppress this warning if the conversion function ends up being a
4675  // virtual function that overrides a virtual function in a base class.
4676  QualType ClassType
4677    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4678  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4679    ConvType = ConvTypeRef->getPointeeType();
4680  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4681      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4682    /* Suppress diagnostics for instantiations. */;
4683  else if (ConvType->isRecordType()) {
4684    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4685    if (ConvType == ClassType)
4686      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4687        << ClassType;
4688    else if (IsDerivedFrom(ClassType, ConvType))
4689      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4690        <<  ClassType << ConvType;
4691  } else if (ConvType->isVoidType()) {
4692    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4693      << ClassType << ConvType;
4694  }
4695
4696  if (FunctionTemplateDecl *ConversionTemplate
4697                                = Conversion->getDescribedFunctionTemplate())
4698    return ConversionTemplate;
4699
4700  return Conversion;
4701}
4702
4703//===----------------------------------------------------------------------===//
4704// Namespace Handling
4705//===----------------------------------------------------------------------===//
4706
4707
4708
4709/// ActOnStartNamespaceDef - This is called at the start of a namespace
4710/// definition.
4711Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4712                                   SourceLocation InlineLoc,
4713                                   SourceLocation NamespaceLoc,
4714                                   SourceLocation IdentLoc,
4715                                   IdentifierInfo *II,
4716                                   SourceLocation LBrace,
4717                                   AttributeList *AttrList) {
4718  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4719  // For anonymous namespace, take the location of the left brace.
4720  SourceLocation Loc = II ? IdentLoc : LBrace;
4721  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4722                                                 StartLoc, Loc, II);
4723  Namespc->setInline(InlineLoc.isValid());
4724
4725  Scope *DeclRegionScope = NamespcScope->getParent();
4726
4727  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4728
4729  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4730    PushNamespaceVisibilityAttr(Attr);
4731
4732  if (II) {
4733    // C++ [namespace.def]p2:
4734    //   The identifier in an original-namespace-definition shall not
4735    //   have been previously defined in the declarative region in
4736    //   which the original-namespace-definition appears. The
4737    //   identifier in an original-namespace-definition is the name of
4738    //   the namespace. Subsequently in that declarative region, it is
4739    //   treated as an original-namespace-name.
4740    //
4741    // Since namespace names are unique in their scope, and we don't
4742    // look through using directives, just look for any ordinary names.
4743
4744    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4745      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4746      Decl::IDNS_Namespace;
4747    NamedDecl *PrevDecl = 0;
4748    for (DeclContext::lookup_result R
4749            = CurContext->getRedeclContext()->lookup(II);
4750         R.first != R.second; ++R.first) {
4751      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4752        PrevDecl = *R.first;
4753        break;
4754      }
4755    }
4756
4757    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4758      // This is an extended namespace definition.
4759      if (Namespc->isInline() != OrigNS->isInline()) {
4760        // inline-ness must match
4761        if (OrigNS->isInline()) {
4762          // The user probably just forgot the 'inline', so suggest that it
4763          // be added back.
4764          Diag(Namespc->getLocation(),
4765               diag::warn_inline_namespace_reopened_noninline)
4766            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4767        } else {
4768          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4769            << Namespc->isInline();
4770        }
4771        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4772
4773        // Recover by ignoring the new namespace's inline status.
4774        Namespc->setInline(OrigNS->isInline());
4775      }
4776
4777      // Attach this namespace decl to the chain of extended namespace
4778      // definitions.
4779      OrigNS->setNextNamespace(Namespc);
4780      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4781
4782      // Remove the previous declaration from the scope.
4783      if (DeclRegionScope->isDeclScope(OrigNS)) {
4784        IdResolver.RemoveDecl(OrigNS);
4785        DeclRegionScope->RemoveDecl(OrigNS);
4786      }
4787    } else if (PrevDecl) {
4788      // This is an invalid name redefinition.
4789      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4790       << Namespc->getDeclName();
4791      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4792      Namespc->setInvalidDecl();
4793      // Continue on to push Namespc as current DeclContext and return it.
4794    } else if (II->isStr("std") &&
4795               CurContext->getRedeclContext()->isTranslationUnit()) {
4796      // This is the first "real" definition of the namespace "std", so update
4797      // our cache of the "std" namespace to point at this definition.
4798      if (NamespaceDecl *StdNS = getStdNamespace()) {
4799        // We had already defined a dummy namespace "std". Link this new
4800        // namespace definition to the dummy namespace "std".
4801        StdNS->setNextNamespace(Namespc);
4802        StdNS->setLocation(IdentLoc);
4803        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4804      }
4805
4806      // Make our StdNamespace cache point at the first real definition of the
4807      // "std" namespace.
4808      StdNamespace = Namespc;
4809    }
4810
4811    PushOnScopeChains(Namespc, DeclRegionScope);
4812  } else {
4813    // Anonymous namespaces.
4814    assert(Namespc->isAnonymousNamespace());
4815
4816    // Link the anonymous namespace into its parent.
4817    NamespaceDecl *PrevDecl;
4818    DeclContext *Parent = CurContext->getRedeclContext();
4819    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4820      PrevDecl = TU->getAnonymousNamespace();
4821      TU->setAnonymousNamespace(Namespc);
4822    } else {
4823      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4824      PrevDecl = ND->getAnonymousNamespace();
4825      ND->setAnonymousNamespace(Namespc);
4826    }
4827
4828    // Link the anonymous namespace with its previous declaration.
4829    if (PrevDecl) {
4830      assert(PrevDecl->isAnonymousNamespace());
4831      assert(!PrevDecl->getNextNamespace());
4832      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4833      PrevDecl->setNextNamespace(Namespc);
4834
4835      if (Namespc->isInline() != PrevDecl->isInline()) {
4836        // inline-ness must match
4837        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4838          << Namespc->isInline();
4839        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4840        Namespc->setInvalidDecl();
4841        // Recover by ignoring the new namespace's inline status.
4842        Namespc->setInline(PrevDecl->isInline());
4843      }
4844    }
4845
4846    CurContext->addDecl(Namespc);
4847
4848    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4849    //   behaves as if it were replaced by
4850    //     namespace unique { /* empty body */ }
4851    //     using namespace unique;
4852    //     namespace unique { namespace-body }
4853    //   where all occurrences of 'unique' in a translation unit are
4854    //   replaced by the same identifier and this identifier differs
4855    //   from all other identifiers in the entire program.
4856
4857    // We just create the namespace with an empty name and then add an
4858    // implicit using declaration, just like the standard suggests.
4859    //
4860    // CodeGen enforces the "universally unique" aspect by giving all
4861    // declarations semantically contained within an anonymous
4862    // namespace internal linkage.
4863
4864    if (!PrevDecl) {
4865      UsingDirectiveDecl* UD
4866        = UsingDirectiveDecl::Create(Context, CurContext,
4867                                     /* 'using' */ LBrace,
4868                                     /* 'namespace' */ SourceLocation(),
4869                                     /* qualifier */ NestedNameSpecifierLoc(),
4870                                     /* identifier */ SourceLocation(),
4871                                     Namespc,
4872                                     /* Ancestor */ CurContext);
4873      UD->setImplicit();
4874      CurContext->addDecl(UD);
4875    }
4876  }
4877
4878  // Although we could have an invalid decl (i.e. the namespace name is a
4879  // redefinition), push it as current DeclContext and try to continue parsing.
4880  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4881  // for the namespace has the declarations that showed up in that particular
4882  // namespace definition.
4883  PushDeclContext(NamespcScope, Namespc);
4884  return Namespc;
4885}
4886
4887/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4888/// is a namespace alias, returns the namespace it points to.
4889static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4890  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4891    return AD->getNamespace();
4892  return dyn_cast_or_null<NamespaceDecl>(D);
4893}
4894
4895/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4896/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4897void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4898  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4899  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4900  Namespc->setRBraceLoc(RBrace);
4901  PopDeclContext();
4902  if (Namespc->hasAttr<VisibilityAttr>())
4903    PopPragmaVisibility();
4904}
4905
4906CXXRecordDecl *Sema::getStdBadAlloc() const {
4907  return cast_or_null<CXXRecordDecl>(
4908                                  StdBadAlloc.get(Context.getExternalSource()));
4909}
4910
4911NamespaceDecl *Sema::getStdNamespace() const {
4912  return cast_or_null<NamespaceDecl>(
4913                                 StdNamespace.get(Context.getExternalSource()));
4914}
4915
4916/// \brief Retrieve the special "std" namespace, which may require us to
4917/// implicitly define the namespace.
4918NamespaceDecl *Sema::getOrCreateStdNamespace() {
4919  if (!StdNamespace) {
4920    // The "std" namespace has not yet been defined, so build one implicitly.
4921    StdNamespace = NamespaceDecl::Create(Context,
4922                                         Context.getTranslationUnitDecl(),
4923                                         SourceLocation(), SourceLocation(),
4924                                         &PP.getIdentifierTable().get("std"));
4925    getStdNamespace()->setImplicit(true);
4926  }
4927
4928  return getStdNamespace();
4929}
4930
4931/// \brief Determine whether a using statement is in a context where it will be
4932/// apply in all contexts.
4933static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4934  switch (CurContext->getDeclKind()) {
4935    case Decl::TranslationUnit:
4936      return true;
4937    case Decl::LinkageSpec:
4938      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4939    default:
4940      return false;
4941  }
4942}
4943
4944Decl *Sema::ActOnUsingDirective(Scope *S,
4945                                          SourceLocation UsingLoc,
4946                                          SourceLocation NamespcLoc,
4947                                          CXXScopeSpec &SS,
4948                                          SourceLocation IdentLoc,
4949                                          IdentifierInfo *NamespcName,
4950                                          AttributeList *AttrList) {
4951  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4952  assert(NamespcName && "Invalid NamespcName.");
4953  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4954
4955  // This can only happen along a recovery path.
4956  while (S->getFlags() & Scope::TemplateParamScope)
4957    S = S->getParent();
4958  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4959
4960  UsingDirectiveDecl *UDir = 0;
4961  NestedNameSpecifier *Qualifier = 0;
4962  if (SS.isSet())
4963    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4964
4965  // Lookup namespace name.
4966  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4967  LookupParsedName(R, S, &SS);
4968  if (R.isAmbiguous())
4969    return 0;
4970
4971  if (R.empty()) {
4972    // Allow "using namespace std;" or "using namespace ::std;" even if
4973    // "std" hasn't been defined yet, for GCC compatibility.
4974    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4975        NamespcName->isStr("std")) {
4976      Diag(IdentLoc, diag::ext_using_undefined_std);
4977      R.addDecl(getOrCreateStdNamespace());
4978      R.resolveKind();
4979    }
4980    // Otherwise, attempt typo correction.
4981    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4982                                                       CTC_NoKeywords, 0)) {
4983      if (R.getAsSingle<NamespaceDecl>() ||
4984          R.getAsSingle<NamespaceAliasDecl>()) {
4985        if (DeclContext *DC = computeDeclContext(SS, false))
4986          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4987            << NamespcName << DC << Corrected << SS.getRange()
4988            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4989        else
4990          Diag(IdentLoc, diag::err_using_directive_suggest)
4991            << NamespcName << Corrected
4992            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4993        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4994          << Corrected;
4995
4996        NamespcName = Corrected.getAsIdentifierInfo();
4997      } else {
4998        R.clear();
4999        R.setLookupName(NamespcName);
5000      }
5001    }
5002  }
5003
5004  if (!R.empty()) {
5005    NamedDecl *Named = R.getFoundDecl();
5006    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5007        && "expected namespace decl");
5008    // C++ [namespace.udir]p1:
5009    //   A using-directive specifies that the names in the nominated
5010    //   namespace can be used in the scope in which the
5011    //   using-directive appears after the using-directive. During
5012    //   unqualified name lookup (3.4.1), the names appear as if they
5013    //   were declared in the nearest enclosing namespace which
5014    //   contains both the using-directive and the nominated
5015    //   namespace. [Note: in this context, "contains" means "contains
5016    //   directly or indirectly". ]
5017
5018    // Find enclosing context containing both using-directive and
5019    // nominated namespace.
5020    NamespaceDecl *NS = getNamespaceDecl(Named);
5021    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5022    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5023      CommonAncestor = CommonAncestor->getParent();
5024
5025    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5026                                      SS.getWithLocInContext(Context),
5027                                      IdentLoc, Named, CommonAncestor);
5028
5029    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5030        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
5031      Diag(IdentLoc, diag::warn_using_directive_in_header);
5032    }
5033
5034    PushUsingDirective(S, UDir);
5035  } else {
5036    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5037  }
5038
5039  // FIXME: We ignore attributes for now.
5040  return UDir;
5041}
5042
5043void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5044  // If scope has associated entity, then using directive is at namespace
5045  // or translation unit scope. We add UsingDirectiveDecls, into
5046  // it's lookup structure.
5047  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5048    Ctx->addDecl(UDir);
5049  else
5050    // Otherwise it is block-sope. using-directives will affect lookup
5051    // only to the end of scope.
5052    S->PushUsingDirective(UDir);
5053}
5054
5055
5056Decl *Sema::ActOnUsingDeclaration(Scope *S,
5057                                  AccessSpecifier AS,
5058                                  bool HasUsingKeyword,
5059                                  SourceLocation UsingLoc,
5060                                  CXXScopeSpec &SS,
5061                                  UnqualifiedId &Name,
5062                                  AttributeList *AttrList,
5063                                  bool IsTypeName,
5064                                  SourceLocation TypenameLoc) {
5065  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5066
5067  switch (Name.getKind()) {
5068  case UnqualifiedId::IK_Identifier:
5069  case UnqualifiedId::IK_OperatorFunctionId:
5070  case UnqualifiedId::IK_LiteralOperatorId:
5071  case UnqualifiedId::IK_ConversionFunctionId:
5072    break;
5073
5074  case UnqualifiedId::IK_ConstructorName:
5075  case UnqualifiedId::IK_ConstructorTemplateId:
5076    // C++0x inherited constructors.
5077    if (getLangOptions().CPlusPlus0x) break;
5078
5079    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5080      << SS.getRange();
5081    return 0;
5082
5083  case UnqualifiedId::IK_DestructorName:
5084    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5085      << SS.getRange();
5086    return 0;
5087
5088  case UnqualifiedId::IK_TemplateId:
5089    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5090      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5091    return 0;
5092  }
5093
5094  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5095  DeclarationName TargetName = TargetNameInfo.getName();
5096  if (!TargetName)
5097    return 0;
5098
5099  // Warn about using declarations.
5100  // TODO: store that the declaration was written without 'using' and
5101  // talk about access decls instead of using decls in the
5102  // diagnostics.
5103  if (!HasUsingKeyword) {
5104    UsingLoc = Name.getSourceRange().getBegin();
5105
5106    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5107      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5108  }
5109
5110  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5111      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5112    return 0;
5113
5114  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5115                                        TargetNameInfo, AttrList,
5116                                        /* IsInstantiation */ false,
5117                                        IsTypeName, TypenameLoc);
5118  if (UD)
5119    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5120
5121  return UD;
5122}
5123
5124/// \brief Determine whether a using declaration considers the given
5125/// declarations as "equivalent", e.g., if they are redeclarations of
5126/// the same entity or are both typedefs of the same type.
5127static bool
5128IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5129                         bool &SuppressRedeclaration) {
5130  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5131    SuppressRedeclaration = false;
5132    return true;
5133  }
5134
5135  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5136    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5137      SuppressRedeclaration = true;
5138      return Context.hasSameType(TD1->getUnderlyingType(),
5139                                 TD2->getUnderlyingType());
5140    }
5141
5142  return false;
5143}
5144
5145
5146/// Determines whether to create a using shadow decl for a particular
5147/// decl, given the set of decls existing prior to this using lookup.
5148bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5149                                const LookupResult &Previous) {
5150  // Diagnose finding a decl which is not from a base class of the
5151  // current class.  We do this now because there are cases where this
5152  // function will silently decide not to build a shadow decl, which
5153  // will pre-empt further diagnostics.
5154  //
5155  // We don't need to do this in C++0x because we do the check once on
5156  // the qualifier.
5157  //
5158  // FIXME: diagnose the following if we care enough:
5159  //   struct A { int foo; };
5160  //   struct B : A { using A::foo; };
5161  //   template <class T> struct C : A {};
5162  //   template <class T> struct D : C<T> { using B::foo; } // <---
5163  // This is invalid (during instantiation) in C++03 because B::foo
5164  // resolves to the using decl in B, which is not a base class of D<T>.
5165  // We can't diagnose it immediately because C<T> is an unknown
5166  // specialization.  The UsingShadowDecl in D<T> then points directly
5167  // to A::foo, which will look well-formed when we instantiate.
5168  // The right solution is to not collapse the shadow-decl chain.
5169  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5170    DeclContext *OrigDC = Orig->getDeclContext();
5171
5172    // Handle enums and anonymous structs.
5173    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5174    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5175    while (OrigRec->isAnonymousStructOrUnion())
5176      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5177
5178    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5179      if (OrigDC == CurContext) {
5180        Diag(Using->getLocation(),
5181             diag::err_using_decl_nested_name_specifier_is_current_class)
5182          << Using->getQualifierLoc().getSourceRange();
5183        Diag(Orig->getLocation(), diag::note_using_decl_target);
5184        return true;
5185      }
5186
5187      Diag(Using->getQualifierLoc().getBeginLoc(),
5188           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5189        << Using->getQualifier()
5190        << cast<CXXRecordDecl>(CurContext)
5191        << Using->getQualifierLoc().getSourceRange();
5192      Diag(Orig->getLocation(), diag::note_using_decl_target);
5193      return true;
5194    }
5195  }
5196
5197  if (Previous.empty()) return false;
5198
5199  NamedDecl *Target = Orig;
5200  if (isa<UsingShadowDecl>(Target))
5201    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5202
5203  // If the target happens to be one of the previous declarations, we
5204  // don't have a conflict.
5205  //
5206  // FIXME: but we might be increasing its access, in which case we
5207  // should redeclare it.
5208  NamedDecl *NonTag = 0, *Tag = 0;
5209  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5210         I != E; ++I) {
5211    NamedDecl *D = (*I)->getUnderlyingDecl();
5212    bool Result;
5213    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5214      return Result;
5215
5216    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5217  }
5218
5219  if (Target->isFunctionOrFunctionTemplate()) {
5220    FunctionDecl *FD;
5221    if (isa<FunctionTemplateDecl>(Target))
5222      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5223    else
5224      FD = cast<FunctionDecl>(Target);
5225
5226    NamedDecl *OldDecl = 0;
5227    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5228    case Ovl_Overload:
5229      return false;
5230
5231    case Ovl_NonFunction:
5232      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5233      break;
5234
5235    // We found a decl with the exact signature.
5236    case Ovl_Match:
5237      // If we're in a record, we want to hide the target, so we
5238      // return true (without a diagnostic) to tell the caller not to
5239      // build a shadow decl.
5240      if (CurContext->isRecord())
5241        return true;
5242
5243      // If we're not in a record, this is an error.
5244      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5245      break;
5246    }
5247
5248    Diag(Target->getLocation(), diag::note_using_decl_target);
5249    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5250    return true;
5251  }
5252
5253  // Target is not a function.
5254
5255  if (isa<TagDecl>(Target)) {
5256    // No conflict between a tag and a non-tag.
5257    if (!Tag) return false;
5258
5259    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5260    Diag(Target->getLocation(), diag::note_using_decl_target);
5261    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5262    return true;
5263  }
5264
5265  // No conflict between a tag and a non-tag.
5266  if (!NonTag) return false;
5267
5268  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5269  Diag(Target->getLocation(), diag::note_using_decl_target);
5270  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5271  return true;
5272}
5273
5274/// Builds a shadow declaration corresponding to a 'using' declaration.
5275UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5276                                            UsingDecl *UD,
5277                                            NamedDecl *Orig) {
5278
5279  // If we resolved to another shadow declaration, just coalesce them.
5280  NamedDecl *Target = Orig;
5281  if (isa<UsingShadowDecl>(Target)) {
5282    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5283    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5284  }
5285
5286  UsingShadowDecl *Shadow
5287    = UsingShadowDecl::Create(Context, CurContext,
5288                              UD->getLocation(), UD, Target);
5289  UD->addShadowDecl(Shadow);
5290
5291  Shadow->setAccess(UD->getAccess());
5292  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5293    Shadow->setInvalidDecl();
5294
5295  if (S)
5296    PushOnScopeChains(Shadow, S);
5297  else
5298    CurContext->addDecl(Shadow);
5299
5300
5301  return Shadow;
5302}
5303
5304/// Hides a using shadow declaration.  This is required by the current
5305/// using-decl implementation when a resolvable using declaration in a
5306/// class is followed by a declaration which would hide or override
5307/// one or more of the using decl's targets; for example:
5308///
5309///   struct Base { void foo(int); };
5310///   struct Derived : Base {
5311///     using Base::foo;
5312///     void foo(int);
5313///   };
5314///
5315/// The governing language is C++03 [namespace.udecl]p12:
5316///
5317///   When a using-declaration brings names from a base class into a
5318///   derived class scope, member functions in the derived class
5319///   override and/or hide member functions with the same name and
5320///   parameter types in a base class (rather than conflicting).
5321///
5322/// There are two ways to implement this:
5323///   (1) optimistically create shadow decls when they're not hidden
5324///       by existing declarations, or
5325///   (2) don't create any shadow decls (or at least don't make them
5326///       visible) until we've fully parsed/instantiated the class.
5327/// The problem with (1) is that we might have to retroactively remove
5328/// a shadow decl, which requires several O(n) operations because the
5329/// decl structures are (very reasonably) not designed for removal.
5330/// (2) avoids this but is very fiddly and phase-dependent.
5331void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5332  if (Shadow->getDeclName().getNameKind() ==
5333        DeclarationName::CXXConversionFunctionName)
5334    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5335
5336  // Remove it from the DeclContext...
5337  Shadow->getDeclContext()->removeDecl(Shadow);
5338
5339  // ...and the scope, if applicable...
5340  if (S) {
5341    S->RemoveDecl(Shadow);
5342    IdResolver.RemoveDecl(Shadow);
5343  }
5344
5345  // ...and the using decl.
5346  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5347
5348  // TODO: complain somehow if Shadow was used.  It shouldn't
5349  // be possible for this to happen, because...?
5350}
5351
5352/// Builds a using declaration.
5353///
5354/// \param IsInstantiation - Whether this call arises from an
5355///   instantiation of an unresolved using declaration.  We treat
5356///   the lookup differently for these declarations.
5357NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5358                                       SourceLocation UsingLoc,
5359                                       CXXScopeSpec &SS,
5360                                       const DeclarationNameInfo &NameInfo,
5361                                       AttributeList *AttrList,
5362                                       bool IsInstantiation,
5363                                       bool IsTypeName,
5364                                       SourceLocation TypenameLoc) {
5365  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5366  SourceLocation IdentLoc = NameInfo.getLoc();
5367  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5368
5369  // FIXME: We ignore attributes for now.
5370
5371  if (SS.isEmpty()) {
5372    Diag(IdentLoc, diag::err_using_requires_qualname);
5373    return 0;
5374  }
5375
5376  // Do the redeclaration lookup in the current scope.
5377  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5378                        ForRedeclaration);
5379  Previous.setHideTags(false);
5380  if (S) {
5381    LookupName(Previous, S);
5382
5383    // It is really dumb that we have to do this.
5384    LookupResult::Filter F = Previous.makeFilter();
5385    while (F.hasNext()) {
5386      NamedDecl *D = F.next();
5387      if (!isDeclInScope(D, CurContext, S))
5388        F.erase();
5389    }
5390    F.done();
5391  } else {
5392    assert(IsInstantiation && "no scope in non-instantiation");
5393    assert(CurContext->isRecord() && "scope not record in instantiation");
5394    LookupQualifiedName(Previous, CurContext);
5395  }
5396
5397  // Check for invalid redeclarations.
5398  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5399    return 0;
5400
5401  // Check for bad qualifiers.
5402  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5403    return 0;
5404
5405  DeclContext *LookupContext = computeDeclContext(SS);
5406  NamedDecl *D;
5407  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5408  if (!LookupContext) {
5409    if (IsTypeName) {
5410      // FIXME: not all declaration name kinds are legal here
5411      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5412                                              UsingLoc, TypenameLoc,
5413                                              QualifierLoc,
5414                                              IdentLoc, NameInfo.getName());
5415    } else {
5416      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5417                                           QualifierLoc, NameInfo);
5418    }
5419  } else {
5420    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5421                          NameInfo, IsTypeName);
5422  }
5423  D->setAccess(AS);
5424  CurContext->addDecl(D);
5425
5426  if (!LookupContext) return D;
5427  UsingDecl *UD = cast<UsingDecl>(D);
5428
5429  if (RequireCompleteDeclContext(SS, LookupContext)) {
5430    UD->setInvalidDecl();
5431    return UD;
5432  }
5433
5434  // Constructor inheriting using decls get special treatment.
5435  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5436    if (CheckInheritedConstructorUsingDecl(UD))
5437      UD->setInvalidDecl();
5438    return UD;
5439  }
5440
5441  // Otherwise, look up the target name.
5442
5443  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5444  R.setUsingDeclaration(true);
5445
5446  // Unlike most lookups, we don't always want to hide tag
5447  // declarations: tag names are visible through the using declaration
5448  // even if hidden by ordinary names, *except* in a dependent context
5449  // where it's important for the sanity of two-phase lookup.
5450  if (!IsInstantiation)
5451    R.setHideTags(false);
5452
5453  LookupQualifiedName(R, LookupContext);
5454
5455  if (R.empty()) {
5456    Diag(IdentLoc, diag::err_no_member)
5457      << NameInfo.getName() << LookupContext << SS.getRange();
5458    UD->setInvalidDecl();
5459    return UD;
5460  }
5461
5462  if (R.isAmbiguous()) {
5463    UD->setInvalidDecl();
5464    return UD;
5465  }
5466
5467  if (IsTypeName) {
5468    // If we asked for a typename and got a non-type decl, error out.
5469    if (!R.getAsSingle<TypeDecl>()) {
5470      Diag(IdentLoc, diag::err_using_typename_non_type);
5471      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5472        Diag((*I)->getUnderlyingDecl()->getLocation(),
5473             diag::note_using_decl_target);
5474      UD->setInvalidDecl();
5475      return UD;
5476    }
5477  } else {
5478    // If we asked for a non-typename and we got a type, error out,
5479    // but only if this is an instantiation of an unresolved using
5480    // decl.  Otherwise just silently find the type name.
5481    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5482      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5483      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5484      UD->setInvalidDecl();
5485      return UD;
5486    }
5487  }
5488
5489  // C++0x N2914 [namespace.udecl]p6:
5490  // A using-declaration shall not name a namespace.
5491  if (R.getAsSingle<NamespaceDecl>()) {
5492    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5493      << SS.getRange();
5494    UD->setInvalidDecl();
5495    return UD;
5496  }
5497
5498  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5499    if (!CheckUsingShadowDecl(UD, *I, Previous))
5500      BuildUsingShadowDecl(S, UD, *I);
5501  }
5502
5503  return UD;
5504}
5505
5506/// Additional checks for a using declaration referring to a constructor name.
5507bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5508  if (UD->isTypeName()) {
5509    // FIXME: Cannot specify typename when specifying constructor
5510    return true;
5511  }
5512
5513  const Type *SourceType = UD->getQualifier()->getAsType();
5514  assert(SourceType &&
5515         "Using decl naming constructor doesn't have type in scope spec.");
5516  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5517
5518  // Check whether the named type is a direct base class.
5519  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5520  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5521  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5522       BaseIt != BaseE; ++BaseIt) {
5523    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5524    if (CanonicalSourceType == BaseType)
5525      break;
5526  }
5527
5528  if (BaseIt == BaseE) {
5529    // Did not find SourceType in the bases.
5530    Diag(UD->getUsingLocation(),
5531         diag::err_using_decl_constructor_not_in_direct_base)
5532      << UD->getNameInfo().getSourceRange()
5533      << QualType(SourceType, 0) << TargetClass;
5534    return true;
5535  }
5536
5537  BaseIt->setInheritConstructors();
5538
5539  return false;
5540}
5541
5542/// Checks that the given using declaration is not an invalid
5543/// redeclaration.  Note that this is checking only for the using decl
5544/// itself, not for any ill-formedness among the UsingShadowDecls.
5545bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5546                                       bool isTypeName,
5547                                       const CXXScopeSpec &SS,
5548                                       SourceLocation NameLoc,
5549                                       const LookupResult &Prev) {
5550  // C++03 [namespace.udecl]p8:
5551  // C++0x [namespace.udecl]p10:
5552  //   A using-declaration is a declaration and can therefore be used
5553  //   repeatedly where (and only where) multiple declarations are
5554  //   allowed.
5555  //
5556  // That's in non-member contexts.
5557  if (!CurContext->getRedeclContext()->isRecord())
5558    return false;
5559
5560  NestedNameSpecifier *Qual
5561    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5562
5563  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5564    NamedDecl *D = *I;
5565
5566    bool DTypename;
5567    NestedNameSpecifier *DQual;
5568    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5569      DTypename = UD->isTypeName();
5570      DQual = UD->getQualifier();
5571    } else if (UnresolvedUsingValueDecl *UD
5572                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5573      DTypename = false;
5574      DQual = UD->getQualifier();
5575    } else if (UnresolvedUsingTypenameDecl *UD
5576                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5577      DTypename = true;
5578      DQual = UD->getQualifier();
5579    } else continue;
5580
5581    // using decls differ if one says 'typename' and the other doesn't.
5582    // FIXME: non-dependent using decls?
5583    if (isTypeName != DTypename) continue;
5584
5585    // using decls differ if they name different scopes (but note that
5586    // template instantiation can cause this check to trigger when it
5587    // didn't before instantiation).
5588    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5589        Context.getCanonicalNestedNameSpecifier(DQual))
5590      continue;
5591
5592    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5593    Diag(D->getLocation(), diag::note_using_decl) << 1;
5594    return true;
5595  }
5596
5597  return false;
5598}
5599
5600
5601/// Checks that the given nested-name qualifier used in a using decl
5602/// in the current context is appropriately related to the current
5603/// scope.  If an error is found, diagnoses it and returns true.
5604bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5605                                   const CXXScopeSpec &SS,
5606                                   SourceLocation NameLoc) {
5607  DeclContext *NamedContext = computeDeclContext(SS);
5608
5609  if (!CurContext->isRecord()) {
5610    // C++03 [namespace.udecl]p3:
5611    // C++0x [namespace.udecl]p8:
5612    //   A using-declaration for a class member shall be a member-declaration.
5613
5614    // If we weren't able to compute a valid scope, it must be a
5615    // dependent class scope.
5616    if (!NamedContext || NamedContext->isRecord()) {
5617      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5618        << SS.getRange();
5619      return true;
5620    }
5621
5622    // Otherwise, everything is known to be fine.
5623    return false;
5624  }
5625
5626  // The current scope is a record.
5627
5628  // If the named context is dependent, we can't decide much.
5629  if (!NamedContext) {
5630    // FIXME: in C++0x, we can diagnose if we can prove that the
5631    // nested-name-specifier does not refer to a base class, which is
5632    // still possible in some cases.
5633
5634    // Otherwise we have to conservatively report that things might be
5635    // okay.
5636    return false;
5637  }
5638
5639  if (!NamedContext->isRecord()) {
5640    // Ideally this would point at the last name in the specifier,
5641    // but we don't have that level of source info.
5642    Diag(SS.getRange().getBegin(),
5643         diag::err_using_decl_nested_name_specifier_is_not_class)
5644      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5645    return true;
5646  }
5647
5648  if (!NamedContext->isDependentContext() &&
5649      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5650    return true;
5651
5652  if (getLangOptions().CPlusPlus0x) {
5653    // C++0x [namespace.udecl]p3:
5654    //   In a using-declaration used as a member-declaration, the
5655    //   nested-name-specifier shall name a base class of the class
5656    //   being defined.
5657
5658    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5659                                 cast<CXXRecordDecl>(NamedContext))) {
5660      if (CurContext == NamedContext) {
5661        Diag(NameLoc,
5662             diag::err_using_decl_nested_name_specifier_is_current_class)
5663          << SS.getRange();
5664        return true;
5665      }
5666
5667      Diag(SS.getRange().getBegin(),
5668           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5669        << (NestedNameSpecifier*) SS.getScopeRep()
5670        << cast<CXXRecordDecl>(CurContext)
5671        << SS.getRange();
5672      return true;
5673    }
5674
5675    return false;
5676  }
5677
5678  // C++03 [namespace.udecl]p4:
5679  //   A using-declaration used as a member-declaration shall refer
5680  //   to a member of a base class of the class being defined [etc.].
5681
5682  // Salient point: SS doesn't have to name a base class as long as
5683  // lookup only finds members from base classes.  Therefore we can
5684  // diagnose here only if we can prove that that can't happen,
5685  // i.e. if the class hierarchies provably don't intersect.
5686
5687  // TODO: it would be nice if "definitely valid" results were cached
5688  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5689  // need to be repeated.
5690
5691  struct UserData {
5692    llvm::DenseSet<const CXXRecordDecl*> Bases;
5693
5694    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5695      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5696      Data->Bases.insert(Base);
5697      return true;
5698    }
5699
5700    bool hasDependentBases(const CXXRecordDecl *Class) {
5701      return !Class->forallBases(collect, this);
5702    }
5703
5704    /// Returns true if the base is dependent or is one of the
5705    /// accumulated base classes.
5706    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5707      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5708      return !Data->Bases.count(Base);
5709    }
5710
5711    bool mightShareBases(const CXXRecordDecl *Class) {
5712      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5713    }
5714  };
5715
5716  UserData Data;
5717
5718  // Returns false if we find a dependent base.
5719  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5720    return false;
5721
5722  // Returns false if the class has a dependent base or if it or one
5723  // of its bases is present in the base set of the current context.
5724  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5725    return false;
5726
5727  Diag(SS.getRange().getBegin(),
5728       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5729    << (NestedNameSpecifier*) SS.getScopeRep()
5730    << cast<CXXRecordDecl>(CurContext)
5731    << SS.getRange();
5732
5733  return true;
5734}
5735
5736Decl *Sema::ActOnAliasDeclaration(Scope *S,
5737                                  AccessSpecifier AS,
5738                                  MultiTemplateParamsArg TemplateParamLists,
5739                                  SourceLocation UsingLoc,
5740                                  UnqualifiedId &Name,
5741                                  TypeResult Type) {
5742  // Skip up to the relevant declaration scope.
5743  while (S->getFlags() & Scope::TemplateParamScope)
5744    S = S->getParent();
5745  assert((S->getFlags() & Scope::DeclScope) &&
5746         "got alias-declaration outside of declaration scope");
5747
5748  if (Type.isInvalid())
5749    return 0;
5750
5751  bool Invalid = false;
5752  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5753  TypeSourceInfo *TInfo = 0;
5754  GetTypeFromParser(Type.get(), &TInfo);
5755
5756  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5757    return 0;
5758
5759  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5760                                      UPPC_DeclarationType)) {
5761    Invalid = true;
5762    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5763                                             TInfo->getTypeLoc().getBeginLoc());
5764  }
5765
5766  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5767  LookupName(Previous, S);
5768
5769  // Warn about shadowing the name of a template parameter.
5770  if (Previous.isSingleResult() &&
5771      Previous.getFoundDecl()->isTemplateParameter()) {
5772    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5773                                        Previous.getFoundDecl()))
5774      Invalid = true;
5775    Previous.clear();
5776  }
5777
5778  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5779         "name in alias declaration must be an identifier");
5780  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5781                                               Name.StartLocation,
5782                                               Name.Identifier, TInfo);
5783
5784  NewTD->setAccess(AS);
5785
5786  if (Invalid)
5787    NewTD->setInvalidDecl();
5788
5789  CheckTypedefForVariablyModifiedType(S, NewTD);
5790  Invalid |= NewTD->isInvalidDecl();
5791
5792  bool Redeclaration = false;
5793
5794  NamedDecl *NewND;
5795  if (TemplateParamLists.size()) {
5796    TypeAliasTemplateDecl *OldDecl = 0;
5797    TemplateParameterList *OldTemplateParams = 0;
5798
5799    if (TemplateParamLists.size() != 1) {
5800      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5801        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5802         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5803    }
5804    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5805
5806    // Only consider previous declarations in the same scope.
5807    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5808                         /*ExplicitInstantiationOrSpecialization*/false);
5809    if (!Previous.empty()) {
5810      Redeclaration = true;
5811
5812      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5813      if (!OldDecl && !Invalid) {
5814        Diag(UsingLoc, diag::err_redefinition_different_kind)
5815          << Name.Identifier;
5816
5817        NamedDecl *OldD = Previous.getRepresentativeDecl();
5818        if (OldD->getLocation().isValid())
5819          Diag(OldD->getLocation(), diag::note_previous_definition);
5820
5821        Invalid = true;
5822      }
5823
5824      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5825        if (TemplateParameterListsAreEqual(TemplateParams,
5826                                           OldDecl->getTemplateParameters(),
5827                                           /*Complain=*/true,
5828                                           TPL_TemplateMatch))
5829          OldTemplateParams = OldDecl->getTemplateParameters();
5830        else
5831          Invalid = true;
5832
5833        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5834        if (!Invalid &&
5835            !Context.hasSameType(OldTD->getUnderlyingType(),
5836                                 NewTD->getUnderlyingType())) {
5837          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5838          // but we can't reasonably accept it.
5839          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5840            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5841          if (OldTD->getLocation().isValid())
5842            Diag(OldTD->getLocation(), diag::note_previous_definition);
5843          Invalid = true;
5844        }
5845      }
5846    }
5847
5848    // Merge any previous default template arguments into our parameters,
5849    // and check the parameter list.
5850    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5851                                   TPC_TypeAliasTemplate))
5852      return 0;
5853
5854    TypeAliasTemplateDecl *NewDecl =
5855      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5856                                    Name.Identifier, TemplateParams,
5857                                    NewTD);
5858
5859    NewDecl->setAccess(AS);
5860
5861    if (Invalid)
5862      NewDecl->setInvalidDecl();
5863    else if (OldDecl)
5864      NewDecl->setPreviousDeclaration(OldDecl);
5865
5866    NewND = NewDecl;
5867  } else {
5868    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5869    NewND = NewTD;
5870  }
5871
5872  if (!Redeclaration)
5873    PushOnScopeChains(NewND, S);
5874
5875  return NewND;
5876}
5877
5878Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5879                                             SourceLocation NamespaceLoc,
5880                                             SourceLocation AliasLoc,
5881                                             IdentifierInfo *Alias,
5882                                             CXXScopeSpec &SS,
5883                                             SourceLocation IdentLoc,
5884                                             IdentifierInfo *Ident) {
5885
5886  // Lookup the namespace name.
5887  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5888  LookupParsedName(R, S, &SS);
5889
5890  // Check if we have a previous declaration with the same name.
5891  NamedDecl *PrevDecl
5892    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5893                       ForRedeclaration);
5894  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5895    PrevDecl = 0;
5896
5897  if (PrevDecl) {
5898    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5899      // We already have an alias with the same name that points to the same
5900      // namespace, so don't create a new one.
5901      // FIXME: At some point, we'll want to create the (redundant)
5902      // declaration to maintain better source information.
5903      if (!R.isAmbiguous() && !R.empty() &&
5904          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5905        return 0;
5906    }
5907
5908    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5909      diag::err_redefinition_different_kind;
5910    Diag(AliasLoc, DiagID) << Alias;
5911    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5912    return 0;
5913  }
5914
5915  if (R.isAmbiguous())
5916    return 0;
5917
5918  if (R.empty()) {
5919    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5920                                                CTC_NoKeywords, 0)) {
5921      if (R.getAsSingle<NamespaceDecl>() ||
5922          R.getAsSingle<NamespaceAliasDecl>()) {
5923        if (DeclContext *DC = computeDeclContext(SS, false))
5924          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5925            << Ident << DC << Corrected << SS.getRange()
5926            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5927        else
5928          Diag(IdentLoc, diag::err_using_directive_suggest)
5929            << Ident << Corrected
5930            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5931
5932        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5933          << Corrected;
5934
5935        Ident = Corrected.getAsIdentifierInfo();
5936      } else {
5937        R.clear();
5938        R.setLookupName(Ident);
5939      }
5940    }
5941
5942    if (R.empty()) {
5943      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5944      return 0;
5945    }
5946  }
5947
5948  NamespaceAliasDecl *AliasDecl =
5949    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5950                               Alias, SS.getWithLocInContext(Context),
5951                               IdentLoc, R.getFoundDecl());
5952
5953  PushOnScopeChains(AliasDecl, S);
5954  return AliasDecl;
5955}
5956
5957namespace {
5958  /// \brief Scoped object used to handle the state changes required in Sema
5959  /// to implicitly define the body of a C++ member function;
5960  class ImplicitlyDefinedFunctionScope {
5961    Sema &S;
5962    Sema::ContextRAII SavedContext;
5963
5964  public:
5965    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5966      : S(S), SavedContext(S, Method)
5967    {
5968      S.PushFunctionScope();
5969      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5970    }
5971
5972    ~ImplicitlyDefinedFunctionScope() {
5973      S.PopExpressionEvaluationContext();
5974      S.PopFunctionOrBlockScope();
5975    }
5976  };
5977}
5978
5979Sema::ImplicitExceptionSpecification
5980Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5981  // C++ [except.spec]p14:
5982  //   An implicitly declared special member function (Clause 12) shall have an
5983  //   exception-specification. [...]
5984  ImplicitExceptionSpecification ExceptSpec(Context);
5985
5986  // Direct base-class constructors.
5987  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5988                                       BEnd = ClassDecl->bases_end();
5989       B != BEnd; ++B) {
5990    if (B->isVirtual()) // Handled below.
5991      continue;
5992
5993    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5994      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5995      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5996      // If this is a deleted function, add it anyway. This might be conformant
5997      // with the standard. This might not. I'm not sure. It might not matter.
5998      if (Constructor)
5999        ExceptSpec.CalledDecl(Constructor);
6000    }
6001  }
6002
6003  // Virtual base-class constructors.
6004  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6005                                       BEnd = ClassDecl->vbases_end();
6006       B != BEnd; ++B) {
6007    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6008      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6009      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6010      // If this is a deleted function, add it anyway. This might be conformant
6011      // with the standard. This might not. I'm not sure. It might not matter.
6012      if (Constructor)
6013        ExceptSpec.CalledDecl(Constructor);
6014    }
6015  }
6016
6017  // Field constructors.
6018  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6019                               FEnd = ClassDecl->field_end();
6020       F != FEnd; ++F) {
6021    if (F->hasInClassInitializer()) {
6022      if (Expr *E = F->getInClassInitializer())
6023        ExceptSpec.CalledExpr(E);
6024      else if (!F->isInvalidDecl())
6025        ExceptSpec.SetDelayed();
6026    } else if (const RecordType *RecordTy
6027              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6028      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6029      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6030      // If this is a deleted function, add it anyway. This might be conformant
6031      // with the standard. This might not. I'm not sure. It might not matter.
6032      // In particular, the problem is that this function never gets called. It
6033      // might just be ill-formed because this function attempts to refer to
6034      // a deleted function here.
6035      if (Constructor)
6036        ExceptSpec.CalledDecl(Constructor);
6037    }
6038  }
6039
6040  return ExceptSpec;
6041}
6042
6043CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6044                                                     CXXRecordDecl *ClassDecl) {
6045  // C++ [class.ctor]p5:
6046  //   A default constructor for a class X is a constructor of class X
6047  //   that can be called without an argument. If there is no
6048  //   user-declared constructor for class X, a default constructor is
6049  //   implicitly declared. An implicitly-declared default constructor
6050  //   is an inline public member of its class.
6051  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6052         "Should not build implicit default constructor!");
6053
6054  ImplicitExceptionSpecification Spec =
6055    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6056  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6057
6058  // Create the actual constructor declaration.
6059  CanQualType ClassType
6060    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6061  SourceLocation ClassLoc = ClassDecl->getLocation();
6062  DeclarationName Name
6063    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6064  DeclarationNameInfo NameInfo(Name, ClassLoc);
6065  CXXConstructorDecl *DefaultCon
6066    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6067                                 Context.getFunctionType(Context.VoidTy,
6068                                                         0, 0, EPI),
6069                                 /*TInfo=*/0,
6070                                 /*isExplicit=*/false,
6071                                 /*isInline=*/true,
6072                                 /*isImplicitlyDeclared=*/true);
6073  DefaultCon->setAccess(AS_public);
6074  DefaultCon->setDefaulted();
6075  DefaultCon->setImplicit();
6076  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6077
6078  // Note that we have declared this constructor.
6079  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6080
6081  if (Scope *S = getScopeForContext(ClassDecl))
6082    PushOnScopeChains(DefaultCon, S, false);
6083  ClassDecl->addDecl(DefaultCon);
6084
6085  if (ShouldDeleteDefaultConstructor(DefaultCon))
6086    DefaultCon->setDeletedAsWritten();
6087
6088  return DefaultCon;
6089}
6090
6091void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6092                                            CXXConstructorDecl *Constructor) {
6093  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6094          !Constructor->doesThisDeclarationHaveABody() &&
6095          !Constructor->isDeleted()) &&
6096    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6097
6098  CXXRecordDecl *ClassDecl = Constructor->getParent();
6099  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6100
6101  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6102  DiagnosticErrorTrap Trap(Diags);
6103  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6104      Trap.hasErrorOccurred()) {
6105    Diag(CurrentLocation, diag::note_member_synthesized_at)
6106      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6107    Constructor->setInvalidDecl();
6108    return;
6109  }
6110
6111  SourceLocation Loc = Constructor->getLocation();
6112  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6113
6114  Constructor->setUsed();
6115  MarkVTableUsed(CurrentLocation, ClassDecl);
6116
6117  if (ASTMutationListener *L = getASTMutationListener()) {
6118    L->CompletedImplicitDefinition(Constructor);
6119  }
6120}
6121
6122/// Get any existing defaulted default constructor for the given class. Do not
6123/// implicitly define one if it does not exist.
6124static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6125                                                             CXXRecordDecl *D) {
6126  ASTContext &Context = Self.Context;
6127  QualType ClassType = Context.getTypeDeclType(D);
6128  DeclarationName ConstructorName
6129    = Context.DeclarationNames.getCXXConstructorName(
6130                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6131
6132  DeclContext::lookup_const_iterator Con, ConEnd;
6133  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6134       Con != ConEnd; ++Con) {
6135    // A function template cannot be defaulted.
6136    if (isa<FunctionTemplateDecl>(*Con))
6137      continue;
6138
6139    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6140    if (Constructor->isDefaultConstructor())
6141      return Constructor->isDefaulted() ? Constructor : 0;
6142  }
6143  return 0;
6144}
6145
6146void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6147  if (!D) return;
6148  AdjustDeclIfTemplate(D);
6149
6150  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6151  CXXConstructorDecl *CtorDecl
6152    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6153
6154  if (!CtorDecl) return;
6155
6156  // Compute the exception specification for the default constructor.
6157  const FunctionProtoType *CtorTy =
6158    CtorDecl->getType()->castAs<FunctionProtoType>();
6159  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6160    ImplicitExceptionSpecification Spec =
6161      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6162    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6163    assert(EPI.ExceptionSpecType != EST_Delayed);
6164
6165    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6166  }
6167
6168  // If the default constructor is explicitly defaulted, checking the exception
6169  // specification is deferred until now.
6170  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6171      !ClassDecl->isDependentType())
6172    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6173}
6174
6175void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6176  // We start with an initial pass over the base classes to collect those that
6177  // inherit constructors from. If there are none, we can forgo all further
6178  // processing.
6179  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6180  BasesVector BasesToInheritFrom;
6181  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6182                                          BaseE = ClassDecl->bases_end();
6183         BaseIt != BaseE; ++BaseIt) {
6184    if (BaseIt->getInheritConstructors()) {
6185      QualType Base = BaseIt->getType();
6186      if (Base->isDependentType()) {
6187        // If we inherit constructors from anything that is dependent, just
6188        // abort processing altogether. We'll get another chance for the
6189        // instantiations.
6190        return;
6191      }
6192      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6193    }
6194  }
6195  if (BasesToInheritFrom.empty())
6196    return;
6197
6198  // Now collect the constructors that we already have in the current class.
6199  // Those take precedence over inherited constructors.
6200  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6201  //   unless there is a user-declared constructor with the same signature in
6202  //   the class where the using-declaration appears.
6203  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6204  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6205                                    CtorE = ClassDecl->ctor_end();
6206       CtorIt != CtorE; ++CtorIt) {
6207    ExistingConstructors.insert(
6208        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6209  }
6210
6211  Scope *S = getScopeForContext(ClassDecl);
6212  DeclarationName CreatedCtorName =
6213      Context.DeclarationNames.getCXXConstructorName(
6214          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6215
6216  // Now comes the true work.
6217  // First, we keep a map from constructor types to the base that introduced
6218  // them. Needed for finding conflicting constructors. We also keep the
6219  // actually inserted declarations in there, for pretty diagnostics.
6220  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6221  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6222  ConstructorToSourceMap InheritedConstructors;
6223  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6224                             BaseE = BasesToInheritFrom.end();
6225       BaseIt != BaseE; ++BaseIt) {
6226    const RecordType *Base = *BaseIt;
6227    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6228    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6229    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6230                                      CtorE = BaseDecl->ctor_end();
6231         CtorIt != CtorE; ++CtorIt) {
6232      // Find the using declaration for inheriting this base's constructors.
6233      DeclarationName Name =
6234          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6235      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6236          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6237      SourceLocation UsingLoc = UD ? UD->getLocation() :
6238                                     ClassDecl->getLocation();
6239
6240      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6241      //   from the class X named in the using-declaration consists of actual
6242      //   constructors and notional constructors that result from the
6243      //   transformation of defaulted parameters as follows:
6244      //   - all non-template default constructors of X, and
6245      //   - for each non-template constructor of X that has at least one
6246      //     parameter with a default argument, the set of constructors that
6247      //     results from omitting any ellipsis parameter specification and
6248      //     successively omitting parameters with a default argument from the
6249      //     end of the parameter-type-list.
6250      CXXConstructorDecl *BaseCtor = *CtorIt;
6251      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6252      const FunctionProtoType *BaseCtorType =
6253          BaseCtor->getType()->getAs<FunctionProtoType>();
6254
6255      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6256                    maxParams = BaseCtor->getNumParams();
6257           params <= maxParams; ++params) {
6258        // Skip default constructors. They're never inherited.
6259        if (params == 0)
6260          continue;
6261        // Skip copy and move constructors for the same reason.
6262        if (CanBeCopyOrMove && params == 1)
6263          continue;
6264
6265        // Build up a function type for this particular constructor.
6266        // FIXME: The working paper does not consider that the exception spec
6267        // for the inheriting constructor might be larger than that of the
6268        // source. This code doesn't yet, either. When it does, this code will
6269        // need to be delayed until after exception specifications and in-class
6270        // member initializers are attached.
6271        const Type *NewCtorType;
6272        if (params == maxParams)
6273          NewCtorType = BaseCtorType;
6274        else {
6275          llvm::SmallVector<QualType, 16> Args;
6276          for (unsigned i = 0; i < params; ++i) {
6277            Args.push_back(BaseCtorType->getArgType(i));
6278          }
6279          FunctionProtoType::ExtProtoInfo ExtInfo =
6280              BaseCtorType->getExtProtoInfo();
6281          ExtInfo.Variadic = false;
6282          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6283                                                Args.data(), params, ExtInfo)
6284                       .getTypePtr();
6285        }
6286        const Type *CanonicalNewCtorType =
6287            Context.getCanonicalType(NewCtorType);
6288
6289        // Now that we have the type, first check if the class already has a
6290        // constructor with this signature.
6291        if (ExistingConstructors.count(CanonicalNewCtorType))
6292          continue;
6293
6294        // Then we check if we have already declared an inherited constructor
6295        // with this signature.
6296        std::pair<ConstructorToSourceMap::iterator, bool> result =
6297            InheritedConstructors.insert(std::make_pair(
6298                CanonicalNewCtorType,
6299                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6300        if (!result.second) {
6301          // Already in the map. If it came from a different class, that's an
6302          // error. Not if it's from the same.
6303          CanQualType PreviousBase = result.first->second.first;
6304          if (CanonicalBase != PreviousBase) {
6305            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6306            const CXXConstructorDecl *PrevBaseCtor =
6307                PrevCtor->getInheritedConstructor();
6308            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6309
6310            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6311            Diag(BaseCtor->getLocation(),
6312                 diag::note_using_decl_constructor_conflict_current_ctor);
6313            Diag(PrevBaseCtor->getLocation(),
6314                 diag::note_using_decl_constructor_conflict_previous_ctor);
6315            Diag(PrevCtor->getLocation(),
6316                 diag::note_using_decl_constructor_conflict_previous_using);
6317          }
6318          continue;
6319        }
6320
6321        // OK, we're there, now add the constructor.
6322        // C++0x [class.inhctor]p8: [...] that would be performed by a
6323        //   user-writtern inline constructor [...]
6324        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6325        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6326            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6327            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6328            /*ImplicitlyDeclared=*/true);
6329        NewCtor->setAccess(BaseCtor->getAccess());
6330
6331        // Build up the parameter decls and add them.
6332        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6333        for (unsigned i = 0; i < params; ++i) {
6334          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6335                                                   UsingLoc, UsingLoc,
6336                                                   /*IdentifierInfo=*/0,
6337                                                   BaseCtorType->getArgType(i),
6338                                                   /*TInfo=*/0, SC_None,
6339                                                   SC_None, /*DefaultArg=*/0));
6340        }
6341        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6342        NewCtor->setInheritedConstructor(BaseCtor);
6343
6344        PushOnScopeChains(NewCtor, S, false);
6345        ClassDecl->addDecl(NewCtor);
6346        result.first->second.second = NewCtor;
6347      }
6348    }
6349  }
6350}
6351
6352Sema::ImplicitExceptionSpecification
6353Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6354  // C++ [except.spec]p14:
6355  //   An implicitly declared special member function (Clause 12) shall have
6356  //   an exception-specification.
6357  ImplicitExceptionSpecification ExceptSpec(Context);
6358
6359  // Direct base-class destructors.
6360  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6361                                       BEnd = ClassDecl->bases_end();
6362       B != BEnd; ++B) {
6363    if (B->isVirtual()) // Handled below.
6364      continue;
6365
6366    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6367      ExceptSpec.CalledDecl(
6368                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6369  }
6370
6371  // Virtual base-class destructors.
6372  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6373                                       BEnd = ClassDecl->vbases_end();
6374       B != BEnd; ++B) {
6375    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6376      ExceptSpec.CalledDecl(
6377                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6378  }
6379
6380  // Field destructors.
6381  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6382                               FEnd = ClassDecl->field_end();
6383       F != FEnd; ++F) {
6384    if (const RecordType *RecordTy
6385        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6386      ExceptSpec.CalledDecl(
6387                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6388  }
6389
6390  return ExceptSpec;
6391}
6392
6393CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6394  // C++ [class.dtor]p2:
6395  //   If a class has no user-declared destructor, a destructor is
6396  //   declared implicitly. An implicitly-declared destructor is an
6397  //   inline public member of its class.
6398
6399  ImplicitExceptionSpecification Spec =
6400      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6401  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6402
6403  // Create the actual destructor declaration.
6404  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6405
6406  CanQualType ClassType
6407    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6408  SourceLocation ClassLoc = ClassDecl->getLocation();
6409  DeclarationName Name
6410    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6411  DeclarationNameInfo NameInfo(Name, ClassLoc);
6412  CXXDestructorDecl *Destructor
6413      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6414                                  /*isInline=*/true,
6415                                  /*isImplicitlyDeclared=*/true);
6416  Destructor->setAccess(AS_public);
6417  Destructor->setDefaulted();
6418  Destructor->setImplicit();
6419  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6420
6421  // Note that we have declared this destructor.
6422  ++ASTContext::NumImplicitDestructorsDeclared;
6423
6424  // Introduce this destructor into its scope.
6425  if (Scope *S = getScopeForContext(ClassDecl))
6426    PushOnScopeChains(Destructor, S, false);
6427  ClassDecl->addDecl(Destructor);
6428
6429  // This could be uniqued if it ever proves significant.
6430  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6431
6432  if (ShouldDeleteDestructor(Destructor))
6433    Destructor->setDeletedAsWritten();
6434
6435  AddOverriddenMethods(ClassDecl, Destructor);
6436
6437  return Destructor;
6438}
6439
6440void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6441                                    CXXDestructorDecl *Destructor) {
6442  assert((Destructor->isDefaulted() &&
6443          !Destructor->doesThisDeclarationHaveABody()) &&
6444         "DefineImplicitDestructor - call it for implicit default dtor");
6445  CXXRecordDecl *ClassDecl = Destructor->getParent();
6446  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6447
6448  if (Destructor->isInvalidDecl())
6449    return;
6450
6451  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6452
6453  DiagnosticErrorTrap Trap(Diags);
6454  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6455                                         Destructor->getParent());
6456
6457  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6458    Diag(CurrentLocation, diag::note_member_synthesized_at)
6459      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6460
6461    Destructor->setInvalidDecl();
6462    return;
6463  }
6464
6465  SourceLocation Loc = Destructor->getLocation();
6466  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6467
6468  Destructor->setUsed();
6469  MarkVTableUsed(CurrentLocation, ClassDecl);
6470
6471  if (ASTMutationListener *L = getASTMutationListener()) {
6472    L->CompletedImplicitDefinition(Destructor);
6473  }
6474}
6475
6476void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6477                                         CXXDestructorDecl *destructor) {
6478  // C++11 [class.dtor]p3:
6479  //   A declaration of a destructor that does not have an exception-
6480  //   specification is implicitly considered to have the same exception-
6481  //   specification as an implicit declaration.
6482  const FunctionProtoType *dtorType = destructor->getType()->
6483                                        getAs<FunctionProtoType>();
6484  if (dtorType->hasExceptionSpec())
6485    return;
6486
6487  ImplicitExceptionSpecification exceptSpec =
6488      ComputeDefaultedDtorExceptionSpec(classDecl);
6489
6490  // Replace the destructor's type.
6491  FunctionProtoType::ExtProtoInfo epi;
6492  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6493  epi.NumExceptions = exceptSpec.size();
6494  epi.Exceptions = exceptSpec.data();
6495  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6496
6497  destructor->setType(ty);
6498
6499  // FIXME: If the destructor has a body that could throw, and the newly created
6500  // spec doesn't allow exceptions, we should emit a warning, because this
6501  // change in behavior can break conforming C++03 programs at runtime.
6502  // However, we don't have a body yet, so it needs to be done somewhere else.
6503}
6504
6505/// \brief Builds a statement that copies the given entity from \p From to
6506/// \c To.
6507///
6508/// This routine is used to copy the members of a class with an
6509/// implicitly-declared copy assignment operator. When the entities being
6510/// copied are arrays, this routine builds for loops to copy them.
6511///
6512/// \param S The Sema object used for type-checking.
6513///
6514/// \param Loc The location where the implicit copy is being generated.
6515///
6516/// \param T The type of the expressions being copied. Both expressions must
6517/// have this type.
6518///
6519/// \param To The expression we are copying to.
6520///
6521/// \param From The expression we are copying from.
6522///
6523/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6524/// Otherwise, it's a non-static member subobject.
6525///
6526/// \param Depth Internal parameter recording the depth of the recursion.
6527///
6528/// \returns A statement or a loop that copies the expressions.
6529static StmtResult
6530BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6531                      Expr *To, Expr *From,
6532                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6533  // C++0x [class.copy]p30:
6534  //   Each subobject is assigned in the manner appropriate to its type:
6535  //
6536  //     - if the subobject is of class type, the copy assignment operator
6537  //       for the class is used (as if by explicit qualification; that is,
6538  //       ignoring any possible virtual overriding functions in more derived
6539  //       classes);
6540  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6541    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6542
6543    // Look for operator=.
6544    DeclarationName Name
6545      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6546    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6547    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6548
6549    // Filter out any result that isn't a copy-assignment operator.
6550    LookupResult::Filter F = OpLookup.makeFilter();
6551    while (F.hasNext()) {
6552      NamedDecl *D = F.next();
6553      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6554        if (Method->isCopyAssignmentOperator())
6555          continue;
6556
6557      F.erase();
6558    }
6559    F.done();
6560
6561    // Suppress the protected check (C++ [class.protected]) for each of the
6562    // assignment operators we found. This strange dance is required when
6563    // we're assigning via a base classes's copy-assignment operator. To
6564    // ensure that we're getting the right base class subobject (without
6565    // ambiguities), we need to cast "this" to that subobject type; to
6566    // ensure that we don't go through the virtual call mechanism, we need
6567    // to qualify the operator= name with the base class (see below). However,
6568    // this means that if the base class has a protected copy assignment
6569    // operator, the protected member access check will fail. So, we
6570    // rewrite "protected" access to "public" access in this case, since we
6571    // know by construction that we're calling from a derived class.
6572    if (CopyingBaseSubobject) {
6573      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6574           L != LEnd; ++L) {
6575        if (L.getAccess() == AS_protected)
6576          L.setAccess(AS_public);
6577      }
6578    }
6579
6580    // Create the nested-name-specifier that will be used to qualify the
6581    // reference to operator=; this is required to suppress the virtual
6582    // call mechanism.
6583    CXXScopeSpec SS;
6584    SS.MakeTrivial(S.Context,
6585                   NestedNameSpecifier::Create(S.Context, 0, false,
6586                                               T.getTypePtr()),
6587                   Loc);
6588
6589    // Create the reference to operator=.
6590    ExprResult OpEqualRef
6591      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6592                                   /*FirstQualifierInScope=*/0, OpLookup,
6593                                   /*TemplateArgs=*/0,
6594                                   /*SuppressQualifierCheck=*/true);
6595    if (OpEqualRef.isInvalid())
6596      return StmtError();
6597
6598    // Build the call to the assignment operator.
6599
6600    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6601                                                  OpEqualRef.takeAs<Expr>(),
6602                                                  Loc, &From, 1, Loc);
6603    if (Call.isInvalid())
6604      return StmtError();
6605
6606    return S.Owned(Call.takeAs<Stmt>());
6607  }
6608
6609  //     - if the subobject is of scalar type, the built-in assignment
6610  //       operator is used.
6611  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6612  if (!ArrayTy) {
6613    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6614    if (Assignment.isInvalid())
6615      return StmtError();
6616
6617    return S.Owned(Assignment.takeAs<Stmt>());
6618  }
6619
6620  //     - if the subobject is an array, each element is assigned, in the
6621  //       manner appropriate to the element type;
6622
6623  // Construct a loop over the array bounds, e.g.,
6624  //
6625  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6626  //
6627  // that will copy each of the array elements.
6628  QualType SizeType = S.Context.getSizeType();
6629
6630  // Create the iteration variable.
6631  IdentifierInfo *IterationVarName = 0;
6632  {
6633    llvm::SmallString<8> Str;
6634    llvm::raw_svector_ostream OS(Str);
6635    OS << "__i" << Depth;
6636    IterationVarName = &S.Context.Idents.get(OS.str());
6637  }
6638  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6639                                          IterationVarName, SizeType,
6640                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6641                                          SC_None, SC_None);
6642
6643  // Initialize the iteration variable to zero.
6644  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6645  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6646
6647  // Create a reference to the iteration variable; we'll use this several
6648  // times throughout.
6649  Expr *IterationVarRef
6650    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6651  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6652
6653  // Create the DeclStmt that holds the iteration variable.
6654  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6655
6656  // Create the comparison against the array bound.
6657  llvm::APInt Upper
6658    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6659  Expr *Comparison
6660    = new (S.Context) BinaryOperator(IterationVarRef,
6661                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6662                                     BO_NE, S.Context.BoolTy,
6663                                     VK_RValue, OK_Ordinary, Loc);
6664
6665  // Create the pre-increment of the iteration variable.
6666  Expr *Increment
6667    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6668                                    VK_LValue, OK_Ordinary, Loc);
6669
6670  // Subscript the "from" and "to" expressions with the iteration variable.
6671  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6672                                                         IterationVarRef, Loc));
6673  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6674                                                       IterationVarRef, Loc));
6675
6676  // Build the copy for an individual element of the array.
6677  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6678                                          To, From, CopyingBaseSubobject,
6679                                          Depth + 1);
6680  if (Copy.isInvalid())
6681    return StmtError();
6682
6683  // Construct the loop that copies all elements of this array.
6684  return S.ActOnForStmt(Loc, Loc, InitStmt,
6685                        S.MakeFullExpr(Comparison),
6686                        0, S.MakeFullExpr(Increment),
6687                        Loc, Copy.take());
6688}
6689
6690/// \brief Determine whether the given class has a copy assignment operator
6691/// that accepts a const-qualified argument.
6692static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6693  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6694
6695  if (!Class->hasDeclaredCopyAssignment())
6696    S.DeclareImplicitCopyAssignment(Class);
6697
6698  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6699  DeclarationName OpName
6700    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6701
6702  DeclContext::lookup_const_iterator Op, OpEnd;
6703  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6704    // C++ [class.copy]p9:
6705    //   A user-declared copy assignment operator is a non-static non-template
6706    //   member function of class X with exactly one parameter of type X, X&,
6707    //   const X&, volatile X& or const volatile X&.
6708    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6709    if (!Method)
6710      continue;
6711
6712    if (Method->isStatic())
6713      continue;
6714    if (Method->getPrimaryTemplate())
6715      continue;
6716    const FunctionProtoType *FnType =
6717    Method->getType()->getAs<FunctionProtoType>();
6718    assert(FnType && "Overloaded operator has no prototype.");
6719    // Don't assert on this; an invalid decl might have been left in the AST.
6720    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6721      continue;
6722    bool AcceptsConst = true;
6723    QualType ArgType = FnType->getArgType(0);
6724    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6725      ArgType = Ref->getPointeeType();
6726      // Is it a non-const lvalue reference?
6727      if (!ArgType.isConstQualified())
6728        AcceptsConst = false;
6729    }
6730    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6731      continue;
6732
6733    // We have a single argument of type cv X or cv X&, i.e. we've found the
6734    // copy assignment operator. Return whether it accepts const arguments.
6735    return AcceptsConst;
6736  }
6737  assert(Class->isInvalidDecl() &&
6738         "No copy assignment operator declared in valid code.");
6739  return false;
6740}
6741
6742std::pair<Sema::ImplicitExceptionSpecification, bool>
6743Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6744                                                   CXXRecordDecl *ClassDecl) {
6745  // C++ [class.copy]p10:
6746  //   If the class definition does not explicitly declare a copy
6747  //   assignment operator, one is declared implicitly.
6748  //   The implicitly-defined copy assignment operator for a class X
6749  //   will have the form
6750  //
6751  //       X& X::operator=(const X&)
6752  //
6753  //   if
6754  bool HasConstCopyAssignment = true;
6755
6756  //       -- each direct base class B of X has a copy assignment operator
6757  //          whose parameter is of type const B&, const volatile B& or B,
6758  //          and
6759  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6760                                       BaseEnd = ClassDecl->bases_end();
6761       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6762    assert(!Base->getType()->isDependentType() &&
6763           "Cannot generate implicit members for class with dependent bases.");
6764    const CXXRecordDecl *BaseClassDecl
6765      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6766    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6767  }
6768
6769  //       -- for all the nonstatic data members of X that are of a class
6770  //          type M (or array thereof), each such class type has a copy
6771  //          assignment operator whose parameter is of type const M&,
6772  //          const volatile M& or M.
6773  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6774                                  FieldEnd = ClassDecl->field_end();
6775       HasConstCopyAssignment && Field != FieldEnd;
6776       ++Field) {
6777    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6778    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6779      const CXXRecordDecl *FieldClassDecl
6780        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6781      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6782    }
6783  }
6784
6785  //   Otherwise, the implicitly declared copy assignment operator will
6786  //   have the form
6787  //
6788  //       X& X::operator=(X&)
6789
6790  // C++ [except.spec]p14:
6791  //   An implicitly declared special member function (Clause 12) shall have an
6792  //   exception-specification. [...]
6793  ImplicitExceptionSpecification ExceptSpec(Context);
6794  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6795                                       BaseEnd = ClassDecl->bases_end();
6796       Base != BaseEnd; ++Base) {
6797    CXXRecordDecl *BaseClassDecl
6798      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6799
6800    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6801      DeclareImplicitCopyAssignment(BaseClassDecl);
6802
6803    if (CXXMethodDecl *CopyAssign
6804           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6805      ExceptSpec.CalledDecl(CopyAssign);
6806  }
6807  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6808                                  FieldEnd = ClassDecl->field_end();
6809       Field != FieldEnd;
6810       ++Field) {
6811    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6812    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6813      CXXRecordDecl *FieldClassDecl
6814        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6815
6816      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6817        DeclareImplicitCopyAssignment(FieldClassDecl);
6818
6819      if (CXXMethodDecl *CopyAssign
6820            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6821        ExceptSpec.CalledDecl(CopyAssign);
6822    }
6823  }
6824
6825  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6826}
6827
6828CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6829  // Note: The following rules are largely analoguous to the copy
6830  // constructor rules. Note that virtual bases are not taken into account
6831  // for determining the argument type of the operator. Note also that
6832  // operators taking an object instead of a reference are allowed.
6833
6834  ImplicitExceptionSpecification Spec(Context);
6835  bool Const;
6836  llvm::tie(Spec, Const) =
6837    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6838
6839  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6840  QualType RetType = Context.getLValueReferenceType(ArgType);
6841  if (Const)
6842    ArgType = ArgType.withConst();
6843  ArgType = Context.getLValueReferenceType(ArgType);
6844
6845  //   An implicitly-declared copy assignment operator is an inline public
6846  //   member of its class.
6847  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6848  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6849  SourceLocation ClassLoc = ClassDecl->getLocation();
6850  DeclarationNameInfo NameInfo(Name, ClassLoc);
6851  CXXMethodDecl *CopyAssignment
6852    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6853                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6854                            /*TInfo=*/0, /*isStatic=*/false,
6855                            /*StorageClassAsWritten=*/SC_None,
6856                            /*isInline=*/true,
6857                            SourceLocation());
6858  CopyAssignment->setAccess(AS_public);
6859  CopyAssignment->setDefaulted();
6860  CopyAssignment->setImplicit();
6861  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6862
6863  // Add the parameter to the operator.
6864  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6865                                               ClassLoc, ClassLoc, /*Id=*/0,
6866                                               ArgType, /*TInfo=*/0,
6867                                               SC_None,
6868                                               SC_None, 0);
6869  CopyAssignment->setParams(&FromParam, 1);
6870
6871  // Note that we have added this copy-assignment operator.
6872  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6873
6874  if (Scope *S = getScopeForContext(ClassDecl))
6875    PushOnScopeChains(CopyAssignment, S, false);
6876  ClassDecl->addDecl(CopyAssignment);
6877
6878  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6879    CopyAssignment->setDeletedAsWritten();
6880
6881  AddOverriddenMethods(ClassDecl, CopyAssignment);
6882  return CopyAssignment;
6883}
6884
6885void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6886                                        CXXMethodDecl *CopyAssignOperator) {
6887  assert((CopyAssignOperator->isDefaulted() &&
6888          CopyAssignOperator->isOverloadedOperator() &&
6889          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6890          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6891         "DefineImplicitCopyAssignment called for wrong function");
6892
6893  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6894
6895  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6896    CopyAssignOperator->setInvalidDecl();
6897    return;
6898  }
6899
6900  CopyAssignOperator->setUsed();
6901
6902  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6903  DiagnosticErrorTrap Trap(Diags);
6904
6905  // C++0x [class.copy]p30:
6906  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6907  //   for a non-union class X performs memberwise copy assignment of its
6908  //   subobjects. The direct base classes of X are assigned first, in the
6909  //   order of their declaration in the base-specifier-list, and then the
6910  //   immediate non-static data members of X are assigned, in the order in
6911  //   which they were declared in the class definition.
6912
6913  // The statements that form the synthesized function body.
6914  ASTOwningVector<Stmt*> Statements(*this);
6915
6916  // The parameter for the "other" object, which we are copying from.
6917  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6918  Qualifiers OtherQuals = Other->getType().getQualifiers();
6919  QualType OtherRefType = Other->getType();
6920  if (const LValueReferenceType *OtherRef
6921                                = OtherRefType->getAs<LValueReferenceType>()) {
6922    OtherRefType = OtherRef->getPointeeType();
6923    OtherQuals = OtherRefType.getQualifiers();
6924  }
6925
6926  // Our location for everything implicitly-generated.
6927  SourceLocation Loc = CopyAssignOperator->getLocation();
6928
6929  // Construct a reference to the "other" object. We'll be using this
6930  // throughout the generated ASTs.
6931  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6932  assert(OtherRef && "Reference to parameter cannot fail!");
6933
6934  // Construct the "this" pointer. We'll be using this throughout the generated
6935  // ASTs.
6936  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6937  assert(This && "Reference to this cannot fail!");
6938
6939  // Assign base classes.
6940  bool Invalid = false;
6941  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6942       E = ClassDecl->bases_end(); Base != E; ++Base) {
6943    // Form the assignment:
6944    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6945    QualType BaseType = Base->getType().getUnqualifiedType();
6946    if (!BaseType->isRecordType()) {
6947      Invalid = true;
6948      continue;
6949    }
6950
6951    CXXCastPath BasePath;
6952    BasePath.push_back(Base);
6953
6954    // Construct the "from" expression, which is an implicit cast to the
6955    // appropriately-qualified base type.
6956    Expr *From = OtherRef;
6957    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6958                             CK_UncheckedDerivedToBase,
6959                             VK_LValue, &BasePath).take();
6960
6961    // Dereference "this".
6962    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6963
6964    // Implicitly cast "this" to the appropriately-qualified base type.
6965    To = ImpCastExprToType(To.take(),
6966                           Context.getCVRQualifiedType(BaseType,
6967                                     CopyAssignOperator->getTypeQualifiers()),
6968                           CK_UncheckedDerivedToBase,
6969                           VK_LValue, &BasePath);
6970
6971    // Build the copy.
6972    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6973                                            To.get(), From,
6974                                            /*CopyingBaseSubobject=*/true);
6975    if (Copy.isInvalid()) {
6976      Diag(CurrentLocation, diag::note_member_synthesized_at)
6977        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6978      CopyAssignOperator->setInvalidDecl();
6979      return;
6980    }
6981
6982    // Success! Record the copy.
6983    Statements.push_back(Copy.takeAs<Expr>());
6984  }
6985
6986  // \brief Reference to the __builtin_memcpy function.
6987  Expr *BuiltinMemCpyRef = 0;
6988  // \brief Reference to the __builtin_objc_memmove_collectable function.
6989  Expr *CollectableMemCpyRef = 0;
6990
6991  // Assign non-static members.
6992  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6993                                  FieldEnd = ClassDecl->field_end();
6994       Field != FieldEnd; ++Field) {
6995    // Check for members of reference type; we can't copy those.
6996    if (Field->getType()->isReferenceType()) {
6997      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6998        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6999      Diag(Field->getLocation(), diag::note_declared_at);
7000      Diag(CurrentLocation, diag::note_member_synthesized_at)
7001        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7002      Invalid = true;
7003      continue;
7004    }
7005
7006    // Check for members of const-qualified, non-class type.
7007    QualType BaseType = Context.getBaseElementType(Field->getType());
7008    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7009      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7010        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7011      Diag(Field->getLocation(), diag::note_declared_at);
7012      Diag(CurrentLocation, diag::note_member_synthesized_at)
7013        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7014      Invalid = true;
7015      continue;
7016    }
7017
7018    QualType FieldType = Field->getType().getNonReferenceType();
7019    if (FieldType->isIncompleteArrayType()) {
7020      assert(ClassDecl->hasFlexibleArrayMember() &&
7021             "Incomplete array type is not valid");
7022      continue;
7023    }
7024
7025    // Build references to the field in the object we're copying from and to.
7026    CXXScopeSpec SS; // Intentionally empty
7027    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7028                              LookupMemberName);
7029    MemberLookup.addDecl(*Field);
7030    MemberLookup.resolveKind();
7031    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7032                                               Loc, /*IsArrow=*/false,
7033                                               SS, 0, MemberLookup, 0);
7034    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7035                                             Loc, /*IsArrow=*/true,
7036                                             SS, 0, MemberLookup, 0);
7037    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7038    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7039
7040    // If the field should be copied with __builtin_memcpy rather than via
7041    // explicit assignments, do so. This optimization only applies for arrays
7042    // of scalars and arrays of class type with trivial copy-assignment
7043    // operators.
7044    if (FieldType->isArrayType() &&
7045        (!BaseType->isRecordType() ||
7046         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
7047           ->hasTrivialCopyAssignment())) {
7048      // Compute the size of the memory buffer to be copied.
7049      QualType SizeType = Context.getSizeType();
7050      llvm::APInt Size(Context.getTypeSize(SizeType),
7051                       Context.getTypeSizeInChars(BaseType).getQuantity());
7052      for (const ConstantArrayType *Array
7053              = Context.getAsConstantArrayType(FieldType);
7054           Array;
7055           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7056        llvm::APInt ArraySize
7057          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7058        Size *= ArraySize;
7059      }
7060
7061      // Take the address of the field references for "from" and "to".
7062      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7063      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7064
7065      bool NeedsCollectableMemCpy =
7066          (BaseType->isRecordType() &&
7067           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7068
7069      if (NeedsCollectableMemCpy) {
7070        if (!CollectableMemCpyRef) {
7071          // Create a reference to the __builtin_objc_memmove_collectable function.
7072          LookupResult R(*this,
7073                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7074                         Loc, LookupOrdinaryName);
7075          LookupName(R, TUScope, true);
7076
7077          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7078          if (!CollectableMemCpy) {
7079            // Something went horribly wrong earlier, and we will have
7080            // complained about it.
7081            Invalid = true;
7082            continue;
7083          }
7084
7085          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7086                                                  CollectableMemCpy->getType(),
7087                                                  VK_LValue, Loc, 0).take();
7088          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7089        }
7090      }
7091      // Create a reference to the __builtin_memcpy builtin function.
7092      else if (!BuiltinMemCpyRef) {
7093        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7094                       LookupOrdinaryName);
7095        LookupName(R, TUScope, true);
7096
7097        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7098        if (!BuiltinMemCpy) {
7099          // Something went horribly wrong earlier, and we will have complained
7100          // about it.
7101          Invalid = true;
7102          continue;
7103        }
7104
7105        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7106                                            BuiltinMemCpy->getType(),
7107                                            VK_LValue, Loc, 0).take();
7108        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7109      }
7110
7111      ASTOwningVector<Expr*> CallArgs(*this);
7112      CallArgs.push_back(To.takeAs<Expr>());
7113      CallArgs.push_back(From.takeAs<Expr>());
7114      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7115      ExprResult Call = ExprError();
7116      if (NeedsCollectableMemCpy)
7117        Call = ActOnCallExpr(/*Scope=*/0,
7118                             CollectableMemCpyRef,
7119                             Loc, move_arg(CallArgs),
7120                             Loc);
7121      else
7122        Call = ActOnCallExpr(/*Scope=*/0,
7123                             BuiltinMemCpyRef,
7124                             Loc, move_arg(CallArgs),
7125                             Loc);
7126
7127      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7128      Statements.push_back(Call.takeAs<Expr>());
7129      continue;
7130    }
7131
7132    // Build the copy of this field.
7133    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7134                                                  To.get(), From.get(),
7135                                              /*CopyingBaseSubobject=*/false);
7136    if (Copy.isInvalid()) {
7137      Diag(CurrentLocation, diag::note_member_synthesized_at)
7138        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7139      CopyAssignOperator->setInvalidDecl();
7140      return;
7141    }
7142
7143    // Success! Record the copy.
7144    Statements.push_back(Copy.takeAs<Stmt>());
7145  }
7146
7147  if (!Invalid) {
7148    // Add a "return *this;"
7149    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7150
7151    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7152    if (Return.isInvalid())
7153      Invalid = true;
7154    else {
7155      Statements.push_back(Return.takeAs<Stmt>());
7156
7157      if (Trap.hasErrorOccurred()) {
7158        Diag(CurrentLocation, diag::note_member_synthesized_at)
7159          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7160        Invalid = true;
7161      }
7162    }
7163  }
7164
7165  if (Invalid) {
7166    CopyAssignOperator->setInvalidDecl();
7167    return;
7168  }
7169
7170  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7171                                            /*isStmtExpr=*/false);
7172  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7173  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7174
7175  if (ASTMutationListener *L = getASTMutationListener()) {
7176    L->CompletedImplicitDefinition(CopyAssignOperator);
7177  }
7178}
7179
7180std::pair<Sema::ImplicitExceptionSpecification, bool>
7181Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7182  // C++ [class.copy]p5:
7183  //   The implicitly-declared copy constructor for a class X will
7184  //   have the form
7185  //
7186  //       X::X(const X&)
7187  //
7188  //   if
7189  // FIXME: It ought to be possible to store this on the record.
7190  bool HasConstCopyConstructor = true;
7191
7192  //     -- each direct or virtual base class B of X has a copy
7193  //        constructor whose first parameter is of type const B& or
7194  //        const volatile B&, and
7195  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7196                                       BaseEnd = ClassDecl->bases_end();
7197       HasConstCopyConstructor && Base != BaseEnd;
7198       ++Base) {
7199    // Virtual bases are handled below.
7200    if (Base->isVirtual())
7201      continue;
7202
7203    CXXRecordDecl *BaseClassDecl
7204      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7205    LookupCopyConstructor(BaseClassDecl, Qualifiers::Const,
7206                          &HasConstCopyConstructor);
7207  }
7208
7209  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7210                                       BaseEnd = ClassDecl->vbases_end();
7211       HasConstCopyConstructor && Base != BaseEnd;
7212       ++Base) {
7213    CXXRecordDecl *BaseClassDecl
7214      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7215    LookupCopyConstructor(BaseClassDecl, Qualifiers::Const,
7216                          &HasConstCopyConstructor);
7217  }
7218
7219  //     -- for all the nonstatic data members of X that are of a
7220  //        class type M (or array thereof), each such class type
7221  //        has a copy constructor whose first parameter is of type
7222  //        const M& or const volatile M&.
7223  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7224                                  FieldEnd = ClassDecl->field_end();
7225       HasConstCopyConstructor && Field != FieldEnd;
7226       ++Field) {
7227    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7228    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7229      LookupCopyConstructor(FieldClassDecl, Qualifiers::Const,
7230                            &HasConstCopyConstructor);
7231    }
7232  }
7233  //   Otherwise, the implicitly declared copy constructor will have
7234  //   the form
7235  //
7236  //       X::X(X&)
7237
7238  // C++ [except.spec]p14:
7239  //   An implicitly declared special member function (Clause 12) shall have an
7240  //   exception-specification. [...]
7241  ImplicitExceptionSpecification ExceptSpec(Context);
7242  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7243  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7244                                       BaseEnd = ClassDecl->bases_end();
7245       Base != BaseEnd;
7246       ++Base) {
7247    // Virtual bases are handled below.
7248    if (Base->isVirtual())
7249      continue;
7250
7251    CXXRecordDecl *BaseClassDecl
7252      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7253    if (CXXConstructorDecl *CopyConstructor =
7254          LookupCopyConstructor(BaseClassDecl, Quals))
7255      ExceptSpec.CalledDecl(CopyConstructor);
7256  }
7257  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7258                                       BaseEnd = ClassDecl->vbases_end();
7259       Base != BaseEnd;
7260       ++Base) {
7261    CXXRecordDecl *BaseClassDecl
7262      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7263    if (CXXConstructorDecl *CopyConstructor =
7264          LookupCopyConstructor(BaseClassDecl, Quals))
7265      ExceptSpec.CalledDecl(CopyConstructor);
7266  }
7267  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7268                                  FieldEnd = ClassDecl->field_end();
7269       Field != FieldEnd;
7270       ++Field) {
7271    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7272    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7273      if (CXXConstructorDecl *CopyConstructor =
7274        LookupCopyConstructor(FieldClassDecl, Quals))
7275      ExceptSpec.CalledDecl(CopyConstructor);
7276    }
7277  }
7278
7279  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7280}
7281
7282CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7283                                                    CXXRecordDecl *ClassDecl) {
7284  // C++ [class.copy]p4:
7285  //   If the class definition does not explicitly declare a copy
7286  //   constructor, one is declared implicitly.
7287
7288  ImplicitExceptionSpecification Spec(Context);
7289  bool Const;
7290  llvm::tie(Spec, Const) =
7291    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7292
7293  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7294  QualType ArgType = ClassType;
7295  if (Const)
7296    ArgType = ArgType.withConst();
7297  ArgType = Context.getLValueReferenceType(ArgType);
7298
7299  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7300
7301  DeclarationName Name
7302    = Context.DeclarationNames.getCXXConstructorName(
7303                                           Context.getCanonicalType(ClassType));
7304  SourceLocation ClassLoc = ClassDecl->getLocation();
7305  DeclarationNameInfo NameInfo(Name, ClassLoc);
7306
7307  //   An implicitly-declared copy constructor is an inline public
7308  //   member of its class.
7309  CXXConstructorDecl *CopyConstructor
7310    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7311                                 Context.getFunctionType(Context.VoidTy,
7312                                                         &ArgType, 1, EPI),
7313                                 /*TInfo=*/0,
7314                                 /*isExplicit=*/false,
7315                                 /*isInline=*/true,
7316                                 /*isImplicitlyDeclared=*/true);
7317  CopyConstructor->setAccess(AS_public);
7318  CopyConstructor->setDefaulted();
7319  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7320
7321  // Note that we have declared this constructor.
7322  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7323
7324  // Add the parameter to the constructor.
7325  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7326                                               ClassLoc, ClassLoc,
7327                                               /*IdentifierInfo=*/0,
7328                                               ArgType, /*TInfo=*/0,
7329                                               SC_None,
7330                                               SC_None, 0);
7331  CopyConstructor->setParams(&FromParam, 1);
7332
7333  if (Scope *S = getScopeForContext(ClassDecl))
7334    PushOnScopeChains(CopyConstructor, S, false);
7335  ClassDecl->addDecl(CopyConstructor);
7336
7337  if (ShouldDeleteCopyConstructor(CopyConstructor))
7338    CopyConstructor->setDeletedAsWritten();
7339
7340  return CopyConstructor;
7341}
7342
7343void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7344                                   CXXConstructorDecl *CopyConstructor) {
7345  assert((CopyConstructor->isDefaulted() &&
7346          CopyConstructor->isCopyConstructor() &&
7347          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7348         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7349
7350  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7351  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7352
7353  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7354  DiagnosticErrorTrap Trap(Diags);
7355
7356  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7357      Trap.hasErrorOccurred()) {
7358    Diag(CurrentLocation, diag::note_member_synthesized_at)
7359      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7360    CopyConstructor->setInvalidDecl();
7361  }  else {
7362    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7363                                               CopyConstructor->getLocation(),
7364                                               MultiStmtArg(*this, 0, 0),
7365                                               /*isStmtExpr=*/false)
7366                                                              .takeAs<Stmt>());
7367  }
7368
7369  CopyConstructor->setUsed();
7370
7371  if (ASTMutationListener *L = getASTMutationListener()) {
7372    L->CompletedImplicitDefinition(CopyConstructor);
7373  }
7374}
7375
7376ExprResult
7377Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7378                            CXXConstructorDecl *Constructor,
7379                            MultiExprArg ExprArgs,
7380                            bool RequiresZeroInit,
7381                            unsigned ConstructKind,
7382                            SourceRange ParenRange) {
7383  bool Elidable = false;
7384
7385  // C++0x [class.copy]p34:
7386  //   When certain criteria are met, an implementation is allowed to
7387  //   omit the copy/move construction of a class object, even if the
7388  //   copy/move constructor and/or destructor for the object have
7389  //   side effects. [...]
7390  //     - when a temporary class object that has not been bound to a
7391  //       reference (12.2) would be copied/moved to a class object
7392  //       with the same cv-unqualified type, the copy/move operation
7393  //       can be omitted by constructing the temporary object
7394  //       directly into the target of the omitted copy/move
7395  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7396      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7397    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7398    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7399  }
7400
7401  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7402                               Elidable, move(ExprArgs), RequiresZeroInit,
7403                               ConstructKind, ParenRange);
7404}
7405
7406/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7407/// including handling of its default argument expressions.
7408ExprResult
7409Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7410                            CXXConstructorDecl *Constructor, bool Elidable,
7411                            MultiExprArg ExprArgs,
7412                            bool RequiresZeroInit,
7413                            unsigned ConstructKind,
7414                            SourceRange ParenRange) {
7415  unsigned NumExprs = ExprArgs.size();
7416  Expr **Exprs = (Expr **)ExprArgs.release();
7417
7418  for (specific_attr_iterator<NonNullAttr>
7419           i = Constructor->specific_attr_begin<NonNullAttr>(),
7420           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7421    const NonNullAttr *NonNull = *i;
7422    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7423  }
7424
7425  MarkDeclarationReferenced(ConstructLoc, Constructor);
7426  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7427                                        Constructor, Elidable, Exprs, NumExprs,
7428                                        RequiresZeroInit,
7429              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7430                                        ParenRange));
7431}
7432
7433bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7434                                        CXXConstructorDecl *Constructor,
7435                                        MultiExprArg Exprs) {
7436  // FIXME: Provide the correct paren SourceRange when available.
7437  ExprResult TempResult =
7438    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7439                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7440                          SourceRange());
7441  if (TempResult.isInvalid())
7442    return true;
7443
7444  Expr *Temp = TempResult.takeAs<Expr>();
7445  CheckImplicitConversions(Temp, VD->getLocation());
7446  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7447  Temp = MaybeCreateExprWithCleanups(Temp);
7448  VD->setInit(Temp);
7449
7450  return false;
7451}
7452
7453void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7454  if (VD->isInvalidDecl()) return;
7455
7456  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7457  if (ClassDecl->isInvalidDecl()) return;
7458  if (ClassDecl->hasTrivialDestructor()) return;
7459  if (ClassDecl->isDependentContext()) return;
7460
7461  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7462  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7463  CheckDestructorAccess(VD->getLocation(), Destructor,
7464                        PDiag(diag::err_access_dtor_var)
7465                        << VD->getDeclName()
7466                        << VD->getType());
7467
7468  if (!VD->hasGlobalStorage()) return;
7469
7470  // Emit warning for non-trivial dtor in global scope (a real global,
7471  // class-static, function-static).
7472  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7473
7474  // TODO: this should be re-enabled for static locals by !CXAAtExit
7475  if (!VD->isStaticLocal())
7476    Diag(VD->getLocation(), diag::warn_global_destructor);
7477}
7478
7479/// AddCXXDirectInitializerToDecl - This action is called immediately after
7480/// ActOnDeclarator, when a C++ direct initializer is present.
7481/// e.g: "int x(1);"
7482void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7483                                         SourceLocation LParenLoc,
7484                                         MultiExprArg Exprs,
7485                                         SourceLocation RParenLoc,
7486                                         bool TypeMayContainAuto) {
7487  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7488
7489  // If there is no declaration, there was an error parsing it.  Just ignore
7490  // the initializer.
7491  if (RealDecl == 0)
7492    return;
7493
7494  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7495  if (!VDecl) {
7496    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7497    RealDecl->setInvalidDecl();
7498    return;
7499  }
7500
7501  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7502  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7503    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7504    if (Exprs.size() > 1) {
7505      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7506           diag::err_auto_var_init_multiple_expressions)
7507        << VDecl->getDeclName() << VDecl->getType()
7508        << VDecl->getSourceRange();
7509      RealDecl->setInvalidDecl();
7510      return;
7511    }
7512
7513    Expr *Init = Exprs.get()[0];
7514    TypeSourceInfo *DeducedType = 0;
7515    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7516      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7517        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7518        << Init->getSourceRange();
7519    if (!DeducedType) {
7520      RealDecl->setInvalidDecl();
7521      return;
7522    }
7523    VDecl->setTypeSourceInfo(DeducedType);
7524    VDecl->setType(DeducedType->getType());
7525
7526    // If this is a redeclaration, check that the type we just deduced matches
7527    // the previously declared type.
7528    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7529      MergeVarDeclTypes(VDecl, Old);
7530  }
7531
7532  // We will represent direct-initialization similarly to copy-initialization:
7533  //    int x(1);  -as-> int x = 1;
7534  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7535  //
7536  // Clients that want to distinguish between the two forms, can check for
7537  // direct initializer using VarDecl::hasCXXDirectInitializer().
7538  // A major benefit is that clients that don't particularly care about which
7539  // exactly form was it (like the CodeGen) can handle both cases without
7540  // special case code.
7541
7542  // C++ 8.5p11:
7543  // The form of initialization (using parentheses or '=') is generally
7544  // insignificant, but does matter when the entity being initialized has a
7545  // class type.
7546
7547  if (!VDecl->getType()->isDependentType() &&
7548      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7549                          diag::err_typecheck_decl_incomplete_type)) {
7550    VDecl->setInvalidDecl();
7551    return;
7552  }
7553
7554  // The variable can not have an abstract class type.
7555  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7556                             diag::err_abstract_type_in_decl,
7557                             AbstractVariableType))
7558    VDecl->setInvalidDecl();
7559
7560  const VarDecl *Def;
7561  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7562    Diag(VDecl->getLocation(), diag::err_redefinition)
7563    << VDecl->getDeclName();
7564    Diag(Def->getLocation(), diag::note_previous_definition);
7565    VDecl->setInvalidDecl();
7566    return;
7567  }
7568
7569  // C++ [class.static.data]p4
7570  //   If a static data member is of const integral or const
7571  //   enumeration type, its declaration in the class definition can
7572  //   specify a constant-initializer which shall be an integral
7573  //   constant expression (5.19). In that case, the member can appear
7574  //   in integral constant expressions. The member shall still be
7575  //   defined in a namespace scope if it is used in the program and the
7576  //   namespace scope definition shall not contain an initializer.
7577  //
7578  // We already performed a redefinition check above, but for static
7579  // data members we also need to check whether there was an in-class
7580  // declaration with an initializer.
7581  const VarDecl* PrevInit = 0;
7582  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7583    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7584    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7585    return;
7586  }
7587
7588  bool IsDependent = false;
7589  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7590    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7591      VDecl->setInvalidDecl();
7592      return;
7593    }
7594
7595    if (Exprs.get()[I]->isTypeDependent())
7596      IsDependent = true;
7597  }
7598
7599  // If either the declaration has a dependent type or if any of the
7600  // expressions is type-dependent, we represent the initialization
7601  // via a ParenListExpr for later use during template instantiation.
7602  if (VDecl->getType()->isDependentType() || IsDependent) {
7603    // Let clients know that initialization was done with a direct initializer.
7604    VDecl->setCXXDirectInitializer(true);
7605
7606    // Store the initialization expressions as a ParenListExpr.
7607    unsigned NumExprs = Exprs.size();
7608    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7609                                               (Expr **)Exprs.release(),
7610                                               NumExprs, RParenLoc));
7611    return;
7612  }
7613
7614  // Capture the variable that is being initialized and the style of
7615  // initialization.
7616  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7617
7618  // FIXME: Poor source location information.
7619  InitializationKind Kind
7620    = InitializationKind::CreateDirect(VDecl->getLocation(),
7621                                       LParenLoc, RParenLoc);
7622
7623  InitializationSequence InitSeq(*this, Entity, Kind,
7624                                 Exprs.get(), Exprs.size());
7625  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7626  if (Result.isInvalid()) {
7627    VDecl->setInvalidDecl();
7628    return;
7629  }
7630
7631  CheckImplicitConversions(Result.get(), LParenLoc);
7632
7633  Result = MaybeCreateExprWithCleanups(Result);
7634  VDecl->setInit(Result.takeAs<Expr>());
7635  VDecl->setCXXDirectInitializer(true);
7636
7637  CheckCompleteVariableDeclaration(VDecl);
7638}
7639
7640/// \brief Given a constructor and the set of arguments provided for the
7641/// constructor, convert the arguments and add any required default arguments
7642/// to form a proper call to this constructor.
7643///
7644/// \returns true if an error occurred, false otherwise.
7645bool
7646Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7647                              MultiExprArg ArgsPtr,
7648                              SourceLocation Loc,
7649                              ASTOwningVector<Expr*> &ConvertedArgs) {
7650  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7651  unsigned NumArgs = ArgsPtr.size();
7652  Expr **Args = (Expr **)ArgsPtr.get();
7653
7654  const FunctionProtoType *Proto
7655    = Constructor->getType()->getAs<FunctionProtoType>();
7656  assert(Proto && "Constructor without a prototype?");
7657  unsigned NumArgsInProto = Proto->getNumArgs();
7658
7659  // If too few arguments are available, we'll fill in the rest with defaults.
7660  if (NumArgs < NumArgsInProto)
7661    ConvertedArgs.reserve(NumArgsInProto);
7662  else
7663    ConvertedArgs.reserve(NumArgs);
7664
7665  VariadicCallType CallType =
7666    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7667  llvm::SmallVector<Expr *, 8> AllArgs;
7668  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7669                                        Proto, 0, Args, NumArgs, AllArgs,
7670                                        CallType);
7671  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7672    ConvertedArgs.push_back(AllArgs[i]);
7673  return Invalid;
7674}
7675
7676static inline bool
7677CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7678                                       const FunctionDecl *FnDecl) {
7679  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7680  if (isa<NamespaceDecl>(DC)) {
7681    return SemaRef.Diag(FnDecl->getLocation(),
7682                        diag::err_operator_new_delete_declared_in_namespace)
7683      << FnDecl->getDeclName();
7684  }
7685
7686  if (isa<TranslationUnitDecl>(DC) &&
7687      FnDecl->getStorageClass() == SC_Static) {
7688    return SemaRef.Diag(FnDecl->getLocation(),
7689                        diag::err_operator_new_delete_declared_static)
7690      << FnDecl->getDeclName();
7691  }
7692
7693  return false;
7694}
7695
7696static inline bool
7697CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7698                            CanQualType ExpectedResultType,
7699                            CanQualType ExpectedFirstParamType,
7700                            unsigned DependentParamTypeDiag,
7701                            unsigned InvalidParamTypeDiag) {
7702  QualType ResultType =
7703    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7704
7705  // Check that the result type is not dependent.
7706  if (ResultType->isDependentType())
7707    return SemaRef.Diag(FnDecl->getLocation(),
7708                        diag::err_operator_new_delete_dependent_result_type)
7709    << FnDecl->getDeclName() << ExpectedResultType;
7710
7711  // Check that the result type is what we expect.
7712  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7713    return SemaRef.Diag(FnDecl->getLocation(),
7714                        diag::err_operator_new_delete_invalid_result_type)
7715    << FnDecl->getDeclName() << ExpectedResultType;
7716
7717  // A function template must have at least 2 parameters.
7718  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7719    return SemaRef.Diag(FnDecl->getLocation(),
7720                      diag::err_operator_new_delete_template_too_few_parameters)
7721        << FnDecl->getDeclName();
7722
7723  // The function decl must have at least 1 parameter.
7724  if (FnDecl->getNumParams() == 0)
7725    return SemaRef.Diag(FnDecl->getLocation(),
7726                        diag::err_operator_new_delete_too_few_parameters)
7727      << FnDecl->getDeclName();
7728
7729  // Check the the first parameter type is not dependent.
7730  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7731  if (FirstParamType->isDependentType())
7732    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7733      << FnDecl->getDeclName() << ExpectedFirstParamType;
7734
7735  // Check that the first parameter type is what we expect.
7736  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7737      ExpectedFirstParamType)
7738    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7739    << FnDecl->getDeclName() << ExpectedFirstParamType;
7740
7741  return false;
7742}
7743
7744static bool
7745CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7746  // C++ [basic.stc.dynamic.allocation]p1:
7747  //   A program is ill-formed if an allocation function is declared in a
7748  //   namespace scope other than global scope or declared static in global
7749  //   scope.
7750  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7751    return true;
7752
7753  CanQualType SizeTy =
7754    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7755
7756  // C++ [basic.stc.dynamic.allocation]p1:
7757  //  The return type shall be void*. The first parameter shall have type
7758  //  std::size_t.
7759  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7760                                  SizeTy,
7761                                  diag::err_operator_new_dependent_param_type,
7762                                  diag::err_operator_new_param_type))
7763    return true;
7764
7765  // C++ [basic.stc.dynamic.allocation]p1:
7766  //  The first parameter shall not have an associated default argument.
7767  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7768    return SemaRef.Diag(FnDecl->getLocation(),
7769                        diag::err_operator_new_default_arg)
7770      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7771
7772  return false;
7773}
7774
7775static bool
7776CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7777  // C++ [basic.stc.dynamic.deallocation]p1:
7778  //   A program is ill-formed if deallocation functions are declared in a
7779  //   namespace scope other than global scope or declared static in global
7780  //   scope.
7781  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7782    return true;
7783
7784  // C++ [basic.stc.dynamic.deallocation]p2:
7785  //   Each deallocation function shall return void and its first parameter
7786  //   shall be void*.
7787  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7788                                  SemaRef.Context.VoidPtrTy,
7789                                 diag::err_operator_delete_dependent_param_type,
7790                                 diag::err_operator_delete_param_type))
7791    return true;
7792
7793  return false;
7794}
7795
7796/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7797/// of this overloaded operator is well-formed. If so, returns false;
7798/// otherwise, emits appropriate diagnostics and returns true.
7799bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7800  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7801         "Expected an overloaded operator declaration");
7802
7803  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7804
7805  // C++ [over.oper]p5:
7806  //   The allocation and deallocation functions, operator new,
7807  //   operator new[], operator delete and operator delete[], are
7808  //   described completely in 3.7.3. The attributes and restrictions
7809  //   found in the rest of this subclause do not apply to them unless
7810  //   explicitly stated in 3.7.3.
7811  if (Op == OO_Delete || Op == OO_Array_Delete)
7812    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7813
7814  if (Op == OO_New || Op == OO_Array_New)
7815    return CheckOperatorNewDeclaration(*this, FnDecl);
7816
7817  // C++ [over.oper]p6:
7818  //   An operator function shall either be a non-static member
7819  //   function or be a non-member function and have at least one
7820  //   parameter whose type is a class, a reference to a class, an
7821  //   enumeration, or a reference to an enumeration.
7822  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7823    if (MethodDecl->isStatic())
7824      return Diag(FnDecl->getLocation(),
7825                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7826  } else {
7827    bool ClassOrEnumParam = false;
7828    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7829                                   ParamEnd = FnDecl->param_end();
7830         Param != ParamEnd; ++Param) {
7831      QualType ParamType = (*Param)->getType().getNonReferenceType();
7832      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7833          ParamType->isEnumeralType()) {
7834        ClassOrEnumParam = true;
7835        break;
7836      }
7837    }
7838
7839    if (!ClassOrEnumParam)
7840      return Diag(FnDecl->getLocation(),
7841                  diag::err_operator_overload_needs_class_or_enum)
7842        << FnDecl->getDeclName();
7843  }
7844
7845  // C++ [over.oper]p8:
7846  //   An operator function cannot have default arguments (8.3.6),
7847  //   except where explicitly stated below.
7848  //
7849  // Only the function-call operator allows default arguments
7850  // (C++ [over.call]p1).
7851  if (Op != OO_Call) {
7852    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7853         Param != FnDecl->param_end(); ++Param) {
7854      if ((*Param)->hasDefaultArg())
7855        return Diag((*Param)->getLocation(),
7856                    diag::err_operator_overload_default_arg)
7857          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7858    }
7859  }
7860
7861  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7862    { false, false, false }
7863#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7864    , { Unary, Binary, MemberOnly }
7865#include "clang/Basic/OperatorKinds.def"
7866  };
7867
7868  bool CanBeUnaryOperator = OperatorUses[Op][0];
7869  bool CanBeBinaryOperator = OperatorUses[Op][1];
7870  bool MustBeMemberOperator = OperatorUses[Op][2];
7871
7872  // C++ [over.oper]p8:
7873  //   [...] Operator functions cannot have more or fewer parameters
7874  //   than the number required for the corresponding operator, as
7875  //   described in the rest of this subclause.
7876  unsigned NumParams = FnDecl->getNumParams()
7877                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7878  if (Op != OO_Call &&
7879      ((NumParams == 1 && !CanBeUnaryOperator) ||
7880       (NumParams == 2 && !CanBeBinaryOperator) ||
7881       (NumParams < 1) || (NumParams > 2))) {
7882    // We have the wrong number of parameters.
7883    unsigned ErrorKind;
7884    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7885      ErrorKind = 2;  // 2 -> unary or binary.
7886    } else if (CanBeUnaryOperator) {
7887      ErrorKind = 0;  // 0 -> unary
7888    } else {
7889      assert(CanBeBinaryOperator &&
7890             "All non-call overloaded operators are unary or binary!");
7891      ErrorKind = 1;  // 1 -> binary
7892    }
7893
7894    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7895      << FnDecl->getDeclName() << NumParams << ErrorKind;
7896  }
7897
7898  // Overloaded operators other than operator() cannot be variadic.
7899  if (Op != OO_Call &&
7900      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7901    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7902      << FnDecl->getDeclName();
7903  }
7904
7905  // Some operators must be non-static member functions.
7906  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7907    return Diag(FnDecl->getLocation(),
7908                diag::err_operator_overload_must_be_member)
7909      << FnDecl->getDeclName();
7910  }
7911
7912  // C++ [over.inc]p1:
7913  //   The user-defined function called operator++ implements the
7914  //   prefix and postfix ++ operator. If this function is a member
7915  //   function with no parameters, or a non-member function with one
7916  //   parameter of class or enumeration type, it defines the prefix
7917  //   increment operator ++ for objects of that type. If the function
7918  //   is a member function with one parameter (which shall be of type
7919  //   int) or a non-member function with two parameters (the second
7920  //   of which shall be of type int), it defines the postfix
7921  //   increment operator ++ for objects of that type.
7922  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7923    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7924    bool ParamIsInt = false;
7925    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7926      ParamIsInt = BT->getKind() == BuiltinType::Int;
7927
7928    if (!ParamIsInt)
7929      return Diag(LastParam->getLocation(),
7930                  diag::err_operator_overload_post_incdec_must_be_int)
7931        << LastParam->getType() << (Op == OO_MinusMinus);
7932  }
7933
7934  return false;
7935}
7936
7937/// CheckLiteralOperatorDeclaration - Check whether the declaration
7938/// of this literal operator function is well-formed. If so, returns
7939/// false; otherwise, emits appropriate diagnostics and returns true.
7940bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7941  DeclContext *DC = FnDecl->getDeclContext();
7942  Decl::Kind Kind = DC->getDeclKind();
7943  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7944      Kind != Decl::LinkageSpec) {
7945    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7946      << FnDecl->getDeclName();
7947    return true;
7948  }
7949
7950  bool Valid = false;
7951
7952  // template <char...> type operator "" name() is the only valid template
7953  // signature, and the only valid signature with no parameters.
7954  if (FnDecl->param_size() == 0) {
7955    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7956      // Must have only one template parameter
7957      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7958      if (Params->size() == 1) {
7959        NonTypeTemplateParmDecl *PmDecl =
7960          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7961
7962        // The template parameter must be a char parameter pack.
7963        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7964            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7965          Valid = true;
7966      }
7967    }
7968  } else {
7969    // Check the first parameter
7970    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7971
7972    QualType T = (*Param)->getType();
7973
7974    // unsigned long long int, long double, and any character type are allowed
7975    // as the only parameters.
7976    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7977        Context.hasSameType(T, Context.LongDoubleTy) ||
7978        Context.hasSameType(T, Context.CharTy) ||
7979        Context.hasSameType(T, Context.WCharTy) ||
7980        Context.hasSameType(T, Context.Char16Ty) ||
7981        Context.hasSameType(T, Context.Char32Ty)) {
7982      if (++Param == FnDecl->param_end())
7983        Valid = true;
7984      goto FinishedParams;
7985    }
7986
7987    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7988    const PointerType *PT = T->getAs<PointerType>();
7989    if (!PT)
7990      goto FinishedParams;
7991    T = PT->getPointeeType();
7992    if (!T.isConstQualified())
7993      goto FinishedParams;
7994    T = T.getUnqualifiedType();
7995
7996    // Move on to the second parameter;
7997    ++Param;
7998
7999    // If there is no second parameter, the first must be a const char *
8000    if (Param == FnDecl->param_end()) {
8001      if (Context.hasSameType(T, Context.CharTy))
8002        Valid = true;
8003      goto FinishedParams;
8004    }
8005
8006    // const char *, const wchar_t*, const char16_t*, and const char32_t*
8007    // are allowed as the first parameter to a two-parameter function
8008    if (!(Context.hasSameType(T, Context.CharTy) ||
8009          Context.hasSameType(T, Context.WCharTy) ||
8010          Context.hasSameType(T, Context.Char16Ty) ||
8011          Context.hasSameType(T, Context.Char32Ty)))
8012      goto FinishedParams;
8013
8014    // The second and final parameter must be an std::size_t
8015    T = (*Param)->getType().getUnqualifiedType();
8016    if (Context.hasSameType(T, Context.getSizeType()) &&
8017        ++Param == FnDecl->param_end())
8018      Valid = true;
8019  }
8020
8021  // FIXME: This diagnostic is absolutely terrible.
8022FinishedParams:
8023  if (!Valid) {
8024    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
8025      << FnDecl->getDeclName();
8026    return true;
8027  }
8028
8029  return false;
8030}
8031
8032/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
8033/// linkage specification, including the language and (if present)
8034/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
8035/// the location of the language string literal, which is provided
8036/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
8037/// the '{' brace. Otherwise, this linkage specification does not
8038/// have any braces.
8039Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
8040                                           SourceLocation LangLoc,
8041                                           llvm::StringRef Lang,
8042                                           SourceLocation LBraceLoc) {
8043  LinkageSpecDecl::LanguageIDs Language;
8044  if (Lang == "\"C\"")
8045    Language = LinkageSpecDecl::lang_c;
8046  else if (Lang == "\"C++\"")
8047    Language = LinkageSpecDecl::lang_cxx;
8048  else {
8049    Diag(LangLoc, diag::err_bad_language);
8050    return 0;
8051  }
8052
8053  // FIXME: Add all the various semantics of linkage specifications
8054
8055  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
8056                                               ExternLoc, LangLoc, Language);
8057  CurContext->addDecl(D);
8058  PushDeclContext(S, D);
8059  return D;
8060}
8061
8062/// ActOnFinishLinkageSpecification - Complete the definition of
8063/// the C++ linkage specification LinkageSpec. If RBraceLoc is
8064/// valid, it's the position of the closing '}' brace in a linkage
8065/// specification that uses braces.
8066Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
8067                                            Decl *LinkageSpec,
8068                                            SourceLocation RBraceLoc) {
8069  if (LinkageSpec) {
8070    if (RBraceLoc.isValid()) {
8071      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
8072      LSDecl->setRBraceLoc(RBraceLoc);
8073    }
8074    PopDeclContext();
8075  }
8076  return LinkageSpec;
8077}
8078
8079/// \brief Perform semantic analysis for the variable declaration that
8080/// occurs within a C++ catch clause, returning the newly-created
8081/// variable.
8082VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
8083                                         TypeSourceInfo *TInfo,
8084                                         SourceLocation StartLoc,
8085                                         SourceLocation Loc,
8086                                         IdentifierInfo *Name) {
8087  bool Invalid = false;
8088  QualType ExDeclType = TInfo->getType();
8089
8090  // Arrays and functions decay.
8091  if (ExDeclType->isArrayType())
8092    ExDeclType = Context.getArrayDecayedType(ExDeclType);
8093  else if (ExDeclType->isFunctionType())
8094    ExDeclType = Context.getPointerType(ExDeclType);
8095
8096  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
8097  // The exception-declaration shall not denote a pointer or reference to an
8098  // incomplete type, other than [cv] void*.
8099  // N2844 forbids rvalue references.
8100  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8101    Diag(Loc, diag::err_catch_rvalue_ref);
8102    Invalid = true;
8103  }
8104
8105  // GCC allows catching pointers and references to incomplete types
8106  // as an extension; so do we, but we warn by default.
8107
8108  QualType BaseType = ExDeclType;
8109  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8110  unsigned DK = diag::err_catch_incomplete;
8111  bool IncompleteCatchIsInvalid = true;
8112  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8113    BaseType = Ptr->getPointeeType();
8114    Mode = 1;
8115    DK = diag::ext_catch_incomplete_ptr;
8116    IncompleteCatchIsInvalid = false;
8117  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8118    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8119    BaseType = Ref->getPointeeType();
8120    Mode = 2;
8121    DK = diag::ext_catch_incomplete_ref;
8122    IncompleteCatchIsInvalid = false;
8123  }
8124  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8125      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8126      IncompleteCatchIsInvalid)
8127    Invalid = true;
8128
8129  if (!Invalid && !ExDeclType->isDependentType() &&
8130      RequireNonAbstractType(Loc, ExDeclType,
8131                             diag::err_abstract_type_in_decl,
8132                             AbstractVariableType))
8133    Invalid = true;
8134
8135  // Only the non-fragile NeXT runtime currently supports C++ catches
8136  // of ObjC types, and no runtime supports catching ObjC types by value.
8137  if (!Invalid && getLangOptions().ObjC1) {
8138    QualType T = ExDeclType;
8139    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8140      T = RT->getPointeeType();
8141
8142    if (T->isObjCObjectType()) {
8143      Diag(Loc, diag::err_objc_object_catch);
8144      Invalid = true;
8145    } else if (T->isObjCObjectPointerType()) {
8146      if (!getLangOptions().ObjCNonFragileABI) {
8147        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8148        Invalid = true;
8149      }
8150    }
8151  }
8152
8153  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8154                                    ExDeclType, TInfo, SC_None, SC_None);
8155  ExDecl->setExceptionVariable(true);
8156
8157  if (!Invalid) {
8158    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8159      // C++ [except.handle]p16:
8160      //   The object declared in an exception-declaration or, if the
8161      //   exception-declaration does not specify a name, a temporary (12.2) is
8162      //   copy-initialized (8.5) from the exception object. [...]
8163      //   The object is destroyed when the handler exits, after the destruction
8164      //   of any automatic objects initialized within the handler.
8165      //
8166      // We just pretend to initialize the object with itself, then make sure
8167      // it can be destroyed later.
8168      QualType initType = ExDeclType;
8169
8170      InitializedEntity entity =
8171        InitializedEntity::InitializeVariable(ExDecl);
8172      InitializationKind initKind =
8173        InitializationKind::CreateCopy(Loc, SourceLocation());
8174
8175      Expr *opaqueValue =
8176        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8177      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8178      ExprResult result = sequence.Perform(*this, entity, initKind,
8179                                           MultiExprArg(&opaqueValue, 1));
8180      if (result.isInvalid())
8181        Invalid = true;
8182      else {
8183        // If the constructor used was non-trivial, set this as the
8184        // "initializer".
8185        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8186        if (!construct->getConstructor()->isTrivial()) {
8187          Expr *init = MaybeCreateExprWithCleanups(construct);
8188          ExDecl->setInit(init);
8189        }
8190
8191        // And make sure it's destructable.
8192        FinalizeVarWithDestructor(ExDecl, recordType);
8193      }
8194    }
8195  }
8196
8197  if (Invalid)
8198    ExDecl->setInvalidDecl();
8199
8200  return ExDecl;
8201}
8202
8203/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8204/// handler.
8205Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8206  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8207  bool Invalid = D.isInvalidType();
8208
8209  // Check for unexpanded parameter packs.
8210  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8211                                               UPPC_ExceptionType)) {
8212    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8213                                             D.getIdentifierLoc());
8214    Invalid = true;
8215  }
8216
8217  IdentifierInfo *II = D.getIdentifier();
8218  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8219                                             LookupOrdinaryName,
8220                                             ForRedeclaration)) {
8221    // The scope should be freshly made just for us. There is just no way
8222    // it contains any previous declaration.
8223    assert(!S->isDeclScope(PrevDecl));
8224    if (PrevDecl->isTemplateParameter()) {
8225      // Maybe we will complain about the shadowed template parameter.
8226      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8227    }
8228  }
8229
8230  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8231    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8232      << D.getCXXScopeSpec().getRange();
8233    Invalid = true;
8234  }
8235
8236  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8237                                              D.getSourceRange().getBegin(),
8238                                              D.getIdentifierLoc(),
8239                                              D.getIdentifier());
8240  if (Invalid)
8241    ExDecl->setInvalidDecl();
8242
8243  // Add the exception declaration into this scope.
8244  if (II)
8245    PushOnScopeChains(ExDecl, S);
8246  else
8247    CurContext->addDecl(ExDecl);
8248
8249  ProcessDeclAttributes(S, ExDecl, D);
8250  return ExDecl;
8251}
8252
8253Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8254                                         Expr *AssertExpr,
8255                                         Expr *AssertMessageExpr_,
8256                                         SourceLocation RParenLoc) {
8257  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8258
8259  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8260    llvm::APSInt Value(32);
8261    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8262      Diag(StaticAssertLoc,
8263           diag::err_static_assert_expression_is_not_constant) <<
8264        AssertExpr->getSourceRange();
8265      return 0;
8266    }
8267
8268    if (Value == 0) {
8269      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8270        << AssertMessage->getString() << AssertExpr->getSourceRange();
8271    }
8272  }
8273
8274  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8275    return 0;
8276
8277  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8278                                        AssertExpr, AssertMessage, RParenLoc);
8279
8280  CurContext->addDecl(Decl);
8281  return Decl;
8282}
8283
8284/// \brief Perform semantic analysis of the given friend type declaration.
8285///
8286/// \returns A friend declaration that.
8287FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8288                                      TypeSourceInfo *TSInfo) {
8289  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8290
8291  QualType T = TSInfo->getType();
8292  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8293
8294  if (!getLangOptions().CPlusPlus0x) {
8295    // C++03 [class.friend]p2:
8296    //   An elaborated-type-specifier shall be used in a friend declaration
8297    //   for a class.*
8298    //
8299    //   * The class-key of the elaborated-type-specifier is required.
8300    if (!ActiveTemplateInstantiations.empty()) {
8301      // Do not complain about the form of friend template types during
8302      // template instantiation; we will already have complained when the
8303      // template was declared.
8304    } else if (!T->isElaboratedTypeSpecifier()) {
8305      // If we evaluated the type to a record type, suggest putting
8306      // a tag in front.
8307      if (const RecordType *RT = T->getAs<RecordType>()) {
8308        RecordDecl *RD = RT->getDecl();
8309
8310        std::string InsertionText = std::string(" ") + RD->getKindName();
8311
8312        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8313          << (unsigned) RD->getTagKind()
8314          << T
8315          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8316                                        InsertionText);
8317      } else {
8318        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8319          << T
8320          << SourceRange(FriendLoc, TypeRange.getEnd());
8321      }
8322    } else if (T->getAs<EnumType>()) {
8323      Diag(FriendLoc, diag::ext_enum_friend)
8324        << T
8325        << SourceRange(FriendLoc, TypeRange.getEnd());
8326    }
8327  }
8328
8329  // C++0x [class.friend]p3:
8330  //   If the type specifier in a friend declaration designates a (possibly
8331  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8332  //   the friend declaration is ignored.
8333
8334  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8335  // in [class.friend]p3 that we do not implement.
8336
8337  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8338}
8339
8340/// Handle a friend tag declaration where the scope specifier was
8341/// templated.
8342Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8343                                    unsigned TagSpec, SourceLocation TagLoc,
8344                                    CXXScopeSpec &SS,
8345                                    IdentifierInfo *Name, SourceLocation NameLoc,
8346                                    AttributeList *Attr,
8347                                    MultiTemplateParamsArg TempParamLists) {
8348  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8349
8350  bool isExplicitSpecialization = false;
8351  bool Invalid = false;
8352
8353  if (TemplateParameterList *TemplateParams
8354        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8355                                                  TempParamLists.get(),
8356                                                  TempParamLists.size(),
8357                                                  /*friend*/ true,
8358                                                  isExplicitSpecialization,
8359                                                  Invalid)) {
8360    if (TemplateParams->size() > 0) {
8361      // This is a declaration of a class template.
8362      if (Invalid)
8363        return 0;
8364
8365      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8366                                SS, Name, NameLoc, Attr,
8367                                TemplateParams, AS_public,
8368                                TempParamLists.size() - 1,
8369                   (TemplateParameterList**) TempParamLists.release()).take();
8370    } else {
8371      // The "template<>" header is extraneous.
8372      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8373        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8374      isExplicitSpecialization = true;
8375    }
8376  }
8377
8378  if (Invalid) return 0;
8379
8380  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8381
8382  bool isAllExplicitSpecializations = true;
8383  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8384    if (TempParamLists.get()[I]->size()) {
8385      isAllExplicitSpecializations = false;
8386      break;
8387    }
8388  }
8389
8390  // FIXME: don't ignore attributes.
8391
8392  // If it's explicit specializations all the way down, just forget
8393  // about the template header and build an appropriate non-templated
8394  // friend.  TODO: for source fidelity, remember the headers.
8395  if (isAllExplicitSpecializations) {
8396    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8397    ElaboratedTypeKeyword Keyword
8398      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8399    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8400                                   *Name, NameLoc);
8401    if (T.isNull())
8402      return 0;
8403
8404    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8405    if (isa<DependentNameType>(T)) {
8406      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8407      TL.setKeywordLoc(TagLoc);
8408      TL.setQualifierLoc(QualifierLoc);
8409      TL.setNameLoc(NameLoc);
8410    } else {
8411      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8412      TL.setKeywordLoc(TagLoc);
8413      TL.setQualifierLoc(QualifierLoc);
8414      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8415    }
8416
8417    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8418                                            TSI, FriendLoc);
8419    Friend->setAccess(AS_public);
8420    CurContext->addDecl(Friend);
8421    return Friend;
8422  }
8423
8424  // Handle the case of a templated-scope friend class.  e.g.
8425  //   template <class T> class A<T>::B;
8426  // FIXME: we don't support these right now.
8427  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8428  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8429  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8430  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8431  TL.setKeywordLoc(TagLoc);
8432  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8433  TL.setNameLoc(NameLoc);
8434
8435  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8436                                          TSI, FriendLoc);
8437  Friend->setAccess(AS_public);
8438  Friend->setUnsupportedFriend(true);
8439  CurContext->addDecl(Friend);
8440  return Friend;
8441}
8442
8443
8444/// Handle a friend type declaration.  This works in tandem with
8445/// ActOnTag.
8446///
8447/// Notes on friend class templates:
8448///
8449/// We generally treat friend class declarations as if they were
8450/// declaring a class.  So, for example, the elaborated type specifier
8451/// in a friend declaration is required to obey the restrictions of a
8452/// class-head (i.e. no typedefs in the scope chain), template
8453/// parameters are required to match up with simple template-ids, &c.
8454/// However, unlike when declaring a template specialization, it's
8455/// okay to refer to a template specialization without an empty
8456/// template parameter declaration, e.g.
8457///   friend class A<T>::B<unsigned>;
8458/// We permit this as a special case; if there are any template
8459/// parameters present at all, require proper matching, i.e.
8460///   template <> template <class T> friend class A<int>::B;
8461Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8462                                MultiTemplateParamsArg TempParams) {
8463  SourceLocation Loc = DS.getSourceRange().getBegin();
8464
8465  assert(DS.isFriendSpecified());
8466  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8467
8468  // Try to convert the decl specifier to a type.  This works for
8469  // friend templates because ActOnTag never produces a ClassTemplateDecl
8470  // for a TUK_Friend.
8471  Declarator TheDeclarator(DS, Declarator::MemberContext);
8472  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8473  QualType T = TSI->getType();
8474  if (TheDeclarator.isInvalidType())
8475    return 0;
8476
8477  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8478    return 0;
8479
8480  // This is definitely an error in C++98.  It's probably meant to
8481  // be forbidden in C++0x, too, but the specification is just
8482  // poorly written.
8483  //
8484  // The problem is with declarations like the following:
8485  //   template <T> friend A<T>::foo;
8486  // where deciding whether a class C is a friend or not now hinges
8487  // on whether there exists an instantiation of A that causes
8488  // 'foo' to equal C.  There are restrictions on class-heads
8489  // (which we declare (by fiat) elaborated friend declarations to
8490  // be) that makes this tractable.
8491  //
8492  // FIXME: handle "template <> friend class A<T>;", which
8493  // is possibly well-formed?  Who even knows?
8494  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8495    Diag(Loc, diag::err_tagless_friend_type_template)
8496      << DS.getSourceRange();
8497    return 0;
8498  }
8499
8500  // C++98 [class.friend]p1: A friend of a class is a function
8501  //   or class that is not a member of the class . . .
8502  // This is fixed in DR77, which just barely didn't make the C++03
8503  // deadline.  It's also a very silly restriction that seriously
8504  // affects inner classes and which nobody else seems to implement;
8505  // thus we never diagnose it, not even in -pedantic.
8506  //
8507  // But note that we could warn about it: it's always useless to
8508  // friend one of your own members (it's not, however, worthless to
8509  // friend a member of an arbitrary specialization of your template).
8510
8511  Decl *D;
8512  if (unsigned NumTempParamLists = TempParams.size())
8513    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8514                                   NumTempParamLists,
8515                                   TempParams.release(),
8516                                   TSI,
8517                                   DS.getFriendSpecLoc());
8518  else
8519    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8520
8521  if (!D)
8522    return 0;
8523
8524  D->setAccess(AS_public);
8525  CurContext->addDecl(D);
8526
8527  return D;
8528}
8529
8530Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8531                                    MultiTemplateParamsArg TemplateParams) {
8532  const DeclSpec &DS = D.getDeclSpec();
8533
8534  assert(DS.isFriendSpecified());
8535  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8536
8537  SourceLocation Loc = D.getIdentifierLoc();
8538  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8539  QualType T = TInfo->getType();
8540
8541  // C++ [class.friend]p1
8542  //   A friend of a class is a function or class....
8543  // Note that this sees through typedefs, which is intended.
8544  // It *doesn't* see through dependent types, which is correct
8545  // according to [temp.arg.type]p3:
8546  //   If a declaration acquires a function type through a
8547  //   type dependent on a template-parameter and this causes
8548  //   a declaration that does not use the syntactic form of a
8549  //   function declarator to have a function type, the program
8550  //   is ill-formed.
8551  if (!T->isFunctionType()) {
8552    Diag(Loc, diag::err_unexpected_friend);
8553
8554    // It might be worthwhile to try to recover by creating an
8555    // appropriate declaration.
8556    return 0;
8557  }
8558
8559  // C++ [namespace.memdef]p3
8560  //  - If a friend declaration in a non-local class first declares a
8561  //    class or function, the friend class or function is a member
8562  //    of the innermost enclosing namespace.
8563  //  - The name of the friend is not found by simple name lookup
8564  //    until a matching declaration is provided in that namespace
8565  //    scope (either before or after the class declaration granting
8566  //    friendship).
8567  //  - If a friend function is called, its name may be found by the
8568  //    name lookup that considers functions from namespaces and
8569  //    classes associated with the types of the function arguments.
8570  //  - When looking for a prior declaration of a class or a function
8571  //    declared as a friend, scopes outside the innermost enclosing
8572  //    namespace scope are not considered.
8573
8574  CXXScopeSpec &SS = D.getCXXScopeSpec();
8575  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8576  DeclarationName Name = NameInfo.getName();
8577  assert(Name);
8578
8579  // Check for unexpanded parameter packs.
8580  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8581      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8582      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8583    return 0;
8584
8585  // The context we found the declaration in, or in which we should
8586  // create the declaration.
8587  DeclContext *DC;
8588  Scope *DCScope = S;
8589  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8590                        ForRedeclaration);
8591
8592  // FIXME: there are different rules in local classes
8593
8594  // There are four cases here.
8595  //   - There's no scope specifier, in which case we just go to the
8596  //     appropriate scope and look for a function or function template
8597  //     there as appropriate.
8598  // Recover from invalid scope qualifiers as if they just weren't there.
8599  if (SS.isInvalid() || !SS.isSet()) {
8600    // C++0x [namespace.memdef]p3:
8601    //   If the name in a friend declaration is neither qualified nor
8602    //   a template-id and the declaration is a function or an
8603    //   elaborated-type-specifier, the lookup to determine whether
8604    //   the entity has been previously declared shall not consider
8605    //   any scopes outside the innermost enclosing namespace.
8606    // C++0x [class.friend]p11:
8607    //   If a friend declaration appears in a local class and the name
8608    //   specified is an unqualified name, a prior declaration is
8609    //   looked up without considering scopes that are outside the
8610    //   innermost enclosing non-class scope. For a friend function
8611    //   declaration, if there is no prior declaration, the program is
8612    //   ill-formed.
8613    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8614    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8615
8616    // Find the appropriate context according to the above.
8617    DC = CurContext;
8618    while (true) {
8619      // Skip class contexts.  If someone can cite chapter and verse
8620      // for this behavior, that would be nice --- it's what GCC and
8621      // EDG do, and it seems like a reasonable intent, but the spec
8622      // really only says that checks for unqualified existing
8623      // declarations should stop at the nearest enclosing namespace,
8624      // not that they should only consider the nearest enclosing
8625      // namespace.
8626      while (DC->isRecord())
8627        DC = DC->getParent();
8628
8629      LookupQualifiedName(Previous, DC);
8630
8631      // TODO: decide what we think about using declarations.
8632      if (isLocal || !Previous.empty())
8633        break;
8634
8635      if (isTemplateId) {
8636        if (isa<TranslationUnitDecl>(DC)) break;
8637      } else {
8638        if (DC->isFileContext()) break;
8639      }
8640      DC = DC->getParent();
8641    }
8642
8643    // C++ [class.friend]p1: A friend of a class is a function or
8644    //   class that is not a member of the class . . .
8645    // C++0x changes this for both friend types and functions.
8646    // Most C++ 98 compilers do seem to give an error here, so
8647    // we do, too.
8648    if (!Previous.empty() && DC->Equals(CurContext)
8649        && !getLangOptions().CPlusPlus0x)
8650      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8651
8652    DCScope = getScopeForDeclContext(S, DC);
8653
8654  //   - There's a non-dependent scope specifier, in which case we
8655  //     compute it and do a previous lookup there for a function
8656  //     or function template.
8657  } else if (!SS.getScopeRep()->isDependent()) {
8658    DC = computeDeclContext(SS);
8659    if (!DC) return 0;
8660
8661    if (RequireCompleteDeclContext(SS, DC)) return 0;
8662
8663    LookupQualifiedName(Previous, DC);
8664
8665    // Ignore things found implicitly in the wrong scope.
8666    // TODO: better diagnostics for this case.  Suggesting the right
8667    // qualified scope would be nice...
8668    LookupResult::Filter F = Previous.makeFilter();
8669    while (F.hasNext()) {
8670      NamedDecl *D = F.next();
8671      if (!DC->InEnclosingNamespaceSetOf(
8672              D->getDeclContext()->getRedeclContext()))
8673        F.erase();
8674    }
8675    F.done();
8676
8677    if (Previous.empty()) {
8678      D.setInvalidType();
8679      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8680      return 0;
8681    }
8682
8683    // C++ [class.friend]p1: A friend of a class is a function or
8684    //   class that is not a member of the class . . .
8685    if (DC->Equals(CurContext))
8686      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8687
8688  //   - There's a scope specifier that does not match any template
8689  //     parameter lists, in which case we use some arbitrary context,
8690  //     create a method or method template, and wait for instantiation.
8691  //   - There's a scope specifier that does match some template
8692  //     parameter lists, which we don't handle right now.
8693  } else {
8694    DC = CurContext;
8695    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8696  }
8697
8698  if (!DC->isRecord()) {
8699    // This implies that it has to be an operator or function.
8700    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8701        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8702        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8703      Diag(Loc, diag::err_introducing_special_friend) <<
8704        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8705         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8706      return 0;
8707    }
8708  }
8709
8710  bool Redeclaration = false;
8711  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8712                                          move(TemplateParams),
8713                                          IsDefinition,
8714                                          Redeclaration);
8715  if (!ND) return 0;
8716
8717  assert(ND->getDeclContext() == DC);
8718  assert(ND->getLexicalDeclContext() == CurContext);
8719
8720  // Add the function declaration to the appropriate lookup tables,
8721  // adjusting the redeclarations list as necessary.  We don't
8722  // want to do this yet if the friending class is dependent.
8723  //
8724  // Also update the scope-based lookup if the target context's
8725  // lookup context is in lexical scope.
8726  if (!CurContext->isDependentContext()) {
8727    DC = DC->getRedeclContext();
8728    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8729    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8730      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8731  }
8732
8733  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8734                                       D.getIdentifierLoc(), ND,
8735                                       DS.getFriendSpecLoc());
8736  FrD->setAccess(AS_public);
8737  CurContext->addDecl(FrD);
8738
8739  if (ND->isInvalidDecl())
8740    FrD->setInvalidDecl();
8741  else {
8742    FunctionDecl *FD;
8743    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8744      FD = FTD->getTemplatedDecl();
8745    else
8746      FD = cast<FunctionDecl>(ND);
8747
8748    // Mark templated-scope function declarations as unsupported.
8749    if (FD->getNumTemplateParameterLists())
8750      FrD->setUnsupportedFriend(true);
8751  }
8752
8753  return ND;
8754}
8755
8756void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8757  AdjustDeclIfTemplate(Dcl);
8758
8759  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8760  if (!Fn) {
8761    Diag(DelLoc, diag::err_deleted_non_function);
8762    return;
8763  }
8764  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8765    Diag(DelLoc, diag::err_deleted_decl_not_first);
8766    Diag(Prev->getLocation(), diag::note_previous_declaration);
8767    // If the declaration wasn't the first, we delete the function anyway for
8768    // recovery.
8769  }
8770  Fn->setDeletedAsWritten();
8771}
8772
8773void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8774  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8775
8776  if (MD) {
8777    if (MD->getParent()->isDependentType()) {
8778      MD->setDefaulted();
8779      MD->setExplicitlyDefaulted();
8780      return;
8781    }
8782
8783    CXXSpecialMember Member = getSpecialMember(MD);
8784    if (Member == CXXInvalid) {
8785      Diag(DefaultLoc, diag::err_default_special_members);
8786      return;
8787    }
8788
8789    MD->setDefaulted();
8790    MD->setExplicitlyDefaulted();
8791
8792    // If this definition appears within the record, do the checking when
8793    // the record is complete.
8794    const FunctionDecl *Primary = MD;
8795    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8796      // Find the uninstantiated declaration that actually had the '= default'
8797      // on it.
8798      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8799
8800    if (Primary == Primary->getCanonicalDecl())
8801      return;
8802
8803    switch (Member) {
8804    case CXXDefaultConstructor: {
8805      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8806      CheckExplicitlyDefaultedDefaultConstructor(CD);
8807      if (!CD->isInvalidDecl())
8808        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8809      break;
8810    }
8811
8812    case CXXCopyConstructor: {
8813      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8814      CheckExplicitlyDefaultedCopyConstructor(CD);
8815      if (!CD->isInvalidDecl())
8816        DefineImplicitCopyConstructor(DefaultLoc, CD);
8817      break;
8818    }
8819
8820    case CXXCopyAssignment: {
8821      CheckExplicitlyDefaultedCopyAssignment(MD);
8822      if (!MD->isInvalidDecl())
8823        DefineImplicitCopyAssignment(DefaultLoc, MD);
8824      break;
8825    }
8826
8827    case CXXDestructor: {
8828      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8829      CheckExplicitlyDefaultedDestructor(DD);
8830      if (!DD->isInvalidDecl())
8831        DefineImplicitDestructor(DefaultLoc, DD);
8832      break;
8833    }
8834
8835    case CXXMoveConstructor:
8836    case CXXMoveAssignment:
8837      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8838      break;
8839
8840    default:
8841      // FIXME: Do the rest once we have move functions
8842      break;
8843    }
8844  } else {
8845    Diag(DefaultLoc, diag::err_default_special_members);
8846  }
8847}
8848
8849static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8850  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8851    Stmt *SubStmt = *CI;
8852    if (!SubStmt)
8853      continue;
8854    if (isa<ReturnStmt>(SubStmt))
8855      Self.Diag(SubStmt->getSourceRange().getBegin(),
8856           diag::err_return_in_constructor_handler);
8857    if (!isa<Expr>(SubStmt))
8858      SearchForReturnInStmt(Self, SubStmt);
8859  }
8860}
8861
8862void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8863  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8864    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8865    SearchForReturnInStmt(*this, Handler);
8866  }
8867}
8868
8869bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8870                                             const CXXMethodDecl *Old) {
8871  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8872  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8873
8874  if (Context.hasSameType(NewTy, OldTy) ||
8875      NewTy->isDependentType() || OldTy->isDependentType())
8876    return false;
8877
8878  // Check if the return types are covariant
8879  QualType NewClassTy, OldClassTy;
8880
8881  /// Both types must be pointers or references to classes.
8882  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8883    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8884      NewClassTy = NewPT->getPointeeType();
8885      OldClassTy = OldPT->getPointeeType();
8886    }
8887  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8888    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8889      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8890        NewClassTy = NewRT->getPointeeType();
8891        OldClassTy = OldRT->getPointeeType();
8892      }
8893    }
8894  }
8895
8896  // The return types aren't either both pointers or references to a class type.
8897  if (NewClassTy.isNull()) {
8898    Diag(New->getLocation(),
8899         diag::err_different_return_type_for_overriding_virtual_function)
8900      << New->getDeclName() << NewTy << OldTy;
8901    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8902
8903    return true;
8904  }
8905
8906  // C++ [class.virtual]p6:
8907  //   If the return type of D::f differs from the return type of B::f, the
8908  //   class type in the return type of D::f shall be complete at the point of
8909  //   declaration of D::f or shall be the class type D.
8910  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8911    if (!RT->isBeingDefined() &&
8912        RequireCompleteType(New->getLocation(), NewClassTy,
8913                            PDiag(diag::err_covariant_return_incomplete)
8914                              << New->getDeclName()))
8915    return true;
8916  }
8917
8918  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8919    // Check if the new class derives from the old class.
8920    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8921      Diag(New->getLocation(),
8922           diag::err_covariant_return_not_derived)
8923      << New->getDeclName() << NewTy << OldTy;
8924      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8925      return true;
8926    }
8927
8928    // Check if we the conversion from derived to base is valid.
8929    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8930                    diag::err_covariant_return_inaccessible_base,
8931                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8932                    // FIXME: Should this point to the return type?
8933                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8934      // FIXME: this note won't trigger for delayed access control
8935      // diagnostics, and it's impossible to get an undelayed error
8936      // here from access control during the original parse because
8937      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8938      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8939      return true;
8940    }
8941  }
8942
8943  // The qualifiers of the return types must be the same.
8944  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8945    Diag(New->getLocation(),
8946         diag::err_covariant_return_type_different_qualifications)
8947    << New->getDeclName() << NewTy << OldTy;
8948    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8949    return true;
8950  };
8951
8952
8953  // The new class type must have the same or less qualifiers as the old type.
8954  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8955    Diag(New->getLocation(),
8956         diag::err_covariant_return_type_class_type_more_qualified)
8957    << New->getDeclName() << NewTy << OldTy;
8958    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8959    return true;
8960  };
8961
8962  return false;
8963}
8964
8965/// \brief Mark the given method pure.
8966///
8967/// \param Method the method to be marked pure.
8968///
8969/// \param InitRange the source range that covers the "0" initializer.
8970bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8971  SourceLocation EndLoc = InitRange.getEnd();
8972  if (EndLoc.isValid())
8973    Method->setRangeEnd(EndLoc);
8974
8975  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8976    Method->setPure();
8977    return false;
8978  }
8979
8980  if (!Method->isInvalidDecl())
8981    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8982      << Method->getDeclName() << InitRange;
8983  return true;
8984}
8985
8986/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8987/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8988/// is a fresh scope pushed for just this purpose.
8989///
8990/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8991/// static data member of class X, names should be looked up in the scope of
8992/// class X.
8993void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8994  // If there is no declaration, there was an error parsing it.
8995  if (D == 0 || D->isInvalidDecl()) return;
8996
8997  // We should only get called for declarations with scope specifiers, like:
8998  //   int foo::bar;
8999  assert(D->isOutOfLine());
9000  EnterDeclaratorContext(S, D->getDeclContext());
9001}
9002
9003/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
9004/// initializer for the out-of-line declaration 'D'.
9005void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
9006  // If there is no declaration, there was an error parsing it.
9007  if (D == 0 || D->isInvalidDecl()) return;
9008
9009  assert(D->isOutOfLine());
9010  ExitDeclaratorContext(S);
9011}
9012
9013/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
9014/// C++ if/switch/while/for statement.
9015/// e.g: "if (int x = f()) {...}"
9016DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
9017  // C++ 6.4p2:
9018  // The declarator shall not specify a function or an array.
9019  // The type-specifier-seq shall not contain typedef and shall not declare a
9020  // new class or enumeration.
9021  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
9022         "Parser allowed 'typedef' as storage class of condition decl.");
9023
9024  TagDecl *OwnedTag = 0;
9025  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
9026  QualType Ty = TInfo->getType();
9027
9028  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
9029                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
9030                              // would be created and CXXConditionDeclExpr wants a VarDecl.
9031    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
9032      << D.getSourceRange();
9033    return DeclResult();
9034  } else if (OwnedTag && OwnedTag->isDefinition()) {
9035    // The type-specifier-seq shall not declare a new class or enumeration.
9036    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
9037  }
9038
9039  Decl *Dcl = ActOnDeclarator(S, D);
9040  if (!Dcl)
9041    return DeclResult();
9042
9043  return Dcl;
9044}
9045
9046void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
9047                          bool DefinitionRequired) {
9048  // Ignore any vtable uses in unevaluated operands or for classes that do
9049  // not have a vtable.
9050  if (!Class->isDynamicClass() || Class->isDependentContext() ||
9051      CurContext->isDependentContext() ||
9052      ExprEvalContexts.back().Context == Unevaluated)
9053    return;
9054
9055  // Try to insert this class into the map.
9056  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9057  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
9058    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
9059  if (!Pos.second) {
9060    // If we already had an entry, check to see if we are promoting this vtable
9061    // to required a definition. If so, we need to reappend to the VTableUses
9062    // list, since we may have already processed the first entry.
9063    if (DefinitionRequired && !Pos.first->second) {
9064      Pos.first->second = true;
9065    } else {
9066      // Otherwise, we can early exit.
9067      return;
9068    }
9069  }
9070
9071  // Local classes need to have their virtual members marked
9072  // immediately. For all other classes, we mark their virtual members
9073  // at the end of the translation unit.
9074  if (Class->isLocalClass())
9075    MarkVirtualMembersReferenced(Loc, Class);
9076  else
9077    VTableUses.push_back(std::make_pair(Class, Loc));
9078}
9079
9080bool Sema::DefineUsedVTables() {
9081  if (VTableUses.empty())
9082    return false;
9083
9084  // Note: The VTableUses vector could grow as a result of marking
9085  // the members of a class as "used", so we check the size each
9086  // time through the loop and prefer indices (with are stable) to
9087  // iterators (which are not).
9088  bool DefinedAnything = false;
9089  for (unsigned I = 0; I != VTableUses.size(); ++I) {
9090    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
9091    if (!Class)
9092      continue;
9093
9094    SourceLocation Loc = VTableUses[I].second;
9095
9096    // If this class has a key function, but that key function is
9097    // defined in another translation unit, we don't need to emit the
9098    // vtable even though we're using it.
9099    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
9100    if (KeyFunction && !KeyFunction->hasBody()) {
9101      switch (KeyFunction->getTemplateSpecializationKind()) {
9102      case TSK_Undeclared:
9103      case TSK_ExplicitSpecialization:
9104      case TSK_ExplicitInstantiationDeclaration:
9105        // The key function is in another translation unit.
9106        continue;
9107
9108      case TSK_ExplicitInstantiationDefinition:
9109      case TSK_ImplicitInstantiation:
9110        // We will be instantiating the key function.
9111        break;
9112      }
9113    } else if (!KeyFunction) {
9114      // If we have a class with no key function that is the subject
9115      // of an explicit instantiation declaration, suppress the
9116      // vtable; it will live with the explicit instantiation
9117      // definition.
9118      bool IsExplicitInstantiationDeclaration
9119        = Class->getTemplateSpecializationKind()
9120                                      == TSK_ExplicitInstantiationDeclaration;
9121      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9122                                 REnd = Class->redecls_end();
9123           R != REnd; ++R) {
9124        TemplateSpecializationKind TSK
9125          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9126        if (TSK == TSK_ExplicitInstantiationDeclaration)
9127          IsExplicitInstantiationDeclaration = true;
9128        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9129          IsExplicitInstantiationDeclaration = false;
9130          break;
9131        }
9132      }
9133
9134      if (IsExplicitInstantiationDeclaration)
9135        continue;
9136    }
9137
9138    // Mark all of the virtual members of this class as referenced, so
9139    // that we can build a vtable. Then, tell the AST consumer that a
9140    // vtable for this class is required.
9141    DefinedAnything = true;
9142    MarkVirtualMembersReferenced(Loc, Class);
9143    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9144    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9145
9146    // Optionally warn if we're emitting a weak vtable.
9147    if (Class->getLinkage() == ExternalLinkage &&
9148        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9149      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9150        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9151    }
9152  }
9153  VTableUses.clear();
9154
9155  return DefinedAnything;
9156}
9157
9158void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9159                                        const CXXRecordDecl *RD) {
9160  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9161       e = RD->method_end(); i != e; ++i) {
9162    CXXMethodDecl *MD = *i;
9163
9164    // C++ [basic.def.odr]p2:
9165    //   [...] A virtual member function is used if it is not pure. [...]
9166    if (MD->isVirtual() && !MD->isPure())
9167      MarkDeclarationReferenced(Loc, MD);
9168  }
9169
9170  // Only classes that have virtual bases need a VTT.
9171  if (RD->getNumVBases() == 0)
9172    return;
9173
9174  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9175           e = RD->bases_end(); i != e; ++i) {
9176    const CXXRecordDecl *Base =
9177        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9178    if (Base->getNumVBases() == 0)
9179      continue;
9180    MarkVirtualMembersReferenced(Loc, Base);
9181  }
9182}
9183
9184/// SetIvarInitializers - This routine builds initialization ASTs for the
9185/// Objective-C implementation whose ivars need be initialized.
9186void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9187  if (!getLangOptions().CPlusPlus)
9188    return;
9189  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9190    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9191    CollectIvarsToConstructOrDestruct(OID, ivars);
9192    if (ivars.empty())
9193      return;
9194    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9195    for (unsigned i = 0; i < ivars.size(); i++) {
9196      FieldDecl *Field = ivars[i];
9197      if (Field->isInvalidDecl())
9198        continue;
9199
9200      CXXCtorInitializer *Member;
9201      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9202      InitializationKind InitKind =
9203        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9204
9205      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9206      ExprResult MemberInit =
9207        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9208      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9209      // Note, MemberInit could actually come back empty if no initialization
9210      // is required (e.g., because it would call a trivial default constructor)
9211      if (!MemberInit.get() || MemberInit.isInvalid())
9212        continue;
9213
9214      Member =
9215        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9216                                         SourceLocation(),
9217                                         MemberInit.takeAs<Expr>(),
9218                                         SourceLocation());
9219      AllToInit.push_back(Member);
9220
9221      // Be sure that the destructor is accessible and is marked as referenced.
9222      if (const RecordType *RecordTy
9223                  = Context.getBaseElementType(Field->getType())
9224                                                        ->getAs<RecordType>()) {
9225                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9226        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9227          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9228          CheckDestructorAccess(Field->getLocation(), Destructor,
9229                            PDiag(diag::err_access_dtor_ivar)
9230                              << Context.getBaseElementType(Field->getType()));
9231        }
9232      }
9233    }
9234    ObjCImplementation->setIvarInitializers(Context,
9235                                            AllToInit.data(), AllToInit.size());
9236  }
9237}
9238
9239static
9240void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9241                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9242                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9243                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9244                           Sema &S) {
9245  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9246                                                   CE = Current.end();
9247  if (Ctor->isInvalidDecl())
9248    return;
9249
9250  const FunctionDecl *FNTarget = 0;
9251  CXXConstructorDecl *Target;
9252
9253  // We ignore the result here since if we don't have a body, Target will be
9254  // null below.
9255  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9256  Target
9257= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9258
9259  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9260                     // Avoid dereferencing a null pointer here.
9261                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9262
9263  if (!Current.insert(Canonical))
9264    return;
9265
9266  // We know that beyond here, we aren't chaining into a cycle.
9267  if (!Target || !Target->isDelegatingConstructor() ||
9268      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9269    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9270      Valid.insert(*CI);
9271    Current.clear();
9272  // We've hit a cycle.
9273  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9274             Current.count(TCanonical)) {
9275    // If we haven't diagnosed this cycle yet, do so now.
9276    if (!Invalid.count(TCanonical)) {
9277      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9278             diag::warn_delegating_ctor_cycle)
9279        << Ctor;
9280
9281      // Don't add a note for a function delegating directo to itself.
9282      if (TCanonical != Canonical)
9283        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9284
9285      CXXConstructorDecl *C = Target;
9286      while (C->getCanonicalDecl() != Canonical) {
9287        (void)C->getTargetConstructor()->hasBody(FNTarget);
9288        assert(FNTarget && "Ctor cycle through bodiless function");
9289
9290        C
9291       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9292        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9293      }
9294    }
9295
9296    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9297      Invalid.insert(*CI);
9298    Current.clear();
9299  } else {
9300    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9301  }
9302}
9303
9304
9305void Sema::CheckDelegatingCtorCycles() {
9306  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9307
9308  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9309                                                   CE = Current.end();
9310
9311  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9312         I = DelegatingCtorDecls.begin(),
9313         E = DelegatingCtorDecls.end();
9314       I != E; ++I) {
9315   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9316  }
9317
9318  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9319    (*CI)->setInvalidDecl();
9320}
9321