SemaDeclCXX.cpp revision 80545ad0f9b8e52177a8c37bd140bae0ffbd0cc6
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// CheckDefaultArgumentVisitor
33//===----------------------------------------------------------------------===//
34
35namespace {
36  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37  /// the default argument of a parameter to determine whether it
38  /// contains any ill-formed subexpressions. For example, this will
39  /// diagnose the use of local variables or parameters within the
40  /// default argument expression.
41  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43    Expr *DefaultArg;
44    Sema *S;
45
46  public:
47    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48      : DefaultArg(defarg), S(s) {}
49
50    bool VisitExpr(Expr *Node);
51    bool VisitDeclRefExpr(DeclRefExpr *DRE);
52    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53  };
54
55  /// VisitExpr - Visit all of the children of this expression.
56  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57    bool IsInvalid = false;
58    for (Stmt::child_iterator I = Node->child_begin(),
59         E = Node->child_end(); I != E; ++I)
60      IsInvalid |= Visit(*I);
61    return IsInvalid;
62  }
63
64  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65  /// determine whether this declaration can be used in the default
66  /// argument expression.
67  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68    NamedDecl *Decl = DRE->getDecl();
69    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70      // C++ [dcl.fct.default]p9
71      //   Default arguments are evaluated each time the function is
72      //   called. The order of evaluation of function arguments is
73      //   unspecified. Consequently, parameters of a function shall not
74      //   be used in default argument expressions, even if they are not
75      //   evaluated. Parameters of a function declared before a default
76      //   argument expression are in scope and can hide namespace and
77      //   class member names.
78      return S->Diag(DRE->getSourceRange().getBegin(),
79                     diag::err_param_default_argument_references_param)
80         << Param->getDeclName() << DefaultArg->getSourceRange();
81    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p7
83      //   Local variables shall not be used in default argument
84      //   expressions.
85      if (VDecl->isBlockVarDecl())
86        return S->Diag(DRE->getSourceRange().getBegin(),
87                       diag::err_param_default_argument_references_local)
88          << VDecl->getDeclName() << DefaultArg->getSourceRange();
89    }
90
91    return false;
92  }
93
94  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96    // C++ [dcl.fct.default]p8:
97    //   The keyword this shall not be used in a default argument of a
98    //   member function.
99    return S->Diag(ThisE->getSourceRange().getBegin(),
100                   diag::err_param_default_argument_references_this)
101               << ThisE->getSourceRange();
102  }
103}
104
105bool
106Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107                              SourceLocation EqualLoc)
108{
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
258    ParmVarDecl *OldParam = Old->getParamDecl(p);
259    ParmVarDecl *NewParam = New->getParamDecl(p);
260
261    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
262      Diag(NewParam->getLocation(),
263           diag::err_param_default_argument_redefinition)
264        << NewParam->getDefaultArg()->getSourceRange();
265      Diag(OldParam->getLocation(), diag::note_previous_definition);
266      Invalid = true;
267    } else if (OldParam->getDefaultArg()) {
268      // Merge the old default argument into the new parameter
269      NewParam->setDefaultArg(OldParam->getDefaultArg());
270    }
271  }
272
273  if (CheckEquivalentExceptionSpec(
274          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
275          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
276    Invalid = true;
277  }
278
279  return Invalid;
280}
281
282/// CheckCXXDefaultArguments - Verify that the default arguments for a
283/// function declaration are well-formed according to C++
284/// [dcl.fct.default].
285void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
286  unsigned NumParams = FD->getNumParams();
287  unsigned p;
288
289  // Find first parameter with a default argument
290  for (p = 0; p < NumParams; ++p) {
291    ParmVarDecl *Param = FD->getParamDecl(p);
292    if (Param->hasDefaultArg())
293      break;
294  }
295
296  // C++ [dcl.fct.default]p4:
297  //   In a given function declaration, all parameters
298  //   subsequent to a parameter with a default argument shall
299  //   have default arguments supplied in this or previous
300  //   declarations. A default argument shall not be redefined
301  //   by a later declaration (not even to the same value).
302  unsigned LastMissingDefaultArg = 0;
303  for(; p < NumParams; ++p) {
304    ParmVarDecl *Param = FD->getParamDecl(p);
305    if (!Param->hasDefaultArg()) {
306      if (Param->isInvalidDecl())
307        /* We already complained about this parameter. */;
308      else if (Param->getIdentifier())
309        Diag(Param->getLocation(),
310             diag::err_param_default_argument_missing_name)
311          << Param->getIdentifier();
312      else
313        Diag(Param->getLocation(),
314             diag::err_param_default_argument_missing);
315
316      LastMissingDefaultArg = p;
317    }
318  }
319
320  if (LastMissingDefaultArg > 0) {
321    // Some default arguments were missing. Clear out all of the
322    // default arguments up to (and including) the last missing
323    // default argument, so that we leave the function parameters
324    // in a semantically valid state.
325    for (p = 0; p <= LastMissingDefaultArg; ++p) {
326      ParmVarDecl *Param = FD->getParamDecl(p);
327      if (Param->hasDefaultArg()) {
328        if (!Param->hasUnparsedDefaultArg())
329          Param->getDefaultArg()->Destroy(Context);
330        Param->setDefaultArg(0);
331      }
332    }
333  }
334}
335
336/// isCurrentClassName - Determine whether the identifier II is the
337/// name of the class type currently being defined. In the case of
338/// nested classes, this will only return true if II is the name of
339/// the innermost class.
340bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
341                              const CXXScopeSpec *SS) {
342  CXXRecordDecl *CurDecl;
343  if (SS && SS->isSet() && !SS->isInvalid()) {
344    DeclContext *DC = computeDeclContext(*SS, true);
345    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
346  } else
347    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
348
349  if (CurDecl)
350    return &II == CurDecl->getIdentifier();
351  else
352    return false;
353}
354
355/// \brief Check the validity of a C++ base class specifier.
356///
357/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
358/// and returns NULL otherwise.
359CXXBaseSpecifier *
360Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
361                         SourceRange SpecifierRange,
362                         bool Virtual, AccessSpecifier Access,
363                         QualType BaseType,
364                         SourceLocation BaseLoc) {
365  // C++ [class.union]p1:
366  //   A union shall not have base classes.
367  if (Class->isUnion()) {
368    Diag(Class->getLocation(), diag::err_base_clause_on_union)
369      << SpecifierRange;
370    return 0;
371  }
372
373  if (BaseType->isDependentType())
374    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
375                                Class->getTagKind() == RecordDecl::TK_class,
376                                Access, BaseType);
377
378  // Base specifiers must be record types.
379  if (!BaseType->isRecordType()) {
380    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
381    return 0;
382  }
383
384  // C++ [class.union]p1:
385  //   A union shall not be used as a base class.
386  if (BaseType->isUnionType()) {
387    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
388    return 0;
389  }
390
391  // C++ [class.derived]p2:
392  //   The class-name in a base-specifier shall not be an incompletely
393  //   defined class.
394  if (RequireCompleteType(BaseLoc, BaseType,
395                          PDiag(diag::err_incomplete_base_class)
396                            << SpecifierRange))
397    return 0;
398
399  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
400  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
401  assert(BaseDecl && "Record type has no declaration");
402  BaseDecl = BaseDecl->getDefinition(Context);
403  assert(BaseDecl && "Base type is not incomplete, but has no definition");
404  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
405  assert(CXXBaseDecl && "Base type is not a C++ type");
406  if (!CXXBaseDecl->isEmpty())
407    Class->setEmpty(false);
408  if (CXXBaseDecl->isPolymorphic())
409    Class->setPolymorphic(true);
410
411  // C++ [dcl.init.aggr]p1:
412  //   An aggregate is [...] a class with [...] no base classes [...].
413  Class->setAggregate(false);
414  Class->setPOD(false);
415
416  if (Virtual) {
417    // C++ [class.ctor]p5:
418    //   A constructor is trivial if its class has no virtual base classes.
419    Class->setHasTrivialConstructor(false);
420
421    // C++ [class.copy]p6:
422    //   A copy constructor is trivial if its class has no virtual base classes.
423    Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if its class has no virtual
427    //   base classes.
428    Class->setHasTrivialCopyAssignment(false);
429
430    // C++0x [meta.unary.prop] is_empty:
431    //    T is a class type, but not a union type, with ... no virtual base
432    //    classes
433    Class->setEmpty(false);
434  } else {
435    // C++ [class.ctor]p5:
436    //   A constructor is trivial if all the direct base classes of its
437    //   class have trivial constructors.
438    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
439      Class->setHasTrivialConstructor(false);
440
441    // C++ [class.copy]p6:
442    //   A copy constructor is trivial if all the direct base classes of its
443    //   class have trivial copy constructors.
444    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
445      Class->setHasTrivialCopyConstructor(false);
446
447    // C++ [class.copy]p11:
448    //   A copy assignment operator is trivial if all the direct base classes
449    //   of its class have trivial copy assignment operators.
450    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
451      Class->setHasTrivialCopyAssignment(false);
452  }
453
454  // C++ [class.ctor]p3:
455  //   A destructor is trivial if all the direct base classes of its class
456  //   have trivial destructors.
457  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
458    Class->setHasTrivialDestructor(false);
459
460  // Create the base specifier.
461  // FIXME: Allocate via ASTContext?
462  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                              Class->getTagKind() == RecordDecl::TK_class,
464                              Access, BaseType);
465}
466
467/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
468/// one entry in the base class list of a class specifier, for
469/// example:
470///    class foo : public bar, virtual private baz {
471/// 'public bar' and 'virtual private baz' are each base-specifiers.
472Sema::BaseResult
473Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
474                         bool Virtual, AccessSpecifier Access,
475                         TypeTy *basetype, SourceLocation BaseLoc) {
476  if (!classdecl)
477    return true;
478
479  AdjustDeclIfTemplate(classdecl);
480  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
481  QualType BaseType = GetTypeFromParser(basetype);
482  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
483                                                      Virtual, Access,
484                                                      BaseType, BaseLoc))
485    return BaseSpec;
486
487  return true;
488}
489
490/// \brief Performs the actual work of attaching the given base class
491/// specifiers to a C++ class.
492bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
493                                unsigned NumBases) {
494 if (NumBases == 0)
495    return false;
496
497  // Used to keep track of which base types we have already seen, so
498  // that we can properly diagnose redundant direct base types. Note
499  // that the key is always the unqualified canonical type of the base
500  // class.
501  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
502
503  // Copy non-redundant base specifiers into permanent storage.
504  unsigned NumGoodBases = 0;
505  bool Invalid = false;
506  for (unsigned idx = 0; idx < NumBases; ++idx) {
507    QualType NewBaseType
508      = Context.getCanonicalType(Bases[idx]->getType());
509    NewBaseType = NewBaseType.getUnqualifiedType();
510
511    if (KnownBaseTypes[NewBaseType]) {
512      // C++ [class.mi]p3:
513      //   A class shall not be specified as a direct base class of a
514      //   derived class more than once.
515      Diag(Bases[idx]->getSourceRange().getBegin(),
516           diag::err_duplicate_base_class)
517        << KnownBaseTypes[NewBaseType]->getType()
518        << Bases[idx]->getSourceRange();
519
520      // Delete the duplicate base class specifier; we're going to
521      // overwrite its pointer later.
522      Context.Deallocate(Bases[idx]);
523
524      Invalid = true;
525    } else {
526      // Okay, add this new base class.
527      KnownBaseTypes[NewBaseType] = Bases[idx];
528      Bases[NumGoodBases++] = Bases[idx];
529    }
530  }
531
532  // Attach the remaining base class specifiers to the derived class.
533  Class->setBases(Context, Bases, NumGoodBases);
534
535  // Delete the remaining (good) base class specifiers, since their
536  // data has been copied into the CXXRecordDecl.
537  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
538    Context.Deallocate(Bases[idx]);
539
540  return Invalid;
541}
542
543/// ActOnBaseSpecifiers - Attach the given base specifiers to the
544/// class, after checking whether there are any duplicate base
545/// classes.
546void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
547                               unsigned NumBases) {
548  if (!ClassDecl || !Bases || !NumBases)
549    return;
550
551  AdjustDeclIfTemplate(ClassDecl);
552  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
553                       (CXXBaseSpecifier**)(Bases), NumBases);
554}
555
556//===----------------------------------------------------------------------===//
557// C++ class member Handling
558//===----------------------------------------------------------------------===//
559
560/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
561/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
562/// bitfield width if there is one and 'InitExpr' specifies the initializer if
563/// any.
564Sema::DeclPtrTy
565Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
566                               MultiTemplateParamsArg TemplateParameterLists,
567                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
568  const DeclSpec &DS = D.getDeclSpec();
569  DeclarationName Name = GetNameForDeclarator(D);
570  Expr *BitWidth = static_cast<Expr*>(BW);
571  Expr *Init = static_cast<Expr*>(InitExpr);
572  SourceLocation Loc = D.getIdentifierLoc();
573
574  bool isFunc = D.isFunctionDeclarator();
575
576  assert(!DS.isFriendSpecified());
577
578  // C++ 9.2p6: A member shall not be declared to have automatic storage
579  // duration (auto, register) or with the extern storage-class-specifier.
580  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
581  // data members and cannot be applied to names declared const or static,
582  // and cannot be applied to reference members.
583  switch (DS.getStorageClassSpec()) {
584    case DeclSpec::SCS_unspecified:
585    case DeclSpec::SCS_typedef:
586    case DeclSpec::SCS_static:
587      // FALL THROUGH.
588      break;
589    case DeclSpec::SCS_mutable:
590      if (isFunc) {
591        if (DS.getStorageClassSpecLoc().isValid())
592          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
593        else
594          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
595
596        // FIXME: It would be nicer if the keyword was ignored only for this
597        // declarator. Otherwise we could get follow-up errors.
598        D.getMutableDeclSpec().ClearStorageClassSpecs();
599      } else {
600        QualType T = GetTypeForDeclarator(D, S);
601        diag::kind err = static_cast<diag::kind>(0);
602        if (T->isReferenceType())
603          err = diag::err_mutable_reference;
604        else if (T.isConstQualified())
605          err = diag::err_mutable_const;
606        if (err != 0) {
607          if (DS.getStorageClassSpecLoc().isValid())
608            Diag(DS.getStorageClassSpecLoc(), err);
609          else
610            Diag(DS.getThreadSpecLoc(), err);
611          // FIXME: It would be nicer if the keyword was ignored only for this
612          // declarator. Otherwise we could get follow-up errors.
613          D.getMutableDeclSpec().ClearStorageClassSpecs();
614        }
615      }
616      break;
617    default:
618      if (DS.getStorageClassSpecLoc().isValid())
619        Diag(DS.getStorageClassSpecLoc(),
620             diag::err_storageclass_invalid_for_member);
621      else
622        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
623      D.getMutableDeclSpec().ClearStorageClassSpecs();
624  }
625
626  if (!isFunc &&
627      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
628      D.getNumTypeObjects() == 0) {
629    // Check also for this case:
630    //
631    // typedef int f();
632    // f a;
633    //
634    QualType TDType = GetTypeFromParser(DS.getTypeRep());
635    isFunc = TDType->isFunctionType();
636  }
637
638  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
639                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
640                      !isFunc);
641
642  Decl *Member;
643  if (isInstField) {
644    // FIXME: Check for template parameters!
645    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
646                         AS);
647    assert(Member && "HandleField never returns null");
648  } else {
649    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
650               .getAs<Decl>();
651    if (!Member) {
652      if (BitWidth) DeleteExpr(BitWidth);
653      return DeclPtrTy();
654    }
655
656    // Non-instance-fields can't have a bitfield.
657    if (BitWidth) {
658      if (Member->isInvalidDecl()) {
659        // don't emit another diagnostic.
660      } else if (isa<VarDecl>(Member)) {
661        // C++ 9.6p3: A bit-field shall not be a static member.
662        // "static member 'A' cannot be a bit-field"
663        Diag(Loc, diag::err_static_not_bitfield)
664          << Name << BitWidth->getSourceRange();
665      } else if (isa<TypedefDecl>(Member)) {
666        // "typedef member 'x' cannot be a bit-field"
667        Diag(Loc, diag::err_typedef_not_bitfield)
668          << Name << BitWidth->getSourceRange();
669      } else {
670        // A function typedef ("typedef int f(); f a;").
671        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
672        Diag(Loc, diag::err_not_integral_type_bitfield)
673          << Name << cast<ValueDecl>(Member)->getType()
674          << BitWidth->getSourceRange();
675      }
676
677      DeleteExpr(BitWidth);
678      BitWidth = 0;
679      Member->setInvalidDecl();
680    }
681
682    Member->setAccess(AS);
683
684    // If we have declared a member function template, set the access of the
685    // templated declaration as well.
686    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
687      FunTmpl->getTemplatedDecl()->setAccess(AS);
688  }
689
690  assert((Name || isInstField) && "No identifier for non-field ?");
691
692  if (Init)
693    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
694  if (Deleted) // FIXME: Source location is not very good.
695    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
696
697  if (isInstField) {
698    FieldCollector->Add(cast<FieldDecl>(Member));
699    return DeclPtrTy();
700  }
701  return DeclPtrTy::make(Member);
702}
703
704/// ActOnMemInitializer - Handle a C++ member initializer.
705Sema::MemInitResult
706Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
707                          Scope *S,
708                          const CXXScopeSpec &SS,
709                          IdentifierInfo *MemberOrBase,
710                          TypeTy *TemplateTypeTy,
711                          SourceLocation IdLoc,
712                          SourceLocation LParenLoc,
713                          ExprTy **Args, unsigned NumArgs,
714                          SourceLocation *CommaLocs,
715                          SourceLocation RParenLoc) {
716  if (!ConstructorD)
717    return true;
718
719  AdjustDeclIfTemplate(ConstructorD);
720
721  CXXConstructorDecl *Constructor
722    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
723  if (!Constructor) {
724    // The user wrote a constructor initializer on a function that is
725    // not a C++ constructor. Ignore the error for now, because we may
726    // have more member initializers coming; we'll diagnose it just
727    // once in ActOnMemInitializers.
728    return true;
729  }
730
731  CXXRecordDecl *ClassDecl = Constructor->getParent();
732
733  // C++ [class.base.init]p2:
734  //   Names in a mem-initializer-id are looked up in the scope of the
735  //   constructor’s class and, if not found in that scope, are looked
736  //   up in the scope containing the constructor’s
737  //   definition. [Note: if the constructor’s class contains a member
738  //   with the same name as a direct or virtual base class of the
739  //   class, a mem-initializer-id naming the member or base class and
740  //   composed of a single identifier refers to the class member. A
741  //   mem-initializer-id for the hidden base class may be specified
742  //   using a qualified name. ]
743  if (!SS.getScopeRep() && !TemplateTypeTy) {
744    // Look for a member, first.
745    FieldDecl *Member = 0;
746    DeclContext::lookup_result Result
747      = ClassDecl->lookup(MemberOrBase);
748    if (Result.first != Result.second)
749      Member = dyn_cast<FieldDecl>(*Result.first);
750
751    // FIXME: Handle members of an anonymous union.
752
753    if (Member)
754      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
755                                    RParenLoc);
756  }
757  // It didn't name a member, so see if it names a class.
758  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
759                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
760  if (!BaseTy)
761    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763
764  QualType BaseType = GetTypeFromParser(BaseTy);
765
766  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
767                              RParenLoc, ClassDecl);
768}
769
770Sema::MemInitResult
771Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
772                             unsigned NumArgs, SourceLocation IdLoc,
773                             SourceLocation RParenLoc) {
774  bool HasDependentArg = false;
775  for (unsigned i = 0; i < NumArgs; i++)
776    HasDependentArg |= Args[i]->isTypeDependent();
777
778  CXXConstructorDecl *C = 0;
779  QualType FieldType = Member->getType();
780  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
781    FieldType = Array->getElementType();
782  if (FieldType->isDependentType()) {
783    // Can't check init for dependent type.
784  } else if (FieldType->getAs<RecordType>()) {
785    if (!HasDependentArg)
786      C = PerformInitializationByConstructor(
787            FieldType, (Expr **)Args, NumArgs, IdLoc,
788            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
789  } else if (NumArgs != 1 && NumArgs != 0) {
790    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
791                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
792  } else if (!HasDependentArg) {
793    Expr *NewExp;
794    if (NumArgs == 0) {
795      if (FieldType->isReferenceType()) {
796        Diag(IdLoc, diag::err_null_intialized_reference_member)
797              << Member->getDeclName();
798        return Diag(Member->getLocation(), diag::note_declared_at);
799      }
800      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
801      NumArgs = 1;
802    }
803    else
804      NewExp = (Expr*)Args[0];
805    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
806      return true;
807    Args[0] = NewExp;
808  }
809  // FIXME: Perform direct initialization of the member.
810  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
811                                                  NumArgs, C, IdLoc, RParenLoc);
812}
813
814Sema::MemInitResult
815Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
816                           unsigned NumArgs, SourceLocation IdLoc,
817                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
818  bool HasDependentArg = false;
819  for (unsigned i = 0; i < NumArgs; i++)
820    HasDependentArg |= Args[i]->isTypeDependent();
821
822  if (!BaseType->isDependentType()) {
823    if (!BaseType->isRecordType())
824      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
825        << BaseType << SourceRange(IdLoc, RParenLoc);
826
827    // C++ [class.base.init]p2:
828    //   [...] Unless the mem-initializer-id names a nonstatic data
829    //   member of the constructor’s class or a direct or virtual base
830    //   of that class, the mem-initializer is ill-formed. A
831    //   mem-initializer-list can initialize a base class using any
832    //   name that denotes that base class type.
833
834    // First, check for a direct base class.
835    const CXXBaseSpecifier *DirectBaseSpec = 0;
836    for (CXXRecordDecl::base_class_const_iterator Base =
837         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
838      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
839          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
840        // We found a direct base of this type. That's what we're
841        // initializing.
842        DirectBaseSpec = &*Base;
843        break;
844      }
845    }
846
847    // Check for a virtual base class.
848    // FIXME: We might be able to short-circuit this if we know in advance that
849    // there are no virtual bases.
850    const CXXBaseSpecifier *VirtualBaseSpec = 0;
851    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
852      // We haven't found a base yet; search the class hierarchy for a
853      // virtual base class.
854      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
855                      /*DetectVirtual=*/false);
856      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
857        for (BasePaths::paths_iterator Path = Paths.begin();
858             Path != Paths.end(); ++Path) {
859          if (Path->back().Base->isVirtual()) {
860            VirtualBaseSpec = Path->back().Base;
861            break;
862          }
863        }
864      }
865    }
866
867    // C++ [base.class.init]p2:
868    //   If a mem-initializer-id is ambiguous because it designates both
869    //   a direct non-virtual base class and an inherited virtual base
870    //   class, the mem-initializer is ill-formed.
871    if (DirectBaseSpec && VirtualBaseSpec)
872      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
873        << BaseType << SourceRange(IdLoc, RParenLoc);
874    // C++ [base.class.init]p2:
875    // Unless the mem-initializer-id names a nonstatic data membeer of the
876    // constructor's class ot a direst or virtual base of that class, the
877    // mem-initializer is ill-formed.
878    if (!DirectBaseSpec && !VirtualBaseSpec)
879      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
880      << BaseType << ClassDecl->getNameAsCString()
881      << SourceRange(IdLoc, RParenLoc);
882  }
883
884  CXXConstructorDecl *C = 0;
885  if (!BaseType->isDependentType() && !HasDependentArg) {
886    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
887                                            Context.getCanonicalType(BaseType));
888    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
889                                           IdLoc, SourceRange(IdLoc, RParenLoc),
890                                           Name, IK_Direct);
891  }
892
893  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
894                                                  NumArgs, C, IdLoc, RParenLoc);
895}
896
897void
898Sema::setBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
899                              CXXBaseOrMemberInitializer **Initializers,
900                              unsigned NumInitializers,
901                              llvm::SmallVectorImpl<CXXBaseSpecifier *>& Bases,
902                              llvm::SmallVectorImpl<FieldDecl *>&Fields) {
903  // We need to build the initializer AST according to order of construction
904  // and not what user specified in the Initializers list.
905  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
906  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
907  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
908  bool HasDependentBaseInit = false;
909
910  for (unsigned i = 0; i < NumInitializers; i++) {
911    CXXBaseOrMemberInitializer *Member = Initializers[i];
912    if (Member->isBaseInitializer()) {
913      if (Member->getBaseClass()->isDependentType())
914        HasDependentBaseInit = true;
915      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
916    } else {
917      AllBaseFields[Member->getMember()] = Member;
918    }
919  }
920
921  if (HasDependentBaseInit) {
922    // FIXME. This does not preserve the ordering of the initializers.
923    // Try (with -Wreorder)
924    // template<class X> struct A {};
925    // template<class X> struct B : A<X> {
926    //   B() : x1(10), A<X>() {}
927    //   int x1;
928    // };
929    // B<int> x;
930    // On seeing one dependent type, we should essentially exit this routine
931    // while preserving user-declared initializer list. When this routine is
932    // called during instantiatiation process, this routine will rebuild the
933    // oderdered initializer list correctly.
934
935    // If we have a dependent base initialization, we can't determine the
936    // association between initializers and bases; just dump the known
937    // initializers into the list, and don't try to deal with other bases.
938    for (unsigned i = 0; i < NumInitializers; i++) {
939      CXXBaseOrMemberInitializer *Member = Initializers[i];
940      if (Member->isBaseInitializer())
941        AllToInit.push_back(Member);
942    }
943  } else {
944    // Push virtual bases before others.
945    for (CXXRecordDecl::base_class_iterator VBase =
946         ClassDecl->vbases_begin(),
947         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
948      if (VBase->getType()->isDependentType())
949        continue;
950      if (CXXBaseOrMemberInitializer *Value =
951          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>()))
952        AllToInit.push_back(Value);
953      else {
954        CXXRecordDecl *VBaseDecl =
955        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
956        assert(VBaseDecl && "setBaseOrMemberInitializers - VBaseDecl null");
957        if (!VBaseDecl->getDefaultConstructor(Context))
958          Bases.push_back(VBase);
959        CXXBaseOrMemberInitializer *Member =
960        new (Context) CXXBaseOrMemberInitializer(VBase->getType(), 0, 0,
961                                    VBaseDecl->getDefaultConstructor(Context),
962                                    SourceLocation(),
963                                    SourceLocation());
964        AllToInit.push_back(Member);
965      }
966    }
967
968    for (CXXRecordDecl::base_class_iterator Base =
969         ClassDecl->bases_begin(),
970         E = ClassDecl->bases_end(); Base != E; ++Base) {
971      // Virtuals are in the virtual base list and already constructed.
972      if (Base->isVirtual())
973        continue;
974      // Skip dependent types.
975      if (Base->getType()->isDependentType())
976        continue;
977      if (CXXBaseOrMemberInitializer *Value =
978          AllBaseFields.lookup(Base->getType()->getAs<RecordType>()))
979        AllToInit.push_back(Value);
980      else {
981        CXXRecordDecl *BaseDecl =
982        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
983        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
984        if (!BaseDecl->getDefaultConstructor(Context))
985          Bases.push_back(Base);
986        CXXBaseOrMemberInitializer *Member =
987        new (Context) CXXBaseOrMemberInitializer(Base->getType(), 0, 0,
988                                      BaseDecl->getDefaultConstructor(Context),
989                                      SourceLocation(),
990                                      SourceLocation());
991        AllToInit.push_back(Member);
992      }
993    }
994  }
995
996  // non-static data members.
997  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
998       E = ClassDecl->field_end(); Field != E; ++Field) {
999    if ((*Field)->isAnonymousStructOrUnion()) {
1000      if (const RecordType *FieldClassType =
1001          Field->getType()->getAs<RecordType>()) {
1002        CXXRecordDecl *FieldClassDecl
1003        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1004        for(RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1005            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1006          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1007            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1008            // set to the anonymous union data member used in the initializer
1009            // list.
1010            Value->setMember(*Field);
1011            Value->setAnonUnionMember(*FA);
1012            AllToInit.push_back(Value);
1013            break;
1014          }
1015        }
1016      }
1017      continue;
1018    }
1019    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1020      AllToInit.push_back(Value);
1021      continue;
1022    }
1023
1024    QualType FT = Context.getBaseElementType((*Field)->getType());
1025    if (const RecordType* RT = FT->getAs<RecordType>()) {
1026      CXXConstructorDecl *Ctor =
1027        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1028      if (!Ctor && !FT->isDependentType())
1029        Fields.push_back(*Field);
1030      CXXBaseOrMemberInitializer *Member =
1031      new (Context) CXXBaseOrMemberInitializer((*Field), 0, 0,
1032                                         Ctor,
1033                                         SourceLocation(),
1034                                         SourceLocation());
1035      AllToInit.push_back(Member);
1036      if (FT.isConstQualified() && (!Ctor || Ctor->isTrivial())) {
1037        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1038          << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1039        Diag((*Field)->getLocation(), diag::note_declared_at);
1040      }
1041    }
1042    else if (FT->isReferenceType()) {
1043      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1044        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName();
1045      Diag((*Field)->getLocation(), diag::note_declared_at);
1046    }
1047    else if (FT.isConstQualified()) {
1048      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1049        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1050      Diag((*Field)->getLocation(), diag::note_declared_at);
1051    }
1052  }
1053
1054  NumInitializers = AllToInit.size();
1055  if (NumInitializers > 0) {
1056    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1057    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1058      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1059
1060    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1061    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1062      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1063  }
1064}
1065
1066void
1067Sema::BuildBaseOrMemberInitializers(ASTContext &C,
1068                                 CXXConstructorDecl *Constructor,
1069                                 CXXBaseOrMemberInitializer **Initializers,
1070                                 unsigned NumInitializers
1071                                 ) {
1072  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
1073  llvm::SmallVector<FieldDecl *, 4>Members;
1074
1075  setBaseOrMemberInitializers(Constructor,
1076                              Initializers, NumInitializers, Bases, Members);
1077  for (unsigned int i = 0; i < Bases.size(); i++)
1078    Diag(Bases[i]->getSourceRange().getBegin(),
1079         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
1080  for (unsigned int i = 0; i < Members.size(); i++)
1081    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
1082          << 1 << Members[i]->getType();
1083}
1084
1085static void *GetKeyForTopLevelField(FieldDecl *Field) {
1086  // For anonymous unions, use the class declaration as the key.
1087  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1088    if (RT->getDecl()->isAnonymousStructOrUnion())
1089      return static_cast<void *>(RT->getDecl());
1090  }
1091  return static_cast<void *>(Field);
1092}
1093
1094static void *GetKeyForBase(QualType BaseType) {
1095  if (const RecordType *RT = BaseType->getAs<RecordType>())
1096    return (void *)RT;
1097
1098  assert(0 && "Unexpected base type!");
1099  return 0;
1100}
1101
1102static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1103                             bool MemberMaybeAnon = false) {
1104  // For fields injected into the class via declaration of an anonymous union,
1105  // use its anonymous union class declaration as the unique key.
1106  if (Member->isMemberInitializer()) {
1107    FieldDecl *Field = Member->getMember();
1108
1109    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
1110    // data member of the class. Data member used in the initializer list is
1111    // in AnonUnionMember field.
1112    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1113      Field = Member->getAnonUnionMember();
1114    if (Field->getDeclContext()->isRecord()) {
1115      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1116      if (RD->isAnonymousStructOrUnion())
1117        return static_cast<void *>(RD);
1118    }
1119    return static_cast<void *>(Field);
1120  }
1121
1122  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1123}
1124
1125void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1126                                SourceLocation ColonLoc,
1127                                MemInitTy **MemInits, unsigned NumMemInits) {
1128  if (!ConstructorDecl)
1129    return;
1130
1131  AdjustDeclIfTemplate(ConstructorDecl);
1132
1133  CXXConstructorDecl *Constructor
1134    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1135
1136  if (!Constructor) {
1137    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1138    return;
1139  }
1140
1141  if (!Constructor->isDependentContext()) {
1142    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1143    bool err = false;
1144    for (unsigned i = 0; i < NumMemInits; i++) {
1145      CXXBaseOrMemberInitializer *Member =
1146        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1147      void *KeyToMember = GetKeyForMember(Member);
1148      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1149      if (!PrevMember) {
1150        PrevMember = Member;
1151        continue;
1152      }
1153      if (FieldDecl *Field = Member->getMember())
1154        Diag(Member->getSourceLocation(),
1155             diag::error_multiple_mem_initialization)
1156        << Field->getNameAsString();
1157      else {
1158        Type *BaseClass = Member->getBaseClass();
1159        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1160        Diag(Member->getSourceLocation(),
1161             diag::error_multiple_base_initialization)
1162          << BaseClass->getDesugaredType(true);
1163      }
1164      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1165        << 0;
1166      err = true;
1167    }
1168
1169    if (err)
1170      return;
1171  }
1172
1173  BuildBaseOrMemberInitializers(Context, Constructor,
1174                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1175                      NumMemInits);
1176
1177  if (Constructor->isDependentContext())
1178    return;
1179  // Mark all constructors used in initialization of class's members
1180  // as referenced.
1181  // FIXME. We can do this while building the initializer list. But
1182  // MarkDeclarationReferenced is not accessible in ASTContext.
1183  for (CXXConstructorDecl::init_const_iterator B = Constructor->init_begin(),
1184       E = Constructor->init_end();
1185       B != E; ++B) {
1186    CXXBaseOrMemberInitializer *Member = (*B);
1187    if (!Member->isMemberInitializer())
1188      continue;
1189    FieldDecl *Field = Member->getMember();
1190    QualType FT = Context.getBaseElementType(Field->getType());
1191    if (FT->isDependentType())
1192      continue;
1193    if (const RecordType* RT = FT->getAs<RecordType>())
1194      if (CXXConstructorDecl *Ctor =
1195            cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context))
1196        MarkDeclarationReferenced(Ctor->getLocation(), Ctor);
1197  }
1198  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1199      Diagnostic::Ignored &&
1200      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1201      Diagnostic::Ignored)
1202    return;
1203
1204  // Also issue warning if order of ctor-initializer list does not match order
1205  // of 1) base class declarations and 2) order of non-static data members.
1206  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1207
1208  CXXRecordDecl *ClassDecl
1209    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1210  // Push virtual bases before others.
1211  for (CXXRecordDecl::base_class_iterator VBase =
1212       ClassDecl->vbases_begin(),
1213       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1214    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1215
1216  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1217       E = ClassDecl->bases_end(); Base != E; ++Base) {
1218    // Virtuals are alread in the virtual base list and are constructed
1219    // first.
1220    if (Base->isVirtual())
1221      continue;
1222    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1223  }
1224
1225  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1226       E = ClassDecl->field_end(); Field != E; ++Field)
1227    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1228
1229  int Last = AllBaseOrMembers.size();
1230  int curIndex = 0;
1231  CXXBaseOrMemberInitializer *PrevMember = 0;
1232  for (unsigned i = 0; i < NumMemInits; i++) {
1233    CXXBaseOrMemberInitializer *Member =
1234      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1235    void *MemberInCtorList = GetKeyForMember(Member, true);
1236
1237    for (; curIndex < Last; curIndex++)
1238      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1239        break;
1240    if (curIndex == Last) {
1241      assert(PrevMember && "Member not in member list?!");
1242      // Initializer as specified in ctor-initializer list is out of order.
1243      // Issue a warning diagnostic.
1244      if (PrevMember->isBaseInitializer()) {
1245        // Diagnostics is for an initialized base class.
1246        Type *BaseClass = PrevMember->getBaseClass();
1247        Diag(PrevMember->getSourceLocation(),
1248             diag::warn_base_initialized)
1249              << BaseClass->getDesugaredType(true);
1250      } else {
1251        FieldDecl *Field = PrevMember->getMember();
1252        Diag(PrevMember->getSourceLocation(),
1253             diag::warn_field_initialized)
1254          << Field->getNameAsString();
1255      }
1256      // Also the note!
1257      if (FieldDecl *Field = Member->getMember())
1258        Diag(Member->getSourceLocation(),
1259             diag::note_fieldorbase_initialized_here) << 0
1260          << Field->getNameAsString();
1261      else {
1262        Type *BaseClass = Member->getBaseClass();
1263        Diag(Member->getSourceLocation(),
1264             diag::note_fieldorbase_initialized_here) << 1
1265          << BaseClass->getDesugaredType(true);
1266      }
1267      for (curIndex = 0; curIndex < Last; curIndex++)
1268        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1269          break;
1270    }
1271    PrevMember = Member;
1272  }
1273}
1274
1275void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1276  if (!CDtorDecl)
1277    return;
1278
1279  AdjustDeclIfTemplate(CDtorDecl);
1280
1281  if (CXXConstructorDecl *Constructor
1282      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1283    BuildBaseOrMemberInitializers(Context,
1284                                     Constructor,
1285                                     (CXXBaseOrMemberInitializer **)0, 0);
1286}
1287
1288namespace {
1289  /// PureVirtualMethodCollector - traverses a class and its superclasses
1290  /// and determines if it has any pure virtual methods.
1291  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1292    ASTContext &Context;
1293
1294  public:
1295    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1296
1297  private:
1298    MethodList Methods;
1299
1300    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1301
1302  public:
1303    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1304      : Context(Ctx) {
1305
1306      MethodList List;
1307      Collect(RD, List);
1308
1309      // Copy the temporary list to methods, and make sure to ignore any
1310      // null entries.
1311      for (size_t i = 0, e = List.size(); i != e; ++i) {
1312        if (List[i])
1313          Methods.push_back(List[i]);
1314      }
1315    }
1316
1317    bool empty() const { return Methods.empty(); }
1318
1319    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1320    MethodList::const_iterator methods_end() { return Methods.end(); }
1321  };
1322
1323  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1324                                           MethodList& Methods) {
1325    // First, collect the pure virtual methods for the base classes.
1326    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1327         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1328      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1329        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1330        if (BaseDecl && BaseDecl->isAbstract())
1331          Collect(BaseDecl, Methods);
1332      }
1333    }
1334
1335    // Next, zero out any pure virtual methods that this class overrides.
1336    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1337
1338    MethodSetTy OverriddenMethods;
1339    size_t MethodsSize = Methods.size();
1340
1341    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1342         i != e; ++i) {
1343      // Traverse the record, looking for methods.
1344      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1345        // If the method is pure virtual, add it to the methods vector.
1346        if (MD->isPure()) {
1347          Methods.push_back(MD);
1348          continue;
1349        }
1350
1351        // Otherwise, record all the overridden methods in our set.
1352        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1353             E = MD->end_overridden_methods(); I != E; ++I) {
1354          // Keep track of the overridden methods.
1355          OverriddenMethods.insert(*I);
1356        }
1357      }
1358    }
1359
1360    // Now go through the methods and zero out all the ones we know are
1361    // overridden.
1362    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1363      if (OverriddenMethods.count(Methods[i]))
1364        Methods[i] = 0;
1365    }
1366
1367  }
1368}
1369
1370
1371bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1372                                  unsigned DiagID, AbstractDiagSelID SelID,
1373                                  const CXXRecordDecl *CurrentRD) {
1374  if (SelID == -1)
1375    return RequireNonAbstractType(Loc, T,
1376                                  PDiag(DiagID), CurrentRD);
1377  else
1378    return RequireNonAbstractType(Loc, T,
1379                                  PDiag(DiagID) << SelID, CurrentRD);
1380}
1381
1382bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1383                                  const PartialDiagnostic &PD,
1384                                  const CXXRecordDecl *CurrentRD) {
1385  if (!getLangOptions().CPlusPlus)
1386    return false;
1387
1388  if (const ArrayType *AT = Context.getAsArrayType(T))
1389    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1390                                  CurrentRD);
1391
1392  if (const PointerType *PT = T->getAs<PointerType>()) {
1393    // Find the innermost pointer type.
1394    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1395      PT = T;
1396
1397    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1398      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1399  }
1400
1401  const RecordType *RT = T->getAs<RecordType>();
1402  if (!RT)
1403    return false;
1404
1405  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1406  if (!RD)
1407    return false;
1408
1409  if (CurrentRD && CurrentRD != RD)
1410    return false;
1411
1412  if (!RD->isAbstract())
1413    return false;
1414
1415  Diag(Loc, PD) << RD->getDeclName();
1416
1417  // Check if we've already emitted the list of pure virtual functions for this
1418  // class.
1419  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1420    return true;
1421
1422  PureVirtualMethodCollector Collector(Context, RD);
1423
1424  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1425       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1426    const CXXMethodDecl *MD = *I;
1427
1428    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1429      MD->getDeclName();
1430  }
1431
1432  if (!PureVirtualClassDiagSet)
1433    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1434  PureVirtualClassDiagSet->insert(RD);
1435
1436  return true;
1437}
1438
1439namespace {
1440  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1441    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1442    Sema &SemaRef;
1443    CXXRecordDecl *AbstractClass;
1444
1445    bool VisitDeclContext(const DeclContext *DC) {
1446      bool Invalid = false;
1447
1448      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1449           E = DC->decls_end(); I != E; ++I)
1450        Invalid |= Visit(*I);
1451
1452      return Invalid;
1453    }
1454
1455  public:
1456    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1457      : SemaRef(SemaRef), AbstractClass(ac) {
1458        Visit(SemaRef.Context.getTranslationUnitDecl());
1459    }
1460
1461    bool VisitFunctionDecl(const FunctionDecl *FD) {
1462      if (FD->isThisDeclarationADefinition()) {
1463        // No need to do the check if we're in a definition, because it requires
1464        // that the return/param types are complete.
1465        // because that requires
1466        return VisitDeclContext(FD);
1467      }
1468
1469      // Check the return type.
1470      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1471      bool Invalid =
1472        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1473                                       diag::err_abstract_type_in_decl,
1474                                       Sema::AbstractReturnType,
1475                                       AbstractClass);
1476
1477      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1478           E = FD->param_end(); I != E; ++I) {
1479        const ParmVarDecl *VD = *I;
1480        Invalid |=
1481          SemaRef.RequireNonAbstractType(VD->getLocation(),
1482                                         VD->getOriginalType(),
1483                                         diag::err_abstract_type_in_decl,
1484                                         Sema::AbstractParamType,
1485                                         AbstractClass);
1486      }
1487
1488      return Invalid;
1489    }
1490
1491    bool VisitDecl(const Decl* D) {
1492      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1493        return VisitDeclContext(DC);
1494
1495      return false;
1496    }
1497  };
1498}
1499
1500void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1501                                             DeclPtrTy TagDecl,
1502                                             SourceLocation LBrac,
1503                                             SourceLocation RBrac) {
1504  if (!TagDecl)
1505    return;
1506
1507  AdjustDeclIfTemplate(TagDecl);
1508  ActOnFields(S, RLoc, TagDecl,
1509              (DeclPtrTy*)FieldCollector->getCurFields(),
1510              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1511
1512  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1513  if (!RD->isAbstract()) {
1514    // Collect all the pure virtual methods and see if this is an abstract
1515    // class after all.
1516    PureVirtualMethodCollector Collector(Context, RD);
1517    if (!Collector.empty())
1518      RD->setAbstract(true);
1519  }
1520
1521  if (RD->isAbstract())
1522    AbstractClassUsageDiagnoser(*this, RD);
1523
1524  if (!RD->isDependentType())
1525    AddImplicitlyDeclaredMembersToClass(RD);
1526}
1527
1528/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1529/// special functions, such as the default constructor, copy
1530/// constructor, or destructor, to the given C++ class (C++
1531/// [special]p1).  This routine can only be executed just before the
1532/// definition of the class is complete.
1533void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1534  CanQualType ClassType
1535    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1536
1537  // FIXME: Implicit declarations have exception specifications, which are
1538  // the union of the specifications of the implicitly called functions.
1539
1540  if (!ClassDecl->hasUserDeclaredConstructor()) {
1541    // C++ [class.ctor]p5:
1542    //   A default constructor for a class X is a constructor of class X
1543    //   that can be called without an argument. If there is no
1544    //   user-declared constructor for class X, a default constructor is
1545    //   implicitly declared. An implicitly-declared default constructor
1546    //   is an inline public member of its class.
1547    DeclarationName Name
1548      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1549    CXXConstructorDecl *DefaultCon =
1550      CXXConstructorDecl::Create(Context, ClassDecl,
1551                                 ClassDecl->getLocation(), Name,
1552                                 Context.getFunctionType(Context.VoidTy,
1553                                                         0, 0, false, 0),
1554                                 /*DInfo=*/0,
1555                                 /*isExplicit=*/false,
1556                                 /*isInline=*/true,
1557                                 /*isImplicitlyDeclared=*/true);
1558    DefaultCon->setAccess(AS_public);
1559    DefaultCon->setImplicit();
1560    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1561    ClassDecl->addDecl(DefaultCon);
1562  }
1563
1564  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1565    // C++ [class.copy]p4:
1566    //   If the class definition does not explicitly declare a copy
1567    //   constructor, one is declared implicitly.
1568
1569    // C++ [class.copy]p5:
1570    //   The implicitly-declared copy constructor for a class X will
1571    //   have the form
1572    //
1573    //       X::X(const X&)
1574    //
1575    //   if
1576    bool HasConstCopyConstructor = true;
1577
1578    //     -- each direct or virtual base class B of X has a copy
1579    //        constructor whose first parameter is of type const B& or
1580    //        const volatile B&, and
1581    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1582         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1583      const CXXRecordDecl *BaseClassDecl
1584        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1585      HasConstCopyConstructor
1586        = BaseClassDecl->hasConstCopyConstructor(Context);
1587    }
1588
1589    //     -- for all the nonstatic data members of X that are of a
1590    //        class type M (or array thereof), each such class type
1591    //        has a copy constructor whose first parameter is of type
1592    //        const M& or const volatile M&.
1593    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1594         HasConstCopyConstructor && Field != ClassDecl->field_end();
1595         ++Field) {
1596      QualType FieldType = (*Field)->getType();
1597      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1598        FieldType = Array->getElementType();
1599      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1600        const CXXRecordDecl *FieldClassDecl
1601          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1602        HasConstCopyConstructor
1603          = FieldClassDecl->hasConstCopyConstructor(Context);
1604      }
1605    }
1606
1607    //   Otherwise, the implicitly declared copy constructor will have
1608    //   the form
1609    //
1610    //       X::X(X&)
1611    QualType ArgType = ClassType;
1612    if (HasConstCopyConstructor)
1613      ArgType = ArgType.withConst();
1614    ArgType = Context.getLValueReferenceType(ArgType);
1615
1616    //   An implicitly-declared copy constructor is an inline public
1617    //   member of its class.
1618    DeclarationName Name
1619      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1620    CXXConstructorDecl *CopyConstructor
1621      = CXXConstructorDecl::Create(Context, ClassDecl,
1622                                   ClassDecl->getLocation(), Name,
1623                                   Context.getFunctionType(Context.VoidTy,
1624                                                           &ArgType, 1,
1625                                                           false, 0),
1626                                   /*DInfo=*/0,
1627                                   /*isExplicit=*/false,
1628                                   /*isInline=*/true,
1629                                   /*isImplicitlyDeclared=*/true);
1630    CopyConstructor->setAccess(AS_public);
1631    CopyConstructor->setImplicit();
1632    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1633
1634    // Add the parameter to the constructor.
1635    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1636                                                 ClassDecl->getLocation(),
1637                                                 /*IdentifierInfo=*/0,
1638                                                 ArgType, /*DInfo=*/0,
1639                                                 VarDecl::None, 0);
1640    CopyConstructor->setParams(Context, &FromParam, 1);
1641    ClassDecl->addDecl(CopyConstructor);
1642  }
1643
1644  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1645    // Note: The following rules are largely analoguous to the copy
1646    // constructor rules. Note that virtual bases are not taken into account
1647    // for determining the argument type of the operator. Note also that
1648    // operators taking an object instead of a reference are allowed.
1649    //
1650    // C++ [class.copy]p10:
1651    //   If the class definition does not explicitly declare a copy
1652    //   assignment operator, one is declared implicitly.
1653    //   The implicitly-defined copy assignment operator for a class X
1654    //   will have the form
1655    //
1656    //       X& X::operator=(const X&)
1657    //
1658    //   if
1659    bool HasConstCopyAssignment = true;
1660
1661    //       -- each direct base class B of X has a copy assignment operator
1662    //          whose parameter is of type const B&, const volatile B& or B,
1663    //          and
1664    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1665         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1666      const CXXRecordDecl *BaseClassDecl
1667        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1668      const CXXMethodDecl *MD = 0;
1669      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1670                                                                     MD);
1671    }
1672
1673    //       -- for all the nonstatic data members of X that are of a class
1674    //          type M (or array thereof), each such class type has a copy
1675    //          assignment operator whose parameter is of type const M&,
1676    //          const volatile M& or M.
1677    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1678         HasConstCopyAssignment && Field != ClassDecl->field_end();
1679         ++Field) {
1680      QualType FieldType = (*Field)->getType();
1681      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1682        FieldType = Array->getElementType();
1683      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1684        const CXXRecordDecl *FieldClassDecl
1685          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1686        const CXXMethodDecl *MD = 0;
1687        HasConstCopyAssignment
1688          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1689      }
1690    }
1691
1692    //   Otherwise, the implicitly declared copy assignment operator will
1693    //   have the form
1694    //
1695    //       X& X::operator=(X&)
1696    QualType ArgType = ClassType;
1697    QualType RetType = Context.getLValueReferenceType(ArgType);
1698    if (HasConstCopyAssignment)
1699      ArgType = ArgType.withConst();
1700    ArgType = Context.getLValueReferenceType(ArgType);
1701
1702    //   An implicitly-declared copy assignment operator is an inline public
1703    //   member of its class.
1704    DeclarationName Name =
1705      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1706    CXXMethodDecl *CopyAssignment =
1707      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1708                            Context.getFunctionType(RetType, &ArgType, 1,
1709                                                    false, 0),
1710                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1711    CopyAssignment->setAccess(AS_public);
1712    CopyAssignment->setImplicit();
1713    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1714    CopyAssignment->setCopyAssignment(true);
1715
1716    // Add the parameter to the operator.
1717    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1718                                                 ClassDecl->getLocation(),
1719                                                 /*IdentifierInfo=*/0,
1720                                                 ArgType, /*DInfo=*/0,
1721                                                 VarDecl::None, 0);
1722    CopyAssignment->setParams(Context, &FromParam, 1);
1723
1724    // Don't call addedAssignmentOperator. There is no way to distinguish an
1725    // implicit from an explicit assignment operator.
1726    ClassDecl->addDecl(CopyAssignment);
1727  }
1728
1729  if (!ClassDecl->hasUserDeclaredDestructor()) {
1730    // C++ [class.dtor]p2:
1731    //   If a class has no user-declared destructor, a destructor is
1732    //   declared implicitly. An implicitly-declared destructor is an
1733    //   inline public member of its class.
1734    DeclarationName Name
1735      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1736    CXXDestructorDecl *Destructor
1737      = CXXDestructorDecl::Create(Context, ClassDecl,
1738                                  ClassDecl->getLocation(), Name,
1739                                  Context.getFunctionType(Context.VoidTy,
1740                                                          0, 0, false, 0),
1741                                  /*isInline=*/true,
1742                                  /*isImplicitlyDeclared=*/true);
1743    Destructor->setAccess(AS_public);
1744    Destructor->setImplicit();
1745    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1746    ClassDecl->addDecl(Destructor);
1747  }
1748}
1749
1750void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1751  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1752  if (!Template)
1753    return;
1754
1755  TemplateParameterList *Params = Template->getTemplateParameters();
1756  for (TemplateParameterList::iterator Param = Params->begin(),
1757                                    ParamEnd = Params->end();
1758       Param != ParamEnd; ++Param) {
1759    NamedDecl *Named = cast<NamedDecl>(*Param);
1760    if (Named->getDeclName()) {
1761      S->AddDecl(DeclPtrTy::make(Named));
1762      IdResolver.AddDecl(Named);
1763    }
1764  }
1765}
1766
1767/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1768/// parsing a top-level (non-nested) C++ class, and we are now
1769/// parsing those parts of the given Method declaration that could
1770/// not be parsed earlier (C++ [class.mem]p2), such as default
1771/// arguments. This action should enter the scope of the given
1772/// Method declaration as if we had just parsed the qualified method
1773/// name. However, it should not bring the parameters into scope;
1774/// that will be performed by ActOnDelayedCXXMethodParameter.
1775void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1776  if (!MethodD)
1777    return;
1778
1779  AdjustDeclIfTemplate(MethodD);
1780
1781  CXXScopeSpec SS;
1782  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1783  QualType ClassTy
1784    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1785  SS.setScopeRep(
1786    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1787  ActOnCXXEnterDeclaratorScope(S, SS);
1788}
1789
1790/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1791/// C++ method declaration. We're (re-)introducing the given
1792/// function parameter into scope for use in parsing later parts of
1793/// the method declaration. For example, we could see an
1794/// ActOnParamDefaultArgument event for this parameter.
1795void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1796  if (!ParamD)
1797    return;
1798
1799  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1800
1801  // If this parameter has an unparsed default argument, clear it out
1802  // to make way for the parsed default argument.
1803  if (Param->hasUnparsedDefaultArg())
1804    Param->setDefaultArg(0);
1805
1806  S->AddDecl(DeclPtrTy::make(Param));
1807  if (Param->getDeclName())
1808    IdResolver.AddDecl(Param);
1809}
1810
1811/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1812/// processing the delayed method declaration for Method. The method
1813/// declaration is now considered finished. There may be a separate
1814/// ActOnStartOfFunctionDef action later (not necessarily
1815/// immediately!) for this method, if it was also defined inside the
1816/// class body.
1817void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1818  if (!MethodD)
1819    return;
1820
1821  AdjustDeclIfTemplate(MethodD);
1822
1823  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1824  CXXScopeSpec SS;
1825  QualType ClassTy
1826    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1827  SS.setScopeRep(
1828    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1829  ActOnCXXExitDeclaratorScope(S, SS);
1830
1831  // Now that we have our default arguments, check the constructor
1832  // again. It could produce additional diagnostics or affect whether
1833  // the class has implicitly-declared destructors, among other
1834  // things.
1835  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1836    CheckConstructor(Constructor);
1837
1838  // Check the default arguments, which we may have added.
1839  if (!Method->isInvalidDecl())
1840    CheckCXXDefaultArguments(Method);
1841}
1842
1843/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1844/// the well-formedness of the constructor declarator @p D with type @p
1845/// R. If there are any errors in the declarator, this routine will
1846/// emit diagnostics and set the invalid bit to true.  In any case, the type
1847/// will be updated to reflect a well-formed type for the constructor and
1848/// returned.
1849QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1850                                          FunctionDecl::StorageClass &SC) {
1851  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1852
1853  // C++ [class.ctor]p3:
1854  //   A constructor shall not be virtual (10.3) or static (9.4). A
1855  //   constructor can be invoked for a const, volatile or const
1856  //   volatile object. A constructor shall not be declared const,
1857  //   volatile, or const volatile (9.3.2).
1858  if (isVirtual) {
1859    if (!D.isInvalidType())
1860      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1861        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1862        << SourceRange(D.getIdentifierLoc());
1863    D.setInvalidType();
1864  }
1865  if (SC == FunctionDecl::Static) {
1866    if (!D.isInvalidType())
1867      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1868        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1869        << SourceRange(D.getIdentifierLoc());
1870    D.setInvalidType();
1871    SC = FunctionDecl::None;
1872  }
1873
1874  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1875  if (FTI.TypeQuals != 0) {
1876    if (FTI.TypeQuals & QualType::Const)
1877      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1878        << "const" << SourceRange(D.getIdentifierLoc());
1879    if (FTI.TypeQuals & QualType::Volatile)
1880      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1881        << "volatile" << SourceRange(D.getIdentifierLoc());
1882    if (FTI.TypeQuals & QualType::Restrict)
1883      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1884        << "restrict" << SourceRange(D.getIdentifierLoc());
1885  }
1886
1887  // Rebuild the function type "R" without any type qualifiers (in
1888  // case any of the errors above fired) and with "void" as the
1889  // return type, since constructors don't have return types. We
1890  // *always* have to do this, because GetTypeForDeclarator will
1891  // put in a result type of "int" when none was specified.
1892  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1893  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1894                                 Proto->getNumArgs(),
1895                                 Proto->isVariadic(), 0);
1896}
1897
1898/// CheckConstructor - Checks a fully-formed constructor for
1899/// well-formedness, issuing any diagnostics required. Returns true if
1900/// the constructor declarator is invalid.
1901void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1902  CXXRecordDecl *ClassDecl
1903    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1904  if (!ClassDecl)
1905    return Constructor->setInvalidDecl();
1906
1907  // C++ [class.copy]p3:
1908  //   A declaration of a constructor for a class X is ill-formed if
1909  //   its first parameter is of type (optionally cv-qualified) X and
1910  //   either there are no other parameters or else all other
1911  //   parameters have default arguments.
1912  if (!Constructor->isInvalidDecl() &&
1913      ((Constructor->getNumParams() == 1) ||
1914       (Constructor->getNumParams() > 1 &&
1915        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1916    QualType ParamType = Constructor->getParamDecl(0)->getType();
1917    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1918    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1919      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1920      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1921        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1922      Constructor->setInvalidDecl();
1923    }
1924  }
1925
1926  // Notify the class that we've added a constructor.
1927  ClassDecl->addedConstructor(Context, Constructor);
1928}
1929
1930static inline bool
1931FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1932  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1933          FTI.ArgInfo[0].Param &&
1934          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1935}
1936
1937/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1938/// the well-formednes of the destructor declarator @p D with type @p
1939/// R. If there are any errors in the declarator, this routine will
1940/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1941/// will be updated to reflect a well-formed type for the destructor and
1942/// returned.
1943QualType Sema::CheckDestructorDeclarator(Declarator &D,
1944                                         FunctionDecl::StorageClass& SC) {
1945  // C++ [class.dtor]p1:
1946  //   [...] A typedef-name that names a class is a class-name
1947  //   (7.1.3); however, a typedef-name that names a class shall not
1948  //   be used as the identifier in the declarator for a destructor
1949  //   declaration.
1950  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1951  if (isa<TypedefType>(DeclaratorType)) {
1952    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1953      << DeclaratorType;
1954    D.setInvalidType();
1955  }
1956
1957  // C++ [class.dtor]p2:
1958  //   A destructor is used to destroy objects of its class type. A
1959  //   destructor takes no parameters, and no return type can be
1960  //   specified for it (not even void). The address of a destructor
1961  //   shall not be taken. A destructor shall not be static. A
1962  //   destructor can be invoked for a const, volatile or const
1963  //   volatile object. A destructor shall not be declared const,
1964  //   volatile or const volatile (9.3.2).
1965  if (SC == FunctionDecl::Static) {
1966    if (!D.isInvalidType())
1967      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1968        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1969        << SourceRange(D.getIdentifierLoc());
1970    SC = FunctionDecl::None;
1971    D.setInvalidType();
1972  }
1973  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1974    // Destructors don't have return types, but the parser will
1975    // happily parse something like:
1976    //
1977    //   class X {
1978    //     float ~X();
1979    //   };
1980    //
1981    // The return type will be eliminated later.
1982    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1983      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1984      << SourceRange(D.getIdentifierLoc());
1985  }
1986
1987  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1988  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1989    if (FTI.TypeQuals & QualType::Const)
1990      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1991        << "const" << SourceRange(D.getIdentifierLoc());
1992    if (FTI.TypeQuals & QualType::Volatile)
1993      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1994        << "volatile" << SourceRange(D.getIdentifierLoc());
1995    if (FTI.TypeQuals & QualType::Restrict)
1996      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1997        << "restrict" << SourceRange(D.getIdentifierLoc());
1998    D.setInvalidType();
1999  }
2000
2001  // Make sure we don't have any parameters.
2002  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2003    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2004
2005    // Delete the parameters.
2006    FTI.freeArgs();
2007    D.setInvalidType();
2008  }
2009
2010  // Make sure the destructor isn't variadic.
2011  if (FTI.isVariadic) {
2012    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2013    D.setInvalidType();
2014  }
2015
2016  // Rebuild the function type "R" without any type qualifiers or
2017  // parameters (in case any of the errors above fired) and with
2018  // "void" as the return type, since destructors don't have return
2019  // types. We *always* have to do this, because GetTypeForDeclarator
2020  // will put in a result type of "int" when none was specified.
2021  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2022}
2023
2024/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2025/// well-formednes of the conversion function declarator @p D with
2026/// type @p R. If there are any errors in the declarator, this routine
2027/// will emit diagnostics and return true. Otherwise, it will return
2028/// false. Either way, the type @p R will be updated to reflect a
2029/// well-formed type for the conversion operator.
2030void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2031                                     FunctionDecl::StorageClass& SC) {
2032  // C++ [class.conv.fct]p1:
2033  //   Neither parameter types nor return type can be specified. The
2034  //   type of a conversion function (8.3.5) is "function taking no
2035  //   parameter returning conversion-type-id."
2036  if (SC == FunctionDecl::Static) {
2037    if (!D.isInvalidType())
2038      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2039        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2040        << SourceRange(D.getIdentifierLoc());
2041    D.setInvalidType();
2042    SC = FunctionDecl::None;
2043  }
2044  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2045    // Conversion functions don't have return types, but the parser will
2046    // happily parse something like:
2047    //
2048    //   class X {
2049    //     float operator bool();
2050    //   };
2051    //
2052    // The return type will be changed later anyway.
2053    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2054      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2055      << SourceRange(D.getIdentifierLoc());
2056  }
2057
2058  // Make sure we don't have any parameters.
2059  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
2060    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2061
2062    // Delete the parameters.
2063    D.getTypeObject(0).Fun.freeArgs();
2064    D.setInvalidType();
2065  }
2066
2067  // Make sure the conversion function isn't variadic.
2068  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
2069    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2070    D.setInvalidType();
2071  }
2072
2073  // C++ [class.conv.fct]p4:
2074  //   The conversion-type-id shall not represent a function type nor
2075  //   an array type.
2076  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
2077  if (ConvType->isArrayType()) {
2078    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2079    ConvType = Context.getPointerType(ConvType);
2080    D.setInvalidType();
2081  } else if (ConvType->isFunctionType()) {
2082    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2083    ConvType = Context.getPointerType(ConvType);
2084    D.setInvalidType();
2085  }
2086
2087  // Rebuild the function type "R" without any parameters (in case any
2088  // of the errors above fired) and with the conversion type as the
2089  // return type.
2090  R = Context.getFunctionType(ConvType, 0, 0, false,
2091                              R->getAsFunctionProtoType()->getTypeQuals());
2092
2093  // C++0x explicit conversion operators.
2094  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2095    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2096         diag::warn_explicit_conversion_functions)
2097      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2098}
2099
2100/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2101/// the declaration of the given C++ conversion function. This routine
2102/// is responsible for recording the conversion function in the C++
2103/// class, if possible.
2104Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2105  assert(Conversion && "Expected to receive a conversion function declaration");
2106
2107  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2108
2109  // Make sure we aren't redeclaring the conversion function.
2110  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2111
2112  // C++ [class.conv.fct]p1:
2113  //   [...] A conversion function is never used to convert a
2114  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2115  //   same object type (or a reference to it), to a (possibly
2116  //   cv-qualified) base class of that type (or a reference to it),
2117  //   or to (possibly cv-qualified) void.
2118  // FIXME: Suppress this warning if the conversion function ends up being a
2119  // virtual function that overrides a virtual function in a base class.
2120  QualType ClassType
2121    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2122  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2123    ConvType = ConvTypeRef->getPointeeType();
2124  if (ConvType->isRecordType()) {
2125    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2126    if (ConvType == ClassType)
2127      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2128        << ClassType;
2129    else if (IsDerivedFrom(ClassType, ConvType))
2130      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2131        <<  ClassType << ConvType;
2132  } else if (ConvType->isVoidType()) {
2133    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2134      << ClassType << ConvType;
2135  }
2136
2137  if (Conversion->getPreviousDeclaration()) {
2138    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2139    if (FunctionTemplateDecl *ConversionTemplate
2140          = Conversion->getDescribedFunctionTemplate())
2141      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2142    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2143    for (OverloadedFunctionDecl::function_iterator
2144           Conv = Conversions->function_begin(),
2145           ConvEnd = Conversions->function_end();
2146         Conv != ConvEnd; ++Conv) {
2147      if (*Conv == ExpectedPrevDecl) {
2148        *Conv = Conversion;
2149        return DeclPtrTy::make(Conversion);
2150      }
2151    }
2152    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2153  } else if (FunctionTemplateDecl *ConversionTemplate
2154               = Conversion->getDescribedFunctionTemplate())
2155    ClassDecl->addConversionFunction(Context, ConversionTemplate);
2156  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2157    ClassDecl->addConversionFunction(Context, Conversion);
2158
2159  return DeclPtrTy::make(Conversion);
2160}
2161
2162//===----------------------------------------------------------------------===//
2163// Namespace Handling
2164//===----------------------------------------------------------------------===//
2165
2166/// ActOnStartNamespaceDef - This is called at the start of a namespace
2167/// definition.
2168Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2169                                             SourceLocation IdentLoc,
2170                                             IdentifierInfo *II,
2171                                             SourceLocation LBrace) {
2172  NamespaceDecl *Namespc =
2173      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2174  Namespc->setLBracLoc(LBrace);
2175
2176  Scope *DeclRegionScope = NamespcScope->getParent();
2177
2178  if (II) {
2179    // C++ [namespace.def]p2:
2180    // The identifier in an original-namespace-definition shall not have been
2181    // previously defined in the declarative region in which the
2182    // original-namespace-definition appears. The identifier in an
2183    // original-namespace-definition is the name of the namespace. Subsequently
2184    // in that declarative region, it is treated as an original-namespace-name.
2185
2186    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
2187                                     true);
2188
2189    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2190      // This is an extended namespace definition.
2191      // Attach this namespace decl to the chain of extended namespace
2192      // definitions.
2193      OrigNS->setNextNamespace(Namespc);
2194      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2195
2196      // Remove the previous declaration from the scope.
2197      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2198        IdResolver.RemoveDecl(OrigNS);
2199        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2200      }
2201    } else if (PrevDecl) {
2202      // This is an invalid name redefinition.
2203      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2204       << Namespc->getDeclName();
2205      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2206      Namespc->setInvalidDecl();
2207      // Continue on to push Namespc as current DeclContext and return it.
2208    }
2209
2210    PushOnScopeChains(Namespc, DeclRegionScope);
2211  } else {
2212    // FIXME: Handle anonymous namespaces
2213  }
2214
2215  // Although we could have an invalid decl (i.e. the namespace name is a
2216  // redefinition), push it as current DeclContext and try to continue parsing.
2217  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2218  // for the namespace has the declarations that showed up in that particular
2219  // namespace definition.
2220  PushDeclContext(NamespcScope, Namespc);
2221  return DeclPtrTy::make(Namespc);
2222}
2223
2224/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2225/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2226void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2227  Decl *Dcl = D.getAs<Decl>();
2228  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2229  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2230  Namespc->setRBracLoc(RBrace);
2231  PopDeclContext();
2232}
2233
2234Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2235                                          SourceLocation UsingLoc,
2236                                          SourceLocation NamespcLoc,
2237                                          const CXXScopeSpec &SS,
2238                                          SourceLocation IdentLoc,
2239                                          IdentifierInfo *NamespcName,
2240                                          AttributeList *AttrList) {
2241  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2242  assert(NamespcName && "Invalid NamespcName.");
2243  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2244  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2245
2246  UsingDirectiveDecl *UDir = 0;
2247
2248  // Lookup namespace name.
2249  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2250                                    LookupNamespaceName, false);
2251  if (R.isAmbiguous()) {
2252    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2253    return DeclPtrTy();
2254  }
2255  if (NamedDecl *NS = R) {
2256    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2257    // C++ [namespace.udir]p1:
2258    //   A using-directive specifies that the names in the nominated
2259    //   namespace can be used in the scope in which the
2260    //   using-directive appears after the using-directive. During
2261    //   unqualified name lookup (3.4.1), the names appear as if they
2262    //   were declared in the nearest enclosing namespace which
2263    //   contains both the using-directive and the nominated
2264    //   namespace. [Note: in this context, "contains" means "contains
2265    //   directly or indirectly". ]
2266
2267    // Find enclosing context containing both using-directive and
2268    // nominated namespace.
2269    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2270    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2271      CommonAncestor = CommonAncestor->getParent();
2272
2273    UDir = UsingDirectiveDecl::Create(Context,
2274                                      CurContext, UsingLoc,
2275                                      NamespcLoc,
2276                                      SS.getRange(),
2277                                      (NestedNameSpecifier *)SS.getScopeRep(),
2278                                      IdentLoc,
2279                                      cast<NamespaceDecl>(NS),
2280                                      CommonAncestor);
2281    PushUsingDirective(S, UDir);
2282  } else {
2283    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2284  }
2285
2286  // FIXME: We ignore attributes for now.
2287  delete AttrList;
2288  return DeclPtrTy::make(UDir);
2289}
2290
2291void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2292  // If scope has associated entity, then using directive is at namespace
2293  // or translation unit scope. We add UsingDirectiveDecls, into
2294  // it's lookup structure.
2295  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2296    Ctx->addDecl(UDir);
2297  else
2298    // Otherwise it is block-sope. using-directives will affect lookup
2299    // only to the end of scope.
2300    S->PushUsingDirective(DeclPtrTy::make(UDir));
2301}
2302
2303
2304Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2305                                            AccessSpecifier AS,
2306                                            SourceLocation UsingLoc,
2307                                            const CXXScopeSpec &SS,
2308                                            SourceLocation IdentLoc,
2309                                            IdentifierInfo *TargetName,
2310                                            OverloadedOperatorKind Op,
2311                                            AttributeList *AttrList,
2312                                            bool IsTypeName) {
2313  assert((TargetName || Op) && "Invalid TargetName.");
2314  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2315
2316  DeclarationName Name;
2317  if (TargetName)
2318    Name = TargetName;
2319  else
2320    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2321
2322  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2323                                        Name, AttrList, IsTypeName);
2324  if (UD) {
2325    PushOnScopeChains(UD, S);
2326    UD->setAccess(AS);
2327  }
2328
2329  return DeclPtrTy::make(UD);
2330}
2331
2332NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2333                                       const CXXScopeSpec &SS,
2334                                       SourceLocation IdentLoc,
2335                                       DeclarationName Name,
2336                                       AttributeList *AttrList,
2337                                       bool IsTypeName) {
2338  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2339  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2340
2341  // FIXME: We ignore attributes for now.
2342  delete AttrList;
2343
2344  if (SS.isEmpty()) {
2345    Diag(IdentLoc, diag::err_using_requires_qualname);
2346    return 0;
2347  }
2348
2349  NestedNameSpecifier *NNS =
2350    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2351
2352  if (isUnknownSpecialization(SS)) {
2353    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2354                                       SS.getRange(), NNS,
2355                                       IdentLoc, Name, IsTypeName);
2356  }
2357
2358  DeclContext *LookupContext = 0;
2359
2360  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2361    // C++0x N2914 [namespace.udecl]p3:
2362    // A using-declaration used as a member-declaration shall refer to a member
2363    // of a base class of the class being defined, shall refer to a member of an
2364    // anonymous union that is a member of a base class of the class being
2365    // defined, or shall refer to an enumerator for an enumeration type that is
2366    // a member of a base class of the class being defined.
2367    const Type *Ty = NNS->getAsType();
2368    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2369      Diag(SS.getRange().getBegin(),
2370           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2371        << NNS << RD->getDeclName();
2372      return 0;
2373    }
2374
2375    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2376    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2377  } else {
2378    // C++0x N2914 [namespace.udecl]p8:
2379    // A using-declaration for a class member shall be a member-declaration.
2380    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2381      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2382        << SS.getRange();
2383      return 0;
2384    }
2385
2386    // C++0x N2914 [namespace.udecl]p9:
2387    // In a using-declaration, a prefix :: refers to the global namespace.
2388    if (NNS->getKind() == NestedNameSpecifier::Global)
2389      LookupContext = Context.getTranslationUnitDecl();
2390    else
2391      LookupContext = NNS->getAsNamespace();
2392  }
2393
2394
2395  // Lookup target name.
2396  LookupResult R = LookupQualifiedName(LookupContext,
2397                                       Name, LookupOrdinaryName);
2398
2399  if (!R) {
2400    DiagnoseMissingMember(IdentLoc, Name, NNS, SS.getRange());
2401    return 0;
2402  }
2403
2404  NamedDecl *ND = R.getAsDecl();
2405
2406  if (IsTypeName && !isa<TypeDecl>(ND)) {
2407    Diag(IdentLoc, diag::err_using_typename_non_type);
2408    return 0;
2409  }
2410
2411  // C++0x N2914 [namespace.udecl]p6:
2412  // A using-declaration shall not name a namespace.
2413  if (isa<NamespaceDecl>(ND)) {
2414    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2415      << SS.getRange();
2416    return 0;
2417  }
2418
2419  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2420                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2421}
2422
2423/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2424/// is a namespace alias, returns the namespace it points to.
2425static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2426  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2427    return AD->getNamespace();
2428  return dyn_cast_or_null<NamespaceDecl>(D);
2429}
2430
2431Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2432                                             SourceLocation NamespaceLoc,
2433                                             SourceLocation AliasLoc,
2434                                             IdentifierInfo *Alias,
2435                                             const CXXScopeSpec &SS,
2436                                             SourceLocation IdentLoc,
2437                                             IdentifierInfo *Ident) {
2438
2439  // Lookup the namespace name.
2440  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2441
2442  // Check if we have a previous declaration with the same name.
2443  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2444    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2445      // We already have an alias with the same name that points to the same
2446      // namespace, so don't create a new one.
2447      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2448        return DeclPtrTy();
2449    }
2450
2451    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2452      diag::err_redefinition_different_kind;
2453    Diag(AliasLoc, DiagID) << Alias;
2454    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2455    return DeclPtrTy();
2456  }
2457
2458  if (R.isAmbiguous()) {
2459    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2460    return DeclPtrTy();
2461  }
2462
2463  if (!R) {
2464    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2465    return DeclPtrTy();
2466  }
2467
2468  NamespaceAliasDecl *AliasDecl =
2469    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2470                               Alias, SS.getRange(),
2471                               (NestedNameSpecifier *)SS.getScopeRep(),
2472                               IdentLoc, R);
2473
2474  CurContext->addDecl(AliasDecl);
2475  return DeclPtrTy::make(AliasDecl);
2476}
2477
2478void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2479                                            CXXConstructorDecl *Constructor) {
2480  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2481          !Constructor->isUsed()) &&
2482    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2483
2484  CXXRecordDecl *ClassDecl
2485    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2486  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2487  // Before the implicitly-declared default constructor for a class is
2488  // implicitly defined, all the implicitly-declared default constructors
2489  // for its base class and its non-static data members shall have been
2490  // implicitly defined.
2491  bool err = false;
2492  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2493       E = ClassDecl->bases_end(); Base != E; ++Base) {
2494    CXXRecordDecl *BaseClassDecl
2495      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2496    if (!BaseClassDecl->hasTrivialConstructor()) {
2497      if (CXXConstructorDecl *BaseCtor =
2498            BaseClassDecl->getDefaultConstructor(Context))
2499        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2500      else {
2501        Diag(CurrentLocation, diag::err_defining_default_ctor)
2502          << Context.getTagDeclType(ClassDecl) << 1
2503          << Context.getTagDeclType(BaseClassDecl);
2504        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2505              << Context.getTagDeclType(BaseClassDecl);
2506        err = true;
2507      }
2508    }
2509  }
2510  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2511       E = ClassDecl->field_end(); Field != E; ++Field) {
2512    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2513    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2514      FieldType = Array->getElementType();
2515    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2516      CXXRecordDecl *FieldClassDecl
2517        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2518      if (!FieldClassDecl->hasTrivialConstructor()) {
2519        if (CXXConstructorDecl *FieldCtor =
2520            FieldClassDecl->getDefaultConstructor(Context))
2521          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2522        else {
2523          Diag(CurrentLocation, diag::err_defining_default_ctor)
2524          << Context.getTagDeclType(ClassDecl) << 0 <<
2525              Context.getTagDeclType(FieldClassDecl);
2526          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2527          << Context.getTagDeclType(FieldClassDecl);
2528          err = true;
2529        }
2530      }
2531    } else if (FieldType->isReferenceType()) {
2532      Diag(CurrentLocation, diag::err_unintialized_member)
2533        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2534      Diag((*Field)->getLocation(), diag::note_declared_at);
2535      err = true;
2536    } else if (FieldType.isConstQualified()) {
2537      Diag(CurrentLocation, diag::err_unintialized_member)
2538        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2539       Diag((*Field)->getLocation(), diag::note_declared_at);
2540      err = true;
2541    }
2542  }
2543  if (!err)
2544    Constructor->setUsed();
2545  else
2546    Constructor->setInvalidDecl();
2547}
2548
2549void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2550                                            CXXDestructorDecl *Destructor) {
2551  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2552         "DefineImplicitDestructor - call it for implicit default dtor");
2553
2554  CXXRecordDecl *ClassDecl
2555  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2556  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2557  // C++ [class.dtor] p5
2558  // Before the implicitly-declared default destructor for a class is
2559  // implicitly defined, all the implicitly-declared default destructors
2560  // for its base class and its non-static data members shall have been
2561  // implicitly defined.
2562  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2563       E = ClassDecl->bases_end(); Base != E; ++Base) {
2564    CXXRecordDecl *BaseClassDecl
2565      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2566    if (!BaseClassDecl->hasTrivialDestructor()) {
2567      if (CXXDestructorDecl *BaseDtor =
2568          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2569        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2570      else
2571        assert(false &&
2572               "DefineImplicitDestructor - missing dtor in a base class");
2573    }
2574  }
2575
2576  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2577       E = ClassDecl->field_end(); Field != E; ++Field) {
2578    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2579    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2580      FieldType = Array->getElementType();
2581    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2582      CXXRecordDecl *FieldClassDecl
2583        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2584      if (!FieldClassDecl->hasTrivialDestructor()) {
2585        if (CXXDestructorDecl *FieldDtor =
2586            const_cast<CXXDestructorDecl*>(
2587                                        FieldClassDecl->getDestructor(Context)))
2588          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2589        else
2590          assert(false &&
2591          "DefineImplicitDestructor - missing dtor in class of a data member");
2592      }
2593    }
2594  }
2595  Destructor->setUsed();
2596}
2597
2598void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2599                                          CXXMethodDecl *MethodDecl) {
2600  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2601          MethodDecl->getOverloadedOperator() == OO_Equal &&
2602          !MethodDecl->isUsed()) &&
2603         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2604
2605  CXXRecordDecl *ClassDecl
2606    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2607
2608  // C++[class.copy] p12
2609  // Before the implicitly-declared copy assignment operator for a class is
2610  // implicitly defined, all implicitly-declared copy assignment operators
2611  // for its direct base classes and its nonstatic data members shall have
2612  // been implicitly defined.
2613  bool err = false;
2614  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2615       E = ClassDecl->bases_end(); Base != E; ++Base) {
2616    CXXRecordDecl *BaseClassDecl
2617      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2618    if (CXXMethodDecl *BaseAssignOpMethod =
2619          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2620      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2621  }
2622  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2623       E = ClassDecl->field_end(); Field != E; ++Field) {
2624    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2625    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2626      FieldType = Array->getElementType();
2627    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2628      CXXRecordDecl *FieldClassDecl
2629        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2630      if (CXXMethodDecl *FieldAssignOpMethod =
2631          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2632        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2633    } else if (FieldType->isReferenceType()) {
2634      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2635      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2636      Diag(Field->getLocation(), diag::note_declared_at);
2637      Diag(CurrentLocation, diag::note_first_required_here);
2638      err = true;
2639    } else if (FieldType.isConstQualified()) {
2640      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2641      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2642      Diag(Field->getLocation(), diag::note_declared_at);
2643      Diag(CurrentLocation, diag::note_first_required_here);
2644      err = true;
2645    }
2646  }
2647  if (!err)
2648    MethodDecl->setUsed();
2649}
2650
2651CXXMethodDecl *
2652Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2653                              CXXRecordDecl *ClassDecl) {
2654  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2655  QualType RHSType(LHSType);
2656  // If class's assignment operator argument is const/volatile qualified,
2657  // look for operator = (const/volatile B&). Otherwise, look for
2658  // operator = (B&).
2659  if (ParmDecl->getType().isConstQualified())
2660    RHSType.addConst();
2661  if (ParmDecl->getType().isVolatileQualified())
2662    RHSType.addVolatile();
2663  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2664                                                          LHSType,
2665                                                          SourceLocation()));
2666  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2667                                                          RHSType,
2668                                                          SourceLocation()));
2669  Expr *Args[2] = { &*LHS, &*RHS };
2670  OverloadCandidateSet CandidateSet;
2671  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2672                              CandidateSet);
2673  OverloadCandidateSet::iterator Best;
2674  if (BestViableFunction(CandidateSet,
2675                         ClassDecl->getLocation(), Best) == OR_Success)
2676    return cast<CXXMethodDecl>(Best->Function);
2677  assert(false &&
2678         "getAssignOperatorMethod - copy assignment operator method not found");
2679  return 0;
2680}
2681
2682void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2683                                   CXXConstructorDecl *CopyConstructor,
2684                                   unsigned TypeQuals) {
2685  assert((CopyConstructor->isImplicit() &&
2686          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2687          !CopyConstructor->isUsed()) &&
2688         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2689
2690  CXXRecordDecl *ClassDecl
2691    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2692  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2693  // C++ [class.copy] p209
2694  // Before the implicitly-declared copy constructor for a class is
2695  // implicitly defined, all the implicitly-declared copy constructors
2696  // for its base class and its non-static data members shall have been
2697  // implicitly defined.
2698  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2699       Base != ClassDecl->bases_end(); ++Base) {
2700    CXXRecordDecl *BaseClassDecl
2701      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2702    if (CXXConstructorDecl *BaseCopyCtor =
2703        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2704      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2705  }
2706  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2707                                  FieldEnd = ClassDecl->field_end();
2708       Field != FieldEnd; ++Field) {
2709    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2710    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2711      FieldType = Array->getElementType();
2712    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2713      CXXRecordDecl *FieldClassDecl
2714        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2715      if (CXXConstructorDecl *FieldCopyCtor =
2716          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2717        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2718    }
2719  }
2720  CopyConstructor->setUsed();
2721}
2722
2723Sema::OwningExprResult
2724Sema::BuildCXXConstructExpr(QualType DeclInitType,
2725                            CXXConstructorDecl *Constructor,
2726                            Expr **Exprs, unsigned NumExprs) {
2727  bool Elidable = false;
2728
2729  // [class.copy]p15:
2730  // Whenever a temporary class object is copied using a copy constructor, and
2731  // this object and the copy have the same cv-unqualified type, an
2732  // implementation is permitted to treat the original and the copy as two
2733  // different ways of referring to the same object and not perform a copy at
2734  //all, even if the class copy constructor or destructor have side effects.
2735
2736  // FIXME: Is this enough?
2737  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2738    Expr *E = Exprs[0];
2739    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2740      E = BE->getSubExpr();
2741
2742    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2743      Elidable = true;
2744  }
2745
2746  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2747                               Exprs, NumExprs);
2748}
2749
2750/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2751/// including handling of its default argument expressions.
2752Sema::OwningExprResult
2753Sema::BuildCXXConstructExpr(QualType DeclInitType,
2754                            CXXConstructorDecl *Constructor,
2755                            bool Elidable,
2756                            Expr **Exprs,
2757                            unsigned NumExprs) {
2758  ExprOwningPtr<CXXConstructExpr> Temp(this,
2759                                       CXXConstructExpr::Create(Context,
2760                                                                DeclInitType,
2761                                                                Constructor,
2762                                                                Elidable,
2763                                                                Exprs,
2764                                                                NumExprs));
2765  // Default arguments must be added to constructor call expression.
2766  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2767  unsigned NumArgsInProto = FDecl->param_size();
2768  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2769    ParmVarDecl *Param = FDecl->getParamDecl(j);
2770
2771    OwningExprResult ArgExpr =
2772      BuildCXXDefaultArgExpr(/*FIXME:*/SourceLocation(),
2773                             FDecl, Param);
2774    if (ArgExpr.isInvalid())
2775      return ExprError();
2776
2777    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2778  }
2779  return move(Temp);
2780}
2781
2782Sema::OwningExprResult
2783Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2784                                  QualType Ty,
2785                                  SourceLocation TyBeginLoc,
2786                                  MultiExprArg Args,
2787                                  SourceLocation RParenLoc) {
2788  CXXTemporaryObjectExpr *E
2789    = new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc,
2790                                           (Expr **)Args.get(),
2791                                           Args.size(), RParenLoc);
2792
2793  ExprOwningPtr<CXXTemporaryObjectExpr> Temp(this, E);
2794
2795    // Default arguments must be added to constructor call expression.
2796  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2797  unsigned NumArgsInProto = FDecl->param_size();
2798  for (unsigned j = Args.size(); j != NumArgsInProto; j++) {
2799    ParmVarDecl *Param = FDecl->getParamDecl(j);
2800
2801    OwningExprResult ArgExpr = BuildCXXDefaultArgExpr(TyBeginLoc, FDecl, Param);
2802    if (ArgExpr.isInvalid())
2803      return ExprError();
2804
2805    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2806  }
2807
2808  Args.release();
2809  return move(Temp);
2810}
2811
2812
2813bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2814                                        CXXConstructorDecl *Constructor,
2815                                        QualType DeclInitType,
2816                                        Expr **Exprs, unsigned NumExprs) {
2817  OwningExprResult TempResult = BuildCXXConstructExpr(DeclInitType, Constructor,
2818                                                      Exprs, NumExprs);
2819  if (TempResult.isInvalid())
2820    return true;
2821
2822  Expr *Temp = TempResult.takeAs<Expr>();
2823  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2824  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2825  VD->setInit(Context, Temp);
2826
2827  return false;
2828}
2829
2830void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2831{
2832  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2833                                  DeclInitType->getAs<RecordType>()->getDecl());
2834  if (!ClassDecl->hasTrivialDestructor())
2835    if (CXXDestructorDecl *Destructor =
2836        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2837      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2838}
2839
2840/// AddCXXDirectInitializerToDecl - This action is called immediately after
2841/// ActOnDeclarator, when a C++ direct initializer is present.
2842/// e.g: "int x(1);"
2843void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2844                                         SourceLocation LParenLoc,
2845                                         MultiExprArg Exprs,
2846                                         SourceLocation *CommaLocs,
2847                                         SourceLocation RParenLoc) {
2848  unsigned NumExprs = Exprs.size();
2849  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2850  Decl *RealDecl = Dcl.getAs<Decl>();
2851
2852  // If there is no declaration, there was an error parsing it.  Just ignore
2853  // the initializer.
2854  if (RealDecl == 0)
2855    return;
2856
2857  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2858  if (!VDecl) {
2859    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2860    RealDecl->setInvalidDecl();
2861    return;
2862  }
2863
2864  // We will represent direct-initialization similarly to copy-initialization:
2865  //    int x(1);  -as-> int x = 1;
2866  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2867  //
2868  // Clients that want to distinguish between the two forms, can check for
2869  // direct initializer using VarDecl::hasCXXDirectInitializer().
2870  // A major benefit is that clients that don't particularly care about which
2871  // exactly form was it (like the CodeGen) can handle both cases without
2872  // special case code.
2873
2874  // If either the declaration has a dependent type or if any of the expressions
2875  // is type-dependent, we represent the initialization via a ParenListExpr for
2876  // later use during template instantiation.
2877  if (VDecl->getType()->isDependentType() ||
2878      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2879    // Let clients know that initialization was done with a direct initializer.
2880    VDecl->setCXXDirectInitializer(true);
2881
2882    // Store the initialization expressions as a ParenListExpr.
2883    unsigned NumExprs = Exprs.size();
2884    VDecl->setInit(Context,
2885                   new (Context) ParenListExpr(Context, LParenLoc,
2886                                               (Expr **)Exprs.release(),
2887                                               NumExprs, RParenLoc));
2888    return;
2889  }
2890
2891
2892  // C++ 8.5p11:
2893  // The form of initialization (using parentheses or '=') is generally
2894  // insignificant, but does matter when the entity being initialized has a
2895  // class type.
2896  QualType DeclInitType = VDecl->getType();
2897  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2898    DeclInitType = Array->getElementType();
2899
2900  // FIXME: This isn't the right place to complete the type.
2901  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2902                          diag::err_typecheck_decl_incomplete_type)) {
2903    VDecl->setInvalidDecl();
2904    return;
2905  }
2906
2907  if (VDecl->getType()->isRecordType()) {
2908    CXXConstructorDecl *Constructor
2909      = PerformInitializationByConstructor(DeclInitType,
2910                                           (Expr **)Exprs.get(), NumExprs,
2911                                           VDecl->getLocation(),
2912                                           SourceRange(VDecl->getLocation(),
2913                                                       RParenLoc),
2914                                           VDecl->getDeclName(),
2915                                           IK_Direct);
2916    if (!Constructor)
2917      RealDecl->setInvalidDecl();
2918    else {
2919      VDecl->setCXXDirectInitializer(true);
2920      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2921                                       (Expr**)Exprs.release(), NumExprs))
2922        RealDecl->setInvalidDecl();
2923      FinalizeVarWithDestructor(VDecl, DeclInitType);
2924    }
2925    return;
2926  }
2927
2928  if (NumExprs > 1) {
2929    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2930      << SourceRange(VDecl->getLocation(), RParenLoc);
2931    RealDecl->setInvalidDecl();
2932    return;
2933  }
2934
2935  // Let clients know that initialization was done with a direct initializer.
2936  VDecl->setCXXDirectInitializer(true);
2937
2938  assert(NumExprs == 1 && "Expected 1 expression");
2939  // Set the init expression, handles conversions.
2940  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2941                       /*DirectInit=*/true);
2942}
2943
2944/// PerformInitializationByConstructor - Perform initialization by
2945/// constructor (C++ [dcl.init]p14), which may occur as part of
2946/// direct-initialization or copy-initialization. We are initializing
2947/// an object of type @p ClassType with the given arguments @p
2948/// Args. @p Loc is the location in the source code where the
2949/// initializer occurs (e.g., a declaration, member initializer,
2950/// functional cast, etc.) while @p Range covers the whole
2951/// initialization. @p InitEntity is the entity being initialized,
2952/// which may by the name of a declaration or a type. @p Kind is the
2953/// kind of initialization we're performing, which affects whether
2954/// explicit constructors will be considered. When successful, returns
2955/// the constructor that will be used to perform the initialization;
2956/// when the initialization fails, emits a diagnostic and returns
2957/// null.
2958CXXConstructorDecl *
2959Sema::PerformInitializationByConstructor(QualType ClassType,
2960                                         Expr **Args, unsigned NumArgs,
2961                                         SourceLocation Loc, SourceRange Range,
2962                                         DeclarationName InitEntity,
2963                                         InitializationKind Kind) {
2964  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2965  assert(ClassRec && "Can only initialize a class type here");
2966
2967  // C++ [dcl.init]p14:
2968  //
2969  //   If the initialization is direct-initialization, or if it is
2970  //   copy-initialization where the cv-unqualified version of the
2971  //   source type is the same class as, or a derived class of, the
2972  //   class of the destination, constructors are considered. The
2973  //   applicable constructors are enumerated (13.3.1.3), and the
2974  //   best one is chosen through overload resolution (13.3). The
2975  //   constructor so selected is called to initialize the object,
2976  //   with the initializer expression(s) as its argument(s). If no
2977  //   constructor applies, or the overload resolution is ambiguous,
2978  //   the initialization is ill-formed.
2979  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2980  OverloadCandidateSet CandidateSet;
2981
2982  // Add constructors to the overload set.
2983  DeclarationName ConstructorName
2984    = Context.DeclarationNames.getCXXConstructorName(
2985                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2986  DeclContext::lookup_const_iterator Con, ConEnd;
2987  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2988       Con != ConEnd; ++Con) {
2989    // Find the constructor (which may be a template).
2990    CXXConstructorDecl *Constructor = 0;
2991    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
2992    if (ConstructorTmpl)
2993      Constructor
2994        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2995    else
2996      Constructor = cast<CXXConstructorDecl>(*Con);
2997
2998    if ((Kind == IK_Direct) ||
2999        (Kind == IK_Copy &&
3000         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3001        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3002      if (ConstructorTmpl)
3003        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3004                                     Args, NumArgs, CandidateSet);
3005      else
3006        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3007    }
3008  }
3009
3010  // FIXME: When we decide not to synthesize the implicitly-declared
3011  // constructors, we'll need to make them appear here.
3012
3013  OverloadCandidateSet::iterator Best;
3014  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3015  case OR_Success:
3016    // We found a constructor. Return it.
3017    return cast<CXXConstructorDecl>(Best->Function);
3018
3019  case OR_No_Viable_Function:
3020    if (InitEntity)
3021      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3022        << InitEntity << Range;
3023    else
3024      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3025        << ClassType << Range;
3026    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3027    return 0;
3028
3029  case OR_Ambiguous:
3030    if (InitEntity)
3031      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3032    else
3033      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3034    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3035    return 0;
3036
3037  case OR_Deleted:
3038    if (InitEntity)
3039      Diag(Loc, diag::err_ovl_deleted_init)
3040        << Best->Function->isDeleted()
3041        << InitEntity << Range;
3042    else
3043      Diag(Loc, diag::err_ovl_deleted_init)
3044        << Best->Function->isDeleted()
3045        << InitEntity << Range;
3046    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3047    return 0;
3048  }
3049
3050  return 0;
3051}
3052
3053/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3054/// determine whether they are reference-related,
3055/// reference-compatible, reference-compatible with added
3056/// qualification, or incompatible, for use in C++ initialization by
3057/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3058/// type, and the first type (T1) is the pointee type of the reference
3059/// type being initialized.
3060Sema::ReferenceCompareResult
3061Sema::CompareReferenceRelationship(QualType T1, QualType T2,
3062                                   bool& DerivedToBase) {
3063  assert(!T1->isReferenceType() &&
3064    "T1 must be the pointee type of the reference type");
3065  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
3066
3067  T1 = Context.getCanonicalType(T1);
3068  T2 = Context.getCanonicalType(T2);
3069  QualType UnqualT1 = T1.getUnqualifiedType();
3070  QualType UnqualT2 = T2.getUnqualifiedType();
3071
3072  // C++ [dcl.init.ref]p4:
3073  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3074  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3075  //   T1 is a base class of T2.
3076  if (UnqualT1 == UnqualT2)
3077    DerivedToBase = false;
3078  else if (IsDerivedFrom(UnqualT2, UnqualT1))
3079    DerivedToBase = true;
3080  else
3081    return Ref_Incompatible;
3082
3083  // At this point, we know that T1 and T2 are reference-related (at
3084  // least).
3085
3086  // C++ [dcl.init.ref]p4:
3087  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3088  //   reference-related to T2 and cv1 is the same cv-qualification
3089  //   as, or greater cv-qualification than, cv2. For purposes of
3090  //   overload resolution, cases for which cv1 is greater
3091  //   cv-qualification than cv2 are identified as
3092  //   reference-compatible with added qualification (see 13.3.3.2).
3093  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3094    return Ref_Compatible;
3095  else if (T1.isMoreQualifiedThan(T2))
3096    return Ref_Compatible_With_Added_Qualification;
3097  else
3098    return Ref_Related;
3099}
3100
3101/// CheckReferenceInit - Check the initialization of a reference
3102/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3103/// the initializer (either a simple initializer or an initializer
3104/// list), and DeclType is the type of the declaration. When ICS is
3105/// non-null, this routine will compute the implicit conversion
3106/// sequence according to C++ [over.ics.ref] and will not produce any
3107/// diagnostics; when ICS is null, it will emit diagnostics when any
3108/// errors are found. Either way, a return value of true indicates
3109/// that there was a failure, a return value of false indicates that
3110/// the reference initialization succeeded.
3111///
3112/// When @p SuppressUserConversions, user-defined conversions are
3113/// suppressed.
3114/// When @p AllowExplicit, we also permit explicit user-defined
3115/// conversion functions.
3116/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3117bool
3118Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3119                         bool SuppressUserConversions,
3120                         bool AllowExplicit, bool ForceRValue,
3121                         ImplicitConversionSequence *ICS) {
3122  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3123
3124  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3125  QualType T2 = Init->getType();
3126
3127  // If the initializer is the address of an overloaded function, try
3128  // to resolve the overloaded function. If all goes well, T2 is the
3129  // type of the resulting function.
3130  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3131    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3132                                                          ICS != 0);
3133    if (Fn) {
3134      // Since we're performing this reference-initialization for
3135      // real, update the initializer with the resulting function.
3136      if (!ICS) {
3137        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
3138          return true;
3139
3140        FixOverloadedFunctionReference(Init, Fn);
3141      }
3142
3143      T2 = Fn->getType();
3144    }
3145  }
3146
3147  // Compute some basic properties of the types and the initializer.
3148  bool isRValRef = DeclType->isRValueReferenceType();
3149  bool DerivedToBase = false;
3150  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3151                                                  Init->isLvalue(Context);
3152  ReferenceCompareResult RefRelationship
3153    = CompareReferenceRelationship(T1, T2, DerivedToBase);
3154
3155  // Most paths end in a failed conversion.
3156  if (ICS)
3157    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3158
3159  // C++ [dcl.init.ref]p5:
3160  //   A reference to type "cv1 T1" is initialized by an expression
3161  //   of type "cv2 T2" as follows:
3162
3163  //     -- If the initializer expression
3164
3165  // Rvalue references cannot bind to lvalues (N2812).
3166  // There is absolutely no situation where they can. In particular, note that
3167  // this is ill-formed, even if B has a user-defined conversion to A&&:
3168  //   B b;
3169  //   A&& r = b;
3170  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3171    if (!ICS)
3172      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
3173        << Init->getSourceRange();
3174    return true;
3175  }
3176
3177  bool BindsDirectly = false;
3178  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3179  //          reference-compatible with "cv2 T2," or
3180  //
3181  // Note that the bit-field check is skipped if we are just computing
3182  // the implicit conversion sequence (C++ [over.best.ics]p2).
3183  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3184      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3185    BindsDirectly = true;
3186
3187    if (ICS) {
3188      // C++ [over.ics.ref]p1:
3189      //   When a parameter of reference type binds directly (8.5.3)
3190      //   to an argument expression, the implicit conversion sequence
3191      //   is the identity conversion, unless the argument expression
3192      //   has a type that is a derived class of the parameter type,
3193      //   in which case the implicit conversion sequence is a
3194      //   derived-to-base Conversion (13.3.3.1).
3195      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3196      ICS->Standard.First = ICK_Identity;
3197      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3198      ICS->Standard.Third = ICK_Identity;
3199      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3200      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3201      ICS->Standard.ReferenceBinding = true;
3202      ICS->Standard.DirectBinding = true;
3203      ICS->Standard.RRefBinding = false;
3204      ICS->Standard.CopyConstructor = 0;
3205
3206      // Nothing more to do: the inaccessibility/ambiguity check for
3207      // derived-to-base conversions is suppressed when we're
3208      // computing the implicit conversion sequence (C++
3209      // [over.best.ics]p2).
3210      return false;
3211    } else {
3212      // Perform the conversion.
3213      // FIXME: Binding to a subobject of the lvalue is going to require more
3214      // AST annotation than this.
3215      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3216    }
3217  }
3218
3219  //       -- has a class type (i.e., T2 is a class type) and can be
3220  //          implicitly converted to an lvalue of type "cv3 T3,"
3221  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3222  //          92) (this conversion is selected by enumerating the
3223  //          applicable conversion functions (13.3.1.6) and choosing
3224  //          the best one through overload resolution (13.3)),
3225  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3226      !RequireCompleteType(SourceLocation(), T2, 0)) {
3227    // FIXME: Look for conversions in base classes!
3228    CXXRecordDecl *T2RecordDecl
3229      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3230
3231    OverloadCandidateSet CandidateSet;
3232    OverloadedFunctionDecl *Conversions
3233      = T2RecordDecl->getConversionFunctions();
3234    for (OverloadedFunctionDecl::function_iterator Func
3235           = Conversions->function_begin();
3236         Func != Conversions->function_end(); ++Func) {
3237      FunctionTemplateDecl *ConvTemplate
3238        = dyn_cast<FunctionTemplateDecl>(*Func);
3239      CXXConversionDecl *Conv;
3240      if (ConvTemplate)
3241        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3242      else
3243        Conv = cast<CXXConversionDecl>(*Func);
3244
3245      // If the conversion function doesn't return a reference type,
3246      // it can't be considered for this conversion.
3247      if (Conv->getConversionType()->isLValueReferenceType() &&
3248          (AllowExplicit || !Conv->isExplicit())) {
3249        if (ConvTemplate)
3250          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3251                                         CandidateSet);
3252        else
3253          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3254      }
3255    }
3256
3257    OverloadCandidateSet::iterator Best;
3258    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3259    case OR_Success:
3260      // This is a direct binding.
3261      BindsDirectly = true;
3262
3263      if (ICS) {
3264        // C++ [over.ics.ref]p1:
3265        //
3266        //   [...] If the parameter binds directly to the result of
3267        //   applying a conversion function to the argument
3268        //   expression, the implicit conversion sequence is a
3269        //   user-defined conversion sequence (13.3.3.1.2), with the
3270        //   second standard conversion sequence either an identity
3271        //   conversion or, if the conversion function returns an
3272        //   entity of a type that is a derived class of the parameter
3273        //   type, a derived-to-base Conversion.
3274        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3275        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3276        ICS->UserDefined.After = Best->FinalConversion;
3277        ICS->UserDefined.ConversionFunction = Best->Function;
3278        assert(ICS->UserDefined.After.ReferenceBinding &&
3279               ICS->UserDefined.After.DirectBinding &&
3280               "Expected a direct reference binding!");
3281        return false;
3282      } else {
3283        // Perform the conversion.
3284        // FIXME: Binding to a subobject of the lvalue is going to require more
3285        // AST annotation than this.
3286        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3287      }
3288      break;
3289
3290    case OR_Ambiguous:
3291      assert(false && "Ambiguous reference binding conversions not implemented.");
3292      return true;
3293
3294    case OR_No_Viable_Function:
3295    case OR_Deleted:
3296      // There was no suitable conversion, or we found a deleted
3297      // conversion; continue with other checks.
3298      break;
3299    }
3300  }
3301
3302  if (BindsDirectly) {
3303    // C++ [dcl.init.ref]p4:
3304    //   [...] In all cases where the reference-related or
3305    //   reference-compatible relationship of two types is used to
3306    //   establish the validity of a reference binding, and T1 is a
3307    //   base class of T2, a program that necessitates such a binding
3308    //   is ill-formed if T1 is an inaccessible (clause 11) or
3309    //   ambiguous (10.2) base class of T2.
3310    //
3311    // Note that we only check this condition when we're allowed to
3312    // complain about errors, because we should not be checking for
3313    // ambiguity (or inaccessibility) unless the reference binding
3314    // actually happens.
3315    if (DerivedToBase)
3316      return CheckDerivedToBaseConversion(T2, T1,
3317                                          Init->getSourceRange().getBegin(),
3318                                          Init->getSourceRange());
3319    else
3320      return false;
3321  }
3322
3323  //     -- Otherwise, the reference shall be to a non-volatile const
3324  //        type (i.e., cv1 shall be const), or the reference shall be an
3325  //        rvalue reference and the initializer expression shall be an rvalue.
3326  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3327    if (!ICS)
3328      Diag(Init->getSourceRange().getBegin(),
3329           diag::err_not_reference_to_const_init)
3330        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3331        << T2 << Init->getSourceRange();
3332    return true;
3333  }
3334
3335  //       -- If the initializer expression is an rvalue, with T2 a
3336  //          class type, and "cv1 T1" is reference-compatible with
3337  //          "cv2 T2," the reference is bound in one of the
3338  //          following ways (the choice is implementation-defined):
3339  //
3340  //          -- The reference is bound to the object represented by
3341  //             the rvalue (see 3.10) or to a sub-object within that
3342  //             object.
3343  //
3344  //          -- A temporary of type "cv1 T2" [sic] is created, and
3345  //             a constructor is called to copy the entire rvalue
3346  //             object into the temporary. The reference is bound to
3347  //             the temporary or to a sub-object within the
3348  //             temporary.
3349  //
3350  //          The constructor that would be used to make the copy
3351  //          shall be callable whether or not the copy is actually
3352  //          done.
3353  //
3354  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3355  // freedom, so we will always take the first option and never build
3356  // a temporary in this case. FIXME: We will, however, have to check
3357  // for the presence of a copy constructor in C++98/03 mode.
3358  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3359      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3360    if (ICS) {
3361      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3362      ICS->Standard.First = ICK_Identity;
3363      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3364      ICS->Standard.Third = ICK_Identity;
3365      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3366      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3367      ICS->Standard.ReferenceBinding = true;
3368      ICS->Standard.DirectBinding = false;
3369      ICS->Standard.RRefBinding = isRValRef;
3370      ICS->Standard.CopyConstructor = 0;
3371    } else {
3372      // FIXME: Binding to a subobject of the rvalue is going to require more
3373      // AST annotation than this.
3374      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3375    }
3376    return false;
3377  }
3378
3379  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3380  //          initialized from the initializer expression using the
3381  //          rules for a non-reference copy initialization (8.5). The
3382  //          reference is then bound to the temporary. If T1 is
3383  //          reference-related to T2, cv1 must be the same
3384  //          cv-qualification as, or greater cv-qualification than,
3385  //          cv2; otherwise, the program is ill-formed.
3386  if (RefRelationship == Ref_Related) {
3387    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3388    // we would be reference-compatible or reference-compatible with
3389    // added qualification. But that wasn't the case, so the reference
3390    // initialization fails.
3391    if (!ICS)
3392      Diag(Init->getSourceRange().getBegin(),
3393           diag::err_reference_init_drops_quals)
3394        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3395        << T2 << Init->getSourceRange();
3396    return true;
3397  }
3398
3399  // If at least one of the types is a class type, the types are not
3400  // related, and we aren't allowed any user conversions, the
3401  // reference binding fails. This case is important for breaking
3402  // recursion, since TryImplicitConversion below will attempt to
3403  // create a temporary through the use of a copy constructor.
3404  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3405      (T1->isRecordType() || T2->isRecordType())) {
3406    if (!ICS)
3407      Diag(Init->getSourceRange().getBegin(),
3408           diag::err_typecheck_convert_incompatible)
3409        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3410    return true;
3411  }
3412
3413  // Actually try to convert the initializer to T1.
3414  if (ICS) {
3415    // C++ [over.ics.ref]p2:
3416    //
3417    //   When a parameter of reference type is not bound directly to
3418    //   an argument expression, the conversion sequence is the one
3419    //   required to convert the argument expression to the
3420    //   underlying type of the reference according to
3421    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3422    //   to copy-initializing a temporary of the underlying type with
3423    //   the argument expression. Any difference in top-level
3424    //   cv-qualification is subsumed by the initialization itself
3425    //   and does not constitute a conversion.
3426    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3427                                 /*AllowExplicit=*/false,
3428                                 /*ForceRValue=*/false,
3429                                 /*InOverloadResolution=*/false);
3430
3431    // Of course, that's still a reference binding.
3432    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3433      ICS->Standard.ReferenceBinding = true;
3434      ICS->Standard.RRefBinding = isRValRef;
3435    } else if(ICS->ConversionKind ==
3436              ImplicitConversionSequence::UserDefinedConversion) {
3437      ICS->UserDefined.After.ReferenceBinding = true;
3438      ICS->UserDefined.After.RRefBinding = isRValRef;
3439    }
3440    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3441  } else {
3442    return PerformImplicitConversion(Init, T1, "initializing");
3443  }
3444}
3445
3446/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3447/// of this overloaded operator is well-formed. If so, returns false;
3448/// otherwise, emits appropriate diagnostics and returns true.
3449bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3450  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3451         "Expected an overloaded operator declaration");
3452
3453  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3454
3455  // C++ [over.oper]p5:
3456  //   The allocation and deallocation functions, operator new,
3457  //   operator new[], operator delete and operator delete[], are
3458  //   described completely in 3.7.3. The attributes and restrictions
3459  //   found in the rest of this subclause do not apply to them unless
3460  //   explicitly stated in 3.7.3.
3461  // FIXME: Write a separate routine for checking this. For now, just allow it.
3462  if (Op == OO_New || Op == OO_Array_New ||
3463      Op == OO_Delete || Op == OO_Array_Delete)
3464    return false;
3465
3466  // C++ [over.oper]p6:
3467  //   An operator function shall either be a non-static member
3468  //   function or be a non-member function and have at least one
3469  //   parameter whose type is a class, a reference to a class, an
3470  //   enumeration, or a reference to an enumeration.
3471  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3472    if (MethodDecl->isStatic())
3473      return Diag(FnDecl->getLocation(),
3474                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3475  } else {
3476    bool ClassOrEnumParam = false;
3477    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3478                                   ParamEnd = FnDecl->param_end();
3479         Param != ParamEnd; ++Param) {
3480      QualType ParamType = (*Param)->getType().getNonReferenceType();
3481      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3482          ParamType->isEnumeralType()) {
3483        ClassOrEnumParam = true;
3484        break;
3485      }
3486    }
3487
3488    if (!ClassOrEnumParam)
3489      return Diag(FnDecl->getLocation(),
3490                  diag::err_operator_overload_needs_class_or_enum)
3491        << FnDecl->getDeclName();
3492  }
3493
3494  // C++ [over.oper]p8:
3495  //   An operator function cannot have default arguments (8.3.6),
3496  //   except where explicitly stated below.
3497  //
3498  // Only the function-call operator allows default arguments
3499  // (C++ [over.call]p1).
3500  if (Op != OO_Call) {
3501    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3502         Param != FnDecl->param_end(); ++Param) {
3503      if ((*Param)->hasUnparsedDefaultArg())
3504        return Diag((*Param)->getLocation(),
3505                    diag::err_operator_overload_default_arg)
3506          << FnDecl->getDeclName();
3507      else if (Expr *DefArg = (*Param)->getDefaultArg())
3508        return Diag((*Param)->getLocation(),
3509                    diag::err_operator_overload_default_arg)
3510          << FnDecl->getDeclName() << DefArg->getSourceRange();
3511    }
3512  }
3513
3514  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3515    { false, false, false }
3516#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3517    , { Unary, Binary, MemberOnly }
3518#include "clang/Basic/OperatorKinds.def"
3519  };
3520
3521  bool CanBeUnaryOperator = OperatorUses[Op][0];
3522  bool CanBeBinaryOperator = OperatorUses[Op][1];
3523  bool MustBeMemberOperator = OperatorUses[Op][2];
3524
3525  // C++ [over.oper]p8:
3526  //   [...] Operator functions cannot have more or fewer parameters
3527  //   than the number required for the corresponding operator, as
3528  //   described in the rest of this subclause.
3529  unsigned NumParams = FnDecl->getNumParams()
3530                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3531  if (Op != OO_Call &&
3532      ((NumParams == 1 && !CanBeUnaryOperator) ||
3533       (NumParams == 2 && !CanBeBinaryOperator) ||
3534       (NumParams < 1) || (NumParams > 2))) {
3535    // We have the wrong number of parameters.
3536    unsigned ErrorKind;
3537    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3538      ErrorKind = 2;  // 2 -> unary or binary.
3539    } else if (CanBeUnaryOperator) {
3540      ErrorKind = 0;  // 0 -> unary
3541    } else {
3542      assert(CanBeBinaryOperator &&
3543             "All non-call overloaded operators are unary or binary!");
3544      ErrorKind = 1;  // 1 -> binary
3545    }
3546
3547    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3548      << FnDecl->getDeclName() << NumParams << ErrorKind;
3549  }
3550
3551  // Overloaded operators other than operator() cannot be variadic.
3552  if (Op != OO_Call &&
3553      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3554    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3555      << FnDecl->getDeclName();
3556  }
3557
3558  // Some operators must be non-static member functions.
3559  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3560    return Diag(FnDecl->getLocation(),
3561                diag::err_operator_overload_must_be_member)
3562      << FnDecl->getDeclName();
3563  }
3564
3565  // C++ [over.inc]p1:
3566  //   The user-defined function called operator++ implements the
3567  //   prefix and postfix ++ operator. If this function is a member
3568  //   function with no parameters, or a non-member function with one
3569  //   parameter of class or enumeration type, it defines the prefix
3570  //   increment operator ++ for objects of that type. If the function
3571  //   is a member function with one parameter (which shall be of type
3572  //   int) or a non-member function with two parameters (the second
3573  //   of which shall be of type int), it defines the postfix
3574  //   increment operator ++ for objects of that type.
3575  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3576    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3577    bool ParamIsInt = false;
3578    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3579      ParamIsInt = BT->getKind() == BuiltinType::Int;
3580
3581    if (!ParamIsInt)
3582      return Diag(LastParam->getLocation(),
3583                  diag::err_operator_overload_post_incdec_must_be_int)
3584        << LastParam->getType() << (Op == OO_MinusMinus);
3585  }
3586
3587  // Notify the class if it got an assignment operator.
3588  if (Op == OO_Equal) {
3589    // Would have returned earlier otherwise.
3590    assert(isa<CXXMethodDecl>(FnDecl) &&
3591      "Overloaded = not member, but not filtered.");
3592    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3593    Method->setCopyAssignment(true);
3594    Method->getParent()->addedAssignmentOperator(Context, Method);
3595  }
3596
3597  return false;
3598}
3599
3600/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3601/// linkage specification, including the language and (if present)
3602/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3603/// the location of the language string literal, which is provided
3604/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3605/// the '{' brace. Otherwise, this linkage specification does not
3606/// have any braces.
3607Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3608                                                     SourceLocation ExternLoc,
3609                                                     SourceLocation LangLoc,
3610                                                     const char *Lang,
3611                                                     unsigned StrSize,
3612                                                     SourceLocation LBraceLoc) {
3613  LinkageSpecDecl::LanguageIDs Language;
3614  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3615    Language = LinkageSpecDecl::lang_c;
3616  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3617    Language = LinkageSpecDecl::lang_cxx;
3618  else {
3619    Diag(LangLoc, diag::err_bad_language);
3620    return DeclPtrTy();
3621  }
3622
3623  // FIXME: Add all the various semantics of linkage specifications
3624
3625  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3626                                               LangLoc, Language,
3627                                               LBraceLoc.isValid());
3628  CurContext->addDecl(D);
3629  PushDeclContext(S, D);
3630  return DeclPtrTy::make(D);
3631}
3632
3633/// ActOnFinishLinkageSpecification - Completely the definition of
3634/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3635/// valid, it's the position of the closing '}' brace in a linkage
3636/// specification that uses braces.
3637Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3638                                                      DeclPtrTy LinkageSpec,
3639                                                      SourceLocation RBraceLoc) {
3640  if (LinkageSpec)
3641    PopDeclContext();
3642  return LinkageSpec;
3643}
3644
3645/// \brief Perform semantic analysis for the variable declaration that
3646/// occurs within a C++ catch clause, returning the newly-created
3647/// variable.
3648VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3649                                         DeclaratorInfo *DInfo,
3650                                         IdentifierInfo *Name,
3651                                         SourceLocation Loc,
3652                                         SourceRange Range) {
3653  bool Invalid = false;
3654
3655  // Arrays and functions decay.
3656  if (ExDeclType->isArrayType())
3657    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3658  else if (ExDeclType->isFunctionType())
3659    ExDeclType = Context.getPointerType(ExDeclType);
3660
3661  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3662  // The exception-declaration shall not denote a pointer or reference to an
3663  // incomplete type, other than [cv] void*.
3664  // N2844 forbids rvalue references.
3665  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3666    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3667    Invalid = true;
3668  }
3669
3670  QualType BaseType = ExDeclType;
3671  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3672  unsigned DK = diag::err_catch_incomplete;
3673  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3674    BaseType = Ptr->getPointeeType();
3675    Mode = 1;
3676    DK = diag::err_catch_incomplete_ptr;
3677  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3678    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3679    BaseType = Ref->getPointeeType();
3680    Mode = 2;
3681    DK = diag::err_catch_incomplete_ref;
3682  }
3683  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3684      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3685    Invalid = true;
3686
3687  if (!Invalid && !ExDeclType->isDependentType() &&
3688      RequireNonAbstractType(Loc, ExDeclType,
3689                             diag::err_abstract_type_in_decl,
3690                             AbstractVariableType))
3691    Invalid = true;
3692
3693  // FIXME: Need to test for ability to copy-construct and destroy the
3694  // exception variable.
3695
3696  // FIXME: Need to check for abstract classes.
3697
3698  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3699                                    Name, ExDeclType, DInfo, VarDecl::None);
3700
3701  if (Invalid)
3702    ExDecl->setInvalidDecl();
3703
3704  return ExDecl;
3705}
3706
3707/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3708/// handler.
3709Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3710  DeclaratorInfo *DInfo = 0;
3711  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3712
3713  bool Invalid = D.isInvalidType();
3714  IdentifierInfo *II = D.getIdentifier();
3715  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3716    // The scope should be freshly made just for us. There is just no way
3717    // it contains any previous declaration.
3718    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3719    if (PrevDecl->isTemplateParameter()) {
3720      // Maybe we will complain about the shadowed template parameter.
3721      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3722    }
3723  }
3724
3725  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3726    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3727      << D.getCXXScopeSpec().getRange();
3728    Invalid = true;
3729  }
3730
3731  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3732                                              D.getIdentifier(),
3733                                              D.getIdentifierLoc(),
3734                                            D.getDeclSpec().getSourceRange());
3735
3736  if (Invalid)
3737    ExDecl->setInvalidDecl();
3738
3739  // Add the exception declaration into this scope.
3740  if (II)
3741    PushOnScopeChains(ExDecl, S);
3742  else
3743    CurContext->addDecl(ExDecl);
3744
3745  ProcessDeclAttributes(S, ExDecl, D);
3746  return DeclPtrTy::make(ExDecl);
3747}
3748
3749Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3750                                                   ExprArg assertexpr,
3751                                                   ExprArg assertmessageexpr) {
3752  Expr *AssertExpr = (Expr *)assertexpr.get();
3753  StringLiteral *AssertMessage =
3754    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3755
3756  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3757    llvm::APSInt Value(32);
3758    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3759      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3760        AssertExpr->getSourceRange();
3761      return DeclPtrTy();
3762    }
3763
3764    if (Value == 0) {
3765      std::string str(AssertMessage->getStrData(),
3766                      AssertMessage->getByteLength());
3767      Diag(AssertLoc, diag::err_static_assert_failed)
3768        << str << AssertExpr->getSourceRange();
3769    }
3770  }
3771
3772  assertexpr.release();
3773  assertmessageexpr.release();
3774  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3775                                        AssertExpr, AssertMessage);
3776
3777  CurContext->addDecl(Decl);
3778  return DeclPtrTy::make(Decl);
3779}
3780
3781Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3782                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3783                                      bool IsDefinition) {
3784  if (DU.is<Declarator*>())
3785    return ActOnFriendFunctionDecl(S, *DU.get<Declarator*>(), IsDefinition);
3786  else
3787    return ActOnFriendTypeDecl(S, *DU.get<const DeclSpec*>(), IsDefinition);
3788}
3789
3790Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
3791                                          const DeclSpec &DS,
3792                                          bool IsDefinition) {
3793  SourceLocation Loc = DS.getSourceRange().getBegin();
3794
3795  assert(DS.isFriendSpecified());
3796  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3797
3798  // Check to see if the decl spec was syntactically like "struct foo".
3799  RecordDecl *RD = NULL;
3800
3801  switch (DS.getTypeSpecType()) {
3802  case DeclSpec::TST_class:
3803  case DeclSpec::TST_struct:
3804  case DeclSpec::TST_union:
3805    RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3806    if (!RD) return DeclPtrTy();
3807
3808    // The parser doesn't quite handle
3809    //   friend class A {}
3810    // as we'd like, because it might have been the (valid) prefix of
3811    //   friend class A {} foo();
3812    // So even in C++0x mode we don't want to
3813    IsDefinition |= RD->isDefinition();
3814    break;
3815
3816  default: break;
3817  }
3818
3819  FriendDecl::FriendUnion FU = RD;
3820
3821  // C++ [class.friend]p2:
3822  //   An elaborated-type-specifier shall be used in a friend declaration
3823  //   for a class.*
3824  //   * The class-key of the elaborated-type-specifier is required.
3825  // So if we didn't get a record decl above, we're invalid in C++98 mode.
3826  if (!RD) {
3827    bool invalid = false;
3828    QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3829    if (invalid) return DeclPtrTy();
3830
3831    if (const RecordType *RT = T->getAs<RecordType>()) {
3832      FU = RD = cast<CXXRecordDecl>(RT->getDecl());
3833
3834      // Untagged typenames are invalid prior to C++0x, but we can
3835      // suggest an easy fix which should work.
3836      if (!getLangOptions().CPlusPlus0x) {
3837        Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3838          << (RD->isUnion())
3839          << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3840                                        RD->isUnion() ? " union" : " class");
3841        return DeclPtrTy();
3842      }
3843    }else if (!getLangOptions().CPlusPlus0x) {
3844      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3845          << DS.getSourceRange();
3846      return DeclPtrTy();
3847    }else {
3848      FU = T.getTypePtr();
3849    }
3850  }
3851
3852  assert(FU && "should have a friend decl/type by here!");
3853
3854  // C++ [class.friend]p2: A class shall not be defined inside
3855  //   a friend declaration.
3856  if (IsDefinition) {
3857    Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3858      << DS.getSourceRange();
3859    return DeclPtrTy();
3860  }
3861
3862  // C++98 [class.friend]p1: A friend of a class is a function
3863  //   or class that is not a member of the class . . .
3864  // But that's a silly restriction which nobody implements for
3865  // inner classes, and C++0x removes it anyway, so we only report
3866  // this (as a warning) if we're being pedantic.
3867  if (!getLangOptions().CPlusPlus0x) {
3868    assert(RD && "must have a record decl in C++98 mode");
3869    if (RD->getDeclContext() == CurContext)
3870      Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3871  }
3872
3873  FriendDecl *FD = FriendDecl::Create(Context, CurContext, Loc, FU,
3874                                      DS.getFriendSpecLoc());
3875  FD->setAccess(AS_public);
3876  CurContext->addDecl(FD);
3877
3878  return DeclPtrTy::make(FD);
3879}
3880
3881Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S,
3882                                              Declarator &D,
3883                                              bool IsDefinition) {
3884  const DeclSpec &DS = D.getDeclSpec();
3885
3886  assert(DS.isFriendSpecified());
3887  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3888
3889  SourceLocation Loc = D.getIdentifierLoc();
3890  DeclaratorInfo *DInfo = 0;
3891  QualType T = GetTypeForDeclarator(D, S, &DInfo);
3892
3893  // C++ [class.friend]p1
3894  //   A friend of a class is a function or class....
3895  // Note that this sees through typedefs, which is intended.
3896  // It *doesn't* see through dependent types, which is correct
3897  // according to [temp.arg.type]p3:
3898  //   If a declaration acquires a function type through a
3899  //   type dependent on a template-parameter and this causes
3900  //   a declaration that does not use the syntactic form of a
3901  //   function declarator to have a function type, the program
3902  //   is ill-formed.
3903  if (!T->isFunctionType()) {
3904    Diag(Loc, diag::err_unexpected_friend);
3905
3906    // It might be worthwhile to try to recover by creating an
3907    // appropriate declaration.
3908    return DeclPtrTy();
3909  }
3910
3911  // C++ [namespace.memdef]p3
3912  //  - If a friend declaration in a non-local class first declares a
3913  //    class or function, the friend class or function is a member
3914  //    of the innermost enclosing namespace.
3915  //  - The name of the friend is not found by simple name lookup
3916  //    until a matching declaration is provided in that namespace
3917  //    scope (either before or after the class declaration granting
3918  //    friendship).
3919  //  - If a friend function is called, its name may be found by the
3920  //    name lookup that considers functions from namespaces and
3921  //    classes associated with the types of the function arguments.
3922  //  - When looking for a prior declaration of a class or a function
3923  //    declared as a friend, scopes outside the innermost enclosing
3924  //    namespace scope are not considered.
3925
3926  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
3927  DeclarationName Name = GetNameForDeclarator(D);
3928  assert(Name);
3929
3930  // The existing declaration we found.
3931  FunctionDecl *FD = NULL;
3932
3933  // The context we found the declaration in, or in which we should
3934  // create the declaration.
3935  DeclContext *DC;
3936
3937  // FIXME: handle local classes
3938
3939  // Recover from invalid scope qualifiers as if they just weren't there.
3940  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3941    DC = computeDeclContext(ScopeQual);
3942
3943    // FIXME: handle dependent contexts
3944    if (!DC) return DeclPtrTy();
3945
3946    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3947
3948    // If searching in that context implicitly found a declaration in
3949    // a different context, treat it like it wasn't found at all.
3950    // TODO: better diagnostics for this case.  Suggesting the right
3951    // qualified scope would be nice...
3952    if (!Dec || Dec->getDeclContext() != DC) {
3953      D.setInvalidType();
3954      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3955      return DeclPtrTy();
3956    }
3957
3958    // C++ [class.friend]p1: A friend of a class is a function or
3959    //   class that is not a member of the class . . .
3960    if (DC == CurContext)
3961      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3962
3963    FD = cast<FunctionDecl>(Dec);
3964
3965  // Otherwise walk out to the nearest namespace scope looking for matches.
3966  } else {
3967    // TODO: handle local class contexts.
3968
3969    DC = CurContext;
3970    while (true) {
3971      // Skip class contexts.  If someone can cite chapter and verse
3972      // for this behavior, that would be nice --- it's what GCC and
3973      // EDG do, and it seems like a reasonable intent, but the spec
3974      // really only says that checks for unqualified existing
3975      // declarations should stop at the nearest enclosing namespace,
3976      // not that they should only consider the nearest enclosing
3977      // namespace.
3978      while (DC->isRecord()) DC = DC->getParent();
3979
3980      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3981
3982      // TODO: decide what we think about using declarations.
3983      if (Dec) {
3984        FD = cast<FunctionDecl>(Dec);
3985        break;
3986      }
3987      if (DC->isFileContext()) break;
3988      DC = DC->getParent();
3989    }
3990
3991    // C++ [class.friend]p1: A friend of a class is a function or
3992    //   class that is not a member of the class . . .
3993    // C++0x changes this for both friend types and functions.
3994    // Most C++ 98 compilers do seem to give an error here, so
3995    // we do, too.
3996    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3997      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3998  }
3999
4000  bool Redeclaration = (FD != 0);
4001
4002  // If we found a match, create a friend function declaration with
4003  // that function as the previous declaration.
4004  if (Redeclaration) {
4005    // Create it in the semantic context of the original declaration.
4006    DC = FD->getDeclContext();
4007
4008  // If we didn't find something matching the type exactly, create
4009  // a declaration.  This declaration should only be findable via
4010  // argument-dependent lookup.
4011  } else {
4012    assert(DC->isFileContext());
4013
4014    // This implies that it has to be an operator or function.
4015    if (D.getKind() == Declarator::DK_Constructor ||
4016        D.getKind() == Declarator::DK_Destructor ||
4017        D.getKind() == Declarator::DK_Conversion) {
4018      Diag(Loc, diag::err_introducing_special_friend) <<
4019        (D.getKind() == Declarator::DK_Constructor ? 0 :
4020         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
4021      return DeclPtrTy();
4022    }
4023  }
4024
4025  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo,
4026                                          /* PrevDecl = */ FD,
4027                                          MultiTemplateParamsArg(*this),
4028                                          IsDefinition,
4029                                          Redeclaration);
4030  if (!ND) return DeclPtrTy();
4031
4032  assert(cast<FunctionDecl>(ND)->getPreviousDeclaration() == FD &&
4033         "lost reference to previous declaration");
4034
4035  FD = cast<FunctionDecl>(ND);
4036
4037  assert(FD->getDeclContext() == DC);
4038  assert(FD->getLexicalDeclContext() == CurContext);
4039
4040  // Add the function declaration to the appropriate lookup tables,
4041  // adjusting the redeclarations list as necessary.  We don't
4042  // want to do this yet if the friending class is dependent.
4043  //
4044  // Also update the scope-based lookup if the target context's
4045  // lookup context is in lexical scope.
4046  if (!CurContext->isDependentContext()) {
4047    DC = DC->getLookupContext();
4048    DC->makeDeclVisibleInContext(FD, /* Recoverable=*/ false);
4049    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4050      PushOnScopeChains(FD, EnclosingScope, /*AddToContext=*/ false);
4051  }
4052
4053  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4054                                       D.getIdentifierLoc(), FD,
4055                                       DS.getFriendSpecLoc());
4056  FrD->setAccess(AS_public);
4057  CurContext->addDecl(FrD);
4058
4059  return DeclPtrTy::make(FD);
4060}
4061
4062void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4063  AdjustDeclIfTemplate(dcl);
4064
4065  Decl *Dcl = dcl.getAs<Decl>();
4066  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4067  if (!Fn) {
4068    Diag(DelLoc, diag::err_deleted_non_function);
4069    return;
4070  }
4071  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4072    Diag(DelLoc, diag::err_deleted_decl_not_first);
4073    Diag(Prev->getLocation(), diag::note_previous_declaration);
4074    // If the declaration wasn't the first, we delete the function anyway for
4075    // recovery.
4076  }
4077  Fn->setDeleted();
4078}
4079
4080static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4081  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4082       ++CI) {
4083    Stmt *SubStmt = *CI;
4084    if (!SubStmt)
4085      continue;
4086    if (isa<ReturnStmt>(SubStmt))
4087      Self.Diag(SubStmt->getSourceRange().getBegin(),
4088           diag::err_return_in_constructor_handler);
4089    if (!isa<Expr>(SubStmt))
4090      SearchForReturnInStmt(Self, SubStmt);
4091  }
4092}
4093
4094void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4095  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4096    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4097    SearchForReturnInStmt(*this, Handler);
4098  }
4099}
4100
4101bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4102                                             const CXXMethodDecl *Old) {
4103  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
4104  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
4105
4106  QualType CNewTy = Context.getCanonicalType(NewTy);
4107  QualType COldTy = Context.getCanonicalType(OldTy);
4108
4109  if (CNewTy == COldTy &&
4110      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4111    return false;
4112
4113  // Check if the return types are covariant
4114  QualType NewClassTy, OldClassTy;
4115
4116  /// Both types must be pointers or references to classes.
4117  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4118    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4119      NewClassTy = NewPT->getPointeeType();
4120      OldClassTy = OldPT->getPointeeType();
4121    }
4122  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4123    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4124      NewClassTy = NewRT->getPointeeType();
4125      OldClassTy = OldRT->getPointeeType();
4126    }
4127  }
4128
4129  // The return types aren't either both pointers or references to a class type.
4130  if (NewClassTy.isNull()) {
4131    Diag(New->getLocation(),
4132         diag::err_different_return_type_for_overriding_virtual_function)
4133      << New->getDeclName() << NewTy << OldTy;
4134    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4135
4136    return true;
4137  }
4138
4139  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4140    // Check if the new class derives from the old class.
4141    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4142      Diag(New->getLocation(),
4143           diag::err_covariant_return_not_derived)
4144      << New->getDeclName() << NewTy << OldTy;
4145      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4146      return true;
4147    }
4148
4149    // Check if we the conversion from derived to base is valid.
4150    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4151                      diag::err_covariant_return_inaccessible_base,
4152                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4153                      // FIXME: Should this point to the return type?
4154                      New->getLocation(), SourceRange(), New->getDeclName())) {
4155      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4156      return true;
4157    }
4158  }
4159
4160  // The qualifiers of the return types must be the same.
4161  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4162    Diag(New->getLocation(),
4163         diag::err_covariant_return_type_different_qualifications)
4164    << New->getDeclName() << NewTy << OldTy;
4165    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4166    return true;
4167  };
4168
4169
4170  // The new class type must have the same or less qualifiers as the old type.
4171  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4172    Diag(New->getLocation(),
4173         diag::err_covariant_return_type_class_type_more_qualified)
4174    << New->getDeclName() << NewTy << OldTy;
4175    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4176    return true;
4177  };
4178
4179  return false;
4180}
4181
4182bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
4183                                                const CXXMethodDecl *Old)
4184{
4185  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
4186                                  diag::note_overridden_virtual_function,
4187                                  Old->getType()->getAsFunctionProtoType(),
4188                                  Old->getLocation(),
4189                                  New->getType()->getAsFunctionProtoType(),
4190                                  New->getLocation());
4191}
4192
4193/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4194/// initializer for the declaration 'Dcl'.
4195/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4196/// static data member of class X, names should be looked up in the scope of
4197/// class X.
4198void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4199  AdjustDeclIfTemplate(Dcl);
4200
4201  Decl *D = Dcl.getAs<Decl>();
4202  // If there is no declaration, there was an error parsing it.
4203  if (D == 0)
4204    return;
4205
4206  // Check whether it is a declaration with a nested name specifier like
4207  // int foo::bar;
4208  if (!D->isOutOfLine())
4209    return;
4210
4211  // C++ [basic.lookup.unqual]p13
4212  //
4213  // A name used in the definition of a static data member of class X
4214  // (after the qualified-id of the static member) is looked up as if the name
4215  // was used in a member function of X.
4216
4217  // Change current context into the context of the initializing declaration.
4218  EnterDeclaratorContext(S, D->getDeclContext());
4219}
4220
4221/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4222/// initializer for the declaration 'Dcl'.
4223void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4224  AdjustDeclIfTemplate(Dcl);
4225
4226  Decl *D = Dcl.getAs<Decl>();
4227  // If there is no declaration, there was an error parsing it.
4228  if (D == 0)
4229    return;
4230
4231  // Check whether it is a declaration with a nested name specifier like
4232  // int foo::bar;
4233  if (!D->isOutOfLine())
4234    return;
4235
4236  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4237  ExitDeclaratorContext(S);
4238}
4239