SemaDeclCXX.cpp revision 80c30dad6c6fca077293125a96f464b6c8857171
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28#include <set>
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// CheckDefaultArgumentVisitor
34//===----------------------------------------------------------------------===//
35
36namespace {
37  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
38  /// the default argument of a parameter to determine whether it
39  /// contains any ill-formed subexpressions. For example, this will
40  /// diagnose the use of local variables or parameters within the
41  /// default argument expression.
42  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
43    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
44    Expr *DefaultArg;
45    Sema *S;
46
47  public:
48    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
49      : DefaultArg(defarg), S(s) {}
50
51    bool VisitExpr(Expr *Node);
52    bool VisitDeclRefExpr(DeclRefExpr *DRE);
53    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
54  };
55
56  /// VisitExpr - Visit all of the children of this expression.
57  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
58    bool IsInvalid = false;
59    for (Stmt::child_iterator I = Node->child_begin(),
60         E = Node->child_end(); I != E; ++I)
61      IsInvalid |= Visit(*I);
62    return IsInvalid;
63  }
64
65  /// VisitDeclRefExpr - Visit a reference to a declaration, to
66  /// determine whether this declaration can be used in the default
67  /// argument expression.
68  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
69    NamedDecl *Decl = DRE->getDecl();
70    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
71      // C++ [dcl.fct.default]p9
72      //   Default arguments are evaluated each time the function is
73      //   called. The order of evaluation of function arguments is
74      //   unspecified. Consequently, parameters of a function shall not
75      //   be used in default argument expressions, even if they are not
76      //   evaluated. Parameters of a function declared before a default
77      //   argument expression are in scope and can hide namespace and
78      //   class member names.
79      return S->Diag(DRE->getSourceRange().getBegin(),
80                     diag::err_param_default_argument_references_param)
81         << Param->getDeclName() << DefaultArg->getSourceRange();
82    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p7
84      //   Local variables shall not be used in default argument
85      //   expressions.
86      if (VDecl->isBlockVarDecl())
87        return S->Diag(DRE->getSourceRange().getBegin(),
88                       diag::err_param_default_argument_references_local)
89          << VDecl->getDeclName() << DefaultArg->getSourceRange();
90    }
91
92    return false;
93  }
94
95  /// VisitCXXThisExpr - Visit a C++ "this" expression.
96  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
97    // C++ [dcl.fct.default]p8:
98    //   The keyword this shall not be used in a default argument of a
99    //   member function.
100    return S->Diag(ThisE->getSourceRange().getBegin(),
101                   diag::err_param_default_argument_references_this)
102               << ThisE->getSourceRange();
103  }
104}
105
106bool
107Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
108                              SourceLocation EqualLoc) {
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  //
257  // C++ [dcl.fct.default]p6:
258  //   Except for member functions of class templates, the default arguments
259  //   in a member function definition that appears outside of the class
260  //   definition are added to the set of default arguments provided by the
261  //   member function declaration in the class definition.
262  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
263    ParmVarDecl *OldParam = Old->getParamDecl(p);
264    ParmVarDecl *NewParam = New->getParamDecl(p);
265
266    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
267      Diag(NewParam->getLocation(),
268           diag::err_param_default_argument_redefinition)
269        << NewParam->getDefaultArgRange();
270
271      // Look for the function declaration where the default argument was
272      // actually written, which may be a declaration prior to Old.
273      for (FunctionDecl *Older = Old->getPreviousDeclaration();
274           Older; Older = Older->getPreviousDeclaration()) {
275        if (!Older->getParamDecl(p)->hasDefaultArg())
276          break;
277
278        OldParam = Older->getParamDecl(p);
279      }
280
281      Diag(OldParam->getLocation(), diag::note_previous_definition)
282        << OldParam->getDefaultArgRange();
283      Invalid = true;
284    } else if (OldParam->hasDefaultArg()) {
285      // Merge the old default argument into the new parameter
286      if (OldParam->hasUninstantiatedDefaultArg())
287        NewParam->setUninstantiatedDefaultArg(
288                                      OldParam->getUninstantiatedDefaultArg());
289      else
290        NewParam->setDefaultArg(OldParam->getDefaultArg());
291    } else if (NewParam->hasDefaultArg()) {
292      if (New->getDescribedFunctionTemplate()) {
293        // Paragraph 4, quoted above, only applies to non-template functions.
294        Diag(NewParam->getLocation(),
295             diag::err_param_default_argument_template_redecl)
296          << NewParam->getDefaultArgRange();
297        Diag(Old->getLocation(), diag::note_template_prev_declaration)
298          << false;
299      } else if (New->getTemplateSpecializationKind()
300                   != TSK_ImplicitInstantiation &&
301                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
302        // C++ [temp.expr.spec]p21:
303        //   Default function arguments shall not be specified in a declaration
304        //   or a definition for one of the following explicit specializations:
305        //     - the explicit specialization of a function template;
306        //     - the explicit specialization of a member function template;
307        //     - the explicit specialization of a member function of a class
308        //       template where the class template specialization to which the
309        //       member function specialization belongs is implicitly
310        //       instantiated.
311        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
312          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
313          << New->getDeclName()
314          << NewParam->getDefaultArgRange();
315      } else if (New->getDeclContext()->isDependentContext()) {
316        // C++ [dcl.fct.default]p6 (DR217):
317        //   Default arguments for a member function of a class template shall
318        //   be specified on the initial declaration of the member function
319        //   within the class template.
320        //
321        // Reading the tea leaves a bit in DR217 and its reference to DR205
322        // leads me to the conclusion that one cannot add default function
323        // arguments for an out-of-line definition of a member function of a
324        // dependent type.
325        int WhichKind = 2;
326        if (CXXRecordDecl *Record
327              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
328          if (Record->getDescribedClassTemplate())
329            WhichKind = 0;
330          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
331            WhichKind = 1;
332          else
333            WhichKind = 2;
334        }
335
336        Diag(NewParam->getLocation(),
337             diag::err_param_default_argument_member_template_redecl)
338          << WhichKind
339          << NewParam->getDefaultArgRange();
340      }
341    }
342  }
343
344  if (CheckEquivalentExceptionSpec(
345          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
346          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
347    Invalid = true;
348  }
349
350  return Invalid;
351}
352
353/// CheckCXXDefaultArguments - Verify that the default arguments for a
354/// function declaration are well-formed according to C++
355/// [dcl.fct.default].
356void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
357  unsigned NumParams = FD->getNumParams();
358  unsigned p;
359
360  // Find first parameter with a default argument
361  for (p = 0; p < NumParams; ++p) {
362    ParmVarDecl *Param = FD->getParamDecl(p);
363    if (Param->hasDefaultArg())
364      break;
365  }
366
367  // C++ [dcl.fct.default]p4:
368  //   In a given function declaration, all parameters
369  //   subsequent to a parameter with a default argument shall
370  //   have default arguments supplied in this or previous
371  //   declarations. A default argument shall not be redefined
372  //   by a later declaration (not even to the same value).
373  unsigned LastMissingDefaultArg = 0;
374  for (; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (!Param->hasDefaultArg()) {
377      if (Param->isInvalidDecl())
378        /* We already complained about this parameter. */;
379      else if (Param->getIdentifier())
380        Diag(Param->getLocation(),
381             diag::err_param_default_argument_missing_name)
382          << Param->getIdentifier();
383      else
384        Diag(Param->getLocation(),
385             diag::err_param_default_argument_missing);
386
387      LastMissingDefaultArg = p;
388    }
389  }
390
391  if (LastMissingDefaultArg > 0) {
392    // Some default arguments were missing. Clear out all of the
393    // default arguments up to (and including) the last missing
394    // default argument, so that we leave the function parameters
395    // in a semantically valid state.
396    for (p = 0; p <= LastMissingDefaultArg; ++p) {
397      ParmVarDecl *Param = FD->getParamDecl(p);
398      if (Param->hasDefaultArg()) {
399        if (!Param->hasUnparsedDefaultArg())
400          Param->getDefaultArg()->Destroy(Context);
401        Param->setDefaultArg(0);
402      }
403    }
404  }
405}
406
407/// isCurrentClassName - Determine whether the identifier II is the
408/// name of the class type currently being defined. In the case of
409/// nested classes, this will only return true if II is the name of
410/// the innermost class.
411bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
412                              const CXXScopeSpec *SS) {
413  CXXRecordDecl *CurDecl;
414  if (SS && SS->isSet() && !SS->isInvalid()) {
415    DeclContext *DC = computeDeclContext(*SS, true);
416    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
417  } else
418    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
419
420  if (CurDecl)
421    return &II == CurDecl->getIdentifier();
422  else
423    return false;
424}
425
426/// \brief Check the validity of a C++ base class specifier.
427///
428/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
429/// and returns NULL otherwise.
430CXXBaseSpecifier *
431Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
432                         SourceRange SpecifierRange,
433                         bool Virtual, AccessSpecifier Access,
434                         QualType BaseType,
435                         SourceLocation BaseLoc) {
436  // C++ [class.union]p1:
437  //   A union shall not have base classes.
438  if (Class->isUnion()) {
439    Diag(Class->getLocation(), diag::err_base_clause_on_union)
440      << SpecifierRange;
441    return 0;
442  }
443
444  if (BaseType->isDependentType())
445    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
446                                Class->getTagKind() == RecordDecl::TK_class,
447                                Access, BaseType);
448
449  // Base specifiers must be record types.
450  if (!BaseType->isRecordType()) {
451    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
452    return 0;
453  }
454
455  // C++ [class.union]p1:
456  //   A union shall not be used as a base class.
457  if (BaseType->isUnionType()) {
458    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
459    return 0;
460  }
461
462  // C++ [class.derived]p2:
463  //   The class-name in a base-specifier shall not be an incompletely
464  //   defined class.
465  if (RequireCompleteType(BaseLoc, BaseType,
466                          PDiag(diag::err_incomplete_base_class)
467                            << SpecifierRange))
468    return 0;
469
470  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
471  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
472  assert(BaseDecl && "Record type has no declaration");
473  BaseDecl = BaseDecl->getDefinition(Context);
474  assert(BaseDecl && "Base type is not incomplete, but has no definition");
475  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
476  assert(CXXBaseDecl && "Base type is not a C++ type");
477  if (!CXXBaseDecl->isEmpty())
478    Class->setEmpty(false);
479  if (CXXBaseDecl->isPolymorphic())
480    Class->setPolymorphic(true);
481
482  // C++ [dcl.init.aggr]p1:
483  //   An aggregate is [...] a class with [...] no base classes [...].
484  Class->setAggregate(false);
485  Class->setPOD(false);
486
487  if (Virtual) {
488    // C++ [class.ctor]p5:
489    //   A constructor is trivial if its class has no virtual base classes.
490    Class->setHasTrivialConstructor(false);
491
492    // C++ [class.copy]p6:
493    //   A copy constructor is trivial if its class has no virtual base classes.
494    Class->setHasTrivialCopyConstructor(false);
495
496    // C++ [class.copy]p11:
497    //   A copy assignment operator is trivial if its class has no virtual
498    //   base classes.
499    Class->setHasTrivialCopyAssignment(false);
500
501    // C++0x [meta.unary.prop] is_empty:
502    //    T is a class type, but not a union type, with ... no virtual base
503    //    classes
504    Class->setEmpty(false);
505  } else {
506    // C++ [class.ctor]p5:
507    //   A constructor is trivial if all the direct base classes of its
508    //   class have trivial constructors.
509    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
510      Class->setHasTrivialConstructor(false);
511
512    // C++ [class.copy]p6:
513    //   A copy constructor is trivial if all the direct base classes of its
514    //   class have trivial copy constructors.
515    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
516      Class->setHasTrivialCopyConstructor(false);
517
518    // C++ [class.copy]p11:
519    //   A copy assignment operator is trivial if all the direct base classes
520    //   of its class have trivial copy assignment operators.
521    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
522      Class->setHasTrivialCopyAssignment(false);
523  }
524
525  // C++ [class.ctor]p3:
526  //   A destructor is trivial if all the direct base classes of its class
527  //   have trivial destructors.
528  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
529    Class->setHasTrivialDestructor(false);
530
531  // Create the base specifier.
532  // FIXME: Allocate via ASTContext?
533  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
534                              Class->getTagKind() == RecordDecl::TK_class,
535                              Access, BaseType);
536}
537
538/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
539/// one entry in the base class list of a class specifier, for
540/// example:
541///    class foo : public bar, virtual private baz {
542/// 'public bar' and 'virtual private baz' are each base-specifiers.
543Sema::BaseResult
544Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
545                         bool Virtual, AccessSpecifier Access,
546                         TypeTy *basetype, SourceLocation BaseLoc) {
547  if (!classdecl)
548    return true;
549
550  AdjustDeclIfTemplate(classdecl);
551  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
552  QualType BaseType = GetTypeFromParser(basetype);
553  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
554                                                      Virtual, Access,
555                                                      BaseType, BaseLoc))
556    return BaseSpec;
557
558  return true;
559}
560
561/// \brief Performs the actual work of attaching the given base class
562/// specifiers to a C++ class.
563bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
564                                unsigned NumBases) {
565 if (NumBases == 0)
566    return false;
567
568  // Used to keep track of which base types we have already seen, so
569  // that we can properly diagnose redundant direct base types. Note
570  // that the key is always the unqualified canonical type of the base
571  // class.
572  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
573
574  // Copy non-redundant base specifiers into permanent storage.
575  unsigned NumGoodBases = 0;
576  bool Invalid = false;
577  for (unsigned idx = 0; idx < NumBases; ++idx) {
578    QualType NewBaseType
579      = Context.getCanonicalType(Bases[idx]->getType());
580    NewBaseType = NewBaseType.getUnqualifiedType();
581
582    if (KnownBaseTypes[NewBaseType]) {
583      // C++ [class.mi]p3:
584      //   A class shall not be specified as a direct base class of a
585      //   derived class more than once.
586      Diag(Bases[idx]->getSourceRange().getBegin(),
587           diag::err_duplicate_base_class)
588        << KnownBaseTypes[NewBaseType]->getType()
589        << Bases[idx]->getSourceRange();
590
591      // Delete the duplicate base class specifier; we're going to
592      // overwrite its pointer later.
593      Context.Deallocate(Bases[idx]);
594
595      Invalid = true;
596    } else {
597      // Okay, add this new base class.
598      KnownBaseTypes[NewBaseType] = Bases[idx];
599      Bases[NumGoodBases++] = Bases[idx];
600    }
601  }
602
603  // Attach the remaining base class specifiers to the derived class.
604  Class->setBases(Context, Bases, NumGoodBases);
605
606  // Delete the remaining (good) base class specifiers, since their
607  // data has been copied into the CXXRecordDecl.
608  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
609    Context.Deallocate(Bases[idx]);
610
611  return Invalid;
612}
613
614/// ActOnBaseSpecifiers - Attach the given base specifiers to the
615/// class, after checking whether there are any duplicate base
616/// classes.
617void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
618                               unsigned NumBases) {
619  if (!ClassDecl || !Bases || !NumBases)
620    return;
621
622  AdjustDeclIfTemplate(ClassDecl);
623  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
624                       (CXXBaseSpecifier**)(Bases), NumBases);
625}
626
627/// \brief Determine whether the type \p Derived is a C++ class that is
628/// derived from the type \p Base.
629bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
630  if (!getLangOptions().CPlusPlus)
631    return false;
632
633  const RecordType *DerivedRT = Derived->getAs<RecordType>();
634  if (!DerivedRT)
635    return false;
636
637  const RecordType *BaseRT = Base->getAs<RecordType>();
638  if (!BaseRT)
639    return false;
640
641  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
642  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
643  return DerivedRD->isDerivedFrom(BaseRD);
644}
645
646/// \brief Determine whether the type \p Derived is a C++ class that is
647/// derived from the type \p Base.
648bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
649  if (!getLangOptions().CPlusPlus)
650    return false;
651
652  const RecordType *DerivedRT = Derived->getAs<RecordType>();
653  if (!DerivedRT)
654    return false;
655
656  const RecordType *BaseRT = Base->getAs<RecordType>();
657  if (!BaseRT)
658    return false;
659
660  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
661  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
662  return DerivedRD->isDerivedFrom(BaseRD, Paths);
663}
664
665/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
666/// conversion (where Derived and Base are class types) is
667/// well-formed, meaning that the conversion is unambiguous (and
668/// that all of the base classes are accessible). Returns true
669/// and emits a diagnostic if the code is ill-formed, returns false
670/// otherwise. Loc is the location where this routine should point to
671/// if there is an error, and Range is the source range to highlight
672/// if there is an error.
673bool
674Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
675                                   unsigned InaccessibleBaseID,
676                                   unsigned AmbigiousBaseConvID,
677                                   SourceLocation Loc, SourceRange Range,
678                                   DeclarationName Name) {
679  // First, determine whether the path from Derived to Base is
680  // ambiguous. This is slightly more expensive than checking whether
681  // the Derived to Base conversion exists, because here we need to
682  // explore multiple paths to determine if there is an ambiguity.
683  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
684                     /*DetectVirtual=*/false);
685  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
686  assert(DerivationOkay &&
687         "Can only be used with a derived-to-base conversion");
688  (void)DerivationOkay;
689
690  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
691    // Check that the base class can be accessed.
692    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
693                                Name);
694  }
695
696  // We know that the derived-to-base conversion is ambiguous, and
697  // we're going to produce a diagnostic. Perform the derived-to-base
698  // search just one more time to compute all of the possible paths so
699  // that we can print them out. This is more expensive than any of
700  // the previous derived-to-base checks we've done, but at this point
701  // performance isn't as much of an issue.
702  Paths.clear();
703  Paths.setRecordingPaths(true);
704  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
705  assert(StillOkay && "Can only be used with a derived-to-base conversion");
706  (void)StillOkay;
707
708  // Build up a textual representation of the ambiguous paths, e.g.,
709  // D -> B -> A, that will be used to illustrate the ambiguous
710  // conversions in the diagnostic. We only print one of the paths
711  // to each base class subobject.
712  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
713
714  Diag(Loc, AmbigiousBaseConvID)
715  << Derived << Base << PathDisplayStr << Range << Name;
716  return true;
717}
718
719bool
720Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
721                                   SourceLocation Loc, SourceRange Range) {
722  return CheckDerivedToBaseConversion(Derived, Base,
723                                      diag::err_conv_to_inaccessible_base,
724                                      diag::err_ambiguous_derived_to_base_conv,
725                                      Loc, Range, DeclarationName());
726}
727
728
729/// @brief Builds a string representing ambiguous paths from a
730/// specific derived class to different subobjects of the same base
731/// class.
732///
733/// This function builds a string that can be used in error messages
734/// to show the different paths that one can take through the
735/// inheritance hierarchy to go from the derived class to different
736/// subobjects of a base class. The result looks something like this:
737/// @code
738/// struct D -> struct B -> struct A
739/// struct D -> struct C -> struct A
740/// @endcode
741std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
742  std::string PathDisplayStr;
743  std::set<unsigned> DisplayedPaths;
744  for (CXXBasePaths::paths_iterator Path = Paths.begin();
745       Path != Paths.end(); ++Path) {
746    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
747      // We haven't displayed a path to this particular base
748      // class subobject yet.
749      PathDisplayStr += "\n    ";
750      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
751      for (CXXBasePath::const_iterator Element = Path->begin();
752           Element != Path->end(); ++Element)
753        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
754    }
755  }
756
757  return PathDisplayStr;
758}
759
760//===----------------------------------------------------------------------===//
761// C++ class member Handling
762//===----------------------------------------------------------------------===//
763
764/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
765/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
766/// bitfield width if there is one and 'InitExpr' specifies the initializer if
767/// any.
768Sema::DeclPtrTy
769Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
770                               MultiTemplateParamsArg TemplateParameterLists,
771                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
772  const DeclSpec &DS = D.getDeclSpec();
773  DeclarationName Name = GetNameForDeclarator(D);
774  Expr *BitWidth = static_cast<Expr*>(BW);
775  Expr *Init = static_cast<Expr*>(InitExpr);
776  SourceLocation Loc = D.getIdentifierLoc();
777
778  bool isFunc = D.isFunctionDeclarator();
779
780  assert(!DS.isFriendSpecified());
781
782  // C++ 9.2p6: A member shall not be declared to have automatic storage
783  // duration (auto, register) or with the extern storage-class-specifier.
784  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
785  // data members and cannot be applied to names declared const or static,
786  // and cannot be applied to reference members.
787  switch (DS.getStorageClassSpec()) {
788    case DeclSpec::SCS_unspecified:
789    case DeclSpec::SCS_typedef:
790    case DeclSpec::SCS_static:
791      // FALL THROUGH.
792      break;
793    case DeclSpec::SCS_mutable:
794      if (isFunc) {
795        if (DS.getStorageClassSpecLoc().isValid())
796          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
797        else
798          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
799
800        // FIXME: It would be nicer if the keyword was ignored only for this
801        // declarator. Otherwise we could get follow-up errors.
802        D.getMutableDeclSpec().ClearStorageClassSpecs();
803      } else {
804        QualType T = GetTypeForDeclarator(D, S);
805        diag::kind err = static_cast<diag::kind>(0);
806        if (T->isReferenceType())
807          err = diag::err_mutable_reference;
808        else if (T.isConstQualified())
809          err = diag::err_mutable_const;
810        if (err != 0) {
811          if (DS.getStorageClassSpecLoc().isValid())
812            Diag(DS.getStorageClassSpecLoc(), err);
813          else
814            Diag(DS.getThreadSpecLoc(), err);
815          // FIXME: It would be nicer if the keyword was ignored only for this
816          // declarator. Otherwise we could get follow-up errors.
817          D.getMutableDeclSpec().ClearStorageClassSpecs();
818        }
819      }
820      break;
821    default:
822      if (DS.getStorageClassSpecLoc().isValid())
823        Diag(DS.getStorageClassSpecLoc(),
824             diag::err_storageclass_invalid_for_member);
825      else
826        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
827      D.getMutableDeclSpec().ClearStorageClassSpecs();
828  }
829
830  if (!isFunc &&
831      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
832      D.getNumTypeObjects() == 0) {
833    // Check also for this case:
834    //
835    // typedef int f();
836    // f a;
837    //
838    QualType TDType = GetTypeFromParser(DS.getTypeRep());
839    isFunc = TDType->isFunctionType();
840  }
841
842  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
843                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
844                      !isFunc);
845
846  Decl *Member;
847  if (isInstField) {
848    // FIXME: Check for template parameters!
849    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
850                         AS);
851    assert(Member && "HandleField never returns null");
852  } else {
853    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
854               .getAs<Decl>();
855    if (!Member) {
856      if (BitWidth) DeleteExpr(BitWidth);
857      return DeclPtrTy();
858    }
859
860    // Non-instance-fields can't have a bitfield.
861    if (BitWidth) {
862      if (Member->isInvalidDecl()) {
863        // don't emit another diagnostic.
864      } else if (isa<VarDecl>(Member)) {
865        // C++ 9.6p3: A bit-field shall not be a static member.
866        // "static member 'A' cannot be a bit-field"
867        Diag(Loc, diag::err_static_not_bitfield)
868          << Name << BitWidth->getSourceRange();
869      } else if (isa<TypedefDecl>(Member)) {
870        // "typedef member 'x' cannot be a bit-field"
871        Diag(Loc, diag::err_typedef_not_bitfield)
872          << Name << BitWidth->getSourceRange();
873      } else {
874        // A function typedef ("typedef int f(); f a;").
875        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
876        Diag(Loc, diag::err_not_integral_type_bitfield)
877          << Name << cast<ValueDecl>(Member)->getType()
878          << BitWidth->getSourceRange();
879      }
880
881      DeleteExpr(BitWidth);
882      BitWidth = 0;
883      Member->setInvalidDecl();
884    }
885
886    Member->setAccess(AS);
887
888    // If we have declared a member function template, set the access of the
889    // templated declaration as well.
890    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
891      FunTmpl->getTemplatedDecl()->setAccess(AS);
892  }
893
894  assert((Name || isInstField) && "No identifier for non-field ?");
895
896  if (Init)
897    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
898  if (Deleted) // FIXME: Source location is not very good.
899    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
900
901  if (isInstField) {
902    FieldCollector->Add(cast<FieldDecl>(Member));
903    return DeclPtrTy();
904  }
905  return DeclPtrTy::make(Member);
906}
907
908/// ActOnMemInitializer - Handle a C++ member initializer.
909Sema::MemInitResult
910Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
911                          Scope *S,
912                          const CXXScopeSpec &SS,
913                          IdentifierInfo *MemberOrBase,
914                          TypeTy *TemplateTypeTy,
915                          SourceLocation IdLoc,
916                          SourceLocation LParenLoc,
917                          ExprTy **Args, unsigned NumArgs,
918                          SourceLocation *CommaLocs,
919                          SourceLocation RParenLoc) {
920  if (!ConstructorD)
921    return true;
922
923  AdjustDeclIfTemplate(ConstructorD);
924
925  CXXConstructorDecl *Constructor
926    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
927  if (!Constructor) {
928    // The user wrote a constructor initializer on a function that is
929    // not a C++ constructor. Ignore the error for now, because we may
930    // have more member initializers coming; we'll diagnose it just
931    // once in ActOnMemInitializers.
932    return true;
933  }
934
935  CXXRecordDecl *ClassDecl = Constructor->getParent();
936
937  // C++ [class.base.init]p2:
938  //   Names in a mem-initializer-id are looked up in the scope of the
939  //   constructor’s class and, if not found in that scope, are looked
940  //   up in the scope containing the constructor’s
941  //   definition. [Note: if the constructor’s class contains a member
942  //   with the same name as a direct or virtual base class of the
943  //   class, a mem-initializer-id naming the member or base class and
944  //   composed of a single identifier refers to the class member. A
945  //   mem-initializer-id for the hidden base class may be specified
946  //   using a qualified name. ]
947  if (!SS.getScopeRep() && !TemplateTypeTy) {
948    // Look for a member, first.
949    FieldDecl *Member = 0;
950    DeclContext::lookup_result Result
951      = ClassDecl->lookup(MemberOrBase);
952    if (Result.first != Result.second)
953      Member = dyn_cast<FieldDecl>(*Result.first);
954
955    // FIXME: Handle members of an anonymous union.
956
957    if (Member)
958      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
959                                    RParenLoc);
960  }
961  // It didn't name a member, so see if it names a class.
962  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
963                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
964  if (!BaseTy)
965    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
966      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
967
968  QualType BaseType = GetTypeFromParser(BaseTy);
969
970  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
971                              RParenLoc, ClassDecl);
972}
973
974/// Checks an initializer expression for use of uninitialized fields, such as
975/// containing the field that is being initialized. Returns true if there is an
976/// uninitialized field was used an updates the SourceLocation parameter; false
977/// otherwise.
978static bool InitExprContainsUninitializedFields(const Stmt* S,
979                                                const FieldDecl* LhsField,
980                                                SourceLocation* L) {
981  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
982  if (ME) {
983    const NamedDecl* RhsField = ME->getMemberDecl();
984    if (RhsField == LhsField) {
985      // Initializing a field with itself. Throw a warning.
986      // But wait; there are exceptions!
987      // Exception #1:  The field may not belong to this record.
988      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
989      const Expr* base = ME->getBase();
990      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
991        // Even though the field matches, it does not belong to this record.
992        return false;
993      }
994      // None of the exceptions triggered; return true to indicate an
995      // uninitialized field was used.
996      *L = ME->getMemberLoc();
997      return true;
998    }
999  }
1000  bool found = false;
1001  for (Stmt::const_child_iterator it = S->child_begin();
1002       it != S->child_end() && found == false;
1003       ++it) {
1004    if (isa<CallExpr>(S)) {
1005      // Do not descend into function calls or constructors, as the use
1006      // of an uninitialized field may be valid. One would have to inspect
1007      // the contents of the function/ctor to determine if it is safe or not.
1008      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1009      // may be safe, depending on what the function/ctor does.
1010      continue;
1011    }
1012    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1013  }
1014  return found;
1015}
1016
1017Sema::MemInitResult
1018Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1019                             unsigned NumArgs, SourceLocation IdLoc,
1020                             SourceLocation RParenLoc) {
1021  // Diagnose value-uses of fields to initialize themselves, e.g.
1022  //   foo(foo)
1023  // where foo is not also a parameter to the constructor.
1024  // TODO: implement -Wuninitialized and fold this into that framework.
1025  for (unsigned i = 0; i < NumArgs; ++i) {
1026    SourceLocation L;
1027    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1028      // FIXME: Return true in the case when other fields are used before being
1029      // uninitialized. For example, let this field be the i'th field. When
1030      // initializing the i'th field, throw a warning if any of the >= i'th
1031      // fields are used, as they are not yet initialized.
1032      // Right now we are only handling the case where the i'th field uses
1033      // itself in its initializer.
1034      Diag(L, diag::warn_field_is_uninit);
1035    }
1036  }
1037
1038  bool HasDependentArg = false;
1039  for (unsigned i = 0; i < NumArgs; i++)
1040    HasDependentArg |= Args[i]->isTypeDependent();
1041
1042  CXXConstructorDecl *C = 0;
1043  QualType FieldType = Member->getType();
1044  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1045    FieldType = Array->getElementType();
1046  if (FieldType->isDependentType()) {
1047    // Can't check init for dependent type.
1048  } else if (FieldType->isRecordType()) {
1049    // Member is a record (struct/union/class), so pass the initializer
1050    // arguments down to the record's constructor.
1051    if (!HasDependentArg) {
1052      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1053
1054      C = PerformInitializationByConstructor(FieldType,
1055                                             MultiExprArg(*this,
1056                                                          (void**)Args,
1057                                                          NumArgs),
1058                                             IdLoc,
1059                                             SourceRange(IdLoc, RParenLoc),
1060                                             Member->getDeclName(), IK_Direct,
1061                                             ConstructorArgs);
1062
1063      if (C) {
1064        // Take over the constructor arguments as our own.
1065        NumArgs = ConstructorArgs.size();
1066        Args = (Expr **)ConstructorArgs.take();
1067      }
1068    }
1069  } else if (NumArgs != 1 && NumArgs != 0) {
1070    // The member type is not a record type (or an array of record
1071    // types), so it can be only be default- or copy-initialized.
1072    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1073                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1074  } else if (!HasDependentArg) {
1075    Expr *NewExp;
1076    if (NumArgs == 0) {
1077      if (FieldType->isReferenceType()) {
1078        Diag(IdLoc, diag::err_null_intialized_reference_member)
1079              << Member->getDeclName();
1080        return Diag(Member->getLocation(), diag::note_declared_at);
1081      }
1082      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1083      NumArgs = 1;
1084    }
1085    else
1086      NewExp = (Expr*)Args[0];
1087    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1088      return true;
1089    Args[0] = NewExp;
1090  }
1091  // FIXME: Perform direct initialization of the member.
1092  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1093                                                  NumArgs, C, IdLoc, RParenLoc);
1094}
1095
1096Sema::MemInitResult
1097Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1098                           unsigned NumArgs, SourceLocation IdLoc,
1099                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1100  bool HasDependentArg = false;
1101  for (unsigned i = 0; i < NumArgs; i++)
1102    HasDependentArg |= Args[i]->isTypeDependent();
1103
1104  if (!BaseType->isDependentType()) {
1105    if (!BaseType->isRecordType())
1106      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1107        << BaseType << SourceRange(IdLoc, RParenLoc);
1108
1109    // C++ [class.base.init]p2:
1110    //   [...] Unless the mem-initializer-id names a nonstatic data
1111    //   member of the constructor’s class or a direct or virtual base
1112    //   of that class, the mem-initializer is ill-formed. A
1113    //   mem-initializer-list can initialize a base class using any
1114    //   name that denotes that base class type.
1115
1116    // First, check for a direct base class.
1117    const CXXBaseSpecifier *DirectBaseSpec = 0;
1118    for (CXXRecordDecl::base_class_const_iterator Base =
1119         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1120      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1121          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1122        // We found a direct base of this type. That's what we're
1123        // initializing.
1124        DirectBaseSpec = &*Base;
1125        break;
1126      }
1127    }
1128
1129    // Check for a virtual base class.
1130    // FIXME: We might be able to short-circuit this if we know in advance that
1131    // there are no virtual bases.
1132    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1133    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1134      // We haven't found a base yet; search the class hierarchy for a
1135      // virtual base class.
1136      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1137                         /*DetectVirtual=*/false);
1138      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1139        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1140             Path != Paths.end(); ++Path) {
1141          if (Path->back().Base->isVirtual()) {
1142            VirtualBaseSpec = Path->back().Base;
1143            break;
1144          }
1145        }
1146      }
1147    }
1148
1149    // C++ [base.class.init]p2:
1150    //   If a mem-initializer-id is ambiguous because it designates both
1151    //   a direct non-virtual base class and an inherited virtual base
1152    //   class, the mem-initializer is ill-formed.
1153    if (DirectBaseSpec && VirtualBaseSpec)
1154      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1155        << BaseType << SourceRange(IdLoc, RParenLoc);
1156    // C++ [base.class.init]p2:
1157    // Unless the mem-initializer-id names a nonstatic data membeer of the
1158    // constructor's class ot a direst or virtual base of that class, the
1159    // mem-initializer is ill-formed.
1160    if (!DirectBaseSpec && !VirtualBaseSpec)
1161      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1162      << BaseType << ClassDecl->getNameAsCString()
1163      << SourceRange(IdLoc, RParenLoc);
1164  }
1165
1166  CXXConstructorDecl *C = 0;
1167  if (!BaseType->isDependentType() && !HasDependentArg) {
1168    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1169                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1170    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1171
1172    C = PerformInitializationByConstructor(BaseType,
1173                                           MultiExprArg(*this,
1174                                                        (void**)Args, NumArgs),
1175                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1176                                           Name, IK_Direct,
1177                                           ConstructorArgs);
1178    if (C) {
1179      // Take over the constructor arguments as our own.
1180      NumArgs = ConstructorArgs.size();
1181      Args = (Expr **)ConstructorArgs.take();
1182    }
1183  }
1184
1185  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1186                                                  NumArgs, C, IdLoc, RParenLoc);
1187}
1188
1189bool
1190Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1191                              CXXBaseOrMemberInitializer **Initializers,
1192                              unsigned NumInitializers,
1193                              bool IsImplicitConstructor) {
1194  // We need to build the initializer AST according to order of construction
1195  // and not what user specified in the Initializers list.
1196  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1197  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1198  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1199  bool HasDependentBaseInit = false;
1200  bool HadError = false;
1201
1202  for (unsigned i = 0; i < NumInitializers; i++) {
1203    CXXBaseOrMemberInitializer *Member = Initializers[i];
1204    if (Member->isBaseInitializer()) {
1205      if (Member->getBaseClass()->isDependentType())
1206        HasDependentBaseInit = true;
1207      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1208    } else {
1209      AllBaseFields[Member->getMember()] = Member;
1210    }
1211  }
1212
1213  if (HasDependentBaseInit) {
1214    // FIXME. This does not preserve the ordering of the initializers.
1215    // Try (with -Wreorder)
1216    // template<class X> struct A {};
1217    // template<class X> struct B : A<X> {
1218    //   B() : x1(10), A<X>() {}
1219    //   int x1;
1220    // };
1221    // B<int> x;
1222    // On seeing one dependent type, we should essentially exit this routine
1223    // while preserving user-declared initializer list. When this routine is
1224    // called during instantiatiation process, this routine will rebuild the
1225    // ordered initializer list correctly.
1226
1227    // If we have a dependent base initialization, we can't determine the
1228    // association between initializers and bases; just dump the known
1229    // initializers into the list, and don't try to deal with other bases.
1230    for (unsigned i = 0; i < NumInitializers; i++) {
1231      CXXBaseOrMemberInitializer *Member = Initializers[i];
1232      if (Member->isBaseInitializer())
1233        AllToInit.push_back(Member);
1234    }
1235  } else {
1236    // Push virtual bases before others.
1237    for (CXXRecordDecl::base_class_iterator VBase =
1238         ClassDecl->vbases_begin(),
1239         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1240      if (VBase->getType()->isDependentType())
1241        continue;
1242      if (CXXBaseOrMemberInitializer *Value =
1243          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1244        CXXRecordDecl *BaseDecl =
1245          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1246        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1247        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1248          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1249        AllToInit.push_back(Value);
1250      }
1251      else {
1252        CXXRecordDecl *VBaseDecl =
1253        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1254        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1255        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1256        if (!Ctor) {
1257          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1258            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1259            << 0 << VBase->getType();
1260          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1261            << Context.getTagDeclType(VBaseDecl);
1262          HadError = true;
1263          continue;
1264        }
1265
1266        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1267        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1268                                    Constructor->getLocation(), CtorArgs))
1269          continue;
1270
1271        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1272
1273        CXXBaseOrMemberInitializer *Member =
1274          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1275                                                   CtorArgs.takeAs<Expr>(),
1276                                                   CtorArgs.size(), Ctor,
1277                                                   SourceLocation(),
1278                                                   SourceLocation());
1279        AllToInit.push_back(Member);
1280      }
1281    }
1282
1283    for (CXXRecordDecl::base_class_iterator Base =
1284         ClassDecl->bases_begin(),
1285         E = ClassDecl->bases_end(); Base != E; ++Base) {
1286      // Virtuals are in the virtual base list and already constructed.
1287      if (Base->isVirtual())
1288        continue;
1289      // Skip dependent types.
1290      if (Base->getType()->isDependentType())
1291        continue;
1292      if (CXXBaseOrMemberInitializer *Value =
1293          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1294        CXXRecordDecl *BaseDecl =
1295          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1296        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1297        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1298          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1299        AllToInit.push_back(Value);
1300      }
1301      else {
1302        CXXRecordDecl *BaseDecl =
1303          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1304        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1305         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1306        if (!Ctor) {
1307          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1308            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1309            << 0 << Base->getType();
1310          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1311            << Context.getTagDeclType(BaseDecl);
1312          HadError = true;
1313          continue;
1314        }
1315
1316        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1317        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1318                                     Constructor->getLocation(), CtorArgs))
1319          continue;
1320
1321        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1322
1323        CXXBaseOrMemberInitializer *Member =
1324          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1325                                                   CtorArgs.takeAs<Expr>(),
1326                                                   CtorArgs.size(), Ctor,
1327                                                   SourceLocation(),
1328                                                   SourceLocation());
1329        AllToInit.push_back(Member);
1330      }
1331    }
1332  }
1333
1334  // non-static data members.
1335  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1336       E = ClassDecl->field_end(); Field != E; ++Field) {
1337    if ((*Field)->isAnonymousStructOrUnion()) {
1338      if (const RecordType *FieldClassType =
1339          Field->getType()->getAs<RecordType>()) {
1340        CXXRecordDecl *FieldClassDecl
1341        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1342        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1343            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1344          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1345            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1346            // set to the anonymous union data member used in the initializer
1347            // list.
1348            Value->setMember(*Field);
1349            Value->setAnonUnionMember(*FA);
1350            AllToInit.push_back(Value);
1351            break;
1352          }
1353        }
1354      }
1355      continue;
1356    }
1357    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1358      QualType FT = (*Field)->getType();
1359      if (const RecordType* RT = FT->getAs<RecordType>()) {
1360        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1361        assert(FieldRecDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1362        if (CXXConstructorDecl *Ctor =
1363              FieldRecDecl->getDefaultConstructor(Context))
1364          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1365      }
1366      AllToInit.push_back(Value);
1367      continue;
1368    }
1369
1370    if ((*Field)->getType()->isDependentType())
1371      continue;
1372
1373    QualType FT = Context.getBaseElementType((*Field)->getType());
1374    if (const RecordType* RT = FT->getAs<RecordType>()) {
1375      CXXConstructorDecl *Ctor =
1376        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1377      if (!Ctor) {
1378        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1379          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1380          << 1 << (*Field)->getDeclName();
1381        Diag(Field->getLocation(), diag::note_field_decl);
1382        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1383          << Context.getTagDeclType(RT->getDecl());
1384        HadError = true;
1385        continue;
1386      }
1387
1388      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1389      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1390                                  Constructor->getLocation(), CtorArgs))
1391        continue;
1392
1393      CXXBaseOrMemberInitializer *Member =
1394        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1395                                                 CtorArgs.size(), Ctor,
1396                                                 SourceLocation(),
1397                                                 SourceLocation());
1398
1399      AllToInit.push_back(Member);
1400      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1401      if (FT.isConstQualified() && Ctor->isTrivial()) {
1402        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1403          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1404          << 1 << (*Field)->getDeclName();
1405        Diag((*Field)->getLocation(), diag::note_declared_at);
1406        HadError = true;
1407      }
1408    }
1409    else if (FT->isReferenceType()) {
1410      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1411        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1412        << 0 << (*Field)->getDeclName();
1413      Diag((*Field)->getLocation(), diag::note_declared_at);
1414      HadError = true;
1415    }
1416    else if (FT.isConstQualified()) {
1417      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1418        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1419        << 1 << (*Field)->getDeclName();
1420      Diag((*Field)->getLocation(), diag::note_declared_at);
1421      HadError = true;
1422    }
1423  }
1424
1425  NumInitializers = AllToInit.size();
1426  if (NumInitializers > 0) {
1427    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1428    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1429      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1430
1431    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1432    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1433      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1434  }
1435
1436  return HadError;
1437}
1438
1439static void *GetKeyForTopLevelField(FieldDecl *Field) {
1440  // For anonymous unions, use the class declaration as the key.
1441  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1442    if (RT->getDecl()->isAnonymousStructOrUnion())
1443      return static_cast<void *>(RT->getDecl());
1444  }
1445  return static_cast<void *>(Field);
1446}
1447
1448static void *GetKeyForBase(QualType BaseType) {
1449  if (const RecordType *RT = BaseType->getAs<RecordType>())
1450    return (void *)RT;
1451
1452  assert(0 && "Unexpected base type!");
1453  return 0;
1454}
1455
1456static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1457                             bool MemberMaybeAnon = false) {
1458  // For fields injected into the class via declaration of an anonymous union,
1459  // use its anonymous union class declaration as the unique key.
1460  if (Member->isMemberInitializer()) {
1461    FieldDecl *Field = Member->getMember();
1462
1463    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1464    // data member of the class. Data member used in the initializer list is
1465    // in AnonUnionMember field.
1466    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1467      Field = Member->getAnonUnionMember();
1468    if (Field->getDeclContext()->isRecord()) {
1469      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1470      if (RD->isAnonymousStructOrUnion())
1471        return static_cast<void *>(RD);
1472    }
1473    return static_cast<void *>(Field);
1474  }
1475
1476  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1477}
1478
1479/// ActOnMemInitializers - Handle the member initializers for a constructor.
1480void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1481                                SourceLocation ColonLoc,
1482                                MemInitTy **MemInits, unsigned NumMemInits) {
1483  if (!ConstructorDecl)
1484    return;
1485
1486  AdjustDeclIfTemplate(ConstructorDecl);
1487
1488  CXXConstructorDecl *Constructor
1489    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1490
1491  if (!Constructor) {
1492    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1493    return;
1494  }
1495
1496  if (!Constructor->isDependentContext()) {
1497    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1498    bool err = false;
1499    for (unsigned i = 0; i < NumMemInits; i++) {
1500      CXXBaseOrMemberInitializer *Member =
1501        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1502      void *KeyToMember = GetKeyForMember(Member);
1503      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1504      if (!PrevMember) {
1505        PrevMember = Member;
1506        continue;
1507      }
1508      if (FieldDecl *Field = Member->getMember())
1509        Diag(Member->getSourceLocation(),
1510             diag::error_multiple_mem_initialization)
1511        << Field->getNameAsString();
1512      else {
1513        Type *BaseClass = Member->getBaseClass();
1514        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1515        Diag(Member->getSourceLocation(),
1516             diag::error_multiple_base_initialization)
1517          << QualType(BaseClass, 0);
1518      }
1519      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1520        << 0;
1521      err = true;
1522    }
1523
1524    if (err)
1525      return;
1526  }
1527
1528  SetBaseOrMemberInitializers(Constructor,
1529                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1530                      NumMemInits, false);
1531
1532  if (Constructor->isDependentContext())
1533    return;
1534
1535  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1536      Diagnostic::Ignored &&
1537      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1538      Diagnostic::Ignored)
1539    return;
1540
1541  // Also issue warning if order of ctor-initializer list does not match order
1542  // of 1) base class declarations and 2) order of non-static data members.
1543  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1544
1545  CXXRecordDecl *ClassDecl
1546    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1547  // Push virtual bases before others.
1548  for (CXXRecordDecl::base_class_iterator VBase =
1549       ClassDecl->vbases_begin(),
1550       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1551    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1552
1553  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1554       E = ClassDecl->bases_end(); Base != E; ++Base) {
1555    // Virtuals are alread in the virtual base list and are constructed
1556    // first.
1557    if (Base->isVirtual())
1558      continue;
1559    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1560  }
1561
1562  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1563       E = ClassDecl->field_end(); Field != E; ++Field)
1564    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1565
1566  int Last = AllBaseOrMembers.size();
1567  int curIndex = 0;
1568  CXXBaseOrMemberInitializer *PrevMember = 0;
1569  for (unsigned i = 0; i < NumMemInits; i++) {
1570    CXXBaseOrMemberInitializer *Member =
1571      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1572    void *MemberInCtorList = GetKeyForMember(Member, true);
1573
1574    for (; curIndex < Last; curIndex++)
1575      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1576        break;
1577    if (curIndex == Last) {
1578      assert(PrevMember && "Member not in member list?!");
1579      // Initializer as specified in ctor-initializer list is out of order.
1580      // Issue a warning diagnostic.
1581      if (PrevMember->isBaseInitializer()) {
1582        // Diagnostics is for an initialized base class.
1583        Type *BaseClass = PrevMember->getBaseClass();
1584        Diag(PrevMember->getSourceLocation(),
1585             diag::warn_base_initialized)
1586          << QualType(BaseClass, 0);
1587      } else {
1588        FieldDecl *Field = PrevMember->getMember();
1589        Diag(PrevMember->getSourceLocation(),
1590             diag::warn_field_initialized)
1591          << Field->getNameAsString();
1592      }
1593      // Also the note!
1594      if (FieldDecl *Field = Member->getMember())
1595        Diag(Member->getSourceLocation(),
1596             diag::note_fieldorbase_initialized_here) << 0
1597          << Field->getNameAsString();
1598      else {
1599        Type *BaseClass = Member->getBaseClass();
1600        Diag(Member->getSourceLocation(),
1601             diag::note_fieldorbase_initialized_here) << 1
1602          << QualType(BaseClass, 0);
1603      }
1604      for (curIndex = 0; curIndex < Last; curIndex++)
1605        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1606          break;
1607    }
1608    PrevMember = Member;
1609  }
1610}
1611
1612void
1613Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1614  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1615  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1616
1617  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1618       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1619    if (VBase->getType()->isDependentType())
1620      continue;
1621    // Skip over virtual bases which have trivial destructors.
1622    CXXRecordDecl *BaseClassDecl
1623      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1624    if (BaseClassDecl->hasTrivialDestructor())
1625      continue;
1626    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1627      MarkDeclarationReferenced(Destructor->getLocation(),
1628                                const_cast<CXXDestructorDecl*>(Dtor));
1629
1630    uintptr_t Member =
1631    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1632      | CXXDestructorDecl::VBASE;
1633    AllToDestruct.push_back(Member);
1634  }
1635  for (CXXRecordDecl::base_class_iterator Base =
1636       ClassDecl->bases_begin(),
1637       E = ClassDecl->bases_end(); Base != E; ++Base) {
1638    if (Base->isVirtual())
1639      continue;
1640    if (Base->getType()->isDependentType())
1641      continue;
1642    // Skip over virtual bases which have trivial destructors.
1643    CXXRecordDecl *BaseClassDecl
1644    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1645    if (BaseClassDecl->hasTrivialDestructor())
1646      continue;
1647    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1648      MarkDeclarationReferenced(Destructor->getLocation(),
1649                                const_cast<CXXDestructorDecl*>(Dtor));
1650    uintptr_t Member =
1651    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1652      | CXXDestructorDecl::DRCTNONVBASE;
1653    AllToDestruct.push_back(Member);
1654  }
1655
1656  // non-static data members.
1657  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1658       E = ClassDecl->field_end(); Field != E; ++Field) {
1659    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1660
1661    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1662      // Skip over virtual bases which have trivial destructors.
1663      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1664      if (FieldClassDecl->hasTrivialDestructor())
1665        continue;
1666      if (const CXXDestructorDecl *Dtor =
1667            FieldClassDecl->getDestructor(Context))
1668        MarkDeclarationReferenced(Destructor->getLocation(),
1669                                  const_cast<CXXDestructorDecl*>(Dtor));
1670      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1671      AllToDestruct.push_back(Member);
1672    }
1673  }
1674
1675  unsigned NumDestructions = AllToDestruct.size();
1676  if (NumDestructions > 0) {
1677    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1678    uintptr_t *BaseOrMemberDestructions =
1679      new (Context) uintptr_t [NumDestructions];
1680    // Insert in reverse order.
1681    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1682      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1683    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1684  }
1685}
1686
1687void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1688  if (!CDtorDecl)
1689    return;
1690
1691  AdjustDeclIfTemplate(CDtorDecl);
1692
1693  if (CXXConstructorDecl *Constructor
1694      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1695    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1696}
1697
1698namespace {
1699  /// PureVirtualMethodCollector - traverses a class and its superclasses
1700  /// and determines if it has any pure virtual methods.
1701  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1702    ASTContext &Context;
1703
1704  public:
1705    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1706
1707  private:
1708    MethodList Methods;
1709
1710    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1711
1712  public:
1713    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1714      : Context(Ctx) {
1715
1716      MethodList List;
1717      Collect(RD, List);
1718
1719      // Copy the temporary list to methods, and make sure to ignore any
1720      // null entries.
1721      for (size_t i = 0, e = List.size(); i != e; ++i) {
1722        if (List[i])
1723          Methods.push_back(List[i]);
1724      }
1725    }
1726
1727    bool empty() const { return Methods.empty(); }
1728
1729    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1730    MethodList::const_iterator methods_end() { return Methods.end(); }
1731  };
1732
1733  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1734                                           MethodList& Methods) {
1735    // First, collect the pure virtual methods for the base classes.
1736    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1737         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1738      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1739        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1740        if (BaseDecl && BaseDecl->isAbstract())
1741          Collect(BaseDecl, Methods);
1742      }
1743    }
1744
1745    // Next, zero out any pure virtual methods that this class overrides.
1746    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1747
1748    MethodSetTy OverriddenMethods;
1749    size_t MethodsSize = Methods.size();
1750
1751    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1752         i != e; ++i) {
1753      // Traverse the record, looking for methods.
1754      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1755        // If the method is pure virtual, add it to the methods vector.
1756        if (MD->isPure())
1757          Methods.push_back(MD);
1758
1759        // Record all the overridden methods in our set.
1760        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1761             E = MD->end_overridden_methods(); I != E; ++I) {
1762          // Keep track of the overridden methods.
1763          OverriddenMethods.insert(*I);
1764        }
1765      }
1766    }
1767
1768    // Now go through the methods and zero out all the ones we know are
1769    // overridden.
1770    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1771      if (OverriddenMethods.count(Methods[i]))
1772        Methods[i] = 0;
1773    }
1774
1775  }
1776}
1777
1778
1779bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1780                                  unsigned DiagID, AbstractDiagSelID SelID,
1781                                  const CXXRecordDecl *CurrentRD) {
1782  if (SelID == -1)
1783    return RequireNonAbstractType(Loc, T,
1784                                  PDiag(DiagID), CurrentRD);
1785  else
1786    return RequireNonAbstractType(Loc, T,
1787                                  PDiag(DiagID) << SelID, CurrentRD);
1788}
1789
1790bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1791                                  const PartialDiagnostic &PD,
1792                                  const CXXRecordDecl *CurrentRD) {
1793  if (!getLangOptions().CPlusPlus)
1794    return false;
1795
1796  if (const ArrayType *AT = Context.getAsArrayType(T))
1797    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1798                                  CurrentRD);
1799
1800  if (const PointerType *PT = T->getAs<PointerType>()) {
1801    // Find the innermost pointer type.
1802    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1803      PT = T;
1804
1805    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1806      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1807  }
1808
1809  const RecordType *RT = T->getAs<RecordType>();
1810  if (!RT)
1811    return false;
1812
1813  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1814  if (!RD)
1815    return false;
1816
1817  if (CurrentRD && CurrentRD != RD)
1818    return false;
1819
1820  if (!RD->isAbstract())
1821    return false;
1822
1823  Diag(Loc, PD) << RD->getDeclName();
1824
1825  // Check if we've already emitted the list of pure virtual functions for this
1826  // class.
1827  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1828    return true;
1829
1830  PureVirtualMethodCollector Collector(Context, RD);
1831
1832  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1833       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1834    const CXXMethodDecl *MD = *I;
1835
1836    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1837      MD->getDeclName();
1838  }
1839
1840  if (!PureVirtualClassDiagSet)
1841    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1842  PureVirtualClassDiagSet->insert(RD);
1843
1844  return true;
1845}
1846
1847namespace {
1848  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1849    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1850    Sema &SemaRef;
1851    CXXRecordDecl *AbstractClass;
1852
1853    bool VisitDeclContext(const DeclContext *DC) {
1854      bool Invalid = false;
1855
1856      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1857           E = DC->decls_end(); I != E; ++I)
1858        Invalid |= Visit(*I);
1859
1860      return Invalid;
1861    }
1862
1863  public:
1864    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1865      : SemaRef(SemaRef), AbstractClass(ac) {
1866        Visit(SemaRef.Context.getTranslationUnitDecl());
1867    }
1868
1869    bool VisitFunctionDecl(const FunctionDecl *FD) {
1870      if (FD->isThisDeclarationADefinition()) {
1871        // No need to do the check if we're in a definition, because it requires
1872        // that the return/param types are complete.
1873        // because that requires
1874        return VisitDeclContext(FD);
1875      }
1876
1877      // Check the return type.
1878      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1879      bool Invalid =
1880        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1881                                       diag::err_abstract_type_in_decl,
1882                                       Sema::AbstractReturnType,
1883                                       AbstractClass);
1884
1885      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1886           E = FD->param_end(); I != E; ++I) {
1887        const ParmVarDecl *VD = *I;
1888        Invalid |=
1889          SemaRef.RequireNonAbstractType(VD->getLocation(),
1890                                         VD->getOriginalType(),
1891                                         diag::err_abstract_type_in_decl,
1892                                         Sema::AbstractParamType,
1893                                         AbstractClass);
1894      }
1895
1896      return Invalid;
1897    }
1898
1899    bool VisitDecl(const Decl* D) {
1900      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1901        return VisitDeclContext(DC);
1902
1903      return false;
1904    }
1905  };
1906}
1907
1908void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1909                                             DeclPtrTy TagDecl,
1910                                             SourceLocation LBrac,
1911                                             SourceLocation RBrac) {
1912  if (!TagDecl)
1913    return;
1914
1915  AdjustDeclIfTemplate(TagDecl);
1916  ActOnFields(S, RLoc, TagDecl,
1917              (DeclPtrTy*)FieldCollector->getCurFields(),
1918              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1919
1920  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1921  if (!RD->isAbstract()) {
1922    // Collect all the pure virtual methods and see if this is an abstract
1923    // class after all.
1924    PureVirtualMethodCollector Collector(Context, RD);
1925    if (!Collector.empty())
1926      RD->setAbstract(true);
1927  }
1928
1929  if (RD->isAbstract())
1930    AbstractClassUsageDiagnoser(*this, RD);
1931
1932  if (!RD->isDependentType() && !RD->isInvalidDecl())
1933    AddImplicitlyDeclaredMembersToClass(RD);
1934}
1935
1936/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1937/// special functions, such as the default constructor, copy
1938/// constructor, or destructor, to the given C++ class (C++
1939/// [special]p1).  This routine can only be executed just before the
1940/// definition of the class is complete.
1941void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1942  CanQualType ClassType
1943    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1944
1945  // FIXME: Implicit declarations have exception specifications, which are
1946  // the union of the specifications of the implicitly called functions.
1947
1948  if (!ClassDecl->hasUserDeclaredConstructor()) {
1949    // C++ [class.ctor]p5:
1950    //   A default constructor for a class X is a constructor of class X
1951    //   that can be called without an argument. If there is no
1952    //   user-declared constructor for class X, a default constructor is
1953    //   implicitly declared. An implicitly-declared default constructor
1954    //   is an inline public member of its class.
1955    DeclarationName Name
1956      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1957    CXXConstructorDecl *DefaultCon =
1958      CXXConstructorDecl::Create(Context, ClassDecl,
1959                                 ClassDecl->getLocation(), Name,
1960                                 Context.getFunctionType(Context.VoidTy,
1961                                                         0, 0, false, 0),
1962                                 /*DInfo=*/0,
1963                                 /*isExplicit=*/false,
1964                                 /*isInline=*/true,
1965                                 /*isImplicitlyDeclared=*/true);
1966    DefaultCon->setAccess(AS_public);
1967    DefaultCon->setImplicit();
1968    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1969    ClassDecl->addDecl(DefaultCon);
1970  }
1971
1972  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1973    // C++ [class.copy]p4:
1974    //   If the class definition does not explicitly declare a copy
1975    //   constructor, one is declared implicitly.
1976
1977    // C++ [class.copy]p5:
1978    //   The implicitly-declared copy constructor for a class X will
1979    //   have the form
1980    //
1981    //       X::X(const X&)
1982    //
1983    //   if
1984    bool HasConstCopyConstructor = true;
1985
1986    //     -- each direct or virtual base class B of X has a copy
1987    //        constructor whose first parameter is of type const B& or
1988    //        const volatile B&, and
1989    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1990         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1991      const CXXRecordDecl *BaseClassDecl
1992        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1993      HasConstCopyConstructor
1994        = BaseClassDecl->hasConstCopyConstructor(Context);
1995    }
1996
1997    //     -- for all the nonstatic data members of X that are of a
1998    //        class type M (or array thereof), each such class type
1999    //        has a copy constructor whose first parameter is of type
2000    //        const M& or const volatile M&.
2001    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2002         HasConstCopyConstructor && Field != ClassDecl->field_end();
2003         ++Field) {
2004      QualType FieldType = (*Field)->getType();
2005      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2006        FieldType = Array->getElementType();
2007      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2008        const CXXRecordDecl *FieldClassDecl
2009          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2010        HasConstCopyConstructor
2011          = FieldClassDecl->hasConstCopyConstructor(Context);
2012      }
2013    }
2014
2015    //   Otherwise, the implicitly declared copy constructor will have
2016    //   the form
2017    //
2018    //       X::X(X&)
2019    QualType ArgType = ClassType;
2020    if (HasConstCopyConstructor)
2021      ArgType = ArgType.withConst();
2022    ArgType = Context.getLValueReferenceType(ArgType);
2023
2024    //   An implicitly-declared copy constructor is an inline public
2025    //   member of its class.
2026    DeclarationName Name
2027      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2028    CXXConstructorDecl *CopyConstructor
2029      = CXXConstructorDecl::Create(Context, ClassDecl,
2030                                   ClassDecl->getLocation(), Name,
2031                                   Context.getFunctionType(Context.VoidTy,
2032                                                           &ArgType, 1,
2033                                                           false, 0),
2034                                   /*DInfo=*/0,
2035                                   /*isExplicit=*/false,
2036                                   /*isInline=*/true,
2037                                   /*isImplicitlyDeclared=*/true);
2038    CopyConstructor->setAccess(AS_public);
2039    CopyConstructor->setImplicit();
2040    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2041
2042    // Add the parameter to the constructor.
2043    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2044                                                 ClassDecl->getLocation(),
2045                                                 /*IdentifierInfo=*/0,
2046                                                 ArgType, /*DInfo=*/0,
2047                                                 VarDecl::None, 0);
2048    CopyConstructor->setParams(Context, &FromParam, 1);
2049    ClassDecl->addDecl(CopyConstructor);
2050  }
2051
2052  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2053    // Note: The following rules are largely analoguous to the copy
2054    // constructor rules. Note that virtual bases are not taken into account
2055    // for determining the argument type of the operator. Note also that
2056    // operators taking an object instead of a reference are allowed.
2057    //
2058    // C++ [class.copy]p10:
2059    //   If the class definition does not explicitly declare a copy
2060    //   assignment operator, one is declared implicitly.
2061    //   The implicitly-defined copy assignment operator for a class X
2062    //   will have the form
2063    //
2064    //       X& X::operator=(const X&)
2065    //
2066    //   if
2067    bool HasConstCopyAssignment = true;
2068
2069    //       -- each direct base class B of X has a copy assignment operator
2070    //          whose parameter is of type const B&, const volatile B& or B,
2071    //          and
2072    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2073         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2074      assert(!Base->getType()->isDependentType() &&
2075            "Cannot generate implicit members for class with dependent bases.");
2076      const CXXRecordDecl *BaseClassDecl
2077        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2078      const CXXMethodDecl *MD = 0;
2079      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2080                                                                     MD);
2081    }
2082
2083    //       -- for all the nonstatic data members of X that are of a class
2084    //          type M (or array thereof), each such class type has a copy
2085    //          assignment operator whose parameter is of type const M&,
2086    //          const volatile M& or M.
2087    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2088         HasConstCopyAssignment && Field != ClassDecl->field_end();
2089         ++Field) {
2090      QualType FieldType = (*Field)->getType();
2091      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2092        FieldType = Array->getElementType();
2093      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2094        const CXXRecordDecl *FieldClassDecl
2095          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2096        const CXXMethodDecl *MD = 0;
2097        HasConstCopyAssignment
2098          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2099      }
2100    }
2101
2102    //   Otherwise, the implicitly declared copy assignment operator will
2103    //   have the form
2104    //
2105    //       X& X::operator=(X&)
2106    QualType ArgType = ClassType;
2107    QualType RetType = Context.getLValueReferenceType(ArgType);
2108    if (HasConstCopyAssignment)
2109      ArgType = ArgType.withConst();
2110    ArgType = Context.getLValueReferenceType(ArgType);
2111
2112    //   An implicitly-declared copy assignment operator is an inline public
2113    //   member of its class.
2114    DeclarationName Name =
2115      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2116    CXXMethodDecl *CopyAssignment =
2117      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2118                            Context.getFunctionType(RetType, &ArgType, 1,
2119                                                    false, 0),
2120                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2121    CopyAssignment->setAccess(AS_public);
2122    CopyAssignment->setImplicit();
2123    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2124    CopyAssignment->setCopyAssignment(true);
2125
2126    // Add the parameter to the operator.
2127    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2128                                                 ClassDecl->getLocation(),
2129                                                 /*IdentifierInfo=*/0,
2130                                                 ArgType, /*DInfo=*/0,
2131                                                 VarDecl::None, 0);
2132    CopyAssignment->setParams(Context, &FromParam, 1);
2133
2134    // Don't call addedAssignmentOperator. There is no way to distinguish an
2135    // implicit from an explicit assignment operator.
2136    ClassDecl->addDecl(CopyAssignment);
2137  }
2138
2139  if (!ClassDecl->hasUserDeclaredDestructor()) {
2140    // C++ [class.dtor]p2:
2141    //   If a class has no user-declared destructor, a destructor is
2142    //   declared implicitly. An implicitly-declared destructor is an
2143    //   inline public member of its class.
2144    DeclarationName Name
2145      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2146    CXXDestructorDecl *Destructor
2147      = CXXDestructorDecl::Create(Context, ClassDecl,
2148                                  ClassDecl->getLocation(), Name,
2149                                  Context.getFunctionType(Context.VoidTy,
2150                                                          0, 0, false, 0),
2151                                  /*isInline=*/true,
2152                                  /*isImplicitlyDeclared=*/true);
2153    Destructor->setAccess(AS_public);
2154    Destructor->setImplicit();
2155    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2156    ClassDecl->addDecl(Destructor);
2157  }
2158}
2159
2160void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2161  Decl *D = TemplateD.getAs<Decl>();
2162  if (!D)
2163    return;
2164
2165  TemplateParameterList *Params = 0;
2166  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2167    Params = Template->getTemplateParameters();
2168  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2169           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2170    Params = PartialSpec->getTemplateParameters();
2171  else
2172    return;
2173
2174  for (TemplateParameterList::iterator Param = Params->begin(),
2175                                    ParamEnd = Params->end();
2176       Param != ParamEnd; ++Param) {
2177    NamedDecl *Named = cast<NamedDecl>(*Param);
2178    if (Named->getDeclName()) {
2179      S->AddDecl(DeclPtrTy::make(Named));
2180      IdResolver.AddDecl(Named);
2181    }
2182  }
2183}
2184
2185/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2186/// parsing a top-level (non-nested) C++ class, and we are now
2187/// parsing those parts of the given Method declaration that could
2188/// not be parsed earlier (C++ [class.mem]p2), such as default
2189/// arguments. This action should enter the scope of the given
2190/// Method declaration as if we had just parsed the qualified method
2191/// name. However, it should not bring the parameters into scope;
2192/// that will be performed by ActOnDelayedCXXMethodParameter.
2193void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2194  if (!MethodD)
2195    return;
2196
2197  AdjustDeclIfTemplate(MethodD);
2198
2199  CXXScopeSpec SS;
2200  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2201  QualType ClassTy
2202    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2203  SS.setScopeRep(
2204    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2205  ActOnCXXEnterDeclaratorScope(S, SS);
2206}
2207
2208/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2209/// C++ method declaration. We're (re-)introducing the given
2210/// function parameter into scope for use in parsing later parts of
2211/// the method declaration. For example, we could see an
2212/// ActOnParamDefaultArgument event for this parameter.
2213void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2214  if (!ParamD)
2215    return;
2216
2217  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2218
2219  // If this parameter has an unparsed default argument, clear it out
2220  // to make way for the parsed default argument.
2221  if (Param->hasUnparsedDefaultArg())
2222    Param->setDefaultArg(0);
2223
2224  S->AddDecl(DeclPtrTy::make(Param));
2225  if (Param->getDeclName())
2226    IdResolver.AddDecl(Param);
2227}
2228
2229/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2230/// processing the delayed method declaration for Method. The method
2231/// declaration is now considered finished. There may be a separate
2232/// ActOnStartOfFunctionDef action later (not necessarily
2233/// immediately!) for this method, if it was also defined inside the
2234/// class body.
2235void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2236  if (!MethodD)
2237    return;
2238
2239  AdjustDeclIfTemplate(MethodD);
2240
2241  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2242  CXXScopeSpec SS;
2243  QualType ClassTy
2244    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2245  SS.setScopeRep(
2246    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2247  ActOnCXXExitDeclaratorScope(S, SS);
2248
2249  // Now that we have our default arguments, check the constructor
2250  // again. It could produce additional diagnostics or affect whether
2251  // the class has implicitly-declared destructors, among other
2252  // things.
2253  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2254    CheckConstructor(Constructor);
2255
2256  // Check the default arguments, which we may have added.
2257  if (!Method->isInvalidDecl())
2258    CheckCXXDefaultArguments(Method);
2259}
2260
2261/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2262/// the well-formedness of the constructor declarator @p D with type @p
2263/// R. If there are any errors in the declarator, this routine will
2264/// emit diagnostics and set the invalid bit to true.  In any case, the type
2265/// will be updated to reflect a well-formed type for the constructor and
2266/// returned.
2267QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2268                                          FunctionDecl::StorageClass &SC) {
2269  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2270
2271  // C++ [class.ctor]p3:
2272  //   A constructor shall not be virtual (10.3) or static (9.4). A
2273  //   constructor can be invoked for a const, volatile or const
2274  //   volatile object. A constructor shall not be declared const,
2275  //   volatile, or const volatile (9.3.2).
2276  if (isVirtual) {
2277    if (!D.isInvalidType())
2278      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2279        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2280        << SourceRange(D.getIdentifierLoc());
2281    D.setInvalidType();
2282  }
2283  if (SC == FunctionDecl::Static) {
2284    if (!D.isInvalidType())
2285      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2286        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2287        << SourceRange(D.getIdentifierLoc());
2288    D.setInvalidType();
2289    SC = FunctionDecl::None;
2290  }
2291
2292  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2293  if (FTI.TypeQuals != 0) {
2294    if (FTI.TypeQuals & Qualifiers::Const)
2295      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2296        << "const" << SourceRange(D.getIdentifierLoc());
2297    if (FTI.TypeQuals & Qualifiers::Volatile)
2298      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2299        << "volatile" << SourceRange(D.getIdentifierLoc());
2300    if (FTI.TypeQuals & Qualifiers::Restrict)
2301      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2302        << "restrict" << SourceRange(D.getIdentifierLoc());
2303  }
2304
2305  // Rebuild the function type "R" without any type qualifiers (in
2306  // case any of the errors above fired) and with "void" as the
2307  // return type, since constructors don't have return types. We
2308  // *always* have to do this, because GetTypeForDeclarator will
2309  // put in a result type of "int" when none was specified.
2310  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2311  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2312                                 Proto->getNumArgs(),
2313                                 Proto->isVariadic(), 0);
2314}
2315
2316/// CheckConstructor - Checks a fully-formed constructor for
2317/// well-formedness, issuing any diagnostics required. Returns true if
2318/// the constructor declarator is invalid.
2319void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2320  CXXRecordDecl *ClassDecl
2321    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2322  if (!ClassDecl)
2323    return Constructor->setInvalidDecl();
2324
2325  // C++ [class.copy]p3:
2326  //   A declaration of a constructor for a class X is ill-formed if
2327  //   its first parameter is of type (optionally cv-qualified) X and
2328  //   either there are no other parameters or else all other
2329  //   parameters have default arguments.
2330  if (!Constructor->isInvalidDecl() &&
2331      ((Constructor->getNumParams() == 1) ||
2332       (Constructor->getNumParams() > 1 &&
2333        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2334    QualType ParamType = Constructor->getParamDecl(0)->getType();
2335    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2336    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2337      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2338      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2339        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2340      Constructor->setInvalidDecl();
2341    }
2342  }
2343
2344  // Notify the class that we've added a constructor.
2345  ClassDecl->addedConstructor(Context, Constructor);
2346}
2347
2348static inline bool
2349FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2350  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2351          FTI.ArgInfo[0].Param &&
2352          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2353}
2354
2355/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2356/// the well-formednes of the destructor declarator @p D with type @p
2357/// R. If there are any errors in the declarator, this routine will
2358/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2359/// will be updated to reflect a well-formed type for the destructor and
2360/// returned.
2361QualType Sema::CheckDestructorDeclarator(Declarator &D,
2362                                         FunctionDecl::StorageClass& SC) {
2363  // C++ [class.dtor]p1:
2364  //   [...] A typedef-name that names a class is a class-name
2365  //   (7.1.3); however, a typedef-name that names a class shall not
2366  //   be used as the identifier in the declarator for a destructor
2367  //   declaration.
2368  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2369  if (isa<TypedefType>(DeclaratorType)) {
2370    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2371      << DeclaratorType;
2372    D.setInvalidType();
2373  }
2374
2375  // C++ [class.dtor]p2:
2376  //   A destructor is used to destroy objects of its class type. A
2377  //   destructor takes no parameters, and no return type can be
2378  //   specified for it (not even void). The address of a destructor
2379  //   shall not be taken. A destructor shall not be static. A
2380  //   destructor can be invoked for a const, volatile or const
2381  //   volatile object. A destructor shall not be declared const,
2382  //   volatile or const volatile (9.3.2).
2383  if (SC == FunctionDecl::Static) {
2384    if (!D.isInvalidType())
2385      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2386        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2387        << SourceRange(D.getIdentifierLoc());
2388    SC = FunctionDecl::None;
2389    D.setInvalidType();
2390  }
2391  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2392    // Destructors don't have return types, but the parser will
2393    // happily parse something like:
2394    //
2395    //   class X {
2396    //     float ~X();
2397    //   };
2398    //
2399    // The return type will be eliminated later.
2400    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2401      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2402      << SourceRange(D.getIdentifierLoc());
2403  }
2404
2405  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2406  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2407    if (FTI.TypeQuals & Qualifiers::Const)
2408      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2409        << "const" << SourceRange(D.getIdentifierLoc());
2410    if (FTI.TypeQuals & Qualifiers::Volatile)
2411      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2412        << "volatile" << SourceRange(D.getIdentifierLoc());
2413    if (FTI.TypeQuals & Qualifiers::Restrict)
2414      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2415        << "restrict" << SourceRange(D.getIdentifierLoc());
2416    D.setInvalidType();
2417  }
2418
2419  // Make sure we don't have any parameters.
2420  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2421    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2422
2423    // Delete the parameters.
2424    FTI.freeArgs();
2425    D.setInvalidType();
2426  }
2427
2428  // Make sure the destructor isn't variadic.
2429  if (FTI.isVariadic) {
2430    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2431    D.setInvalidType();
2432  }
2433
2434  // Rebuild the function type "R" without any type qualifiers or
2435  // parameters (in case any of the errors above fired) and with
2436  // "void" as the return type, since destructors don't have return
2437  // types. We *always* have to do this, because GetTypeForDeclarator
2438  // will put in a result type of "int" when none was specified.
2439  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2440}
2441
2442/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2443/// well-formednes of the conversion function declarator @p D with
2444/// type @p R. If there are any errors in the declarator, this routine
2445/// will emit diagnostics and return true. Otherwise, it will return
2446/// false. Either way, the type @p R will be updated to reflect a
2447/// well-formed type for the conversion operator.
2448void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2449                                     FunctionDecl::StorageClass& SC) {
2450  // C++ [class.conv.fct]p1:
2451  //   Neither parameter types nor return type can be specified. The
2452  //   type of a conversion function (8.3.5) is "function taking no
2453  //   parameter returning conversion-type-id."
2454  if (SC == FunctionDecl::Static) {
2455    if (!D.isInvalidType())
2456      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2457        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2458        << SourceRange(D.getIdentifierLoc());
2459    D.setInvalidType();
2460    SC = FunctionDecl::None;
2461  }
2462  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2463    // Conversion functions don't have return types, but the parser will
2464    // happily parse something like:
2465    //
2466    //   class X {
2467    //     float operator bool();
2468    //   };
2469    //
2470    // The return type will be changed later anyway.
2471    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2472      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2473      << SourceRange(D.getIdentifierLoc());
2474  }
2475
2476  // Make sure we don't have any parameters.
2477  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2478    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2479
2480    // Delete the parameters.
2481    D.getTypeObject(0).Fun.freeArgs();
2482    D.setInvalidType();
2483  }
2484
2485  // Make sure the conversion function isn't variadic.
2486  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2487    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2488    D.setInvalidType();
2489  }
2490
2491  // C++ [class.conv.fct]p4:
2492  //   The conversion-type-id shall not represent a function type nor
2493  //   an array type.
2494  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2495  if (ConvType->isArrayType()) {
2496    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2497    ConvType = Context.getPointerType(ConvType);
2498    D.setInvalidType();
2499  } else if (ConvType->isFunctionType()) {
2500    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2501    ConvType = Context.getPointerType(ConvType);
2502    D.setInvalidType();
2503  }
2504
2505  // Rebuild the function type "R" without any parameters (in case any
2506  // of the errors above fired) and with the conversion type as the
2507  // return type.
2508  R = Context.getFunctionType(ConvType, 0, 0, false,
2509                              R->getAs<FunctionProtoType>()->getTypeQuals());
2510
2511  // C++0x explicit conversion operators.
2512  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2513    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2514         diag::warn_explicit_conversion_functions)
2515      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2516}
2517
2518/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2519/// the declaration of the given C++ conversion function. This routine
2520/// is responsible for recording the conversion function in the C++
2521/// class, if possible.
2522Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2523  assert(Conversion && "Expected to receive a conversion function declaration");
2524
2525  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2526
2527  // Make sure we aren't redeclaring the conversion function.
2528  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2529
2530  // C++ [class.conv.fct]p1:
2531  //   [...] A conversion function is never used to convert a
2532  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2533  //   same object type (or a reference to it), to a (possibly
2534  //   cv-qualified) base class of that type (or a reference to it),
2535  //   or to (possibly cv-qualified) void.
2536  // FIXME: Suppress this warning if the conversion function ends up being a
2537  // virtual function that overrides a virtual function in a base class.
2538  QualType ClassType
2539    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2540  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2541    ConvType = ConvTypeRef->getPointeeType();
2542  if (ConvType->isRecordType()) {
2543    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2544    if (ConvType == ClassType)
2545      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2546        << ClassType;
2547    else if (IsDerivedFrom(ClassType, ConvType))
2548      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2549        <<  ClassType << ConvType;
2550  } else if (ConvType->isVoidType()) {
2551    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2552      << ClassType << ConvType;
2553  }
2554
2555  if (Conversion->getPreviousDeclaration()) {
2556    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2557    if (FunctionTemplateDecl *ConversionTemplate
2558          = Conversion->getDescribedFunctionTemplate())
2559      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2560    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2561    for (OverloadedFunctionDecl::function_iterator
2562           Conv = Conversions->function_begin(),
2563           ConvEnd = Conversions->function_end();
2564         Conv != ConvEnd; ++Conv) {
2565      if (*Conv == ExpectedPrevDecl) {
2566        *Conv = Conversion;
2567        return DeclPtrTy::make(Conversion);
2568      }
2569    }
2570    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2571  } else if (FunctionTemplateDecl *ConversionTemplate
2572               = Conversion->getDescribedFunctionTemplate())
2573    ClassDecl->addConversionFunction(ConversionTemplate);
2574  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2575    ClassDecl->addConversionFunction(Conversion);
2576
2577  return DeclPtrTy::make(Conversion);
2578}
2579
2580//===----------------------------------------------------------------------===//
2581// Namespace Handling
2582//===----------------------------------------------------------------------===//
2583
2584/// ActOnStartNamespaceDef - This is called at the start of a namespace
2585/// definition.
2586Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2587                                             SourceLocation IdentLoc,
2588                                             IdentifierInfo *II,
2589                                             SourceLocation LBrace) {
2590  NamespaceDecl *Namespc =
2591      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2592  Namespc->setLBracLoc(LBrace);
2593
2594  Scope *DeclRegionScope = NamespcScope->getParent();
2595
2596  if (II) {
2597    // C++ [namespace.def]p2:
2598    // The identifier in an original-namespace-definition shall not have been
2599    // previously defined in the declarative region in which the
2600    // original-namespace-definition appears. The identifier in an
2601    // original-namespace-definition is the name of the namespace. Subsequently
2602    // in that declarative region, it is treated as an original-namespace-name.
2603
2604    NamedDecl *PrevDecl
2605      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2606
2607    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2608      // This is an extended namespace definition.
2609      // Attach this namespace decl to the chain of extended namespace
2610      // definitions.
2611      OrigNS->setNextNamespace(Namespc);
2612      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2613
2614      // Remove the previous declaration from the scope.
2615      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2616        IdResolver.RemoveDecl(OrigNS);
2617        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2618      }
2619    } else if (PrevDecl) {
2620      // This is an invalid name redefinition.
2621      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2622       << Namespc->getDeclName();
2623      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2624      Namespc->setInvalidDecl();
2625      // Continue on to push Namespc as current DeclContext and return it.
2626    } else if (II->isStr("std") &&
2627               CurContext->getLookupContext()->isTranslationUnit()) {
2628      // This is the first "real" definition of the namespace "std", so update
2629      // our cache of the "std" namespace to point at this definition.
2630      if (StdNamespace) {
2631        // We had already defined a dummy namespace "std". Link this new
2632        // namespace definition to the dummy namespace "std".
2633        StdNamespace->setNextNamespace(Namespc);
2634        StdNamespace->setLocation(IdentLoc);
2635        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2636      }
2637
2638      // Make our StdNamespace cache point at the first real definition of the
2639      // "std" namespace.
2640      StdNamespace = Namespc;
2641    }
2642
2643    PushOnScopeChains(Namespc, DeclRegionScope);
2644  } else {
2645    // Anonymous namespaces.
2646
2647    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2648    //   behaves as if it were replaced by
2649    //     namespace unique { /* empty body */ }
2650    //     using namespace unique;
2651    //     namespace unique { namespace-body }
2652    //   where all occurrences of 'unique' in a translation unit are
2653    //   replaced by the same identifier and this identifier differs
2654    //   from all other identifiers in the entire program.
2655
2656    // We just create the namespace with an empty name and then add an
2657    // implicit using declaration, just like the standard suggests.
2658    //
2659    // CodeGen enforces the "universally unique" aspect by giving all
2660    // declarations semantically contained within an anonymous
2661    // namespace internal linkage.
2662
2663    assert(Namespc->isAnonymousNamespace());
2664    CurContext->addDecl(Namespc);
2665
2666    UsingDirectiveDecl* UD
2667      = UsingDirectiveDecl::Create(Context, CurContext,
2668                                   /* 'using' */ LBrace,
2669                                   /* 'namespace' */ SourceLocation(),
2670                                   /* qualifier */ SourceRange(),
2671                                   /* NNS */ NULL,
2672                                   /* identifier */ SourceLocation(),
2673                                   Namespc,
2674                                   /* Ancestor */ CurContext);
2675    UD->setImplicit();
2676    CurContext->addDecl(UD);
2677  }
2678
2679  // Although we could have an invalid decl (i.e. the namespace name is a
2680  // redefinition), push it as current DeclContext and try to continue parsing.
2681  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2682  // for the namespace has the declarations that showed up in that particular
2683  // namespace definition.
2684  PushDeclContext(NamespcScope, Namespc);
2685  return DeclPtrTy::make(Namespc);
2686}
2687
2688/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2689/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2690void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2691  Decl *Dcl = D.getAs<Decl>();
2692  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2693  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2694  Namespc->setRBracLoc(RBrace);
2695  PopDeclContext();
2696}
2697
2698Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2699                                          SourceLocation UsingLoc,
2700                                          SourceLocation NamespcLoc,
2701                                          const CXXScopeSpec &SS,
2702                                          SourceLocation IdentLoc,
2703                                          IdentifierInfo *NamespcName,
2704                                          AttributeList *AttrList) {
2705  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2706  assert(NamespcName && "Invalid NamespcName.");
2707  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2708  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2709
2710  UsingDirectiveDecl *UDir = 0;
2711
2712  // Lookup namespace name.
2713  LookupResult R;
2714  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2715  if (R.isAmbiguous()) {
2716    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2717    return DeclPtrTy();
2718  }
2719  if (!R.empty()) {
2720    NamedDecl *NS = R.getFoundDecl();
2721    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2722    // C++ [namespace.udir]p1:
2723    //   A using-directive specifies that the names in the nominated
2724    //   namespace can be used in the scope in which the
2725    //   using-directive appears after the using-directive. During
2726    //   unqualified name lookup (3.4.1), the names appear as if they
2727    //   were declared in the nearest enclosing namespace which
2728    //   contains both the using-directive and the nominated
2729    //   namespace. [Note: in this context, "contains" means "contains
2730    //   directly or indirectly". ]
2731
2732    // Find enclosing context containing both using-directive and
2733    // nominated namespace.
2734    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2735    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2736      CommonAncestor = CommonAncestor->getParent();
2737
2738    UDir = UsingDirectiveDecl::Create(Context,
2739                                      CurContext, UsingLoc,
2740                                      NamespcLoc,
2741                                      SS.getRange(),
2742                                      (NestedNameSpecifier *)SS.getScopeRep(),
2743                                      IdentLoc,
2744                                      cast<NamespaceDecl>(NS),
2745                                      CommonAncestor);
2746    PushUsingDirective(S, UDir);
2747  } else {
2748    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2749  }
2750
2751  // FIXME: We ignore attributes for now.
2752  delete AttrList;
2753  return DeclPtrTy::make(UDir);
2754}
2755
2756void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2757  // If scope has associated entity, then using directive is at namespace
2758  // or translation unit scope. We add UsingDirectiveDecls, into
2759  // it's lookup structure.
2760  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2761    Ctx->addDecl(UDir);
2762  else
2763    // Otherwise it is block-sope. using-directives will affect lookup
2764    // only to the end of scope.
2765    S->PushUsingDirective(DeclPtrTy::make(UDir));
2766}
2767
2768
2769Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2770                                            AccessSpecifier AS,
2771                                            SourceLocation UsingLoc,
2772                                            const CXXScopeSpec &SS,
2773                                            UnqualifiedId &Name,
2774                                            AttributeList *AttrList,
2775                                            bool IsTypeName) {
2776  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2777
2778  switch (Name.getKind()) {
2779  case UnqualifiedId::IK_Identifier:
2780  case UnqualifiedId::IK_OperatorFunctionId:
2781  case UnqualifiedId::IK_ConversionFunctionId:
2782    break;
2783
2784  case UnqualifiedId::IK_ConstructorName:
2785    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2786      << SS.getRange();
2787    return DeclPtrTy();
2788
2789  case UnqualifiedId::IK_DestructorName:
2790    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2791      << SS.getRange();
2792    return DeclPtrTy();
2793
2794  case UnqualifiedId::IK_TemplateId:
2795    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2796      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2797    return DeclPtrTy();
2798  }
2799
2800  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2801  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS,
2802                                        Name.getSourceRange().getBegin(),
2803                                        TargetName, AttrList, IsTypeName);
2804  if (UD) {
2805    PushOnScopeChains(UD, S);
2806    UD->setAccess(AS);
2807  }
2808
2809  return DeclPtrTy::make(UD);
2810}
2811
2812NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2813                                       const CXXScopeSpec &SS,
2814                                       SourceLocation IdentLoc,
2815                                       DeclarationName Name,
2816                                       AttributeList *AttrList,
2817                                       bool IsTypeName) {
2818  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2819  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2820
2821  // FIXME: We ignore attributes for now.
2822  delete AttrList;
2823
2824  if (SS.isEmpty()) {
2825    Diag(IdentLoc, diag::err_using_requires_qualname);
2826    return 0;
2827  }
2828
2829  NestedNameSpecifier *NNS =
2830    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2831
2832  if (isUnknownSpecialization(SS)) {
2833    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2834                                       SS.getRange(), NNS,
2835                                       IdentLoc, Name, IsTypeName);
2836  }
2837
2838  DeclContext *LookupContext = 0;
2839
2840  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2841    // C++0x N2914 [namespace.udecl]p3:
2842    // A using-declaration used as a member-declaration shall refer to a member
2843    // of a base class of the class being defined, shall refer to a member of an
2844    // anonymous union that is a member of a base class of the class being
2845    // defined, or shall refer to an enumerator for an enumeration type that is
2846    // a member of a base class of the class being defined.
2847    const Type *Ty = NNS->getAsType();
2848    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2849      Diag(SS.getRange().getBegin(),
2850           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2851        << NNS << RD->getDeclName();
2852      return 0;
2853    }
2854
2855    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2856    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2857  } else {
2858    // C++0x N2914 [namespace.udecl]p8:
2859    // A using-declaration for a class member shall be a member-declaration.
2860    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2861      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2862        << SS.getRange();
2863      return 0;
2864    }
2865
2866    // C++0x N2914 [namespace.udecl]p9:
2867    // In a using-declaration, a prefix :: refers to the global namespace.
2868    if (NNS->getKind() == NestedNameSpecifier::Global)
2869      LookupContext = Context.getTranslationUnitDecl();
2870    else
2871      LookupContext = NNS->getAsNamespace();
2872  }
2873
2874
2875  // Lookup target name.
2876  LookupResult R;
2877  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2878
2879  if (R.empty()) {
2880    Diag(IdentLoc, diag::err_no_member)
2881      << Name << LookupContext << SS.getRange();
2882    return 0;
2883  }
2884
2885  // FIXME: handle ambiguity?
2886  NamedDecl *ND = R.getAsSingleDecl(Context);
2887
2888  if (IsTypeName && !isa<TypeDecl>(ND)) {
2889    Diag(IdentLoc, diag::err_using_typename_non_type);
2890    return 0;
2891  }
2892
2893  // C++0x N2914 [namespace.udecl]p6:
2894  // A using-declaration shall not name a namespace.
2895  if (isa<NamespaceDecl>(ND)) {
2896    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2897      << SS.getRange();
2898    return 0;
2899  }
2900
2901  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2902                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2903}
2904
2905/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2906/// is a namespace alias, returns the namespace it points to.
2907static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2908  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2909    return AD->getNamespace();
2910  return dyn_cast_or_null<NamespaceDecl>(D);
2911}
2912
2913Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2914                                             SourceLocation NamespaceLoc,
2915                                             SourceLocation AliasLoc,
2916                                             IdentifierInfo *Alias,
2917                                             const CXXScopeSpec &SS,
2918                                             SourceLocation IdentLoc,
2919                                             IdentifierInfo *Ident) {
2920
2921  // Lookup the namespace name.
2922  LookupResult R;
2923  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2924
2925  // Check if we have a previous declaration with the same name.
2926  if (NamedDecl *PrevDecl
2927        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2928    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2929      // We already have an alias with the same name that points to the same
2930      // namespace, so don't create a new one.
2931      if (!R.isAmbiguous() && !R.empty() &&
2932          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2933        return DeclPtrTy();
2934    }
2935
2936    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2937      diag::err_redefinition_different_kind;
2938    Diag(AliasLoc, DiagID) << Alias;
2939    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2940    return DeclPtrTy();
2941  }
2942
2943  if (R.isAmbiguous()) {
2944    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2945    return DeclPtrTy();
2946  }
2947
2948  if (R.empty()) {
2949    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2950    return DeclPtrTy();
2951  }
2952
2953  NamespaceAliasDecl *AliasDecl =
2954    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2955                               Alias, SS.getRange(),
2956                               (NestedNameSpecifier *)SS.getScopeRep(),
2957                               IdentLoc, R.getFoundDecl());
2958
2959  CurContext->addDecl(AliasDecl);
2960  return DeclPtrTy::make(AliasDecl);
2961}
2962
2963void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2964                                            CXXConstructorDecl *Constructor) {
2965  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2966          !Constructor->isUsed()) &&
2967    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2968
2969  CXXRecordDecl *ClassDecl
2970    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2971  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2972
2973  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
2974    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
2975      << Context.getTagDeclType(ClassDecl);
2976    Constructor->setInvalidDecl();
2977  } else {
2978    Constructor->setUsed();
2979  }
2980  return;
2981}
2982
2983void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2984                                    CXXDestructorDecl *Destructor) {
2985  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2986         "DefineImplicitDestructor - call it for implicit default dtor");
2987
2988  CXXRecordDecl *ClassDecl
2989  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2990  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2991  // C++ [class.dtor] p5
2992  // Before the implicitly-declared default destructor for a class is
2993  // implicitly defined, all the implicitly-declared default destructors
2994  // for its base class and its non-static data members shall have been
2995  // implicitly defined.
2996  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2997       E = ClassDecl->bases_end(); Base != E; ++Base) {
2998    CXXRecordDecl *BaseClassDecl
2999      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3000    if (!BaseClassDecl->hasTrivialDestructor()) {
3001      if (CXXDestructorDecl *BaseDtor =
3002          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3003        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3004      else
3005        assert(false &&
3006               "DefineImplicitDestructor - missing dtor in a base class");
3007    }
3008  }
3009
3010  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3011       E = ClassDecl->field_end(); Field != E; ++Field) {
3012    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3013    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3014      FieldType = Array->getElementType();
3015    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3016      CXXRecordDecl *FieldClassDecl
3017        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3018      if (!FieldClassDecl->hasTrivialDestructor()) {
3019        if (CXXDestructorDecl *FieldDtor =
3020            const_cast<CXXDestructorDecl*>(
3021                                        FieldClassDecl->getDestructor(Context)))
3022          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3023        else
3024          assert(false &&
3025          "DefineImplicitDestructor - missing dtor in class of a data member");
3026      }
3027    }
3028  }
3029  Destructor->setUsed();
3030}
3031
3032void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3033                                          CXXMethodDecl *MethodDecl) {
3034  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3035          MethodDecl->getOverloadedOperator() == OO_Equal &&
3036          !MethodDecl->isUsed()) &&
3037         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3038
3039  CXXRecordDecl *ClassDecl
3040    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3041
3042  // C++[class.copy] p12
3043  // Before the implicitly-declared copy assignment operator for a class is
3044  // implicitly defined, all implicitly-declared copy assignment operators
3045  // for its direct base classes and its nonstatic data members shall have
3046  // been implicitly defined.
3047  bool err = false;
3048  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3049       E = ClassDecl->bases_end(); Base != E; ++Base) {
3050    CXXRecordDecl *BaseClassDecl
3051      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3052    if (CXXMethodDecl *BaseAssignOpMethod =
3053          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3054      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3055  }
3056  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3057       E = ClassDecl->field_end(); Field != E; ++Field) {
3058    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3059    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3060      FieldType = Array->getElementType();
3061    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3062      CXXRecordDecl *FieldClassDecl
3063        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3064      if (CXXMethodDecl *FieldAssignOpMethod =
3065          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3066        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3067    } else if (FieldType->isReferenceType()) {
3068      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3069      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3070      Diag(Field->getLocation(), diag::note_declared_at);
3071      Diag(CurrentLocation, diag::note_first_required_here);
3072      err = true;
3073    } else if (FieldType.isConstQualified()) {
3074      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3075      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3076      Diag(Field->getLocation(), diag::note_declared_at);
3077      Diag(CurrentLocation, diag::note_first_required_here);
3078      err = true;
3079    }
3080  }
3081  if (!err)
3082    MethodDecl->setUsed();
3083}
3084
3085CXXMethodDecl *
3086Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3087                              CXXRecordDecl *ClassDecl) {
3088  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3089  QualType RHSType(LHSType);
3090  // If class's assignment operator argument is const/volatile qualified,
3091  // look for operator = (const/volatile B&). Otherwise, look for
3092  // operator = (B&).
3093  RHSType = Context.getCVRQualifiedType(RHSType,
3094                                     ParmDecl->getType().getCVRQualifiers());
3095  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3096                                                          LHSType,
3097                                                          SourceLocation()));
3098  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3099                                                          RHSType,
3100                                                          SourceLocation()));
3101  Expr *Args[2] = { &*LHS, &*RHS };
3102  OverloadCandidateSet CandidateSet;
3103  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3104                              CandidateSet);
3105  OverloadCandidateSet::iterator Best;
3106  if (BestViableFunction(CandidateSet,
3107                         ClassDecl->getLocation(), Best) == OR_Success)
3108    return cast<CXXMethodDecl>(Best->Function);
3109  assert(false &&
3110         "getAssignOperatorMethod - copy assignment operator method not found");
3111  return 0;
3112}
3113
3114void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3115                                   CXXConstructorDecl *CopyConstructor,
3116                                   unsigned TypeQuals) {
3117  assert((CopyConstructor->isImplicit() &&
3118          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3119          !CopyConstructor->isUsed()) &&
3120         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3121
3122  CXXRecordDecl *ClassDecl
3123    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3124  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3125  // C++ [class.copy] p209
3126  // Before the implicitly-declared copy constructor for a class is
3127  // implicitly defined, all the implicitly-declared copy constructors
3128  // for its base class and its non-static data members shall have been
3129  // implicitly defined.
3130  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3131       Base != ClassDecl->bases_end(); ++Base) {
3132    CXXRecordDecl *BaseClassDecl
3133      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3134    if (CXXConstructorDecl *BaseCopyCtor =
3135        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3136      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3137  }
3138  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3139                                  FieldEnd = ClassDecl->field_end();
3140       Field != FieldEnd; ++Field) {
3141    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3142    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3143      FieldType = Array->getElementType();
3144    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3145      CXXRecordDecl *FieldClassDecl
3146        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3147      if (CXXConstructorDecl *FieldCopyCtor =
3148          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3149        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3150    }
3151  }
3152  CopyConstructor->setUsed();
3153}
3154
3155Sema::OwningExprResult
3156Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3157                            CXXConstructorDecl *Constructor,
3158                            MultiExprArg ExprArgs) {
3159  bool Elidable = false;
3160
3161  // C++ [class.copy]p15:
3162  //   Whenever a temporary class object is copied using a copy constructor, and
3163  //   this object and the copy have the same cv-unqualified type, an
3164  //   implementation is permitted to treat the original and the copy as two
3165  //   different ways of referring to the same object and not perform a copy at
3166  //   all, even if the class copy constructor or destructor have side effects.
3167
3168  // FIXME: Is this enough?
3169  if (Constructor->isCopyConstructor(Context)) {
3170    Expr *E = ((Expr **)ExprArgs.get())[0];
3171    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3172      E = BE->getSubExpr();
3173    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3174      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3175        E = ICE->getSubExpr();
3176
3177    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3178      Elidable = true;
3179  }
3180
3181  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3182                               Elidable, move(ExprArgs));
3183}
3184
3185/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3186/// including handling of its default argument expressions.
3187Sema::OwningExprResult
3188Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3189                            CXXConstructorDecl *Constructor, bool Elidable,
3190                            MultiExprArg ExprArgs) {
3191  unsigned NumExprs = ExprArgs.size();
3192  Expr **Exprs = (Expr **)ExprArgs.release();
3193
3194  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3195                                        Elidable, Exprs, NumExprs));
3196}
3197
3198Sema::OwningExprResult
3199Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3200                                  QualType Ty,
3201                                  SourceLocation TyBeginLoc,
3202                                  MultiExprArg Args,
3203                                  SourceLocation RParenLoc) {
3204  unsigned NumExprs = Args.size();
3205  Expr **Exprs = (Expr **)Args.release();
3206
3207  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3208                                                    TyBeginLoc, Exprs,
3209                                                    NumExprs, RParenLoc));
3210}
3211
3212
3213bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3214                                        CXXConstructorDecl *Constructor,
3215                                        MultiExprArg Exprs) {
3216  OwningExprResult TempResult =
3217    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3218                          move(Exprs));
3219  if (TempResult.isInvalid())
3220    return true;
3221
3222  Expr *Temp = TempResult.takeAs<Expr>();
3223  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3224  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3225  VD->setInit(Context, Temp);
3226
3227  return false;
3228}
3229
3230void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3231  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3232                                  DeclInitType->getAs<RecordType>()->getDecl());
3233  if (!ClassDecl->hasTrivialDestructor())
3234    if (CXXDestructorDecl *Destructor =
3235        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3236      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3237}
3238
3239/// AddCXXDirectInitializerToDecl - This action is called immediately after
3240/// ActOnDeclarator, when a C++ direct initializer is present.
3241/// e.g: "int x(1);"
3242void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3243                                         SourceLocation LParenLoc,
3244                                         MultiExprArg Exprs,
3245                                         SourceLocation *CommaLocs,
3246                                         SourceLocation RParenLoc) {
3247  unsigned NumExprs = Exprs.size();
3248  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3249  Decl *RealDecl = Dcl.getAs<Decl>();
3250
3251  // If there is no declaration, there was an error parsing it.  Just ignore
3252  // the initializer.
3253  if (RealDecl == 0)
3254    return;
3255
3256  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3257  if (!VDecl) {
3258    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3259    RealDecl->setInvalidDecl();
3260    return;
3261  }
3262
3263  // We will represent direct-initialization similarly to copy-initialization:
3264  //    int x(1);  -as-> int x = 1;
3265  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3266  //
3267  // Clients that want to distinguish between the two forms, can check for
3268  // direct initializer using VarDecl::hasCXXDirectInitializer().
3269  // A major benefit is that clients that don't particularly care about which
3270  // exactly form was it (like the CodeGen) can handle both cases without
3271  // special case code.
3272
3273  // If either the declaration has a dependent type or if any of the expressions
3274  // is type-dependent, we represent the initialization via a ParenListExpr for
3275  // later use during template instantiation.
3276  if (VDecl->getType()->isDependentType() ||
3277      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3278    // Let clients know that initialization was done with a direct initializer.
3279    VDecl->setCXXDirectInitializer(true);
3280
3281    // Store the initialization expressions as a ParenListExpr.
3282    unsigned NumExprs = Exprs.size();
3283    VDecl->setInit(Context,
3284                   new (Context) ParenListExpr(Context, LParenLoc,
3285                                               (Expr **)Exprs.release(),
3286                                               NumExprs, RParenLoc));
3287    return;
3288  }
3289
3290
3291  // C++ 8.5p11:
3292  // The form of initialization (using parentheses or '=') is generally
3293  // insignificant, but does matter when the entity being initialized has a
3294  // class type.
3295  QualType DeclInitType = VDecl->getType();
3296  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3297    DeclInitType = Context.getBaseElementType(Array);
3298
3299  // FIXME: This isn't the right place to complete the type.
3300  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3301                          diag::err_typecheck_decl_incomplete_type)) {
3302    VDecl->setInvalidDecl();
3303    return;
3304  }
3305
3306  if (VDecl->getType()->isRecordType()) {
3307    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3308
3309    CXXConstructorDecl *Constructor
3310      = PerformInitializationByConstructor(DeclInitType,
3311                                           move(Exprs),
3312                                           VDecl->getLocation(),
3313                                           SourceRange(VDecl->getLocation(),
3314                                                       RParenLoc),
3315                                           VDecl->getDeclName(),
3316                                           IK_Direct,
3317                                           ConstructorArgs);
3318    if (!Constructor)
3319      RealDecl->setInvalidDecl();
3320    else {
3321      VDecl->setCXXDirectInitializer(true);
3322      if (InitializeVarWithConstructor(VDecl, Constructor,
3323                                       move_arg(ConstructorArgs)))
3324        RealDecl->setInvalidDecl();
3325      FinalizeVarWithDestructor(VDecl, DeclInitType);
3326    }
3327    return;
3328  }
3329
3330  if (NumExprs > 1) {
3331    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3332      << SourceRange(VDecl->getLocation(), RParenLoc);
3333    RealDecl->setInvalidDecl();
3334    return;
3335  }
3336
3337  // Let clients know that initialization was done with a direct initializer.
3338  VDecl->setCXXDirectInitializer(true);
3339
3340  assert(NumExprs == 1 && "Expected 1 expression");
3341  // Set the init expression, handles conversions.
3342  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3343                       /*DirectInit=*/true);
3344}
3345
3346/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3347/// may occur as part of direct-initialization or copy-initialization.
3348///
3349/// \param ClassType the type of the object being initialized, which must have
3350/// class type.
3351///
3352/// \param ArgsPtr the arguments provided to initialize the object
3353///
3354/// \param Loc the source location where the initialization occurs
3355///
3356/// \param Range the source range that covers the entire initialization
3357///
3358/// \param InitEntity the name of the entity being initialized, if known
3359///
3360/// \param Kind the type of initialization being performed
3361///
3362/// \param ConvertedArgs a vector that will be filled in with the
3363/// appropriately-converted arguments to the constructor (if initialization
3364/// succeeded).
3365///
3366/// \returns the constructor used to initialize the object, if successful.
3367/// Otherwise, emits a diagnostic and returns NULL.
3368CXXConstructorDecl *
3369Sema::PerformInitializationByConstructor(QualType ClassType,
3370                                         MultiExprArg ArgsPtr,
3371                                         SourceLocation Loc, SourceRange Range,
3372                                         DeclarationName InitEntity,
3373                                         InitializationKind Kind,
3374                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3375  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3376  assert(ClassRec && "Can only initialize a class type here");
3377  Expr **Args = (Expr **)ArgsPtr.get();
3378  unsigned NumArgs = ArgsPtr.size();
3379
3380  // C++ [dcl.init]p14:
3381  //   If the initialization is direct-initialization, or if it is
3382  //   copy-initialization where the cv-unqualified version of the
3383  //   source type is the same class as, or a derived class of, the
3384  //   class of the destination, constructors are considered. The
3385  //   applicable constructors are enumerated (13.3.1.3), and the
3386  //   best one is chosen through overload resolution (13.3). The
3387  //   constructor so selected is called to initialize the object,
3388  //   with the initializer expression(s) as its argument(s). If no
3389  //   constructor applies, or the overload resolution is ambiguous,
3390  //   the initialization is ill-formed.
3391  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3392  OverloadCandidateSet CandidateSet;
3393
3394  // Add constructors to the overload set.
3395  DeclarationName ConstructorName
3396    = Context.DeclarationNames.getCXXConstructorName(
3397                      Context.getCanonicalType(ClassType).getUnqualifiedType());
3398  DeclContext::lookup_const_iterator Con, ConEnd;
3399  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3400       Con != ConEnd; ++Con) {
3401    // Find the constructor (which may be a template).
3402    CXXConstructorDecl *Constructor = 0;
3403    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3404    if (ConstructorTmpl)
3405      Constructor
3406        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3407    else
3408      Constructor = cast<CXXConstructorDecl>(*Con);
3409
3410    if ((Kind == IK_Direct) ||
3411        (Kind == IK_Copy &&
3412         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3413        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3414      if (ConstructorTmpl)
3415        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3416                                     Args, NumArgs, CandidateSet);
3417      else
3418        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3419    }
3420  }
3421
3422  // FIXME: When we decide not to synthesize the implicitly-declared
3423  // constructors, we'll need to make them appear here.
3424
3425  OverloadCandidateSet::iterator Best;
3426  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3427  case OR_Success:
3428    // We found a constructor. Break out so that we can convert the arguments
3429    // appropriately.
3430    break;
3431
3432  case OR_No_Viable_Function:
3433    if (InitEntity)
3434      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3435        << InitEntity << Range;
3436    else
3437      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3438        << ClassType << Range;
3439    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3440    return 0;
3441
3442  case OR_Ambiguous:
3443    if (InitEntity)
3444      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3445    else
3446      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3447    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3448    return 0;
3449
3450  case OR_Deleted:
3451    if (InitEntity)
3452      Diag(Loc, diag::err_ovl_deleted_init)
3453        << Best->Function->isDeleted()
3454        << InitEntity << Range;
3455    else
3456      Diag(Loc, diag::err_ovl_deleted_init)
3457        << Best->Function->isDeleted()
3458        << InitEntity << Range;
3459    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3460    return 0;
3461  }
3462
3463  // Convert the arguments, fill in default arguments, etc.
3464  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3465  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3466    return 0;
3467
3468  return Constructor;
3469}
3470
3471/// \brief Given a constructor and the set of arguments provided for the
3472/// constructor, convert the arguments and add any required default arguments
3473/// to form a proper call to this constructor.
3474///
3475/// \returns true if an error occurred, false otherwise.
3476bool
3477Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3478                              MultiExprArg ArgsPtr,
3479                              SourceLocation Loc,
3480                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3481  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3482  unsigned NumArgs = ArgsPtr.size();
3483  Expr **Args = (Expr **)ArgsPtr.get();
3484
3485  const FunctionProtoType *Proto
3486    = Constructor->getType()->getAs<FunctionProtoType>();
3487  assert(Proto && "Constructor without a prototype?");
3488  unsigned NumArgsInProto = Proto->getNumArgs();
3489  unsigned NumArgsToCheck = NumArgs;
3490
3491  // If too few arguments are available, we'll fill in the rest with defaults.
3492  if (NumArgs < NumArgsInProto) {
3493    NumArgsToCheck = NumArgsInProto;
3494    ConvertedArgs.reserve(NumArgsInProto);
3495  } else {
3496    ConvertedArgs.reserve(NumArgs);
3497    if (NumArgs > NumArgsInProto)
3498      NumArgsToCheck = NumArgsInProto;
3499  }
3500
3501  // Convert arguments
3502  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3503    QualType ProtoArgType = Proto->getArgType(i);
3504
3505    Expr *Arg;
3506    if (i < NumArgs) {
3507      Arg = Args[i];
3508
3509      // Pass the argument.
3510      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3511        return true;
3512
3513      Args[i] = 0;
3514    } else {
3515      ParmVarDecl *Param = Constructor->getParamDecl(i);
3516
3517      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3518      if (DefArg.isInvalid())
3519        return true;
3520
3521      Arg = DefArg.takeAs<Expr>();
3522    }
3523
3524    ConvertedArgs.push_back(Arg);
3525  }
3526
3527  // If this is a variadic call, handle args passed through "...".
3528  if (Proto->isVariadic()) {
3529    // Promote the arguments (C99 6.5.2.2p7).
3530    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3531      Expr *Arg = Args[i];
3532      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3533        return true;
3534
3535      ConvertedArgs.push_back(Arg);
3536      Args[i] = 0;
3537    }
3538  }
3539
3540  return false;
3541}
3542
3543/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3544/// determine whether they are reference-related,
3545/// reference-compatible, reference-compatible with added
3546/// qualification, or incompatible, for use in C++ initialization by
3547/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3548/// type, and the first type (T1) is the pointee type of the reference
3549/// type being initialized.
3550Sema::ReferenceCompareResult
3551Sema::CompareReferenceRelationship(SourceLocation Loc,
3552                                   QualType OrigT1, QualType OrigT2,
3553                                   bool& DerivedToBase) {
3554  assert(!OrigT1->isReferenceType() &&
3555    "T1 must be the pointee type of the reference type");
3556  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3557
3558  QualType T1 = Context.getCanonicalType(OrigT1);
3559  QualType T2 = Context.getCanonicalType(OrigT2);
3560  QualType UnqualT1 = T1.getUnqualifiedType();
3561  QualType UnqualT2 = T2.getUnqualifiedType();
3562
3563  // C++ [dcl.init.ref]p4:
3564  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3565  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3566  //   T1 is a base class of T2.
3567  if (UnqualT1 == UnqualT2)
3568    DerivedToBase = false;
3569  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3570           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3571           IsDerivedFrom(UnqualT2, UnqualT1))
3572    DerivedToBase = true;
3573  else
3574    return Ref_Incompatible;
3575
3576  // At this point, we know that T1 and T2 are reference-related (at
3577  // least).
3578
3579  // C++ [dcl.init.ref]p4:
3580  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3581  //   reference-related to T2 and cv1 is the same cv-qualification
3582  //   as, or greater cv-qualification than, cv2. For purposes of
3583  //   overload resolution, cases for which cv1 is greater
3584  //   cv-qualification than cv2 are identified as
3585  //   reference-compatible with added qualification (see 13.3.3.2).
3586  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3587    return Ref_Compatible;
3588  else if (T1.isMoreQualifiedThan(T2))
3589    return Ref_Compatible_With_Added_Qualification;
3590  else
3591    return Ref_Related;
3592}
3593
3594/// CheckReferenceInit - Check the initialization of a reference
3595/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3596/// the initializer (either a simple initializer or an initializer
3597/// list), and DeclType is the type of the declaration. When ICS is
3598/// non-null, this routine will compute the implicit conversion
3599/// sequence according to C++ [over.ics.ref] and will not produce any
3600/// diagnostics; when ICS is null, it will emit diagnostics when any
3601/// errors are found. Either way, a return value of true indicates
3602/// that there was a failure, a return value of false indicates that
3603/// the reference initialization succeeded.
3604///
3605/// When @p SuppressUserConversions, user-defined conversions are
3606/// suppressed.
3607/// When @p AllowExplicit, we also permit explicit user-defined
3608/// conversion functions.
3609/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3610bool
3611Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3612                         SourceLocation DeclLoc,
3613                         bool SuppressUserConversions,
3614                         bool AllowExplicit, bool ForceRValue,
3615                         ImplicitConversionSequence *ICS) {
3616  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3617
3618  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3619  QualType T2 = Init->getType();
3620
3621  // If the initializer is the address of an overloaded function, try
3622  // to resolve the overloaded function. If all goes well, T2 is the
3623  // type of the resulting function.
3624  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3625    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3626                                                          ICS != 0);
3627    if (Fn) {
3628      // Since we're performing this reference-initialization for
3629      // real, update the initializer with the resulting function.
3630      if (!ICS) {
3631        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3632          return true;
3633
3634        Init = FixOverloadedFunctionReference(Init, Fn);
3635      }
3636
3637      T2 = Fn->getType();
3638    }
3639  }
3640
3641  // Compute some basic properties of the types and the initializer.
3642  bool isRValRef = DeclType->isRValueReferenceType();
3643  bool DerivedToBase = false;
3644  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3645                                                  Init->isLvalue(Context);
3646  ReferenceCompareResult RefRelationship
3647    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3648
3649  // Most paths end in a failed conversion.
3650  if (ICS)
3651    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3652
3653  // C++ [dcl.init.ref]p5:
3654  //   A reference to type "cv1 T1" is initialized by an expression
3655  //   of type "cv2 T2" as follows:
3656
3657  //     -- If the initializer expression
3658
3659  // Rvalue references cannot bind to lvalues (N2812).
3660  // There is absolutely no situation where they can. In particular, note that
3661  // this is ill-formed, even if B has a user-defined conversion to A&&:
3662  //   B b;
3663  //   A&& r = b;
3664  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3665    if (!ICS)
3666      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3667        << Init->getSourceRange();
3668    return true;
3669  }
3670
3671  bool BindsDirectly = false;
3672  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3673  //          reference-compatible with "cv2 T2," or
3674  //
3675  // Note that the bit-field check is skipped if we are just computing
3676  // the implicit conversion sequence (C++ [over.best.ics]p2).
3677  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3678      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3679    BindsDirectly = true;
3680
3681    if (ICS) {
3682      // C++ [over.ics.ref]p1:
3683      //   When a parameter of reference type binds directly (8.5.3)
3684      //   to an argument expression, the implicit conversion sequence
3685      //   is the identity conversion, unless the argument expression
3686      //   has a type that is a derived class of the parameter type,
3687      //   in which case the implicit conversion sequence is a
3688      //   derived-to-base Conversion (13.3.3.1).
3689      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3690      ICS->Standard.First = ICK_Identity;
3691      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3692      ICS->Standard.Third = ICK_Identity;
3693      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3694      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3695      ICS->Standard.ReferenceBinding = true;
3696      ICS->Standard.DirectBinding = true;
3697      ICS->Standard.RRefBinding = false;
3698      ICS->Standard.CopyConstructor = 0;
3699
3700      // Nothing more to do: the inaccessibility/ambiguity check for
3701      // derived-to-base conversions is suppressed when we're
3702      // computing the implicit conversion sequence (C++
3703      // [over.best.ics]p2).
3704      return false;
3705    } else {
3706      // Perform the conversion.
3707      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3708      if (DerivedToBase)
3709        CK = CastExpr::CK_DerivedToBase;
3710      else if(CheckExceptionSpecCompatibility(Init, T1))
3711        return true;
3712      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3713    }
3714  }
3715
3716  //       -- has a class type (i.e., T2 is a class type) and can be
3717  //          implicitly converted to an lvalue of type "cv3 T3,"
3718  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3719  //          92) (this conversion is selected by enumerating the
3720  //          applicable conversion functions (13.3.1.6) and choosing
3721  //          the best one through overload resolution (13.3)),
3722  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3723      !RequireCompleteType(DeclLoc, T2, 0)) {
3724    CXXRecordDecl *T2RecordDecl
3725      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3726
3727    OverloadCandidateSet CandidateSet;
3728    OverloadedFunctionDecl *Conversions
3729      = T2RecordDecl->getVisibleConversionFunctions();
3730    for (OverloadedFunctionDecl::function_iterator Func
3731           = Conversions->function_begin();
3732         Func != Conversions->function_end(); ++Func) {
3733      FunctionTemplateDecl *ConvTemplate
3734        = dyn_cast<FunctionTemplateDecl>(*Func);
3735      CXXConversionDecl *Conv;
3736      if (ConvTemplate)
3737        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3738      else
3739        Conv = cast<CXXConversionDecl>(*Func);
3740
3741      // If the conversion function doesn't return a reference type,
3742      // it can't be considered for this conversion.
3743      if (Conv->getConversionType()->isLValueReferenceType() &&
3744          (AllowExplicit || !Conv->isExplicit())) {
3745        if (ConvTemplate)
3746          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3747                                         CandidateSet);
3748        else
3749          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3750      }
3751    }
3752
3753    OverloadCandidateSet::iterator Best;
3754    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3755    case OR_Success:
3756      // This is a direct binding.
3757      BindsDirectly = true;
3758
3759      if (ICS) {
3760        // C++ [over.ics.ref]p1:
3761        //
3762        //   [...] If the parameter binds directly to the result of
3763        //   applying a conversion function to the argument
3764        //   expression, the implicit conversion sequence is a
3765        //   user-defined conversion sequence (13.3.3.1.2), with the
3766        //   second standard conversion sequence either an identity
3767        //   conversion or, if the conversion function returns an
3768        //   entity of a type that is a derived class of the parameter
3769        //   type, a derived-to-base Conversion.
3770        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3771        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3772        ICS->UserDefined.After = Best->FinalConversion;
3773        ICS->UserDefined.ConversionFunction = Best->Function;
3774        ICS->UserDefined.EllipsisConversion = false;
3775        assert(ICS->UserDefined.After.ReferenceBinding &&
3776               ICS->UserDefined.After.DirectBinding &&
3777               "Expected a direct reference binding!");
3778        return false;
3779      } else {
3780        OwningExprResult InitConversion =
3781          BuildCXXCastArgument(DeclLoc, QualType(),
3782                               CastExpr::CK_UserDefinedConversion,
3783                               cast<CXXMethodDecl>(Best->Function),
3784                               Owned(Init));
3785        Init = InitConversion.takeAs<Expr>();
3786
3787        if (CheckExceptionSpecCompatibility(Init, T1))
3788          return true;
3789        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3790                          /*isLvalue=*/true);
3791      }
3792      break;
3793
3794    case OR_Ambiguous:
3795      if (ICS) {
3796        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3797             Cand != CandidateSet.end(); ++Cand)
3798          if (Cand->Viable)
3799            ICS->ConversionFunctionSet.push_back(Cand->Function);
3800        break;
3801      }
3802      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3803            << Init->getSourceRange();
3804      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3805      return true;
3806
3807    case OR_No_Viable_Function:
3808    case OR_Deleted:
3809      // There was no suitable conversion, or we found a deleted
3810      // conversion; continue with other checks.
3811      break;
3812    }
3813  }
3814
3815  if (BindsDirectly) {
3816    // C++ [dcl.init.ref]p4:
3817    //   [...] In all cases where the reference-related or
3818    //   reference-compatible relationship of two types is used to
3819    //   establish the validity of a reference binding, and T1 is a
3820    //   base class of T2, a program that necessitates such a binding
3821    //   is ill-formed if T1 is an inaccessible (clause 11) or
3822    //   ambiguous (10.2) base class of T2.
3823    //
3824    // Note that we only check this condition when we're allowed to
3825    // complain about errors, because we should not be checking for
3826    // ambiguity (or inaccessibility) unless the reference binding
3827    // actually happens.
3828    if (DerivedToBase)
3829      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3830                                          Init->getSourceRange());
3831    else
3832      return false;
3833  }
3834
3835  //     -- Otherwise, the reference shall be to a non-volatile const
3836  //        type (i.e., cv1 shall be const), or the reference shall be an
3837  //        rvalue reference and the initializer expression shall be an rvalue.
3838  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3839    if (!ICS)
3840      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3841        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3842        << T2 << Init->getSourceRange();
3843    return true;
3844  }
3845
3846  //       -- If the initializer expression is an rvalue, with T2 a
3847  //          class type, and "cv1 T1" is reference-compatible with
3848  //          "cv2 T2," the reference is bound in one of the
3849  //          following ways (the choice is implementation-defined):
3850  //
3851  //          -- The reference is bound to the object represented by
3852  //             the rvalue (see 3.10) or to a sub-object within that
3853  //             object.
3854  //
3855  //          -- A temporary of type "cv1 T2" [sic] is created, and
3856  //             a constructor is called to copy the entire rvalue
3857  //             object into the temporary. The reference is bound to
3858  //             the temporary or to a sub-object within the
3859  //             temporary.
3860  //
3861  //          The constructor that would be used to make the copy
3862  //          shall be callable whether or not the copy is actually
3863  //          done.
3864  //
3865  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3866  // freedom, so we will always take the first option and never build
3867  // a temporary in this case. FIXME: We will, however, have to check
3868  // for the presence of a copy constructor in C++98/03 mode.
3869  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3870      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3871    if (ICS) {
3872      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3873      ICS->Standard.First = ICK_Identity;
3874      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3875      ICS->Standard.Third = ICK_Identity;
3876      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3877      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3878      ICS->Standard.ReferenceBinding = true;
3879      ICS->Standard.DirectBinding = false;
3880      ICS->Standard.RRefBinding = isRValRef;
3881      ICS->Standard.CopyConstructor = 0;
3882    } else {
3883      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3884      if (DerivedToBase)
3885        CK = CastExpr::CK_DerivedToBase;
3886      else if(CheckExceptionSpecCompatibility(Init, T1))
3887        return true;
3888      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3889    }
3890    return false;
3891  }
3892
3893  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3894  //          initialized from the initializer expression using the
3895  //          rules for a non-reference copy initialization (8.5). The
3896  //          reference is then bound to the temporary. If T1 is
3897  //          reference-related to T2, cv1 must be the same
3898  //          cv-qualification as, or greater cv-qualification than,
3899  //          cv2; otherwise, the program is ill-formed.
3900  if (RefRelationship == Ref_Related) {
3901    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3902    // we would be reference-compatible or reference-compatible with
3903    // added qualification. But that wasn't the case, so the reference
3904    // initialization fails.
3905    if (!ICS)
3906      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3907        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3908        << T2 << Init->getSourceRange();
3909    return true;
3910  }
3911
3912  // If at least one of the types is a class type, the types are not
3913  // related, and we aren't allowed any user conversions, the
3914  // reference binding fails. This case is important for breaking
3915  // recursion, since TryImplicitConversion below will attempt to
3916  // create a temporary through the use of a copy constructor.
3917  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3918      (T1->isRecordType() || T2->isRecordType())) {
3919    if (!ICS)
3920      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3921        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3922    return true;
3923  }
3924
3925  // Actually try to convert the initializer to T1.
3926  if (ICS) {
3927    // C++ [over.ics.ref]p2:
3928    //
3929    //   When a parameter of reference type is not bound directly to
3930    //   an argument expression, the conversion sequence is the one
3931    //   required to convert the argument expression to the
3932    //   underlying type of the reference according to
3933    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3934    //   to copy-initializing a temporary of the underlying type with
3935    //   the argument expression. Any difference in top-level
3936    //   cv-qualification is subsumed by the initialization itself
3937    //   and does not constitute a conversion.
3938    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3939                                 /*AllowExplicit=*/false,
3940                                 /*ForceRValue=*/false,
3941                                 /*InOverloadResolution=*/false);
3942
3943    // Of course, that's still a reference binding.
3944    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3945      ICS->Standard.ReferenceBinding = true;
3946      ICS->Standard.RRefBinding = isRValRef;
3947    } else if (ICS->ConversionKind ==
3948              ImplicitConversionSequence::UserDefinedConversion) {
3949      ICS->UserDefined.After.ReferenceBinding = true;
3950      ICS->UserDefined.After.RRefBinding = isRValRef;
3951    }
3952    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3953  } else {
3954    ImplicitConversionSequence Conversions;
3955    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3956                                                   false, false,
3957                                                   Conversions);
3958    if (badConversion) {
3959      if ((Conversions.ConversionKind  ==
3960            ImplicitConversionSequence::BadConversion)
3961          && !Conversions.ConversionFunctionSet.empty()) {
3962        Diag(DeclLoc,
3963             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3964        for (int j = Conversions.ConversionFunctionSet.size()-1;
3965             j >= 0; j--) {
3966          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3967          Diag(Func->getLocation(), diag::err_ovl_candidate);
3968        }
3969      }
3970      else {
3971        if (isRValRef)
3972          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3973            << Init->getSourceRange();
3974        else
3975          Diag(DeclLoc, diag::err_invalid_initialization)
3976            << DeclType << Init->getType() << Init->getSourceRange();
3977      }
3978    }
3979    return badConversion;
3980  }
3981}
3982
3983/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3984/// of this overloaded operator is well-formed. If so, returns false;
3985/// otherwise, emits appropriate diagnostics and returns true.
3986bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3987  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3988         "Expected an overloaded operator declaration");
3989
3990  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3991
3992  // C++ [over.oper]p5:
3993  //   The allocation and deallocation functions, operator new,
3994  //   operator new[], operator delete and operator delete[], are
3995  //   described completely in 3.7.3. The attributes and restrictions
3996  //   found in the rest of this subclause do not apply to them unless
3997  //   explicitly stated in 3.7.3.
3998  // FIXME: Write a separate routine for checking this. For now, just allow it.
3999  if (Op == OO_New || Op == OO_Array_New ||
4000      Op == OO_Delete || Op == OO_Array_Delete)
4001    return false;
4002
4003  // C++ [over.oper]p6:
4004  //   An operator function shall either be a non-static member
4005  //   function or be a non-member function and have at least one
4006  //   parameter whose type is a class, a reference to a class, an
4007  //   enumeration, or a reference to an enumeration.
4008  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4009    if (MethodDecl->isStatic())
4010      return Diag(FnDecl->getLocation(),
4011                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4012  } else {
4013    bool ClassOrEnumParam = false;
4014    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4015                                   ParamEnd = FnDecl->param_end();
4016         Param != ParamEnd; ++Param) {
4017      QualType ParamType = (*Param)->getType().getNonReferenceType();
4018      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4019          ParamType->isEnumeralType()) {
4020        ClassOrEnumParam = true;
4021        break;
4022      }
4023    }
4024
4025    if (!ClassOrEnumParam)
4026      return Diag(FnDecl->getLocation(),
4027                  diag::err_operator_overload_needs_class_or_enum)
4028        << FnDecl->getDeclName();
4029  }
4030
4031  // C++ [over.oper]p8:
4032  //   An operator function cannot have default arguments (8.3.6),
4033  //   except where explicitly stated below.
4034  //
4035  // Only the function-call operator allows default arguments
4036  // (C++ [over.call]p1).
4037  if (Op != OO_Call) {
4038    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4039         Param != FnDecl->param_end(); ++Param) {
4040      if ((*Param)->hasUnparsedDefaultArg())
4041        return Diag((*Param)->getLocation(),
4042                    diag::err_operator_overload_default_arg)
4043          << FnDecl->getDeclName();
4044      else if (Expr *DefArg = (*Param)->getDefaultArg())
4045        return Diag((*Param)->getLocation(),
4046                    diag::err_operator_overload_default_arg)
4047          << FnDecl->getDeclName() << DefArg->getSourceRange();
4048    }
4049  }
4050
4051  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4052    { false, false, false }
4053#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4054    , { Unary, Binary, MemberOnly }
4055#include "clang/Basic/OperatorKinds.def"
4056  };
4057
4058  bool CanBeUnaryOperator = OperatorUses[Op][0];
4059  bool CanBeBinaryOperator = OperatorUses[Op][1];
4060  bool MustBeMemberOperator = OperatorUses[Op][2];
4061
4062  // C++ [over.oper]p8:
4063  //   [...] Operator functions cannot have more or fewer parameters
4064  //   than the number required for the corresponding operator, as
4065  //   described in the rest of this subclause.
4066  unsigned NumParams = FnDecl->getNumParams()
4067                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4068  if (Op != OO_Call &&
4069      ((NumParams == 1 && !CanBeUnaryOperator) ||
4070       (NumParams == 2 && !CanBeBinaryOperator) ||
4071       (NumParams < 1) || (NumParams > 2))) {
4072    // We have the wrong number of parameters.
4073    unsigned ErrorKind;
4074    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4075      ErrorKind = 2;  // 2 -> unary or binary.
4076    } else if (CanBeUnaryOperator) {
4077      ErrorKind = 0;  // 0 -> unary
4078    } else {
4079      assert(CanBeBinaryOperator &&
4080             "All non-call overloaded operators are unary or binary!");
4081      ErrorKind = 1;  // 1 -> binary
4082    }
4083
4084    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4085      << FnDecl->getDeclName() << NumParams << ErrorKind;
4086  }
4087
4088  // Overloaded operators other than operator() cannot be variadic.
4089  if (Op != OO_Call &&
4090      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4091    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4092      << FnDecl->getDeclName();
4093  }
4094
4095  // Some operators must be non-static member functions.
4096  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4097    return Diag(FnDecl->getLocation(),
4098                diag::err_operator_overload_must_be_member)
4099      << FnDecl->getDeclName();
4100  }
4101
4102  // C++ [over.inc]p1:
4103  //   The user-defined function called operator++ implements the
4104  //   prefix and postfix ++ operator. If this function is a member
4105  //   function with no parameters, or a non-member function with one
4106  //   parameter of class or enumeration type, it defines the prefix
4107  //   increment operator ++ for objects of that type. If the function
4108  //   is a member function with one parameter (which shall be of type
4109  //   int) or a non-member function with two parameters (the second
4110  //   of which shall be of type int), it defines the postfix
4111  //   increment operator ++ for objects of that type.
4112  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4113    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4114    bool ParamIsInt = false;
4115    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4116      ParamIsInt = BT->getKind() == BuiltinType::Int;
4117
4118    if (!ParamIsInt)
4119      return Diag(LastParam->getLocation(),
4120                  diag::err_operator_overload_post_incdec_must_be_int)
4121        << LastParam->getType() << (Op == OO_MinusMinus);
4122  }
4123
4124  // Notify the class if it got an assignment operator.
4125  if (Op == OO_Equal) {
4126    // Would have returned earlier otherwise.
4127    assert(isa<CXXMethodDecl>(FnDecl) &&
4128      "Overloaded = not member, but not filtered.");
4129    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4130    Method->getParent()->addedAssignmentOperator(Context, Method);
4131  }
4132
4133  return false;
4134}
4135
4136/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4137/// linkage specification, including the language and (if present)
4138/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4139/// the location of the language string literal, which is provided
4140/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4141/// the '{' brace. Otherwise, this linkage specification does not
4142/// have any braces.
4143Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4144                                                     SourceLocation ExternLoc,
4145                                                     SourceLocation LangLoc,
4146                                                     const char *Lang,
4147                                                     unsigned StrSize,
4148                                                     SourceLocation LBraceLoc) {
4149  LinkageSpecDecl::LanguageIDs Language;
4150  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4151    Language = LinkageSpecDecl::lang_c;
4152  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4153    Language = LinkageSpecDecl::lang_cxx;
4154  else {
4155    Diag(LangLoc, diag::err_bad_language);
4156    return DeclPtrTy();
4157  }
4158
4159  // FIXME: Add all the various semantics of linkage specifications
4160
4161  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4162                                               LangLoc, Language,
4163                                               LBraceLoc.isValid());
4164  CurContext->addDecl(D);
4165  PushDeclContext(S, D);
4166  return DeclPtrTy::make(D);
4167}
4168
4169/// ActOnFinishLinkageSpecification - Completely the definition of
4170/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4171/// valid, it's the position of the closing '}' brace in a linkage
4172/// specification that uses braces.
4173Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4174                                                      DeclPtrTy LinkageSpec,
4175                                                      SourceLocation RBraceLoc) {
4176  if (LinkageSpec)
4177    PopDeclContext();
4178  return LinkageSpec;
4179}
4180
4181/// \brief Perform semantic analysis for the variable declaration that
4182/// occurs within a C++ catch clause, returning the newly-created
4183/// variable.
4184VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4185                                         DeclaratorInfo *DInfo,
4186                                         IdentifierInfo *Name,
4187                                         SourceLocation Loc,
4188                                         SourceRange Range) {
4189  bool Invalid = false;
4190
4191  // Arrays and functions decay.
4192  if (ExDeclType->isArrayType())
4193    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4194  else if (ExDeclType->isFunctionType())
4195    ExDeclType = Context.getPointerType(ExDeclType);
4196
4197  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4198  // The exception-declaration shall not denote a pointer or reference to an
4199  // incomplete type, other than [cv] void*.
4200  // N2844 forbids rvalue references.
4201  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4202    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4203    Invalid = true;
4204  }
4205
4206  QualType BaseType = ExDeclType;
4207  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4208  unsigned DK = diag::err_catch_incomplete;
4209  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4210    BaseType = Ptr->getPointeeType();
4211    Mode = 1;
4212    DK = diag::err_catch_incomplete_ptr;
4213  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4214    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4215    BaseType = Ref->getPointeeType();
4216    Mode = 2;
4217    DK = diag::err_catch_incomplete_ref;
4218  }
4219  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4220      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4221    Invalid = true;
4222
4223  if (!Invalid && !ExDeclType->isDependentType() &&
4224      RequireNonAbstractType(Loc, ExDeclType,
4225                             diag::err_abstract_type_in_decl,
4226                             AbstractVariableType))
4227    Invalid = true;
4228
4229  // FIXME: Need to test for ability to copy-construct and destroy the
4230  // exception variable.
4231
4232  // FIXME: Need to check for abstract classes.
4233
4234  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4235                                    Name, ExDeclType, DInfo, VarDecl::None);
4236
4237  if (Invalid)
4238    ExDecl->setInvalidDecl();
4239
4240  return ExDecl;
4241}
4242
4243/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4244/// handler.
4245Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4246  DeclaratorInfo *DInfo = 0;
4247  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4248
4249  bool Invalid = D.isInvalidType();
4250  IdentifierInfo *II = D.getIdentifier();
4251  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4252    // The scope should be freshly made just for us. There is just no way
4253    // it contains any previous declaration.
4254    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4255    if (PrevDecl->isTemplateParameter()) {
4256      // Maybe we will complain about the shadowed template parameter.
4257      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4258    }
4259  }
4260
4261  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4262    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4263      << D.getCXXScopeSpec().getRange();
4264    Invalid = true;
4265  }
4266
4267  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4268                                              D.getIdentifier(),
4269                                              D.getIdentifierLoc(),
4270                                            D.getDeclSpec().getSourceRange());
4271
4272  if (Invalid)
4273    ExDecl->setInvalidDecl();
4274
4275  // Add the exception declaration into this scope.
4276  if (II)
4277    PushOnScopeChains(ExDecl, S);
4278  else
4279    CurContext->addDecl(ExDecl);
4280
4281  ProcessDeclAttributes(S, ExDecl, D);
4282  return DeclPtrTy::make(ExDecl);
4283}
4284
4285Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4286                                                   ExprArg assertexpr,
4287                                                   ExprArg assertmessageexpr) {
4288  Expr *AssertExpr = (Expr *)assertexpr.get();
4289  StringLiteral *AssertMessage =
4290    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4291
4292  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4293    llvm::APSInt Value(32);
4294    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4295      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4296        AssertExpr->getSourceRange();
4297      return DeclPtrTy();
4298    }
4299
4300    if (Value == 0) {
4301      std::string str(AssertMessage->getStrData(),
4302                      AssertMessage->getByteLength());
4303      Diag(AssertLoc, diag::err_static_assert_failed)
4304        << str << AssertExpr->getSourceRange();
4305    }
4306  }
4307
4308  assertexpr.release();
4309  assertmessageexpr.release();
4310  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4311                                        AssertExpr, AssertMessage);
4312
4313  CurContext->addDecl(Decl);
4314  return DeclPtrTy::make(Decl);
4315}
4316
4317/// Handle a friend type declaration.  This works in tandem with
4318/// ActOnTag.
4319///
4320/// Notes on friend class templates:
4321///
4322/// We generally treat friend class declarations as if they were
4323/// declaring a class.  So, for example, the elaborated type specifier
4324/// in a friend declaration is required to obey the restrictions of a
4325/// class-head (i.e. no typedefs in the scope chain), template
4326/// parameters are required to match up with simple template-ids, &c.
4327/// However, unlike when declaring a template specialization, it's
4328/// okay to refer to a template specialization without an empty
4329/// template parameter declaration, e.g.
4330///   friend class A<T>::B<unsigned>;
4331/// We permit this as a special case; if there are any template
4332/// parameters present at all, require proper matching, i.e.
4333///   template <> template <class T> friend class A<int>::B;
4334Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4335                                          MultiTemplateParamsArg TempParams) {
4336  SourceLocation Loc = DS.getSourceRange().getBegin();
4337
4338  assert(DS.isFriendSpecified());
4339  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4340
4341  // Try to convert the decl specifier to a type.  This works for
4342  // friend templates because ActOnTag never produces a ClassTemplateDecl
4343  // for a TUK_Friend.
4344  Declarator TheDeclarator(DS, Declarator::MemberContext);
4345  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4346  if (TheDeclarator.isInvalidType())
4347    return DeclPtrTy();
4348
4349  // This is definitely an error in C++98.  It's probably meant to
4350  // be forbidden in C++0x, too, but the specification is just
4351  // poorly written.
4352  //
4353  // The problem is with declarations like the following:
4354  //   template <T> friend A<T>::foo;
4355  // where deciding whether a class C is a friend or not now hinges
4356  // on whether there exists an instantiation of A that causes
4357  // 'foo' to equal C.  There are restrictions on class-heads
4358  // (which we declare (by fiat) elaborated friend declarations to
4359  // be) that makes this tractable.
4360  //
4361  // FIXME: handle "template <> friend class A<T>;", which
4362  // is possibly well-formed?  Who even knows?
4363  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4364    Diag(Loc, diag::err_tagless_friend_type_template)
4365      << DS.getSourceRange();
4366    return DeclPtrTy();
4367  }
4368
4369  // C++ [class.friend]p2:
4370  //   An elaborated-type-specifier shall be used in a friend declaration
4371  //   for a class.*
4372  //   * The class-key of the elaborated-type-specifier is required.
4373  // This is one of the rare places in Clang where it's legitimate to
4374  // ask about the "spelling" of the type.
4375  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4376    // If we evaluated the type to a record type, suggest putting
4377    // a tag in front.
4378    if (const RecordType *RT = T->getAs<RecordType>()) {
4379      RecordDecl *RD = RT->getDecl();
4380
4381      std::string InsertionText = std::string(" ") + RD->getKindName();
4382
4383      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4384        << (unsigned) RD->getTagKind()
4385        << T
4386        << SourceRange(DS.getFriendSpecLoc())
4387        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4388                                                 InsertionText);
4389      return DeclPtrTy();
4390    }else {
4391      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4392          << DS.getSourceRange();
4393      return DeclPtrTy();
4394    }
4395  }
4396
4397  // Enum types cannot be friends.
4398  if (T->getAs<EnumType>()) {
4399    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4400      << SourceRange(DS.getFriendSpecLoc());
4401    return DeclPtrTy();
4402  }
4403
4404  // C++98 [class.friend]p1: A friend of a class is a function
4405  //   or class that is not a member of the class . . .
4406  // But that's a silly restriction which nobody implements for
4407  // inner classes, and C++0x removes it anyway, so we only report
4408  // this (as a warning) if we're being pedantic.
4409  if (!getLangOptions().CPlusPlus0x)
4410    if (const RecordType *RT = T->getAs<RecordType>())
4411      if (RT->getDecl()->getDeclContext() == CurContext)
4412        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4413
4414  Decl *D;
4415  if (TempParams.size())
4416    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4417                                   TempParams.size(),
4418                                 (TemplateParameterList**) TempParams.release(),
4419                                   T.getTypePtr(),
4420                                   DS.getFriendSpecLoc());
4421  else
4422    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4423                           DS.getFriendSpecLoc());
4424  D->setAccess(AS_public);
4425  CurContext->addDecl(D);
4426
4427  return DeclPtrTy::make(D);
4428}
4429
4430Sema::DeclPtrTy
4431Sema::ActOnFriendFunctionDecl(Scope *S,
4432                              Declarator &D,
4433                              bool IsDefinition,
4434                              MultiTemplateParamsArg TemplateParams) {
4435  const DeclSpec &DS = D.getDeclSpec();
4436
4437  assert(DS.isFriendSpecified());
4438  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4439
4440  SourceLocation Loc = D.getIdentifierLoc();
4441  DeclaratorInfo *DInfo = 0;
4442  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4443
4444  // C++ [class.friend]p1
4445  //   A friend of a class is a function or class....
4446  // Note that this sees through typedefs, which is intended.
4447  // It *doesn't* see through dependent types, which is correct
4448  // according to [temp.arg.type]p3:
4449  //   If a declaration acquires a function type through a
4450  //   type dependent on a template-parameter and this causes
4451  //   a declaration that does not use the syntactic form of a
4452  //   function declarator to have a function type, the program
4453  //   is ill-formed.
4454  if (!T->isFunctionType()) {
4455    Diag(Loc, diag::err_unexpected_friend);
4456
4457    // It might be worthwhile to try to recover by creating an
4458    // appropriate declaration.
4459    return DeclPtrTy();
4460  }
4461
4462  // C++ [namespace.memdef]p3
4463  //  - If a friend declaration in a non-local class first declares a
4464  //    class or function, the friend class or function is a member
4465  //    of the innermost enclosing namespace.
4466  //  - The name of the friend is not found by simple name lookup
4467  //    until a matching declaration is provided in that namespace
4468  //    scope (either before or after the class declaration granting
4469  //    friendship).
4470  //  - If a friend function is called, its name may be found by the
4471  //    name lookup that considers functions from namespaces and
4472  //    classes associated with the types of the function arguments.
4473  //  - When looking for a prior declaration of a class or a function
4474  //    declared as a friend, scopes outside the innermost enclosing
4475  //    namespace scope are not considered.
4476
4477  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4478  DeclarationName Name = GetNameForDeclarator(D);
4479  assert(Name);
4480
4481  // The context we found the declaration in, or in which we should
4482  // create the declaration.
4483  DeclContext *DC;
4484
4485  // FIXME: handle local classes
4486
4487  // Recover from invalid scope qualifiers as if they just weren't there.
4488  NamedDecl *PrevDecl = 0;
4489  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4490    // FIXME: RequireCompleteDeclContext
4491    DC = computeDeclContext(ScopeQual);
4492
4493    // FIXME: handle dependent contexts
4494    if (!DC) return DeclPtrTy();
4495
4496    LookupResult R;
4497    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4498    PrevDecl = R.getAsSingleDecl(Context);
4499
4500    // If searching in that context implicitly found a declaration in
4501    // a different context, treat it like it wasn't found at all.
4502    // TODO: better diagnostics for this case.  Suggesting the right
4503    // qualified scope would be nice...
4504    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4505      D.setInvalidType();
4506      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4507      return DeclPtrTy();
4508    }
4509
4510    // C++ [class.friend]p1: A friend of a class is a function or
4511    //   class that is not a member of the class . . .
4512    if (DC->Equals(CurContext))
4513      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4514
4515  // Otherwise walk out to the nearest namespace scope looking for matches.
4516  } else {
4517    // TODO: handle local class contexts.
4518
4519    DC = CurContext;
4520    while (true) {
4521      // Skip class contexts.  If someone can cite chapter and verse
4522      // for this behavior, that would be nice --- it's what GCC and
4523      // EDG do, and it seems like a reasonable intent, but the spec
4524      // really only says that checks for unqualified existing
4525      // declarations should stop at the nearest enclosing namespace,
4526      // not that they should only consider the nearest enclosing
4527      // namespace.
4528      while (DC->isRecord())
4529        DC = DC->getParent();
4530
4531      LookupResult R;
4532      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4533      PrevDecl = R.getAsSingleDecl(Context);
4534
4535      // TODO: decide what we think about using declarations.
4536      if (PrevDecl)
4537        break;
4538
4539      if (DC->isFileContext()) break;
4540      DC = DC->getParent();
4541    }
4542
4543    // C++ [class.friend]p1: A friend of a class is a function or
4544    //   class that is not a member of the class . . .
4545    // C++0x changes this for both friend types and functions.
4546    // Most C++ 98 compilers do seem to give an error here, so
4547    // we do, too.
4548    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4549      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4550  }
4551
4552  if (DC->isFileContext()) {
4553    // This implies that it has to be an operator or function.
4554    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4555        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4556        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4557      Diag(Loc, diag::err_introducing_special_friend) <<
4558        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4559         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4560      return DeclPtrTy();
4561    }
4562  }
4563
4564  bool Redeclaration = false;
4565  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4566                                          move(TemplateParams),
4567                                          IsDefinition,
4568                                          Redeclaration);
4569  if (!ND) return DeclPtrTy();
4570
4571  assert(ND->getDeclContext() == DC);
4572  assert(ND->getLexicalDeclContext() == CurContext);
4573
4574  // Add the function declaration to the appropriate lookup tables,
4575  // adjusting the redeclarations list as necessary.  We don't
4576  // want to do this yet if the friending class is dependent.
4577  //
4578  // Also update the scope-based lookup if the target context's
4579  // lookup context is in lexical scope.
4580  if (!CurContext->isDependentContext()) {
4581    DC = DC->getLookupContext();
4582    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4583    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4584      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4585  }
4586
4587  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4588                                       D.getIdentifierLoc(), ND,
4589                                       DS.getFriendSpecLoc());
4590  FrD->setAccess(AS_public);
4591  CurContext->addDecl(FrD);
4592
4593  return DeclPtrTy::make(ND);
4594}
4595
4596void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4597  AdjustDeclIfTemplate(dcl);
4598
4599  Decl *Dcl = dcl.getAs<Decl>();
4600  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4601  if (!Fn) {
4602    Diag(DelLoc, diag::err_deleted_non_function);
4603    return;
4604  }
4605  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4606    Diag(DelLoc, diag::err_deleted_decl_not_first);
4607    Diag(Prev->getLocation(), diag::note_previous_declaration);
4608    // If the declaration wasn't the first, we delete the function anyway for
4609    // recovery.
4610  }
4611  Fn->setDeleted();
4612}
4613
4614static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4615  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4616       ++CI) {
4617    Stmt *SubStmt = *CI;
4618    if (!SubStmt)
4619      continue;
4620    if (isa<ReturnStmt>(SubStmt))
4621      Self.Diag(SubStmt->getSourceRange().getBegin(),
4622           diag::err_return_in_constructor_handler);
4623    if (!isa<Expr>(SubStmt))
4624      SearchForReturnInStmt(Self, SubStmt);
4625  }
4626}
4627
4628void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4629  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4630    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4631    SearchForReturnInStmt(*this, Handler);
4632  }
4633}
4634
4635bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4636                                             const CXXMethodDecl *Old) {
4637  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4638  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4639
4640  QualType CNewTy = Context.getCanonicalType(NewTy);
4641  QualType COldTy = Context.getCanonicalType(OldTy);
4642
4643  if (CNewTy == COldTy &&
4644      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4645    return false;
4646
4647  // Check if the return types are covariant
4648  QualType NewClassTy, OldClassTy;
4649
4650  /// Both types must be pointers or references to classes.
4651  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4652    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4653      NewClassTy = NewPT->getPointeeType();
4654      OldClassTy = OldPT->getPointeeType();
4655    }
4656  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4657    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4658      NewClassTy = NewRT->getPointeeType();
4659      OldClassTy = OldRT->getPointeeType();
4660    }
4661  }
4662
4663  // The return types aren't either both pointers or references to a class type.
4664  if (NewClassTy.isNull()) {
4665    Diag(New->getLocation(),
4666         diag::err_different_return_type_for_overriding_virtual_function)
4667      << New->getDeclName() << NewTy << OldTy;
4668    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4669
4670    return true;
4671  }
4672
4673  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4674    // Check if the new class derives from the old class.
4675    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4676      Diag(New->getLocation(),
4677           diag::err_covariant_return_not_derived)
4678      << New->getDeclName() << NewTy << OldTy;
4679      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4680      return true;
4681    }
4682
4683    // Check if we the conversion from derived to base is valid.
4684    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4685                      diag::err_covariant_return_inaccessible_base,
4686                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4687                      // FIXME: Should this point to the return type?
4688                      New->getLocation(), SourceRange(), New->getDeclName())) {
4689      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4690      return true;
4691    }
4692  }
4693
4694  // The qualifiers of the return types must be the same.
4695  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4696    Diag(New->getLocation(),
4697         diag::err_covariant_return_type_different_qualifications)
4698    << New->getDeclName() << NewTy << OldTy;
4699    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4700    return true;
4701  };
4702
4703
4704  // The new class type must have the same or less qualifiers as the old type.
4705  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4706    Diag(New->getLocation(),
4707         diag::err_covariant_return_type_class_type_more_qualified)
4708    << New->getDeclName() << NewTy << OldTy;
4709    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4710    return true;
4711  };
4712
4713  return false;
4714}
4715
4716/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4717/// initializer for the declaration 'Dcl'.
4718/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4719/// static data member of class X, names should be looked up in the scope of
4720/// class X.
4721void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4722  AdjustDeclIfTemplate(Dcl);
4723
4724  Decl *D = Dcl.getAs<Decl>();
4725  // If there is no declaration, there was an error parsing it.
4726  if (D == 0)
4727    return;
4728
4729  // Check whether it is a declaration with a nested name specifier like
4730  // int foo::bar;
4731  if (!D->isOutOfLine())
4732    return;
4733
4734  // C++ [basic.lookup.unqual]p13
4735  //
4736  // A name used in the definition of a static data member of class X
4737  // (after the qualified-id of the static member) is looked up as if the name
4738  // was used in a member function of X.
4739
4740  // Change current context into the context of the initializing declaration.
4741  EnterDeclaratorContext(S, D->getDeclContext());
4742}
4743
4744/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4745/// initializer for the declaration 'Dcl'.
4746void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4747  AdjustDeclIfTemplate(Dcl);
4748
4749  Decl *D = Dcl.getAs<Decl>();
4750  // If there is no declaration, there was an error parsing it.
4751  if (D == 0)
4752    return;
4753
4754  // Check whether it is a declaration with a nested name specifier like
4755  // int foo::bar;
4756  if (!D->isOutOfLine())
4757    return;
4758
4759  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4760  ExitDeclaratorContext(S);
4761}
4762