SemaDeclCXX.cpp revision 7b2fc9d3c97f2526528a8b686af1589054025ca0
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1108                                               R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1127                                               R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool IsImplicitConstructor,
1433                                  bool AnyErrors) {
1434  // We need to build the initializer AST according to order of construction
1435  // and not what user specified in the Initializers list.
1436  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1437  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1438  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1439  bool HasDependentBaseInit = false;
1440  bool HadError = false;
1441
1442  for (unsigned i = 0; i < NumInitializers; i++) {
1443    CXXBaseOrMemberInitializer *Member = Initializers[i];
1444    if (Member->isBaseInitializer()) {
1445      if (Member->getBaseClass()->isDependentType())
1446        HasDependentBaseInit = true;
1447      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1448    } else {
1449      AllBaseFields[Member->getMember()] = Member;
1450    }
1451  }
1452
1453  if (HasDependentBaseInit) {
1454    // FIXME. This does not preserve the ordering of the initializers.
1455    // Try (with -Wreorder)
1456    // template<class X> struct A {};
1457    // template<class X> struct B : A<X> {
1458    //   B() : x1(10), A<X>() {}
1459    //   int x1;
1460    // };
1461    // B<int> x;
1462    // On seeing one dependent type, we should essentially exit this routine
1463    // while preserving user-declared initializer list. When this routine is
1464    // called during instantiatiation process, this routine will rebuild the
1465    // ordered initializer list correctly.
1466
1467    // If we have a dependent base initialization, we can't determine the
1468    // association between initializers and bases; just dump the known
1469    // initializers into the list, and don't try to deal with other bases.
1470    for (unsigned i = 0; i < NumInitializers; i++) {
1471      CXXBaseOrMemberInitializer *Member = Initializers[i];
1472      if (Member->isBaseInitializer())
1473        AllToInit.push_back(Member);
1474    }
1475  } else {
1476    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1477
1478    // Push virtual bases before others.
1479    for (CXXRecordDecl::base_class_iterator VBase =
1480         ClassDecl->vbases_begin(),
1481         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1482      if (VBase->getType()->isDependentType())
1483        continue;
1484      if (CXXBaseOrMemberInitializer *Value
1485            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1486        AllToInit.push_back(Value);
1487      } else if (!AnyErrors) {
1488        InitializedEntity InitEntity
1489          = InitializedEntity::InitializeBase(Context, VBase);
1490        InitializationKind InitKind
1491          = InitializationKind::CreateDefault(Constructor->getLocation());
1492        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1493        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1494                                                    MultiExprArg(*this, 0, 0));
1495        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1496        if (BaseInit.isInvalid()) {
1497          HadError = true;
1498          continue;
1499        }
1500
1501        // Don't attach synthesized base initializers in a dependent
1502        // context; they'll be checked again at template instantiation
1503        // time.
1504        if (CurContext->isDependentContext())
1505          continue;
1506
1507        CXXBaseOrMemberInitializer *CXXBaseInit =
1508          new (Context) CXXBaseOrMemberInitializer(Context,
1509                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1510                                                              SourceLocation()),
1511                                                   SourceLocation(),
1512                                                   BaseInit.takeAs<Expr>(),
1513                                                   SourceLocation());
1514        AllToInit.push_back(CXXBaseInit);
1515      }
1516    }
1517
1518    for (CXXRecordDecl::base_class_iterator Base =
1519         ClassDecl->bases_begin(),
1520         E = ClassDecl->bases_end(); Base != E; ++Base) {
1521      // Virtuals are in the virtual base list and already constructed.
1522      if (Base->isVirtual())
1523        continue;
1524      // Skip dependent types.
1525      if (Base->getType()->isDependentType())
1526        continue;
1527      if (CXXBaseOrMemberInitializer *Value
1528            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1529        AllToInit.push_back(Value);
1530      }
1531      else if (!AnyErrors) {
1532        InitializedEntity InitEntity
1533          = InitializedEntity::InitializeBase(Context, Base);
1534        InitializationKind InitKind
1535          = InitializationKind::CreateDefault(Constructor->getLocation());
1536        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1537        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1538                                                    MultiExprArg(*this, 0, 0));
1539        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1540        if (BaseInit.isInvalid()) {
1541          HadError = true;
1542          continue;
1543        }
1544
1545        // Don't attach synthesized base initializers in a dependent
1546        // context; they'll be regenerated at template instantiation
1547        // time.
1548        if (CurContext->isDependentContext())
1549          continue;
1550
1551        CXXBaseOrMemberInitializer *CXXBaseInit =
1552          new (Context) CXXBaseOrMemberInitializer(Context,
1553                             Context.getTrivialTypeSourceInfo(Base->getType(),
1554                                                              SourceLocation()),
1555                                                   SourceLocation(),
1556                                                   BaseInit.takeAs<Expr>(),
1557                                                   SourceLocation());
1558        AllToInit.push_back(CXXBaseInit);
1559      }
1560    }
1561  }
1562
1563  // non-static data members.
1564  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1565       E = ClassDecl->field_end(); Field != E; ++Field) {
1566    if ((*Field)->isAnonymousStructOrUnion()) {
1567      if (const RecordType *FieldClassType =
1568          Field->getType()->getAs<RecordType>()) {
1569        CXXRecordDecl *FieldClassDecl
1570          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1571        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1572            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1573          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1574            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1575            // set to the anonymous union data member used in the initializer
1576            // list.
1577            Value->setMember(*Field);
1578            Value->setAnonUnionMember(*FA);
1579            AllToInit.push_back(Value);
1580            break;
1581          }
1582        }
1583      }
1584      continue;
1585    }
1586    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1587      AllToInit.push_back(Value);
1588      continue;
1589    }
1590
1591    if ((*Field)->getType()->isDependentType() || AnyErrors)
1592      continue;
1593
1594    QualType FT = Context.getBaseElementType((*Field)->getType());
1595    if (FT->getAs<RecordType>()) {
1596      InitializedEntity InitEntity
1597        = InitializedEntity::InitializeMember(*Field);
1598      InitializationKind InitKind
1599        = InitializationKind::CreateDefault(Constructor->getLocation());
1600
1601      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1602      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1603                                                    MultiExprArg(*this, 0, 0));
1604      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1605      if (MemberInit.isInvalid()) {
1606        HadError = true;
1607        continue;
1608      }
1609
1610      // Don't attach synthesized member initializers in a dependent
1611      // context; they'll be regenerated a template instantiation
1612      // time.
1613      if (CurContext->isDependentContext())
1614        continue;
1615
1616      CXXBaseOrMemberInitializer *Member =
1617        new (Context) CXXBaseOrMemberInitializer(Context,
1618                                                 *Field, SourceLocation(),
1619                                                 SourceLocation(),
1620                                                 MemberInit.takeAs<Expr>(),
1621                                                 SourceLocation());
1622
1623      AllToInit.push_back(Member);
1624    }
1625    else if (FT->isReferenceType()) {
1626      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1627        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1628        << 0 << (*Field)->getDeclName();
1629      Diag((*Field)->getLocation(), diag::note_declared_at);
1630      HadError = true;
1631    }
1632    else if (FT.isConstQualified()) {
1633      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1634        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1635        << 1 << (*Field)->getDeclName();
1636      Diag((*Field)->getLocation(), diag::note_declared_at);
1637      HadError = true;
1638    }
1639  }
1640
1641  NumInitializers = AllToInit.size();
1642  if (NumInitializers > 0) {
1643    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1644    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1645      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1646    memcpy(baseOrMemberInitializers, AllToInit.data(),
1647           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1648    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1649
1650    // Constructors implicitly reference the base and member
1651    // destructors.
1652    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1653                                           Constructor->getParent());
1654  }
1655
1656  return HadError;
1657}
1658
1659static void *GetKeyForTopLevelField(FieldDecl *Field) {
1660  // For anonymous unions, use the class declaration as the key.
1661  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1662    if (RT->getDecl()->isAnonymousStructOrUnion())
1663      return static_cast<void *>(RT->getDecl());
1664  }
1665  return static_cast<void *>(Field);
1666}
1667
1668static void *GetKeyForBase(QualType BaseType) {
1669  if (const RecordType *RT = BaseType->getAs<RecordType>())
1670    return (void *)RT;
1671
1672  assert(0 && "Unexpected base type!");
1673  return 0;
1674}
1675
1676static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1677                             bool MemberMaybeAnon = false) {
1678  // For fields injected into the class via declaration of an anonymous union,
1679  // use its anonymous union class declaration as the unique key.
1680  if (Member->isMemberInitializer()) {
1681    FieldDecl *Field = Member->getMember();
1682
1683    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1684    // data member of the class. Data member used in the initializer list is
1685    // in AnonUnionMember field.
1686    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1687      Field = Member->getAnonUnionMember();
1688    if (Field->getDeclContext()->isRecord()) {
1689      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1690      if (RD->isAnonymousStructOrUnion())
1691        return static_cast<void *>(RD);
1692    }
1693    return static_cast<void *>(Field);
1694  }
1695
1696  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1697}
1698
1699/// ActOnMemInitializers - Handle the member initializers for a constructor.
1700void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1701                                SourceLocation ColonLoc,
1702                                MemInitTy **MemInits, unsigned NumMemInits,
1703                                bool AnyErrors) {
1704  if (!ConstructorDecl)
1705    return;
1706
1707  AdjustDeclIfTemplate(ConstructorDecl);
1708
1709  CXXConstructorDecl *Constructor
1710    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1711
1712  if (!Constructor) {
1713    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1714    return;
1715  }
1716
1717  if (!Constructor->isDependentContext()) {
1718    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1719    bool err = false;
1720    for (unsigned i = 0; i < NumMemInits; i++) {
1721      CXXBaseOrMemberInitializer *Member =
1722        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1723      void *KeyToMember = GetKeyForMember(Member);
1724      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1725      if (!PrevMember) {
1726        PrevMember = Member;
1727        continue;
1728      }
1729      if (FieldDecl *Field = Member->getMember())
1730        Diag(Member->getSourceLocation(),
1731             diag::error_multiple_mem_initialization)
1732          << Field->getNameAsString()
1733          << Member->getSourceRange();
1734      else {
1735        Type *BaseClass = Member->getBaseClass();
1736        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1737        Diag(Member->getSourceLocation(),
1738             diag::error_multiple_base_initialization)
1739          << QualType(BaseClass, 0)
1740          << Member->getSourceRange();
1741      }
1742      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1743        << 0;
1744      err = true;
1745    }
1746
1747    if (err)
1748      return;
1749  }
1750
1751  SetBaseOrMemberInitializers(Constructor,
1752                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1753                      NumMemInits, false, AnyErrors);
1754
1755  if (Constructor->isDependentContext())
1756    return;
1757
1758  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1759      Diagnostic::Ignored &&
1760      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1761      Diagnostic::Ignored)
1762    return;
1763
1764  // Also issue warning if order of ctor-initializer list does not match order
1765  // of 1) base class declarations and 2) order of non-static data members.
1766  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1767
1768  CXXRecordDecl *ClassDecl
1769    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1770  // Push virtual bases before others.
1771  for (CXXRecordDecl::base_class_iterator VBase =
1772       ClassDecl->vbases_begin(),
1773       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1774    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1775
1776  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1777       E = ClassDecl->bases_end(); Base != E; ++Base) {
1778    // Virtuals are alread in the virtual base list and are constructed
1779    // first.
1780    if (Base->isVirtual())
1781      continue;
1782    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1783  }
1784
1785  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1786       E = ClassDecl->field_end(); Field != E; ++Field)
1787    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1788
1789  int Last = AllBaseOrMembers.size();
1790  int curIndex = 0;
1791  CXXBaseOrMemberInitializer *PrevMember = 0;
1792  for (unsigned i = 0; i < NumMemInits; i++) {
1793    CXXBaseOrMemberInitializer *Member =
1794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1795    void *MemberInCtorList = GetKeyForMember(Member, true);
1796
1797    for (; curIndex < Last; curIndex++)
1798      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1799        break;
1800    if (curIndex == Last) {
1801      assert(PrevMember && "Member not in member list?!");
1802      // Initializer as specified in ctor-initializer list is out of order.
1803      // Issue a warning diagnostic.
1804      if (PrevMember->isBaseInitializer()) {
1805        // Diagnostics is for an initialized base class.
1806        Type *BaseClass = PrevMember->getBaseClass();
1807        Diag(PrevMember->getSourceLocation(),
1808             diag::warn_base_initialized)
1809          << QualType(BaseClass, 0);
1810      } else {
1811        FieldDecl *Field = PrevMember->getMember();
1812        Diag(PrevMember->getSourceLocation(),
1813             diag::warn_field_initialized)
1814          << Field->getNameAsString();
1815      }
1816      // Also the note!
1817      if (FieldDecl *Field = Member->getMember())
1818        Diag(Member->getSourceLocation(),
1819             diag::note_fieldorbase_initialized_here) << 0
1820          << Field->getNameAsString();
1821      else {
1822        Type *BaseClass = Member->getBaseClass();
1823        Diag(Member->getSourceLocation(),
1824             diag::note_fieldorbase_initialized_here) << 1
1825          << QualType(BaseClass, 0);
1826      }
1827      for (curIndex = 0; curIndex < Last; curIndex++)
1828        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1829          break;
1830    }
1831    PrevMember = Member;
1832  }
1833}
1834
1835void
1836Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1837                                             CXXRecordDecl *ClassDecl) {
1838  // Ignore dependent contexts.
1839  if (ClassDecl->isDependentContext())
1840    return;
1841
1842  // FIXME: all the access-control diagnostics are positioned on the
1843  // field/base declaration.  That's probably good; that said, the
1844  // user might reasonably want to know why the destructor is being
1845  // emitted, and we currently don't say.
1846
1847  // Non-static data members.
1848  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1849       E = ClassDecl->field_end(); I != E; ++I) {
1850    FieldDecl *Field = *I;
1851
1852    QualType FieldType = Context.getBaseElementType(Field->getType());
1853
1854    const RecordType* RT = FieldType->getAs<RecordType>();
1855    if (!RT)
1856      continue;
1857
1858    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1859    if (FieldClassDecl->hasTrivialDestructor())
1860      continue;
1861
1862    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1863    CheckDestructorAccess(Field->getLocation(), Dtor,
1864                          PartialDiagnostic(diag::err_access_dtor_field)
1865                            << Field->getDeclName()
1866                            << FieldType);
1867
1868    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1869  }
1870
1871  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1872
1873  // Bases.
1874  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); Base != E; ++Base) {
1876    // Bases are always records in a well-formed non-dependent class.
1877    const RecordType *RT = Base->getType()->getAs<RecordType>();
1878
1879    // Remember direct virtual bases.
1880    if (Base->isVirtual())
1881      DirectVirtualBases.insert(RT);
1882
1883    // Ignore trivial destructors.
1884    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1885    if (BaseClassDecl->hasTrivialDestructor())
1886      continue;
1887
1888    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1889
1890    // FIXME: caret should be on the start of the class name
1891    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1892                          PartialDiagnostic(diag::err_access_dtor_base)
1893                            << Base->getType()
1894                            << Base->getSourceRange());
1895
1896    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1897  }
1898
1899  // Virtual bases.
1900  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1901       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1902
1903    // Bases are always records in a well-formed non-dependent class.
1904    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1905
1906    // Ignore direct virtual bases.
1907    if (DirectVirtualBases.count(RT))
1908      continue;
1909
1910    // Ignore trivial destructors.
1911    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1912    if (BaseClassDecl->hasTrivialDestructor())
1913      continue;
1914
1915    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1916    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1917                          PartialDiagnostic(diag::err_access_dtor_vbase)
1918                            << VBase->getType());
1919
1920    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1921  }
1922}
1923
1924void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1925  if (!CDtorDecl)
1926    return;
1927
1928  AdjustDeclIfTemplate(CDtorDecl);
1929
1930  if (CXXConstructorDecl *Constructor
1931      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1932    SetBaseOrMemberInitializers(Constructor, 0, 0, false, false);
1933}
1934
1935bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1936                                  unsigned DiagID, AbstractDiagSelID SelID,
1937                                  const CXXRecordDecl *CurrentRD) {
1938  if (SelID == -1)
1939    return RequireNonAbstractType(Loc, T,
1940                                  PDiag(DiagID), CurrentRD);
1941  else
1942    return RequireNonAbstractType(Loc, T,
1943                                  PDiag(DiagID) << SelID, CurrentRD);
1944}
1945
1946bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1947                                  const PartialDiagnostic &PD,
1948                                  const CXXRecordDecl *CurrentRD) {
1949  if (!getLangOptions().CPlusPlus)
1950    return false;
1951
1952  if (const ArrayType *AT = Context.getAsArrayType(T))
1953    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1954                                  CurrentRD);
1955
1956  if (const PointerType *PT = T->getAs<PointerType>()) {
1957    // Find the innermost pointer type.
1958    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1959      PT = T;
1960
1961    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1962      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1963  }
1964
1965  const RecordType *RT = T->getAs<RecordType>();
1966  if (!RT)
1967    return false;
1968
1969  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1970
1971  if (CurrentRD && CurrentRD != RD)
1972    return false;
1973
1974  // FIXME: is this reasonable?  It matches current behavior, but....
1975  if (!RD->getDefinition())
1976    return false;
1977
1978  if (!RD->isAbstract())
1979    return false;
1980
1981  Diag(Loc, PD) << RD->getDeclName();
1982
1983  // Check if we've already emitted the list of pure virtual functions for this
1984  // class.
1985  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1986    return true;
1987
1988  CXXFinalOverriderMap FinalOverriders;
1989  RD->getFinalOverriders(FinalOverriders);
1990
1991  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
1992                                   MEnd = FinalOverriders.end();
1993       M != MEnd;
1994       ++M) {
1995    for (OverridingMethods::iterator SO = M->second.begin(),
1996                                  SOEnd = M->second.end();
1997         SO != SOEnd; ++SO) {
1998      // C++ [class.abstract]p4:
1999      //   A class is abstract if it contains or inherits at least one
2000      //   pure virtual function for which the final overrider is pure
2001      //   virtual.
2002
2003      //
2004      if (SO->second.size() != 1)
2005        continue;
2006
2007      if (!SO->second.front().Method->isPure())
2008        continue;
2009
2010      Diag(SO->second.front().Method->getLocation(),
2011           diag::note_pure_virtual_function)
2012        << SO->second.front().Method->getDeclName();
2013    }
2014  }
2015
2016  if (!PureVirtualClassDiagSet)
2017    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2018  PureVirtualClassDiagSet->insert(RD);
2019
2020  return true;
2021}
2022
2023namespace {
2024  class AbstractClassUsageDiagnoser
2025    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2026    Sema &SemaRef;
2027    CXXRecordDecl *AbstractClass;
2028
2029    bool VisitDeclContext(const DeclContext *DC) {
2030      bool Invalid = false;
2031
2032      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2033           E = DC->decls_end(); I != E; ++I)
2034        Invalid |= Visit(*I);
2035
2036      return Invalid;
2037    }
2038
2039  public:
2040    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2041      : SemaRef(SemaRef), AbstractClass(ac) {
2042        Visit(SemaRef.Context.getTranslationUnitDecl());
2043    }
2044
2045    bool VisitFunctionDecl(const FunctionDecl *FD) {
2046      if (FD->isThisDeclarationADefinition()) {
2047        // No need to do the check if we're in a definition, because it requires
2048        // that the return/param types are complete.
2049        // because that requires
2050        return VisitDeclContext(FD);
2051      }
2052
2053      // Check the return type.
2054      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2055      bool Invalid =
2056        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2057                                       diag::err_abstract_type_in_decl,
2058                                       Sema::AbstractReturnType,
2059                                       AbstractClass);
2060
2061      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2062           E = FD->param_end(); I != E; ++I) {
2063        const ParmVarDecl *VD = *I;
2064        Invalid |=
2065          SemaRef.RequireNonAbstractType(VD->getLocation(),
2066                                         VD->getOriginalType(),
2067                                         diag::err_abstract_type_in_decl,
2068                                         Sema::AbstractParamType,
2069                                         AbstractClass);
2070      }
2071
2072      return Invalid;
2073    }
2074
2075    bool VisitDecl(const Decl* D) {
2076      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2077        return VisitDeclContext(DC);
2078
2079      return false;
2080    }
2081  };
2082}
2083
2084/// \brief Perform semantic checks on a class definition that has been
2085/// completing, introducing implicitly-declared members, checking for
2086/// abstract types, etc.
2087void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2088  if (!Record || Record->isInvalidDecl())
2089    return;
2090
2091  if (!Record->isDependentType())
2092    AddImplicitlyDeclaredMembersToClass(Record);
2093
2094  if (Record->isInvalidDecl())
2095    return;
2096
2097  // Set access bits correctly on the directly-declared conversions.
2098  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2099  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2100    Convs->setAccess(I, (*I)->getAccess());
2101
2102  // Determine whether we need to check for final overriders. We do
2103  // this either when there are virtual base classes (in which case we
2104  // may end up finding multiple final overriders for a given virtual
2105  // function) or any of the base classes is abstract (in which case
2106  // we might detect that this class is abstract).
2107  bool CheckFinalOverriders = false;
2108  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2109      !Record->isDependentType()) {
2110    if (Record->getNumVBases())
2111      CheckFinalOverriders = true;
2112    else if (!Record->isAbstract()) {
2113      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2114                                                 BEnd = Record->bases_end();
2115           B != BEnd; ++B) {
2116        CXXRecordDecl *BaseDecl
2117          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2118        if (BaseDecl->isAbstract()) {
2119          CheckFinalOverriders = true;
2120          break;
2121        }
2122      }
2123    }
2124  }
2125
2126  if (CheckFinalOverriders) {
2127    CXXFinalOverriderMap FinalOverriders;
2128    Record->getFinalOverriders(FinalOverriders);
2129
2130    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2131                                     MEnd = FinalOverriders.end();
2132         M != MEnd; ++M) {
2133      for (OverridingMethods::iterator SO = M->second.begin(),
2134                                    SOEnd = M->second.end();
2135           SO != SOEnd; ++SO) {
2136        assert(SO->second.size() > 0 &&
2137               "All virtual functions have overridding virtual functions");
2138        if (SO->second.size() == 1) {
2139          // C++ [class.abstract]p4:
2140          //   A class is abstract if it contains or inherits at least one
2141          //   pure virtual function for which the final overrider is pure
2142          //   virtual.
2143          if (SO->second.front().Method->isPure())
2144            Record->setAbstract(true);
2145          continue;
2146        }
2147
2148        // C++ [class.virtual]p2:
2149        //   In a derived class, if a virtual member function of a base
2150        //   class subobject has more than one final overrider the
2151        //   program is ill-formed.
2152        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2153          << (NamedDecl *)M->first << Record;
2154        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2155        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2156                                                 OMEnd = SO->second.end();
2157             OM != OMEnd; ++OM)
2158          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2159            << (NamedDecl *)M->first << OM->Method->getParent();
2160
2161        Record->setInvalidDecl();
2162      }
2163    }
2164  }
2165
2166  if (Record->isAbstract() && !Record->isInvalidDecl())
2167    (void)AbstractClassUsageDiagnoser(*this, Record);
2168}
2169
2170void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2171                                             DeclPtrTy TagDecl,
2172                                             SourceLocation LBrac,
2173                                             SourceLocation RBrac) {
2174  if (!TagDecl)
2175    return;
2176
2177  AdjustDeclIfTemplate(TagDecl);
2178
2179  ActOnFields(S, RLoc, TagDecl,
2180              (DeclPtrTy*)FieldCollector->getCurFields(),
2181              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2182
2183  CheckCompletedCXXClass(
2184                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2185}
2186
2187/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2188/// special functions, such as the default constructor, copy
2189/// constructor, or destructor, to the given C++ class (C++
2190/// [special]p1).  This routine can only be executed just before the
2191/// definition of the class is complete.
2192void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2193  CanQualType ClassType
2194    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2195
2196  // FIXME: Implicit declarations have exception specifications, which are
2197  // the union of the specifications of the implicitly called functions.
2198
2199  if (!ClassDecl->hasUserDeclaredConstructor()) {
2200    // C++ [class.ctor]p5:
2201    //   A default constructor for a class X is a constructor of class X
2202    //   that can be called without an argument. If there is no
2203    //   user-declared constructor for class X, a default constructor is
2204    //   implicitly declared. An implicitly-declared default constructor
2205    //   is an inline public member of its class.
2206    DeclarationName Name
2207      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2208    CXXConstructorDecl *DefaultCon =
2209      CXXConstructorDecl::Create(Context, ClassDecl,
2210                                 ClassDecl->getLocation(), Name,
2211                                 Context.getFunctionType(Context.VoidTy,
2212                                                         0, 0, false, 0,
2213                                                         /*FIXME*/false, false,
2214                                                         0, 0, false,
2215                                                         CC_Default),
2216                                 /*TInfo=*/0,
2217                                 /*isExplicit=*/false,
2218                                 /*isInline=*/true,
2219                                 /*isImplicitlyDeclared=*/true);
2220    DefaultCon->setAccess(AS_public);
2221    DefaultCon->setImplicit();
2222    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2223    ClassDecl->addDecl(DefaultCon);
2224  }
2225
2226  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2227    // C++ [class.copy]p4:
2228    //   If the class definition does not explicitly declare a copy
2229    //   constructor, one is declared implicitly.
2230
2231    // C++ [class.copy]p5:
2232    //   The implicitly-declared copy constructor for a class X will
2233    //   have the form
2234    //
2235    //       X::X(const X&)
2236    //
2237    //   if
2238    bool HasConstCopyConstructor = true;
2239
2240    //     -- each direct or virtual base class B of X has a copy
2241    //        constructor whose first parameter is of type const B& or
2242    //        const volatile B&, and
2243    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2244         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2245      const CXXRecordDecl *BaseClassDecl
2246        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2247      HasConstCopyConstructor
2248        = BaseClassDecl->hasConstCopyConstructor(Context);
2249    }
2250
2251    //     -- for all the nonstatic data members of X that are of a
2252    //        class type M (or array thereof), each such class type
2253    //        has a copy constructor whose first parameter is of type
2254    //        const M& or const volatile M&.
2255    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2256         HasConstCopyConstructor && Field != ClassDecl->field_end();
2257         ++Field) {
2258      QualType FieldType = (*Field)->getType();
2259      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2260        FieldType = Array->getElementType();
2261      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2262        const CXXRecordDecl *FieldClassDecl
2263          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2264        HasConstCopyConstructor
2265          = FieldClassDecl->hasConstCopyConstructor(Context);
2266      }
2267    }
2268
2269    //   Otherwise, the implicitly declared copy constructor will have
2270    //   the form
2271    //
2272    //       X::X(X&)
2273    QualType ArgType = ClassType;
2274    if (HasConstCopyConstructor)
2275      ArgType = ArgType.withConst();
2276    ArgType = Context.getLValueReferenceType(ArgType);
2277
2278    //   An implicitly-declared copy constructor is an inline public
2279    //   member of its class.
2280    DeclarationName Name
2281      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2282    CXXConstructorDecl *CopyConstructor
2283      = CXXConstructorDecl::Create(Context, ClassDecl,
2284                                   ClassDecl->getLocation(), Name,
2285                                   Context.getFunctionType(Context.VoidTy,
2286                                                           &ArgType, 1,
2287                                                           false, 0,
2288                                                           /*FIXME:*/false,
2289                                                           false, 0, 0, false,
2290                                                           CC_Default),
2291                                   /*TInfo=*/0,
2292                                   /*isExplicit=*/false,
2293                                   /*isInline=*/true,
2294                                   /*isImplicitlyDeclared=*/true);
2295    CopyConstructor->setAccess(AS_public);
2296    CopyConstructor->setImplicit();
2297    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2298
2299    // Add the parameter to the constructor.
2300    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2301                                                 ClassDecl->getLocation(),
2302                                                 /*IdentifierInfo=*/0,
2303                                                 ArgType, /*TInfo=*/0,
2304                                                 VarDecl::None, 0);
2305    CopyConstructor->setParams(&FromParam, 1);
2306    ClassDecl->addDecl(CopyConstructor);
2307  }
2308
2309  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2310    // Note: The following rules are largely analoguous to the copy
2311    // constructor rules. Note that virtual bases are not taken into account
2312    // for determining the argument type of the operator. Note also that
2313    // operators taking an object instead of a reference are allowed.
2314    //
2315    // C++ [class.copy]p10:
2316    //   If the class definition does not explicitly declare a copy
2317    //   assignment operator, one is declared implicitly.
2318    //   The implicitly-defined copy assignment operator for a class X
2319    //   will have the form
2320    //
2321    //       X& X::operator=(const X&)
2322    //
2323    //   if
2324    bool HasConstCopyAssignment = true;
2325
2326    //       -- each direct base class B of X has a copy assignment operator
2327    //          whose parameter is of type const B&, const volatile B& or B,
2328    //          and
2329    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2330         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2331      assert(!Base->getType()->isDependentType() &&
2332            "Cannot generate implicit members for class with dependent bases.");
2333      const CXXRecordDecl *BaseClassDecl
2334        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2335      const CXXMethodDecl *MD = 0;
2336      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2337                                                                     MD);
2338    }
2339
2340    //       -- for all the nonstatic data members of X that are of a class
2341    //          type M (or array thereof), each such class type has a copy
2342    //          assignment operator whose parameter is of type const M&,
2343    //          const volatile M& or M.
2344    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2345         HasConstCopyAssignment && Field != ClassDecl->field_end();
2346         ++Field) {
2347      QualType FieldType = (*Field)->getType();
2348      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2349        FieldType = Array->getElementType();
2350      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2351        const CXXRecordDecl *FieldClassDecl
2352          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2353        const CXXMethodDecl *MD = 0;
2354        HasConstCopyAssignment
2355          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2356      }
2357    }
2358
2359    //   Otherwise, the implicitly declared copy assignment operator will
2360    //   have the form
2361    //
2362    //       X& X::operator=(X&)
2363    QualType ArgType = ClassType;
2364    QualType RetType = Context.getLValueReferenceType(ArgType);
2365    if (HasConstCopyAssignment)
2366      ArgType = ArgType.withConst();
2367    ArgType = Context.getLValueReferenceType(ArgType);
2368
2369    //   An implicitly-declared copy assignment operator is an inline public
2370    //   member of its class.
2371    DeclarationName Name =
2372      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2373    CXXMethodDecl *CopyAssignment =
2374      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2375                            Context.getFunctionType(RetType, &ArgType, 1,
2376                                                    false, 0,
2377                                                    /*FIXME:*/false,
2378                                                    false, 0, 0, false,
2379                                                    CC_Default),
2380                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2381    CopyAssignment->setAccess(AS_public);
2382    CopyAssignment->setImplicit();
2383    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2384    CopyAssignment->setCopyAssignment(true);
2385
2386    // Add the parameter to the operator.
2387    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2388                                                 ClassDecl->getLocation(),
2389                                                 /*IdentifierInfo=*/0,
2390                                                 ArgType, /*TInfo=*/0,
2391                                                 VarDecl::None, 0);
2392    CopyAssignment->setParams(&FromParam, 1);
2393
2394    // Don't call addedAssignmentOperator. There is no way to distinguish an
2395    // implicit from an explicit assignment operator.
2396    ClassDecl->addDecl(CopyAssignment);
2397    AddOverriddenMethods(ClassDecl, CopyAssignment);
2398  }
2399
2400  if (!ClassDecl->hasUserDeclaredDestructor()) {
2401    // C++ [class.dtor]p2:
2402    //   If a class has no user-declared destructor, a destructor is
2403    //   declared implicitly. An implicitly-declared destructor is an
2404    //   inline public member of its class.
2405    QualType Ty = Context.getFunctionType(Context.VoidTy,
2406                                          0, 0, false, 0,
2407                                          /*FIXME:*/false,
2408                                          false, 0, 0, false,
2409                                          CC_Default);
2410
2411    DeclarationName Name
2412      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2413    CXXDestructorDecl *Destructor
2414      = CXXDestructorDecl::Create(Context, ClassDecl,
2415                                  ClassDecl->getLocation(), Name, Ty,
2416                                  /*isInline=*/true,
2417                                  /*isImplicitlyDeclared=*/true);
2418    Destructor->setAccess(AS_public);
2419    Destructor->setImplicit();
2420    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2421    ClassDecl->addDecl(Destructor);
2422
2423    // This could be uniqued if it ever proves significant.
2424    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2425
2426    AddOverriddenMethods(ClassDecl, Destructor);
2427  }
2428}
2429
2430void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2431  Decl *D = TemplateD.getAs<Decl>();
2432  if (!D)
2433    return;
2434
2435  TemplateParameterList *Params = 0;
2436  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2437    Params = Template->getTemplateParameters();
2438  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2439           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2440    Params = PartialSpec->getTemplateParameters();
2441  else
2442    return;
2443
2444  for (TemplateParameterList::iterator Param = Params->begin(),
2445                                    ParamEnd = Params->end();
2446       Param != ParamEnd; ++Param) {
2447    NamedDecl *Named = cast<NamedDecl>(*Param);
2448    if (Named->getDeclName()) {
2449      S->AddDecl(DeclPtrTy::make(Named));
2450      IdResolver.AddDecl(Named);
2451    }
2452  }
2453}
2454
2455void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2456  if (!RecordD) return;
2457  AdjustDeclIfTemplate(RecordD);
2458  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2459  PushDeclContext(S, Record);
2460}
2461
2462void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2463  if (!RecordD) return;
2464  PopDeclContext();
2465}
2466
2467/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2468/// parsing a top-level (non-nested) C++ class, and we are now
2469/// parsing those parts of the given Method declaration that could
2470/// not be parsed earlier (C++ [class.mem]p2), such as default
2471/// arguments. This action should enter the scope of the given
2472/// Method declaration as if we had just parsed the qualified method
2473/// name. However, it should not bring the parameters into scope;
2474/// that will be performed by ActOnDelayedCXXMethodParameter.
2475void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2476}
2477
2478/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2479/// C++ method declaration. We're (re-)introducing the given
2480/// function parameter into scope for use in parsing later parts of
2481/// the method declaration. For example, we could see an
2482/// ActOnParamDefaultArgument event for this parameter.
2483void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2484  if (!ParamD)
2485    return;
2486
2487  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2488
2489  // If this parameter has an unparsed default argument, clear it out
2490  // to make way for the parsed default argument.
2491  if (Param->hasUnparsedDefaultArg())
2492    Param->setDefaultArg(0);
2493
2494  S->AddDecl(DeclPtrTy::make(Param));
2495  if (Param->getDeclName())
2496    IdResolver.AddDecl(Param);
2497}
2498
2499/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2500/// processing the delayed method declaration for Method. The method
2501/// declaration is now considered finished. There may be a separate
2502/// ActOnStartOfFunctionDef action later (not necessarily
2503/// immediately!) for this method, if it was also defined inside the
2504/// class body.
2505void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2506  if (!MethodD)
2507    return;
2508
2509  AdjustDeclIfTemplate(MethodD);
2510
2511  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2512
2513  // Now that we have our default arguments, check the constructor
2514  // again. It could produce additional diagnostics or affect whether
2515  // the class has implicitly-declared destructors, among other
2516  // things.
2517  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2518    CheckConstructor(Constructor);
2519
2520  // Check the default arguments, which we may have added.
2521  if (!Method->isInvalidDecl())
2522    CheckCXXDefaultArguments(Method);
2523}
2524
2525/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2526/// the well-formedness of the constructor declarator @p D with type @p
2527/// R. If there are any errors in the declarator, this routine will
2528/// emit diagnostics and set the invalid bit to true.  In any case, the type
2529/// will be updated to reflect a well-formed type for the constructor and
2530/// returned.
2531QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2532                                          FunctionDecl::StorageClass &SC) {
2533  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2534
2535  // C++ [class.ctor]p3:
2536  //   A constructor shall not be virtual (10.3) or static (9.4). A
2537  //   constructor can be invoked for a const, volatile or const
2538  //   volatile object. A constructor shall not be declared const,
2539  //   volatile, or const volatile (9.3.2).
2540  if (isVirtual) {
2541    if (!D.isInvalidType())
2542      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2543        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2544        << SourceRange(D.getIdentifierLoc());
2545    D.setInvalidType();
2546  }
2547  if (SC == FunctionDecl::Static) {
2548    if (!D.isInvalidType())
2549      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2550        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2551        << SourceRange(D.getIdentifierLoc());
2552    D.setInvalidType();
2553    SC = FunctionDecl::None;
2554  }
2555
2556  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2557  if (FTI.TypeQuals != 0) {
2558    if (FTI.TypeQuals & Qualifiers::Const)
2559      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2560        << "const" << SourceRange(D.getIdentifierLoc());
2561    if (FTI.TypeQuals & Qualifiers::Volatile)
2562      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2563        << "volatile" << SourceRange(D.getIdentifierLoc());
2564    if (FTI.TypeQuals & Qualifiers::Restrict)
2565      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2566        << "restrict" << SourceRange(D.getIdentifierLoc());
2567  }
2568
2569  // Rebuild the function type "R" without any type qualifiers (in
2570  // case any of the errors above fired) and with "void" as the
2571  // return type, since constructors don't have return types. We
2572  // *always* have to do this, because GetTypeForDeclarator will
2573  // put in a result type of "int" when none was specified.
2574  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2575  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2576                                 Proto->getNumArgs(),
2577                                 Proto->isVariadic(), 0,
2578                                 Proto->hasExceptionSpec(),
2579                                 Proto->hasAnyExceptionSpec(),
2580                                 Proto->getNumExceptions(),
2581                                 Proto->exception_begin(),
2582                                 Proto->getNoReturnAttr(),
2583                                 Proto->getCallConv());
2584}
2585
2586/// CheckConstructor - Checks a fully-formed constructor for
2587/// well-formedness, issuing any diagnostics required. Returns true if
2588/// the constructor declarator is invalid.
2589void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2590  CXXRecordDecl *ClassDecl
2591    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2592  if (!ClassDecl)
2593    return Constructor->setInvalidDecl();
2594
2595  // C++ [class.copy]p3:
2596  //   A declaration of a constructor for a class X is ill-formed if
2597  //   its first parameter is of type (optionally cv-qualified) X and
2598  //   either there are no other parameters or else all other
2599  //   parameters have default arguments.
2600  if (!Constructor->isInvalidDecl() &&
2601      ((Constructor->getNumParams() == 1) ||
2602       (Constructor->getNumParams() > 1 &&
2603        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2604      Constructor->getTemplateSpecializationKind()
2605                                              != TSK_ImplicitInstantiation) {
2606    QualType ParamType = Constructor->getParamDecl(0)->getType();
2607    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2608    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2609      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2610      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2611        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2612
2613      // FIXME: Rather that making the constructor invalid, we should endeavor
2614      // to fix the type.
2615      Constructor->setInvalidDecl();
2616    }
2617  }
2618
2619  // Notify the class that we've added a constructor.
2620  ClassDecl->addedConstructor(Context, Constructor);
2621}
2622
2623/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2624/// issuing any diagnostics required. Returns true on error.
2625bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2626  CXXRecordDecl *RD = Destructor->getParent();
2627
2628  if (Destructor->isVirtual()) {
2629    SourceLocation Loc;
2630
2631    if (!Destructor->isImplicit())
2632      Loc = Destructor->getLocation();
2633    else
2634      Loc = RD->getLocation();
2635
2636    // If we have a virtual destructor, look up the deallocation function
2637    FunctionDecl *OperatorDelete = 0;
2638    DeclarationName Name =
2639    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2640    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2641      return true;
2642
2643    Destructor->setOperatorDelete(OperatorDelete);
2644  }
2645
2646  return false;
2647}
2648
2649static inline bool
2650FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2651  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2652          FTI.ArgInfo[0].Param &&
2653          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2654}
2655
2656/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2657/// the well-formednes of the destructor declarator @p D with type @p
2658/// R. If there are any errors in the declarator, this routine will
2659/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2660/// will be updated to reflect a well-formed type for the destructor and
2661/// returned.
2662QualType Sema::CheckDestructorDeclarator(Declarator &D,
2663                                         FunctionDecl::StorageClass& SC) {
2664  // C++ [class.dtor]p1:
2665  //   [...] A typedef-name that names a class is a class-name
2666  //   (7.1.3); however, a typedef-name that names a class shall not
2667  //   be used as the identifier in the declarator for a destructor
2668  //   declaration.
2669  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2670  if (isa<TypedefType>(DeclaratorType)) {
2671    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2672      << DeclaratorType;
2673    D.setInvalidType();
2674  }
2675
2676  // C++ [class.dtor]p2:
2677  //   A destructor is used to destroy objects of its class type. A
2678  //   destructor takes no parameters, and no return type can be
2679  //   specified for it (not even void). The address of a destructor
2680  //   shall not be taken. A destructor shall not be static. A
2681  //   destructor can be invoked for a const, volatile or const
2682  //   volatile object. A destructor shall not be declared const,
2683  //   volatile or const volatile (9.3.2).
2684  if (SC == FunctionDecl::Static) {
2685    if (!D.isInvalidType())
2686      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2687        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2688        << SourceRange(D.getIdentifierLoc());
2689    SC = FunctionDecl::None;
2690    D.setInvalidType();
2691  }
2692  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2693    // Destructors don't have return types, but the parser will
2694    // happily parse something like:
2695    //
2696    //   class X {
2697    //     float ~X();
2698    //   };
2699    //
2700    // The return type will be eliminated later.
2701    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2702      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2703      << SourceRange(D.getIdentifierLoc());
2704  }
2705
2706  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2707  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2708    if (FTI.TypeQuals & Qualifiers::Const)
2709      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2710        << "const" << SourceRange(D.getIdentifierLoc());
2711    if (FTI.TypeQuals & Qualifiers::Volatile)
2712      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2713        << "volatile" << SourceRange(D.getIdentifierLoc());
2714    if (FTI.TypeQuals & Qualifiers::Restrict)
2715      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2716        << "restrict" << SourceRange(D.getIdentifierLoc());
2717    D.setInvalidType();
2718  }
2719
2720  // Make sure we don't have any parameters.
2721  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2722    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2723
2724    // Delete the parameters.
2725    FTI.freeArgs();
2726    D.setInvalidType();
2727  }
2728
2729  // Make sure the destructor isn't variadic.
2730  if (FTI.isVariadic) {
2731    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2732    D.setInvalidType();
2733  }
2734
2735  // Rebuild the function type "R" without any type qualifiers or
2736  // parameters (in case any of the errors above fired) and with
2737  // "void" as the return type, since destructors don't have return
2738  // types. We *always* have to do this, because GetTypeForDeclarator
2739  // will put in a result type of "int" when none was specified.
2740  // FIXME: Exceptions!
2741  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2742                                 false, false, 0, 0, false, CC_Default);
2743}
2744
2745/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2746/// well-formednes of the conversion function declarator @p D with
2747/// type @p R. If there are any errors in the declarator, this routine
2748/// will emit diagnostics and return true. Otherwise, it will return
2749/// false. Either way, the type @p R will be updated to reflect a
2750/// well-formed type for the conversion operator.
2751void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2752                                     FunctionDecl::StorageClass& SC) {
2753  // C++ [class.conv.fct]p1:
2754  //   Neither parameter types nor return type can be specified. The
2755  //   type of a conversion function (8.3.5) is "function taking no
2756  //   parameter returning conversion-type-id."
2757  if (SC == FunctionDecl::Static) {
2758    if (!D.isInvalidType())
2759      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2760        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2761        << SourceRange(D.getIdentifierLoc());
2762    D.setInvalidType();
2763    SC = FunctionDecl::None;
2764  }
2765  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2766    // Conversion functions don't have return types, but the parser will
2767    // happily parse something like:
2768    //
2769    //   class X {
2770    //     float operator bool();
2771    //   };
2772    //
2773    // The return type will be changed later anyway.
2774    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2775      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2776      << SourceRange(D.getIdentifierLoc());
2777  }
2778
2779  // Make sure we don't have any parameters.
2780  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2781    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2782
2783    // Delete the parameters.
2784    D.getTypeObject(0).Fun.freeArgs();
2785    D.setInvalidType();
2786  }
2787
2788  // Make sure the conversion function isn't variadic.
2789  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2790    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2791    D.setInvalidType();
2792  }
2793
2794  // C++ [class.conv.fct]p4:
2795  //   The conversion-type-id shall not represent a function type nor
2796  //   an array type.
2797  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2798  if (ConvType->isArrayType()) {
2799    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2800    ConvType = Context.getPointerType(ConvType);
2801    D.setInvalidType();
2802  } else if (ConvType->isFunctionType()) {
2803    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2804    ConvType = Context.getPointerType(ConvType);
2805    D.setInvalidType();
2806  }
2807
2808  // Rebuild the function type "R" without any parameters (in case any
2809  // of the errors above fired) and with the conversion type as the
2810  // return type.
2811  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2812  R = Context.getFunctionType(ConvType, 0, 0, false,
2813                              Proto->getTypeQuals(),
2814                              Proto->hasExceptionSpec(),
2815                              Proto->hasAnyExceptionSpec(),
2816                              Proto->getNumExceptions(),
2817                              Proto->exception_begin(),
2818                              Proto->getNoReturnAttr(),
2819                              Proto->getCallConv());
2820
2821  // C++0x explicit conversion operators.
2822  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2823    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2824         diag::warn_explicit_conversion_functions)
2825      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2826}
2827
2828/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2829/// the declaration of the given C++ conversion function. This routine
2830/// is responsible for recording the conversion function in the C++
2831/// class, if possible.
2832Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2833  assert(Conversion && "Expected to receive a conversion function declaration");
2834
2835  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2836
2837  // Make sure we aren't redeclaring the conversion function.
2838  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2839
2840  // C++ [class.conv.fct]p1:
2841  //   [...] A conversion function is never used to convert a
2842  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2843  //   same object type (or a reference to it), to a (possibly
2844  //   cv-qualified) base class of that type (or a reference to it),
2845  //   or to (possibly cv-qualified) void.
2846  // FIXME: Suppress this warning if the conversion function ends up being a
2847  // virtual function that overrides a virtual function in a base class.
2848  QualType ClassType
2849    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2850  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2851    ConvType = ConvTypeRef->getPointeeType();
2852  if (ConvType->isRecordType()) {
2853    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2854    if (ConvType == ClassType)
2855      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2856        << ClassType;
2857    else if (IsDerivedFrom(ClassType, ConvType))
2858      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2859        <<  ClassType << ConvType;
2860  } else if (ConvType->isVoidType()) {
2861    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2862      << ClassType << ConvType;
2863  }
2864
2865  if (Conversion->getPrimaryTemplate()) {
2866    // ignore specializations
2867  } else if (Conversion->getPreviousDeclaration()) {
2868    if (FunctionTemplateDecl *ConversionTemplate
2869                                  = Conversion->getDescribedFunctionTemplate()) {
2870      if (ClassDecl->replaceConversion(
2871                                   ConversionTemplate->getPreviousDeclaration(),
2872                                       ConversionTemplate))
2873        return DeclPtrTy::make(ConversionTemplate);
2874    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2875                                            Conversion))
2876      return DeclPtrTy::make(Conversion);
2877    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2878  } else if (FunctionTemplateDecl *ConversionTemplate
2879               = Conversion->getDescribedFunctionTemplate())
2880    ClassDecl->addConversionFunction(ConversionTemplate);
2881  else
2882    ClassDecl->addConversionFunction(Conversion);
2883
2884  return DeclPtrTy::make(Conversion);
2885}
2886
2887//===----------------------------------------------------------------------===//
2888// Namespace Handling
2889//===----------------------------------------------------------------------===//
2890
2891/// ActOnStartNamespaceDef - This is called at the start of a namespace
2892/// definition.
2893Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2894                                             SourceLocation IdentLoc,
2895                                             IdentifierInfo *II,
2896                                             SourceLocation LBrace,
2897                                             AttributeList *AttrList) {
2898  NamespaceDecl *Namespc =
2899      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2900  Namespc->setLBracLoc(LBrace);
2901
2902  Scope *DeclRegionScope = NamespcScope->getParent();
2903
2904  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2905
2906  if (II) {
2907    // C++ [namespace.def]p2:
2908    // The identifier in an original-namespace-definition shall not have been
2909    // previously defined in the declarative region in which the
2910    // original-namespace-definition appears. The identifier in an
2911    // original-namespace-definition is the name of the namespace. Subsequently
2912    // in that declarative region, it is treated as an original-namespace-name.
2913
2914    NamedDecl *PrevDecl
2915      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2916                         ForRedeclaration);
2917
2918    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2919      // This is an extended namespace definition.
2920      // Attach this namespace decl to the chain of extended namespace
2921      // definitions.
2922      OrigNS->setNextNamespace(Namespc);
2923      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2924
2925      // Remove the previous declaration from the scope.
2926      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2927        IdResolver.RemoveDecl(OrigNS);
2928        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2929      }
2930    } else if (PrevDecl) {
2931      // This is an invalid name redefinition.
2932      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2933       << Namespc->getDeclName();
2934      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2935      Namespc->setInvalidDecl();
2936      // Continue on to push Namespc as current DeclContext and return it.
2937    } else if (II->isStr("std") &&
2938               CurContext->getLookupContext()->isTranslationUnit()) {
2939      // This is the first "real" definition of the namespace "std", so update
2940      // our cache of the "std" namespace to point at this definition.
2941      if (StdNamespace) {
2942        // We had already defined a dummy namespace "std". Link this new
2943        // namespace definition to the dummy namespace "std".
2944        StdNamespace->setNextNamespace(Namespc);
2945        StdNamespace->setLocation(IdentLoc);
2946        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2947      }
2948
2949      // Make our StdNamespace cache point at the first real definition of the
2950      // "std" namespace.
2951      StdNamespace = Namespc;
2952    }
2953
2954    PushOnScopeChains(Namespc, DeclRegionScope);
2955  } else {
2956    // Anonymous namespaces.
2957    assert(Namespc->isAnonymousNamespace());
2958    CurContext->addDecl(Namespc);
2959
2960    // Link the anonymous namespace into its parent.
2961    NamespaceDecl *PrevDecl;
2962    DeclContext *Parent = CurContext->getLookupContext();
2963    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2964      PrevDecl = TU->getAnonymousNamespace();
2965      TU->setAnonymousNamespace(Namespc);
2966    } else {
2967      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2968      PrevDecl = ND->getAnonymousNamespace();
2969      ND->setAnonymousNamespace(Namespc);
2970    }
2971
2972    // Link the anonymous namespace with its previous declaration.
2973    if (PrevDecl) {
2974      assert(PrevDecl->isAnonymousNamespace());
2975      assert(!PrevDecl->getNextNamespace());
2976      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2977      PrevDecl->setNextNamespace(Namespc);
2978    }
2979
2980    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2981    //   behaves as if it were replaced by
2982    //     namespace unique { /* empty body */ }
2983    //     using namespace unique;
2984    //     namespace unique { namespace-body }
2985    //   where all occurrences of 'unique' in a translation unit are
2986    //   replaced by the same identifier and this identifier differs
2987    //   from all other identifiers in the entire program.
2988
2989    // We just create the namespace with an empty name and then add an
2990    // implicit using declaration, just like the standard suggests.
2991    //
2992    // CodeGen enforces the "universally unique" aspect by giving all
2993    // declarations semantically contained within an anonymous
2994    // namespace internal linkage.
2995
2996    if (!PrevDecl) {
2997      UsingDirectiveDecl* UD
2998        = UsingDirectiveDecl::Create(Context, CurContext,
2999                                     /* 'using' */ LBrace,
3000                                     /* 'namespace' */ SourceLocation(),
3001                                     /* qualifier */ SourceRange(),
3002                                     /* NNS */ NULL,
3003                                     /* identifier */ SourceLocation(),
3004                                     Namespc,
3005                                     /* Ancestor */ CurContext);
3006      UD->setImplicit();
3007      CurContext->addDecl(UD);
3008    }
3009  }
3010
3011  // Although we could have an invalid decl (i.e. the namespace name is a
3012  // redefinition), push it as current DeclContext and try to continue parsing.
3013  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3014  // for the namespace has the declarations that showed up in that particular
3015  // namespace definition.
3016  PushDeclContext(NamespcScope, Namespc);
3017  return DeclPtrTy::make(Namespc);
3018}
3019
3020/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3021/// is a namespace alias, returns the namespace it points to.
3022static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3023  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3024    return AD->getNamespace();
3025  return dyn_cast_or_null<NamespaceDecl>(D);
3026}
3027
3028/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3029/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3030void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3031  Decl *Dcl = D.getAs<Decl>();
3032  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3033  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3034  Namespc->setRBracLoc(RBrace);
3035  PopDeclContext();
3036}
3037
3038Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3039                                          SourceLocation UsingLoc,
3040                                          SourceLocation NamespcLoc,
3041                                          const CXXScopeSpec &SS,
3042                                          SourceLocation IdentLoc,
3043                                          IdentifierInfo *NamespcName,
3044                                          AttributeList *AttrList) {
3045  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3046  assert(NamespcName && "Invalid NamespcName.");
3047  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3048  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3049
3050  UsingDirectiveDecl *UDir = 0;
3051
3052  // Lookup namespace name.
3053  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3054  LookupParsedName(R, S, &SS);
3055  if (R.isAmbiguous())
3056    return DeclPtrTy();
3057
3058  if (!R.empty()) {
3059    NamedDecl *Named = R.getFoundDecl();
3060    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3061        && "expected namespace decl");
3062    // C++ [namespace.udir]p1:
3063    //   A using-directive specifies that the names in the nominated
3064    //   namespace can be used in the scope in which the
3065    //   using-directive appears after the using-directive. During
3066    //   unqualified name lookup (3.4.1), the names appear as if they
3067    //   were declared in the nearest enclosing namespace which
3068    //   contains both the using-directive and the nominated
3069    //   namespace. [Note: in this context, "contains" means "contains
3070    //   directly or indirectly". ]
3071
3072    // Find enclosing context containing both using-directive and
3073    // nominated namespace.
3074    NamespaceDecl *NS = getNamespaceDecl(Named);
3075    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3076    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3077      CommonAncestor = CommonAncestor->getParent();
3078
3079    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3080                                      SS.getRange(),
3081                                      (NestedNameSpecifier *)SS.getScopeRep(),
3082                                      IdentLoc, Named, CommonAncestor);
3083    PushUsingDirective(S, UDir);
3084  } else {
3085    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3086  }
3087
3088  // FIXME: We ignore attributes for now.
3089  delete AttrList;
3090  return DeclPtrTy::make(UDir);
3091}
3092
3093void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3094  // If scope has associated entity, then using directive is at namespace
3095  // or translation unit scope. We add UsingDirectiveDecls, into
3096  // it's lookup structure.
3097  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3098    Ctx->addDecl(UDir);
3099  else
3100    // Otherwise it is block-sope. using-directives will affect lookup
3101    // only to the end of scope.
3102    S->PushUsingDirective(DeclPtrTy::make(UDir));
3103}
3104
3105
3106Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3107                                            AccessSpecifier AS,
3108                                            bool HasUsingKeyword,
3109                                            SourceLocation UsingLoc,
3110                                            const CXXScopeSpec &SS,
3111                                            UnqualifiedId &Name,
3112                                            AttributeList *AttrList,
3113                                            bool IsTypeName,
3114                                            SourceLocation TypenameLoc) {
3115  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3116
3117  switch (Name.getKind()) {
3118  case UnqualifiedId::IK_Identifier:
3119  case UnqualifiedId::IK_OperatorFunctionId:
3120  case UnqualifiedId::IK_LiteralOperatorId:
3121  case UnqualifiedId::IK_ConversionFunctionId:
3122    break;
3123
3124  case UnqualifiedId::IK_ConstructorName:
3125  case UnqualifiedId::IK_ConstructorTemplateId:
3126    // C++0x inherited constructors.
3127    if (getLangOptions().CPlusPlus0x) break;
3128
3129    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3130      << SS.getRange();
3131    return DeclPtrTy();
3132
3133  case UnqualifiedId::IK_DestructorName:
3134    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3135      << SS.getRange();
3136    return DeclPtrTy();
3137
3138  case UnqualifiedId::IK_TemplateId:
3139    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3140      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3141    return DeclPtrTy();
3142  }
3143
3144  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3145  if (!TargetName)
3146    return DeclPtrTy();
3147
3148  // Warn about using declarations.
3149  // TODO: store that the declaration was written without 'using' and
3150  // talk about access decls instead of using decls in the
3151  // diagnostics.
3152  if (!HasUsingKeyword) {
3153    UsingLoc = Name.getSourceRange().getBegin();
3154
3155    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3156      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3157                                               "using ");
3158  }
3159
3160  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3161                                        Name.getSourceRange().getBegin(),
3162                                        TargetName, AttrList,
3163                                        /* IsInstantiation */ false,
3164                                        IsTypeName, TypenameLoc);
3165  if (UD)
3166    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3167
3168  return DeclPtrTy::make(UD);
3169}
3170
3171/// Determines whether to create a using shadow decl for a particular
3172/// decl, given the set of decls existing prior to this using lookup.
3173bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3174                                const LookupResult &Previous) {
3175  // Diagnose finding a decl which is not from a base class of the
3176  // current class.  We do this now because there are cases where this
3177  // function will silently decide not to build a shadow decl, which
3178  // will pre-empt further diagnostics.
3179  //
3180  // We don't need to do this in C++0x because we do the check once on
3181  // the qualifier.
3182  //
3183  // FIXME: diagnose the following if we care enough:
3184  //   struct A { int foo; };
3185  //   struct B : A { using A::foo; };
3186  //   template <class T> struct C : A {};
3187  //   template <class T> struct D : C<T> { using B::foo; } // <---
3188  // This is invalid (during instantiation) in C++03 because B::foo
3189  // resolves to the using decl in B, which is not a base class of D<T>.
3190  // We can't diagnose it immediately because C<T> is an unknown
3191  // specialization.  The UsingShadowDecl in D<T> then points directly
3192  // to A::foo, which will look well-formed when we instantiate.
3193  // The right solution is to not collapse the shadow-decl chain.
3194  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3195    DeclContext *OrigDC = Orig->getDeclContext();
3196
3197    // Handle enums and anonymous structs.
3198    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3199    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3200    while (OrigRec->isAnonymousStructOrUnion())
3201      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3202
3203    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3204      if (OrigDC == CurContext) {
3205        Diag(Using->getLocation(),
3206             diag::err_using_decl_nested_name_specifier_is_current_class)
3207          << Using->getNestedNameRange();
3208        Diag(Orig->getLocation(), diag::note_using_decl_target);
3209        return true;
3210      }
3211
3212      Diag(Using->getNestedNameRange().getBegin(),
3213           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3214        << Using->getTargetNestedNameDecl()
3215        << cast<CXXRecordDecl>(CurContext)
3216        << Using->getNestedNameRange();
3217      Diag(Orig->getLocation(), diag::note_using_decl_target);
3218      return true;
3219    }
3220  }
3221
3222  if (Previous.empty()) return false;
3223
3224  NamedDecl *Target = Orig;
3225  if (isa<UsingShadowDecl>(Target))
3226    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3227
3228  // If the target happens to be one of the previous declarations, we
3229  // don't have a conflict.
3230  //
3231  // FIXME: but we might be increasing its access, in which case we
3232  // should redeclare it.
3233  NamedDecl *NonTag = 0, *Tag = 0;
3234  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3235         I != E; ++I) {
3236    NamedDecl *D = (*I)->getUnderlyingDecl();
3237    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3238      return false;
3239
3240    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3241  }
3242
3243  if (Target->isFunctionOrFunctionTemplate()) {
3244    FunctionDecl *FD;
3245    if (isa<FunctionTemplateDecl>(Target))
3246      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3247    else
3248      FD = cast<FunctionDecl>(Target);
3249
3250    NamedDecl *OldDecl = 0;
3251    switch (CheckOverload(FD, Previous, OldDecl)) {
3252    case Ovl_Overload:
3253      return false;
3254
3255    case Ovl_NonFunction:
3256      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3257      break;
3258
3259    // We found a decl with the exact signature.
3260    case Ovl_Match:
3261      if (isa<UsingShadowDecl>(OldDecl)) {
3262        // Silently ignore the possible conflict.
3263        return false;
3264      }
3265
3266      // If we're in a record, we want to hide the target, so we
3267      // return true (without a diagnostic) to tell the caller not to
3268      // build a shadow decl.
3269      if (CurContext->isRecord())
3270        return true;
3271
3272      // If we're not in a record, this is an error.
3273      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3274      break;
3275    }
3276
3277    Diag(Target->getLocation(), diag::note_using_decl_target);
3278    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3279    return true;
3280  }
3281
3282  // Target is not a function.
3283
3284  if (isa<TagDecl>(Target)) {
3285    // No conflict between a tag and a non-tag.
3286    if (!Tag) return false;
3287
3288    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3289    Diag(Target->getLocation(), diag::note_using_decl_target);
3290    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3291    return true;
3292  }
3293
3294  // No conflict between a tag and a non-tag.
3295  if (!NonTag) return false;
3296
3297  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3298  Diag(Target->getLocation(), diag::note_using_decl_target);
3299  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3300  return true;
3301}
3302
3303/// Builds a shadow declaration corresponding to a 'using' declaration.
3304UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3305                                            UsingDecl *UD,
3306                                            NamedDecl *Orig) {
3307
3308  // If we resolved to another shadow declaration, just coalesce them.
3309  NamedDecl *Target = Orig;
3310  if (isa<UsingShadowDecl>(Target)) {
3311    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3312    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3313  }
3314
3315  UsingShadowDecl *Shadow
3316    = UsingShadowDecl::Create(Context, CurContext,
3317                              UD->getLocation(), UD, Target);
3318  UD->addShadowDecl(Shadow);
3319
3320  if (S)
3321    PushOnScopeChains(Shadow, S);
3322  else
3323    CurContext->addDecl(Shadow);
3324  Shadow->setAccess(UD->getAccess());
3325
3326  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3327    Shadow->setInvalidDecl();
3328
3329  return Shadow;
3330}
3331
3332/// Hides a using shadow declaration.  This is required by the current
3333/// using-decl implementation when a resolvable using declaration in a
3334/// class is followed by a declaration which would hide or override
3335/// one or more of the using decl's targets; for example:
3336///
3337///   struct Base { void foo(int); };
3338///   struct Derived : Base {
3339///     using Base::foo;
3340///     void foo(int);
3341///   };
3342///
3343/// The governing language is C++03 [namespace.udecl]p12:
3344///
3345///   When a using-declaration brings names from a base class into a
3346///   derived class scope, member functions in the derived class
3347///   override and/or hide member functions with the same name and
3348///   parameter types in a base class (rather than conflicting).
3349///
3350/// There are two ways to implement this:
3351///   (1) optimistically create shadow decls when they're not hidden
3352///       by existing declarations, or
3353///   (2) don't create any shadow decls (or at least don't make them
3354///       visible) until we've fully parsed/instantiated the class.
3355/// The problem with (1) is that we might have to retroactively remove
3356/// a shadow decl, which requires several O(n) operations because the
3357/// decl structures are (very reasonably) not designed for removal.
3358/// (2) avoids this but is very fiddly and phase-dependent.
3359void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3360  // Remove it from the DeclContext...
3361  Shadow->getDeclContext()->removeDecl(Shadow);
3362
3363  // ...and the scope, if applicable...
3364  if (S) {
3365    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3366    IdResolver.RemoveDecl(Shadow);
3367  }
3368
3369  // ...and the using decl.
3370  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3371
3372  // TODO: complain somehow if Shadow was used.  It shouldn't
3373  // be possible for this to happen, because
3374}
3375
3376/// Builds a using declaration.
3377///
3378/// \param IsInstantiation - Whether this call arises from an
3379///   instantiation of an unresolved using declaration.  We treat
3380///   the lookup differently for these declarations.
3381NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3382                                       SourceLocation UsingLoc,
3383                                       const CXXScopeSpec &SS,
3384                                       SourceLocation IdentLoc,
3385                                       DeclarationName Name,
3386                                       AttributeList *AttrList,
3387                                       bool IsInstantiation,
3388                                       bool IsTypeName,
3389                                       SourceLocation TypenameLoc) {
3390  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3391  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3392
3393  // FIXME: We ignore attributes for now.
3394  delete AttrList;
3395
3396  if (SS.isEmpty()) {
3397    Diag(IdentLoc, diag::err_using_requires_qualname);
3398    return 0;
3399  }
3400
3401  // Do the redeclaration lookup in the current scope.
3402  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3403                        ForRedeclaration);
3404  Previous.setHideTags(false);
3405  if (S) {
3406    LookupName(Previous, S);
3407
3408    // It is really dumb that we have to do this.
3409    LookupResult::Filter F = Previous.makeFilter();
3410    while (F.hasNext()) {
3411      NamedDecl *D = F.next();
3412      if (!isDeclInScope(D, CurContext, S))
3413        F.erase();
3414    }
3415    F.done();
3416  } else {
3417    assert(IsInstantiation && "no scope in non-instantiation");
3418    assert(CurContext->isRecord() && "scope not record in instantiation");
3419    LookupQualifiedName(Previous, CurContext);
3420  }
3421
3422  NestedNameSpecifier *NNS =
3423    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3424
3425  // Check for invalid redeclarations.
3426  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3427    return 0;
3428
3429  // Check for bad qualifiers.
3430  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3431    return 0;
3432
3433  DeclContext *LookupContext = computeDeclContext(SS);
3434  NamedDecl *D;
3435  if (!LookupContext) {
3436    if (IsTypeName) {
3437      // FIXME: not all declaration name kinds are legal here
3438      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3439                                              UsingLoc, TypenameLoc,
3440                                              SS.getRange(), NNS,
3441                                              IdentLoc, Name);
3442    } else {
3443      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3444                                           UsingLoc, SS.getRange(), NNS,
3445                                           IdentLoc, Name);
3446    }
3447  } else {
3448    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3449                          SS.getRange(), UsingLoc, NNS, Name,
3450                          IsTypeName);
3451  }
3452  D->setAccess(AS);
3453  CurContext->addDecl(D);
3454
3455  if (!LookupContext) return D;
3456  UsingDecl *UD = cast<UsingDecl>(D);
3457
3458  if (RequireCompleteDeclContext(SS)) {
3459    UD->setInvalidDecl();
3460    return UD;
3461  }
3462
3463  // Look up the target name.
3464
3465  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3466
3467  // Unlike most lookups, we don't always want to hide tag
3468  // declarations: tag names are visible through the using declaration
3469  // even if hidden by ordinary names, *except* in a dependent context
3470  // where it's important for the sanity of two-phase lookup.
3471  if (!IsInstantiation)
3472    R.setHideTags(false);
3473
3474  LookupQualifiedName(R, LookupContext);
3475
3476  if (R.empty()) {
3477    Diag(IdentLoc, diag::err_no_member)
3478      << Name << LookupContext << SS.getRange();
3479    UD->setInvalidDecl();
3480    return UD;
3481  }
3482
3483  if (R.isAmbiguous()) {
3484    UD->setInvalidDecl();
3485    return UD;
3486  }
3487
3488  if (IsTypeName) {
3489    // If we asked for a typename and got a non-type decl, error out.
3490    if (!R.getAsSingle<TypeDecl>()) {
3491      Diag(IdentLoc, diag::err_using_typename_non_type);
3492      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3493        Diag((*I)->getUnderlyingDecl()->getLocation(),
3494             diag::note_using_decl_target);
3495      UD->setInvalidDecl();
3496      return UD;
3497    }
3498  } else {
3499    // If we asked for a non-typename and we got a type, error out,
3500    // but only if this is an instantiation of an unresolved using
3501    // decl.  Otherwise just silently find the type name.
3502    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3503      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3504      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3505      UD->setInvalidDecl();
3506      return UD;
3507    }
3508  }
3509
3510  // C++0x N2914 [namespace.udecl]p6:
3511  // A using-declaration shall not name a namespace.
3512  if (R.getAsSingle<NamespaceDecl>()) {
3513    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3514      << SS.getRange();
3515    UD->setInvalidDecl();
3516    return UD;
3517  }
3518
3519  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3520    if (!CheckUsingShadowDecl(UD, *I, Previous))
3521      BuildUsingShadowDecl(S, UD, *I);
3522  }
3523
3524  return UD;
3525}
3526
3527/// Checks that the given using declaration is not an invalid
3528/// redeclaration.  Note that this is checking only for the using decl
3529/// itself, not for any ill-formedness among the UsingShadowDecls.
3530bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3531                                       bool isTypeName,
3532                                       const CXXScopeSpec &SS,
3533                                       SourceLocation NameLoc,
3534                                       const LookupResult &Prev) {
3535  // C++03 [namespace.udecl]p8:
3536  // C++0x [namespace.udecl]p10:
3537  //   A using-declaration is a declaration and can therefore be used
3538  //   repeatedly where (and only where) multiple declarations are
3539  //   allowed.
3540  // That's only in file contexts.
3541  if (CurContext->getLookupContext()->isFileContext())
3542    return false;
3543
3544  NestedNameSpecifier *Qual
3545    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3546
3547  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3548    NamedDecl *D = *I;
3549
3550    bool DTypename;
3551    NestedNameSpecifier *DQual;
3552    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3553      DTypename = UD->isTypeName();
3554      DQual = UD->getTargetNestedNameDecl();
3555    } else if (UnresolvedUsingValueDecl *UD
3556                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3557      DTypename = false;
3558      DQual = UD->getTargetNestedNameSpecifier();
3559    } else if (UnresolvedUsingTypenameDecl *UD
3560                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3561      DTypename = true;
3562      DQual = UD->getTargetNestedNameSpecifier();
3563    } else continue;
3564
3565    // using decls differ if one says 'typename' and the other doesn't.
3566    // FIXME: non-dependent using decls?
3567    if (isTypeName != DTypename) continue;
3568
3569    // using decls differ if they name different scopes (but note that
3570    // template instantiation can cause this check to trigger when it
3571    // didn't before instantiation).
3572    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3573        Context.getCanonicalNestedNameSpecifier(DQual))
3574      continue;
3575
3576    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3577    Diag(D->getLocation(), diag::note_using_decl) << 1;
3578    return true;
3579  }
3580
3581  return false;
3582}
3583
3584
3585/// Checks that the given nested-name qualifier used in a using decl
3586/// in the current context is appropriately related to the current
3587/// scope.  If an error is found, diagnoses it and returns true.
3588bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3589                                   const CXXScopeSpec &SS,
3590                                   SourceLocation NameLoc) {
3591  DeclContext *NamedContext = computeDeclContext(SS);
3592
3593  if (!CurContext->isRecord()) {
3594    // C++03 [namespace.udecl]p3:
3595    // C++0x [namespace.udecl]p8:
3596    //   A using-declaration for a class member shall be a member-declaration.
3597
3598    // If we weren't able to compute a valid scope, it must be a
3599    // dependent class scope.
3600    if (!NamedContext || NamedContext->isRecord()) {
3601      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3602        << SS.getRange();
3603      return true;
3604    }
3605
3606    // Otherwise, everything is known to be fine.
3607    return false;
3608  }
3609
3610  // The current scope is a record.
3611
3612  // If the named context is dependent, we can't decide much.
3613  if (!NamedContext) {
3614    // FIXME: in C++0x, we can diagnose if we can prove that the
3615    // nested-name-specifier does not refer to a base class, which is
3616    // still possible in some cases.
3617
3618    // Otherwise we have to conservatively report that things might be
3619    // okay.
3620    return false;
3621  }
3622
3623  if (!NamedContext->isRecord()) {
3624    // Ideally this would point at the last name in the specifier,
3625    // but we don't have that level of source info.
3626    Diag(SS.getRange().getBegin(),
3627         diag::err_using_decl_nested_name_specifier_is_not_class)
3628      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3629    return true;
3630  }
3631
3632  if (getLangOptions().CPlusPlus0x) {
3633    // C++0x [namespace.udecl]p3:
3634    //   In a using-declaration used as a member-declaration, the
3635    //   nested-name-specifier shall name a base class of the class
3636    //   being defined.
3637
3638    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3639                                 cast<CXXRecordDecl>(NamedContext))) {
3640      if (CurContext == NamedContext) {
3641        Diag(NameLoc,
3642             diag::err_using_decl_nested_name_specifier_is_current_class)
3643          << SS.getRange();
3644        return true;
3645      }
3646
3647      Diag(SS.getRange().getBegin(),
3648           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3649        << (NestedNameSpecifier*) SS.getScopeRep()
3650        << cast<CXXRecordDecl>(CurContext)
3651        << SS.getRange();
3652      return true;
3653    }
3654
3655    return false;
3656  }
3657
3658  // C++03 [namespace.udecl]p4:
3659  //   A using-declaration used as a member-declaration shall refer
3660  //   to a member of a base class of the class being defined [etc.].
3661
3662  // Salient point: SS doesn't have to name a base class as long as
3663  // lookup only finds members from base classes.  Therefore we can
3664  // diagnose here only if we can prove that that can't happen,
3665  // i.e. if the class hierarchies provably don't intersect.
3666
3667  // TODO: it would be nice if "definitely valid" results were cached
3668  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3669  // need to be repeated.
3670
3671  struct UserData {
3672    llvm::DenseSet<const CXXRecordDecl*> Bases;
3673
3674    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3675      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3676      Data->Bases.insert(Base);
3677      return true;
3678    }
3679
3680    bool hasDependentBases(const CXXRecordDecl *Class) {
3681      return !Class->forallBases(collect, this);
3682    }
3683
3684    /// Returns true if the base is dependent or is one of the
3685    /// accumulated base classes.
3686    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3687      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3688      return !Data->Bases.count(Base);
3689    }
3690
3691    bool mightShareBases(const CXXRecordDecl *Class) {
3692      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3693    }
3694  };
3695
3696  UserData Data;
3697
3698  // Returns false if we find a dependent base.
3699  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3700    return false;
3701
3702  // Returns false if the class has a dependent base or if it or one
3703  // of its bases is present in the base set of the current context.
3704  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3705    return false;
3706
3707  Diag(SS.getRange().getBegin(),
3708       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3709    << (NestedNameSpecifier*) SS.getScopeRep()
3710    << cast<CXXRecordDecl>(CurContext)
3711    << SS.getRange();
3712
3713  return true;
3714}
3715
3716Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3717                                             SourceLocation NamespaceLoc,
3718                                             SourceLocation AliasLoc,
3719                                             IdentifierInfo *Alias,
3720                                             const CXXScopeSpec &SS,
3721                                             SourceLocation IdentLoc,
3722                                             IdentifierInfo *Ident) {
3723
3724  // Lookup the namespace name.
3725  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3726  LookupParsedName(R, S, &SS);
3727
3728  // Check if we have a previous declaration with the same name.
3729  if (NamedDecl *PrevDecl
3730        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3731    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3732      // We already have an alias with the same name that points to the same
3733      // namespace, so don't create a new one.
3734      if (!R.isAmbiguous() && !R.empty() &&
3735          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3736        return DeclPtrTy();
3737    }
3738
3739    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3740      diag::err_redefinition_different_kind;
3741    Diag(AliasLoc, DiagID) << Alias;
3742    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3743    return DeclPtrTy();
3744  }
3745
3746  if (R.isAmbiguous())
3747    return DeclPtrTy();
3748
3749  if (R.empty()) {
3750    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3751    return DeclPtrTy();
3752  }
3753
3754  NamespaceAliasDecl *AliasDecl =
3755    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3756                               Alias, SS.getRange(),
3757                               (NestedNameSpecifier *)SS.getScopeRep(),
3758                               IdentLoc, R.getFoundDecl());
3759
3760  PushOnScopeChains(AliasDecl, S);
3761  return DeclPtrTy::make(AliasDecl);
3762}
3763
3764void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3765                                            CXXConstructorDecl *Constructor) {
3766  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3767          !Constructor->isUsed()) &&
3768    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3769
3770  CXXRecordDecl *ClassDecl
3771    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3772  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3773
3774  DeclContext *PreviousContext = CurContext;
3775  CurContext = Constructor;
3776  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true, false)) {
3777    Diag(CurrentLocation, diag::note_member_synthesized_at)
3778      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3779    Constructor->setInvalidDecl();
3780  } else {
3781    Constructor->setUsed();
3782  }
3783  CurContext = PreviousContext;
3784}
3785
3786void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3787                                    CXXDestructorDecl *Destructor) {
3788  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3789         "DefineImplicitDestructor - call it for implicit default dtor");
3790  CXXRecordDecl *ClassDecl = Destructor->getParent();
3791  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3792
3793  DeclContext *PreviousContext = CurContext;
3794  CurContext = Destructor;
3795
3796  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3797                                         Destructor->getParent());
3798
3799  // FIXME: If CheckDestructor fails, we should emit a note about where the
3800  // implicit destructor was needed.
3801  if (CheckDestructor(Destructor)) {
3802    Diag(CurrentLocation, diag::note_member_synthesized_at)
3803      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3804
3805    Destructor->setInvalidDecl();
3806    CurContext = PreviousContext;
3807
3808    return;
3809  }
3810  CurContext = PreviousContext;
3811
3812  Destructor->setUsed();
3813}
3814
3815void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3816                                          CXXMethodDecl *MethodDecl) {
3817  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3818          MethodDecl->getOverloadedOperator() == OO_Equal &&
3819          !MethodDecl->isUsed()) &&
3820         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3821
3822  CXXRecordDecl *ClassDecl
3823    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3824
3825  DeclContext *PreviousContext = CurContext;
3826  CurContext = MethodDecl;
3827
3828  // C++[class.copy] p12
3829  // Before the implicitly-declared copy assignment operator for a class is
3830  // implicitly defined, all implicitly-declared copy assignment operators
3831  // for its direct base classes and its nonstatic data members shall have
3832  // been implicitly defined.
3833  bool err = false;
3834  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3835       E = ClassDecl->bases_end(); Base != E; ++Base) {
3836    CXXRecordDecl *BaseClassDecl
3837      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3838    if (CXXMethodDecl *BaseAssignOpMethod =
3839          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3840                                  BaseClassDecl)) {
3841      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3842                              BaseAssignOpMethod,
3843                              PartialDiagnostic(diag::err_access_assign_base)
3844                                << Base->getType());
3845
3846      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3847    }
3848  }
3849  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3850       E = ClassDecl->field_end(); Field != E; ++Field) {
3851    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3852    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3853      FieldType = Array->getElementType();
3854    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3855      CXXRecordDecl *FieldClassDecl
3856        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3857      if (CXXMethodDecl *FieldAssignOpMethod =
3858          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3859                                  FieldClassDecl)) {
3860        CheckDirectMemberAccess(Field->getLocation(),
3861                                FieldAssignOpMethod,
3862                                PartialDiagnostic(diag::err_access_assign_field)
3863                                  << Field->getDeclName() << Field->getType());
3864
3865        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3866      }
3867    } else if (FieldType->isReferenceType()) {
3868      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3869      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3870      Diag(Field->getLocation(), diag::note_declared_at);
3871      Diag(CurrentLocation, diag::note_first_required_here);
3872      err = true;
3873    } else if (FieldType.isConstQualified()) {
3874      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3875      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3876      Diag(Field->getLocation(), diag::note_declared_at);
3877      Diag(CurrentLocation, diag::note_first_required_here);
3878      err = true;
3879    }
3880  }
3881  if (!err)
3882    MethodDecl->setUsed();
3883
3884  CurContext = PreviousContext;
3885}
3886
3887CXXMethodDecl *
3888Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3889                              ParmVarDecl *ParmDecl,
3890                              CXXRecordDecl *ClassDecl) {
3891  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3892  QualType RHSType(LHSType);
3893  // If class's assignment operator argument is const/volatile qualified,
3894  // look for operator = (const/volatile B&). Otherwise, look for
3895  // operator = (B&).
3896  RHSType = Context.getCVRQualifiedType(RHSType,
3897                                     ParmDecl->getType().getCVRQualifiers());
3898  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3899                                                           LHSType,
3900                                                           SourceLocation()));
3901  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3902                                                           RHSType,
3903                                                           CurrentLocation));
3904  Expr *Args[2] = { &*LHS, &*RHS };
3905  OverloadCandidateSet CandidateSet(CurrentLocation);
3906  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3907                              CandidateSet);
3908  OverloadCandidateSet::iterator Best;
3909  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3910    return cast<CXXMethodDecl>(Best->Function);
3911  assert(false &&
3912         "getAssignOperatorMethod - copy assignment operator method not found");
3913  return 0;
3914}
3915
3916void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3917                                   CXXConstructorDecl *CopyConstructor,
3918                                   unsigned TypeQuals) {
3919  assert((CopyConstructor->isImplicit() &&
3920          CopyConstructor->isCopyConstructor(TypeQuals) &&
3921          !CopyConstructor->isUsed()) &&
3922         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3923
3924  CXXRecordDecl *ClassDecl
3925    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3926  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3927
3928  DeclContext *PreviousContext = CurContext;
3929  CurContext = CopyConstructor;
3930
3931  // C++ [class.copy] p209
3932  // Before the implicitly-declared copy constructor for a class is
3933  // implicitly defined, all the implicitly-declared copy constructors
3934  // for its base class and its non-static data members shall have been
3935  // implicitly defined.
3936  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3937       Base != ClassDecl->bases_end(); ++Base) {
3938    CXXRecordDecl *BaseClassDecl
3939      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3940    if (CXXConstructorDecl *BaseCopyCtor =
3941        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3942      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3943                              BaseCopyCtor,
3944                              PartialDiagnostic(diag::err_access_copy_base)
3945                                << Base->getType());
3946
3947      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3948    }
3949  }
3950  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3951                                  FieldEnd = ClassDecl->field_end();
3952       Field != FieldEnd; ++Field) {
3953    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3954    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3955      FieldType = Array->getElementType();
3956    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3957      CXXRecordDecl *FieldClassDecl
3958        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3959      if (CXXConstructorDecl *FieldCopyCtor =
3960          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3961        CheckDirectMemberAccess(Field->getLocation(),
3962                                FieldCopyCtor,
3963                                PartialDiagnostic(diag::err_access_copy_field)
3964                                  << Field->getDeclName() << Field->getType());
3965
3966        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3967      }
3968    }
3969  }
3970  CopyConstructor->setUsed();
3971
3972  CurContext = PreviousContext;
3973}
3974
3975Sema::OwningExprResult
3976Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3977                            CXXConstructorDecl *Constructor,
3978                            MultiExprArg ExprArgs,
3979                            bool RequiresZeroInit,
3980                            bool BaseInitialization) {
3981  bool Elidable = false;
3982
3983  // C++ [class.copy]p15:
3984  //   Whenever a temporary class object is copied using a copy constructor, and
3985  //   this object and the copy have the same cv-unqualified type, an
3986  //   implementation is permitted to treat the original and the copy as two
3987  //   different ways of referring to the same object and not perform a copy at
3988  //   all, even if the class copy constructor or destructor have side effects.
3989
3990  // FIXME: Is this enough?
3991  if (Constructor->isCopyConstructor()) {
3992    Expr *E = ((Expr **)ExprArgs.get())[0];
3993    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3994      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3995        E = ICE->getSubExpr();
3996    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3997      E = FCE->getSubExpr();
3998    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3999      E = BE->getSubExpr();
4000    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4001      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4002        E = ICE->getSubExpr();
4003
4004    if (CallExpr *CE = dyn_cast<CallExpr>(E))
4005      Elidable = !CE->getCallReturnType()->isReferenceType();
4006    else if (isa<CXXTemporaryObjectExpr>(E))
4007      Elidable = true;
4008    else if (isa<CXXConstructExpr>(E))
4009      Elidable = true;
4010  }
4011
4012  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4013                               Elidable, move(ExprArgs), RequiresZeroInit,
4014                               BaseInitialization);
4015}
4016
4017/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4018/// including handling of its default argument expressions.
4019Sema::OwningExprResult
4020Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4021                            CXXConstructorDecl *Constructor, bool Elidable,
4022                            MultiExprArg ExprArgs,
4023                            bool RequiresZeroInit,
4024                            bool BaseInitialization) {
4025  unsigned NumExprs = ExprArgs.size();
4026  Expr **Exprs = (Expr **)ExprArgs.release();
4027
4028  MarkDeclarationReferenced(ConstructLoc, Constructor);
4029  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4030                                        Constructor, Elidable, Exprs, NumExprs,
4031                                        RequiresZeroInit, BaseInitialization));
4032}
4033
4034bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4035                                        CXXConstructorDecl *Constructor,
4036                                        MultiExprArg Exprs) {
4037  OwningExprResult TempResult =
4038    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4039                          move(Exprs));
4040  if (TempResult.isInvalid())
4041    return true;
4042
4043  Expr *Temp = TempResult.takeAs<Expr>();
4044  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4045  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4046  VD->setInit(Temp);
4047
4048  return false;
4049}
4050
4051void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4052  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4053  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4054      !ClassDecl->hasTrivialDestructor()) {
4055    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4056    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4057    CheckDestructorAccess(VD->getLocation(), Destructor,
4058                          PartialDiagnostic(diag::err_access_dtor_var)
4059                            << VD->getDeclName()
4060                            << VD->getType());
4061  }
4062}
4063
4064/// AddCXXDirectInitializerToDecl - This action is called immediately after
4065/// ActOnDeclarator, when a C++ direct initializer is present.
4066/// e.g: "int x(1);"
4067void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4068                                         SourceLocation LParenLoc,
4069                                         MultiExprArg Exprs,
4070                                         SourceLocation *CommaLocs,
4071                                         SourceLocation RParenLoc) {
4072  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4073  Decl *RealDecl = Dcl.getAs<Decl>();
4074
4075  // If there is no declaration, there was an error parsing it.  Just ignore
4076  // the initializer.
4077  if (RealDecl == 0)
4078    return;
4079
4080  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4081  if (!VDecl) {
4082    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4083    RealDecl->setInvalidDecl();
4084    return;
4085  }
4086
4087  // We will represent direct-initialization similarly to copy-initialization:
4088  //    int x(1);  -as-> int x = 1;
4089  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4090  //
4091  // Clients that want to distinguish between the two forms, can check for
4092  // direct initializer using VarDecl::hasCXXDirectInitializer().
4093  // A major benefit is that clients that don't particularly care about which
4094  // exactly form was it (like the CodeGen) can handle both cases without
4095  // special case code.
4096
4097  // C++ 8.5p11:
4098  // The form of initialization (using parentheses or '=') is generally
4099  // insignificant, but does matter when the entity being initialized has a
4100  // class type.
4101  QualType DeclInitType = VDecl->getType();
4102  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4103    DeclInitType = Context.getBaseElementType(Array);
4104
4105  if (!VDecl->getType()->isDependentType() &&
4106      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4107                          diag::err_typecheck_decl_incomplete_type)) {
4108    VDecl->setInvalidDecl();
4109    return;
4110  }
4111
4112  // The variable can not have an abstract class type.
4113  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4114                             diag::err_abstract_type_in_decl,
4115                             AbstractVariableType))
4116    VDecl->setInvalidDecl();
4117
4118  const VarDecl *Def;
4119  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4120    Diag(VDecl->getLocation(), diag::err_redefinition)
4121    << VDecl->getDeclName();
4122    Diag(Def->getLocation(), diag::note_previous_definition);
4123    VDecl->setInvalidDecl();
4124    return;
4125  }
4126
4127  // If either the declaration has a dependent type or if any of the
4128  // expressions is type-dependent, we represent the initialization
4129  // via a ParenListExpr for later use during template instantiation.
4130  if (VDecl->getType()->isDependentType() ||
4131      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4132    // Let clients know that initialization was done with a direct initializer.
4133    VDecl->setCXXDirectInitializer(true);
4134
4135    // Store the initialization expressions as a ParenListExpr.
4136    unsigned NumExprs = Exprs.size();
4137    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4138                                               (Expr **)Exprs.release(),
4139                                               NumExprs, RParenLoc));
4140    return;
4141  }
4142
4143  // Capture the variable that is being initialized and the style of
4144  // initialization.
4145  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4146
4147  // FIXME: Poor source location information.
4148  InitializationKind Kind
4149    = InitializationKind::CreateDirect(VDecl->getLocation(),
4150                                       LParenLoc, RParenLoc);
4151
4152  InitializationSequence InitSeq(*this, Entity, Kind,
4153                                 (Expr**)Exprs.get(), Exprs.size());
4154  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4155  if (Result.isInvalid()) {
4156    VDecl->setInvalidDecl();
4157    return;
4158  }
4159
4160  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4161  VDecl->setInit(Result.takeAs<Expr>());
4162  VDecl->setCXXDirectInitializer(true);
4163
4164  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4165    FinalizeVarWithDestructor(VDecl, Record);
4166}
4167
4168/// \brief Add the applicable constructor candidates for an initialization
4169/// by constructor.
4170static void AddConstructorInitializationCandidates(Sema &SemaRef,
4171                                                   QualType ClassType,
4172                                                   Expr **Args,
4173                                                   unsigned NumArgs,
4174                                                   InitializationKind Kind,
4175                                           OverloadCandidateSet &CandidateSet) {
4176  // C++ [dcl.init]p14:
4177  //   If the initialization is direct-initialization, or if it is
4178  //   copy-initialization where the cv-unqualified version of the
4179  //   source type is the same class as, or a derived class of, the
4180  //   class of the destination, constructors are considered. The
4181  //   applicable constructors are enumerated (13.3.1.3), and the
4182  //   best one is chosen through overload resolution (13.3). The
4183  //   constructor so selected is called to initialize the object,
4184  //   with the initializer expression(s) as its argument(s). If no
4185  //   constructor applies, or the overload resolution is ambiguous,
4186  //   the initialization is ill-formed.
4187  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4188  assert(ClassRec && "Can only initialize a class type here");
4189
4190  // FIXME: When we decide not to synthesize the implicitly-declared
4191  // constructors, we'll need to make them appear here.
4192
4193  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4194  DeclarationName ConstructorName
4195    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4196              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4197  DeclContext::lookup_const_iterator Con, ConEnd;
4198  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4199       Con != ConEnd; ++Con) {
4200    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4201
4202    // Find the constructor (which may be a template).
4203    CXXConstructorDecl *Constructor = 0;
4204    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4205    if (ConstructorTmpl)
4206      Constructor
4207      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4208    else
4209      Constructor = cast<CXXConstructorDecl>(*Con);
4210
4211    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4212        (Kind.getKind() == InitializationKind::IK_Value) ||
4213        (Kind.getKind() == InitializationKind::IK_Copy &&
4214         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4215        ((Kind.getKind() == InitializationKind::IK_Default) &&
4216         Constructor->isDefaultConstructor())) {
4217      if (ConstructorTmpl)
4218        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4219                                             /*ExplicitArgs*/ 0,
4220                                             Args, NumArgs, CandidateSet);
4221      else
4222        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4223                                     Args, NumArgs, CandidateSet);
4224    }
4225  }
4226}
4227
4228/// \brief Attempt to perform initialization by constructor
4229/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4230/// copy-initialization.
4231///
4232/// This routine determines whether initialization by constructor is possible,
4233/// but it does not emit any diagnostics in the case where the initialization
4234/// is ill-formed.
4235///
4236/// \param ClassType the type of the object being initialized, which must have
4237/// class type.
4238///
4239/// \param Args the arguments provided to initialize the object
4240///
4241/// \param NumArgs the number of arguments provided to initialize the object
4242///
4243/// \param Kind the type of initialization being performed
4244///
4245/// \returns the constructor used to initialize the object, if successful.
4246/// Otherwise, emits a diagnostic and returns NULL.
4247CXXConstructorDecl *
4248Sema::TryInitializationByConstructor(QualType ClassType,
4249                                     Expr **Args, unsigned NumArgs,
4250                                     SourceLocation Loc,
4251                                     InitializationKind Kind) {
4252  // Build the overload candidate set
4253  OverloadCandidateSet CandidateSet(Loc);
4254  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4255                                         CandidateSet);
4256
4257  // Determine whether we found a constructor we can use.
4258  OverloadCandidateSet::iterator Best;
4259  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4260    case OR_Success:
4261    case OR_Deleted:
4262      // We found a constructor. Return it.
4263      return cast<CXXConstructorDecl>(Best->Function);
4264
4265    case OR_No_Viable_Function:
4266    case OR_Ambiguous:
4267      // Overload resolution failed. Return nothing.
4268      return 0;
4269  }
4270
4271  // Silence GCC warning
4272  return 0;
4273}
4274
4275/// \brief Given a constructor and the set of arguments provided for the
4276/// constructor, convert the arguments and add any required default arguments
4277/// to form a proper call to this constructor.
4278///
4279/// \returns true if an error occurred, false otherwise.
4280bool
4281Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4282                              MultiExprArg ArgsPtr,
4283                              SourceLocation Loc,
4284                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4285  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4286  unsigned NumArgs = ArgsPtr.size();
4287  Expr **Args = (Expr **)ArgsPtr.get();
4288
4289  const FunctionProtoType *Proto
4290    = Constructor->getType()->getAs<FunctionProtoType>();
4291  assert(Proto && "Constructor without a prototype?");
4292  unsigned NumArgsInProto = Proto->getNumArgs();
4293
4294  // If too few arguments are available, we'll fill in the rest with defaults.
4295  if (NumArgs < NumArgsInProto)
4296    ConvertedArgs.reserve(NumArgsInProto);
4297  else
4298    ConvertedArgs.reserve(NumArgs);
4299
4300  VariadicCallType CallType =
4301    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4302  llvm::SmallVector<Expr *, 8> AllArgs;
4303  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4304                                        Proto, 0, Args, NumArgs, AllArgs,
4305                                        CallType);
4306  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4307    ConvertedArgs.push_back(AllArgs[i]);
4308  return Invalid;
4309}
4310
4311/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4312/// determine whether they are reference-related,
4313/// reference-compatible, reference-compatible with added
4314/// qualification, or incompatible, for use in C++ initialization by
4315/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4316/// type, and the first type (T1) is the pointee type of the reference
4317/// type being initialized.
4318Sema::ReferenceCompareResult
4319Sema::CompareReferenceRelationship(SourceLocation Loc,
4320                                   QualType OrigT1, QualType OrigT2,
4321                                   bool& DerivedToBase) {
4322  assert(!OrigT1->isReferenceType() &&
4323    "T1 must be the pointee type of the reference type");
4324  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4325
4326  QualType T1 = Context.getCanonicalType(OrigT1);
4327  QualType T2 = Context.getCanonicalType(OrigT2);
4328  Qualifiers T1Quals, T2Quals;
4329  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4330  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4331
4332  // C++ [dcl.init.ref]p4:
4333  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4334  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4335  //   T1 is a base class of T2.
4336  if (UnqualT1 == UnqualT2)
4337    DerivedToBase = false;
4338  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4339           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4340           IsDerivedFrom(UnqualT2, UnqualT1))
4341    DerivedToBase = true;
4342  else
4343    return Ref_Incompatible;
4344
4345  // At this point, we know that T1 and T2 are reference-related (at
4346  // least).
4347
4348  // If the type is an array type, promote the element qualifiers to the type
4349  // for comparison.
4350  if (isa<ArrayType>(T1) && T1Quals)
4351    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4352  if (isa<ArrayType>(T2) && T2Quals)
4353    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4354
4355  // C++ [dcl.init.ref]p4:
4356  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4357  //   reference-related to T2 and cv1 is the same cv-qualification
4358  //   as, or greater cv-qualification than, cv2. For purposes of
4359  //   overload resolution, cases for which cv1 is greater
4360  //   cv-qualification than cv2 are identified as
4361  //   reference-compatible with added qualification (see 13.3.3.2).
4362  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4363    return Ref_Compatible;
4364  else if (T1.isMoreQualifiedThan(T2))
4365    return Ref_Compatible_With_Added_Qualification;
4366  else
4367    return Ref_Related;
4368}
4369
4370/// CheckReferenceInit - Check the initialization of a reference
4371/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4372/// the initializer (either a simple initializer or an initializer
4373/// list), and DeclType is the type of the declaration. When ICS is
4374/// non-null, this routine will compute the implicit conversion
4375/// sequence according to C++ [over.ics.ref] and will not produce any
4376/// diagnostics; when ICS is null, it will emit diagnostics when any
4377/// errors are found. Either way, a return value of true indicates
4378/// that there was a failure, a return value of false indicates that
4379/// the reference initialization succeeded.
4380///
4381/// When @p SuppressUserConversions, user-defined conversions are
4382/// suppressed.
4383/// When @p AllowExplicit, we also permit explicit user-defined
4384/// conversion functions.
4385/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4386/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4387/// This is used when this is called from a C-style cast.
4388bool
4389Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4390                         SourceLocation DeclLoc,
4391                         bool SuppressUserConversions,
4392                         bool AllowExplicit, bool ForceRValue,
4393                         ImplicitConversionSequence *ICS,
4394                         bool IgnoreBaseAccess) {
4395  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4396
4397  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4398  QualType T2 = Init->getType();
4399
4400  // If the initializer is the address of an overloaded function, try
4401  // to resolve the overloaded function. If all goes well, T2 is the
4402  // type of the resulting function.
4403  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4404    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4405                                                          ICS != 0);
4406    if (Fn) {
4407      // Since we're performing this reference-initialization for
4408      // real, update the initializer with the resulting function.
4409      if (!ICS) {
4410        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4411          return true;
4412
4413        Init = FixOverloadedFunctionReference(Init, Fn);
4414      }
4415
4416      T2 = Fn->getType();
4417    }
4418  }
4419
4420  // Compute some basic properties of the types and the initializer.
4421  bool isRValRef = DeclType->isRValueReferenceType();
4422  bool DerivedToBase = false;
4423  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4424                                                  Init->isLvalue(Context);
4425  ReferenceCompareResult RefRelationship
4426    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4427
4428  // Most paths end in a failed conversion.
4429  if (ICS) {
4430    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4431  }
4432
4433  // C++ [dcl.init.ref]p5:
4434  //   A reference to type "cv1 T1" is initialized by an expression
4435  //   of type "cv2 T2" as follows:
4436
4437  //     -- If the initializer expression
4438
4439  // Rvalue references cannot bind to lvalues (N2812).
4440  // There is absolutely no situation where they can. In particular, note that
4441  // this is ill-formed, even if B has a user-defined conversion to A&&:
4442  //   B b;
4443  //   A&& r = b;
4444  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4445    if (!ICS)
4446      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4447        << Init->getSourceRange();
4448    return true;
4449  }
4450
4451  bool BindsDirectly = false;
4452  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4453  //          reference-compatible with "cv2 T2," or
4454  //
4455  // Note that the bit-field check is skipped if we are just computing
4456  // the implicit conversion sequence (C++ [over.best.ics]p2).
4457  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4458      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4459    BindsDirectly = true;
4460
4461    if (ICS) {
4462      // C++ [over.ics.ref]p1:
4463      //   When a parameter of reference type binds directly (8.5.3)
4464      //   to an argument expression, the implicit conversion sequence
4465      //   is the identity conversion, unless the argument expression
4466      //   has a type that is a derived class of the parameter type,
4467      //   in which case the implicit conversion sequence is a
4468      //   derived-to-base Conversion (13.3.3.1).
4469      ICS->setStandard();
4470      ICS->Standard.First = ICK_Identity;
4471      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4472      ICS->Standard.Third = ICK_Identity;
4473      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4474      ICS->Standard.setToType(0, T2);
4475      ICS->Standard.setToType(1, T1);
4476      ICS->Standard.setToType(2, T1);
4477      ICS->Standard.ReferenceBinding = true;
4478      ICS->Standard.DirectBinding = true;
4479      ICS->Standard.RRefBinding = false;
4480      ICS->Standard.CopyConstructor = 0;
4481
4482      // Nothing more to do: the inaccessibility/ambiguity check for
4483      // derived-to-base conversions is suppressed when we're
4484      // computing the implicit conversion sequence (C++
4485      // [over.best.ics]p2).
4486      return false;
4487    } else {
4488      // Perform the conversion.
4489      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4490      if (DerivedToBase)
4491        CK = CastExpr::CK_DerivedToBase;
4492      else if(CheckExceptionSpecCompatibility(Init, T1))
4493        return true;
4494      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4495    }
4496  }
4497
4498  //       -- has a class type (i.e., T2 is a class type) and can be
4499  //          implicitly converted to an lvalue of type "cv3 T3,"
4500  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4501  //          92) (this conversion is selected by enumerating the
4502  //          applicable conversion functions (13.3.1.6) and choosing
4503  //          the best one through overload resolution (13.3)),
4504  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4505      !RequireCompleteType(DeclLoc, T2, 0)) {
4506    CXXRecordDecl *T2RecordDecl
4507      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4508
4509    OverloadCandidateSet CandidateSet(DeclLoc);
4510    const UnresolvedSetImpl *Conversions
4511      = T2RecordDecl->getVisibleConversionFunctions();
4512    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4513           E = Conversions->end(); I != E; ++I) {
4514      NamedDecl *D = *I;
4515      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4516      if (isa<UsingShadowDecl>(D))
4517        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4518
4519      FunctionTemplateDecl *ConvTemplate
4520        = dyn_cast<FunctionTemplateDecl>(D);
4521      CXXConversionDecl *Conv;
4522      if (ConvTemplate)
4523        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4524      else
4525        Conv = cast<CXXConversionDecl>(D);
4526
4527      // If the conversion function doesn't return a reference type,
4528      // it can't be considered for this conversion.
4529      if (Conv->getConversionType()->isLValueReferenceType() &&
4530          (AllowExplicit || !Conv->isExplicit())) {
4531        if (ConvTemplate)
4532          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4533                                         Init, DeclType, CandidateSet);
4534        else
4535          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4536                                 DeclType, CandidateSet);
4537      }
4538    }
4539
4540    OverloadCandidateSet::iterator Best;
4541    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4542    case OR_Success:
4543      // C++ [over.ics.ref]p1:
4544      //
4545      //   [...] If the parameter binds directly to the result of
4546      //   applying a conversion function to the argument
4547      //   expression, the implicit conversion sequence is a
4548      //   user-defined conversion sequence (13.3.3.1.2), with the
4549      //   second standard conversion sequence either an identity
4550      //   conversion or, if the conversion function returns an
4551      //   entity of a type that is a derived class of the parameter
4552      //   type, a derived-to-base Conversion.
4553      if (!Best->FinalConversion.DirectBinding)
4554        break;
4555
4556      // This is a direct binding.
4557      BindsDirectly = true;
4558
4559      if (ICS) {
4560        ICS->setUserDefined();
4561        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4562        ICS->UserDefined.After = Best->FinalConversion;
4563        ICS->UserDefined.ConversionFunction = Best->Function;
4564        ICS->UserDefined.EllipsisConversion = false;
4565        assert(ICS->UserDefined.After.ReferenceBinding &&
4566               ICS->UserDefined.After.DirectBinding &&
4567               "Expected a direct reference binding!");
4568        return false;
4569      } else {
4570        OwningExprResult InitConversion =
4571          BuildCXXCastArgument(DeclLoc, QualType(),
4572                               CastExpr::CK_UserDefinedConversion,
4573                               cast<CXXMethodDecl>(Best->Function),
4574                               Owned(Init));
4575        Init = InitConversion.takeAs<Expr>();
4576
4577        if (CheckExceptionSpecCompatibility(Init, T1))
4578          return true;
4579        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4580                          /*isLvalue=*/true);
4581      }
4582      break;
4583
4584    case OR_Ambiguous:
4585      if (ICS) {
4586        ICS->setAmbiguous();
4587        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4588             Cand != CandidateSet.end(); ++Cand)
4589          if (Cand->Viable)
4590            ICS->Ambiguous.addConversion(Cand->Function);
4591        break;
4592      }
4593      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4594            << Init->getSourceRange();
4595      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4596      return true;
4597
4598    case OR_No_Viable_Function:
4599    case OR_Deleted:
4600      // There was no suitable conversion, or we found a deleted
4601      // conversion; continue with other checks.
4602      break;
4603    }
4604  }
4605
4606  if (BindsDirectly) {
4607    // C++ [dcl.init.ref]p4:
4608    //   [...] In all cases where the reference-related or
4609    //   reference-compatible relationship of two types is used to
4610    //   establish the validity of a reference binding, and T1 is a
4611    //   base class of T2, a program that necessitates such a binding
4612    //   is ill-formed if T1 is an inaccessible (clause 11) or
4613    //   ambiguous (10.2) base class of T2.
4614    //
4615    // Note that we only check this condition when we're allowed to
4616    // complain about errors, because we should not be checking for
4617    // ambiguity (or inaccessibility) unless the reference binding
4618    // actually happens.
4619    if (DerivedToBase)
4620      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4621                                          Init->getSourceRange(),
4622                                          IgnoreBaseAccess);
4623    else
4624      return false;
4625  }
4626
4627  //     -- Otherwise, the reference shall be to a non-volatile const
4628  //        type (i.e., cv1 shall be const), or the reference shall be an
4629  //        rvalue reference and the initializer expression shall be an rvalue.
4630  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4631    if (!ICS)
4632      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4633        << T1.isVolatileQualified()
4634        << T1 << int(InitLvalue != Expr::LV_Valid)
4635        << T2 << Init->getSourceRange();
4636    return true;
4637  }
4638
4639  //       -- If the initializer expression is an rvalue, with T2 a
4640  //          class type, and "cv1 T1" is reference-compatible with
4641  //          "cv2 T2," the reference is bound in one of the
4642  //          following ways (the choice is implementation-defined):
4643  //
4644  //          -- The reference is bound to the object represented by
4645  //             the rvalue (see 3.10) or to a sub-object within that
4646  //             object.
4647  //
4648  //          -- A temporary of type "cv1 T2" [sic] is created, and
4649  //             a constructor is called to copy the entire rvalue
4650  //             object into the temporary. The reference is bound to
4651  //             the temporary or to a sub-object within the
4652  //             temporary.
4653  //
4654  //          The constructor that would be used to make the copy
4655  //          shall be callable whether or not the copy is actually
4656  //          done.
4657  //
4658  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4659  // freedom, so we will always take the first option and never build
4660  // a temporary in this case. FIXME: We will, however, have to check
4661  // for the presence of a copy constructor in C++98/03 mode.
4662  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4663      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4664    if (ICS) {
4665      ICS->setStandard();
4666      ICS->Standard.First = ICK_Identity;
4667      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4668      ICS->Standard.Third = ICK_Identity;
4669      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4670      ICS->Standard.setToType(0, T2);
4671      ICS->Standard.setToType(1, T1);
4672      ICS->Standard.setToType(2, T1);
4673      ICS->Standard.ReferenceBinding = true;
4674      ICS->Standard.DirectBinding = false;
4675      ICS->Standard.RRefBinding = isRValRef;
4676      ICS->Standard.CopyConstructor = 0;
4677    } else {
4678      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4679      if (DerivedToBase)
4680        CK = CastExpr::CK_DerivedToBase;
4681      else if(CheckExceptionSpecCompatibility(Init, T1))
4682        return true;
4683      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4684    }
4685    return false;
4686  }
4687
4688  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4689  //          initialized from the initializer expression using the
4690  //          rules for a non-reference copy initialization (8.5). The
4691  //          reference is then bound to the temporary. If T1 is
4692  //          reference-related to T2, cv1 must be the same
4693  //          cv-qualification as, or greater cv-qualification than,
4694  //          cv2; otherwise, the program is ill-formed.
4695  if (RefRelationship == Ref_Related) {
4696    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4697    // we would be reference-compatible or reference-compatible with
4698    // added qualification. But that wasn't the case, so the reference
4699    // initialization fails.
4700    if (!ICS)
4701      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4702        << T1 << int(InitLvalue != Expr::LV_Valid)
4703        << T2 << Init->getSourceRange();
4704    return true;
4705  }
4706
4707  // If at least one of the types is a class type, the types are not
4708  // related, and we aren't allowed any user conversions, the
4709  // reference binding fails. This case is important for breaking
4710  // recursion, since TryImplicitConversion below will attempt to
4711  // create a temporary through the use of a copy constructor.
4712  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4713      (T1->isRecordType() || T2->isRecordType())) {
4714    if (!ICS)
4715      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4716        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4717    return true;
4718  }
4719
4720  // Actually try to convert the initializer to T1.
4721  if (ICS) {
4722    // C++ [over.ics.ref]p2:
4723    //
4724    //   When a parameter of reference type is not bound directly to
4725    //   an argument expression, the conversion sequence is the one
4726    //   required to convert the argument expression to the
4727    //   underlying type of the reference according to
4728    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4729    //   to copy-initializing a temporary of the underlying type with
4730    //   the argument expression. Any difference in top-level
4731    //   cv-qualification is subsumed by the initialization itself
4732    //   and does not constitute a conversion.
4733    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4734                                 /*AllowExplicit=*/false,
4735                                 /*ForceRValue=*/false,
4736                                 /*InOverloadResolution=*/false);
4737
4738    // Of course, that's still a reference binding.
4739    if (ICS->isStandard()) {
4740      ICS->Standard.ReferenceBinding = true;
4741      ICS->Standard.RRefBinding = isRValRef;
4742    } else if (ICS->isUserDefined()) {
4743      ICS->UserDefined.After.ReferenceBinding = true;
4744      ICS->UserDefined.After.RRefBinding = isRValRef;
4745    }
4746    return ICS->isBad();
4747  } else {
4748    ImplicitConversionSequence Conversions;
4749    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4750                                                   false, false,
4751                                                   Conversions);
4752    if (badConversion) {
4753      if (Conversions.isAmbiguous()) {
4754        Diag(DeclLoc,
4755             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4756        for (int j = Conversions.Ambiguous.conversions().size()-1;
4757             j >= 0; j--) {
4758          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4759          NoteOverloadCandidate(Func);
4760        }
4761      }
4762      else {
4763        if (isRValRef)
4764          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4765            << Init->getSourceRange();
4766        else
4767          Diag(DeclLoc, diag::err_invalid_initialization)
4768            << DeclType << Init->getType() << Init->getSourceRange();
4769      }
4770    }
4771    return badConversion;
4772  }
4773}
4774
4775static inline bool
4776CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4777                                       const FunctionDecl *FnDecl) {
4778  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4779  if (isa<NamespaceDecl>(DC)) {
4780    return SemaRef.Diag(FnDecl->getLocation(),
4781                        diag::err_operator_new_delete_declared_in_namespace)
4782      << FnDecl->getDeclName();
4783  }
4784
4785  if (isa<TranslationUnitDecl>(DC) &&
4786      FnDecl->getStorageClass() == FunctionDecl::Static) {
4787    return SemaRef.Diag(FnDecl->getLocation(),
4788                        diag::err_operator_new_delete_declared_static)
4789      << FnDecl->getDeclName();
4790  }
4791
4792  return false;
4793}
4794
4795static inline bool
4796CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4797                            CanQualType ExpectedResultType,
4798                            CanQualType ExpectedFirstParamType,
4799                            unsigned DependentParamTypeDiag,
4800                            unsigned InvalidParamTypeDiag) {
4801  QualType ResultType =
4802    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4803
4804  // Check that the result type is not dependent.
4805  if (ResultType->isDependentType())
4806    return SemaRef.Diag(FnDecl->getLocation(),
4807                        diag::err_operator_new_delete_dependent_result_type)
4808    << FnDecl->getDeclName() << ExpectedResultType;
4809
4810  // Check that the result type is what we expect.
4811  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4812    return SemaRef.Diag(FnDecl->getLocation(),
4813                        diag::err_operator_new_delete_invalid_result_type)
4814    << FnDecl->getDeclName() << ExpectedResultType;
4815
4816  // A function template must have at least 2 parameters.
4817  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4818    return SemaRef.Diag(FnDecl->getLocation(),
4819                      diag::err_operator_new_delete_template_too_few_parameters)
4820        << FnDecl->getDeclName();
4821
4822  // The function decl must have at least 1 parameter.
4823  if (FnDecl->getNumParams() == 0)
4824    return SemaRef.Diag(FnDecl->getLocation(),
4825                        diag::err_operator_new_delete_too_few_parameters)
4826      << FnDecl->getDeclName();
4827
4828  // Check the the first parameter type is not dependent.
4829  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4830  if (FirstParamType->isDependentType())
4831    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4832      << FnDecl->getDeclName() << ExpectedFirstParamType;
4833
4834  // Check that the first parameter type is what we expect.
4835  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4836      ExpectedFirstParamType)
4837    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4838    << FnDecl->getDeclName() << ExpectedFirstParamType;
4839
4840  return false;
4841}
4842
4843static bool
4844CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4845  // C++ [basic.stc.dynamic.allocation]p1:
4846  //   A program is ill-formed if an allocation function is declared in a
4847  //   namespace scope other than global scope or declared static in global
4848  //   scope.
4849  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4850    return true;
4851
4852  CanQualType SizeTy =
4853    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4854
4855  // C++ [basic.stc.dynamic.allocation]p1:
4856  //  The return type shall be void*. The first parameter shall have type
4857  //  std::size_t.
4858  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4859                                  SizeTy,
4860                                  diag::err_operator_new_dependent_param_type,
4861                                  diag::err_operator_new_param_type))
4862    return true;
4863
4864  // C++ [basic.stc.dynamic.allocation]p1:
4865  //  The first parameter shall not have an associated default argument.
4866  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4867    return SemaRef.Diag(FnDecl->getLocation(),
4868                        diag::err_operator_new_default_arg)
4869      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4870
4871  return false;
4872}
4873
4874static bool
4875CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4876  // C++ [basic.stc.dynamic.deallocation]p1:
4877  //   A program is ill-formed if deallocation functions are declared in a
4878  //   namespace scope other than global scope or declared static in global
4879  //   scope.
4880  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4881    return true;
4882
4883  // C++ [basic.stc.dynamic.deallocation]p2:
4884  //   Each deallocation function shall return void and its first parameter
4885  //   shall be void*.
4886  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4887                                  SemaRef.Context.VoidPtrTy,
4888                                 diag::err_operator_delete_dependent_param_type,
4889                                 diag::err_operator_delete_param_type))
4890    return true;
4891
4892  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4893  if (FirstParamType->isDependentType())
4894    return SemaRef.Diag(FnDecl->getLocation(),
4895                        diag::err_operator_delete_dependent_param_type)
4896    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4897
4898  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4899      SemaRef.Context.VoidPtrTy)
4900    return SemaRef.Diag(FnDecl->getLocation(),
4901                        diag::err_operator_delete_param_type)
4902      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4903
4904  return false;
4905}
4906
4907/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4908/// of this overloaded operator is well-formed. If so, returns false;
4909/// otherwise, emits appropriate diagnostics and returns true.
4910bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4911  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4912         "Expected an overloaded operator declaration");
4913
4914  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4915
4916  // C++ [over.oper]p5:
4917  //   The allocation and deallocation functions, operator new,
4918  //   operator new[], operator delete and operator delete[], are
4919  //   described completely in 3.7.3. The attributes and restrictions
4920  //   found in the rest of this subclause do not apply to them unless
4921  //   explicitly stated in 3.7.3.
4922  if (Op == OO_Delete || Op == OO_Array_Delete)
4923    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4924
4925  if (Op == OO_New || Op == OO_Array_New)
4926    return CheckOperatorNewDeclaration(*this, FnDecl);
4927
4928  // C++ [over.oper]p6:
4929  //   An operator function shall either be a non-static member
4930  //   function or be a non-member function and have at least one
4931  //   parameter whose type is a class, a reference to a class, an
4932  //   enumeration, or a reference to an enumeration.
4933  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4934    if (MethodDecl->isStatic())
4935      return Diag(FnDecl->getLocation(),
4936                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4937  } else {
4938    bool ClassOrEnumParam = false;
4939    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4940                                   ParamEnd = FnDecl->param_end();
4941         Param != ParamEnd; ++Param) {
4942      QualType ParamType = (*Param)->getType().getNonReferenceType();
4943      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4944          ParamType->isEnumeralType()) {
4945        ClassOrEnumParam = true;
4946        break;
4947      }
4948    }
4949
4950    if (!ClassOrEnumParam)
4951      return Diag(FnDecl->getLocation(),
4952                  diag::err_operator_overload_needs_class_or_enum)
4953        << FnDecl->getDeclName();
4954  }
4955
4956  // C++ [over.oper]p8:
4957  //   An operator function cannot have default arguments (8.3.6),
4958  //   except where explicitly stated below.
4959  //
4960  // Only the function-call operator allows default arguments
4961  // (C++ [over.call]p1).
4962  if (Op != OO_Call) {
4963    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4964         Param != FnDecl->param_end(); ++Param) {
4965      if ((*Param)->hasDefaultArg())
4966        return Diag((*Param)->getLocation(),
4967                    diag::err_operator_overload_default_arg)
4968          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4969    }
4970  }
4971
4972  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4973    { false, false, false }
4974#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4975    , { Unary, Binary, MemberOnly }
4976#include "clang/Basic/OperatorKinds.def"
4977  };
4978
4979  bool CanBeUnaryOperator = OperatorUses[Op][0];
4980  bool CanBeBinaryOperator = OperatorUses[Op][1];
4981  bool MustBeMemberOperator = OperatorUses[Op][2];
4982
4983  // C++ [over.oper]p8:
4984  //   [...] Operator functions cannot have more or fewer parameters
4985  //   than the number required for the corresponding operator, as
4986  //   described in the rest of this subclause.
4987  unsigned NumParams = FnDecl->getNumParams()
4988                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4989  if (Op != OO_Call &&
4990      ((NumParams == 1 && !CanBeUnaryOperator) ||
4991       (NumParams == 2 && !CanBeBinaryOperator) ||
4992       (NumParams < 1) || (NumParams > 2))) {
4993    // We have the wrong number of parameters.
4994    unsigned ErrorKind;
4995    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4996      ErrorKind = 2;  // 2 -> unary or binary.
4997    } else if (CanBeUnaryOperator) {
4998      ErrorKind = 0;  // 0 -> unary
4999    } else {
5000      assert(CanBeBinaryOperator &&
5001             "All non-call overloaded operators are unary or binary!");
5002      ErrorKind = 1;  // 1 -> binary
5003    }
5004
5005    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5006      << FnDecl->getDeclName() << NumParams << ErrorKind;
5007  }
5008
5009  // Overloaded operators other than operator() cannot be variadic.
5010  if (Op != OO_Call &&
5011      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5012    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5013      << FnDecl->getDeclName();
5014  }
5015
5016  // Some operators must be non-static member functions.
5017  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5018    return Diag(FnDecl->getLocation(),
5019                diag::err_operator_overload_must_be_member)
5020      << FnDecl->getDeclName();
5021  }
5022
5023  // C++ [over.inc]p1:
5024  //   The user-defined function called operator++ implements the
5025  //   prefix and postfix ++ operator. If this function is a member
5026  //   function with no parameters, or a non-member function with one
5027  //   parameter of class or enumeration type, it defines the prefix
5028  //   increment operator ++ for objects of that type. If the function
5029  //   is a member function with one parameter (which shall be of type
5030  //   int) or a non-member function with two parameters (the second
5031  //   of which shall be of type int), it defines the postfix
5032  //   increment operator ++ for objects of that type.
5033  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5034    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5035    bool ParamIsInt = false;
5036    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5037      ParamIsInt = BT->getKind() == BuiltinType::Int;
5038
5039    if (!ParamIsInt)
5040      return Diag(LastParam->getLocation(),
5041                  diag::err_operator_overload_post_incdec_must_be_int)
5042        << LastParam->getType() << (Op == OO_MinusMinus);
5043  }
5044
5045  // Notify the class if it got an assignment operator.
5046  if (Op == OO_Equal) {
5047    // Would have returned earlier otherwise.
5048    assert(isa<CXXMethodDecl>(FnDecl) &&
5049      "Overloaded = not member, but not filtered.");
5050    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5051    Method->getParent()->addedAssignmentOperator(Context, Method);
5052  }
5053
5054  return false;
5055}
5056
5057/// CheckLiteralOperatorDeclaration - Check whether the declaration
5058/// of this literal operator function is well-formed. If so, returns
5059/// false; otherwise, emits appropriate diagnostics and returns true.
5060bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5061  DeclContext *DC = FnDecl->getDeclContext();
5062  Decl::Kind Kind = DC->getDeclKind();
5063  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5064      Kind != Decl::LinkageSpec) {
5065    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5066      << FnDecl->getDeclName();
5067    return true;
5068  }
5069
5070  bool Valid = false;
5071
5072  // FIXME: Check for the one valid template signature
5073  // template <char...> type operator "" name();
5074
5075  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5076    // Check the first parameter
5077    QualType T = (*Param)->getType();
5078
5079    // unsigned long long int and long double are allowed, but only
5080    // alone.
5081    // We also allow any character type; their omission seems to be a bug
5082    // in n3000
5083    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5084        Context.hasSameType(T, Context.LongDoubleTy) ||
5085        Context.hasSameType(T, Context.CharTy) ||
5086        Context.hasSameType(T, Context.WCharTy) ||
5087        Context.hasSameType(T, Context.Char16Ty) ||
5088        Context.hasSameType(T, Context.Char32Ty)) {
5089      if (++Param == FnDecl->param_end())
5090        Valid = true;
5091      goto FinishedParams;
5092    }
5093
5094    // Otherwise it must be a pointer to const; let's strip those.
5095    const PointerType *PT = T->getAs<PointerType>();
5096    if (!PT)
5097      goto FinishedParams;
5098    T = PT->getPointeeType();
5099    if (!T.isConstQualified())
5100      goto FinishedParams;
5101    T = T.getUnqualifiedType();
5102
5103    // Move on to the second parameter;
5104    ++Param;
5105
5106    // If there is no second parameter, the first must be a const char *
5107    if (Param == FnDecl->param_end()) {
5108      if (Context.hasSameType(T, Context.CharTy))
5109        Valid = true;
5110      goto FinishedParams;
5111    }
5112
5113    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5114    // are allowed as the first parameter to a two-parameter function
5115    if (!(Context.hasSameType(T, Context.CharTy) ||
5116          Context.hasSameType(T, Context.WCharTy) ||
5117          Context.hasSameType(T, Context.Char16Ty) ||
5118          Context.hasSameType(T, Context.Char32Ty)))
5119      goto FinishedParams;
5120
5121    // The second and final parameter must be an std::size_t
5122    T = (*Param)->getType().getUnqualifiedType();
5123    if (Context.hasSameType(T, Context.getSizeType()) &&
5124        ++Param == FnDecl->param_end())
5125      Valid = true;
5126  }
5127
5128  // FIXME: This diagnostic is absolutely terrible.
5129FinishedParams:
5130  if (!Valid) {
5131    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5132      << FnDecl->getDeclName();
5133    return true;
5134  }
5135
5136  return false;
5137}
5138
5139/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5140/// linkage specification, including the language and (if present)
5141/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5142/// the location of the language string literal, which is provided
5143/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5144/// the '{' brace. Otherwise, this linkage specification does not
5145/// have any braces.
5146Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5147                                                     SourceLocation ExternLoc,
5148                                                     SourceLocation LangLoc,
5149                                                     const char *Lang,
5150                                                     unsigned StrSize,
5151                                                     SourceLocation LBraceLoc) {
5152  LinkageSpecDecl::LanguageIDs Language;
5153  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5154    Language = LinkageSpecDecl::lang_c;
5155  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5156    Language = LinkageSpecDecl::lang_cxx;
5157  else {
5158    Diag(LangLoc, diag::err_bad_language);
5159    return DeclPtrTy();
5160  }
5161
5162  // FIXME: Add all the various semantics of linkage specifications
5163
5164  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5165                                               LangLoc, Language,
5166                                               LBraceLoc.isValid());
5167  CurContext->addDecl(D);
5168  PushDeclContext(S, D);
5169  return DeclPtrTy::make(D);
5170}
5171
5172/// ActOnFinishLinkageSpecification - Completely the definition of
5173/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5174/// valid, it's the position of the closing '}' brace in a linkage
5175/// specification that uses braces.
5176Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5177                                                      DeclPtrTy LinkageSpec,
5178                                                      SourceLocation RBraceLoc) {
5179  if (LinkageSpec)
5180    PopDeclContext();
5181  return LinkageSpec;
5182}
5183
5184/// \brief Perform semantic analysis for the variable declaration that
5185/// occurs within a C++ catch clause, returning the newly-created
5186/// variable.
5187VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5188                                         TypeSourceInfo *TInfo,
5189                                         IdentifierInfo *Name,
5190                                         SourceLocation Loc,
5191                                         SourceRange Range) {
5192  bool Invalid = false;
5193
5194  // Arrays and functions decay.
5195  if (ExDeclType->isArrayType())
5196    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5197  else if (ExDeclType->isFunctionType())
5198    ExDeclType = Context.getPointerType(ExDeclType);
5199
5200  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5201  // The exception-declaration shall not denote a pointer or reference to an
5202  // incomplete type, other than [cv] void*.
5203  // N2844 forbids rvalue references.
5204  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5205    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5206    Invalid = true;
5207  }
5208
5209  // GCC allows catching pointers and references to incomplete types
5210  // as an extension; so do we, but we warn by default.
5211
5212  QualType BaseType = ExDeclType;
5213  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5214  unsigned DK = diag::err_catch_incomplete;
5215  bool IncompleteCatchIsInvalid = true;
5216  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5217    BaseType = Ptr->getPointeeType();
5218    Mode = 1;
5219    DK = diag::ext_catch_incomplete_ptr;
5220    IncompleteCatchIsInvalid = false;
5221  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5222    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5223    BaseType = Ref->getPointeeType();
5224    Mode = 2;
5225    DK = diag::ext_catch_incomplete_ref;
5226    IncompleteCatchIsInvalid = false;
5227  }
5228  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5229      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5230      IncompleteCatchIsInvalid)
5231    Invalid = true;
5232
5233  if (!Invalid && !ExDeclType->isDependentType() &&
5234      RequireNonAbstractType(Loc, ExDeclType,
5235                             diag::err_abstract_type_in_decl,
5236                             AbstractVariableType))
5237    Invalid = true;
5238
5239  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5240                                    Name, ExDeclType, TInfo, VarDecl::None);
5241
5242  if (!Invalid) {
5243    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5244      // C++ [except.handle]p16:
5245      //   The object declared in an exception-declaration or, if the
5246      //   exception-declaration does not specify a name, a temporary (12.2) is
5247      //   copy-initialized (8.5) from the exception object. [...]
5248      //   The object is destroyed when the handler exits, after the destruction
5249      //   of any automatic objects initialized within the handler.
5250      //
5251      // We just pretend to initialize the object with itself, then make sure
5252      // it can be destroyed later.
5253      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5254      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5255                                            Loc, ExDeclType, 0);
5256      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5257                                                               SourceLocation());
5258      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5259      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5260                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5261      if (Result.isInvalid())
5262        Invalid = true;
5263      else
5264        FinalizeVarWithDestructor(ExDecl, RecordTy);
5265    }
5266  }
5267
5268  if (Invalid)
5269    ExDecl->setInvalidDecl();
5270
5271  return ExDecl;
5272}
5273
5274/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5275/// handler.
5276Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5277  TypeSourceInfo *TInfo = 0;
5278  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5279
5280  bool Invalid = D.isInvalidType();
5281  IdentifierInfo *II = D.getIdentifier();
5282  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5283    // The scope should be freshly made just for us. There is just no way
5284    // it contains any previous declaration.
5285    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5286    if (PrevDecl->isTemplateParameter()) {
5287      // Maybe we will complain about the shadowed template parameter.
5288      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5289    }
5290  }
5291
5292  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5293    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5294      << D.getCXXScopeSpec().getRange();
5295    Invalid = true;
5296  }
5297
5298  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5299                                              D.getIdentifier(),
5300                                              D.getIdentifierLoc(),
5301                                            D.getDeclSpec().getSourceRange());
5302
5303  if (Invalid)
5304    ExDecl->setInvalidDecl();
5305
5306  // Add the exception declaration into this scope.
5307  if (II)
5308    PushOnScopeChains(ExDecl, S);
5309  else
5310    CurContext->addDecl(ExDecl);
5311
5312  ProcessDeclAttributes(S, ExDecl, D);
5313  return DeclPtrTy::make(ExDecl);
5314}
5315
5316Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5317                                                   ExprArg assertexpr,
5318                                                   ExprArg assertmessageexpr) {
5319  Expr *AssertExpr = (Expr *)assertexpr.get();
5320  StringLiteral *AssertMessage =
5321    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5322
5323  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5324    llvm::APSInt Value(32);
5325    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5326      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5327        AssertExpr->getSourceRange();
5328      return DeclPtrTy();
5329    }
5330
5331    if (Value == 0) {
5332      Diag(AssertLoc, diag::err_static_assert_failed)
5333        << AssertMessage->getString() << AssertExpr->getSourceRange();
5334    }
5335  }
5336
5337  assertexpr.release();
5338  assertmessageexpr.release();
5339  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5340                                        AssertExpr, AssertMessage);
5341
5342  CurContext->addDecl(Decl);
5343  return DeclPtrTy::make(Decl);
5344}
5345
5346/// Handle a friend type declaration.  This works in tandem with
5347/// ActOnTag.
5348///
5349/// Notes on friend class templates:
5350///
5351/// We generally treat friend class declarations as if they were
5352/// declaring a class.  So, for example, the elaborated type specifier
5353/// in a friend declaration is required to obey the restrictions of a
5354/// class-head (i.e. no typedefs in the scope chain), template
5355/// parameters are required to match up with simple template-ids, &c.
5356/// However, unlike when declaring a template specialization, it's
5357/// okay to refer to a template specialization without an empty
5358/// template parameter declaration, e.g.
5359///   friend class A<T>::B<unsigned>;
5360/// We permit this as a special case; if there are any template
5361/// parameters present at all, require proper matching, i.e.
5362///   template <> template <class T> friend class A<int>::B;
5363Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5364                                          MultiTemplateParamsArg TempParams) {
5365  SourceLocation Loc = DS.getSourceRange().getBegin();
5366
5367  assert(DS.isFriendSpecified());
5368  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5369
5370  // Try to convert the decl specifier to a type.  This works for
5371  // friend templates because ActOnTag never produces a ClassTemplateDecl
5372  // for a TUK_Friend.
5373  Declarator TheDeclarator(DS, Declarator::MemberContext);
5374  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5375  if (TheDeclarator.isInvalidType())
5376    return DeclPtrTy();
5377
5378  // This is definitely an error in C++98.  It's probably meant to
5379  // be forbidden in C++0x, too, but the specification is just
5380  // poorly written.
5381  //
5382  // The problem is with declarations like the following:
5383  //   template <T> friend A<T>::foo;
5384  // where deciding whether a class C is a friend or not now hinges
5385  // on whether there exists an instantiation of A that causes
5386  // 'foo' to equal C.  There are restrictions on class-heads
5387  // (which we declare (by fiat) elaborated friend declarations to
5388  // be) that makes this tractable.
5389  //
5390  // FIXME: handle "template <> friend class A<T>;", which
5391  // is possibly well-formed?  Who even knows?
5392  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5393    Diag(Loc, diag::err_tagless_friend_type_template)
5394      << DS.getSourceRange();
5395    return DeclPtrTy();
5396  }
5397
5398  // C++ [class.friend]p2:
5399  //   An elaborated-type-specifier shall be used in a friend declaration
5400  //   for a class.*
5401  //   * The class-key of the elaborated-type-specifier is required.
5402  // This is one of the rare places in Clang where it's legitimate to
5403  // ask about the "spelling" of the type.
5404  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5405    // If we evaluated the type to a record type, suggest putting
5406    // a tag in front.
5407    if (const RecordType *RT = T->getAs<RecordType>()) {
5408      RecordDecl *RD = RT->getDecl();
5409
5410      std::string InsertionText = std::string(" ") + RD->getKindName();
5411
5412      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5413        << (unsigned) RD->getTagKind()
5414        << T
5415        << SourceRange(DS.getFriendSpecLoc())
5416        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5417                                                 InsertionText);
5418      return DeclPtrTy();
5419    }else {
5420      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5421          << DS.getSourceRange();
5422      return DeclPtrTy();
5423    }
5424  }
5425
5426  // Enum types cannot be friends.
5427  if (T->getAs<EnumType>()) {
5428    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5429      << SourceRange(DS.getFriendSpecLoc());
5430    return DeclPtrTy();
5431  }
5432
5433  // C++98 [class.friend]p1: A friend of a class is a function
5434  //   or class that is not a member of the class . . .
5435  // This is fixed in DR77, which just barely didn't make the C++03
5436  // deadline.  It's also a very silly restriction that seriously
5437  // affects inner classes and which nobody else seems to implement;
5438  // thus we never diagnose it, not even in -pedantic.
5439
5440  Decl *D;
5441  if (TempParams.size())
5442    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5443                                   TempParams.size(),
5444                                 (TemplateParameterList**) TempParams.release(),
5445                                   T.getTypePtr(),
5446                                   DS.getFriendSpecLoc());
5447  else
5448    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5449                           DS.getFriendSpecLoc());
5450  D->setAccess(AS_public);
5451  CurContext->addDecl(D);
5452
5453  return DeclPtrTy::make(D);
5454}
5455
5456Sema::DeclPtrTy
5457Sema::ActOnFriendFunctionDecl(Scope *S,
5458                              Declarator &D,
5459                              bool IsDefinition,
5460                              MultiTemplateParamsArg TemplateParams) {
5461  const DeclSpec &DS = D.getDeclSpec();
5462
5463  assert(DS.isFriendSpecified());
5464  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5465
5466  SourceLocation Loc = D.getIdentifierLoc();
5467  TypeSourceInfo *TInfo = 0;
5468  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5469
5470  // C++ [class.friend]p1
5471  //   A friend of a class is a function or class....
5472  // Note that this sees through typedefs, which is intended.
5473  // It *doesn't* see through dependent types, which is correct
5474  // according to [temp.arg.type]p3:
5475  //   If a declaration acquires a function type through a
5476  //   type dependent on a template-parameter and this causes
5477  //   a declaration that does not use the syntactic form of a
5478  //   function declarator to have a function type, the program
5479  //   is ill-formed.
5480  if (!T->isFunctionType()) {
5481    Diag(Loc, diag::err_unexpected_friend);
5482
5483    // It might be worthwhile to try to recover by creating an
5484    // appropriate declaration.
5485    return DeclPtrTy();
5486  }
5487
5488  // C++ [namespace.memdef]p3
5489  //  - If a friend declaration in a non-local class first declares a
5490  //    class or function, the friend class or function is a member
5491  //    of the innermost enclosing namespace.
5492  //  - The name of the friend is not found by simple name lookup
5493  //    until a matching declaration is provided in that namespace
5494  //    scope (either before or after the class declaration granting
5495  //    friendship).
5496  //  - If a friend function is called, its name may be found by the
5497  //    name lookup that considers functions from namespaces and
5498  //    classes associated with the types of the function arguments.
5499  //  - When looking for a prior declaration of a class or a function
5500  //    declared as a friend, scopes outside the innermost enclosing
5501  //    namespace scope are not considered.
5502
5503  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5504  DeclarationName Name = GetNameForDeclarator(D);
5505  assert(Name);
5506
5507  // The context we found the declaration in, or in which we should
5508  // create the declaration.
5509  DeclContext *DC;
5510
5511  // FIXME: handle local classes
5512
5513  // Recover from invalid scope qualifiers as if they just weren't there.
5514  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5515                        ForRedeclaration);
5516  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5517    // FIXME: RequireCompleteDeclContext
5518    DC = computeDeclContext(ScopeQual);
5519
5520    // FIXME: handle dependent contexts
5521    if (!DC) return DeclPtrTy();
5522
5523    LookupQualifiedName(Previous, DC);
5524
5525    // If searching in that context implicitly found a declaration in
5526    // a different context, treat it like it wasn't found at all.
5527    // TODO: better diagnostics for this case.  Suggesting the right
5528    // qualified scope would be nice...
5529    // FIXME: getRepresentativeDecl() is not right here at all
5530    if (Previous.empty() ||
5531        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5532      D.setInvalidType();
5533      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5534      return DeclPtrTy();
5535    }
5536
5537    // C++ [class.friend]p1: A friend of a class is a function or
5538    //   class that is not a member of the class . . .
5539    if (DC->Equals(CurContext))
5540      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5541
5542  // Otherwise walk out to the nearest namespace scope looking for matches.
5543  } else {
5544    // TODO: handle local class contexts.
5545
5546    DC = CurContext;
5547    while (true) {
5548      // Skip class contexts.  If someone can cite chapter and verse
5549      // for this behavior, that would be nice --- it's what GCC and
5550      // EDG do, and it seems like a reasonable intent, but the spec
5551      // really only says that checks for unqualified existing
5552      // declarations should stop at the nearest enclosing namespace,
5553      // not that they should only consider the nearest enclosing
5554      // namespace.
5555      while (DC->isRecord())
5556        DC = DC->getParent();
5557
5558      LookupQualifiedName(Previous, DC);
5559
5560      // TODO: decide what we think about using declarations.
5561      if (!Previous.empty())
5562        break;
5563
5564      if (DC->isFileContext()) break;
5565      DC = DC->getParent();
5566    }
5567
5568    // C++ [class.friend]p1: A friend of a class is a function or
5569    //   class that is not a member of the class . . .
5570    // C++0x changes this for both friend types and functions.
5571    // Most C++ 98 compilers do seem to give an error here, so
5572    // we do, too.
5573    if (!Previous.empty() && DC->Equals(CurContext)
5574        && !getLangOptions().CPlusPlus0x)
5575      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5576  }
5577
5578  if (DC->isFileContext()) {
5579    // This implies that it has to be an operator or function.
5580    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5581        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5582        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5583      Diag(Loc, diag::err_introducing_special_friend) <<
5584        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5585         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5586      return DeclPtrTy();
5587    }
5588  }
5589
5590  bool Redeclaration = false;
5591  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5592                                          move(TemplateParams),
5593                                          IsDefinition,
5594                                          Redeclaration);
5595  if (!ND) return DeclPtrTy();
5596
5597  assert(ND->getDeclContext() == DC);
5598  assert(ND->getLexicalDeclContext() == CurContext);
5599
5600  // Add the function declaration to the appropriate lookup tables,
5601  // adjusting the redeclarations list as necessary.  We don't
5602  // want to do this yet if the friending class is dependent.
5603  //
5604  // Also update the scope-based lookup if the target context's
5605  // lookup context is in lexical scope.
5606  if (!CurContext->isDependentContext()) {
5607    DC = DC->getLookupContext();
5608    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5609    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5610      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5611  }
5612
5613  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5614                                       D.getIdentifierLoc(), ND,
5615                                       DS.getFriendSpecLoc());
5616  FrD->setAccess(AS_public);
5617  CurContext->addDecl(FrD);
5618
5619  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5620    FrD->setSpecialization(true);
5621
5622  return DeclPtrTy::make(ND);
5623}
5624
5625void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5626  AdjustDeclIfTemplate(dcl);
5627
5628  Decl *Dcl = dcl.getAs<Decl>();
5629  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5630  if (!Fn) {
5631    Diag(DelLoc, diag::err_deleted_non_function);
5632    return;
5633  }
5634  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5635    Diag(DelLoc, diag::err_deleted_decl_not_first);
5636    Diag(Prev->getLocation(), diag::note_previous_declaration);
5637    // If the declaration wasn't the first, we delete the function anyway for
5638    // recovery.
5639  }
5640  Fn->setDeleted();
5641}
5642
5643static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5644  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5645       ++CI) {
5646    Stmt *SubStmt = *CI;
5647    if (!SubStmt)
5648      continue;
5649    if (isa<ReturnStmt>(SubStmt))
5650      Self.Diag(SubStmt->getSourceRange().getBegin(),
5651           diag::err_return_in_constructor_handler);
5652    if (!isa<Expr>(SubStmt))
5653      SearchForReturnInStmt(Self, SubStmt);
5654  }
5655}
5656
5657void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5658  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5659    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5660    SearchForReturnInStmt(*this, Handler);
5661  }
5662}
5663
5664bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5665                                             const CXXMethodDecl *Old) {
5666  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5667  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5668
5669  if (Context.hasSameType(NewTy, OldTy) ||
5670      NewTy->isDependentType() || OldTy->isDependentType())
5671    return false;
5672
5673  // Check if the return types are covariant
5674  QualType NewClassTy, OldClassTy;
5675
5676  /// Both types must be pointers or references to classes.
5677  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5678    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5679      NewClassTy = NewPT->getPointeeType();
5680      OldClassTy = OldPT->getPointeeType();
5681    }
5682  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5683    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5684      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5685        NewClassTy = NewRT->getPointeeType();
5686        OldClassTy = OldRT->getPointeeType();
5687      }
5688    }
5689  }
5690
5691  // The return types aren't either both pointers or references to a class type.
5692  if (NewClassTy.isNull()) {
5693    Diag(New->getLocation(),
5694         diag::err_different_return_type_for_overriding_virtual_function)
5695      << New->getDeclName() << NewTy << OldTy;
5696    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5697
5698    return true;
5699  }
5700
5701  // C++ [class.virtual]p6:
5702  //   If the return type of D::f differs from the return type of B::f, the
5703  //   class type in the return type of D::f shall be complete at the point of
5704  //   declaration of D::f or shall be the class type D.
5705  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5706    if (!RT->isBeingDefined() &&
5707        RequireCompleteType(New->getLocation(), NewClassTy,
5708                            PDiag(diag::err_covariant_return_incomplete)
5709                              << New->getDeclName()))
5710    return true;
5711  }
5712
5713  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5714    // Check if the new class derives from the old class.
5715    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5716      Diag(New->getLocation(),
5717           diag::err_covariant_return_not_derived)
5718      << New->getDeclName() << NewTy << OldTy;
5719      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5720      return true;
5721    }
5722
5723    // Check if we the conversion from derived to base is valid.
5724    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5725                      diag::err_covariant_return_inaccessible_base,
5726                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5727                      // FIXME: Should this point to the return type?
5728                      New->getLocation(), SourceRange(), New->getDeclName())) {
5729      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5730      return true;
5731    }
5732  }
5733
5734  // The qualifiers of the return types must be the same.
5735  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5736    Diag(New->getLocation(),
5737         diag::err_covariant_return_type_different_qualifications)
5738    << New->getDeclName() << NewTy << OldTy;
5739    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5740    return true;
5741  };
5742
5743
5744  // The new class type must have the same or less qualifiers as the old type.
5745  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5746    Diag(New->getLocation(),
5747         diag::err_covariant_return_type_class_type_more_qualified)
5748    << New->getDeclName() << NewTy << OldTy;
5749    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5750    return true;
5751  };
5752
5753  return false;
5754}
5755
5756bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5757                                             const CXXMethodDecl *Old)
5758{
5759  if (Old->hasAttr<FinalAttr>()) {
5760    Diag(New->getLocation(), diag::err_final_function_overridden)
5761      << New->getDeclName();
5762    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5763    return true;
5764  }
5765
5766  return false;
5767}
5768
5769/// \brief Mark the given method pure.
5770///
5771/// \param Method the method to be marked pure.
5772///
5773/// \param InitRange the source range that covers the "0" initializer.
5774bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5775  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5776    Method->setPure();
5777
5778    // A class is abstract if at least one function is pure virtual.
5779    Method->getParent()->setAbstract(true);
5780    return false;
5781  }
5782
5783  if (!Method->isInvalidDecl())
5784    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5785      << Method->getDeclName() << InitRange;
5786  return true;
5787}
5788
5789/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5790/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5791/// is a fresh scope pushed for just this purpose.
5792///
5793/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5794/// static data member of class X, names should be looked up in the scope of
5795/// class X.
5796void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5797  // If there is no declaration, there was an error parsing it.
5798  Decl *D = Dcl.getAs<Decl>();
5799  if (D == 0) return;
5800
5801  // We should only get called for declarations with scope specifiers, like:
5802  //   int foo::bar;
5803  assert(D->isOutOfLine());
5804  EnterDeclaratorContext(S, D->getDeclContext());
5805}
5806
5807/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5808/// initializer for the out-of-line declaration 'Dcl'.
5809void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5810  // If there is no declaration, there was an error parsing it.
5811  Decl *D = Dcl.getAs<Decl>();
5812  if (D == 0) return;
5813
5814  assert(D->isOutOfLine());
5815  ExitDeclaratorContext(S);
5816}
5817
5818/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5819/// C++ if/switch/while/for statement.
5820/// e.g: "if (int x = f()) {...}"
5821Action::DeclResult
5822Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5823  // C++ 6.4p2:
5824  // The declarator shall not specify a function or an array.
5825  // The type-specifier-seq shall not contain typedef and shall not declare a
5826  // new class or enumeration.
5827  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5828         "Parser allowed 'typedef' as storage class of condition decl.");
5829
5830  TypeSourceInfo *TInfo = 0;
5831  TagDecl *OwnedTag = 0;
5832  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5833
5834  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5835                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5836                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5837    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5838      << D.getSourceRange();
5839    return DeclResult();
5840  } else if (OwnedTag && OwnedTag->isDefinition()) {
5841    // The type-specifier-seq shall not declare a new class or enumeration.
5842    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5843  }
5844
5845  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5846  if (!Dcl)
5847    return DeclResult();
5848
5849  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5850  VD->setDeclaredInCondition(true);
5851  return Dcl;
5852}
5853
5854static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5855  // Ignore dependent types.
5856  if (MD->isDependentContext())
5857    return false;
5858
5859  // Ignore declarations that are not definitions.
5860  if (!MD->isThisDeclarationADefinition())
5861    return false;
5862
5863  CXXRecordDecl *RD = MD->getParent();
5864
5865  // Ignore classes without a vtable.
5866  if (!RD->isDynamicClass())
5867    return false;
5868
5869  switch (MD->getParent()->getTemplateSpecializationKind()) {
5870  case TSK_Undeclared:
5871  case TSK_ExplicitSpecialization:
5872    // Classes that aren't instantiations of templates don't need their
5873    // virtual methods marked until we see the definition of the key
5874    // function.
5875    break;
5876
5877  case TSK_ImplicitInstantiation:
5878    // This is a constructor of a class template; mark all of the virtual
5879    // members as referenced to ensure that they get instantiatied.
5880    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5881      return true;
5882    break;
5883
5884  case TSK_ExplicitInstantiationDeclaration:
5885    return false;
5886
5887  case TSK_ExplicitInstantiationDefinition:
5888    // This is method of a explicit instantiation; mark all of the virtual
5889    // members as referenced to ensure that they get instantiatied.
5890    return true;
5891  }
5892
5893  // Consider only out-of-line definitions of member functions. When we see
5894  // an inline definition, it's too early to compute the key function.
5895  if (!MD->isOutOfLine())
5896    return false;
5897
5898  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5899
5900  // If there is no key function, we will need a copy of the vtable.
5901  if (!KeyFunction)
5902    return true;
5903
5904  // If this is the key function, we need to mark virtual members.
5905  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5906    return true;
5907
5908  return false;
5909}
5910
5911void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5912                                             CXXMethodDecl *MD) {
5913  CXXRecordDecl *RD = MD->getParent();
5914
5915  // We will need to mark all of the virtual members as referenced to build the
5916  // vtable.
5917  if (!needsVtable(MD, Context))
5918    return;
5919
5920  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5921  if (kind == TSK_ImplicitInstantiation)
5922    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5923  else
5924    MarkVirtualMembersReferenced(Loc, RD);
5925}
5926
5927bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5928  if (ClassesWithUnmarkedVirtualMembers.empty())
5929    return false;
5930
5931  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5932    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5933    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5934    ClassesWithUnmarkedVirtualMembers.pop_back();
5935    MarkVirtualMembersReferenced(Loc, RD);
5936  }
5937
5938  return true;
5939}
5940
5941void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5942  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5943       e = RD->method_end(); i != e; ++i) {
5944    CXXMethodDecl *MD = *i;
5945
5946    // C++ [basic.def.odr]p2:
5947    //   [...] A virtual member function is used if it is not pure. [...]
5948    if (MD->isVirtual() && !MD->isPure())
5949      MarkDeclarationReferenced(Loc, MD);
5950  }
5951}
5952